-
Notifications
You must be signed in to change notification settings - Fork 0
/
aiml_demos.xml
77 lines (72 loc) · 4.65 KB
/
aiml_demos.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
<?xml version="1.0" ?>
<demos xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://www.silabs.com/ss/Demo.ecore">
<demo name="brd2601b.demo.ml_blink" label="AI/ML - Blink Demo">
<property key="demos.blurb" value="AI/ML - Blink Demo"/>
<property key="core.partCompatibility" value=".*efr32.g2[468].*"/>
<property key="core.boardCompatibility" value="brd2601b"/>
<property key="demos.imageFile" value="asset://extension.aiml_2.0.0/demos/brd2601b/ml_blink.s37"/>
<property key="core.readmeFiles" value="examples/ml_blink/readme.md"/>
<property key="filters" value="Device\ Type|SoC MCU|32-bit\ MCU Project\ Difficulty|Advanced Capability|Machine\ Learning"/>
<property key="core.quality" value="PRODUCTION"/>
<description>
This application demonstrates a model trained to replicate a sine function.
The model is continuously fed with values ranging from 0 to 2pi, and the
output of the model is used to control the intensity of an LED.
</description>
</demo>
<demo name="brd2601b.demo.ml_magic_wand" label="AI/ML - Magic Wand Demo">
<property key="demos.blurb" value="AI/ML - Magic Wand Demo"/>
<property key="core.partCompatibility" value=".*efr32.g2[468].*"/>
<property key="core.boardCompatibility" value="brd2601b"/>
<property key="demos.imageFile" value="asset://extension.aiml_2.0.0/demos/brd2601b/ml_magic_wand.s37"/>
<property key="core.readmeFiles" value="examples/ml_magic_wand/readme.md"/>
<property key="filters" value="Device\ Type|SoC MCU|32-bit\ MCU Project\ Difficulty|Advanced Capability|Machine\ Learning"/>
<property key="core.quality" value="PRODUCTION"/>
<description>
This application demonstrates a model trained to recognize various hand gestures
with an accelerometer. The detected gestures are printed to the serial port.
</description>
</demo>
<demo name="brd2601b.demo.ml_model_profiler" label="AI/ML - Model Profiler Demo">
<property key="demos.blurb" value="AI/ML - Model Profiler Demo"/>
<property key="core.partCompatibility" value=".*efr32.g2[468].*"/>
<property key="core.boardCompatibility" value="brd2601b"/>
<property key="demos.imageFile" value="asset://extension.aiml_2.0.0/demos/brd2601b/ml_model_profiler.s37"/>
<property key="core.readmeFiles" value="examples/ml_model_profiler/readme.md"/>
<property key="filters" value="Device\ Type|SoC MCU|32-bit\ MCU Project\ Difficulty|Advanced Capability|Machine\ Learning"/>
<property key="core.quality" value="PRODUCTION"/>
<description>
This application profiles a ML model. The ML model is loaded as a byte array
which is generated from a Tensorflow tflite model file. Profiling is performed
by running one inference with the model.
</description>
</demo>
<demo name="brd2601b.demo.ml_voice_control_light" label="AI/ML - Voice Control Light Demo">
<property key="demos.blurb" value="AI/ML - Voice Control Light Demo"/>
<property key="core.partCompatibility" value=".*efr32.g2[468].*"/>
<property key="core.boardCompatibility" value="brd2601b"/>
<property key="demos.imageFile" value="asset://extension.aiml_2.0.0/demos/brd2601b/ml_voice_control_light.s37"/>
<property key="core.readmeFiles" value="examples/ml_voice_control_light/readme.md"/>
<property key="filters" value="Device\ Type|SoC MCU|32-bit\ MCU Project\ Difficulty|Advanced Capability|Machine\ Learning"/>
<property key="core.quality" value="PRODUCTION"/>
<description>
This application uses TensorFlow Lite for Microcontrollers to detect the spoken
words 'on' and 'off' from audio data recorded on the microphone in a Micrium OS
kernel task. The detected keywords are used to control an LED on the board.
</description>
</demo>
<demo name="brd2601b.demo.ml_audio_classifier" label="AI/ML - Audio Classifier Demo">
<property key="demos.blurb" value="AI/ML - Audio Classifier Demo"/>
<property key="core.partCompatibility" value=".*efr32.g2[468].*"/>
<property key="core.boardCompatibility" value="brd2601b"/>
<property key="demos.imageFile" value="asset://extension.aiml_2.0.0/demos/brd2601b/ml_audio_classifier.s37"/>
<property key="core.readmeFiles" value="examples/ml_audio_classifier/readme.md"/>
<property key="filters" value="Device\ Type|SoC MCU|32-bit\ MCU Project\ Difficulty|Advanced Capability|Machine\ Learning"/>
<property key="core.quality" value="PRODUCTION"/>
<description>
This application uses TensorFlow Lite for Microcontrollers to classify
audio data recorded on the microphone in a Micrium OS kernel task.
The classification is used to control a LED on the board.
</description>
</demo>
</demos>