-
Notifications
You must be signed in to change notification settings - Fork 11
/
dot.metal
719 lines (531 loc) · 25.9 KB
/
dot.metal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
#include <metal_stdlib>
using namespace metal;
struct dot_constants
{
uint num_elements;
};
/**
* Type 1, 2 & 3 : two-pass
*
* Let N_gpg be the number of groups per grid, N_tpg be the number of threads per group,
* and N_elem be the number of elements in X and Y.
*
* In the first pass, each thread (in a group) sums up X[i] * Y[i],
* where i runs from therad_position_in_grid, upwards with increment of N_gpg * N_tpg,
* i.e., the number of threads per grid.
* At the end of the first pass, Z contains the partial sumbs calculated above.
* The size of Z is Ngpg, and each element represents the partial sum of therad_position_in_grid.
*
* The second pass launches only one thread group, i.e., number of thread groups per grid = 1.
* It reduces Z down to one total sum.
*
* value of dot_constants::num_elements : N_elem
* Size of X & Y : N_elem
* Size of s_partials [[ threadgroup(0) ]] : N_tpg
* Size of Z : N_gpg
* The configuration of the first kernel launch : <<Ngpg, Ntpg >>
* The configuration of the second kernel launch : <<1, Ntpg >>
*/
kernel void dot_type1_pass1(
device const float* X [[ buffer(0) ]],
device const float* Y [[ buffer(1) ]],
device float* Z [[ buffer(2) ]],
device const dot_constants& c [[ buffer(3) ]],
device float* s_partials [[ buffer(4) ]],
const uint thread_position_in_grid [[ thread_position_in_grid ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threadgroup_position_in_grid [[ threadgroup_position_in_grid ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_simdgroup [[ threads_per_simdgroup ]],
const uint threads_per_grid [[ threads_per_grid ]]
) {
float sum = 0;
for ( size_t i = thread_position_in_grid;
i < c.num_elements;
i += threads_per_grid
) {
sum += (X[i]*Y[i]);
}
// s_partials[ thread_position_in_threadgroup ] = sum;
s_partials[ thread_position_in_grid ] = sum;
threadgroup_barrier( mem_flags::mem_device );
for ( uint activeThreads = threads_per_threadgroup >> 1;
activeThreads >= 1;
activeThreads >>= 1
) {
if ( thread_position_in_threadgroup < activeThreads ) {
s_partials[ thread_position_in_grid ] +=
s_partials[ thread_position_in_grid + activeThreads ];
}
threadgroup_barrier( mem_flags::mem_device );
}
if ( thread_position_in_threadgroup == 0 ) {
Z[ threadgroup_position_in_grid ] = s_partials[ thread_position_in_grid ];
}
}
kernel void dot_type1_pass2(
device const float* Z [[ buffer(0) ]],
device float* dot [[ buffer(1) ]],
device const dot_constants& c [[ buffer(2) ]],
device float* s_partials [[ buffer(3) ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_simdgroup [[ threads_per_simdgroup ]],
const uint threads_per_grid [[ threads_per_grid ]]
) {
float sum = 0.0;
for ( size_t i = thread_position_in_threadgroup;
i < c.num_elements;
i+= threads_per_threadgroup
) {
sum += Z[i];
}
s_partials[ thread_position_in_threadgroup ] = sum;
threadgroup_barrier( mem_flags::mem_device );
for ( uint activeThreads = threads_per_threadgroup >> 1;
activeThreads >= 1;
activeThreads >>= 1
) {
