-
Notifications
You must be signed in to change notification settings - Fork 39
/
main.py
executable file
·444 lines (359 loc) · 15.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import multiprocessing as mp
mp.set_start_method('spawn', force=True)
import os
import argparse
import json
import pprint
import socket
import time
from easydict import EasyDict
import yaml
from tensorboardX import SummaryWriter
import torch
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from calc_mAP import run_evaluation
from datasets import ava, spatial_transforms, temporal_transforms
from distributed_utils import init_distributed
import losses
from models import AVA_model
from scheduler import get_scheduler
from utils import *
def main(local_rank, args):
'''dist init'''
rank, world_size = init_distributed(local_rank, args)
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
opt = EasyDict(config)
opt.world_size = world_size
if rank == 0:
mkdir(opt.result_path)
mkdir(os.path.join(opt.result_path, 'tmp'))
with open(os.path.join(opt.result_path, 'opts.json'), 'w') as opt_file:
json.dump(vars(opt), opt_file, indent=2)
logger = create_logger(os.path.join(opt.result_path, 'log.txt'))
logger.info('opt: {}'.format(pprint.pformat(opt, indent=2)))
writer = SummaryWriter(os.path.join(opt.result_path, 'tb'))
else:
logger = writer = None
dist.barrier()
random_seed(opt.manual_seed)
# setting benchmark to True causes OOM in some cases
if opt.get('cudnn', None) is not None:
torch.backends.cudnn.deterministic = opt.cudnn.get('deterministic', False)
torch.backends.cudnn.benchmark = opt.cudnn.get('benchmark', False)
# create model
net = AVA_model(opt.model)
net.cuda()
net = DistributedDataParallel(net, device_ids=[local_rank], broadcast_buffers=False)
if rank == 0:
logger.info(net)
logger.info(parameters_string(net))
if not opt.get('evaluate', False):
train_aug = opt.train.augmentation
spatial_transform = [getattr(spatial_transforms, aug.type)(**aug.get('kwargs', {})) for aug in train_aug.spatial]
spatial_transform = spatial_transforms.Compose(spatial_transform)
temporal_transform = getattr(temporal_transforms, train_aug.temporal.type)(**train_aug.temporal.get('kwargs', {}))
train_data = ava.AVA(
opt.train.root_path,
opt.train.annotation_path,
spatial_transform,
temporal_transform
)
train_sampler = DistributedSampler(train_data, round_down=True)
train_loader = ava.AVADataLoader(
train_data,
batch_size=opt.train.batch_size,
shuffle=False,
num_workers=opt.train.get('workers', 1),
pin_memory=True,
sampler=train_sampler,
drop_last=True
)
if rank == 0:
logger.info('# train data: {}'.format(len(train_data)))
logger.info('train spatial aug: {}'.format(spatial_transform))
logger.info('train temporal aug: {}'.format(temporal_transform))
train_logger = Logger(
os.path.join(opt.result_path, 'train.log'),
['epoch', 'loss', 'lr'])
train_batch_logger = Logger(
os.path.join(opt.result_path, 'train_batch.log'),
['epoch', 'batch', 'iter', 'loss', 'lr'])
else:
train_logger = train_batch_logger = None
optim_opt = opt.train.optimizer
sched_opt = opt.train.scheduler
optimizer = getattr(optim, optim_opt.type)(
net.parameters(),
lr=sched_opt.base_lr,
**optim_opt.kwargs
)
scheduler = get_scheduler(sched_opt, optimizer, opt.train.n_epochs, len(train_loader))
val_aug = opt.val.augmentation
transform_choices, total_choices = [], 1
for aug in val_aug.spatial:
kwargs_list = aug.get('kwargs', {})
if not isinstance(kwargs_list, list):
kwargs_list = [kwargs_list]
cur_choices = [getattr(spatial_transforms, aug.type)(**kwargs) for kwargs in kwargs_list]
transform_choices.append(cur_choices)
total_choices *= len(cur_choices)
spatial_transform = []
for choice_idx in range(total_choices):
idx, transform = choice_idx, []
for cur_choices in transform_choices:
n_choices = len(cur_choices)
cur_idx = idx % n_choices
transform.append(cur_choices[cur_idx])
idx = idx // n_choices
spatial_transform.append(spatial_transforms.Compose(transform))
temporal_transform = getattr(temporal_transforms, val_aug.temporal.type)(**val_aug.temporal.get('kwargs', {}))
val_data = ava.AVAmulticrop(
