-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathContainerBinding.h
699 lines (587 loc) · 24.5 KB
/
ContainerBinding.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
#include <pybind11/cast.h>
#include <Urho3D/Container/Ptr.h>
#include <Urho3D/Container/Str.h>
#include <pybind11/stl_bind.h>
#include <algorithm>
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
/* SFINAE helper class used by 'is_Comparable */
template <typename T> struct Container_traits {
template <typename T2> static std::true_type test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>())*);
template <typename T2> static std::false_type test_comparable(...);
template <typename T2> static std::true_type test_value(typename T2::ValueType *);
template <typename T2> static std::false_type test_value(...);
template <typename T2> static std::true_type test_pair(typename T2::KeyType *, typename T2::ValueType *);
template <typename T2> static std::false_type test_pair(...);
static constexpr const bool is_Comparable = std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value;
static constexpr const bool is_pair = std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value;
static constexpr const bool is_vector = std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value;
static constexpr const bool is_element = !is_pair && !is_vector;
};
/* Default: is_Comparable -> std::false_type */
template <typename T, typename SFINAE = void>
struct is_Comparable : std::false_type { };
/* For non-map data structures, check whether operator== can be instantiated */
template <typename T>
struct is_Comparable<
T, enable_if_t<Container_traits<T>::is_element &&
Container_traits<T>::is_Comparable>>
: std::true_type { };
/* For a vector/map data structure, recursively check the value type (which is std::pair for maps) */
template <typename T>
struct is_Comparable<T, enable_if_t<Container_traits<T>::is_vector>> {
static constexpr const bool value =
is_Comparable<typename T::ValueType>::value;
};
/* For pairs, recursively check the two data types */
template <typename T>
struct is_Comparable<T, enable_if_t<Container_traits<T>::is_pair>> {
static constexpr const bool value =
is_Comparable<typename T::KeyType>::value &&
is_Comparable<typename T::ValueType>::value;
};
template<typename Vector, typename Class_>
void Vector_if_copy_constructible(enable_if_t<is_copy_constructible<Vector>::value, Class_> &cl) {
cl.def(init<const Vector &>(), "Copy constructor");
}
template<typename Vector, typename Class_>
void Vector_if_equal_operator(enable_if_t<is_Comparable<Vector>::value, Class_> &cl) {
using T = typename Vector::ValueType;
cl.def(self == self);
cl.def(self != self);
cl.def("count",
[](const Vector &v, const T &x) {
unsigned c = 0;
for (auto&& val : v)
if (val == x)
++c;
return c;
//return std::count(begin(v), end(v), x);
},
arg("x"),
"Return the number of times ``x`` appears in the list"
);
cl.def("remove", [](Vector &v, const T &x) {
auto p = v.Find(x);
if (p != v.End())
v.Erase(p);
else
throw value_error();
},
arg("x"),
"Remove the first item from the list whose value is x. "
"It is an error if there is no such item."
);
cl.def("__contains__",
[](const Vector &v, const T &x) {
return v.Contains(x);
},
arg("x"),
"Return true the container contains ``x``"
);
}
// Vector modifiers -- requires a copyable Vector_type:
// (Technically, some of these (pop and __delitem__) don't actually require copyability, but it seems
// silly to allow deletion but not insertion, so include them here too.)
template <typename Vector, typename Class_>
void Vector_modifiers(enable_if_t<is_copy_constructible<typename Vector::ValueType>::value, Class_> &cl) {
using T = typename Vector::ValueType;
using SizeType = unsigned;
using DiffType = int;
cl.def("append",
[](Vector &v, const T &value) { v.Push(value); },
arg("x"),
"Add an item to the end of the list");
cl.def(init([](iterable it) {
auto v = std::unique_ptr<Vector>(new Vector());
v->Reserve(len(it));
for (handle h : it)
v->Push(h.cast<T>());
return v.release();
}));
cl.def("extend",
[](Vector &v, const py::list& list) {
v.Reserve(v.Size() + list.size());
for (int i = 0; i < list.size(); ++i)
v += list[i].cast<T>();
},
arg("L"),
"Extend the list by appending all the items in the given list"
);
cl.def("extend",
[](Vector &v, const Vector &src) {
v += src;
},
arg("L"),
"Extend the list by appending all the items in the given list"
);
cl.def("insert",
[](Vector &v, SizeType i, const T &x) {
if (i > v.Size())
throw index_error();
v.Insert(v.Begin() + (DiffType) i, x);
},
arg("i") , arg("x"),
"Insert an item at a given position."