if ( thread_position_in_threadgroup < activeThreads ) {
s_partials[ thread_position_in_threadgroup ] +=
s_partials[ thread_position_in_threadgroup + activeThreads ];
}
threadgroup_barrier( mem_flags::mem_device );
}
if ( thread_position_in_threadgroup == 0 ) {
dot[0] = s_partials[0];
}
}
kernel void dot_type2_threadgroup_memory_pass1(
device const float* X [[ buffer(0) ]],
device const float* Y [[ buffer(1) ]],
device float* Z [[ buffer(2) ]],
device const dot_constants& c [[ buffer(3) ]],
threadgroup float* s_partials [[ threadgroup(0) ]],
const uint thread_position_in_grid [[ thread_position_in_grid ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threadgroup_position_in_grid [[ threadgroup_position_in_grid ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_simdgroup [[ threads_per_simdgroup ]],
const uint threads_per_grid [[ threads_per_grid ]]
) {
float sum = 0;
for ( size_t i = thread_position_in_grid;
i < c.num_elements;
i += threads_per_grid
) {
sum += (X[i]*Y[i]);
}
s_partials[ thread_position_in_threadgroup ] = sum;
threadgroup_barrier( mem_flags::mem_threadgroup );
for ( uint activeThreads = threads_per_threadgroup >> 1;
activeThreads >= 1;
activeThreads >>= 1
) {
if ( thread_position_in_threadgroup < activeThreads ) {
s_partials[ thread_position_in_threadgroup ] +=
s_partials[ thread_position_in_threadgroup + activeThreads ];
}
if ( activeThreads >= threads_per_simdgroup ) {
threadgroup_barrier( mem_flags::mem_threadgroup );
}
else{
simdgroup_barrier( mem_flags::mem_threadgroup );
}
}
if ( thread_position_in_threadgroup == 0 ) {
Z[ threadgroup_position_in_grid ] = s_partials[0];
}
}
kernel void dot_type2_threadgroup_memory_pass2(
device const float* Z [[ buffer(0) ]],
device float* dot [[ buffer(1) ]],
device const dot_constants& c [[ buffer(2) ]],
threadgroup float* s_partials [[ threadgroup(0) ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_simdgroup [[ threads_per_simdgroup ]],
const uint threads_per_grid [[ threads_per_grid ]]
) {
float sum = 0.0;
for ( size_t i = thread_position_in_threadgroup;
i < c.num_elements;
i+= threads_per_threadgroup
) {
sum += Z[i];
}
s_partials[ thread_position_in_threadgroup ] = sum;
threadgroup_barrier( mem_flags::mem_threadgroup );
for ( uint activeThreads = threads_per_threadgroup >> 1;
activeThreads >= 1;
activeThreads >>= 1
) {
if ( thread_position_in_threadgroup < activeThreads ) {
s_partials[ thread_position_in_threadgroup ] +=
s_partials[ thread_position_in_threadgroup + activeThreads ];
}
if ( activeThreads >= threads_per_simdgroup ){
threadgroup_barrier( mem_flags::mem_threadgroup );
}
else{
simdgroup_barrier( mem_flags::mem_threadgroup );
}
}
if ( thread_position_in_threadgroup == 0 ) {
dot[0] = s_partials[0];
}
}
kernel void dot_type3_pass1_simd_shuffle(
device const float* X [[ buffer(0) ]],
device const float* Y [[ buffer(1) ]],
device float* Z [[ buffer(2) ]],
device const dot_constants& c [[ buffer(3) ]],
threadgroup float* s_partials [[ threadgroup(0) ]],
const uint thread_position_in_grid [[ thread_position_in_grid ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threadgroup_position_in_grid [[ threadgroup_position_in_grid ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_simdgroup [[ threads_per_simdgroup ]],
