diff --git a/docs-gb/.gitbook/assets/kserve-logo.png b/docs-gb/.gitbook/assets/kserve-logo.png
new file mode 100644
index 000000000..11675d395
Binary files /dev/null and b/docs-gb/.gitbook/assets/kserve-logo.png differ
diff --git a/docs-gb/.gitbook/assets/seldon-core-logo.png b/docs-gb/.gitbook/assets/seldon-core-logo.png
new file mode 100644
index 000000000..1aa6dbe72
Binary files /dev/null and b/docs-gb/.gitbook/assets/seldon-core-logo.png differ
diff --git a/docs-gb/PULL_REQUEST_TEMPLATE/pull_request_template.md b/docs-gb/PULL_REQUEST_TEMPLATE/pull_request_template.md
new file mode 100644
index 000000000..d33cfade8
--- /dev/null
+++ b/docs-gb/PULL_REQUEST_TEMPLATE/pull_request_template.md
@@ -0,0 +1,26 @@
+# Pull Request
+
+## Description
+
+
+## Changes Made
+
+
+## Related Issues
+
+
+## Screenshots (if applicable)
+
+
+## Checklist
+
+
+- [ ] Code follows the project's style guidelines
+- [ ] All tests related to the changes pass successfully
+- [ ] Documentation is updated (if necessary)
+- [ ] Code is reviewed by at least one other team member
+- [ ] Any breaking changes are communicated and documented
+
+## Additional Notes
+
+
diff --git a/docs-gb/README.md b/docs-gb/README.md
new file mode 100644
index 000000000..d37232864
--- /dev/null
+++ b/docs-gb/README.md
@@ -0,0 +1,151 @@
+# MLServer
+
+An open source inference server for your machine learning models.
+
+[![video_play_icon](https://user-images.githubusercontent.com/10466106/151803854-75d17c32-541c-4eee-b589-d45b07ea486d.png)](https://www.youtube.com/watch?v=aZHe3z-8C_w)
+
+## Overview
+
+MLServer aims to provide an easy way to start serving your machine learning
+models through a REST and gRPC interface, fully compliant with [KFServing's V2
+Dataplane](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html)
+spec. Watch a quick video introducing the project [here](https://www.youtube.com/watch?v=aZHe3z-8C_w).
+
+- Multi-model serving, letting users run multiple models within the same
+ process.
+- Ability to run [inference in parallel for vertical
+ scaling](https://mlserver.readthedocs.io/en/latest/user-guide/parallel-inference.html)
+ across multiple models through a pool of inference workers.
+- Support for [adaptive
+ batching](https://mlserver.readthedocs.io/en/latest/user-guide/adaptive-batching.html),
+ to group inference requests together on the fly.
+- Scalability with deployment in Kubernetes native frameworks, including
+ [Seldon Core](https://docs.seldon.io/projects/seldon-core/en/latest/graph/protocols.html#v2-kfserving-protocol) and
+ [KServe (formerly known as KFServing)](https://kserve.github.io/website/modelserving/v1beta1/sklearn/v2/), where
+ MLServer is the core Python inference server used to serve machine learning
+ models.
+- Support for the standard [V2 Inference Protocol](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html) on
+ both the gRPC and REST flavours, which has been standardised and adopted by
+ various model serving frameworks.
+
+You can read more about the goals of this project on the [initial design
+document](https://docs.google.com/document/d/1C2uf4SaAtwLTlBCciOhvdiKQ2Eay4U72VxAD4bXe7iU/edit?usp=sharing).
+
+## Usage
+
+You can install the `mlserver` package running:
+
+```bash
+pip install mlserver
+```
+
+Note that to use any of the optional [inference runtimes](#inference-runtimes),
+you'll need to install the relevant package.
+For example, to serve a `scikit-learn` model, you would need to install the
+`mlserver-sklearn` package:
+
+```bash
+pip install mlserver-sklearn
+```
+
+For further information on how to use MLServer, you can check any of the
+[available examples](#examples).
+
+## Inference Runtimes
+
+Inference runtimes allow you to define how your model should be used within
+MLServer.
+You can think of them as the **backend glue** between MLServer and your machine
+learning framework of choice.
+You can read more about [inference runtimes in their documentation
+page](./docs/runtimes/index.md).
+
+Out of the box, MLServer comes with a set of pre-packaged runtimes which let
+you interact with a subset of common frameworks.
+This allows you to start serving models saved in these frameworks straight
+away.
+However, it's also possible to **[write custom
+runtimes](./docs/runtimes/custom.md)**.
+
+Out of the box, MLServer provides support for:
+
+| Framework | Supported | Documentation |
+| ------------- | --------- | ---------------------------------------------------------------- |
+| Scikit-Learn | ✅ | [MLServer SKLearn](./runtimes/sklearn) |
+| XGBoost | ✅ | [MLServer XGBoost](./runtimes/xgboost) |
+| Spark MLlib | ✅ | [MLServer MLlib](./runtimes/mllib) |
+| LightGBM | ✅ | [MLServer LightGBM](./runtimes/lightgbm) |
+| CatBoost | ✅ | [MLServer CatBoost](./runtimes/catboost) |
+| Tempo | ✅ | [`github.com/SeldonIO/tempo`](https://github.com/SeldonIO/tempo) |
+| MLflow | ✅ | [MLServer MLflow](./runtimes/mlflow) |
+| Alibi-Detect | ✅ | [MLServer Alibi Detect](./runtimes/alibi-detect) |
+| Alibi-Explain | ✅ | [MLServer Alibi Explain](./runtimes/alibi-explain) |
+| HuggingFace | ✅ | [MLServer HuggingFace](./runtimes/huggingface) |
+
+## Supported Python Versions
+
+🔴 Unsupported
+
+🟠 Deprecated: To be removed in a future version
+
+🟢 Supported
+
+🔵 Untested
+
+| Python Version | Status |
+| -------------- | ------ |
+| 3.7 | 🔴 |
+| 3.8 | 🔴 |
+| 3.9 | 🟢 |
+| 3.10 | 🟢 |
+| 3.11 | 🔵 |
+| 3.12 | 🔵 |
+
+## Examples
+
+To see MLServer in action, check out [our full list of
+examples](./docs/examples/index.md).
+You can find below a few selected examples showcasing how you can leverage
+MLServer to start serving your machine learning models.
+
+- [Serving a `scikit-learn` model](./docs/examples/sklearn/README.md)
+- [Serving a `xgboost` model](./docs/examples/xgboost/README.md)
+- [Serving a `lightgbm` model](./docs/examples/lightgbm/README.md)
+- [Serving a `catboost` model](./docs/examples/catboost/README.md)
+- [Serving a `tempo` pipeline](./docs/examples/tempo/README.md)
+- [Serving a custom model](./docs/examples/custom/README.md)
+- [Serving an `alibi-detect` model](./docs/examples/alibi-detect/README.md)
+- [Serving a `HuggingFace` model](./docs/examples/huggingface/README.md)
+- [Multi-Model Serving with multiple frameworks](./docs/examples/mms/README.md)
+- [Loading / unloading models from a model repository](./docs/examples/model-repository/README.md)
+
+## Developer Guide
+
+### Versioning
+
+Both the main `mlserver` package and the [inference runtimes
+packages](./docs/runtimes/index.md) try to follow the same versioning schema.
+To bump the version across all of them, you can use the
+[`./hack/update-version.sh`](./hack/update-version.sh) script.
+
+We generally keep the version as a placeholder for an upcoming version.
+
+For example:
+
+```bash
+./hack/update-version.sh 0.2.0.dev1
+```
+
+### Testing
+
+To run all of the tests for MLServer and the runtimes, use:
+
+```bash
+make test
+```
+
+To run run tests for a single file, use something like:
+
+```bash
+tox -e py3 -- tests/batch_processing/test_rest.py
+```
diff --git a/docs-gb/SUMMARY.md b/docs-gb/SUMMARY.md
new file mode 100644
index 000000000..a269677d9
--- /dev/null
+++ b/docs-gb/SUMMARY.md
@@ -0,0 +1,50 @@
+* [MLServer](README.md)
+* [Getting Started](getting-started.md)
+* [User Guide](user-guide/index.md)
+ * [Content Types (and Codecs)](user-guide/content-type.md)
+ * [OpenAPI Support](user-guide/openapi.md)
+ * [Parallel Inference](user-guide/parallel-inference.md)
+ * [Adaptive Batching](user-guide/adaptive-batching.md)
+ * [Custom Inference Runtimes](user-guide/custom.md)
+ * [Metrics](user-guide/metrics.md)
+ * [Deployment](user-guide/deployment/README.md)
+ * [Seldon Core](user-guide/deployment/seldon-core.md)
+ * [KServe](user-guide/deployment/kserve.md)
+ * [Streaming](user-guide/streaming.md)
+* [Inference Runtimes](runtimes/README.md)
+ * [SKLearn](runtimes/sklearn.md)
+ * [XGBoost](runtimes/xgboost.md)
+ * [MLFlow](runtimes/mlflow.md)
+ * [Spark MlLib](runtimes/mllib.md)
+ * [LightGBM](runtimes/lightgbm.md)
+ * [Catboost](runtimes/catboost.md)
+ * [Alibi-Detect](runtimes/alibi-detect.md)
+ * [Alibi-Explain](runtimes/alibi-explain.md)
+ * [HuggingFace](runtimes/huggingface.md)
+ * [Custom](runtimes/custom.md)
+* [Reference](reference/README.md)
+ * [MLServer Settings](reference/settings.md)
+ * [Model Settings](reference/model-settings.md)
+ * [MLServer CLI](reference/cli.md)
+ * [Python API](reference/python-api/README.md)
+ * [MLModel](reference/api/model.md)
+ * [Types](reference/api/types.md)
+ * [Codecs](reference/api/codecs.md)
+ * [Metrics](reference/api/metrics.md)
+* [Examples](examples/README.md)
+ * [Serving Scikit-Learn models](examples/sklearn/README.md)
+ * [Serving XGBoost models](examples/xgboost/README.md)
+ * [Serving LightGBM models](examples/lightgbm/README.md)
+ * [Serving MLflow models](examples/mlflow/README.md)
+ * [Serving a custom model](examples/custom/README.md)
+ * [Serving Alibi-Detect models](examples/alibi-detect/README.md)
+ * [Serving HuggingFace Transformer Models](examples/huggingface/README.md)
+ * [Multi-Model Serving](examples/mms/README.md)
+ * [Model Repository API](examples/model-repository/README.md)
+ * [Content Type Decoding](examples/content-type/README.md)
+ * [Custom Conda environments in MLServer](examples/conda/README.md)
+ * [Serving a custom model with JSON serialization](examples/custom-json/README.md)
+ * [Serving models through Kafka](examples/kafka/README.md)
+ * [Streaming](examples/streaming/README.md)
+ * [Deploying a Custom Tensorflow Model with MLServer and Seldon Core](examples/cassava/README.md)
+* [Changelog](changelog.md)
\ No newline at end of file
diff --git a/docs-gb/changelog.md b/docs-gb/changelog.md
new file mode 100644
index 000000000..c8c18719e
--- /dev/null
+++ b/docs-gb/changelog.md
@@ -0,0 +1,529 @@
+# Changelog
+
+
+
+## [1.6.0](https://github.com/SeldonIO/MLServer/releases/tag/1.6.0) - 26 Jun 2024
+
+ ## Overview
+
+
+### Upgrades
+ MLServer supports Pydantic V2.
+
+### Features
+ MLServer supports streaming data to and from your models.
+
+ Streaming support is available for both the REST and gRPC servers:
+ * for the REST server is limited only to server streaming. This means that the client sends a single request to the server, and the server responds with a stream of data.
+ * for the gRPC server is available for both client and server streaming. This means that the client sends a stream of data to the server, and the server responds with a stream of data.
+
+ See our [docs](https://mlserver.readthedocs.io/en/1.6.0/user-guide/streaming.html) and [example](https://mlserver.readthedocs.io/en/1.6.0/examples/streaming/README.html) for more details.
+
+## What's Changed
+* fix(ci): fix typo in CI name by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1623
+* Update CHANGELOG by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1624
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1634
+* Fix mlserver_huggingface settings device type by [@geodavic](https://github.com/geodavic) in https://github.com/SeldonIO/MLServer/pull/1486
+* fix: Adjust HF tests post-merge of PR [#1486](https://github.com/SeldonIO/MLServer/issues/1486) by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1635
+* Update README.md w licensing clarification by [@paulb-seldon](https://github.com/paulb-seldon) in https://github.com/SeldonIO/MLServer/pull/1636
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1642
+* fix(ci): optimise disk space for GH workers by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1644
+* build: Update maintainers by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1659
+* fix: Missing f-string directives by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1677
+* build: Add Catboost runtime to Dependabot by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1689
+* Fix JSON input shapes by [@ReveStobinson](https://github.com/ReveStobinson) in https://github.com/SeldonIO/MLServer/pull/1679
+* build(deps): bump alibi-detect from 0.11.5 to 0.12.0 by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1702
+* build(deps): bump alibi from 0.9.5 to 0.9.6 by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1704
+* Docs correction - Updated README.md in mlflow to match column names order by [@vivekk0903](https://github.com/vivekk0903) in https://github.com/SeldonIO/MLServer/pull/1703
+* fix(runtimes): Remove unused Pydantic dependencies by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1725
+* test: Detect generate failures by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1729
+* build: Add granularity in types generation by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1749
+* Migrate to Pydantic v2 by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1748
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1753
+* Revert "build(deps): bump uvicorn from 0.28.0 to 0.29.0" by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1758
+* refactor(pydantic): Remaining migrations for deprecated functions by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1757
+* Fixed openapi dataplane.yaml by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1752
+* fix(pandas): Use Pydantic v2 compatible type by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1760
+* Fix Pandas codec decoding from numpy arrays by [@lhnwrk](https://github.com/lhnwrk) in https://github.com/SeldonIO/MLServer/pull/1751
+* build: Bump versions for Read the Docs by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1761
+* docs: Remove quotes around local TOC by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1764
+* Spawn worker in custom environment by [@lhnwrk](https://github.com/lhnwrk) in https://github.com/SeldonIO/MLServer/pull/1739
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1767
+* basic contributing guide on contributing and opening a PR by [@bohemia420](https://github.com/bohemia420) in https://github.com/SeldonIO/MLServer/pull/1773
+* Inference streaming support by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1750
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1779
+* build: Lock GitHub runners' OS by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1765
+* Removed text-model form benchmarking by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1790
+* Bumped mlflow to 2.13.1 and gunicorn to 22.0.0 by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1791
+* Build(deps): Update to poetry version 1.8.3 in docker build by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1792
+* Bumped werkzeug to 3.0.3 by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1793
+* Docs streaming by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1789
+* Bump uvicorn 0.30.1 by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1795
+* Fixes for all-runtimes by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1794
+* Fix BaseSettings import for pydantic v2 by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1798
+* Bumped preflight version to 1.9.7 by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1797
+* build: Install dependencies only in Tox environments by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1785
+* Bumped to 1.6.0.dev2 by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1803
+* Fix CI/CD macos-huggingface by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1805
+* Fixed macos kafka CI by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1807
+* Update poetry lock by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1808
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1813
+* Fix/macos all runtimes by [@RobertSamoilescu](https://github.com/RobertSamoilescu) in https://github.com/SeldonIO/MLServer/pull/1823
+* fix: Update stale reviewer in licenses.yml workflow by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1824
+* ci: Merge changes from master to release branch by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1825
+
+## New Contributors
+* [@paulb-seldon](https://github.com/paulb-seldon) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1636
+* [@ReveStobinson](https://github.com/ReveStobinson) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1679
+* [@vivekk0903](https://github.com/vivekk0903) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1703
+* [@RobertSamoilescu](https://github.com/RobertSamoilescu) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1752
+* [@lhnwrk](https://github.com/lhnwrk) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1751
+* [@bohemia420](https://github.com/bohemia420) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1773
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.5.0...1.6.0
+
+[Changes][1.6.0]
+
+
+
+## [1.5.0](https://github.com/SeldonIO/MLServer/releases/tag/1.5.0) - 05 Mar 2024
+
+## What's Changed
+
+* Update CHANGELOG by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1592
+* build: Migrate away from Node v16 actions by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1596
+* build: Bump version and improve release doc by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1602
+* build: Upgrade stale packages (fastapi, starlette, tensorflow, torch) by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1603
+* fix(ci): tests and security workflow fixes by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1608
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1612
+* fix(ci): Missing quote in CI test for all_runtimes by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1617
+* build(docker): Bump dependencies by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1618
+* docs: List supported Python versions by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1591
+* fix(ci): Have separate smaller tasks for release by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1619
+
+
+## Notes
+* We remove support for python 3.8, check https://github.com/SeldonIO/MLServer/pull/1603 for more info. Docker images for mlserver are already using python 3.10.