opt.val.root_path,
opt.val.annotation_path,
spatial_transform,
temporal_transform
)
val_sampler = DistributedSampler(val_data, round_down=False)
val_loader = ava.AVAmulticropDataLoader(
val_data,
batch_size=opt.val.batch_size,
shuffle=False,
num_workers=opt.val.get('workers', 1),
pin_memory=True,
sampler=val_sampler
)
val_logger = None
if rank == 0:
logger.info('# val data: {}'.format(len(val_data)))
logger.info('val spatial aug: {}'.format(spatial_transform))
logger.info('val temporal aug: {}'.format(temporal_transform))
val_log_items = ['epoch']
if opt.val.with_label:
val_log_items.append('loss')
if opt.val.get('eval_mAP', None) is not None:
val_log_items.append('mAP')
if len(val_log_items) > 1:
val_logger = Logger(
os.path.join(opt.result_path, 'val.log'),
val_log_items)
if opt.get('pretrain', None) is not None:
load_pretrain(opt.pretrain, net)
begin_epoch = 1
if opt.get('resume_path', None) is not None:
if not os.path.isfile(opt.resume_path):
opt.resume_path = os.path.join(opt.result_path, opt.resume_path)
checkpoint = torch.load(opt.resume_path, map_location=lambda storage, loc: storage.cuda())
begin_epoch = checkpoint['epoch'] + 1
net.load_state_dict(checkpoint['state_dict'])
if rank == 0:
logger.info('Resumed from checkpoint {}'.format(opt.resume_path))
if not opt.get('evaluate', False):
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
if rank == 0:
logger.info('Also loaded optimizer and scheduler from checkpoint {}'.format(opt.resume_path))
criterion, act_func = getattr(losses, opt.loss.type)(**opt.loss.get('kwargs', {}))
if opt.get('evaluate', False): # evaluation mode
val_epoch(begin_epoch - 1, val_loader, net, criterion, act_func,
opt, logger, val_logger, rank, world_size, writer)
else: # training and validation mode
for e in range(begin_epoch, opt.train.n_epochs + 1):
train_sampler.set_epoch(e)
train_epoch(e, train_loader, net, criterion, optimizer, scheduler,
opt, logger, train_logger, train_batch_logger, rank, world_size, writer)
if e % opt.train.val_freq == 0:
val_epoch(e, val_loader, net, criterion, act_func,
opt, logger, val_logger, rank, world_size, writer)
if rank == 0:
writer.close()
def train_epoch(epoch, data_loader, model, criterion, optimizer, scheduler,
opt, logger, epoch_logger, batch_logger, rank, world_size, writer):
if rank == 0:
logger.info('Training at epoch {}'.format(epoch))
model.train()
batch_time = AverageMeter(opt.print_freq)
data_time = AverageMeter(opt.print_freq)
loss_time = AverageMeter(opt.print_freq)
losses = AverageMeter(opt.print_freq)
global_losses = AverageMeter()
end_time = time.time()
for i, data in enumerate(data_loader):
data_time.update(time.time() - end_time)
curr_step = (epoch - 1) * len(data_loader) + i
scheduler.step(curr_step)
ret = model(data)
num_rois = ret['num_rois']
outputs = ret['outputs']
targets = ret['targets']
tot_rois = torch.Tensor([num_rois]).cuda()
dist.all_reduce(tot_rois)
tot_rois = tot_rois.item()
if tot_rois == 0:
end_time = time.time()
continue
optimizer.zero_grad()
if num_rois > 0:
loss = criterion(outputs, targets)
loss = loss * num_rois / tot_rois * world_size
else:
loss = torch.tensor(0).float().cuda()
for param in model.parameters():
if param.requires_grad:
loss = loss + param.sum()
loss = 0. * loss
loss.backward()
optimizer.step()
reduced_loss = loss.clone()
dist.all_reduce(reduced_loss)
losses.update(reduced_loss.item(), tot_rois)
global_losses.update(reduced_loss.item(), tot_rois)
batch_time.update(time.time() - end_time)
end_time = time.time()
if (i + 1) % opt.print_freq == 0 and rank == 0:
writer.add_scalar('train/loss', losses.avg, curr_step + 1)
writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], curr_step + 1)
batch_logger.log({
'epoch': epoch,
'batch': i + 1,
'iter': curr_step + 1,
'loss': losses.avg,
'lr': optimizer.param_groups[0]['lr']
})
logger.info('Epoch [{0}]\t'
'Iter [{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(
epoch,
i + 1,
len(data_loader),
batch_time=batch_time,
data_time=data_time,
loss=losses))
if rank == 0:
writer.add_scalar('train/epoch_loss', global_losses.avg, epoch)