const uint threads_per_grid [[ threads_per_grid ]]
) {
float sum = 0;
for ( size_t i = thread_position_in_grid;
i < c.num_elements;
i += threads_per_grid
) {
sum += (X[i]*Y[i]);
}
s_partials[ thread_position_in_threadgroup ] = sum;
threadgroup_barrier( mem_flags::mem_threadgroup );
for ( uint activeThreads = threads_per_threadgroup >> 1;
activeThreads >= 32;
activeThreads >>= 1
) {
if ( thread_position_in_threadgroup < activeThreads ) {
s_partials[ thread_position_in_threadgroup ] +=
s_partials[ thread_position_in_threadgroup + activeThreads ];
}
threadgroup_barrier( mem_flags::mem_threadgroup );
}
float simd_sum = s_partials[ thread_position_in_threadgroup ];
simd_sum += simd_shuffle_xor( simd_sum, 16 );
simd_sum += simd_shuffle_xor( simd_sum, 8 );
simd_sum += simd_shuffle_xor( simd_sum, 4 );
simd_sum += simd_shuffle_xor( simd_sum, 2 );
simd_sum += simd_shuffle_xor( simd_sum, 1 );
if ( thread_position_in_threadgroup == 0 ) {
Z[ threadgroup_position_in_grid ] = simd_sum;
}
}
kernel void dot_type3_pass2_simd_shuffle(
device const float* Z [[ buffer(0) ]],
device float* dot [[ buffer(1) ]],
device const dot_constants& c [[ buffer(2) ]],
threadgroup float* s_partials [[ threadgroup(0) ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_simdgroup [[ threads_per_simdgroup ]],
const uint threads_per_grid [[ threads_per_grid ]]
) {
float sum = 0.0;
for ( size_t i = thread_position_in_threadgroup;
i < c.num_elements;
i+= threads_per_threadgroup
) {
sum += Z[i];
}
s_partials[thread_position_in_threadgroup] = sum;
threadgroup_barrier( mem_flags::mem_threadgroup );
for ( uint activeThreads = threads_per_threadgroup >> 1;
activeThreads >= 32;
activeThreads >>= 1
) {
if ( thread_position_in_threadgroup < activeThreads ) {
s_partials[ thread_position_in_threadgroup ] +=
s_partials[ thread_position_in_threadgroup + activeThreads ];
}
threadgroup_barrier( mem_flags::mem_threadgroup );
}
float simd_sum = s_partials[ thread_position_in_threadgroup ];
simd_sum += simd_shuffle_xor( simd_sum, 16 );
simd_sum += simd_shuffle_xor( simd_sum, 8 );
simd_sum += simd_shuffle_xor( simd_sum, 4 );
simd_sum += simd_shuffle_xor( simd_sum, 2 );
simd_sum += simd_shuffle_xor( simd_sum, 1 );
if ( thread_position_in_threadgroup == 0 ) {
dot[0] = simd_sum;
}
}
kernel void dot_type4_pass1_simd_add(
device const float* X [[ buffer(0) ]],
device const float* Y [[ buffer(1) ]],
device float* Z [[ buffer(2) ]],
device const dot_constants& c [[ buffer(3) ]],
threadgroup float* s_partials [[ threadgroup(0) ]],
const uint thread_position_in_grid [[ thread_position_in_grid ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threadgroup_position_in_grid [[ threadgroup_position_in_grid ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_grid [[ threads_per_grid ]],
const uint thread_index_in_simdgroup [[ thread_index_in_simdgroup ]],
const uint simdgroup_index_in_threadgroup [[ simdgroup_index_in_threadgroup ]]
) {
float sum = 0;
for ( size_t i = thread_position_in_grid; i < c.num_elements; i += threads_per_grid ) {
sum += (X[i]*Y[i]);
}
// Reset all the 32 elements in case threads_per_threadgroup < 1024.
