-
Notifications
You must be signed in to change notification settings - Fork 1
/
SpA_Former.py
296 lines (236 loc) · 12.6 KB
/
SpA_Former.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
from torch import nn
import torch.nn.functional as F
from collections import OrderedDict
from models.models_utils import weights_init, print_network
# import common
from TransFormer import TransformerBlock,OverlapPatchEmbed,Downsample,Upsample
###### Layer
def conv1x1(in_channels, out_channels, stride = 1):
return nn.Conv2d(in_channels,out_channels,kernel_size = 1,
stride =stride, padding=0,bias=False)
def conv3x3(in_channels, out_channels, stride = 1):
return nn.Conv2d(in_channels,out_channels,kernel_size = 3,
stride =stride, padding=1,bias=False)
class ResBlock(nn.Module):
def __init__(self, in_channel, out_channel):
super(ResBlock, self).__init__()
m = OrderedDict()
m['conv1'] = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1,bias=False)
m['relu1'] = nn.ReLU(True)
m['conv2'] = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1,bias=False)
self.main = nn.Sequential(m)
self.relu= nn.Sequential(nn.ReLU(True))
def forward(self, x):
return self.main(x)
class ResBlock_fft_bench(nn.Module):
def __init__(self, in_channel, out_channel, norm='backward'): # 'ortho'
super(ResBlock_fft_bench, self).__init__()
m = OrderedDict()
m['conv1'] = nn.Conv2d(in_channel*2, out_channel*2, kernel_size=1, stride=1, bias=False)
m['relu1'] = nn.ReLU(True)
m['conv2'] = nn.Conv2d(in_channel*2, out_channel*2, kernel_size=1, stride=1, bias=False)
self.main_fft = nn.Sequential(m)
self.dim = out_channel
self.norm = norm
def forward(self, x):
_, _, H, W = x.shape
dim = 1
y = torch.fft.rfft2(x, norm=self.norm)
y_imag = y.imag
y_real = y.real
y_f = torch.cat([y_real, y_imag], dim=dim)
y = self.main_fft(y_f)
y_real, y_imag = torch.chunk(y, 2, dim=dim)
y = torch.complex(y_real, y_imag)
y = torch.fft.irfft2(y, s=(H, W), norm=self.norm)
return y
class irnn_layer(nn.Module):
def __init__(self,in_channels):
super(irnn_layer,self).__init__()
self.left_weight = nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,groups=in_channels,padding=0)
self.right_weight = nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,groups=in_channels,padding=0)
self.up_weight = nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,groups=in_channels,padding=0)
self.down_weight = nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,groups=in_channels,padding=0)
def forward(self,x):
_,_,H,W = x.shape
top_left = x.clone()
top_right = x.clone()
top_up = x.clone()
top_down = x.clone()
top_left[:,:,:,1:] = F.relu(self.left_weight(x)[:,:,:,:W-1]+x[:,:,:,1:],inplace=False)
top_right[:,:,:,:-1] = F.relu(self.right_weight(x)[:,:,:,1:]+x[:,:,:,:W-1],inplace=False)
top_up[:,:,1:,:] = F.relu(self.up_weight(x)[:,:,:H-1,:]+x[:,:,1:,:],inplace=False)
top_down[:,:,:-1,:] = F.relu(self.down_weight(x)[:,:,1:,:]+x[:,:,:H-1,:],inplace=False)
return (top_up,top_right,top_down,top_left)
class Attention(nn.Module):
def __init__(self,in_channels):
super(Attention,self).__init__()
self.out_channels = int(in_channels/2)
self.conv1 = nn.Conv2d(in_channels,self.out_channels,kernel_size=3,padding=1,stride=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(self.out_channels,self.out_channels,kernel_size=3,padding=1,stride=1)
self.relu2 = nn.ReLU()