writer.flush()
epoch_logger.log({
'epoch': epoch,
'loss': global_losses.avg,
'lr': optimizer.param_groups[0]['lr']
})
logger.info('-' * 100)
logger.info(
'Epoch [{}/{}]\t'
'Loss {:.4f}'.format(
epoch,
opt.train.n_epochs,
global_losses.avg))
if epoch % opt.train.save_freq == 0:
save_file_path = os.path.join(opt.result_path, 'ckpt_{}.pth.tar'.format(epoch))
states = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()
}
torch.save(states, save_file_path)
logger.info('Checkpoint saved to {}'.format(save_file_path))
logger.info('-' * 100)
def val_epoch(epoch, data_loader, model, criterion, act_func,
opt, logger, epoch_logger, rank, world_size, writer):
if rank == 0:
logger.info('Evaluation at epoch {}'.format(epoch))
model.eval()
calc_loss = opt.val.with_label
out_file = open(os.path.join(opt.result_path, 'tmp', 'predict_rank%d.csv'%rank), 'w')
batch_time = AverageMeter(opt.print_freq)
data_time = AverageMeter(opt.print_freq)
if calc_loss:
global_losses = AverageMeter()
end_time = time.time()
for i, data in enumerate(data_loader):
data_time.update(time.time() - end_time)
with torch.no_grad():
ret = model(data, evaluate=True)
num_rois = ret['num_rois']
outputs = ret['outputs']
targets = ret['targets']
if num_rois == 0:
end_time = time.time()
continue
if calc_loss:
loss = criterion(outputs, targets)
global_losses.update(loss.item(), num_rois)
fnames, mid_times, bboxes = ret['filenames'], ret['mid_times'], ret['bboxes']
outputs = act_func(outputs).cpu().data
idx_to_class = data_loader.dataset.idx_to_class
for k in range(num_rois):
prefix = "%s,%s,%.3f,%.3f,%.3f,%.3f"%(fnames[k], mid_times[k],
bboxes[k][0], bboxes[k][1],
bboxes[k][2], bboxes[k][3])
for cls in range(outputs.shape[1]):
score_str = '%.3f'%outputs[k][cls]
out_file.write(prefix + ",%d,%s\n" % (idx_to_class[cls]['id'], score_str))
batch_time.update(time.time() - end_time)
end_time = time.time()
if (i + 1) % opt.print_freq == 0 and rank == 0:
logger.info('Epoch [{0}]\t'
'Iter [{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'.format(
epoch,
i + 1,
len(data_loader),
batch_time=batch_time,
data_time=data_time))
if calc_loss:
total_num = torch.Tensor([global_losses.count]).cuda()
loss_sum = torch.Tensor([global_losses.avg * global_losses.count]).cuda()
dist.all_reduce(total_num)
dist.all_reduce(loss_sum)
final_loss = loss_sum.item() / (total_num.item() + 1e-10)
out_file.close()
dist.barrier()
if rank == 0:
val_log = {'epoch': epoch}
val_str = 'Epoch [{}]'.format(epoch)
if calc_loss:
writer.add_scalar('val/epoch_loss', final_loss, epoch)
val_log['loss'] = final_loss
val_str += '\tLoss {:.4f}'.format(final_loss)
result_file = os.path.join(opt.result_path, 'predict_epoch%d.csv'%epoch)
with open(result_file, 'w') as of:
for r in range(world_size):
with open(os.path.join(opt.result_path, 'tmp', 'predict_rank%d.csv'%r), 'r') as f:
of.writelines(f.readlines())
if opt.val.get('eval_mAP', None) is not None:
eval_mAP = opt.val.eval_mAP
metrics = run_evaluation(
open(eval_mAP.labelmap, 'r'),
open(eval_mAP.groundtruth, 'r'),
open(result_file, 'r'),
open(eval_mAP.exclusions, 'r') if eval_mAP.get('exclusions', None) is not None else None,
logger
)
mAP = metrics['PascalBoxes_Precision/[email protected]']
writer.add_scalar('val/mAP', mAP, epoch)
val_log['mAP'] = mAP
val_str += '\tmAP {:.6f}'.format(mAP)
writer.flush()
if epoch_logger is not None:
epoch_logger.log(val_log)
logger.info('-' * 100)
logger.info(val_str)
logger.info('-' * 100)
dist.barrier()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch AVA Training and Evaluation')
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--nproc_per_node', type=int, default=8)
parser.add_argument('--backend', type=str, default='nccl')
parser.add_argument('--master_addr', type=str, default=socket.gethostbyname(socket.gethostname()))
parser.add_argument('--master_port', type=int, default=31114)
parser.add_argument('--nnodes', type=int, default=None)
parser.add_argument('--node_rank', type=int, default=None)
args = parser.parse_args()
torch.multiprocessing.spawn(main, args=(args,), nprocs=args.nproc_per_node)