);
cl.def("pop",
[](Vector &v) {
if (v.Empty())
throw index_error();
T t = v.Back();
v.Pop();
return t;
},
"Remove and return the last item"
);
cl.def("pop",
[](Vector &v, SizeType i) {
if (i >= v.Size())
throw index_error();
T t = v[i];
v.Erase(v.Begin() + (DiffType) i);
return t;
},
arg("i"),
"Remove and return the item at index ``i``"
);
cl.def("__setitem__",
[](Vector &v, SizeType i, const T &t) {
if (i >= v.Size())
throw index_error();
v[i] = t;
}
);
/// Slicing protocol
cl.def("__getitem__",
[](const Vector &v, slice slice) -> Vector * {
size_t start, stop, step, slicelength;
if (!slice.compute(v.Size(), &start, &stop, &step, &slicelength))
throw error_already_set();
Vector *seq = new Vector();
seq->Reserve((size_t) slicelength);
for (size_t i=0; i<slicelength; ++i) {
seq->Push(v[start]);
start += step;
}
return seq;
},
arg("s"),
"Retrieve list elements using a slice object"
);
cl.def("__setitem__",
[](Vector &v, slice slice, const Vector &value) {
size_t start, stop, step, slicelength;
if (!slice.compute(v.Size(), &start, &stop, &step, &slicelength))
throw error_already_set();
if (slicelength != value.Size())
throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");
for (size_t i=0; i<slicelength; ++i) {
v[start] = value[i];
start += step;
}
},
"Assign list elements using a slice object"
);
cl.def("__delitem__",
[](Vector &v, SizeType i) {
if (i >= v.Size())
throw index_error();
v.Erase(v.Begin() + DiffType(i));
},
"Delete the list elements at index ``i``"
);
cl.def("__delitem__",
[](Vector &v, slice slice) {
size_t start, stop, step, slicelength;
if (!slice.compute(v.Size(), &start, &stop, &step, &slicelength))
throw error_already_set();
if (step == 1 && false) {
v.Erase(v.Begin() + (DiffType) start, v.Begin() + DiffType(start + slicelength));
} else {
for (size_t i = 0; i < slicelength; ++i) {
v.Erase(v.Begin() + DiffType(start));
start += step - 1;
}
}
},
"Delete list elements using a slice object"
);
}
// If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>),
// we have to access by copying; otherwise we return by reference.
template <typename Vector> using Vector_needs_copy = negation<
std::is_same<decltype(std::declval<Vector>()[unsigned()]), typename Vector::ValueType &>>;
// The usual case: access and iterate by reference
template <typename Vector, typename Class_>
void Vector_accessor(enable_if_t<!Vector_needs_copy<Vector>::value, Class_> &cl) {
using T = typename Vector::ValueType;
using SizeType = unsigned;
using ItType = typename Vector::Iterator;
cl.def("__getitem__",
[](Vector &v, SizeType i) -> T & {
if (i >= v.Size())
throw index_error();
return v[i];
},
return_value_policy::reference_internal // ref + keepalive
);
cl.def("__iter__",
[](Vector &v) {
return make_iterator<
return_value_policy::reference_internal, ItType, ItType, T&>(
v.Begin(), v.End());
},
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
}
// The case for special objects, like std::vector<bool>, that have to be returned-by-copy:
template <typename Vector, typename Class_>
void Vector_accessor(enable_if_t<Vector_needs_copy<Vector>::value, Class_> &cl) {
using T = typename Vector::ValueType;
using SizeType = unsigned;
using ItType = typename Vector::Iterator;
cl.def("__getitem__",
[](const Vector &v, SizeType i) -> T {
if (i >= v.Size())
throw index_error();
return v[i];
}
);
cl.def("__iter__",
[](Vector &v) {
return make_iterator<
return_value_policy::copy, ItType, ItType, T>(
v.Begin(), v.End());
},
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
}
template <typename Vector, typename Class_> auto Vector_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream&>() << std::declval<typename Vector::ValueType>(), void()) {
using size_type = unsigned;
cl.def("__repr__",
[name](Vector &v) {
// std::ostringstream s;
// s << name << '[';
// for (size_type i=0; i < v.Size(); ++i) {
// s << v[i];
// if (i != v.Size() - 1)
// s << ", ";
// }
// s << ']';
// return s.str();
return "VECTOR REPR UNSUPPORTED AT PRESENT";
},
"Return the canonical string representation of this list."
);
}
// Provide the buffer interface for vectors if we have data() and we have a format for it
// GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data() is insufficient, we need to check it returns an appropriate pointer
template <typename Vector, typename = void>
struct Vector_has_data_and_format : std::false_type {};
template <typename Vector>
struct Vector_has_data_and_format<Vector, enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::ValueType>::format(), std::declval<Vector>().data()), typename Vector::ValueType*>::value>> : std::true_type {};
// Add the buffer interface to a vector
template <typename Vector, typename Class_, typename... Args>
enable_if_t<detail::any_of<std::is_same<Args, buffer_protocol>...>::value>
Vector_buffer(Class_& cl) {
using T = typename Vector::ValueType;
static_assert(Vector_has_data_and_format<Vector>::value, "There is not an appropriate format descriptor for this vector");
// numpy.h declares this for arbitrary types, but it may raise an exception and crash hard at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here
format_descriptor<T>::format();
cl.def_buffer([](Vector& v) -> buffer_info {
return buffer_info(v.data(), static_cast<ssize_t>(sizeof(T)), format_descriptor<T>::format(), 1, {v.Size()}, {sizeof(T)});
});
cl.def(init([](buffer buf) {
auto info = buf.request();
if (info.ndim != 1 || info.strides[0] % static_cast<ssize_t>(sizeof(T)))
throw type_error("Only valid 1D buffers can be copied to a vector");
if (!detail::compare_buffer_info<T>::compare(info) || (ssize_t) sizeof(T) != info.itemsize)
throw type_error("Format mismatch (Python: " + info.format + " C++: " + format_descriptor<T>::format() + ")");
auto vec = std::unique_ptr<Vector>(new Vector());
vec->Reserve((size_t) info.shape[0]);
T *p = static_cast<T*>(info.ptr);
ssize_t step = info.strides[0] / static_cast<ssize_t>(sizeof(T));
T *end = p + info.shape[0] * step;
for (; p != end; p += step)
vec->Push(*p);
return vec.release();
}));
return;
}
template <typename Vector, typename Class_, typename... Args>
enable_if_t<!detail::any_of<std::is_same<Args, buffer_protocol>...>::value> Vector_buffer(Class_&) {}
NAMESPACE_END(detail)
//
// std::vector
//
template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args>
class_<Vector, holder_type> bind_Vector(handle scope, std::string const &name, Args&&... args) {
using Class_ = class_<Vector, holder_type>;
// If the ValueType is unregistered (e.g. a converting type) or is itself registered
// module-local then make the vector binding module-local as well:
using vtype = typename Vector::ValueType;
auto vtype_info = detail::get_type_info(typeid(vtype));
bool local = !vtype_info || vtype_info->module_local;
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
// Declare the buffer interface if a buffer_protocol() is passed in
detail::Vector_buffer<Vector, Class_, Args...>(cl);
cl.def(init<>());
// Register copy constructor (if possible)
detail::Vector_if_copy_constructible<Vector, Class_>(cl);
// Register comparison-related operators and functions (if possible)
detail::Vector_if_equal_operator<Vector, Class_>(cl);
// Register stream insertion operator (if possible). Rather, registers __repr__ if possible.
// detail::Vector_if_insertion_operator<Vector, Class_>(cl, name);
// Modifiers require copyable vector value type
detail::Vector_modifiers<Vector, Class_>(cl);
// Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive
detail::Vector_accessor<Vector, Class_>(cl);
cl.def("__bool__",
[](const Vector &v) -> bool {
return !v.Empty();
},
"Check whether the list is nonempty"
);
cl.def("__len__", &Vector::Size);
py::implicitly_convertible<py::list, Vector>();
return cl;
}
NAMESPACE_BEGIN(detail)
/* Fallback functions */
template <typename, typename, typename... Args> void Map_if_insertion_operator(const Args &...) { }
template <typename, typename, typename... Args> void Map_assignment(const Args &...) { }
// Map assignment when copy-assignable: just copy the value
template <typename Map, typename Class_>
void Map_assignment(enable_if_t<std::is_copy_assignable<typename Map::ValueType>::value, Class_> &cl) {
using KeyType = typename Map::KeyType;
using MappedType = typename Map::ValueType;
cl.def("__setitem__",
[](Map &m, const KeyType &k, const MappedType &v) {
//auto it = m.Find(k);
//if (it != m.End()) it->second = v;
//else
m[k] = v;
}
);
}
// Not copy-assignable, but still copy-constructible: we can update the value by erasing and reinserting
template<typename Map, typename Class_>
void Map_assignment(enable_if_t<
!std::is_copy_assignable<typename Map::ValueType>::value &&
is_copy_constructible<typename Map::ValueType>::value,
Class_> &cl) {
using KeyType = typename Map::KeyType;
using MappedType = typename Map::ValueType;
cl.def("__setitem__",
[](Map &m, const KeyType &k, const MappedType &v) {
// We can't use m[k] = v; because value type might not be default constructable
// auto r = m.emplace(k, v);
// if (!r.second) {
// // value type is not copy assignable so the only way to insert it is to erase it first...
// m.Erase(r.first);
// m.emplace(k, v);
// }
m[k] = v;
}
);
}
template <typename Map, typename Class_> auto Map_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream&>() << std::declval<typename Map::KeyType>() << std::declval<typename Map::ValueType>(), void()) {
cl.def("__repr__",
[name](Map &m) {
std::ostringstream s;
s << name << '{';
bool f = false;
for (auto const &kv : m) {
if (f)
s << ", ";
s << kv.first_ << ": " << kv.second_;
f = true;
}
s << '}';
return s.str();
},
"Return the canonical string representation of this Map."
);
}
/// Makes an python iterator over the keys (`.first`) of a iterator over pairs from a
/// first and past-the-end InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Iterator,
typename Sentinel,
typename KeyType = decltype((*std::declval<Iterator>()).first_),
typename... Extra>
iterator make_Key_iterator(Iterator first, Sentinel last, Extra &&... extra) {
typedef detail::iterator_state<Iterator, Sentinel, true, Policy> state;
if (!detail::get_type_info(typeid(state), false)) {
class_<state>(handle(), "iterator", pybind11::module_local())
.def("__iter__", [](state &s) -> state& { return s; })
.def("__next__", [](state &s) -> KeyType {
if (!s.first_or_done)
++s.it;
else
s.first_or_done = false;
if (s.it == s.end) {
s.first_or_done = true;
throw stop_iteration();
}
return (*s.it).first_;
}, std::forward<Extra>(extra)..., Policy);
}
return cast(state{first, last, true});
}
/// Makes an iterator over the keys (`.first`) of a stl map-like container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Type, typename... Extra> iterator make_Key_iterator(Type &value, Extra&&... extra) {
return make_Key_iterator<Policy>(std::begin(value), std::end(value), extra...);
}
NAMESPACE_END(detail)
template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args>
class_<Map, holder_type> bind_Map(handle scope, const std::string &name, Args&&... args) {
using KeyType = typename Map::KeyType;
using MappedType = typename Map::ValueType;
using Class_ = class_<Map, holder_type>;
// If either type is a non-module-local bound type then make the Map binding non-local as well;
// otherwise (e.g. both types are either module-local or converting) the Map will be
// module-local.
