-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreachability.py
639 lines (549 loc) · 23.2 KB
/
reachability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import polytope as pc
import cvxpy as cvx
import cvxopt
from cvxopt import matrix
import scipy
import scipy.optimize
import time
import logging
################################## User-centric Reachability ##################################
def get_optimal_actions_cvx(H, target_item,
mutable_items, immutable_items, ratings,
bias = None,
l2_reg=0., rating_bounds=(0,5)):
import cvxpy as cvx
'''
Constructs and solves the one-step reachability problem for regularized
matrix factorization:
min |u|_1
s.t. select(model(r+u)) = target_item
Assumes ratings must be constrained to [-rating_bound, rating_bound].
'''
n_latent_features, n_items = H.shape
# translating to latent space
## p = v_0 + A u
full_support = np.concatenate([immutable_items,mutable_items]).astype(int)
Q = H.T
B = Q[full_support].T.dot(Q[full_support])+l2_reg*np.eye(n_latent_features)
Binv = scipy.linalg.inv(B) # TODO: faster?
A = Binv.dot(Q[mutable_items].T)
r_vec = np.zeros(n_latent_features)
if len(immutable_items) > 0: # assume this means not a history edit - reaction
r_vec += Q[immutable_items].T.dot(ratings)
if bias is not None:
item_bias, user_bias, b0 = bias
r_vec -= Q[full_support].T.dot(item_bias[full_support]+user_bias+b0)
v0 = Binv.dot(r_vec)
# constructing target region
## matrices for region such that select(v_{t+1}) = target_item
A_reg, b_reg = item_factors_to_inequality_constraints(H, target_item, exclude=full_support, tol=1e-2)
## A_reg (v + Au) <= b turns into A_reg A u <= b-A_reg v
con_A = A_reg.dot(A)
con_b = b_reg - A_reg.dot(v0)
# variable
u = cvx.Variable(len(mutable_items))
cons = [con_A * u <= con_b]
if rating_bounds is not None:
lb, ub = rating_bounds
cons += [u >= lb, u <= ub]
# COST!
## currently: either full history edit or no history edit
if len(immutable_items) == 0: # assume this means a history edit
cost = cvx.norm(u-ratings,1)
else: # reaction -- assume nothing in seen is in mutable
B_hist = Q[immutable_items].T.dot(Q[immutable_items])+l2_reg*np.eye(n_latent_features)
if bias is not None:
item_bias, user_bias, b0 = bias
r_pred = Q.dot(scipy.linalg.inv(B_hist)).dot(Q[immutable_items].T.dot(ratings+item_bias[immutable_items]+user_bias+b0))
else:
r_pred = Q.dot(scipy.linalg.inv(B_hist)).dot(Q[immutable_items].T.dot(ratings))
cost = cvx.norm(u-r_pred[mutable_items],1)
prob = cvx.Problem(cvx.Minimize(cost), cons)
try:
prob.solve()
success = prob.status not in ["infeasible", "unbounded"]
val = cost.value
except cvx.error.SolverError:
success = False
val = np.inf
return success, val
################################## Reachability Approximation ########################
def get_latent_aligned_reachable_top_n_items(H, ns, item_bias=None, exclude=None):
'''
quick evaluation of reachability by checking whether
i = argmax_j q_j^T v with v = argmax q_i^T v / |v|
this is a sufficient but not necessary condition for reachability.
H: matrix factorization item model
n: top-n
item-bias: additional bias in model
'''
n_latent_features, n_items = H.shape
M = H.T.dot(H)
print('done multiplying')
if item_bias is not None: M += item_bias.reshape(1,-1) # add to each row
if exclude is not None: M[:,exclude] = -np.inf
print('starting sort')
argsort = M.argsort(axis=1)
print('finished sort')
ret = []
for n in ns:
ret.append(np.unique(argsort[:,-n:]))
return ret
ZERO_TOL = 1e-6
def get_user_aligned_reachable_top_n_items(H, ns, immutable_items=[],
ratings=[], mutable_items=[],
reg=0, bias=None, constraints=None, changet=False):
'''
quick evaluation of reachability by checking whether
i = argmax_j q_j^T v with v = argmin |q_i - v|
FORMERLY: v = argmax q_i^T v / |v|
this is a sufficient but not necessary condition for reachability.