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.4.0...1.5.0
+
+[Changes][1.5.0]
+
+
+
+## [1.4.0](https://github.com/SeldonIO/MLServer/releases/tag/1.4.0) - 28 Feb 2024
+
+
+
+## What's Changed
+* Free up some space for GH actions by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1282
+* Introduce tracing with OpenTelemetry by [@vtaskow](https://github.com/vtaskow) in https://github.com/SeldonIO/MLServer/pull/1281
+* Update release CI to use Poetry by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1283
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1284
+* Add support for white-box explainers to alibi-explain runtime by [@ascillitoe](https://github.com/ascillitoe) in https://github.com/SeldonIO/MLServer/pull/1279
+* Update CHANGELOG by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1294
+* Fix build-wheels.sh error when copying to output path by [@lc525](https://github.com/lc525) in https://github.com/SeldonIO/MLServer/pull/1286
+* Fix typo by [@strickvl](https://github.com/strickvl) in https://github.com/SeldonIO/MLServer/pull/1289
+* feat(logging): Distinguish logs from different models by [@vtaskow](https://github.com/vtaskow) in https://github.com/SeldonIO/MLServer/pull/1302
+* Make sure we use our Response class by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1314
+* Adding Quick-Start Guide to docs by [@ramonpzg](https://github.com/ramonpzg) in https://github.com/SeldonIO/MLServer/pull/1315
+* feat(logging): Provide JSON-formatted structured logging as option by [@vtaskow](https://github.com/vtaskow) in https://github.com/SeldonIO/MLServer/pull/1308
+* Bump in conda version and mamba solver by [@dtpryce](https://github.com/dtpryce) in https://github.com/SeldonIO/MLServer/pull/1298
+* feat(huggingface): Merge model settings by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1337
+* feat(huggingface): Load local artefacts in HuggingFace runtime by [@vtaskow](https://github.com/vtaskow) in https://github.com/SeldonIO/MLServer/pull/1319
+* Document and test behaviour around NaN by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1346
+* Address flakiness on 'mlserver build' tests by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1363
+* Bump Poetry and lockfiles by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1369
+* Bump Miniforge3 to 23.3.1 by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1372
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1373
+* Improved huggingface batch logic by [@ajsalow](https://github.com/ajsalow) in https://github.com/SeldonIO/MLServer/pull/1336
+* Add inference params support to MLFlow's custom invocation endpoint (… by [@M4nouel](https://github.com/M4nouel) in https://github.com/SeldonIO/MLServer/pull/1375
+* Increase build space for runtime builds by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1385
+* Fix minor typo in `sklearn` README by [@krishanbhasin-gc](https://github.com/krishanbhasin-gc) in https://github.com/SeldonIO/MLServer/pull/1402
+* Add catboost classifier support by [@krishanbhasin-gc](https://github.com/krishanbhasin-gc) in https://github.com/SeldonIO/MLServer/pull/1403
+* added model_kwargs to huggingface model by [@nanbo-liu](https://github.com/nanbo-liu) in https://github.com/SeldonIO/MLServer/pull/1417
+* Re-generate License Info by [@github-actions](https://github.com/github-actions) in https://github.com/SeldonIO/MLServer/pull/1456
+* Local response cache implementation by [@SachinVarghese](https://github.com/SachinVarghese) in https://github.com/SeldonIO/MLServer/pull/1440
+* fix link to custom runtimes by [@kretes](https://github.com/kretes) in https://github.com/SeldonIO/MLServer/pull/1467
+* Improve typing on `Environment` class by [@krishanbhasin-gc](https://github.com/krishanbhasin-gc) in https://github.com/SeldonIO/MLServer/pull/1469
+* build(dependabot): Change reviewers by [@jesse-c](https://github.com/jesse-c) in https://github.com/SeldonIO/MLServer/pull/1548
+* MLServer changes from internal fork - deps and CI updates by [@sakoush](https://github.com/sakoush) in https://github.com/SeldonIO/MLServer/pull/1588
+
+## New Contributors
+* [@vtaskow](https://github.com/vtaskow) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1281
+* [@lc525](https://github.com/lc525) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1286
+* [@strickvl](https://github.com/strickvl) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1289
+* [@ramonpzg](https://github.com/ramonpzg) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1315
+* [@jesse-c](https://github.com/jesse-c) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1337
+* [@ajsalow](https://github.com/ajsalow) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1336
+* [@M4nouel](https://github.com/M4nouel) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1375
+* [@nanbo-liu](https://github.com/nanbo-liu) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1417
+* [@kretes](https://github.com/kretes) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1467
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.3.5...1.4.0
+
+[Changes][1.4.0]
+
+
+
+## [1.3.5](https://github.com/SeldonIO/MLServer/releases/tag/1.3.5) - 10 Jul 2023
+
+
+
+### What's Changed
+
+* Rename HF codec to `hf` by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1268
+* Publish is_drift metric to Prom by [@joshsgoldstein](https://github.com/joshsgoldstein) in https://github.com/SeldonIO/MLServer/pull/1263
+
+### New Contributors
+* [@joshsgoldstein](https://github.com/joshsgoldstein) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1263
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.3.4...1.3.5
+
+[Changes][1.3.5]
+
+
+
+## [1.3.4](https://github.com/SeldonIO/MLServer/releases/tag/1.3.4) - 21 Jun 2023
+
+
+
+### What's Changed
+
+* Silent logging by [@dtpryce](https://github.com/dtpryce) in https://github.com/SeldonIO/MLServer/pull/1230
+* Fix `mlserver infer` with `BYTES` by [@RafalSkolasinski](https://github.com/RafalSkolasinski) in https://github.com/SeldonIO/MLServer/pull/1213
+
+### New Contributors
+* [@dtpryce](https://github.com/dtpryce) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1230
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.3.3...1.3.4
+
+[Changes][1.3.4]
+
+
+
+## [1.3.3](https://github.com/SeldonIO/MLServer/releases/tag/1.3.3) - 05 Jun 2023
+
+
+
+### What's Changed
+
+* Add default LD_LIBRARY_PATH env var by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1120
+* Adding cassava tutorial (mlserver + seldon core) by [@edshee](https://github.com/edshee) in https://github.com/SeldonIO/MLServer/pull/1156
+* Add docs around converting to / from JSON by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1165
+* Document SKLearn available outputs by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1167
+* Fix minor typo in `alibi-explain` tests by [@ascillitoe](https://github.com/ascillitoe) in https://github.com/SeldonIO/MLServer/pull/1170
+* Add support for `.ubj` models and improve XGBoost docs by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1168
+* Fix content type annotations for pandas codecs by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1162
+* Added option to configure the grpc histogram by [@cristiancl25](https://github.com/cristiancl25) in https://github.com/SeldonIO/MLServer/pull/1143
+* Add OS classifiers to project's metadata by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1171
+* Don't use `qsize` for parallel worker queue by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1169
+* Fix small typo in Python API docs by [@krishanbhasin-gc](https://github.com/krishanbhasin-gc) in https://github.com/SeldonIO/MLServer/pull/1174
+* Fix star import in `mlserver.codecs.*` by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1172
+
+### New Contributors
+* [@cristiancl25](https://github.com/cristiancl25) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1143
+* [@krishanbhasin-gc](https://github.com/krishanbhasin-gc) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1174
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.3.2...1.3.3
+
+[Changes][1.3.3]
+
+
+
+## [1.3.2](https://github.com/SeldonIO/MLServer/releases/tag/1.3.2) - 10 May 2023
+
+
+
+### What's Changed
+* Use default initialiser if not using a custom env by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1104
+* Add support for online drift detectors by [@ascillitoe](https://github.com/ascillitoe) in https://github.com/SeldonIO/MLServer/pull/1108
+* added intera and inter op parallelism parameters to the hugggingface … by [@saeid93](https://github.com/saeid93) in https://github.com/SeldonIO/MLServer/pull/1081
+* Fix settings reference in runtime docs by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1109
+* Bump Alibi libs requirements by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1121
+* Add default LD_LIBRARY_PATH env var by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1120
+* Ignore both .metrics and .envs folders by [@adriangonz](https://github.com/adriangonz) in https://github.com/SeldonIO/MLServer/pull/1132
+
+### New Contributors
+* [@ascillitoe](https://github.com/ascillitoe) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1108
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.3.1...1.3.2
+
+[Changes][1.3.2]
+
+
+
+## [1.3.1](https://github.com/SeldonIO/MLServer/releases/tag/1.3.1) - 27 Apr 2023
+
+### What's Changed
+
+- Move OpenAPI schemas into Python package ([#1095](https://github.com/SeldonIO/MLServer/issues/1095))
+
+[Changes][1.3.1]
+
+
+
+## [1.3.0](https://github.com/SeldonIO/MLServer/releases/tag/1.3.0) - 27 Apr 2023
+
+> WARNING :warning: : The `1.3.0` has been yanked from PyPi due to a packaging issue. This should have been now resolved in `>= 1.3.1`.
+
+### What's Changed
+
+#### Custom Model Environments
+
+More often that not, your custom runtimes will depend on external 3rd party dependencies which are not included within the main MLServer package - or different versions of the same package (e.g. `scikit-learn==1.1.0` vs `scikit-learn==1.2.0`). In these cases, to load your custom runtime, MLServer will need access to these dependencies.
+
+In MLServer `1.3.0`, it is now [possible to load this custom set of dependencies by providing them](https://mlserver.readthedocs.io/en/latest/user-guide/custom.html#loading-a-custom-python-environment), through an [environment tarball](https://mlserver.readthedocs.io/en/latest/examples/conda/README.html), whose path can be specified within your `model-settings.json` file. This custom environment will get provisioned on the fly after loading a model - alongside the default environment and any other custom environments.
+
+Under the hood, each of these environments will run their own separate pool of workers.
+
+![image](https://user-images.githubusercontent.com/1577620/234797983-aa52c353-2d2f-4261-a078-06bfe62cae87.png)
+
+#### Custom Metrics
+
+The MLServer framework now includes a simple interface that allows you to register and keep track of any [custom metrics](https://mlserver.readthedocs.io/en/latest/user-guide/metrics.html#custom-metrics):
+
+- `[mlserver.register()](https://mlserver.readthedocs.io/en/latest/reference/api/metrics.html#mlserver.register)`: Register a new metric.
+- `[mlserver.log()](https://mlserver.readthedocs.io/en/latest/reference/api/metrics.html#mlserver.log)`: Log a new set of metric / value pairs.
+
+Custom metrics will generally be registered in the `[load()](https://mlserver.readthedocs.io/en/latest/reference/api/model.html#mlserver.MLModel.load)` method and then used in the `[predict()](https://mlserver.readthedocs.io/en/latest/reference/api/model.html#mlserver.MLModel.predict)` method of your [custom runtime](https://mlserver.readthedocs.io/en/latest/user-guide/custom.html). These metrics can then be polled and queried via [Prometheus](https://mlserver.readthedocs.io/en/latest/user-guide/metrics.html#settings).
+
+![image](https://user-images.githubusercontent.com/1577620/234798211-9e538439-4914-4aa6-9c3f-539a66e3ce54.png)
+
+#### OpenAPI
+
+MLServer `1.3.0` now includes an autogenerated Swagger UI which can be used to interact dynamically with the Open Inference Protocol.
+
+The autogenerated Swagger UI can be accessed under the `/v2/docs` endpoint.
+
+![https://mlserver.readthedocs.io/en/latest/_images/swagger-ui.png](https://mlserver.readthedocs.io/en/latest/_images/swagger-ui.png)
+
+Alongside the [general API documentation](https://mlserver.readthedocs.io/en/latest/user-guide/openapi.html#Swagger-UI), MLServer also exposes now a set of API docs tailored to individual models, showing the specific endpoints available for each one.
+
+The model-specific autogenerated Swagger UI can be accessed under the following endpoints:
+
+- `/v2/models/{model_name}/docs`
+- `/v2/models/{model_name}/versions/{model_version}/docs`
+
+#### HuggingFace Improvements
+
+MLServer now includes improved Codec support for all the main different types that can be returned by HugginFace models - ensuring that the values returned via the Open Inference Protocol are more semantic and meaningful.
+
+Massive thanks to [@pepesi](https://github.com/pepesi) for taking the lead on improving the HuggingFace runtime!
+
+#### Support for Custom Model Repositories
+
+Internally, MLServer leverages a Model Repository implementation which is used to discover and find different models (and their versions) available to load. The latest version of MLServer will now allow you to swap this for your own model repository implementation - letting you integrate against your own model repository workflows.
+
+This is exposed via the [model_repository_implementation](https://mlserver.readthedocs.io/en/latest/reference/settings.html#mlserver.settings.Settings.model_repository_implementation) flag of your `settings.json` configuration file.
+
+Thanks to [@jgallardorama](https://github.com/jgallardorama) (aka [@jgallardorama-itx](https://github.com/jgallardorama-itx) ) for his effort contributing this feature!
+
+#### Batch and Worker Queue Metrics
+
+MLServer `1.3.0` introduces a [new set of metrics](https://mlserver.readthedocs.io/en/latest/user-guide/metrics.html#default-metrics) to increase visibility around two of its internal queues:
+
+- [Adaptive batching](https://mlserver.readthedocs.io/en/latest/user-guide/adaptive-batching.html) queue: used to accumulate request batches on the fly.
+- [Parallel inference](https://mlserver.readthedocs.io/en/latest/user-guide/parallel-inference.html) queue: used to send over requests to the inference worker pool.
+
+Many thanks to [@alvarorsant](https://github.com/alvarorsant) for taking the time to implement this highly requested feature!
+
+#### Image Size Optimisations
+
+The latest version of MLServer includes a few optimisations around image size, which help reduce the size of the official set of images by more than ~60% - making them more convenient to use and integrate within your workloads. In the case of the full `seldonio/mlserver:1.3.0` image (including all runtimes and dependencies), this means going from 10GB down to ~3GB.
