Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENet-Label-Torch is available now (a light-weight and effective lane detection model) #42

Open
cardwing opened this issue Jul 17, 2019 · 0 comments

Comments

@cardwing
Copy link

cardwing commented Jul 17, 2019

Our ENet-Label-Torch has been released. More details can be found in my repo.

Key features:

(1) ENet-label is a light-weight lane detection model based on ENet and adopts self attention distillation (more details can be found in our paper which will be published soon).

(2) It has 20 × fewer parameters and runs 10 × faster compared to the state-of-the-art SCNN, and achieves 72.0 (F1-measure) on CULane testing set (better than SCNN which achieves 71.6).

(Do not hesitate to try our model!!!)

Performance on CULane testing set (F1-measure):

Category SCNN-Torch SCNN-Tensorflow ENet-Label-Torch
Normal 90.6 90.2 90.7
Crowded 69.7 71.9 70.8
Night 66.1 64.6 65.9
No line 43.4 45.8 44.7
Shadow 66.9 73.8 70.6
Arrow 84.1 83.8 85.8
Dazzle light 58.5 59.5 64.4
Curve 64.4 63.4 65.4
Crossroad 1990 4137 2729
Total 71.6 71.3 72.0
Runtime(ms) 133.5 -- 13.4
Parameter(M) 20.72 -- 0.98
@cardwing cardwing changed the title ENet-Label-Torch is available now (lane detection) ENet-Label-Torch is available now (a light-weight and effective lane detection model) Jul 17, 2019
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant