-
Notifications
You must be signed in to change notification settings - Fork 1
/
clean_data.py
51 lines (33 loc) · 1.14 KB
/
clean_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
import os
import numpy as np
import pandas as pd
data = pd.read_csv("/data/chs_data.csv")
os.chdir("/data/")
data = data[data['Reaction Time'] > 0]
data = data.dropna(axis=0, subset=['Response'])
data = data[data['display'] == 'chs']
data = data[data['dimension'].isin(['blocking', 'hiding', 'inspecting'])]
data.rename(columns = {'Participant Private ID':'subject'}, inplace = True)
data = data[['subject', 'Response', 'display', 'question',
'dimension', 'qnum', 'qdirection']]
data.rename(columns={'qnum':'question_number', 'Response':'score'}, inplace = True)
data = data.drop_duplicates(subset=(['subject','question_number']))
data['item'] = data.dimension.str.cat("_"+data.question_number)
subs = []
n = 0
for s in data.subject.unique():
d = data[data.subject==s]
n += 1
if n < 10:
name = 'sub00'+str(n)
if n >= 10 and n < 100:
name = 'sub0'+str(n)
if n >= 100:
name = 'sub'+str(n)
subname = np.repeat(name, len(d))
subs.append(subname)
if len(d) > 44:
print(name)
data['subject'] = np.concatenate(subs)
data.to_csv('chs_data_clean.csv')