H: matrix factorization item model
n: top-n
immutable_items: indices for which user ratings cannot be changed
ratings: corresponding ratings
mutable_item: indices for which users can change ratings
method: item-base (no user to consider) or not
reg: l2 regularization in model
bias: (item-bias, user-bias, b0): additional item/user/overall bias in model
'''
n_latent_features, n_items = H.shape
# TODO: should assert disjoint sets
full_support = np.concatenate([immutable_items,mutable_items]).astype(int)
Q = H.T
B = Q[full_support].T.dot(Q[full_support])+reg*np.eye(n_latent_features)
Binv = scipy.linalg.inv(B) # TODO: faster?
A = Binv.dot(Q[mutable_items].T)
r_vec = np.zeros(n_latent_features)
if len(immutable_items) > 0:
r_vec += Q[immutable_items].T.dot(ratings)
if bias is not None:
item_bias, user_bias, b0 = bias
r_vec -= Q[full_support].T.dot(item_bias[full_support]+user_bias+b0)
v0 = Binv.dot(r_vec)
if constraints is None:
AAt = A.dot(scipy.linalg.pinv(A))
M = Q.dot(AAt).dot(Q.T) + Q.dot(v0 - AAt.dot(v0)).reshape(1,-1)
if bias is not None:
item_bias, _, _ = bias
M += item_bias.reshape(1,-1)
elif constraints is not None:
lb, ub = constraints
if changet:
test_vs = []
for i in range(n_items):
# doesn't seem to make a difference once we add the lower bound of 1
Als = np.hstack([A, -Q[i][:,np.newaxis]])
bls = -v0
bounds=([lb]*len(mutable_items)+[1], [ub]*len(mutable_items)+[np.inf])
res = scipy.optimize.lsq_linear(Als, bls, bounds=bounds)
vi = A.dot(res['x'][:len(mutable_items)])-v0
test_vs.append(vi)
V = np.array(test_vs).T
else:
# TODO: would vectorizing over items be faster in this case?
# or implement matrix constrained least squares
test_vs = []
for i in range(n_items):
Als = A
bls = Q[i]-v0
bounds=(lb,ub)
res = scipy.optimize.lsq_linear(Als, bls, bounds=bounds)
vi = A.dot(res['x'])-v0
test_vs.append(vi)
V = np.array(test_vs).T
M = Q.dot(V)
if bias is not None:
item_bias, _, _ = bias
M += item_bias.reshape(1,-1)
else:
M = np.zeros([n_items,n_items]); Q = H.T
B = Q[full_support].T.dot(Q[full_support])+reg*np.eye(n_latent_features)
Binv = scipy.linalg.inv(B) # TODO: faster?
A = Binv.dot(Q[mutable_items].T)
# QProjA = (Q A) (A.T A)^-1 A.T
# (A.T A)^-1 A.T = A^dagger = Q^dagger B
Qdecomp, Rdecomp = np.linalg.qr(A)
ProjA = Qdecomp.dot(A.T)
QProjA = Q.dot(ProjA)
QProjAnorm = np.linalg.norm(QProjA, axis=1)
r_vec = np.zeros(n_latent_features)
if len(immutable_items) > 0:
r_vec += Q[immutable_items].T.dot(ratings)
if bias is not None:
item_bias, user_bias, b0 = bias
r_vec -= Q[full_support].T.dot(item_bias[full_support]+user_bias+b0)
else:
item_bias = np.zeros(n_items)
v0 = Binv.dot(r_vec)
v0perp = ProjA.dot(v0)-v0
v0perp_norm = np.linalg.norm(v0perp)
Qv0perp = Q.dot(v0perp)
C = Qv0perp + item_bias
condition1 = C > 0
condition2 = np.all(v0 == 0) * (item_bias <= 0)
condition3 = np.logical_not(np.logical_or(condition1, condition2))
# print(sum(condition1), sum(condition2), sum(condition3))
if sum(condition1) > 0:
M[condition1] = C.reshape(1,-1)
if sum(condition2) > 0:
M[condition2] = QProjA[condition2].dot(Q.T)
if sum(condition3) > 0:
M[condition3] = v0perp_norm * QProjA[condition3].dot(Q.T) + np.abs(C[condition3,np.newaxis]).dot(C[:,np.newaxis].T) / v0perp_norm
M[condition3] /= np.sqrt(np.power(QProjAnorm[condition3],2)*v0perp_norm**2 +
np.power(C[condition3],2) )[:,np.newaxis]
M[:,full_support] = -np.inf
argsort = M.argsort(axis=1)
ret = []
for n in ns:
reachable_items = np.unique(argsort[:,-n:])
reachable_items = [i for i in reachable_items if i not in full_support]
ret.append(reachable_items)
return ret
################################## Item Audit Logic ##################################
def get_top_n_regions(H, n, exclude=[], unit=1, nonnegative=False, verbose=False):
'''
H: matrix factorization item model
n: positive integer
unit: optional, size of ball for intersection
nonnegative: whether MF model is nonnegative
returns a list of RecTreeNodes
'''
n_latent_features, n_items = H.shape
# ball ensures that regions are valid and bounded
if nonnegative:
bound = [0,unit]
else:
bound = [-unit,unit]
# constructing tree for top-n regions
ball = pc.box2poly([bound for _ in range(n_latent_features)])
leaves = [RecTreeNode(ball=(ball.A,ball.b))]
for i in range(n):
if verbose: print('Determining depth', i+1, end=' ')
exclude_arg = [] if i+1<n else exclude
leaves, ts = add_region_leaves(H, leaves, verbose=verbose, exclude=exclude_arg)
if verbose: print('found '+str(len(leaves))+' regions, empty checking times: '+str(ts))
return leaves
def item_factors_to_inequality_constraints(H, target_item, exclude=[], tol=0):
'''
Constructs matrices A, b such that
target_item = argmax_{j notin exclude} (H^T v)_j <=> Av <= b
optional tol parameter keeps the region away from 0.
'''
n_latent, n_items = H.shape
included_items = [i for i in range(n_items) if (i not in exclude and i != target_item)]
A = -(H.T[target_item] - H.T[included_items])
b = np.zeros(A.shape[0])
# keeping region away from 0
if tol > 0:
A, b = modify_polytope_away_from_origin(A, b, tol)
return A, b
def modify_polytope_away_from_origin(A, b, tol):
'''
Constructs polytope matrices A,b that correspond to original pair
but also remove a section near the origin.