if ( simdgroup_index_in_threadgroup == 0 ) {
s_partials[thread_index_in_simdgroup] = 0.0;
}
threadgroup_barrier( mem_flags::mem_threadgroup );
thread const float local_sum = simd_sum(sum);
if ( thread_index_in_simdgroup == 0 ){
s_partials[simdgroup_index_in_threadgroup] = local_sum;
}
threadgroup_barrier( mem_flags::mem_threadgroup );
if ( simdgroup_index_in_threadgroup == 0 ) {
thread const float local_sum2 = s_partials[ thread_index_in_simdgroup ];
thread const float warp_sum = simd_sum(local_sum2);
if ( thread_position_in_threadgroup == 0 ) {
Z[ threadgroup_position_in_grid ] = warp_sum;
}
}
}
kernel void dot_type4_pass2_simd_add(
device const float* Z [[ buffer(0) ]],
device float* dot [[ buffer(1) ]],
device const dot_constants& c [[ buffer(2) ]],
threadgroup float* s_partials [[ threadgroup(0) ]],
const uint thread_position_in_grid [[ thread_position_in_grid ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threadgroup_position_in_grid [[ threadgroup_position_in_grid ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_grid [[ threads_per_grid ]],
const uint thread_index_in_simdgroup [[ thread_index_in_simdgroup ]],
const uint simdgroup_index_in_threadgroup [[ simdgroup_index_in_threadgroup ]]
) {
float sum = 0.0;
for ( size_t i = thread_position_in_threadgroup; i < c.num_elements; i += threads_per_threadgroup ) {
sum += Z[i];
}
// Reset all the 32 elements in case threads_per_threadgroup < 1024.
if ( simdgroup_index_in_threadgroup == 0 ) {
s_partials[thread_index_in_simdgroup] = 0.0;
}
threadgroup_barrier( mem_flags::mem_threadgroup );
thread const float local_sum = simd_sum(sum);
if ( thread_index_in_simdgroup == 0 ){
s_partials[simdgroup_index_in_threadgroup] = local_sum;
}
threadgroup_barrier( mem_flags::mem_threadgroup );
if ( simdgroup_index_in_threadgroup == 0 ) {
thread const float local_sum2 = s_partials[ thread_index_in_simdgroup ];
thread const float warp_sum = simd_sum(local_sum2);
if ( thread_position_in_threadgroup == 0 ) {
dot[ 0 ] = warp_sum;
}
}
}
void atomic_add_float( device atomic_uint* atom_var, const float val )
{
uint fetched_uint, assigning_uint;
float fetched_float, assigning_float;
fetched_uint = atomic_exchange_explicit( atom_var, 0, memory_order_relaxed );
fetched_float = *( (thread float*) &fetched_uint );
assigning_float = fetched_float + val;
assigning_uint = *( (thread uint*) &assigning_float );
while ( (fetched_uint = atomic_exchange_explicit( atom_var, assigning_uint, memory_order_relaxed ) ) != 0 ) {
uint fetched_uint_again = atomic_exchange_explicit( atom_var, 0, memory_order_relaxed );
float fetched_float_again = *( (thread float*) &fetched_uint_again );
fetched_float = *( (thread float*) &(fetched_uint) );
assigning_float = fetched_float_again + fetched_float;
assigning_uint = *( (thread uint*) &assigning_float );
}
}
kernel void dot_type5_atomic_simd_shuffle(
device const float* X [[ buffer(0) ]],
device const float* Y [[ buffer(1) ]],
device atomic_uint* Sint [[ buffer(2) ]],
device const dot_constants& c [[ buffer(3) ]],
threadgroup float* s_partials [[ threadgroup(0) ]],
const uint thread_position_in_grid [[ thread_position_in_grid ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threadgroup_position_in_grid [[ threadgroup_position_in_grid ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_simdgroup [[ threads_per_simdgroup ]],
const uint threads_per_grid [[ threads_per_grid ]],
const uint threadgroups_per_grid [[ threadgroups_per_grid ]],
const uint simdgroup_index_in_threadgroup [[ simdgroup_index_in_threadgroup ]],