+
+#### Python API Documentation
+
+Alongside its built-in inference runtimes, MLServer also exposes a Python framework that you can use to extend MLServer and write your own codecs and inference runtimes. The MLServer official docs now include a [reference page](https://mlserver.readthedocs.io/en/latest/reference/api/index.html) documenting the main components of this framework in more detail.
+
+### New Contributors
+* [@rio](https://github.com/rio) made their first contribution in https://github.com/SeldonIO/MLServer/pull/864
+* [@pepesi](https://github.com/pepesi) made their first contribution in https://github.com/SeldonIO/MLServer/pull/692
+* [@jgallardorama](https://github.com/jgallardorama) made their first contribution in https://github.com/SeldonIO/MLServer/pull/849
+* [@alvarorsant](https://github.com/alvarorsant) made their first contribution in https://github.com/SeldonIO/MLServer/pull/860
+* [@gawsoftpl](https://github.com/gawsoftpl) made their first contribution in https://github.com/SeldonIO/MLServer/pull/950
+* [@stephen37](https://github.com/stephen37) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1033
+* [@sauerburger](https://github.com/sauerburger) made their first contribution in https://github.com/SeldonIO/MLServer/pull/1064
+
+[Changes][1.3.0]
+
+
+
+## [1.2.4](https://github.com/SeldonIO/MLServer/releases/tag/1.2.4) - 10 Mar 2023
+
+
+
+
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.2.3...1.2.4
+
+[Changes][1.2.4]
+
+
+
+## [1.2.3](https://github.com/SeldonIO/MLServer/releases/tag/1.2.3) - 16 Jan 2023
+
+
+
+
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.2.2...1.2.3
+
+[Changes][1.2.3]
+
+
+
+## [1.2.2](https://github.com/SeldonIO/MLServer/releases/tag/1.2.2) - 16 Jan 2023
+
+
+
+
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.2.1...1.2.2
+
+[Changes][1.2.2]
+
+
+
+## [1.2.1](https://github.com/SeldonIO/MLServer/releases/tag/1.2.1) - 19 Dec 2022
+
+
+
+
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.2.0...1.2.1
+
+[Changes][1.2.1]
+
+
+
+## [1.2.0](https://github.com/SeldonIO/MLServer/releases/tag/1.2.0) - 25 Nov 2022
+
+
+
+### What's Changed
+
+#### Simplified Interface for Custom Runtimes
+
+MLServer now exposes an alternative [_“simplified”_ interface](https://mlserver.readthedocs.io/en/latest/user-guide/custom.html#simplified-interface) which can be used to write custom runtimes. This interface can be enabled by decorating your predict() method with the `mlserver.codecs.decode_args` decorator, and it lets you specify in the method signature both how you want your request payload to be decoded and how to encode the response back.
+
+Based on the information provided in the method signature, MLServer will automatically decode the request payload into the different inputs specified as keyword arguments. Under the hood, this is implemented through [MLServer’s codecs and content types system](https://mlserver.readthedocs.io/en/latest/user-guide/content-type.html).
+
+```python
+from mlserver import MLModel
+from mlserver.codecs import decode_args
+
+class MyCustomRuntime(MLModel):
+
+ async def load(self) -> bool:
+ # TODO: Replace for custom logic to load a model artifact
+ self._model = load_my_custom_model()
+ self.ready = True
+ return self.ready
+
+ @decode_args
+ async def predict(self, questions: List[str], context: List[str]) -> np.ndarray:
+ # TODO: Replace for custom logic to run inference
+ return self._model.predict(questions, context)
+```
+
+#### Built-in Templates for Custom Runtimes
+
+To make it easier to write your own custom runtimes, MLServer now ships with a `mlserver init` command that will generate a templated project. This project will include a skeleton with folders, unit tests, Dockerfiles, etc. for you to fill.
+
+![image1](https://user-images.githubusercontent.com/1577620/203810614-f4daa32e-8b1d-4bea-9b02-959b1d054596.gif)
+
+#### Dynamic Loading of Custom Runtimes
+
+MLServer now lets you [load custom runtimes dynamically](https://mlserver.readthedocs.io/en/latest/user-guide/custom.html#loading-a-custom-mlserver-runtime) into a running instance of MLServer. Once you have your custom runtime ready, all you need to do is to move it to your model folder, next to your `model-settings.json` configuration file.
+
+For example, if we assume a flat model repository where each folder represents a model, you would end up with a folder structure like the one below:
+
+```
+.
+├── models
+│ └── sum-model
+│ ├── model-settings.json
+│ ├── models.py
+```
+
+#### Batch Inference Client
+
+This release of MLServer introduces a new [`mlserver infer`](https://mlserver.readthedocs.io/en/latest/reference/cli.html#mlserver-infer) command, which will let you run inference over a large batch of input data on the client side. Under the hood, this command will stream a large set of inference requests from specified input file, arrange them in microbatches, orchestrate the request / response lifecycle, and will finally write back the obtained responses into output file.
+
+#### Parallel Inference Improvements
+
+The `1.2.0` release of MLServer, includes a number of fixes around the parallel inference pool focused on improving the architecture to optimise memory usage and reduce latency. These changes include (but are not limited to):
+
+- The main MLServer process won’t load an extra replica of the model anymore. Instead, all computing will occur on the parallel inference pool.
+- The worker pool will now ensure that all requests are executed on each worker’s AsyncIO loop, thus optimising compute time vs IO time.
+- Several improvements around logging from the inference workers.
+
+#### Dropped support for Python 3.7
+
+MLServer has now dropped support for Python `3.7`. Going forward, only `3.8`, `3.9` and `3.10` will be supported (with `3.8` being used in our official set of images).
+
+#### Move to UBI Base Images
+
+The official set of MLServer images has now moved to use [UBI 9](https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image) as a base image. This ensures support to run MLServer in OpenShift clusters, as well as a well-maintained baseline for our images.
+
+#### Support for MLflow 2.0
+
+In line with MLServer’s close relationship with the MLflow team, this release of MLServer introduces support for the recently released MLflow 2.0. This introduces changes to the drop-in MLflow “scoring protocol” support, in the MLflow runtime for MLServer, to ensure it’s aligned with MLflow 2.0.
+
+MLServer is also shipped as a dependency of MLflow, therefore you can try it out today by installing MLflow as:
+
+```bash
+$ pip install mlflow[extras]
+```
+
+To learn more about how to use MLServer directly from the MLflow CLI, check out the [MLflow docs](https://www.mlflow.org/docs/latest/models.html#serving-with-mlserver).
+
+
+### New Contributors
+* [@johnpaulett](https://github.com/johnpaulett) made their first contribution in https://github.com/SeldonIO/MLServer/pull/633
+* [@saeid93](https://github.com/saeid93) made their first contribution in https://github.com/SeldonIO/MLServer/pull/711
+* [@RafalSkolasinski](https://github.com/RafalSkolasinski) made their first contribution in https://github.com/SeldonIO/MLServer/pull/720
+* [@dumaas](https://github.com/dumaas) made their first contribution in https://github.com/SeldonIO/MLServer/pull/742
+* [@Salehbigdeli](https://github.com/Salehbigdeli) made their first contribution in https://github.com/SeldonIO/MLServer/pull/776
+* [@regen100](https://github.com/regen100) made their first contribution in https://github.com/SeldonIO/MLServer/pull/839
+
+**Full Changelog**: https://github.com/SeldonIO/MLServer/compare/1.1.0...1.2.0
+
+[Changes][1.2.0]
+
+
+
+## [v1.2.0.dev1](https://github.com/SeldonIO/MLServer/releases/tag/1.2.0.dev1) - 01 Aug 2022
+
+
+
+[Changes][1.2.0.dev1]
+
+
+
+## [v1.1.0](https://github.com/SeldonIO/MLServer/releases/tag/1.1.0) - 01 Aug 2022
+
+
+
+[Changes][1.1.0]
+
+
+[1.6.0]: https://github.com/SeldonIO/MLServer/compare/1.5.0...1.6.0
+[1.5.0]: https://github.com/SeldonIO/MLServer/compare/1.4.0...1.5.0
+[1.4.0]: https://github.com/SeldonIO/MLServer/compare/1.3.5...1.4.0
+[1.3.5]: https://github.com/SeldonIO/MLServer/compare/1.3.4...1.3.5
+[1.3.4]: https://github.com/SeldonIO/MLServer/compare/1.3.3...1.3.4
+[1.3.3]: https://github.com/SeldonIO/MLServer/compare/1.3.2...1.3.3
+[1.3.2]: https://github.com/SeldonIO/MLServer/compare/1.3.1...1.3.2
+[1.3.1]: https://github.com/SeldonIO/MLServer/compare/1.3.0...1.3.1
+[1.3.0]: https://github.com/SeldonIO/MLServer/compare/1.2.4...1.3.0
+[1.2.4]: https://github.com/SeldonIO/MLServer/compare/1.2.3...1.2.4
+[1.2.3]: https://github.com/SeldonIO/MLServer/compare/1.2.2...1.2.3
+[1.2.2]: https://github.com/SeldonIO/MLServer/compare/1.2.1...1.2.2
+[1.2.1]: https://github.com/SeldonIO/MLServer/compare/1.2.0...1.2.1
+[1.2.0]: https://github.com/SeldonIO/MLServer/compare/1.2.0.dev1...1.2.0
+[1.2.0.dev1]: https://github.com/SeldonIO/MLServer/compare/1.1.0...1.2.0.dev1
+[1.1.0]: https://github.com/SeldonIO/MLServer/tree/1.1.0
+
+
diff --git a/docs-gb/examples/Makefile b/docs-gb/examples/Makefile
new file mode 100644
index 000000000..0dafe3833
--- /dev/null
+++ b/docs-gb/examples/Makefile
@@ -0,0 +1,16 @@
+.SUFFIXES: .ipynb .md
+
+EXAMPLES := $(wildcard */*.ipynb)
+EXAMPLES_MD=$(patsubst %.ipynb, %.md, $(EXAMPLES))
+
+all: $(EXAMPLES_MD)
+
+.ipynb.md:
+ jupyter nbconvert \
+ $< \
+ --ClearOutputPreprocessor.enabled=True \
+ --to markdown \
+ --output $(notdir $@)
+
+
+.PHONY: all
diff --git a/docs-gb/examples/README.md b/docs-gb/examples/README.md
new file mode 100644
index 000000000..30766c5e6
--- /dev/null
+++ b/docs-gb/examples/README.md
@@ -0,0 +1,40 @@
+# Examples
+
+To see MLServer in action you can check out the examples below.
+These are end-to-end notebooks, showing how to serve models with MLServer.
+
+## Inference Runtimes
+
+If you are interested in how MLServer interacts with particular model
+frameworks, you can check the following examples. These focus on showcasing the different
+[inference runtimes](../runtimes/index.md) that ship with MLServer out of the box.
+Note that, for **advanced use cases**, you can also write your own custom
+inference runtime (see the [example below on custom models](./custom/README.md)).
+
+- [Serving Scikit-Learn models](./sklearn/README.md)
+- [Serving XGBoost models](./xgboost/README.md)
+- [Serving LightGBM models](./lightgbm/README.md)
+- [Serving CatBoost models](./catboost/README.md)
+- [Serving MLflow models](./mlflow/README.md)
+- [Serving custom models](./custom/README.md)
+- [Serving Alibi Detect models](./alibi-detect/README.md)
+- [Serving HuggingFace models](./huggingface/README.md)
+
+## MLServer Features
+
+To see some of the advanced features included in MLServer (e.g. multi-model
+serving), check out the examples below.
+
+- [Multi-Model Serving with multiple frameworks](./mms/README.md)
+- [Loading / unloading models from a model repository](./model-repository/README.md)
+- [Content-Type Decoding](./content-type/README.md)
+- [Custom Conda environment](./conda/README.md)
+- [Serving custom models requiring JSON inputs or outputs](./custom-json/README.md)
+- [Serving models through Kafka](./kafka/README.md)
+- [Streaming inference](./streaming/README.md)
+
+## Tutorials
+
+Tutorials are designed to be *beginner-friendly* and walk through accomplishing a series of tasks using MLServer (and other tools).
+
+- [Deploying a Custom Tensorflow Model with MLServer and Seldon Core](./cassava/README.md)
diff --git a/docs-gb/examples/alibi-detect/.gitignore b/docs-gb/examples/alibi-detect/.gitignore
new file mode 100644
index 000000000..0e5de0ae9
--- /dev/null
+++ b/docs-gb/examples/alibi-detect/.gitignore
@@ -0,0 +1,2 @@
+alibi-detector-artifacts/*
+!alibi-detector-artifacts/.gitkeep
diff --git a/docs-gb/examples/alibi-detect/README.ipynb b/docs-gb/examples/alibi-detect/README.ipynb
new file mode 100644
index 000000000..d8d0fc136
--- /dev/null
+++ b/docs-gb/examples/alibi-detect/README.ipynb
@@ -0,0 +1,296 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Serving Alibi-Detect models\n",
+ "\n",
+ "Out of the box, `mlserver` supports the deployment and serving of [alibi-detect](https://docs.seldon.io/projects/alibi-detect/en/latest/index.html) models. Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. In this example, we will cover how we can create a detector configuration to then serve it using `mlserver`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Fetch reference data\n",
+ "\n",
+ "The first step will be to fetch a reference data and other relevant metadata for an `alibi-detect` model. \n",
+ "\n",
+ "For that, we will use the [alibi](https://github.com/SeldonIO/alibi) library to get the adult dataset with [demographic features from a 1996 US census](https://archive.ics.uci.edu/ml/datasets/census+income).\n",
+ "\n",
+ "**Note**: Install `alibi` dataset dependencies and `alibi-detect` for detector configuration"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install alibi alibi_detect"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import alibi\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "adult = alibi.datasets.fetch_adult()\n",
+ "X, y = adult.data, adult.target\n",
+ "feature_names = adult.feature_names\n",
+ "category_map = adult.category_map"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "n_ref = 10000\n",
+ "n_test = 10000\n",
+ "\n",
+ "X_ref, X_t0, X_t1 = X[:n_ref], X[n_ref:n_ref + n_test], X[n_ref + n_test:n_ref + 2 * n_test]\n",
+ "categories_per_feature = {f: None for f in list(category_map.keys())}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Drift Detector Configuration"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This example is based on the Categorical and mixed type data drift detection on income prediction tabular data from the [alibi-detect](https://docs.seldon.io/projects/alibi-detect/en/latest/examples/cd_chi2ks_adult.html) documentation."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Creating detector and saving configuration"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from alibi_detect.cd import TabularDrift\n",
+ "cd_tabular = TabularDrift(X_ref, p_val=.05, categories_per_feature=categories_per_feature)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from alibi_detect.utils.saving import save_detector\n",
+ "filepath = \"alibi-detector-artifacts\"\n",
+ "save_detector(cd_tabular, filepath)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Detecting data drift directly"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "preds = cd_tabular.predict(X_t0,drift_type=\"feature\")\n",
+ "\n",
+ "labels = ['No!', 'Yes!']\n",
+ "print(f\"Threshold {preds['data']['threshold']}\")\n",
+ "for f in range(cd_tabular.n_features):\n",
+ " fname = feature_names[f]\n",
+ " is_drift = (preds['data']['p_val'][f] < preds['data']['threshold']).astype(int)\n",
+ " stat_val, p_val = preds['data']['distance'][f], preds['data']['p_val'][f]\n",
+ " print(f'{fname} -- Drift? {labels[is_drift]} -- Chi2 {stat_val:.3f} -- p-value {p_val:.3f}')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "Now that we have the reference data and other configuration parameters, the next step will be to serve it using `mlserver`. \n",
+ "For that, we will need to create 2 configuration files: \n",
+ "\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile settings.json\n",
+ "{\n",
+ " \"debug\": \"true\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "{\n",
+ " \"name\": \"income-tabular-drift\",\n",
+ " \"implementation\": \"mlserver_alibi_detect.AlibiDetectRuntime\",\n",
+ " \"parameters\": {\n",
+ " \"uri\": \"./alibi-detector-artifacts\",\n",
+ " \"version\": \"v0.1.0\",\n",
+ " \"extra\": {\n",
+ " \"predict_parameters\":{\n",
+ " \"drift_type\": \"feature\"\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running mlserver start command. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "We now have our alibi-detect model being served by `mlserver`. To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict\",\n",
+ " \"shape\": X_t0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": X_t0.tolist(),\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/income-tabular-drift/versions/v0.1.0/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### View model response"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import json\n",
+ "response_dict = json.loads(response.text)\n",
+ "\n",
+ "labels = ['No!', 'Yes!']\n",
+ "for f in range(cd_tabular.n_features):\n",
+ " stat = 'Chi2' if f in list(categories_per_feature.keys()) else 'K-S'\n",
+ " fname = feature_names[f]\n",
+ " is_drift = response_dict['outputs'][0]['data'][f]\n",
+ " stat_val, p_val = response_dict['outputs'][1]['data'][f], response_dict['outputs'][2]['data'][f]\n",
+ " print(f'{fname} -- Drift? {labels[is_drift]} -- Chi2 {stat_val:.3f} -- p-value {p_val:.3f}')"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "5377649fd9904e56b1a72eb79a8e3137babc0e642f8d1adb411c1391b7f9d00d"
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/alibi-detect/README.md b/docs-gb/examples/alibi-detect/README.md
new file mode 100644
index 000000000..332f13db6
--- /dev/null
+++ b/docs-gb/examples/alibi-detect/README.md
@@ -0,0 +1,184 @@
+# Serving Alibi-Detect models
+
+Out of the box, `mlserver` supports the deployment and serving of [alibi_detect](https://docs.seldon.io/projects/alibi-detect/en/latest/index.html) models. Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. In this example, we will cover how we can create a detector configuration to then serve it using `mlserver`.
+
+## Fetch reference data
+
+The first step will be to fetch a reference data and other relevant metadata for an `alibi-detect` model.
+
+For that, we will use the [alibi](https://github.com/SeldonIO/alibi) library to get the adult dataset with [demographic features from a 1996 US census](https://archive.ics.uci.edu/ml/datasets/census+income).
+
+````{note}
+Install `alibi` library for dataset dependencies and `alibi_detect` library for detector configuration from Pypi
+```python
+!pip install alibi alibi_detect
+```
+````
+
+```python
+import alibi
+import matplotlib.pyplot as plt
+import numpy as np
+```
+
+```python
+adult = alibi.datasets.fetch_adult()
+X, y = adult.data, adult.target
+feature_names = adult.feature_names
+category_map = adult.category_map
+```
+
+```python
+n_ref = 10000
+n_test = 10000
+
+X_ref, X_t0, X_t1 = X[:n_ref], X[n_ref:n_ref + n_test], X[n_ref + n_test:n_ref + 2 * n_test]
+categories_per_feature = {f: None for f in list(category_map.keys())}
+```
+
+## Drift Detector Configuration
+
+This example is based on the Categorical and mixed type data drift detection on income prediction tabular data from the [alibi-detect](https://docs.seldon.io/projects/alibi-detect/en/latest/examples/cd_chi2ks_adult.html) documentation.
+
+### Creating detector and saving configuration
+
+```python
+from alibi_detect.cd import TabularDrift
+cd_tabular = TabularDrift(X_ref, p_val=.05, categories_per_feature=categories_per_feature)
+```
+
+```python
+from alibi_detect.utils.saving import save_detector
+filepath = "alibi-detector-artifacts"
+save_detector(cd_tabular, filepath)
+```
+
+### Detecting data drift directly
+
+```python
+preds = cd_tabular.predict(X_t0,drift_type="feature")
+
+labels = ['No!', 'Yes!']
+print(f"Threshold {preds['data']['threshold']}")
+for f in range(cd_tabular.n_features):
+ fname = feature_names[f]
+ is_drift = (preds['data']['p_val'][f] < preds['data']['threshold']).astype(int)
+ stat_val, p_val = preds['data']['distance'][f], preds['data']['p_val'][f]
+ print(f'{fname} -- Drift? {labels[is_drift]} -- Chi2 {stat_val:.3f} -- p-value {p_val:.3f}')
+```
+
+ Threshold 0.05
+ Age -- Drift? No! -- Chi2 0.012 -- p-value 0.508
+ Workclass -- Drift? No! -- Chi2 8.487 -- p-value 0.387
+ Education -- Drift? No! -- Chi2 4.753 -- p-value 0.576
+ Marital Status -- Drift? No! -- Chi2 3.160 -- p-value 0.368
+ Occupation -- Drift? No! -- Chi2 8.194 -- p-value 0.415
+ Relationship -- Drift? No! -- Chi2 0.485 -- p-value 0.993
+ Race -- Drift? No! -- Chi2 0.587 -- p-value 0.965
+ Sex -- Drift? No! -- Chi2 0.217 -- p-value 0.641
+ Capital Gain -- Drift? No! -- Chi2 0.002 -- p-value 1.000
+ Capital Loss -- Drift? No! -- Chi2 0.002 -- p-value 1.000
+ Hours per week -- Drift? No! -- Chi2 0.012 -- p-value 0.508
+ Country -- Drift? No! -- Chi2 9.991 -- p-value 0.441
+
+## Serving
+
+Now that we have the reference data and other configuration parameters, the next step will be to serve it using `mlserver`.
+For that, we will need to create 2 configuration files:
+
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).
+
+### `settings.json`
+
+```python
+%%writefile settings.json
+{
+ "debug": "true"
+}
+```
+
+ Overwriting settings.json
+
+### `model-settings.json`
+
+```python
+%%writefile model-settings.json
+{
+ "name": "income-tabular-drift",
+ "implementation": "mlserver_alibi_detect.AlibiDetectRuntime",
+ "parameters": {
+ "uri": "./alibi-detector-artifacts",
+ "version": "v0.1.0",
+ "extra": {
+ "predict_parameters":{
+ "drift_type": "feature"
+ }
+ }
+ }
+}
+```
+
+ Overwriting model-settings.json
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running mlserver start command. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request
+
+We now have our alibi-detect model being served by `mlserver`. To make sure that everything is working as expected, let's send a request from our test set.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+```python
+import requests
+
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": X_t0.shape,
+ "datatype": "FP32",
+ "data": X_t0.tolist(),
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/income-tabular-drift/versions/v0.1.0/infer"
+response = requests.post(endpoint, json=inference_request)
+```
+
+### View model response
+
+```python
+import json
+response_dict = json.loads(response.text)
+
+labels = ['No!', 'Yes!']
+for f in range(cd_tabular.n_features):
+ stat = 'Chi2' if f in list(categories_per_feature.keys()) else 'K-S'
+ fname = feature_names[f]
+ is_drift = response_dict['outputs'][0]['data'][f]
+ stat_val, p_val = response_dict['outputs'][1]['data'][f], response_dict['outputs'][2]['data'][f]
+ print(f'{fname} -- Drift? {labels[is_drift]} -- Chi2 {stat_val:.3f} -- p-value {p_val:.3f}')
+```
+
+ Age -- Drift? No! -- Chi2 0.012 -- p-value 0.508
+ Workclass -- Drift? No! -- Chi2 8.487 -- p-value 0.387
+ Education -- Drift? No! -- Chi2 4.753 -- p-value 0.576
+ Marital Status -- Drift? No! -- Chi2 3.160 -- p-value 0.368
+ Occupation -- Drift? No! -- Chi2 8.194 -- p-value 0.415
+ Relationship -- Drift? No! -- Chi2 0.485 -- p-value 0.993
+ Race -- Drift? No! -- Chi2 0.587 -- p-value 0.965
+ Sex -- Drift? No! -- Chi2 0.217 -- p-value 0.641
+ Capital Gain -- Drift? No! -- Chi2 0.002 -- p-value 1.000
+ Capital Loss -- Drift? No! -- Chi2 0.002 -- p-value 1.000
+ Hours per week -- Drift? No! -- Chi2 0.012 -- p-value 0.508
+ Country -- Drift? No! -- Chi2 9.991 -- p-value 0.441
diff --git a/docs-gb/examples/alibi-detect/alibi-detector-artifacts/.gitkeep b/docs-gb/examples/alibi-detect/alibi-detector-artifacts/.gitkeep
new file mode 100644
index 000000000..e69de29bb
diff --git a/docs-gb/examples/alibi-detect/model-settings.json b/docs-gb/examples/alibi-detect/model-settings.json
new file mode 100644
index 000000000..5b68cbb6a
--- /dev/null
+++ b/docs-gb/examples/alibi-detect/model-settings.json
@@ -0,0 +1,13 @@
+{
+ "name": "income-tabular-drift",
+ "implementation": "mlserver_alibi_detect.AlibiDetectRuntime",
+ "parameters": {
+ "uri": "./alibi-detector-artifacts",
+ "version": "v0.1.0",
+ "extra": {
+ "predict_parameters":{
+ "drift_type": "feature"
+ }
+ }
+ }
+}
diff --git a/docs-gb/examples/alibi-detect/settings.json b/docs-gb/examples/alibi-detect/settings.json
new file mode 100644
index 000000000..f2ee7ab8d
--- /dev/null
+++ b/docs-gb/examples/alibi-detect/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
diff --git a/docs-gb/examples/alibi-explain/data/mnist_anchor_image/explainer.dill b/docs-gb/examples/alibi-explain/data/mnist_anchor_image/explainer.dill
new file mode 100644
index 000000000..a511a6546
Binary files /dev/null and b/docs-gb/examples/alibi-explain/data/mnist_anchor_image/explainer.dill differ
diff --git a/docs-gb/examples/alibi-explain/data/mnist_anchor_image/meta.dill b/docs-gb/examples/alibi-explain/data/mnist_anchor_image/meta.dill
new file mode 100644
index 000000000..b6e386601
Binary files /dev/null and b/docs-gb/examples/alibi-explain/data/mnist_anchor_image/meta.dill differ
diff --git a/docs-gb/examples/alibi-explain/data/mnist_anchor_image/segmentation_fn.dill b/docs-gb/examples/alibi-explain/data/mnist_anchor_image/segmentation_fn.dill
new file mode 100644
index 000000000..108113260
Binary files /dev/null and b/docs-gb/examples/alibi-explain/data/mnist_anchor_image/segmentation_fn.dill differ
diff --git a/docs-gb/examples/alibi-explain/model-settings.json b/docs-gb/examples/alibi-explain/model-settings.json
new file mode 100644
index 000000000..0fa42390d
--- /dev/null
+++ b/docs-gb/examples/alibi-explain/model-settings.json
@@ -0,0 +1,14 @@
+{
+ "name": "anchor-image-explain-model",
+ "implementation": "mlserver_alibi_explain.AlibiExplainRuntime",
+ "parallel_workers": 0,
+ "parameters": {
+ "uri": "./data/mnist_anchor_image",
+ "version": "v0.1.0",
+ "extra": {
+ "explainer_type": "anchor_image",
+ "infer_uri": "http://localhost:42315/v2/models/test-pytorch-mnist/infer"
+ }
+ }
+}
+
diff --git a/docs-gb/examples/alibi-explain/settings.json b/docs-gb/examples/alibi-explain/settings.json
new file mode 100644
index 000000000..f2ee7ab8d
--- /dev/null
+++ b/docs-gb/examples/alibi-explain/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
diff --git a/docs-gb/examples/cassava/README.md b/docs-gb/examples/cassava/README.md
new file mode 100644
index 000000000..8a573f802
--- /dev/null
+++ b/docs-gb/examples/cassava/README.md
@@ -0,0 +1,314 @@
+# Deploying a Custom Tensorflow Model with MLServer and Seldon Core
+
+## Background
+
+### Intro
+
+This tutorial walks through the steps required to take a python ML model from your machine to a production deployment on Kubernetes. More specifically we'll cover:
+- Running the model locally
+- Turning the ML model into an API
+- Containerizing the model
+- Storing the container in a registry
+- Deploying the model to Kubernetes (with Seldon Core)
+- Scaling the model
+
+The tutorial comes with an accompanying video which you might find useful as you work through the steps:
+[![video_play_icon](img/video_play.png)](https://youtu.be/3bR25_qpokM)
+
+The slides used in the video can be found [here](img/slides.pdf).
+
+### The Use Case
+
+For this tutorial, we're going to use the [Cassava dataset](https://www.tensorflow.org/datasets/catalog/cassava) available from the Tensorflow Catalog. This dataset includes leaf images from the cassava plant. Each plant can be classified as either "healthly" or as having one of four diseases (Mosaic Disease, Bacterial Blight, Green Mite, Brown Streak Disease).
+
+![cassava_examples](img/cassava_examples.png)
+
+We won't go through the steps of training the classifier. Instead, we'll be using a pre-trained one available on TensorFlow Hub. You can find the [model details here](https://tfhub.dev/google/cropnet/classifier/cassava_disease_V1/2).
+
+## Getting Set Up
+
+The easiest way to run this example is to clone the repository located [here](https://github.com/SeldonIO/cassava-example):
+
+```bash
+git clone https://github.com/SeldonIO/cassava-example.git
+```
+
+If you've already cloned the MLServer repository, you can also find it in `docs/examples/cassava`.
+
+Once you've done that, you can just run:
+
+```bash
+cd cassava-example/
+```
+
+```Python
+pip install -r requirements.txt
+```
+
+And it'll set you up with all the libraries required to run the code.
+
+## Running The Python App
+
+The starting point for this tutorial is python script `app.py`. This is typical of the kind of python code we'd run standalone or in a jupyter notebook. Let's familiarise ourself with the code:
+
+```Python
+from helpers import plot, preprocess
+import tensorflow as tf
+import tensorflow_datasets as tfds
+import tensorflow_hub as hub
+
+# Fixes an issue with Jax and TF competing for GPU
+tf.config.experimental.set_visible_devices([], 'GPU')
+
+# Load the model
+model_path = './model'
+classifier = hub.KerasLayer(model_path)
+
+# Load the dataset and store the class names
+dataset, info = tfds.load('cassava', with_info=True)
+class_names = info.features['label'].names + ['unknown']
+
+# Select a batch of examples and plot them
+batch_size = 9
+batch = dataset['validation'].map(preprocess).batch(batch_size).as_numpy_iterator()
+examples = next(batch)
+plot(examples, class_names)
+
+# Generate predictions for the batch and plot them against their labels
+predictions = classifier(examples['image'])
+predictions_max = tf.argmax(predictions, axis=-1)
+print(predictions_max)
+plot(examples, class_names, predictions_max)
+```
+
+First up, we're importing a couple of functions from our `helpers.py` file:
+- `plot` provides the visualisation of the samples, labels and predictions.
+- `preprocess` is used to resize images to 224x224 pixels and normalize the RGB values.