'''
avg = np.mean(A, axis=0)
avg = (avg / np.linalg.norm(avg)).reshape(1,-1)
A = np.vstack([A, avg])
b = np.hstack([b,-tol])
return A, b
def get_item_polytope_matrices(H, exclude=[]):
'''
H: matrix factorization item model
exclude: items to exclude from consideration
returns polytopes representing regions in which each item is the argmax
argmax is taken over all items except "exclude"
'''
n_latent_features, n_items = H.shape
item_regions = [None]*n_items
for i in range(n_items):
# determining region
A, b = item_factors_to_inequality_constraints(H, i, exclude=exclude)
# exclude logic
item_regions[i] = None if i in exclude else (A, b)
return item_regions
def add_region_leaves(H, leaves, verbose=False, exclude=[]):
'''
H: matrix factorization item model
leaves: list of RecTreeNode objects
Returns the next layer of nonempty leaves on the tree
'''
new_leaves = []; times = []
for leaf in leaves:
region = leaf.get_region_list()
corresponding_rec = leaf.get_rec_list()
subregions = get_item_polytope_matrices(H, exclude=corresponding_rec)
for j,reg in enumerate(subregions):
if j not in exclude:
if verbose and j % len(subregions) == 0: print('checking subleaf {}/{}'.format(j+1,len(subregions)))
new_leaf = RecTreeNode(value=j, region=reg, parent=leaf)
empty, ts = new_leaf.is_empty()
times.append(ts)
if not empty:
new_leaves.append(new_leaf)
leaf.add_child(new_leaf)
return new_leaves, np.nanmean(np.array(times), axis=0)
def project_regions_onboarding(H, onboarding_items, leaves, l2_reg=0, mf_type='reg',
penalize_only_seen=True, tol=1e-3):
'''
Takes a list of RecTreeNode objects and proposed onboarding items
Removes empty projections onto onboarding subspace
'''
n_latent_features, n_items = H.shape
n_onb = len(onboarding_items)
if mf_type == 'reg':
# subspace defined by onboarding picks
H_onb = H[:,onboarding_items]
if penalize_only_seen:
M = np.linalg.inv(H_onb.dot(H_onb.T) + l2_reg * np.eye(n_latent_features)).dot(H_onb)
else:
M = np.linalg.inv(H.dot(H.T) + l2_reg * np.eye(n_latent_features)).dot(H_onb)
def feasible(A, b):
A_proj = A.dot(M)
return not check_empty((A_proj, b), method='polytope-fulldim')
elif mf_type in ['nonneg', 'nonnegative']:
if penalize_only_seen: print("warning: cannot penalize only seen for NMF")
if l2_reg > 0: print("warning: cannot do regularized NMF")
H_onb = H[:,onboarding_items]
c = np.ones(n_latent_features+n_onb) # np.hstack([np.zeros(n_latent_features), np.ones(n_onb)])
E = np.zeros([n_items, n_onb])
for j,i in enumerate(onboarding_items):
E[i,j] = 1
A_feas = np.hstack([H.T, -E])
b_feas = np.zeros(n_items)
def feasible(A,b):
# find H.T v = E r, A v <= b
G_feas = np.vstack( [np.hstack([A, np.zeros([A.shape[0], n_onb])]),
-np.eye(n_latent_features+n_onb),
np.hstack([np.zeros(n_latent_features), -np.ones(n_onb)])])
h_feas = np.hstack([b,np.zeros(n_latent_features+n_onb),[-tol]])
# TODO: need to deal with non-uniqueness!!!!! for n_latent_features > n_onb
ball = pc.box2poly([[0,1] for _ in range(n_latent_features+n_onb)])
sol = cvxopt.solvers.lp(c=matrix(c), G=matrix(ball.A), h=matrix(ball.b), # G=matrix(G_feas), h=matrix(h_feas),
A=matrix(A_feas), b=matrix(b_feas), solver='glpk')
if sol['status'] == 'optimal':
x = np.array(sol['x'])
v = x[:n_latent_features].flatten(); r = x[n_latent_features:].flatten()
print('v=',v, 'r=',r, 'nnls', scipy.optimize.nnls(H_onb.T, r)[0])
return sol['status'] == 'optimal'
else:
# TODO add integer constrains on r
raise NotImplementedError('method {} not implemented'.format(mf_type))
# pruning based on projection
new_leaves = []
for leaf in leaves:
A, b = leaf.get_polytope()
if feasible(A, b):
new_leaves.append(leaf)
return new_leaves
################################## Top-n Tree ##################################
class RecTreeNode(object):
'''
A rec tree node describes regions of latent space in which a recommendation is made.
It's value is the index of the item that will be recommended after all of its parent's values.
The corresponding part of latent space is the intersection of its region with all its parents regions.
Attributes:
- region: (A,b) describing polytopic region in H-representation. None for overall parent.
- value: recommendation. None for overall parent.