const uint thread_index_in_simdgroup [[ thread_index_in_simdgroup ]]
) {
float sum = 0;
for ( size_t i = thread_position_in_grid;
i < c.num_elements;
i += threads_per_grid
) {
sum += (X[i]*Y[i]);
}
s_partials[ thread_position_in_threadgroup ] = sum;
threadgroup_barrier( mem_flags::mem_threadgroup );
for ( uint activeThreads = threads_per_threadgroup >> 1;
activeThreads >= 32;
activeThreads >>= 1
) {
if ( thread_position_in_threadgroup < activeThreads ) {
s_partials[ thread_position_in_threadgroup ] +=
s_partials[ thread_position_in_threadgroup + activeThreads ];
}
threadgroup_barrier( mem_flags::mem_threadgroup );
}
float simd_sum = s_partials[ thread_position_in_threadgroup ];
simd_sum += simd_shuffle_xor( simd_sum, 16 );
simd_sum += simd_shuffle_xor( simd_sum, 8 );
simd_sum += simd_shuffle_xor( simd_sum, 4 );
simd_sum += simd_shuffle_xor( simd_sum, 2 );
simd_sum += simd_shuffle_xor( simd_sum, 1 );
if ( thread_position_in_threadgroup == 0 ) {
atomic_add_float( Sint, simd_sum );
}
}
kernel void dot_type6_atomic_simd_add(
device const float* X [[ buffer(0) ]],
device const float* Y [[ buffer(1) ]],
device atomic_uint* Sint [[ buffer(2) ]],
device const dot_constants& c [[ buffer(3) ]],
threadgroup float* s_partials [[ threadgroup(0) ]],
const uint thread_position_in_grid [[ thread_position_in_grid ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threadgroup_position_in_grid [[ threadgroup_position_in_grid ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_simdgroup [[ threads_per_simdgroup ]],
const uint threads_per_grid [[ threads_per_grid ]],
const uint threadgroups_per_grid [[ threadgroups_per_grid ]],
const uint simdgroup_index_in_threadgroup [[ simdgroup_index_in_threadgroup ]],
const uint thread_index_in_simdgroup [[ thread_index_in_simdgroup ]]
) {
float sum = 0;
for ( size_t i = thread_position_in_grid;
i < c.num_elements;
i += threads_per_grid
) {
sum += (X[i]*Y[i]);
}
// Reset all the 32 elements in case threads_per_threadgroup < 1024.
if ( simdgroup_index_in_threadgroup == 0 ) {
s_partials[thread_index_in_simdgroup] = 0.0;
}
threadgroup_barrier( mem_flags::mem_threadgroup );
thread const float local_sum = simd_sum(sum);
thread const float warp_sum = local_sum;
if ( thread_index_in_simdgroup == 0 ){
s_partials[simdgroup_index_in_threadgroup] = warp_sum;
}
threadgroup_barrier( mem_flags::mem_threadgroup );
if ( simdgroup_index_in_threadgroup == 0 ) {
thread const float local_sum2 = s_partials[ thread_index_in_simdgroup ];
thread const float warp_sum2 = simd_sum(local_sum2);
if ( thread_position_in_threadgroup == 0 ) {
atomic_add_float( Sint, warp_sum2 );
}
}
}
/** Type 6 One-pass
* This is based on 12.3 Single-Pass-Reduction of "The CUDA Handbook" by Wilt.
*
* The reason is why it does not work is that Z buffer is not synchronized between Point A and B below.
* After writing to Z[i], we call threadgroup_barrier( mem_flags::mem_device ) at Point A,
* However the memory consistency is apparently kept within the thread group only.
* Even if all the other thread grouops finished execution, i.e., finished writing to Z and calling
* threadgroup_barrier( mem_flags::mem_device ) at Point A,
* the values the other threadgroup than the last one have written to Z are not visible to the last thread group.
*
* This behavior is different from CUDA where at point A _threadFence() would be called to guarantee Grid-wise memory consistency.
*
* It seems you have to split it into two serial kernel invocations along the same compute buffer
* to ensure the grid-wise consistency, which will make it essencially Type 1 or 2.
