-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsamples.py
292 lines (272 loc) · 12.2 KB
/
samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from einops import rearrange
import matplotlib.pyplot as plt
import argparse
import numpy as np
from PIL import Image
from torchvision.transforms import transforms
import sde
import ml_collections
import torch
from torch import multiprocessing as mp
from torchvision.utils import make_grid, save_image
import utils
import einops
from torch.utils._pytree import tree_map
import accelerate
from torch.utils.data import DataLoader, Dataset
from tqdm.auto import tqdm
from dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
import tempfile
import time
from tools.fid_score import calculate_fid_given_paths
from absl import logging
import builtins
import os
import libs.autoencoder
from absl import flags
from absl import app
from ml_collections import config_flags
import sys
from pathlib import Path
from dataset.pos import get_2d_local_sincos_pos_embed
from torchvision.utils import save_image
from tqdm import tqdm
import matplotlib.pyplot as plt
from eval_dir.inception import inception_score
def encode(_batch, autoencoder):
return autoencoder.encode(_batch)
def decode(_batch, autoencoder):
return autoencoder.decode(_batch)
def unpreprocess(v):
v = 0.5 * (v + 1.)
v.clamp_(0., 1.)
return v
def destandard(v):
v = (v + 1) * 127.5
return v
def calculate_sin_cos(lpos, gpos, grid_size=12):
kg = gpos[3] / grid_size
w_bias = (lpos[1] - gpos[1]) / kg
kl = lpos[3] / grid_size
w_scale = kl / kg
kg = gpos[2] / grid_size
h_bias = (lpos[0] - gpos[0]) / kg
kl = lpos[2] / grid_size
h_scale = kl / kg
return get_2d_local_sincos_pos_embed(1024, grid_size, w_bias, w_scale, h_bias, h_scale)
def calculate_input_pos(target):
init_location = (1000, 1000, 256, 256)
top, down, left, right = target
i = init_location[0] - int(256 * top)
j = init_location[1] - int(256 * left)
h = int(256 * (top + down)) + 256
w = int(256 * (left + right)) + 256
target = (i, j, h, w)
return init_location, target
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK']) % torch.cuda.device_count()
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
setup_for_distributed(is_master=True) # hack
args.distributed = False
return
if "SLURM_JOB_NODELIST" in os.environ:
cmd = 'scontrol show hostnames ' + os.getenv('SLURM_JOB_NODELIST')
stdout = subprocess.check_output(cmd.split())
host_name = stdout.decode().splitlines()[0]
args.dist_url = f'tcp://{host_name}:15752'
if 'MASTER_ADDR' in os.environ and 'MASTER_PORT' in os.environ:
args.dist_url = f'tcp://'+str(os.environ['MASTER_ADDR']) + ':' +str(os.environ['MASTER_PORT'])
else:
args.dist_url = f'tcp://localhost:27461'
# args.dist_url = f'tcp://localhost:27461'
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}, gpu {}'.format(
args.rank, args.dist_url, args.gpu), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
args.rank = torch.distributed.get_rank()
setup_for_distributed(args.rank == 0)
print("Initialization finish")
class WikiArtDataset(Dataset):
def __init__(self, path='./dataset/wikiart/train/', size=56):
f_name = os.listdir(path)
self.path = [path+str(f_name[i]) for i in range(len(f_name))]
print("Total evaluation images: ", len(self.path))
self.input_crop = transforms.Compose([
transforms.CenterCrop((size, size)),
transforms.Resize((192, 192))
])
self.target_crop = transforms.Compose([
transforms.Resize((192, 192))
])
self.to_tensor = transforms.ToTensor()
def __len__(self):
return len(self.path)
def __getitem__(self, idx):
path = self.path[idx]
pil_image = Image.open(path)
pil_image.load()
pil_image = pil_image.convert("RGB")
pil_image = self.target_crop(pil_image)
target_img = np.array(pil_image)
target_img = target_img / 127.5 - 1
input_img = np.array(self.input_crop(pil_image))
input_img = input_img / 127.5 - 1
return self.to_tensor(input_img), self.to_tensor(target_img)
class BuildingDataset(Dataset):
def __init__(self, path='./dataset/building/test/', size=56):
f_name = os.listdir(path)
self.path = [path+str(f_name[i]) for i in range(len(f_name))]
print("Total evaluation images: ", len(self.path))
self.input_crop = transforms.Compose([
transforms.CenterCrop((size, size)),
transforms.Resize((192, 192))
])
self.target_crop = transforms.Compose([
transforms.Resize((192, 192))
])
self.to_tensor = transforms.ToTensor()
def __len__(self):
return len(self.path)
def __getitem__(self, idx):
path = self.path[idx]
pil_image = Image.open(path)
pil_image.load()
pil_image = pil_image.convert("RGB")
# pil_image = self.target_crop(pil_image)
target_img = np.array(pil_image)
target_img = target_img / 127.5 - 1
input_img = np.array(self.input_crop(pil_image))
input_img = input_img / 127.5 - 1
return self.to_tensor(input_img), self.to_tensor(target_img)
class FlickrDataset(Dataset):
def __init__(self, path='./dataset/scenery/train/', size=56):
f_name = os.listdir(path)