- parent: another RecTreeNode or None
- children: (unused for now) list of RecTreeNodes
- bound: coordinates of bounding ball (usually [0,1] for nonnegative or [-1,1])
'''
def __init__(self, region=None, value=None, parent=None, children=None, ball=None, tol=1e-3):
self.parent = parent
self.children = [] if children is None else children
self.region = region
self.value = value
if parent is not None:
assert not (self.value is None), "value cannot be None if parent is not None!"
# region bounding box for polytope creation
if ball is None:
if self.parent is not None:
self.ball = self.parent.ball
else:
assert False, "must provide bounding ball for initial node!"
else:
self.ball = ball
self.tol = tol
def add_child(self, child):
self.children.append(child)
def get_region_list(self, tol=0):
if self.parent is None:
return []
else:
parent_region = self.parent.get_region_list()
region = modify_polytope_away_from_origin(*self.region, self.tol) if self.tol > 0 else self.region
return parent_region + [region]
def get_rec_list(self):
if self.parent is None:
return []
else:
parent_recs = self.parent.get_rec_list()
return parent_recs + [self.value]
def get_polytope(self, ball=None):
'''
return a polytope representing the intersections of current region and
regions of all parents.
'''
if self.region is None: return pc.Polytope()
# ensures that polytopes are bounded
A_ball, b_ball = ball if ball is not None else self.ball
region = self.get_region_list()
As = [A for A,_ in region]
bs = [b for _,b in region]
return (np.vstack([A_ball] + As),np.hstack([b_ball] + bs))
def is_empty(self, ball=None):
if self.region is None: return True, [np.nan]
poly = self.get_polytope(ball=ball)
start = time.time()
empty = check_empty(poly, method='polytope-lp')
time_fulldim = time.time() - start
return empty, [time_fulldim]
def check_empty(poly, method='polytope-lp'):
'''
checks whether a polytope in (A,b) representation is empty
variety of methods
'''
A, b = poly
if method == 'polytope-fulldim':
poly = pc.Polytope(A=A, b=b, normalize=False)
empty = not pc.is_fulldim(poly)
elif method == 'cvxpy':
# this is 10x slower than polytope
v = cvx.Variable(A.shape[1])
prob = cvx.Problem(cvx.Minimize(cvx.norm(v)), [A@v <= b])
try:
prob.solve()
empty = prob.status == "infeasible"
except cvx.SolverError:
empty = True
elif method == 'polytope-lp':
c = np.ones(A.shape[1])
res = pc.solvers.lpsolve(c, A, b, solver='glpk') # 'mosek')
empty = res['status'] != 0
else:
raise NotImplementedError('method {} not implemented'.format(method))
return empty
################################## Visualization Stuff ##################################
def discrete_cmap(N, base_cmap=None):
"""Create an N-bin discrete colormap from the specified input map"""
# Note that if base_cmap is a string or None, you can simply do
# return plt.cm.get_cmap(base_cmap, N)
# The following works for string, None, or a colormap instance:
base = plt.cm.get_cmap(base_cmap)
color_list = base(np.linspace(0, 1, N))
cmap_name = base.name + str(N)
return matplotlib.colors.LinearSegmentedColormap.from_list(cmap_name, color_list, N)
def plot_latent_space(H, leaves, nonnegative=False, ax=None, projection=[0,1],
color_by_top=0, title='Items in Latent Space', colorbar=True, figsize=None, arrowax=True):
n_latent_features, n_items = H.shape
