forked from midas-research/fast-eacl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
110 lines (107 loc) · 4.98 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
class TimeLSTM(nn.Module):
def __init__(self, input_size, hidden_size, cuda_flag=False, bidirectional=False):
super(TimeLSTM, self).__init__()
self.hidden_size = hidden_size
self.input_size = input_size
self.cuda_flag = cuda_flag
self.W_all = nn.Linear(hidden_size, hidden_size * 4)
self.U_all = nn.Linear(input_size, hidden_size * 4)
self.W_d = nn.Linear(hidden_size, hidden_size)
self.bidirectional = bidirectional
def forward(self, inputs, timestamps, reverse=False):
b, seq, embed = inputs.size()
h = torch.zeros(b, self.hidden_size, requires_grad=False)
c = torch.zeros(b, self.hidden_size, requires_grad=False)
h = h.cuda()
c = c.cuda()
outputs = []
hidden_state_h = []
hidden_state_c = []
for s in range(seq):
c_s1 = torch.tanh(self.W_d(c)) # short term mem
c_s2 = c_s1 * timestamps[:, s: s + 1].expand_as(c_s1) # discounted short term mem
c_l = c - c_s1 # long term mem
c_adj = c_l + c_s2 # adjusted = long + disc short term mem
outs = self.W_all(h) + self.U_all(inputs[:, s])
f, i, o, c_tmp = torch.chunk(outs, 4, 1)
f = torch.sigmoid(f)
i = torch.sigmoid(i)
o = torch.sigmoid(o)
c_tmp = torch.sigmoid(c_tmp)
c = f * c_adj + i * c_tmp
h = o * torch.tanh(c)
outputs.append(o)
hidden_state_c.append(c)
hidden_state_h.append(h)
if reverse:
outputs.reverse()
hidden_state_c.reverse()
hidden_state_h.reverse()
outputs = torch.stack(outputs, 1)
hidden_state_c = torch.stack(hidden_state_c, 1)
hidden_state_h = torch.stack(hidden_state_h, 1)
return outputs, (h, c)
class Attention(torch.nn.Module):
def __init__(self, in_shape, use_attention=True, maxlen=None):
super(Attention, self).__init__()
self.use_attention = use_attention
if self.use_attention:
self.W1 = torch.nn.Linear(in_shape, in_shape)
self.W2 = torch.nn.Linear(in_shape, in_shape)
self.V = torch.nn.Linear(in_shape, 1)
if maxlen != None:
self.arange = torch.arange(maxlen)
def forward(self, full, last, lens=None, dim=1):
if self.use_attention:
score = self.V(F.tanh(self.W1(last) + self.W2(full)))
attention_weights = F.softmax(score, dim=dim)
context_vector = attention_weights * full
context_vector = torch.sum(context_vector, dim=dim)
return context_vector
else:
return torch.mean(full, dim=dim)
class FAST(nn.Module):
def __init__(self):
super(FAST, self).__init__()
self.text_lstm = [nn.LSTM(768,64) for _ in range(no_stocks)]
for i,textlstm in enumerate(self.text_lstm):
self.add_module('textlstm{}'.format(i), textlstm)
self.time_lstm = [TimeLSTM(768,64) for _ in range(no_stocks)]
for i,timelstm in enumerate(self.time_lstm):
self.add_module('timelstm{}'.format(i), timelstm)
self.day_lstm = [nn.LSTM(64,64) for _ in range(no_stocks)]
for i,daylstm in enumerate(self.day_lstm):
self.add_module('daylstm{}'.format(i), daylstm)
self.text_attention = [Attention(64,10) for _ in range(no_stocks)]
for i,textattention in enumerate(self.text_attention):
self.add_module('textattention{}'.format(i), textattention)
self.day_attention = [Attention(64,5) for _ in range(no_stocks)]
for i,dayattention in enumerate(self.day_attention):
self.add_module('dayattention{}'.format(i), dayattention)
self.linear_stock = nn.Linear(64,1)
def forward(self, text_input, time_inputs, no_stocks):
list_1 = []
op_size = 64
for i in range(text_input.size(0)):
list_2 = []
len_lookback_window = text_input.size(1)
num_text = text_input.size(2)
embb_dims = text_input.size(3)
for j in range(len_lookback_window):
y, (temp,_) = self.time_lstm[i](text_input[i,j,:,:].reshape(1,num_text,embb_dims), time_inputs[i,j,:].reshape(1,num_text))
y = self.text_attention[i](y, temp, num_text)
list_2.append(y)
text_vectors = torch.Tensor((1,len_lookback_window,op_size))
text_vectors = torch.cat(list_2)
text, (temp2,_) = self.day_lstm[i](text_vectors.reshape(1,len_lookback_window,op_size))
text = self.text_attention[i](text, temp2, len_lookback_window)
list_1.append(text.reshape(1,op_size))
ft_vec = torch.Tensor((no_stocks,op_size))
ft_vec = torch.cat(list_1)
op = F.leaky_relu(self.linear_stock(ft_vec))
return op