+
+The rest of the code is fairly self-explanatory from the comments. We load the model and dataset, select some examples, make predictions and then plot the results.
+
+Try it yourself by running:
+
+```Bash
+python app.py
+```
+
+Here's what our setup currently looks like:
+![step_1](img/step_1.png)
+
+## Creating an API for The Model
+
+The problem with running our code like we did earlier is that it's not accessible to anyone who doesn't have the python script (and all of it's dependencies). A good way to solve this is to turn our model into an API.
+
+Typically people turn to popular python web servers like [Flask](https://github.com/pallets/flask) or [FastAPI](https://github.com/tiangolo/fastapi). This is a good approach and gives us lots of flexibility but it also requires us to do a lot of the work ourselves. We need to impelement routes, set up logging, capture metrics and define an API schema among other things. A simpler way to tackle this problem is to use an inference server. For this tutorial we're going to use the open source [MLServer](https://github.com/SeldonIO/MLServer) framework.
+
+MLServer supports a bunch of [inference runtimes](https://mlserver.readthedocs.io/en/stable/runtimes/index.html) out of the box, but it also supports [custom python code](https://mlserver.readthedocs.io/en/stable/user-guide/custom.html) which is what we'll use for our Tensorflow model.
+
+### Setting Things Up
+
+In order to get our model ready to run on MLServer we need to wrap it in a single python class with two methods, `load()` and `predict()`. Let's take a look at the code (found in `model/serve-model.py`):
+
+```Python
+from mlserver import MLModel
+from mlserver.codecs import decode_args
+import numpy as np
+import tensorflow as tf
+import tensorflow_hub as hub
+
+# Define a class for our Model, inheriting the MLModel class from MLServer
+class CassavaModel(MLModel):
+
+ # Load the model into memory
+ async def load(self) -> bool:
+ tf.config.experimental.set_visible_devices([], 'GPU')
+ model_path = '.'
+ self._model = hub.KerasLayer(model_path)
+ self.ready = True
+ return self.ready
+
+ # Logic for making predictions against our model
+ @decode_args
+ async def predict(self, payload: np.ndarray) -> np.ndarray:
+ # convert payload to tf.tensor
+ payload_tensor = tf.constant(payload)
+
+ # Make predictions
+ predictions = self._model(payload_tensor)
+ predictions_max = tf.argmax(predictions, axis=-1)
+
+ # convert predictions to np.ndarray
+ response_data = np.array(predictions_max)
+
+ return response_data
+```
+
+The `load()` method is used to define any logic required to set up our model for inference. In our case, we're loading the model weights into `self._model`. The `predict()` method is where we include all of our prediction logic.
+
+You may notice that we've slightly modified our code from earlier (in `app.py`). The biggest change is that it is now wrapped in a single class `CassavaModel`.
+
+The only other task we need to do to run our model on MLServer is to specify a `model-settings.json` file:
+
+```Json
+{
+ "name": "cassava",
+ "implementation": "serve-model.CassavaModel"
+}
+```
+
+This is a simple configuration file that tells MLServer how to handle our model. In our case, we've provided a name for our model and told MLServer where to look for our model class (`serve-model.CassavaModel`).
+
+### Serving The Model
+
+We're now ready to serve our model with MLServer. To do that we can simply run:
+
+```bash
+mlserver start model/
+```
+
+MLServer will now start up, load our cassava model and provide access through both a REST and gRPC API.
+
+### Making Predictions Using The API
+
+Now that our API is up and running. Open a new terminal window and navigate back to the root of this repository. We can then send predictions to our api using the `test.py` file by running:
+
+```bash
+python test.py --local
+```
+
+Our setup has now evloved and looks like this:
+![step_2](img/step_2.png)
+
+## Containerizing The Model
+
+[Containers](https://en.wikipedia.org/wiki/Containerization_(computing)) are an easy way to package our application together with it's runtime and dependencies. More importantly, containerizing our model allows it to run in a variety of different environments.
+
+> **Note:** you will need [Docker](https://www.docker.com/) installed to run this section of the tutorial. You'll also need a [docker hub](https://hub.docker.com/) account or another container registry.
+
+Taking our model and packaging it into a container manually can be a pretty tricky process and requires knowledge of writing Dockerfiles. Thankfully MLServer removes this complexity and provides us with a simple `build` command.
+
+Before we run this command, we need to provide our dependencies in either a `requirements.txt` or a `conda.env` file. The requirements file we'll use for this example is stored in `model/requirements.txt`:
+
+```
+tensorflow==2.12.0
+tensorflow-hub==0.13.0
+```
+
+> Notice that we didn't need to include `mlserver` in our requirements? That's because the builder image has mlserver included already.
+
+We're now ready to build our container image using:
+
+```bash
+mlserver build model/ -t [YOUR_CONTAINER_REGISTRY]/[IMAGE_NAME]
+```
+
+Make sure you replace `YOUR_CONTAINER_REGISTRY` and `IMAGE_NAME` with your dockerhub username and a suitable name e.g. "bobsmith/cassava".
+
+MLServer will now build the model into a container image for us. We can check the output of this by running:
+
+```bash
+docker images
+```
+
+Finally, we want to send this container image to be stored in our container registry. We can do this by running:
+
+```bash
+docker push [YOUR_CONTAINER_REGISTRY]/[IMAGE_NAME]
+```
+
+Our setup now looks like this. Where our model has been packaged and sent to a container registry:
+![step_3](img/step_3.png)
+
+## Deploying to Kubernetes
+
+Now that we've turned our model into a production-ready API, containerized it and pushed it to a registry, it's time to deploy our model.
+
+We're going to use a popular open source framework called [Seldon Core](https://github.com/seldonio/seldon-core) to deploy our model. Seldon Core is great because it combines all of the awesome cloud-native features we get from [Kubernetes](https://kubernetes.io/) but it also adds machine-learning specific features.
+
+*This tutorial assumes you already have a Seldon Core cluster up and running. If that's not the case, head over the [installation instructions](https://docs.seldon.io/projects/seldon-core/en/latest/nav/installation.html) and get set up first. You'll also need to install the `kubectl` command line interface.*
+
+### Creating the Deployment
+
+To create our deployment with Seldon Core we need to create a small configuration file that looks like this:
+
+*You can find this file named `deployment.yaml` in the base folder of this tutorial's repository.*
+
+```yaml
+apiVersion: machinelearning.seldon.io/v1
+kind: SeldonDeployment
+metadata:
+ name: cassava
+spec:
+ protocol: v2
+ predictors:
+ - componentSpecs:
+ - spec:
+ containers:
+ - image: YOUR_CONTAINER_REGISTRY/IMAGE_NAME
+ name: cassava
+ imagePullPolicy: Always
+ graph:
+ name: cassava
+ type: MODEL
+ name: cassava
+```
+
+Make sure you replace `YOUR_CONTAINER_REGISTRY` and `IMAGE_NAME` with your dockerhub username and a suitable name e.g. "bobsmith/cassava".
+
+We can apply this configuration file to our Kubernetes cluster just like we would for any other Kubernetes object using:
+
+```bash
+kubectl create -f deployment.yaml
+```
+
+To check our deployment is up and running we can run:
+
+```bash
+kubectl get pods
+```
+
+We should see `STATUS = Running` once our deployment has finalized.
+
+### Testing the Deployment
+
+Now that our model is up and running on a Kubernetes cluster (via Seldon Core), we can send some test inference requests to make sure it's working.
+
+To do this, we simply run the `test.py` file in the following way:
+
+```bash
+python test.py --remote
+```
+
+This script will randomly select some test samples, send them to the cluster, gather the predictions and then plot them for us.
+
+**A note on running this yourself:**
+*This example is set up to connect to a kubernetes cluster running locally on your machine. If yours is local too, you'll need to make sure you [port forward](https://docs.seldon.io/projects/seldon-core/en/latest/install/kind.html#local-port-forwarding) before sending requests. If your cluster is remote, you'll need to change the `inference_url` variable on line 21 of `test.py`.*
+
+Having deployed our model to kubernetes and tested it, our setup now looks like this:
+![step_4](img/step_4.png)
+
+## Scaling the Model
+
+Our model is now running in a production environment and able to handle requests from external sources. This is awesome but what happens as the number of requests being sent to our model starts to increase? Eventually, we'll reach the limit of what a single server can handle. Thankfully, we can get around this problem by scaling our model [horizontally](https://en.wikipedia.org/wiki/Scalability#Horizontal_or_scale_out).
+
+Kubernetes and Seldon Core make this really easy to do by simply running:
+
+```bash
+kubectl scale sdep cassava --replicas=3
+```
+
+We can replace the `--replicas=3` with any number we want to scale to.
+
+To watch the servers scaling out we can run:
+
+```bash
+kubectl get pods --watch
+```
+
+Once the new replicas have finished rolling out, our setup now looks like this:
+![step_5](img/step_5.png)
+
+
+In this tutorial we've scaled the model out manually to show how it works. In a real environment we'd want to set up [auto-scaling](https://docs.seldon.io/projects/seldon-core/en/latest/graph/scaling.html#autoscaling-seldon-deployments) to make sure our prediction API is always online and performing as expected.
+
+
+
diff --git a/docs-gb/examples/cassava/app.py b/docs-gb/examples/cassava/app.py
new file mode 100644
index 000000000..1f941ccb4
--- /dev/null
+++ b/docs-gb/examples/cassava/app.py
@@ -0,0 +1,27 @@
+from helpers import plot, preprocess
+import tensorflow as tf
+import tensorflow_datasets as tfds
+import tensorflow_hub as hub
+
+# Fixes an issue with Jax and TF competing for GPU
+tf.config.experimental.set_visible_devices([], "GPU")
+
+# Load the model
+model_path = "./model"
+classifier = hub.KerasLayer(model_path)
+
+# Load the dataset and store the class names
+dataset, info = tfds.load("cassava", with_info=True)
+class_names = info.features["label"].names + ["unknown"]
+
+# Select a batch of examples and plot them
+batch_size = 9
+batch = dataset["validation"].map(preprocess).batch(batch_size).as_numpy_iterator()
+examples = next(batch)
+plot(examples, class_names)
+
+# Generate predictions for the batch and plot them against their labels
+predictions = classifier(examples["image"])
+predictions_max = tf.argmax(predictions, axis=-1)
+print(predictions_max)
+plot(examples, class_names, predictions_max)
diff --git a/docs-gb/examples/cassava/deployment.yaml b/docs-gb/examples/cassava/deployment.yaml
new file mode 100644
index 000000000..41ee0b237
--- /dev/null
+++ b/docs-gb/examples/cassava/deployment.yaml
@@ -0,0 +1,17 @@
+apiVersion: machinelearning.seldon.io/v1
+kind: SeldonDeployment
+metadata:
+ name: cassava
+spec:
+ protocol: v2
+ predictors:
+ - componentSpecs:
+ - spec:
+ containers:
+ - image: edshee/cassava
+ name: cassava
+ imagePullPolicy: Always
+ graph:
+ name: cassava
+ type: MODEL
+ name: cassava
diff --git a/docs-gb/examples/cassava/helpers.py b/docs-gb/examples/cassava/helpers.py
new file mode 100644
index 000000000..047be5b0f
--- /dev/null
+++ b/docs-gb/examples/cassava/helpers.py
@@ -0,0 +1,63 @@
+import numpy as np
+import matplotlib.pyplot as plt
+import tensorflow as tf
+
+
+# Plotting function, shows the datapoints as a grid of images
+# (with labels and predictions)
+def plot(examples, class_names, predictions=None):
+ # Label mapping
+ name_map = dict(
+ cmd="Mosaic Disease",
+ cbb="Bacterial Blight",
+ cgm="Green Mite",
+ cbsd="Brown Streak Disease",
+ healthy="Healthy",
+ unknown="Unknown",
+ )
+
+ # Get the images, labels, and optionally predictions
+ images = examples["image"]
+ labels = examples["label"]
+ batch_size = len(images)
+ if predictions is None:
+ predictions = batch_size * [None]
+
+ # Configure the layout of the grid
+ x = np.ceil(np.sqrt(batch_size))
+ y = np.ceil(batch_size / x)
+ fig = plt.figure(figsize=(x * 6, y * 7))
+
+ for i, (image, label, prediction) in enumerate(zip(images, labels, predictions)):
+ # Render the image
+ ax = fig.add_subplot(x, y, i + 1)
+ ax.imshow(image, aspect="auto")
+ ax.grid(False)
+ ax.set_xticks([])
+ ax.set_yticks([])
+
+ # Display the label and optionally prediction
+ x_label = "Label: " + name_map[class_names[label]]
+ if prediction is not None:
+ x_label = (
+ "Prediction: " + name_map[class_names[prediction]] + "\n" + x_label
+ )
+ ax.xaxis.label.set_color("green" if label == prediction else "red")
+ ax.set_xlabel(x_label)
+
+ plt.show()
+
+
+# Preprocess images to be the right format for the model
+def preprocess(data):
+ image = data["image"]
+
+ # Normalize [0, 255] to [0, 1]
+ image = tf.cast(image, tf.float32)
+ image = image / 255.0
+
+ # Resize the images to 224 x 224
+ image = tf.image.resize(image, (224, 224))
+
+ data["image"] = image
+ return data
diff --git a/docs-gb/examples/cassava/img/cassava_examples.png b/docs-gb/examples/cassava/img/cassava_examples.png
new file mode 100644
index 000000000..9eaac7617
Binary files /dev/null and b/docs-gb/examples/cassava/img/cassava_examples.png differ
diff --git a/docs-gb/examples/cassava/img/slides.pdf b/docs-gb/examples/cassava/img/slides.pdf
new file mode 100644
index 000000000..1dd50a1e4
Binary files /dev/null and b/docs-gb/examples/cassava/img/slides.pdf differ
diff --git a/docs-gb/examples/cassava/img/step_1.png b/docs-gb/examples/cassava/img/step_1.png
new file mode 100644
index 000000000..db253d145
Binary files /dev/null and b/docs-gb/examples/cassava/img/step_1.png differ
diff --git a/docs-gb/examples/cassava/img/step_2.png b/docs-gb/examples/cassava/img/step_2.png
new file mode 100644
index 000000000..c0083b48c
Binary files /dev/null and b/docs-gb/examples/cassava/img/step_2.png differ
diff --git a/docs-gb/examples/cassava/img/step_3.png b/docs-gb/examples/cassava/img/step_3.png
new file mode 100644
index 000000000..7e5b5cc6b
Binary files /dev/null and b/docs-gb/examples/cassava/img/step_3.png differ
diff --git a/docs-gb/examples/cassava/img/step_4.png b/docs-gb/examples/cassava/img/step_4.png
new file mode 100644
index 000000000..ea0c65d6f
Binary files /dev/null and b/docs-gb/examples/cassava/img/step_4.png differ
diff --git a/docs-gb/examples/cassava/img/step_5.png b/docs-gb/examples/cassava/img/step_5.png
new file mode 100644
index 000000000..f55c4bf54
Binary files /dev/null and b/docs-gb/examples/cassava/img/step_5.png differ
diff --git a/docs-gb/examples/cassava/img/video_play.png b/docs-gb/examples/cassava/img/video_play.png
new file mode 100644
index 000000000..68103999c
Binary files /dev/null and b/docs-gb/examples/cassava/img/video_play.png differ
diff --git a/docs-gb/examples/cassava/model/model-settings.json b/docs-gb/examples/cassava/model/model-settings.json
new file mode 100644
index 000000000..ecca4e1c1
--- /dev/null
+++ b/docs-gb/examples/cassava/model/model-settings.json
@@ -0,0 +1,4 @@
+{
+ "name": "cassava",
+ "implementation": "serve-model.CassavaModel"
+}
\ No newline at end of file
diff --git a/docs-gb/examples/cassava/model/requirements.txt b/docs-gb/examples/cassava/model/requirements.txt
new file mode 100644
index 000000000..c7015344e
--- /dev/null
+++ b/docs-gb/examples/cassava/model/requirements.txt
@@ -0,0 +1,2 @@
+tensorflow==2.12.1
+tensorflow-hub==0.13.0
diff --git a/docs-gb/examples/cassava/model/saved_model.pb b/docs-gb/examples/cassava/model/saved_model.pb
new file mode 100755
index 000000000..9801b7705
Binary files /dev/null and b/docs-gb/examples/cassava/model/saved_model.pb differ
diff --git a/docs-gb/examples/cassava/model/serve-model.py b/docs-gb/examples/cassava/model/serve-model.py
new file mode 100644
index 000000000..43acabb65
--- /dev/null
+++ b/docs-gb/examples/cassava/model/serve-model.py
@@ -0,0 +1,31 @@
+from mlserver import MLModel
+from mlserver.codecs import decode_args
+import numpy as np
+import tensorflow as tf
+import tensorflow_hub as hub
+
+
+# Define a class for our Model, inheriting the MLModel class from MLServer
+class CassavaModel(MLModel):
+ # Load the model into memory
+ async def load(self) -> bool:
+ tf.config.experimental.set_visible_devices([], "GPU")
+ model_path = "."
