We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi
I am running facenet on following configuration in Anaconda when I encounter a variable disallowed error.
Anaconda: 1.6.12 numpy: 1.12.1 Tensorflow: 1.10 Keras: 2.1.6
Have you seen this issue? Which version did you run in when you last executed the test run?
The error occurred when running block 20:
im_in = Input(shape=(200,200,4)) #wrong = Input(shape=(200,200,3)) x1 = modelsqueeze(im_in) #x = Convolution2D(64, (5, 5), padding='valid', strides =(2,2))(x) #x1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2))(x1) """ x1 = Convolution2D(256, (3,3), padding='valid', activation="relu")(x1) x1 = Dropout(0.4)(x1) x1 = MaxPooling2D(pool_size=(3, 3), strides=(1, 1))(x1) x1 = Convolution2D(256, (3,3), padding='valid', activation="relu")(x1) x1 = BatchNormalization()(x1) x1 = Dropout(0.4)(x1) x1 = Convolution2D(64, (1,1), padding='same', activation="relu")(x1) x1 = BatchNormalization()(x1) x1 = Dropout(0.4)(x1) """ x1 = Flatten()(x1) x1 = Dense(512, activation="relu")(x1) x1 = Dropout(0.2)(x1) #x1 = BatchNormalization()(x1) feat_x = Dense(128, activation="linear")(x1) feat_x = Lambda(lambda x: K.l2_normalize(x,axis=1))(feat_x) model_top = Model(inputs = [im_in], outputs = feat_x) model_top.summary() im_in1 = Input(shape=(200,200,4)) im_in2 = Input(shape=(200,200,4)) feat_x1 = model_top(im_in1) feat_x2 = model_top(im_in2) lambda_merge = Lambda(euclidean_distance)([feat_x1, feat_x2]) model_final = Model(inputs = [im_in1, im_in2], outputs = lambda_merge) model_final.summary() adam = Adam(lr=0.001) sgd = SGD(lr=0.001, momentum=0.9) model_final.compile(optimizer=adam, loss=contrastive_loss)
The error is:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-20-d87010ad9d0a> in <module>() 2 #wrong = Input(shape=(200,200,3)) 3 ----> 4 x1 = modelsqueeze(im_in) 5 #x = Convolution2D(64, (5, 5), padding='valid', strides =(2,2))(x) 6 ~/anaconda3/lib/python3.6/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs) 617 618 # Actually call the layer, collecting output(s), mask(s), and shape(s). --> 619 output = self.call(inputs, **kwargs) 620 output_mask = self.compute_mask(inputs, previous_mask) 621 ~/anaconda3/lib/python3.6/site-packages/keras/engine/topology.py in call(self, inputs, mask) 2083 return self._output_tensor_cache[cache_key] 2084 else: -> 2085 output_tensors, _, _ = self.run_internal_graph(inputs, masks) 2086 return output_tensors 2087 ~/anaconda3/lib/python3.6/site-packages/keras/engine/topology.py in run_internal_graph(self, inputs, masks) 2233 if 'mask' not in kwargs: 2234 kwargs['mask'] = computed_mask -> 2235 output_tensors = _to_list(layer.call(computed_tensor, **kwargs)) 2236 output_masks = layer.compute_mask(computed_tensor, 2237 computed_mask) ~/anaconda3/lib/python3.6/site-packages/keras/layers/normalization.py in call(self, inputs, training) 191 self.add_update([K.moving_average_update(self.moving_mean, 192 mean, --> 193 self.momentum), 194 K.moving_average_update(self.moving_variance, 195 variance, ~/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in moving_average_update(x, value, momentum) 1003 """ 1004 return moving_averages.assign_moving_average( -> 1005 x, value, momentum, zero_debias=True) 1006 1007 ~/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py in assign_moving_average(variable, value, decay, zero_debias, name) 68 decay = math_ops.cast(decay, variable.dtype.base_dtype) 69 if zero_debias: ---> 70 update_delta = _zero_debias(variable, value, decay) 71 else: 72 update_delta = (variable - value) * decay ~/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/moving_averages.py in _zero_debias(unbiased_var, value, decay) 178 local_step_initializer = init_ops.zeros_initializer() 179 biased_var = variable_scope.get_variable( --> 180 "biased", initializer=biased_initializer, trainable=False) 181 local_step = variable_scope.get_variable( 182 "local_step", ~/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py in get_variable(name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter) 1047 collections=collections, caching_device=caching_device, 1048 partitioner=partitioner, validate_shape=validate_shape, -> 1049 use_resource=use_resource, custom_getter=custom_getter) 1050 get_variable_or_local_docstring = ( 1051 """%s ~/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py in get_variable(self, var_store, name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter) 946 collections=collections, caching_device=caching_device, 947 partitioner=partitioner, validate_shape=validate_shape, --> 948 use_resource=use_resource, custom_getter=custom_getter) 949 950 def _get_partitioned_variable(self, ~/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py in get_variable(self, name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter) 354 reuse=reuse, trainable=trainable, collections=collections, 355 caching_device=caching_device, partitioner=partitioner, --> 356 validate_shape=validate_shape, use_resource=use_resource) 357 358 def _get_partitioned_variable( ~/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py in _true_getter(name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource) 339 trainable=trainable, collections=collections, 340 caching_device=caching_device, validate_shape=validate_shape, --> 341 use_resource=use_resource) 342 343 if custom_getter is not None: ~/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py in _get_single_variable(self, name, shape, dtype, initializer, regularizer, partition_info, reuse, trainable, collections, caching_device, validate_shape, use_resource) 651 " Did you mean to set reuse=True in VarScope? " 652 "Originally defined at:\n\n%s" % ( --> 653 name, "".join(traceback.format_list(tb)))) 654 found_var = self._vars[name] 655 if not shape.is_compatible_with(found_var.get_shape()): ValueError: Variable batch_normalization_1/moving_mean/biased already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at: File "/Users/xyz/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 1005, in moving_average_update x, value, momentum, zero_debias=True) File "/Users/xyz/anaconda3/lib/python3.6/site-packages/keras/layers/normalization.py", line 193, in call self.momentum), File "/Users/xyz/anaconda3/lib/python3.6/site-packages/keras/engine/topology.py", line 619, in __call__ output = self.call(inputs, **kwargs)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi
I am running facenet on following configuration in Anaconda when I encounter a variable disallowed error.
Anaconda: 1.6.12
numpy: 1.12.1
Tensorflow: 1.10
Keras: 2.1.6
Have you seen this issue? Which version did you run in when you last executed the test run?
The error occurred when running block 20:
The error is:
The text was updated successfully, but these errors were encountered: