Skip to content

Latest commit

 

History

History
280 lines (238 loc) · 11.6 KB

README.md

File metadata and controls

280 lines (238 loc) · 11.6 KB

Towards Automating the Retrospective Generation of BIM Models: A Unified Framework for 3D Semantic Reconstruction of the Built Environment

SRBIM is a unified framework and dataset repo for Building Information Modeling. The paper dataset amd full code will be released soon. Part of the results and demo can be found in the can be found in the Google Drive. Our preprocess data are availiable and can also be downloaded by filling the Google Form

Highlights

  • May, 2024: Our paper is accepted by CVPRW'24!
  • March, 2024: SRBIM repo is created, the dataset, paper and full code will be released soon.

Overview

TODO

  • [✔] Initial create the repo
  • [✔] dataset and code preview for SRBIM
  • [✔] download link for the raw data of SRBIM dataset.
  • [✔] config for the SRBIM segmentation model training with S3DIS dataset.

Installation

Experiment Settings

  • Ubuntu: 22.04
  • CUDA: 11.6
  • PyTorch: 1.12.1
  • cuDNN: 7.4.1
  • GPU: Nvidia GeForce RTX 4090 x 2
  • CPU: AMD Ryzen 9 7950X 16-Core Processor @ 4.50 GHz

Conda Environment

conda create -n SRBIM python=3.9.18 -y
conda activate SRBIM
conda install ninja -y
# Choose version you want here: https://pytorch.org/get-started/previous-versions/
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6-c pytorch -y
conda install h5py pyyaml -c anaconda -y
conda install sharedarray tensorboard tensorboardx yapf addict einops scipy plyfile termcolor timm -c conda-forge -y
conda install pytorch-cluster pytorch-scatter pytorch-sparse -c pyg -y
pip install torch-geometric

# spconv (SparseUNet)
# refer https://github.com/traveller59/spconv
pip install spconv-cu116

# PTv1 & PTv2 or precise eval
cd libs/pointops
# usual
python setup.py install
# docker & multi GPU arch
TORCH_CUDA_ARCH_LIST="ARCH LIST" python setup.py install
# e.g. 7.5: RTX 3000; 8.0: a100 More available in: https://developer.nvidia.com/cuda-gpus
TORCH_CUDA_ARCH_LIST="7.4.1" python setup.py install
cd ../..

# Open3D
pip install open3d

Our codebase structure is as follows:

/s2b
├── code_timer.py
├── config
│   ├── config_SRBIM_public_services.yaml
    ├── ... (more files)
├── entity_create.py
├── entity_search.py
├── exp
│   ├── class_attribute
│   │   ├── class_attributes_{datatime}.txt
│   │   ├── ... (more files)
├── ifc_label_map.py
├── scripts
│   └── SRBIM_main.sh
├── SRBIM_main.py
└── utils
    ├── label_list.py
    ├── parse_yaml.py
    ├── pcd_Loader.py
    ├── pcd_Processor.py

Data Preparation

Our Dataset (To be released soon)

How we prepare the dataset:

  • Mining the data from the raw FBX Model (open Landsacpe ) and convert it to point cloud data.
  • Texture mapping and colorization of the mesh with the .jpg file.
  • Sampling the point cloud (5M) data from the mesh .
  • Labeling the point cloud data with the semantic label.

Download our dataset (To be released soon) and unzip it.

# SRBIM_DIR: the directory of downloaded SRBIM dataset.
# RAW_SRBIM_DIR: the directory of SRBIM dataset.
# PROCESSED_SRBIM_DIR: the directory of processed SRBIM dataset (output dir).

# SRBIM
python pointcept/datasets/preprocessing/SRBIM/preprocess_SRBIM.py --dataset_root ${SRBIM_DIR} --output_root ${PROCESSED_SRBIM_DIR}
  • Link processed dataset to codebase.
mkdir data/SRBIM
ln -s ${PROCESSED_SRBIM_DIR} ${CODEBASE_DIR}/data/SRBIM

S3DIS

  • Download S3DIS data and unzip Stanford3dDataset_v1.2.zip file
  • Run preprocessing code for S3DIS as follows:
# S3DIS_DIR: the directory of downloaded Stanford3dDataset_v1.2 dataset.
# RAW_S3DIS_DIR: the directory of Stanford2d3dDataset_noXYZ dataset. (optional, for parsing normal)
# PROCESSED_S3DIS_DIR: the directory of processed S3DIS dataset (output dir).

# S3DIS without aligned angle
python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR}
# S3DIS with aligned angle
python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} --align_angle
# S3DIS with normal vector (recommended, normal is helpful)
python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} --raw_root ${RAW_S3DIS_DIR} --parse_normal
python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} --raw_root ${RAW_S3DIS_DIR} --align_angle --parse_normal
  • Link processed dataset to codebase.
# PROCESSED_S3DIS_DIR: the directory of processed S3DIS dataset.
mkdir data
ln -s ${PROCESSED_S3DIS_DIR} ${CODEBASE_DIR}/data/s3dis

SensatUrban

Download the dataset

Download the files named "data_release.zip" here. Uncompress the folder and move it to /data/SensatUrban.

