-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmul.cc
184 lines (155 loc) · 7.31 KB
/
mul.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/mul.h"
#include "Include/arm_nnfunctions.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/mul.h"
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/mul.h"
#include "tensorflow/lite/micro/memory_helpers.h"
#include "tensorflow/lite/micro/micro_log.h"
namespace tflite {
namespace {
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
const OpDataMul* data, const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
tflite::ArithmeticParams op_params = {};
op_params.quantized_activation_min = data->output_activation_min;
op_params.quantized_activation_max = data->output_activation_max;
op_params.float_activation_max = data->output_activation_max_f32;
op_params.input1_offset = -data->input1_zero_point;
op_params.input2_offset = -data->input2_zero_point;
op_params.output_offset = data->output_zero_point;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = data->output_shift;
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2), &op_params);
if (need_broadcast) {
if (input1->type == kTfLiteInt8) {
reference_integer_ops::BroadcastMul4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
} else if (input1->type == kTfLiteInt16) {
reference_integer_ops::BroadcastMul4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int16_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int16_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
}
} else {
if (input1->type == kTfLiteInt8) {
arm_elementwise_mul_s8(
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorData<int8_t>(input2), op_params.input1_offset,
op_params.input2_offset, tflite::micro::GetTensorData<int8_t>(output),
op_params.output_offset, op_params.output_multiplier,
op_params.output_shift, op_params.quantized_activation_min,
op_params.quantized_activation_max,
MatchingElementsSize(tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorShape(output)));
} else if (input1->type == kTfLiteInt16) {
arm_elementwise_mul_s16(
tflite::micro::GetTensorData<int16_t>(input1),
tflite::micro::GetTensorData<int16_t>(input2),
op_params.input1_offset, op_params.input2_offset,
tflite::micro::GetTensorData<int16_t>(output),
op_params.output_offset, op_params.output_multiplier,
op_params.output_shift, op_params.quantized_activation_min,
op_params.quantized_activation_max,
MatchingElementsSize(tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorShape(output)));
}
}
}
} // namespace
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
TFLITE_DCHECK(node->user_data != nullptr);
const OpDataMul* data = static_cast<const OpDataMul*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kMulInput1Tensor);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kMulInput2Tensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kMulOutputTensor);
switch (input1->type) {
case kTfLiteInt8:
EvalQuantized(context, node, data, input1, input2, output);
break;
case kTfLiteInt16:
EvalQuantized(context, node, data, input1, input2, output);
break;
case kTfLiteInt32:
EvalMulQuantizedReference(context, node, data, input1, input2, output);
break;
case kTfLiteFloat32:
EvalMulFloatReference(context, node, params, data, input1, input2,
output);
break;
default:
MicroPrintf("Type %s (%d) not supported.",
TfLiteTypeGetName(input1->type), input1->type);
return kTfLiteError;
}
return kTfLiteOk;
}
TfLiteStatus EvalInt8(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
TFLITE_DCHECK(node->user_data != nullptr);
const OpDataMul* data = static_cast<const OpDataMul*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kMulInput1Tensor);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kMulInput2Tensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kMulOutputTensor);
TFLITE_DCHECK(input1->type == kTfLiteInt8);
EvalQuantized(context, node, data, input1, input2, output);
return kTfLiteOk;
}
TfLiteStatus EvalInt16(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
TFLITE_DCHECK(node->user_data != nullptr);
const OpDataMul* data = static_cast<const OpDataMul*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kMulInput1Tensor);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kMulInput2Tensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kMulOutputTensor);
TFLITE_DCHECK(input1->type == kTfLiteInt16);
EvalQuantized(context, node, data, input1, input2, output);
return kTfLiteOk;
}
TFLMRegistration Register_MUL() {
return tflite::micro::RegisterOp(MulInit, MulPrepare, Eval);
}
TFLMRegistration Register_MUL_INT8() {
return tflite::micro::RegisterOp(MulInit, MulPrepare, EvalInt8);
}
TFLMRegistration Register_MUL_INT16() {
return tflite::micro::RegisterOp(MulInit, MulPrepare, EvalInt16);
}
} // namespace tflite