forked from lemonhu/NER-BERT-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
220 lines (178 loc) · 9.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""Train and evaluate the model"""
import argparse
import random
import logging
import os
import torch
from torch.optim import Adam
import torch.nn as nn
from torch.optim.lr_scheduler import LambdaLR
from tqdm import trange
from pytorch_pretrained_bert import BertForTokenClassification
from data_loader import DataLoader
from evaluate import evaluate
import utils
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='data/msra', help="Directory containing the dataset")
parser.add_argument('--bert_model_dir', default='bert-base-chinese-pytorch', help="Directory containing the BERT model in PyTorch")
parser.add_argument('--model_dir', default='experiments/base_model', help="Directory containing params.json")
parser.add_argument('--seed', type=int, default=2019, help="random seed for initialization")
parser.add_argument('--restore_file', default=None,
help="Optional, name of the file in --model_dir containing weights to reload before training")
parser.add_argument('--multi_gpu', default=False, action='store_true', help="Whether to use multiple GPUs if available")
parser.add_argument('--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale', type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
def train(model, data_iterator, optimizer, scheduler, params):
"""Train the model on `steps` batches"""
# set model to training mode
model.train()
scheduler.step()
# a running average object for loss
loss_avg = utils.RunningAverage()
# Use tqdm for progress bar
t = trange(params.train_steps)
for i in t:
# fetch the next training batch
batch_data, batch_tags = next(data_iterator)
batch_masks = batch_data.gt(0)
# compute model output and loss
loss = model(batch_data, token_type_ids=None, attention_mask=batch_masks, labels=batch_tags)
if params.n_gpu > 1 and args.multi_gpu:
loss = loss.mean() # mean() to average on multi-gpu
# clear previous gradients, compute gradients of all variables wrt loss
model.zero_grad()
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
# gradient clipping
nn.utils.clip_grad_norm_(parameters=model.parameters(), max_norm=params.clip_grad)
# performs updates using calculated gradients
optimizer.step()
# update the average loss
loss_avg.update(loss.item())
t.set_postfix(loss='{:05.3f}'.format(loss_avg()))
def train_and_evaluate(model, train_data, val_data, optimizer, scheduler, params, model_dir, restore_file=None):
"""Train the model and evaluate every epoch."""
# reload weights from restore_file if specified
if restore_file is not None:
restore_path = os.path.join(args.model_dir, args.restore_file + '.pth.tar')
logging.info("Restoring parameters from {}".format(restore_path))
utils.load_checkpoint(restore_path, model, optimizer)
best_val_f1 = 0.0
patience_counter = 0
for epoch in range(1, params.epoch_num + 1):
# Run one epoch
logging.info("Epoch {}/{}".format(epoch, params.epoch_num))
# Compute number of batches in one epoch
params.train_steps = params.train_size // params.batch_size
params.val_steps = params.val_size // params.batch_size
# data iterator for training
train_data_iterator = data_loader.data_iterator(train_data, shuffle=True)
# Train for one epoch on training set
train(model, train_data_iterator, optimizer, scheduler, params)
# data iterator for evaluation
train_data_iterator = data_loader.data_iterator(train_data, shuffle=False)
val_data_iterator = data_loader.data_iterator(val_data, shuffle=False)
# Evaluate for one epoch on training set and validation set
params.eval_steps = params.train_steps
train_metrics = evaluate(model, train_data_iterator, params, mark='Train')
params.eval_steps = params.val_steps
val_metrics = evaluate(model, val_data_iterator, params, mark='Val')
val_f1 = val_metrics['f1']
improve_f1 = val_f1 - best_val_f1
# Save weights of the network
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
optimizer_to_save = optimizer.optimizer if args.fp16 else optimizer
utils.save_checkpoint({'epoch': epoch + 1,
'state_dict': model_to_save.state_dict(),
'optim_dict': optimizer_to_save.state_dict()},
is_best=improve_f1>0,
checkpoint=model_dir)
if improve_f1 > 0:
logging.info("- Found new best F1")
best_val_f1 = val_f1
if improve_f1 < params.patience:
patience_counter += 1
else:
patience_counter = 0
else:
patience_counter += 1
# Early stopping and logging best f1
if (patience_counter >= params.patience_num and epoch > params.min_epoch_num) or epoch == params.epoch_num:
logging.info("Best val f1: {:05.2f}".format(best_val_f1))
break
if __name__ == '__main__':
args = parser.parse_args()
# Load the parameters from json file
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# Use GPUs if available
params.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
params.n_gpu = torch.cuda.device_count()
params.multi_gpu = args.multi_gpu
# Set the random seed for reproducible experiments
random.seed(args.seed)
torch.manual_seed(args.seed)
if params.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed) # set random seed for all GPUs
params.seed = args.seed
# Set the logger
utils.set_logger(os.path.join(args.model_dir, 'train.log'))
logging.info("device: {}, n_gpu: {}, 16-bits training: {}".format(params.device, params.n_gpu, args.fp16))
# Create the input data pipeline
logging.info("Loading the datasets...")
# Initialize the DataLoader
data_loader = DataLoader(args.data_dir, args.bert_model_dir, params, token_pad_idx=0)
# Load training data and test data
train_data = data_loader.load_data('train')
val_data = data_loader.load_data('val')
# Specify the training and validation dataset sizes
params.train_size = train_data['size']
params.val_size = val_data['size']
# Prepare model
model = BertForTokenClassification.from_pretrained(args.bert_model_dir, num_labels=len(params.tag2idx))
model.to(params.device)
if args.fp16:
model.half()
if params.n_gpu > 1 and args.multi_gpu:
model = torch.nn.DataParallel(model)
# Prepare optimizer
if params.full_finetuning:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
# no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.0}
]
else:
param_optimizer = list(model.classifier.named_parameters())
optimizer_grouped_parameters = [{'params': [p for n, p in param_optimizer]}]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("lease install apex from https://www.github.com/nvidia/apex to use fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=params.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: 1/(1 + 0.05*epoch))
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = Adam(optimizer_grouped_parameters, lr=params.learning_rate)
scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: 1/(1 + 0.05*epoch))
# Train and evaluate the model
logging.info("Starting training for {} epoch(s)".format(params.epoch_num))
train_and_evaluate(model, train_data, val_data, optimizer, scheduler, params, args.model_dir, args.restore_file)