*/
kernel void dot_type7_atomic_thread_group_counter(
device const float* X [[ buffer(0) ]],
device const float* Y [[ buffer(1) ]],
device volatile float* Z [[ buffer(2) ]],
device float* dot [[ buffer(3) ]],
device atomic_uint* thread_group_counter
[[ buffer(4) ]],
device const dot_constants& c [[ buffer(5) ]],
const uint thread_position_in_grid [[ thread_position_in_grid ]],
const uint thread_position_in_threadgroup [[ thread_position_in_threadgroup ]],
const uint threadgroup_position_in_grid [[ threadgroup_position_in_grid ]],
const uint threads_per_threadgroup [[ threads_per_threadgroup ]],
const uint threads_per_simdgroup [[ threads_per_simdgroup ]],
const uint threads_per_grid [[ threads_per_grid ]],
const uint threadgroups_per_grid [[ threadgroups_per_grid ]]
) {
threadgroup int last_group = 0; // 'bool' does not work for threadgroup somehow. Use 'int' instead.
threadgroup float s_partials [1024];
float sum = 0;
for ( size_t i = thread_position_in_grid;
i < c.num_elements;
i += threads_per_grid
) {
sum += (X[i]*Y[i]);
}
s_partials[ thread_position_in_threadgroup ] = sum;
threadgroup_barrier( mem_flags::mem_threadgroup );
for ( uint activeThreads = threads_per_threadgroup >> 1;
activeThreads >= 32;
activeThreads >>= 1
) {
if ( thread_position_in_threadgroup < activeThreads ) {
s_partials[ thread_position_in_threadgroup ] +=
s_partials[ thread_position_in_threadgroup + activeThreads ];
}
threadgroup_barrier( mem_flags::mem_threadgroup );
}
float simd_sum = s_partials[ thread_position_in_threadgroup ];
simd_sum += simd_shuffle_xor( simd_sum, 16 );
simd_sum += simd_shuffle_xor( simd_sum, 8 );
simd_sum += simd_shuffle_xor( simd_sum, 4 );
simd_sum += simd_shuffle_xor( simd_sum, 2 );
simd_sum += simd_shuffle_xor( simd_sum, 1 );
if ( thread_position_in_threadgroup == 0 ) {
Z[ threadgroup_position_in_grid ] = simd_sum;
}
threadgroup_barrier( mem_flags::mem_device ); // <= (Point A)
uint fetched_val = 0;
if ( thread_position_in_threadgroup == 0 ) {
fetched_val = atomic_fetch_add_explicit( thread_group_counter, 1 , memory_order_relaxed );
last_group = ( fetched_val == threadgroups_per_grid - 1 )?1:0 ;
}
threadgroup_barrier( mem_flags::mem_threadgroup );
if ( last_group == 1 ) {
sum = 0.0;
for ( size_t i = thread_position_in_threadgroup;
i < threadgroups_per_grid;
i+= threads_per_threadgroup
) {
sum += Z[i]; // <= (Point B)
}
s_partials[ thread_position_in_threadgroup ] = sum;
threadgroup_barrier( mem_flags::mem_threadgroup );
for ( uint activeThreads = threads_per_threadgroup >> 1;
activeThreads >= 32;
activeThreads >>= 1
) {
if ( thread_position_in_threadgroup < activeThreads ) {
s_partials[ thread_position_in_threadgroup ] +=
s_partials[ thread_position_in_threadgroup + activeThreads ];
}
threadgroup_barrier( mem_flags::mem_threadgroup );
}
float simd_sum = s_partials[ thread_position_in_threadgroup ];
simd_sum += simd_shuffle_xor( simd_sum, 16 );
simd_sum += simd_shuffle_xor( simd_sum, 8 );
simd_sum += simd_shuffle_xor( simd_sum, 4 );
simd_sum += simd_shuffle_xor( simd_sum, 2 );
simd_sum += simd_shuffle_xor( simd_sum, 1 );
if ( thread_position_in_threadgroup == 0 ) {
dot[0] = simd_sum;
}
}
}