Preparing the dataset

python input_preparation.py --dataset_path $YOURPATH
cd $YOURPATH; 
cd ../; mkdir original_block_ply; mv data_release/train/* original_block_ply; mv data_release/test/* original_block_ply;
mv data_release/grid* ./

The data should organized in the following format:

/data/SensatUrban/
          └── original_block_ply/
                  ├── birmingham_block_0.ply
                  ├── birmingham_block_1.ply 
		  ...
	    	  └── cambridge_block_34.ply 
          └── grid_0.200/
	     	  ├── birmingham_block_0_KDTree.pkl
                  ├── birmingham_block_0.ply
		  ├── birmingham_block_0_proj.pkl 
		  ...
	    	  └── cambridge_block_34.ply 

BuildingNet

  • Download BuildingNet data and unzip POINT_CLOUDS.zip file
  • Run preprocessing code for BuildingNet as follows:
# BuildingNet_DIR: the directory of downloaded POINT_CLOUDS dataset.
# RAW_BuildingNet_DIR: the directory of Stanford2d3dDataset_noXYZ dataset. 
# PROCESSED_BuildingNet_DIR: the directory of processed BuildingNet dataset (output dir).

# BuildingNet
python pointcept/datasets/preprocessing/buildingNet/preprocess_buildingNet.py --dataset_root ${BuildingNet_DIR} --output_root ${PROCESSED_BuildingNet_DIR}
# BuildingNet
python pointcept/datasets/preprocessing/buildingNet/preprocess_buildingNet.py --dataset_root ${BuildingNet_DIR} 
  • Link processed dataset to codebase.
# PROCESSED_S3DIS_DIR: the directory of processed S3DIS dataset.
mkdir data
ln -s ${PROCESSED_S3DIS_DIR} ${CODEBASE_DIR}/data/buildingNet

Quick Start

Running our Framework

sh s2b/scripts/SRBIM_main.sh

Training the segmentation model

Train from scratch. The training processing is based on configs in configs folder. The training script will generate an experiment folder in exp folder and backup essential code in the experiment folder. Training config, log, tensorboard, and checkpoints will also be saved into the experiment folder during the training process.

export CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES}
# Script (Recommended)
sh scripts/train.sh -p ${INTERPRETER_PATH} -g ${NUM_GPU} -d ${DATASET_NAME} -c ${CONFIG_NAME} -n ${EXP_NAME}
# Direct
export PYTHONPATH=./
python tools/train.py --config-file ${CONFIG_PATH} --num-gpus ${NUM_GPU} --options save_path=${SAVE_PATH}
# S3DIS
sh scripts/train.sh -g 2 -d s3dis -c semseg-pt-srbim-v1m1-0-base -n semseg-pt-srbim-v1m1-0-base
# SensatUrban
sh scripts/train.sh -g 2 -d sensaturban -c semseg-pt-srbim-v1m1-0-base -n semseg-pt-srbim-v1m1-0-base
# BuildingNet
sh scripts/train.sh -g 2 -d buildingnet -c semseg-pt-srbim-v1m1-0-base -n semseg-pt-srbim-v1m1-0-base

For example:

# By script (Recommended)
# -p is default set as python and can be ignored
sh scripts/train.sh -p python -d scannet -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base
# Direct
export PYTHONPATH=./
python tools/train.py --config-file configs/scannet/semseg-pt-v2m2-0-base.py --options save_path=exp/scannet/semseg-pt-v2m2-0-base

Model Zoo (To be released soon)

Results

Benchmark Results

Method G C S3DIS mIoU (%) S3DIS OA (%) SensatUrban mIoU (%) SensatUrban OA (%) BuildingNet mIoU (%) BuildingNet OA (%)
Model_1 - - - - - -
Model_2 - - - - - -
Model_3 - - - - - -
Model_4 - - - - - -
Ours - - - - - -
Ours (a) - - - - - -
Ours (b) - - - - - -
Ours (c) - - - - - -
Ours (d) - - - - - -
Ours (e) - - - - - -

Acknowledgement

Our benchmark results implemented the following excellent works:

Model Backbone:

Model_1, Model_2, Model_3, Model_4, Ours, (a), (b), (c), (d), (e)

Citation

If you find this project useful in your research, please consider cite:

@misc{cheung2024automating,
    title={Towards Automating the Retrospective Generation of BIM Models: A Unified Framework for 3D Semantic Reconstruction of the Built Environment},
    author={Ka Lung Cheung and Chi Chung Lee},
    year={2024},
    eprint={2406.01480},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}