-
Notifications
You must be signed in to change notification settings - Fork 11
/
nets.py
207 lines (178 loc) · 9.61 KB
/
nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Depth and Ego-Motion networks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
import numpy as np
import tensorflow as tf
import util
slim = tf.contrib.slim
# TODO(rezama): Move flag to main, pass as argument to functions.
flags.DEFINE_bool('use_bn', True, 'Add batch norm layers.')
FLAGS = flags.FLAGS
# Weight regularization.
WEIGHT_REG = 0.05
# Disparity (inverse depth) values range from 0.01 to 10.
DISP_SCALING = 10
MIN_DISP = 0.01
EGOMOTION_VEC_SIZE = 6
def egomotion_net(image_stack, is_training=True, legacy_mode=False):
"""Predict ego-motion vectors from a stack of frames.
Args:
image_stack: Input tensor with shape [B, h, w, seq_length * 3]. Regardless
of the value of legacy_mode, the input image sequence passed to the
function should be in normal order, e.g. [1, 2, 3].
is_training: Whether the model is being trained or not.
legacy_mode: Setting legacy_mode to True enables compatibility with
SfMLearner checkpoints. When legacy_mode is on, egomotion_net()
rearranges the input tensor to place the target (middle) frame first in
sequence. This is the arrangement of inputs that legacy models have
received during training. In legacy mode, the client program
(model.Model.build_loss()) interprets the outputs of this network
differently as well. For example:
When legacy_mode == True,
Network inputs will be [2, 1, 3]
Network outputs will be [1 -> 2, 3 -> 2]
When legacy_mode == False,
Network inputs will be [1, 2, 3]
Network outputs will be [1 -> 2, 2 -> 3]
Returns:
Egomotion vectors with shape [B, seq_length - 1, 6].
"""
seq_length = image_stack.get_shape()[3].value // 3 # 3 == RGB.
if legacy_mode:
# Put the target frame at the beginning of stack.
with tf.name_scope('rearrange_stack'):
mid_index = util.get_seq_middle(seq_length)
left_subset = image_stack[:, :, :, :mid_index * 3]
target_frame = image_stack[:, :, :, mid_index * 3:(mid_index + 1) * 3]
right_subset = image_stack[:, :, :, (mid_index + 1) * 3:]
image_stack = tf.concat([target_frame, left_subset, right_subset], axis=3)
batch_norm_params = {'is_training': is_training}
num_egomotion_vecs = seq_length - 1
with tf.variable_scope('pose_exp_net') as sc:
end_points_collection = sc.original_name_scope + '_end_points'
normalizer_fn = slim.batch_norm if FLAGS.use_bn else None
normalizer_params = batch_norm_params if FLAGS.use_bn else None
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
normalizer_fn=normalizer_fn,
weights_regularizer=slim.l2_regularizer(WEIGHT_REG),
normalizer_params=normalizer_params,
activation_fn=tf.nn.relu,
outputs_collections=end_points_collection):
cnv1 = slim.conv2d(image_stack, 16, [7, 7], stride=2, scope='cnv1')
cnv2 = slim.conv2d(cnv1, 32, [5, 5], stride=2, scope='cnv2')
cnv3 = slim.conv2d(cnv2, 64, [3, 3], stride=2, scope='cnv3')
cnv4 = slim.conv2d(cnv3, 128, [3, 3], stride=2, scope='cnv4')
cnv5 = slim.conv2d(cnv4, 256, [3, 3], stride=2, scope='cnv5')
# Ego-motion specific layers
with tf.variable_scope('pose'):
cnv6 = slim.conv2d(cnv5, 256, [3, 3], stride=2, scope='cnv6')
cnv7 = slim.conv2d(cnv6, 256, [3, 3], stride=2, scope='cnv7')
pred_channels = EGOMOTION_VEC_SIZE * num_egomotion_vecs
egomotion_pred = slim.conv2d(cnv7,
pred_channels,
[1, 1],
scope='pred',
stride=1,
normalizer_fn=None,
activation_fn=None)
egomotion_avg = tf.reduce_mean(egomotion_pred, [1, 2])
# Tinghui found that scaling by a small constant facilitates training.
egomotion_final = 0.01 * tf.reshape(
egomotion_avg, [-1, num_egomotion_vecs, EGOMOTION_VEC_SIZE])
end_points = slim.utils.convert_collection_to_dict(end_points_collection)
return egomotion_final, end_points
def disp_net(target_image, is_training=True):
"""Predict inverse of depth from a single image."""
