-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkitti360.py
326 lines (274 loc) · 12 KB
/
kitti360.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from argparse import Namespace
import os
from re import X
from matplotlib import pyplot as plt
import glm
import pygame as pg
from constants import SHADOW_CONTRAST
from camera import Camera
from light import Light
import moderngl as mgl
import numpy as np
import moderngl_window as mglw
from dataloader_kitti360 import DataLoader
from models.scenarios import *
from misc.canvas import Background
DEBUG = True
USE_SUNLIGHT_DIR = False
DEFAULT_ARGS = Namespace(
window='headless',
fullscreen=False,
vsync=None,
resizable=None,
samples=None,
cursor=None,
size=None,
size_mult=1.0
)
import torch
from PIL import Image, ImageOps
from omegaconf import OmegaConf
from matplotlib import pyplot as plt
config_path = 'configs/kitti360.yaml'
data_root = 'kitti360'
class HIL_rendering(mglw.WindowConfig):
gl_version = (3, 3)
aspect_ratio = 1408/376
window_size = (1408, 376)
def __init__(self, using_ros, custom_config, **kwargs):
super().__init__(**kwargs)
self.config = custom_config
self.window_size = tuple(self.config.window_size)
self.using_ros = using_ros
self.ctx.enable(flags=mgl.DEPTH_TEST | mgl.CULL_FACE)
self.device = self.config.device
# Offscreen buffer
self.create_offscreen_buffer()
# light
self.light = Light(**self.config.light_config)
# camera
self.camera = Camera(self)
self.scenarios = self.load_scenarios()
self.world_scenario = self.load_world()
# self.scenarios.append(self.world_scenario)
# TODO: bhargav, this needs to replace by ros input
self.dataloader = DataLoader(
root_dir=data_root,
frame_start=self.config.kitti.frame_start,
frame_end=self.config.kitti.frame_end,
debug=DEBUG,
window_size=self.window_size)
self.sensor_data = None
# TODO: only necessary for visualization purpose. can be commented out during production mode
self.background = Background(self)
self.clock = pg.time.Clock()
self.i = 0
def load_world(self):
return WorldScenario(self, self.config.scenario_configs.world)
def load_scenarios(self):
res = []
if self.config.scenario_configs.intersection.is_activated:
res.append(IntersectionScenario(self, self.config.scenario_configs.intersection))
if self.config.scenario_configs.jaywalking.is_activated:
res.append(JaywalkingScenario(self, self.config.scenario_configs.jaywalking))
if self.config.scenario_configs.static_objects.is_activated:
res.append(StaticObjectScenario(self, self.config.scenario_configs.static_objects))
return res
def render_single_frame(self, sensor_data):
"""
Render background first then compose objects, should be easier to integrate with anti-aliasing
but currently generates strange patterns in images.
Returns virtual depth and composited rgb after rendering if using ros
"""
dir_origin, dir_insert = self.render_folders()
m_view = glm.mat4(*list(np.array(sensor_data['pose']).T.astype(np.float32).flatten()))
self.camera.m_view = m_view
self.light.update_target_position(m_view)
image_bg = (sensor_data['rgb'] * 255).astype(np.uint8)
self.background.update_texture(Image.fromarray(image_bg))
for scenario in self.scenarios:
scenario.update()
self.ctx.clear(0, 0, 0)
self.offscreen.clear()
self.wnd.use()
self.background.render()
img_origin = self.take_screenshot()
img_origin.save(os.path.join(dir_origin, '{:0>5d}.png'.format(self.i)))
for scenario in self.scenarios:
scenario.render()
no_ground = np.array(self.take_screenshot())
no_ground = torch.from_numpy(no_ground).to(self.device).float() / 255
# render plane, no shadow pass
self.world_scenario.render_plane()
no_shadow = np.array(self.take_screenshot())
no_shadow = torch.from_numpy(no_shadow).to(self.device).float() / 255
# shadow pass
self.ctx.clear(0, 0, 0)
self.render_depth('from_light') # from light direction
self.wnd.use()
self.background.render()
self.world_scenario.render_plane()
for scenario in self.scenarios:
scenario.render()
with_shadow = np.array(self.take_screenshot())
with_shadow = torch.from_numpy(with_shadow).to(self.device).float() / 255
# final = background + foreground + shadow
shadow = (with_shadow - no_shadow) * SHADOW_CONTRAST
composited_rgb = no_ground + shadow
composited_rgb = torch.clip(composited_rgb, 0, 1).cpu().numpy()
img_path = os.path.join(dir_insert, '{:0>5d}.png'.format(self.i))
plt.imsave(img_path, composited_rgb)
# render scene on window
self.ctx.clear(0, 0, 0)
self.wnd.use()
im_flip = Image.fromarray((composited_rgb * 255.).astype(np.uint8))
self.background.update_texture(im_flip)
self.background.render()
return None
def render_folders(self):
dir_origin = os.path.join('outputs/kitti360/', self.config.name, 'origin')
dir_insert = os.path.join('outputs/kitti360/', self.config.name, 'insert')
os.makedirs(dir_origin, exist_ok=True)
os.makedirs(dir_insert, exist_ok=True)
config_path = 'configs/kitti360.yaml'
os.system('cp {} {}'.format(config_path, os.path.join('outputs/kitti360/', self.config.name)))
return dir_origin, dir_insert
def get_primary_obstacle_positions(self):
"""Assumes first index of self.scenarios contains the primary obstacle"""
return self.scenarios[0].get_primary_obstacle_positions()