cmap = discrete_cmap(n_items)
if ax is None:
fig = plt.figure(figsize=figsize)
ax = plt.subplot(111)
# plotting polytope regions
for leaf in leaves:
A, b = leaf.get_polytope()
A = A[:,projection] if n_latent_features > 2 else A
plot_poly = pc.Polytope(A=A, b=b, normalize=False)
corresponding_rec = leaf.get_rec_list()
if pc.is_fulldim(plot_poly):
polyplot(plot_poly, ax=ax, color=cmap(corresponding_rec[color_by_top]), alpha=0.5)
# plotting items
im = ax.scatter(H[projection[0],:], H[projection[1],:], c=np.arange(n_items), cmap=cmap,
edgecolors='black', marker='o', s=50)
im.set_clim([0,n_items])
ax.axis('equal')
xlim, ylim = np.amax(np.abs(H[projection]), axis=1)
xmax = 1.3*xlim; ymax = 1.3*ylim
if nonnegative:
xmin = -0.1*xlim; ymin = -0.1*xlim
ax.set_xlim([xmin,xmax])
ax.set_ylim([ymin,ymax])
else:
xmin = -xmax; ymin = -ymax
ax.set_xlim([-xmax,xmax])
ax.set_ylim([-ymax,ymax])
ax.margins(x=0,y=0)
ax.set_title(title)
if arrowax:
# removing the default axis on all sides:
for side in ['bottom','right','top','left']:
ax.spines[side].set_visible(False)
# removing the axis ticks
plt.xticks([]) # labels
plt.yticks([])
ax.xaxis.set_ticks_position('none') # tick markers
ax.yaxis.set_ticks_position('none')
# get width and height of axes object to compute
# matching arrowhead length and width
dps = fig.dpi_scale_trans.inverted()
bbox = ax.get_window_extent().transformed(dps)
width, height = bbox.width, bbox.height
# manual arrowhead width and length
hw = 1./20.*(ymax-ymin)
hl = 1./20.*(xmax-xmin)
lw = 2. # axis line width
ohg = 0.3 # arrow overhang
# compute matching arrowhead length and width
yhw = hw/(ymax-ymin)*(xmax-xmin)* height/width
yhl = hl/(xmax-xmin)*(ymax-ymin)* width/height
# draw x and y axis
ax.arrow(xmin, 0, xmax-xmin, 0., fc='k', ec='k', lw = lw,
head_width=hw, head_length=hl, overhang = ohg,
length_includes_head=False, clip_on = False)
ax.arrow(0, ymin, 0., ymax-ymin, fc='k', ec='k', lw = lw,
head_width=yhw, head_length=yhl, overhang = ohg,
length_includes_head= False, clip_on = False)
if colorbar: plt.colorbar(im, ax=ax)
return ax
def polyplot(poly, ax, color=None,
hatch=None, alpha=1.0):
if poly.dim != 2:
raise Exception("Cannot plot polytopes of dimension larger than 2")
if not pc.is_fulldim(poly):
return None
if color is None:
color = np.random.rand(3)
poly = _get_patch(
poly, facecolor=color, hatch=hatch,
alpha=alpha)
ax.add_patch(poly)
return ax
def _get_patch(poly1, **kwargs):
"""Return matplotlib patch for given Polytope.
Example::
> # Plot Polytope objects poly1 and poly2 in the same plot
> import matplotlib.pyplot as plt
> fig = plt.figure()
> ax = fig.add_subplot(111)
> p1 = _get_patch(poly1, color="blue")
> p2 = _get_patch(poly2, color="yellow")
> ax.add_patch(p1)
> ax.add_patch(p2)
> ax.set_xlim(xl, xu) # Optional: set axis max/min
> ax.set_ylim(yl, yu)
> plt.show()
@type poly1: L{Polytope}
@param kwargs: any keyword arguments valid for
matplotlib.patches.Polygon
"""
import matplotlib as mpl
V = pc.extreme(poly1)
rc, xc = pc.cheby_ball(poly1)
x = V[:, 1] - xc[1]
y = V[:, 0] - xc[0]
mult = np.sqrt(x**2 + y**2)
x = x / mult
angle = np.arccos(x)
corr = np.ones(y.size) - 2 * (y < 0)
angle = angle * corr
ind = np.argsort(angle)
# create patch
patch = mpl.patches.Polygon(V[ind, :], True, **kwargs)
patch.set_zorder(0)
return patch