+ self._model = hub.KerasLayer(model_path)
+ self.ready = True
+ return self.ready
+
+ # Logic for making predictions against our model
+ @decode_args
+ async def predict(self, payload: np.ndarray) -> np.ndarray:
+ # convert payload to tf.tensor
+ payload_tensor = tf.constant(payload)
+
+ # Make predictions
+ predictions = self._model(payload_tensor)
+ predictions_max = tf.argmax(predictions, axis=-1)
+
+ # convert predictions to np.ndarray
+ response_data = np.array(predictions_max)
+
+ return response_data
diff --git a/docs-gb/examples/cassava/model/settings.json b/docs-gb/examples/cassava/model/settings.json
new file mode 100644
index 000000000..07c1d90da
--- /dev/null
+++ b/docs-gb/examples/cassava/model/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
\ No newline at end of file
diff --git a/docs-gb/examples/cassava/model/variables/variables.data-00000-of-00001 b/docs-gb/examples/cassava/model/variables/variables.data-00000-of-00001
new file mode 100755
index 000000000..c715b88a5
Binary files /dev/null and b/docs-gb/examples/cassava/model/variables/variables.data-00000-of-00001 differ
diff --git a/docs-gb/examples/cassava/model/variables/variables.index b/docs-gb/examples/cassava/model/variables/variables.index
new file mode 100755
index 000000000..4bc4ffad8
Binary files /dev/null and b/docs-gb/examples/cassava/model/variables/variables.index differ
diff --git a/docs-gb/examples/cassava/requirements.txt b/docs-gb/examples/cassava/requirements.txt
new file mode 100644
index 000000000..a27eb2ede
--- /dev/null
+++ b/docs-gb/examples/cassava/requirements.txt
@@ -0,0 +1,3 @@
+mlserver==1.3.2
+tensorflow==2.12.1
+tensorflow-hub==0.13.0
diff --git a/docs-gb/examples/cassava/test.py b/docs-gb/examples/cassava/test.py
new file mode 100644
index 000000000..0a6eeb6ca
--- /dev/null
+++ b/docs-gb/examples/cassava/test.py
@@ -0,0 +1,72 @@
+import sys
+from helpers import preprocess, plot
+import numpy as np
+import requests
+from mlserver.types import InferenceRequest
+from mlserver.codecs import NumpyCodec
+import tensorflow_datasets as tfds
+import tensorflow as tf
+
+# Disable tensorflow debugging output
+import os
+
+os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
+
+# Inference variables
+if len(sys.argv) < 2:
+ sys.exit("Please provide inference mode (--local or --remote)")
+if sys.argv[1] == "--local":
+ inference_url = "http://localhost:8080/v2/models/cassava/infer"
+elif sys.argv[1] == "--remote":
+ inference_url = "http://localhost:8080/seldon/default/cassava/v2/models/infer"
+else:
+ sys.exit("Please provide inference mode (--local or --remote)")
+batch_size = 16
+
+# Load the dataset and class names
+print("Lodaing dataset...")
+dataset, info = tfds.load("cassava", with_info=True)
+class_names = info.features["label"].names + ["unknown"]
+
+# Shuffle the dataset with a buffer size equal to the number
+# of examples in the 'validation' split
+validation_dataset = dataset["validation"]
+buffer_size = info.splits["validation"].num_examples
+shuffled_validation_dataset = validation_dataset.shuffle(buffer_size)
+
+# Select a batch of examples from the validation dataset
+batch = (
+ shuffled_validation_dataset.map(preprocess).batch(batch_size).as_numpy_iterator()
+)
+examples = next(batch)
+
+# Convert the TensorFlow tensor to a numpy array
+input_data = np.array(examples["image"])
+
+# Build the inference request
+inference_request = InferenceRequest(
+ inputs=[NumpyCodec.encode_input(name="payload", payload=input_data)]
+)
+
+# Send the inference request and capture response
+print("Sending Inference Request...")
+res = requests.post(inference_url, json=inference_request.model_dump())
+print("Got Response...")
+
+# Parse the JSON string into a Python dictionary
+response_dict = res.json()
+
+# Extract the data array and shape from the output, assuming only
+# one output or the target output is at index 0
+data_list = response_dict["outputs"][0]["data"]
+data_shape = response_dict["outputs"][0]["shape"]
+
+# Convert the data list to a numpy array and reshape it
+data_array = np.array(data_list).reshape(data_shape)
+print("Predictions:", data_array)
+
+# Convert the numpy array to tf tensor
+data_tensor = tf.convert_to_tensor(np.squeeze(data_array), dtype=tf.int64)
+
+# Plot the examples with their predictions
+plot(examples, class_names, data_tensor)
diff --git a/docs-gb/examples/catboost/README.ipynb b/docs-gb/examples/catboost/README.ipynb
new file mode 100644
index 000000000..cd731f67f
--- /dev/null
+++ b/docs-gb/examples/catboost/README.ipynb
@@ -0,0 +1,190 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Serving CatBoost models\n",
+ "\n",
+ "Out of the box, `mlserver` supports the deployment and serving of `catboost` models.\n",
+ "By default, it will assume that these models have been [serialised using the `save_model()` method](https://catboost.ai/en/docs/concepts/python-reference_catboost_save_model).\n",
+ "\n",
+ "In this example, we will cover how we can train and serialise a simple model, to then serve it using `mlserver`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training\n",
+ "\n",
+ "To test the CatBoost Server, first we need to generate a simple CatBoost model using Python."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "from catboost import CatBoostClassifier\n",
+ "\n",
+ "train_data = np.random.randint(0, 100, size=(100, 10))\n",
+ "train_labels = np.random.randint(0, 2, size=(100))\n",
+ "\n",
+ "model = CatBoostClassifier(iterations=2,\n",
+ " depth=2,\n",
+ " learning_rate=1,\n",
+ " loss_function='Logloss',\n",
+ " verbose=True)\n",
+ "model.fit(train_data, train_labels)\n",
+ "model.save_model('model.cbm')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Our model will be persisted as a file named `model.cbm`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "Now that we have trained and saved our model, the next step will be to serve it using `mlserver`. \n",
+ "For that, we will need to create 2 configuration files: \n",
+ "\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile settings.json\n",
+ "{\n",
+ " \"debug\": \"true\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "{\n",
+ " \"name\": \"catboost\",\n",
+ " \"implementation\": \"mlserver_catboost.CatboostModel\",\n",
+ " \"parameters\": {\n",
+ " \"uri\": \"./model.cbm\",\n",
+ " \"version\": \"v0.1.0\"\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "import numpy as np\n",
+ "\n",
+ "test_data = np.random.randint(0, 100, size=(1, 10))\n",
+ "\n",
+ "x_0 = test_data[0:1]\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict-prob\",\n",
+ " \"shape\": x_0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": x_0.tolist()\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/catboost/versions/v0.1.0/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "print(response.json())"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
\ No newline at end of file
diff --git a/docs-gb/examples/catboost/README.md b/docs-gb/examples/catboost/README.md
new file mode 100644
index 000000000..c4a6c0768
--- /dev/null
+++ b/docs-gb/examples/catboost/README.md
@@ -0,0 +1,104 @@
+# Serving CatBoost models
+
+Out of the box, `mlserver` supports the deployment and serving of `catboost` models.
+By default, it will assume that these models have been [serialised using the `save_model()` method](https://catboost.ai/en/docs/concepts/python-reference_catboost_save_model).
+
+In this example, we will cover how we can train and serialise a simple model, to then serve it using `mlserver`.
+
+## Training
+
+To test the CatBoost Server, first we need to generate a simple CatBoost model using Python.
+
+
+```python
+import numpy as np
+from catboost import CatBoostClassifier
+
+train_data = np.random.randint(0, 100, size=(100, 10))
+train_labels = np.random.randint(0, 2, size=(100))
+
+model = CatBoostClassifier(iterations=2,
+ depth=2,
+ learning_rate=1,
+ loss_function='Logloss',
+ verbose=True)
+model.fit(train_data, train_labels)
+model.save_model('model.cbm')
+```
+
+Our model will be persisted as a file named `model.cbm`.
+
+## Serving
+
+Now that we have trained and saved our model, the next step will be to serve it using `mlserver`.
+For that, we will need to create 2 configuration files:
+
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).
+
+### `settings.json`
+
+
+```python
+%%writefile settings.json
+{
+ "debug": "true"
+}
+```
+
+### `model-settings.json`
+
+
+```python
+%%writefile model-settings.json
+{
+ "name": "catboost",
+ "implementation": "mlserver_catboost.CatboostModel",
+ "parameters": {
+ "uri": "./model.cbm",
+ "version": "v0.1.0"
+ }
+}
+```
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request from our test set.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+
+```python
+import requests
+import numpy as np
+
+test_data = np.random.randint(0, 100, size=(1, 10))
+
+x_0 = test_data[0:1]
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict-prob",
+ "shape": x_0.shape,
+ "datatype": "FP32",
+ "data": x_0.tolist()
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/catboost/versions/v0.1.0/infer"
+response = requests.post(endpoint, json=inference_request)
+
+print(response.json())
+```
diff --git a/docs-gb/examples/catboost/model-settings.json b/docs-gb/examples/catboost/model-settings.json
new file mode 100644
index 000000000..7967b0c63
--- /dev/null
+++ b/docs-gb/examples/catboost/model-settings.json
@@ -0,0 +1,8 @@
+{
+ "name": "catboost",
+ "implementation": "mlserver_catboost.CatboostModel",
+ "parameters": {
+ "uri": "./model.cbm",
+ "version": "v0.1.0"
+ }
+}
\ No newline at end of file
diff --git a/docs-gb/examples/catboost/model.cbm b/docs-gb/examples/catboost/model.cbm
new file mode 100644
index 000000000..874dac119
Binary files /dev/null and b/docs-gb/examples/catboost/model.cbm differ
diff --git a/docs-gb/examples/catboost/settings.json b/docs-gb/examples/catboost/settings.json
new file mode 100644
index 000000000..f2ee7ab8d
--- /dev/null
+++ b/docs-gb/examples/catboost/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
diff --git a/docs-gb/examples/conda/Makefile b/docs-gb/examples/conda/Makefile
new file mode 100644
index 000000000..bca77ba83
--- /dev/null
+++ b/docs-gb/examples/conda/Makefile
@@ -0,0 +1,5 @@
+old-sklearn.tar.gz: environment.yml
+ conda env create --force -f environment.yml
+ conda pack --force -n old-sklearn -o old-sklearn.tar.gz
+ conda env remove -n old-sklearn
+
diff --git a/docs-gb/examples/conda/README.ipynb b/docs-gb/examples/conda/README.ipynb
new file mode 100644
index 000000000..b9d6e20aa
--- /dev/null
+++ b/docs-gb/examples/conda/README.ipynb
@@ -0,0 +1,268 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Custom Conda environments in MLServer\n",
+ "\n",
+ "It's not unusual that model runtimes require extra dependencies that are not direct dependencies of MLServer.\n",
+ "This is the case when we want to use [custom runtimes](../custom/README), but also when our model artifacts are the output of older versions of a toolkit (e.g. models trained with an older version of SKLearn).\n",
+ "\n",
+ "In these cases, since these dependencies (or dependency versions) are not known in advance by MLServer, they **won't be included in the default `seldonio/mlserver` Docker image**.\n",
+ "To cover these cases, the **`seldonio/mlserver` Docker image allows you to load custom environments** before starting the server itself.\n",
+ "\n",
+ "This example will walk you through how to create and save an custom environment, so that it can be loaded in MLServer without any extra change to the `seldonio/mlserver` Docker image. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Define our environment\n",
+ "\n",
+ "For this example, we will create a custom environment to serve a model trained with an older version of Scikit-Learn. \n",
+ "The first step will be define this environment, using a [`environment.yml`](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually). \n",
+ "\n",
+ "Note that these environments can also be created on the fly as we go, and then serialised later."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile environment.yml\n",
+ "\n",
+ "name: old-sklearn\n",
+ "channels:\n",
+ " - conda-forge\n",
+ "dependencies:\n",
+ " - python == 3.8\n",
+ " - scikit-learn == 0.24.2\n",
+ " - joblib == 0.17.0\n",
+ " - requests\n",
+ " - pip\n",
+ " - pip:\n",
+ " - mlserver == 1.1.0\n",
+ " - mlserver-sklearn == 1.1.0"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Train model in our custom environment\n",
+ "\n",
+ "To illustrate the point, we will train a Scikit-Learn model using our older environment.\n",
+ "\n",
+ "The first step will be to create and activate an environment which reflects what's outlined in our `environment.yml` file.\n",
+ "\n",
+ "> **NOTE:** If you are running this from a Jupyter Notebook, you will need to restart your Jupyter instance so that it runs from this environment."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!conda env create --force -f environment.yml\n",
+ "!conda activate old-sklearn"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can now train and save a Scikit-Learn model using the older version of our environment.\n",
+ "This model will be serialised as `model.joblib`.\n",
+ "\n",
+ "You can find more details of this process in the [Scikit-Learn example](../sklearn/README)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Original source code and more details can be found in:\n",
+ "# https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html\n",
+ "\n",
+ "# Import datasets, classifiers and performance metrics\n",
+ "from sklearn import datasets, svm, metrics\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "# The digits dataset\n",
+ "digits = datasets.load_digits()\n",
+ "\n",
+ "# To apply a classifier on this data, we need to flatten the image, to\n",
+ "# turn the data in a (samples, feature) matrix:\n",
+ "n_samples = len(digits.images)\n",
+ "data = digits.images.reshape((n_samples, -1))\n",
+ "\n",
+ "# Create a classifier: a support vector classifier\n",
+ "classifier = svm.SVC(gamma=0.001)\n",
+ "\n",
+ "# Split data into train and test subsets\n",
+ "X_train, X_test, y_train, y_test = train_test_split(\n",
+ " data, digits.target, test_size=0.5, shuffle=False)\n",
+ "\n",
+ "# We learn the digits on the first half of the digits\n",
+ "classifier.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import joblib\n",
+ "\n",
+ "model_file_name = \"model.joblib\"\n",
+ "joblib.dump(classifier, model_file_name)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Serialise our custom environment\n",
+ "\n",
+ "Lastly, we will need to serialise our environment in the format expected by MLServer.\n",
+ "To do that, we will use a tool called [`conda-pack`](https://conda.github.io/conda-pack/).\n",
+ "\n",
+ "This tool, will save a portable version of our environment as a `.tar.gz` file, also known as _tarball_."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!conda pack --force -n old-sklearn -o old-sklearn.tar.gz"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving \n",
+ "\n",
+ "Now that we have defined our environment (and we've got a sample artifact trained in that environment), we can move to serving our model.\n",
+ "\n",
+ "To do that, we will first need to select the right runtime through a `model-settings.json` config file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "{\n",
+ " \"name\": \"mnist-svm\",\n",
+ " \"implementation\": \"mlserver_sklearn.SKLearnModel\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can then spin up our model, using our custom environment, leveraging MLServer's Docker image.\n",
+ "Keep in mind that **you will need Docker installed in your machine to run this example**.\n",
+ "\n",
+ "Our Docker command will need to take into account the following points:\n",
+ "\n",
+ "- Mount the example's folder as a volume so that it can be accessed from within the container.\n",
+ "- Let MLServer know that our custom environment's tarball can be found as `old-sklearn.tar.gz`.\n",
+ "- Expose port `8080` so that we can send requests from the outside. \n",
+ "\n",
+ "From the command line, this can be done using Docker's CLI as:\n",
+ "\n",
+ "```bash\n",
+ "docker run -it --rm \\\n",
+ " -v \"$PWD\":/mnt/models \\\n",
+ " -e \"MLSERVER_ENV_TARBALL=/mnt/models/old-sklearn.tar.gz\" \\\n",
+ " -p 8080:8080 \\\n",
+ " seldonio/mlserver:1.1.0-slim\n",
+ "```\n",
+ "\n",
+ "Note that we need to keep the server running in the background while we send requests.\n",
+ "Therefore, it's best to run this command on a separate terminal session."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "x_0 = X_test[0:1]\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict\",\n",
+ " \"shape\": x_0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": x_0.tolist()\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/mnist-svm/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/conda/README.md b/docs-gb/examples/conda/README.md
new file mode 100644
index 000000000..cd2514398
--- /dev/null
+++ b/docs-gb/examples/conda/README.md
@@ -0,0 +1,172 @@
+# Custom Conda environments in MLServer
+
+It's not unusual that model runtimes require extra dependencies that are not direct dependencies of MLServer.
