-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathngram.py
76 lines (72 loc) · 3.74 KB
/
ngram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def load_kernels(command):
import sqlite3, subprocess, tempfile
with tempfile.TemporaryDirectory() as tmpdir:
dump_name = tmpdir + "/dump"
subprocess.run(["nsys", "profile", "--output", dump_name, "--export", "sqlite"] + command)
connection = sqlite3.connect(dump_name + ".sqlite")
cursor = connection.cursor()
string_dict = dict(cursor.execute("SELECT * FROM StringIds").fetchall())
raw_kernels = cursor.execute("SELECT start, end, shortName FROM CUPTI_ACTIVITY_KIND_KERNEL ORDER BY start").fetchall()
connection.close()
return [(k[0], k[1], string_dict[k[2]]) for k in raw_kernels]
def sample_kernels(kernels, sample_count):
# Kernels should have shape (begin, end, name) and sorted by start, assuming no overlapping
start, stop = kernels[0][0], kernels[-1][1]
sample_times = [start+(i+0.5)*(stop-start)/sample_count for i in range(sample_count)]
skip_history = dict((kn, 0) for kn in set(k[2] for k in kernels))
sample_kernels = list()
for k in kernels:
if len(sample_kernels) == len(sample_times):
break
if k[1] > sample_times[len(sample_kernels)]:
sample_kernels.append((k[2], skip_history[k[2]]))
skip_history[k[2]] += 1
return [s / 1e9 for s in sample_times], sample_kernels
def profile_kernel(command, kernel, skip):
import csv, io, subprocess
ncu_command = ["ncu", "--csv", "--target-process", "all", "--kernel-name", str(kernel),
"--launch-skip", str(skip), "--launch-count", "1"] + command
raw_result = subprocess.check_output(ncu_command).decode("utf-8")
result = raw_result[raw_result.index("\"ID\""):]
string_stream = io.StringIO(result)
csv_reader = csv.DictReader(string_stream)
measure = (None, None)
for row in csv_reader:
if row["Section Name"] == "GPU Speed Of Light":
if row["Metric Name"] == "Memory [%]":
measure = (float(row["Metric Value"]), measure[1])
elif row["Metric Name"] == "SM [%]":
measure = (measure[0], float(row["Metric Value"]))
return measure
def visualize_profile(dest, time, memory, sm):
import pandas
from plotnine import ggplot, aes, geom_smooth, labs, theme_minimal
stats = pandas.DataFrame.from_records(zip(time, memory, sm),
columns=["Time", "Memory", "SM"]).melt(id_vars=["Time"],
value_vars=["Memory", "SM"],
var_name="Metrics",
value_name="Utils")
vis = (ggplot(stats, aes(x="Time", y="Utils", color="Metrics")) +
geom_smooth() +
labs(x="Time (s)", y="Utilization (%)",
title="Hardware utilization by time") +
theme_minimal())
vis.save(dest + ".pdf")
if __name__ == "__main__":
import argparse, csv
parser = argparse.ArgumentParser()
parser.add_argument("command", nargs="*", help="command to run the target model")
parser.add_argument("-o", "--output", default="record", help="path of output file")
parser.add_argument("-s", "--sample_count", default=10, type=int, help="number of timestamps to be sampled")
parser.add_argument("-g", "--graph", action="store_true", help="generate the plot for the statistics")
args = parser.parse_args()
kernels = load_kernels(args.command)
sample_times, sample_kernels = sample_kernels(kernels, args.sample_count)
memory, sm = zip(*[profile_kernel(args.command, k[0], k[1]) for k in sample_kernels])
if args.graph:
visualize_profile(args.output, sample_times, memory, sm)
with open(args.output + ".csv", "w", newline="") as helicorder:
csv_writer = csv.writer(helicorder)
csv_writer.writerow(("Time (s)", "Memory (%)", "SM (%)"))
for row in zip(sample_times, memory, sm):
csv_writer.writerow(row)