batch_norm_params = {'is_training': is_training}
h = target_image.get_shape()[1].value
w = target_image.get_shape()[2].value
inputs = target_image
with tf.variable_scope('depth_net') as sc:
end_points_collection = sc.original_name_scope + '_end_points'
normalizer_fn = slim.batch_norm if FLAGS.use_bn else None
normalizer_params = batch_norm_params if FLAGS.use_bn else None
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
normalizer_fn=normalizer_fn,
normalizer_params=normalizer_params,
weights_regularizer=slim.l2_regularizer(WEIGHT_REG),
activation_fn=tf.nn.relu,
outputs_collections=end_points_collection):
cnv1 = slim.conv2d(inputs, 32, [7, 7], stride=2, scope='cnv1')
cnv1b = slim.conv2d(cnv1, 32, [7, 7], stride=1, scope='cnv1b')
cnv2 = slim.conv2d(cnv1b, 64, [5, 5], stride=2, scope='cnv2')
cnv2b = slim.conv2d(cnv2, 64, [5, 5], stride=1, scope='cnv2b')
cnv3 = slim.conv2d(cnv2b, 128, [3, 3], stride=2, scope='cnv3')
cnv3b = slim.conv2d(cnv3, 128, [3, 3], stride=1, scope='cnv3b')
cnv4 = slim.conv2d(cnv3b, 256, [3, 3], stride=2, scope='cnv4')
cnv4b = slim.conv2d(cnv4, 256, [3, 3], stride=1, scope='cnv4b')
cnv5 = slim.conv2d(cnv4b, 512, [3, 3], stride=2, scope='cnv5')
cnv5b = slim.conv2d(cnv5, 512, [3, 3], stride=1, scope='cnv5b')
cnv6 = slim.conv2d(cnv5b, 512, [3, 3], stride=2, scope='cnv6')
cnv6b = slim.conv2d(cnv6, 512, [3, 3], stride=1, scope='cnv6b')
cnv7 = slim.conv2d(cnv6b, 512, [3, 3], stride=2, scope='cnv7')
cnv7b = slim.conv2d(cnv7, 512, [3, 3], stride=1, scope='cnv7b')
up7 = slim.conv2d_transpose(cnv7b, 512, [3, 3], stride=2, scope='upcnv7')
# There might be dimension mismatch due to uneven down/up-sampling.
up7 = _resize_like(up7, cnv6b)
i7_in = tf.concat([up7, cnv6b], axis=3)
icnv7 = slim.conv2d(i7_in, 512, [3, 3], stride=1, scope='icnv7')
up6 = slim.conv2d_transpose(icnv7, 512, [3, 3], stride=2, scope='upcnv6')
up6 = _resize_like(up6, cnv5b)
i6_in = tf.concat([up6, cnv5b], axis=3)
icnv6 = slim.conv2d(i6_in, 512, [3, 3], stride=1, scope='icnv6')
up5 = slim.conv2d_transpose(icnv6, 256, [3, 3], stride=2, scope='upcnv5')
up5 = _resize_like(up5, cnv4b)
i5_in = tf.concat([up5, cnv4b], axis=3)
icnv5 = slim.conv2d(i5_in, 256, [3, 3], stride=1, scope='icnv5')
up4 = slim.conv2d_transpose(icnv5, 128, [3, 3], stride=2, scope='upcnv4')
i4_in = tf.concat([up4, cnv3b], axis=3)
icnv4 = slim.conv2d(i4_in, 128, [3, 3], stride=1, scope='icnv4')
disp4 = (slim.conv2d(icnv4, 1, [3, 3], stride=1, activation_fn=tf.sigmoid,
normalizer_fn=None, scope='disp4')
* DISP_SCALING + MIN_DISP)
disp4_up = tf.image.resize_bilinear(disp4, [np.int(h / 4), np.int(w / 4)])
up3 = slim.conv2d_transpose(icnv4, 64, [3, 3], stride=2, scope='upcnv3')
i3_in = tf.concat([up3, cnv2b, disp4_up], axis=3)
icnv3 = slim.conv2d(i3_in, 64, [3, 3], stride=1, scope='icnv3')
disp3 = (slim.conv2d(icnv3, 1, [3, 3], stride=1, activation_fn=tf.sigmoid,
normalizer_fn=None, scope='disp3')
* DISP_SCALING + MIN_DISP)
disp3_up = tf.image.resize_bilinear(disp3, [np.int(h / 2), np.int(w / 2)])
up2 = slim.conv2d_transpose(icnv3, 32, [3, 3], stride=2, scope='upcnv2')
i2_in = tf.concat([up2, cnv1b, disp3_up], axis=3)
icnv2 = slim.conv2d(i2_in, 32, [3, 3], stride=1, scope='icnv2')
disp2 = (slim.conv2d(icnv2, 1, [3, 3], stride=1, activation_fn=tf.sigmoid,
normalizer_fn=None, scope='disp2')
* DISP_SCALING + MIN_DISP)
disp2_up = tf.image.resize_bilinear(disp2, [h, w])
up1 = slim.conv2d_transpose(icnv2, 16, [3, 3], stride=2, scope='upcnv1')
i1_in = tf.concat([up1, disp2_up], axis=3)
icnv1 = slim.conv2d(i1_in, 16, [3, 3], stride=1, scope='icnv1')
disp1 = (slim.conv2d(icnv1, 1, [3, 3], stride=1, activation_fn=tf.sigmoid,
normalizer_fn=None, scope='disp1')
* DISP_SCALING + MIN_DISP)
end_points = slim.utils.convert_collection_to_dict(end_points_collection)
return [disp1, disp2, disp3, disp4], end_points
def _resize_like(inputs, ref):
i_h, i_w = inputs.get_shape()[1], inputs.get_shape()[2]
r_h, r_w = ref.get_shape()[1], ref.get_shape()[2]
if i_h == r_h and i_w == r_w:
return inputs
else:
return tf.image.resize_nearest_neighbor(inputs, [r_h.value, r_w.value])