self.conv3 = nn.Conv2d(self.out_channels,4,kernel_size=1,padding=0,stride=1)
self.sigmod = nn.Sigmoid()
def forward(self,x):
out = self.conv1(x)
out = self.relu1(out)
out = self.conv2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.sigmod(out)
return out
class SAM(nn.Module):
def __init__(self,in_channels,out_channels,attention=1):
super(SAM,self).__init__()
self.out_channels = out_channels
self.irnn1 = irnn_layer(self.out_channels)
self.irnn2 = irnn_layer(self.out_channels)
self.conv_in = conv3x3(in_channels,self.out_channels)
self.relu1 = nn.ReLU(True)
self.conv1 = nn.Conv2d(self.out_channels,self.out_channels,kernel_size=1,stride=1,padding=0)
self.conv2 = nn.Conv2d(self.out_channels*4,self.out_channels,kernel_size=1,stride=1,padding=0)
self.conv3 = nn.Conv2d(self.out_channels*4,self.out_channels,kernel_size=1,stride=1,padding=0)
self.relu2 = nn.ReLU(True)
self.attention = attention
if self.attention:
self.attention_layer = Attention(in_channels)
self.conv_out = conv1x1(self.out_channels,1)
self.sigmod = nn.Sigmoid()
def forward(self,x):
if self.attention:
weight = self.attention_layer(x)
out = self.conv1(x)
top_up,top_right,top_down,top_left = self.irnn1(out)
# direction attention
if self.attention:
top_up.mul(weight[:,0:1,:,:])
top_right.mul(weight[:,1:2,:,:])
top_down.mul(weight[:,2:3,:,:])
top_left.mul(weight[:,3:4,:,:])
out = torch.cat([top_up,top_right,top_down,top_left],dim=1)
out = self.conv2(out)
top_up,top_right,top_down,top_left = self.irnn2(out)
# direction attention
if self.attention:
top_up.mul(weight[:,0:1,:,:])
top_right.mul(weight[:,1:2,:,:])
top_down.mul(weight[:,2:3,:,:])
top_left.mul(weight[:,3:4,:,:])
out = torch.cat([top_up,top_right,top_down,top_left],dim=1)
out = self.conv3(out)
out = self.relu2(out)
mask = self.sigmod(self.conv_out(out))
return mask
###### Network
class SpA_former(nn.Module):
def __init__(self,inp_channels=3,
out_channels=3,
dim = 32,
num_blocks = [4,6,6,8],
num_refinement_blocks = 4,
heads = [1,2,4,8],
ffn_expansion_factor = 2.66,
bias = False,
LayerNorm_type = 'WithBias', ## Other option 'BiasFree'
dual_pixel_task = False ):
super(SpA_former,self).__init__()
self.conv_in = nn.Sequential(
conv3x3(3,32),
nn.ReLU(True)
)
self.SAM1 = SAM(32,32,1)
self.patch_embed = OverlapPatchEmbed(inp_channels, dim)
self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
self.down1_2 = Downsample(dim) ## From Level 1 to Level 2
self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
self.down2_3 = Downsample(int(dim*2**1)) ## From Level 2 to Level 3
self.encoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])])
self.down3_4 = Downsample(int(dim*2**2)) ## From Level 3 to Level 4
self.latent = nn.Sequential(*[TransformerBlock(dim=int(dim*2**3), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[3])])
self.up4_3 = Upsample(int(dim*2**3)) ## From Level 4 to Level 3
self.reduce_chan_level3 = nn.Conv2d(int(dim*2**3), int(dim*2**2), kernel_size=1, bias=bias)
self.decoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])])
self.up3_2 = Upsample(int(dim*2**2)) ## From Level 3 to Level 2
self.reduce_chan_level2 = nn.Conv2d(int(dim*2**2), int(dim*2**1), kernel_size=1, bias=bias)
self.decoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
self.up2_1 = Upsample(int(dim*2**1)) ## From Level 2 to Level 1 (NO 1x1 conv to reduce channels)
self.decoder_level1 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
self.res_block1 = ResBlock(32,32)
self.res_block2 = ResBlock(32,32)
self.res_block3 = ResBlock(32,32)
self.res_block4 = ResBlock(32,32)
self.res_block5 = ResBlock(32,32)
self.res_block6 = ResBlock(32,32)
self.res_block7 = ResBlock(32,32)
self.res_block8 = ResBlock(32,32)
self.res_block9 = ResBlock(32,32)
self.res_block10 = ResBlock(32,32)
self.res_block11 = ResBlock(32,32)
self.res_block12 = ResBlock(32,32)
self.res_block13 = ResBlock(32,32)
self.res_block14 = ResBlock(32,32)
self.res_block15 = ResBlock(32,32)
self.res_block16 = ResBlock(32,32)
self.res_block17 = ResBlock(32,32)
self.conv_out = nn.Sequential(
conv3x3(32,3)
)
self.fft_block1 = ResBlock_fft_bench(32,32)
self.fft_block2 = ResBlock_fft_bench(32,32)
self.fft_block3 = ResBlock_fft_bench(32,32)
self.fft_block4 = ResBlock_fft_bench(32,32)
self.fft_block5 = ResBlock_fft_bench(32,32)
self.fft_block6 = ResBlock_fft_bench(32,32)
self.fft_block7 = ResBlock_fft_bench(32,32)
self.fft_block8 = ResBlock_fft_bench(32,32)
self.fft_block9 = ResBlock_fft_bench(32,32)
self.fft_block10 = ResBlock_fft_bench(32,32)
self.fft_block11 = ResBlock_fft_bench(32,32)
self.fft_block12 = ResBlock_fft_bench(32,32)
self.fft_block13 = ResBlock_fft_bench(32,32)
self.fft_block14 = ResBlock_fft_bench(32,32)
self.fft_block15 = ResBlock_fft_bench(32,32)
self.fft_block16 = ResBlock_fft_bench(32,32)
self.fft_block17 = ResBlock_fft_bench(32,32)
def forward(self, x):
#out = self.conv_in(x)
inp_enc_level1 = self.patch_embed(x)
out= self.encoder_level1(inp_enc_level1)
out = F.relu(self.res_block1(out) + out + self.fft_block1(out))
out = F.relu(self.res_block2(out) + out + self.fft_block2(out))
out = F.relu(self.res_block3(out) + out + self.fft_block3(out))
Attention1= self.SAM1(out)
out = F.relu(self.res_block4(out) * Attention1 + out + self.fft_block4(out))
out = F.relu(self.res_block5(out) * Attention1 + out + self.fft_block5(out))
out = F.relu(self.res_block6(out) * Attention1 + out + self.fft_block6(out))
Attention2 = self.SAM1(out)
out = F.relu(self.res_block7(out) * Attention2 + out + self.fft_block7(out))
out = F.relu(self.res_block8(out) * Attention2 + out + self.fft_block8(out))
out = F.relu(self.res_block9(out) * Attention2 + out + self.fft_block9(out))
Attention3 = self.SAM1(out)
out = F.relu(self.res_block10(out) * Attention3 + out + self.fft_block10(out))
out = F.relu(self.res_block11(out) * Attention3 + out + self.fft_block11(out))
out = F.relu(self.res_block12(out) * Attention3 + out + self.fft_block12(out))
Attention4 = self.SAM1(out)
out = F.relu(self.res_block13(out) * Attention4 + out + self.fft_block13(out))
out = F.relu(self.res_block14(out) * Attention4 + out + self.fft_block14(out))
out = F.relu(self.res_block15(out) * Attention4 + out + self.fft_block15(out))
out = F.relu(self.res_block16(out) + out + self.fft_block16(out))
out = F.relu(self.res_block17(out) + out + self.fft_block17(out))
#out= self.decoder_level1(out)
out = self.conv_out(out)
return Attention4,out
class Generator(nn.Module):
def __init__(self, gpu_ids):
super().__init__()
self.gpu_ids = gpu_ids
self.gen = nn.Sequential(OrderedDict([('gen', SpA_former())]))
self.gen.apply(weights_init)
def forward(self, x):
if self.gpu_ids:
return nn.parallel.data_parallel(self.gen, x, self.gpu_ids)
else:
return self.gen(x)
# return self.gen(x)