# self.path = [path+str(f_name[i]) for i in range(len(f_name))]
self.path = [path+str(f_name[i]) for i in range(len(f_name)) if int(f_name[i].split('_')[-1].split('.')[0].replace(',', ''))>5040]
print("Total evaluation images: ", len(self.path))
self.input_crop = transforms.Compose([
transforms.CenterCrop((size, size)),
transforms.Resize((192, 192))
])
self.target_crop = transforms.Compose([
transforms.Resize((192, 192))
])
self.to_tensor = transforms.ToTensor()
def __len__(self):
return len(self.path)
def __getitem__(self, idx):
path = self.path[idx]
pil_image = Image.open(path)
pil_image.load()
pil_image = pil_image.convert("RGB")
pil_image = self.target_crop(pil_image)
target_img = np.array(pil_image)
target_img = target_img / 127.5 - 1
input_img = np.array(self.input_crop(pil_image))
input_img = input_img / 127.5 - 1
return self.to_tensor(input_img), self.to_tensor(target_img)
def denorm_img(tensor):
_mean = torch.tensor([0.5044838, 0.5044838, 0.5044838]).unsqueeze(-1).unsqueeze(-1).unsqueeze(0)
_std = torch.tensor([0.1355051, 0.1355051, 0.1355051]).unsqueeze(-1).unsqueeze(-1).unsqueeze(0)
tensor = tensor * _std.expand_as(tensor).cuda() + _mean.expand_as(tensor).cuda()
tensor = rearrange(tensor[0:1], 'b c w h -> b w h c').detach().cpu()
tensor = np.clip(tensor[0].numpy(), 0, 1)
return tensor
def sampling(args, config):
init_distributed_mode(args)
# args.gpu = 'cuda:1'
autoencoder = libs.autoencoder.get_model("assets/stable-diffusion/autoencoder_kl.pth")
autoencoder.to(args.gpu)
train_state = utils.initialize_train_state(config, args.gpu)
train_state.resume(config.ckpt_root)
nnet = train_state.nnet
nnet_ema = train_state.nnet_ema
nnet_ema.eval()
score_model = sde.ScoreModel(nnet, pred=config.pred, sde=sde.VPSDE())
score_model_ema = sde.ScoreModel(nnet_ema, pred=config.pred, sde=sde.VPSDE())
# top, down, left, right
# target_expansion = (0.1, 0.1, 0.1, 0.1)
target_expansion = args.target_expansion
anchor, target = calculate_input_pos(target_expansion)
prime_target_pos = torch.FloatTensor(calculate_sin_cos(target, anchor)).to(args.gpu)
dataset = FlickrDataset(size=args.size)
sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=False)
dataloader = DataLoader(dataset, batch_size=args.batch_size // 8, shuffle=False, num_workers=args.workers, sampler=sampler, drop_last=False)
type_ = args.eval_dir.split('/')[-2]
print(f"Start sampling..., type: {type_}")
# o_scores, g_scores = [], []
patch_mean, patch_std = 0.5044838, 0.1355051
transform_out = transforms.Normalize(mean=torch.tensor((patch_mean,patch_mean,patch_mean)), std=torch.tensor((patch_std,patch_std,patch_std)))
for batch_idx, (input_img, target_img) in tqdm(enumerate(dataloader)):
input_img = input_img.to(args.gpu).float()
target_img = target_img.to(args.gpu).float()
prime_target_position = prime_target_pos.unsqueeze(0).repeat(input_img.size(0), 1, 1).float()
encode_anchor = encode(input_img, autoencoder)
z_init = torch.randn(encode_anchor.size(), device=args.gpu)
noise_schedule = NoiseScheduleVP(schedule='linear')
kwargs = {'conditions': [encode_anchor, prime_target_position]}
model_fn = model_wrapper(score_model_ema.noise_pred, noise_schedule, time_input_type='0', model_kwargs=kwargs)
dpm_solver = DPM_Solver(model_fn, noise_schedule)
z = dpm_solver.sample(z_init, steps=50, eps=1e-4, adaptive_step_size=False, fast_version=False)
end = time.time()
pred_target = decode(z, autoencoder)
pred_target = unpreprocess(pred_target)
input_img = unpreprocess(input_img)
pred_target = transform_out(pred_target)
input_img = transform_out(input_img)
for i in range(pred_target.size(0)):
index = batch_idx * args.batch_size + i + args.rank * pred_target.size(0)
plt.imsave(f'{args.eval_dir}/gen/{index}.png', denorm_img(pred_target[i:i + 1]), vmin=0, vmax=1)
plt.imsave(f'{args.eval_dir}/ori/{index}.png', denorm_img(input_img[i:i + 1]), vmin=0, vmax=1)
print(f"Finished sampling")
def get_args_parser():
parser = argparse.ArgumentParser('OutDiff', add_help=False)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--target_expansion', nargs='+', type=float, default=(0.25, 0.25, 0.25, 0.25))
parser.add_argument('--size', type=float, default=56)
parser.add_argument('--eval_dir', type=str, default="./eval_dir/scenery/3x/")
parser.add_argument('--config', type=str, default="wikiart192_large")
parser.add_argument('--workers', default=8, type=int, help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
return parser
if __name__ == '__main__':
parser = argparse.ArgumentParser('OutDiff', parents=[get_args_parser()])
args = parser.parse_args()
if 'wikiart' in args.eval_dir:
from configs.wikiart192_large import get_config
elif 'scenery' in args.eval_dir:
from configs.flickr192_large import get_config
elif 'building' in args.eval_dir:
from configs.building192_large import get_config
config = get_config()
config.config_name = args.config
config.hparams = "formal"
config.workdir = os.path.join('workdir', config.config_name, config.hparams)
config.ckpt_root = os.path.join(config.workdir, 'ckpts')
config.sample_dir = os.path.join(config.workdir, 'samples')
sampling(args, config)