+This is the case when we want to use [custom runtimes](../custom/README), but also when our model artifacts are the output of older versions of a toolkit (e.g. models trained with an older version of SKLearn).
+
+In these cases, since these dependencies (or dependency versions) are not known in advance by MLServer, they **won't be included in the default `seldonio/mlserver` Docker image**.
+To cover these cases, the **`seldonio/mlserver` Docker image allows you to load custom environments** before starting the server itself.
+
+This example will walk you through how to create and save an custom environment, so that it can be loaded in MLServer without any extra change to the `seldonio/mlserver` Docker image.
+
+## Define our environment
+
+For this example, we will create a custom environment to serve a model trained with an older version of Scikit-Learn.
+The first step will be define this environment, using a [`environment.yml`](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually).
+
+Note that these environments can also be created on the fly as we go, and then serialised later.
+
+
+```python
+%%writefile environment.yml
+
+name: old-sklearn
+channels:
+ - conda-forge
+dependencies:
+ - python == 3.8
+ - scikit-learn == 0.24.2
+ - joblib == 0.17.0
+ - requests
+ - pip
+ - pip:
+ - mlserver == 1.1.0
+ - mlserver-sklearn == 1.1.0
+```
+
+### Train model in our custom environment
+
+To illustrate the point, we will train a Scikit-Learn model using our older environment.
+
+The first step will be to create and activate an environment which reflects what's outlined in our `environment.yml` file.
+
+> **NOTE:** If you are running this from a Jupyter Notebook, you will need to restart your Jupyter instance so that it runs from this environment.
+
+
+```python
+!conda env create --force -f environment.yml
+!conda activate old-sklearn
+```
+
+We can now train and save a Scikit-Learn model using the older version of our environment.
+This model will be serialised as `model.joblib`.
+
+You can find more details of this process in the [Scikit-Learn example](../sklearn/README).
+
+
+```python
+# Original source code and more details can be found in:
+# https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
+
+# Import datasets, classifiers and performance metrics
+from sklearn import datasets, svm, metrics
+from sklearn.model_selection import train_test_split
+
+# The digits dataset
+digits = datasets.load_digits()
+
+# To apply a classifier on this data, we need to flatten the image, to
+# turn the data in a (samples, feature) matrix:
+n_samples = len(digits.images)
+data = digits.images.reshape((n_samples, -1))
+
+# Create a classifier: a support vector classifier
+classifier = svm.SVC(gamma=0.001)
+
+# Split data into train and test subsets
+X_train, X_test, y_train, y_test = train_test_split(
+ data, digits.target, test_size=0.5, shuffle=False)
+
+# We learn the digits on the first half of the digits
+classifier.fit(X_train, y_train)
+```
+
+
+```python
+import joblib
+
+model_file_name = "model.joblib"
+joblib.dump(classifier, model_file_name)
+```
+
+### Serialise our custom environment
+
+Lastly, we will need to serialise our environment in the format expected by MLServer.
+To do that, we will use a tool called [`conda-pack`](https://conda.github.io/conda-pack/).
+
+This tool, will save a portable version of our environment as a `.tar.gz` file, also known as _tarball_.
+
+
+```python
+!conda pack --force -n old-sklearn -o old-sklearn.tar.gz
+```
+
+## Serving
+
+Now that we have defined our environment (and we've got a sample artifact trained in that environment), we can move to serving our model.
+
+To do that, we will first need to select the right runtime through a `model-settings.json` config file.
+
+
+```python
+%%writefile model-settings.json
+{
+ "name": "mnist-svm",
+ "implementation": "mlserver_sklearn.SKLearnModel"
+}
+```
+
+We can then spin up our model, using our custom environment, leveraging MLServer's Docker image.
+Keep in mind that **you will need Docker installed in your machine to run this example**.
+
+Our Docker command will need to take into account the following points:
+
+- Mount the example's folder as a volume so that it can be accessed from within the container.
+- Let MLServer know that our custom environment's tarball can be found as `old-sklearn.tar.gz`.
+- Expose port `8080` so that we can send requests from the outside.
+
+From the command line, this can be done using Docker's CLI as:
+
+```bash
+docker run -it --rm \
+ -v "$PWD":/mnt/models \
+ -e "MLSERVER_ENV_TARBALL=/mnt/models/old-sklearn.tar.gz" \
+ -p 8080:8080 \
+ seldonio/mlserver:1.1.0-slim
+```
+
+Note that we need to keep the server running in the background while we send requests.
+Therefore, it's best to run this command on a separate terminal session.
+
+### Send test inference request
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request from our test set.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+
+```python
+import requests
+
+x_0 = X_test[0:1]
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": x_0.shape,
+ "datatype": "FP32",
+ "data": x_0.tolist()
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/mnist-svm/infer"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+
+```python
+
+```
diff --git a/docs-gb/examples/conda/environment.yml b/docs-gb/examples/conda/environment.yml
new file mode 100644
index 000000000..90b9c4ea3
--- /dev/null
+++ b/docs-gb/examples/conda/environment.yml
@@ -0,0 +1,13 @@
+
+name: old-sklearn
+channels:
+ - conda-forge
+dependencies:
+ - python == 3.8
+ - scikit-learn == 0.24.2
+ - joblib == 0.17.0
+ - requests
+ - pip
+ - pip:
+ - mlserver == 1.1.0
+ - mlserver-sklearn == 1.1.0
diff --git a/docs-gb/examples/conda/model-settings.json b/docs-gb/examples/conda/model-settings.json
new file mode 100644
index 000000000..26b6c1e16
--- /dev/null
+++ b/docs-gb/examples/conda/model-settings.json
@@ -0,0 +1,4 @@
+{
+ "name": "mnist-svm",
+ "implementation": "mlserver_sklearn.SKLearnModel"
+}
diff --git a/docs-gb/examples/conda/model.joblib b/docs-gb/examples/conda/model.joblib
new file mode 100644
index 000000000..508296340
Binary files /dev/null and b/docs-gb/examples/conda/model.joblib differ
diff --git a/docs-gb/examples/content-type/README.ipynb b/docs-gb/examples/content-type/README.ipynb
new file mode 100644
index 000000000..ff6209f14
--- /dev/null
+++ b/docs-gb/examples/content-type/README.ipynb
@@ -0,0 +1,646 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "regional-affair",
+ "metadata": {},
+ "source": [
+ "# Content Type Decoding\n",
+ "\n",
+ "MLServer extends the V2 inference protocol by adding support for a `content_type` annotation.\n",
+ "This annotation can be provided either through the model metadata `parameters`, or through the input `parameters`.\n",
+ "By leveraging the `content_type` annotation, we can provide the necessary information to MLServer so that it can _decode_ the input payload from the \"wire\" V2 protocol to something meaningful to the model / user (e.g. a NumPy array).\n",
+ "\n",
+ "This example will walk you through some examples which illustrate how this works, and how it can be extended."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "suburban-damage",
+ "metadata": {},
+ "source": [
+ "## Echo Inference Runtime\n",
+ "\n",
+ "To start with, we will write a _dummy_ runtime which just prints the input, the _decoded_ input and returns it.\n",
+ "This will serve as a testbed to showcase how the `content_type` support works.\n",
+ "\n",
+ "Later on, we will extend this runtime by adding custom _codecs_ that will decode our V2 payload to custom types."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "alleged-tunnel",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile runtime.py\n",
+ "import json\n",
+ "\n",
+ "from mlserver import MLModel\n",
+ "from mlserver.types import InferenceRequest, InferenceResponse, ResponseOutput\n",
+ "from mlserver.codecs import DecodedParameterName\n",
+ "\n",
+ "_to_exclude = {\n",
+ " \"parameters\": {DecodedParameterName, \"headers\"},\n",
+ " 'inputs': {\"__all__\": {\"parameters\": {DecodedParameterName, \"headers\"}}}\n",
+ "}\n",
+ "\n",
+ "class EchoRuntime(MLModel):\n",
+ " async def predict(self, payload: InferenceRequest) -> InferenceResponse:\n",
+ " outputs = []\n",
+ " for request_input in payload.inputs:\n",
+ " decoded_input = self.decode(request_input)\n",
+ " print(f\"------ Encoded Input ({request_input.name}) ------\")\n",
+ " as_dict = request_input.dict(exclude=_to_exclude) # type: ignore\n",
+ " print(json.dumps(as_dict, indent=2))\n",
+ " print(f\"------ Decoded input ({request_input.name}) ------\")\n",
+ " print(decoded_input)\n",
+ " \n",
+ " outputs.append(\n",
+ " ResponseOutput(\n",
+ " name=request_input.name,\n",
+ " datatype=request_input.datatype,\n",
+ " shape=request_input.shape,\n",
+ " data=request_input.data\n",
+ " )\n",
+ " )\n",
+ " \n",
+ " return InferenceResponse(model_name=self.name, outputs=outputs)\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "impaired-principle",
+ "metadata": {},
+ "source": [
+ "As you can see above, this runtime will decode the incoming payloads by calling the `self.decode()` helper method.\n",
+ "This method will check what's the right content type for each input in the following order:\n",
+ "\n",
+ "1. Is there any content type defined in the `inputs[].parameters.content_type` field within the **request payload**?\n",
+ "2. Is there any content type defined in the `inputs[].parameters.content_type` field within the **model metadata**?\n",
+ "3. Is there any default content type that should be assumed?\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "chronic-halloween",
+ "metadata": {},
+ "source": [
+ "### Model Settings\n",
+ "\n",
+ "In order to enable this runtime, we will also create a `model-settings.json` file.\n",
+ "This file should be present (or accessible from) in the folder where we run `mlserver start .`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "accessory-jerusalem",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "\n",
+ "{\n",
+ " \"name\": \"content-type-example\",\n",
+ " \"implementation\": \"runtime.EchoRuntime\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "canadian-somalia",
+ "metadata": {},
+ "source": [
+ "## Request Inputs\n",
+ "\n",
+ "Our initial step will be to decide the content type based on the incoming `inputs[].parameters` field.\n",
+ "For this, we will start our MLServer in the background (e.g. running `mlserver start .`)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "criminal-personality",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "payload = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"parameters-np\",\n",
+ " \"datatype\": \"INT32\",\n",
+ " \"shape\": [2, 2],\n",
+ " \"data\": [1, 2, 3, 4],\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"np\"\n",
+ " }\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"parameters-str\",\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"shape\": [1],\n",
+ " \"data\": \"hello world 😁\",\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"str\"\n",
+ " }\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "response = requests.post(\n",
+ " \"http://localhost:8080/v2/models/content-type-example/infer\",\n",
+ " json=payload\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c092ef24-4055-4391-ab2e-b44aa36f135a",
+ "metadata": {},
+ "source": [
+ "### Codecs\n",
+ "\n",
+ "As you've probably already noticed, writing request payloads compliant with both the V2 Inference Protocol requires a certain knowledge about both the V2 spec and the structure expected by each content type.\n",
+ "To account for this and simplify usage, the MLServer package exposes a set of utilities which will help you interact with your models via the V2 protocol.\n",
+ "\n",
+ "These helpers are mainly shaped as _\"codecs\"_.\n",
+ "That is, abstractions which know how to _\"encode\"_ and _\"decode\"_ arbitrary Python datatypes to and from the V2 Inference Protocol.\n",
+ "\n",
+ "Generally, we recommend using the existing set of codecs to generate your V2 payloads.\n",
+ "This will ensure that requests and responses follow the right structure, and should provide a more seamless experience.\n",
+ "\n",
+ "Following with our previous example, the same code could be rewritten using codecs as:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a4c20511-2af8-4a12-968b-0eb43e92ef04",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "import numpy as np\n",
+ "\n",
+ "from mlserver.types import InferenceRequest, InferenceResponse\n",
+ "from mlserver.codecs import NumpyCodec, StringCodec\n",
+ "\n",
+ "parameters_np = np.array([[1, 2], [3, 4]])\n",
+ "parameters_str = [\"hello world 😁\"]\n",
+ "\n",
+ "payload = InferenceRequest(\n",
+ " inputs=[\n",
+ " NumpyCodec.encode_input(\"parameters-np\", parameters_np),\n",
+ " # The `use_bytes=False` flag will ensure that the encoded payload is JSON-compatible\n",
+ " StringCodec.encode_input(\"parameters-str\", parameters_str, use_bytes=False),\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "response = requests.post(\n",
+ " \"http://localhost:8080/v2/models/content-type-example/infer\",\n",
+ " json=payload.model_dump()\n",
+ ")\n",
+ "\n",
+ "response_payload = InferenceResponse.parse_raw(response.text)\n",
+ "print(NumpyCodec.decode_output(response_payload.outputs[0]))\n",
+ "print(StringCodec.decode_output(response_payload.outputs[1]))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d143ef5b-6f8f-41e2-9de5-91806899d94b",
+ "metadata": {},
+ "source": [
+ "Note that the rewritten snippet now makes use of the built-in `InferenceRequest` class, which represents a V2 inference request.\n",
+ "On top of that, it also uses the `NumpyCodec` and `StringCodec` implementations, which know how to encode a Numpy array and a list of strings into V2-compatible request inputs."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "false-blind",
+ "metadata": {},
+ "source": [
+ "### Model Metadata\n",
+ "\n",
+ "Our next step will be to define the expected content type through the model metadata.\n",
+ "This can be done by extending the `model-settings.json` file, and adding a section on inputs."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "enclosed-russia",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "\n",
+ "{\n",
+ " \"name\": \"content-type-example\",\n",
