forked from fengxia41103/mouse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate-config.ini
145 lines (126 loc) · 2.92 KB
/
template-config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
[General settings]
use_master_config = yes
workflow_file_type = csv
animal_no = 2
os_system = Linux
[SML settings]
no_targets = 1
target_name_1 = mating
[threshold_settings]
threshold_1 = 0.105
[Minimum_bout_lengths]
min_bout_1 = 20
[Frame settings]
mm_per_pixel = 2.61
distance_mm = 245
[Line plot settings]
bodyparts =
[Path plot settings]
deque_points = 1
behaviour_points =
plot_severity = no
severity_brackets = 10
file_format = .bmp
no_animal_pathplot = 2
animal_1_bp = Center_1
animal_2_bp = Center_2
severity_target = mating
[Frame folder]
copy_frames = yes
[Distance plot]
poi_1 = Center_1
poi_2 = Center_2
[Heatmap settings]
bin_size_pixels = 200
scale_max_seconds = auto
scale_increments_seconds =
palette = gnuplot2
target_behaviour =
body_part = Center_1
target = mating
[Heatmap location]
body_part = Center_1
palette = gnuplot2
scale_max_seconds = auto
bin_size_pixels = 200
[ROI settings]
animal_1_bp =
animal_2_bp =
directionality_data =
visualize_feature_data =
no_of_animals = 2
[process movements]
animal_1_bp = Ear_left_1
animal_2_bp = Ear_left_2
no_of_animals = 2
[Create movie settings]
file_format =
bitrate =
[create ensemble settings]
pose_estimation_body_parts = 16
model_to_run = RF
load_model =
classifier = mating
train_test_size = 0.2
under_sample_setting = None
under_sample_ratio =
over_sample_setting = None
over_sample_ratio =
rf_n_estimators = 2000
rf_min_sample_leaf = 1
rf_max_features = sqrt
rf_n_jobs = -1
rf_criterion = gini
rf_meta_data = yes
generate_example_decision_tree = yes
generate_example_decision_tree_fancy = yes
generate_features_importance_log = yes
generate_features_importance_bar_graph = yes
compute_permutation_importance = yes
generate_precision_recall_curve = yes
n_feature_importance_bars = 5
gbc_n_estimators =
gbc_max_features =
gbc_max_depth =
gbc_learning_rate =
gbc_min_sample_split =
xgb_n_estimators =
xgb_max_depth =
xgb_learning_rate =
generate_learning_curve = yes
learningcurve_shuffle_k_splits = 10
learningcurve_shuffle_data_splits = 10
generate_classification_report = yes
generate_shap_scores = no
shap_target_present_no =
shap_target_absent_no =
[validation/run model]
generate_validation_video = yes
sample_feature_file =
save_individual_frames = yes
classifier_path =
classifier_name = mating
frames_dir_out_validation =
save_frames = yes
save_gantt = yes
discrimination_threshold =
[Multi animal IDs]
id_list =
[Outlier settings]
movement_criterion = 0.7
location_criterion = 1.5
movement_bodypart1_animal_1 = Ear_left_1
movement_bodypart2_animal_1 = Ear_right_1
location_bodypart1_animal_1 = Ear_left_1
location_bodypart2_animal_1 = Ear_right_1
movement_bodypart1_animal_2 = Ear_left_2
movement_bodypart2_animal_2 = Ear_right_2
location_bodypart1_animal_2 = Ear_left_2
location_bodypart2_animal_2 = Ear_right_2
mean_or_median = mean
[Analysis settings]
distance_velocity_time_bin_size = 20
severity_scale = 10
[Visualization settings]
sklearn_create_video = yes
sklearn_create_frame = yes