auto tinfo = detail::get_type_info(typeid(MappedType));
bool local = !tinfo || tinfo->module_local;
if (local) {
tinfo = detail::get_type_info(typeid(KeyType));
local = !tinfo || tinfo->module_local;
}
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
cl.def(init<>());
cl.def(init([](dict d) {
auto m = std::unique_ptr<Map>(new Map());
for (auto&& kv : d) //std::pair<handle, handle>
{
KeyType k = kv.first.cast<KeyType>();
MappedType v = kv.second.cast<MappedType>();
(*m)[k] = v;
}
return m.release();
}));
cl.def(init([](iterable it) {
auto m = std::unique_ptr<Map>(new Map());
int count = 0;
for (handle h : it)
if (len(h) == 2)
{
iterator i = iter(h);
KeyType k = i->cast<KeyType>();
MappedType v = (++i)->cast<MappedType>();
(*m)[k] = v;
}
else
throw value_error("dictionary update sequence element #" + std::to_string(count) + " has length " + std::to_string(len(h)) + "; 2 is required");
return m.release();
}));
// Register stream insertion operator (if possible)
// detail::Map_if_insertion_operator<Map, Class_>(cl, name);
//TODO: look into https://stackoverflow.com/questions/34940754/fallback-to-to-string-when-operator-fails
cl.def("__repr__",
[name](Map &m) {
// std::ostringstream s;
// s << name << '{';
// bool f = false;
// for (auto const &kv : m) {
// if (f)
// s << ", ";
// s << repr(cast(kv.first_)).cast<std::string>() << ": " << repr(cast(kv.second_)).cast<std::string>();
// f = true;
// }
// s << '}';
// return s.str();
return "UNSUPORTED AT PRESENT";
// Urho3D::String s = name;
// s += '{';
// bool f = false;
// for (auto const &kv : m) {
// if (f)
// s += ", ";
// s += repr(cast(kv.first_)).cast< ::Urho3D::String>();
// s += ": " + repr(cast(kv.second_)).cast< ::Urho3D::String>();
// f = true;
// }
// s += '}';
// return s;
},
"Return the canonical string representation of this Map."
);
cl.def("__bool__",
[](const Map &m) -> bool { return !m.Empty(); },
"Check whether the Map is nonempty"
);
cl.def("__iter__",
[](Map &m) { return detail::make_Key_iterator(m.Begin(), m.End()); },
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
cl.def("items",
[](Map &m) { return make_iterator(m.Begin(), m.End()); },
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
cl.def("__getitem__",
[](Map &m, const KeyType &k) -> MappedType & {
auto it = m.Find(k);
if (it == m.End())
throw key_error();
return it->second_;
},
return_value_policy::reference_internal // ref + keepalive
);
// Assignment provided only if the type is copyable
detail::Map_assignment<Map, Class_>(cl);
cl.def("__delitem__",
[](Map &m, const KeyType &k) {
auto it = m.Find(k);
if (it == m.End())
throw key_error();
return m.Erase(it);
}
);
cl.def("__len__", &Map::Size);
py::implicitly_convertible<py::dict, Map>();
return cl;
}
NAMESPACE_END(PYBIND11_NAMESPACE)
//template<typename T>
//py::class_<Urho3D::Vector<T>>& BindVector<T>(pybind11::handle scope, const char *name)
//{
// auto pyclass_Var = py::class_<Urho3D::Vector<T>>(scope, name, "test doc")
// .def(py::init<>(), "Default Constructor")
// .def(py::init<unsigned>(), "Construct with initial size.")
// .def(py::init<unsigned, const T&>(), "Construct with initial size and default value.")
// .def(py::init<const Urho3D::Vector<T>&>(), "Copy Constructor")
// .def(py::init([] (const py::list& list) {
// //TODO: default_constructible test
// Urho3D::Vector<T>* v = new Urho3D::Vector<T>(list.size());
// for (int i = 0; i < list.size(); ++i)
// v[i] = list[i].cast<T>();
// return v;
// }), "List Constructor")
//// .def(
//// .def("__init__",[](std::array<int,4> &self, const py::list& list) {
//// if (list.size() == 4)
//// {
//// for (int i = 0; i < 4; ++i)
//// self[i] = list[i].cast<int>();
//// }
//// else
//// {
//// py::print("Failed with empty list.");
//// throw new std::runtime_error("oh no");
//// }
//// }, "List Constructor")
// //.def_property("first", [](std::array<int,4> &me) { return me[0]; },
// // [](std::array<int,4> &me, int x) { me[0] = x; })
//// [](py::object self, py val) {
//// if (py::isinstance<py::int_>(val))
//// self.cast<Urho3D::B*>()->z = val.cast<int>();
// ;
// py::implicitly_convertible<py::list, Urho3D::Vector<T>>();
// return pyclass_Var;
//}