def render(self, time, frame_time):
if not self.using_ros:
# quit if it runs out of data
if self.i >= len(self.dataloader):
quit()
self.sensor_data = next(self.dataloader)
self.render_single_frame(
self.sensor_data
)
self.i += 1
if not DEBUG:
self.clock.tick(24)
print('frame {}, FPS = {}, time: {}'.format(self.i, self.i / time, time))
def take_screenshot(self):
return Image.frombytes('RGB', self.window_size, self.wnd.fbo.read(), 'raw', 'RGB', 0, -1) #.show()
def visualize_offscreen_buffer(self):
depth = torch.from_numpy(np.frombuffer(self.offscreen_depth.read(), dtype=np.dtype('f4'))).to(self.device)
normalized_depth = torch.flip(depth.reshape(self.window_size[1], self.window_size[0]), [0])
plt.imshow(normalized_depth)
plt.show()
def render_depth(self, option):
self.offscreen.clear()
self.offscreen.use()
self.world_scenario.render_depth(option)
for scenario in self.scenarios:
scenario.render_depth(option)
def get_fpv_depth(self):
self.render_depth("from_fpv") # from first-person view
depth = np.frombuffer(self.offscreen_depth.read(), dtype=np.dtype('f4')).copy()
depth = torch.from_numpy(depth).to(self.device)
normalized_depth = torch.flip(depth.reshape(self.window_size[1], self.window_size[0]), [0])
zNorm = 2 * normalized_depth - 1
virtual_depth = -(2 * self.config.camera_config.near * self.config.camera_config.far /
((self.config.camera_config.far - self.config.camera_config.near) * zNorm -
self.config.camera_config.near - self.config.camera_config.far))
return virtual_depth
def create_offscreen_buffer(self):
offscreen_size = self.window_size
self.offscreen_depth = self.ctx.depth_texture(offscreen_size)
self.offscreen_depth.compare_func = ''
self.offscreen_depth.repeat_x = False
self.offscreen_depth.repeat_y = False
self.offscreen = self.ctx.framebuffer(depth_attachment=self.offscreen_depth)
def show_tensor(tensor):
img = (tensor.cpu().numpy() * 255.).astype(np.uint8)
plt.axis('off')
plt.imshow(img)
plt.show()
plt.close()
def show_array(array):
plt.axis('off')
plt.imshow(array)
plt.show()
plt.close()
def setup_window_config(config_cls: mglw.WindowConfig, values: Namespace, using_ros: bool, custom_config):
mglw.setup_basic_logging(config_cls.log_level)
window_cls = mglw.get_local_window_cls(values.window)
# Calculate window size
size = values.size or custom_config.window_size
size = int(size[0] * values.size_mult), int(size[1] * values.size_mult)
# Resolve cursor
show_cursor = values.cursor
if show_cursor is None:
show_cursor = config_cls.cursor
window = window_cls(
title=config_cls.title,
size=size,
fullscreen=config_cls.fullscreen or values.fullscreen,
resizable=values.resizable
if values.resizable is not None
else config_cls.resizable,
gl_version=config_cls.gl_version,
aspect_ratio=config_cls.aspect_ratio,
vsync=values.vsync if values.vsync is not None else config_cls.vsync,
samples=values.samples if values.samples is not None else config_cls.samples,
cursor=show_cursor if show_cursor is not None else True,
)
window.print_context_info()
mglw.activate_context(window=window)
timer = mglw.Timer()
config_obj = config_cls(using_ros, custom_config, ctx=window.ctx, wnd=window, timer=timer)
# Avoid the event assigning in the property setter for now
# We want the even assigning to happen in WindowConfig.__init__
# so users are free to assign them in their own __init__.
window._config = mglw.weakref.ref(config_obj)
# Swap buffers once before staring the main loop.
# This can trigged additional resize events reporting
# a more accurate buffer size
window.swap_buffers()
window.set_default_viewport()
return window, config_obj, timer
def cleanup_window_config(window, timer):
_, duration = timer.stop()
window.destroy()
if duration > 0:
mglw.logger.info(
"Duration: {0:.2f}s @ {1:.2f} FPS".format(
duration, window.frames / duration
)
)
def custom_run_window_config(config_cls: mglw.WindowConfig, values: Namespace, timer=None, args=None) -> None:
"""
Initially based on from https://moderngl-window.readthedocs.io/en/latest/_modules/moderngl_window.html#run_window_config
Run an WindowConfig entering a blocking main loop
Args:
config_cls: The WindowConfig class to render
values: argument values
Keyword Args:
window_name
timer: A custom timer instance
args: Override sys.args
"""
using_ros = False
custom_config = OmegaConf.load(config_path)
window, config_obj, timer = setup_window_config(config_cls, values, using_ros, custom_config)
timer.start()
while not window.is_closing:
current_time, delta = timer.next_frame()
if config_obj.clear_color is not None:
window.clear(*config_obj.clear_color)
# Always bind the window framebuffer before calling render
window.use()
window.render(current_time, delta)
if not window.is_closing:
window.swap_buffers()
cleanup_window_config(window, timer)
def ros_custom_run(config_cls: mglw.WindowConfig):
custom_run_window_config(config_cls, DEFAULT_ARGS)
if __name__ == '__main__':
config_cls = HIL_rendering
parser = mglw.create_parser()
config_cls.add_arguments(parser)
values = mglw.parse_args(args=None, parser=parser)
config_cls.argv = values
custom_run_window_config(config_cls, values)
# mglw.run_window_config(HIL_rendering)