diff --git a/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py b/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py index 47c765d5cbb5..3111ae075ccc 100644 --- a/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py +++ b/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py @@ -12,11 +12,12 @@ # See the License for the specific language governing permissions and # limitations under the License. import inspect -from typing import List, Optional, Tuple, Union +from typing import Callable, Dict, List, Optional, Tuple, Union import torch from transformers import T5Tokenizer, UMT5EncoderModel +from ...callbacks import MultiPipelineCallbacks, PipelineCallback from ...image_processor import VaeImageProcessor from ...models import AuraFlowTransformer2DModel, AutoencoderKL from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor @@ -154,10 +155,18 @@ def check_inputs( negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, + callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" @@ -402,6 +411,10 @@ def __call__( max_sequence_length: int = 256, output_type: Optional[str] = "pil", return_dict: bool = True, + callback_on_step_end: Optional[ + Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] + ] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], ) -> Union[ImagePipelineOutput, Tuple]: r""" Function invoked when calling the pipeline for generation. @@ -468,6 +481,9 @@ def __call__( If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + # 1. Check inputs. Raise error if not correct height = height or self.transformer.config.sample_size * self.vae_scale_factor width = width or self.transformer.config.sample_size * self.vae_scale_factor @@ -481,6 +497,7 @@ def __call__( negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, + callback_on_step_end_tensor_inputs, ) # 2. Determine batch size. @@ -567,6 +584,14 @@ def __call__( # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + if callback_outputs is not None: + latents = callback_outputs.pop("latents", latents) + # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update()