+ " \"implementation\": \"runtime.EchoRuntime\",\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"metadata-np\",\n",
+ " \"datatype\": \"INT32\",\n",
+ " \"shape\": [2, 2],\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"np\"\n",
+ " }\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"metadata-str\",\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"shape\": [11],\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"str\"\n",
+ " }\n",
+ " }\n",
+ " ]\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "linear-logic",
+ "metadata": {},
+ "source": [
+ "After adding this metadata, we will re-start MLServer (e.g. `mlserver start .`) and we will send a new request without any explicit `parameters`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "independent-yacht",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "payload = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"metadata-np\",\n",
+ " \"datatype\": \"INT32\",\n",
+ " \"shape\": [2, 2],\n",
+ " \"data\": [1, 2, 3, 4],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"metadata-str\",\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"shape\": [11],\n",
+ " \"data\": \"hello world 😁\",\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "response = requests.post(\n",
+ " \"http://localhost:8080/v2/models/content-type-example/infer\",\n",
+ " json=payload\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "waiting-samuel",
+ "metadata": {},
+ "source": [
+ "As you should be able to see in the server logs, MLServer will cross-reference the input names against the model metadata to find the right content type."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "documentary-butterfly",
+ "metadata": {},
+ "source": [
+ "### Custom Codecs\n",
+ "\n",
+ "There may be cases where a custom inference runtime may need to encode / decode to custom datatypes.\n",
+ "As an example, we can think of computer vision models which may only operate with `pillow` image objects.\n",
+ "\n",
+ "In these scenarios, it's possible to extend the `Codec` interface to write our custom encoding logic.\n",
+ "A `Codec`, is simply an object which defines a `decode()` and `encode()` methods.\n",
+ "To illustrate how this would work, we will extend our custom runtime to add a custom `PillowCodec`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "simple-reducing",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile runtime.py\n",
+ "import io\n",
+ "import json\n",
+ "\n",
+ "from PIL import Image\n",
+ "\n",
+ "from mlserver import MLModel\n",
+ "from mlserver.types import (\n",
+ " InferenceRequest,\n",
+ " InferenceResponse,\n",
+ " RequestInput,\n",
+ " ResponseOutput,\n",
+ ")\n",
+ "from mlserver.codecs import NumpyCodec, register_input_codec, DecodedParameterName\n",
+ "from mlserver.codecs.utils import InputOrOutput\n",
+ "\n",
+ "\n",
+ "_to_exclude = {\n",
+ " \"parameters\": {DecodedParameterName},\n",
+ " \"inputs\": {\"__all__\": {\"parameters\": {DecodedParameterName}}},\n",
+ "}\n",
+ "\n",
+ "\n",
+ "@register_input_codec\n",
+ "class PillowCodec(NumpyCodec):\n",
+ " ContentType = \"img\"\n",
+ " DefaultMode = \"L\"\n",
+ "\n",
+ " @classmethod\n",
+ " def can_encode(cls, payload: Image) -> bool:\n",
+ " return isinstance(payload, Image)\n",
+ "\n",
+ " @classmethod\n",
+ " def _decode(cls, input_or_output: InputOrOutput) -> Image:\n",
+ " if input_or_output.datatype != \"BYTES\":\n",
+ " # If not bytes, assume it's an array\n",
+ " image_array = super().decode_input(input_or_output) # type: ignore\n",
+ " return Image.fromarray(image_array, mode=cls.DefaultMode)\n",
+ "\n",
+ " encoded = input_or_output.data\n",
+ " if isinstance(encoded, str):\n",
+ " encoded = encoded.encode()\n",
+ "\n",
+ " return Image.frombytes(\n",
+ " mode=cls.DefaultMode, size=input_or_output.shape, data=encoded\n",
+ " )\n",
+ "\n",
+ " @classmethod\n",
+ " def encode_output(cls, name: str, payload: Image) -> ResponseOutput: # type: ignore\n",
+ " byte_array = io.BytesIO()\n",
+ " payload.save(byte_array, mode=cls.DefaultMode)\n",
+ "\n",
+ " return ResponseOutput(\n",
+ " name=name, shape=payload.size, datatype=\"BYTES\", data=byte_array.getvalue()\n",
+ " )\n",
+ "\n",
+ " @classmethod\n",
+ " def decode_output(cls, response_output: ResponseOutput) -> Image:\n",
+ " return cls._decode(response_output)\n",
+ "\n",
+ " @classmethod\n",
+ " def encode_input(cls, name: str, payload: Image) -> RequestInput: # type: ignore\n",
+ " output = cls.encode_output(name, payload)\n",
+ " return RequestInput(\n",
+ " name=output.name,\n",
+ " shape=output.shape,\n",
+ " datatype=output.datatype,\n",
+ " data=output.data,\n",
+ " )\n",
+ "\n",
+ " @classmethod\n",
+ " def decode_input(cls, request_input: RequestInput) -> Image:\n",
+ " return cls._decode(request_input)\n",
+ "\n",
+ "\n",
+ "class EchoRuntime(MLModel):\n",
+ " async def predict(self, payload: InferenceRequest) -> InferenceResponse:\n",
+ " outputs = []\n",
+ " for request_input in payload.inputs:\n",
+ " decoded_input = self.decode(request_input)\n",
+ " print(f\"------ Encoded Input ({request_input.name}) ------\")\n",
+ " as_dict = request_input.dict(exclude=_to_exclude) # type: ignore\n",
+ " print(json.dumps(as_dict, indent=2))\n",
+ " print(f\"------ Decoded input ({request_input.name}) ------\")\n",
+ " print(decoded_input)\n",
+ "\n",
+ " outputs.append(\n",
+ " ResponseOutput(\n",
+ " name=request_input.name,\n",
+ " datatype=request_input.datatype,\n",
+ " shape=request_input.shape,\n",
+ " data=request_input.data,\n",
+ " )\n",
+ " )\n",
+ "\n",
+ " return InferenceResponse(model_name=self.name, outputs=outputs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "communist-childhood",
+ "metadata": {},
+ "source": [
+ "We should now be able to restart our instance of MLServer (i.e. with the `mlserver start .` command), to send a few test requests."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "underlying-judgment",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "payload = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"image-int32\",\n",
+ " \"datatype\": \"INT32\",\n",
+ " \"shape\": [8, 8],\n",
+ " \"data\": [\n",
+ " 1, 0, 1, 0, 1, 0, 1, 0,\n",
+ " 1, 0, 1, 0, 1, 0, 1, 0,\n",
+ " 1, 0, 1, 0, 1, 0, 1, 0,\n",
+ " 1, 0, 1, 0, 1, 0, 1, 0,\n",
+ " 1, 0, 1, 0, 1, 0, 1, 0,\n",
+ " 1, 0, 1, 0, 1, 0, 1, 0,\n",
+ " 1, 0, 1, 0, 1, 0, 1, 0,\n",
+ " 1, 0, 1, 0, 1, 0, 1, 0\n",
+ " ],\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"img\"\n",
+ " }\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"image-bytes\",\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"shape\": [8, 8],\n",
+ " \"data\": (\n",
+ " \"10101010\"\n",
+ " \"10101010\"\n",
+ " \"10101010\"\n",
+ " \"10101010\"\n",
+ " \"10101010\"\n",
+ " \"10101010\"\n",
+ " \"10101010\"\n",
+ " \"10101010\"\n",
+ " ),\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"img\"\n",
+ " }\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "response = requests.post(\n",
+ " \"http://localhost:8080/v2/models/content-type-example/infer\",\n",
+ " json=payload\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "creative-roads",
+ "metadata": {},
+ "source": [
+ "As you should be able to see in the MLServer logs, the server is now able to decode the payload into a Pillow image.\n",
+ "This example also illustrates how `Codec` objects can be compatible with multiple `datatype` values (e.g. tensor and `BYTES` in this case)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "flexible-series",
+ "metadata": {},
+ "source": [
+ "## Request Codecs\n",
+ "\n",
+ "So far, we've seen how you can specify codecs so that they get applied at the input level.\n",
+ "However, it is also possible to use request-wide codecs that aggregate multiple inputs to decode the payload.\n",
+ "This is usually relevant for cases where the models expect a multi-column input type, like a Pandas DataFrame.\n",
+ "\n",
+ "To illustrate this, we will first tweak our `EchoRuntime` so that it prints the decoded contents at the request level."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "identical-somerset",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile runtime.py\n",
+ "import json\n",
+ "\n",
+ "from mlserver import MLModel\n",
+ "from mlserver.types import InferenceRequest, InferenceResponse, ResponseOutput\n",
+ "from mlserver.codecs import DecodedParameterName\n",
+ "\n",
+ "_to_exclude = {\n",
+ " \"parameters\": {DecodedParameterName},\n",
+ " 'inputs': {\"__all__\": {\"parameters\": {DecodedParameterName}}}\n",
+ "}\n",
+ "\n",
+ "class EchoRuntime(MLModel):\n",
+ " async def predict(self, payload: InferenceRequest) -> InferenceResponse:\n",
+ " print(\"------ Encoded Input (request) ------\")\n",
+ " as_dict = payload.dict(exclude=_to_exclude) # type: ignore\n",
+ " print(json.dumps(as_dict, indent=2))\n",
+ " print(\"------ Decoded input (request) ------\")\n",
+ " decoded_request = None\n",
+ " if payload.parameters:\n",
+ " decoded_request = getattr(payload.parameters, DecodedParameterName)\n",
+ " print(decoded_request)\n",
+ " \n",
+ " outputs = []\n",
+ " for request_input in payload.inputs:\n",
+ " outputs.append(\n",
+ " ResponseOutput(\n",
+ " name=request_input.name,\n",
+ " datatype=request_input.datatype,\n",
+ " shape=request_input.shape,\n",
+ " data=request_input.data\n",
+ " )\n",
+ " )\n",
+ " \n",
+ " return InferenceResponse(model_name=self.name, outputs=outputs)\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "labeled-onion",
+ "metadata": {},
+ "source": [
+ "We should now be able to restart our instance of MLServer (i.e. with the `mlserver start .` command), to send a few test requests."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "satellite-texas",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "payload = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"parameters-np\",\n",
+ " \"datatype\": \"INT32\",\n",
+ " \"shape\": [2, 2],\n",
+ " \"data\": [1, 2, 3, 4],\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"np\"\n",
+ " }\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"parameters-str\",\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"shape\": [2, 11],\n",
+ " \"data\": [\"hello world 😁\", \"bye bye 😁\"],\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"str\"\n",
+ " }\n",
+ " }\n",
+ " ],\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"pd\"\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "response = requests.post(\n",
+ " \"http://localhost:8080/v2/models/content-type-example/infer\",\n",
+ " json=payload\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "figured-member",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs-gb/examples/content-type/README.md b/docs-gb/examples/content-type/README.md
new file mode 100644
index 000000000..cd905cf3c
--- /dev/null
+++ b/docs-gb/examples/content-type/README.md
@@ -0,0 +1,478 @@
+# Content Type Decoding
+
+MLServer extends the V2 inference protocol by adding support for a `content_type` annotation.
+This annotation can be provided either through the model metadata `parameters`, or through the input `parameters`.
+By leveraging the `content_type` annotation, we can provide the necessary information to MLServer so that it can _decode_ the input payload from the "wire" V2 protocol to something meaningful to the model / user (e.g. a NumPy array).
+
+This example will walk you through some examples which illustrate how this works, and how it can be extended.
+
+## Echo Inference Runtime
+
+To start with, we will write a _dummy_ runtime which just prints the input, the _decoded_ input and returns it.
+This will serve as a testbed to showcase how the `content_type` support works.
+
+Later on, we will extend this runtime by adding custom _codecs_ that will decode our V2 payload to custom types.
+
+
+```python
+%%writefile runtime.py
+import json
+
+from mlserver import MLModel
+from mlserver.types import InferenceRequest, InferenceResponse, ResponseOutput
+from mlserver.codecs import DecodedParameterName
+
+_to_exclude = {
+ "parameters": {DecodedParameterName, "headers"},
+ 'inputs': {"__all__": {"parameters": {DecodedParameterName, "headers"}}}
+}
+
+class EchoRuntime(MLModel):
+ async def predict(self, payload: InferenceRequest) -> InferenceResponse:
+ outputs = []
+ for request_input in payload.inputs:
+ decoded_input = self.decode(request_input)
+ print(f"------ Encoded Input ({request_input.name}) ------")
+ as_dict = request_input.dict(exclude=_to_exclude) # type: ignore
+ print(json.dumps(as_dict, indent=2))
+ print(f"------ Decoded input ({request_input.name}) ------")
+ print(decoded_input)
+
+ outputs.append(
+ ResponseOutput(
+ name=request_input.name,
+ datatype=request_input.datatype,
+ shape=request_input.shape,
+ data=request_input.data
+ )
+ )
+
+ return InferenceResponse(model_name=self.name, outputs=outputs)
+
+```
+
+As you can see above, this runtime will decode the incoming payloads by calling the `self.decode()` helper method.
+This method will check what's the right content type for each input in the following order:
+
+1. Is there any content type defined in the `inputs[].parameters.content_type` field within the **request payload**?
+2. Is there any content type defined in the `inputs[].parameters.content_type` field within the **model metadata**?
+3. Is there any default content type that should be assumed?
+
+
+### Model Settings
+
+In order to enable this runtime, we will also create a `model-settings.json` file.
+This file should be present (or accessible from) in the folder where we run `mlserver start .`.
+
+
+```python
+%%writefile model-settings.json
+
+{
+ "name": "content-type-example",
+ "implementation": "runtime.EchoRuntime"
+}
+```
+
+## Request Inputs
+
+Our initial step will be to decide the content type based on the incoming `inputs[].parameters` field.
+For this, we will start our MLServer in the background (e.g. running `mlserver start .`)
+
+
+```python
+import requests
+
+payload = {
+ "inputs": [
+ {
+ "name": "parameters-np",
+ "datatype": "INT32",
+ "shape": [2, 2],
+ "data": [1, 2, 3, 4],
+ "parameters": {
+ "content_type": "np"
+ }
+ },
+ {
+ "name": "parameters-str",
+ "datatype": "BYTES",
+ "shape": [1],
+ "data": "hello world 😁",
+ "parameters": {
+ "content_type": "str"
+ }
+ }
+ ]
+}
+
+response = requests.post(
+ "http://localhost:8080/v2/models/content-type-example/infer",
+ json=payload
+)
+```
+
+### Codecs
+
+As you've probably already noticed, writing request payloads compliant with both the V2 Inference Protocol requires a certain knowledge about both the V2 spec and the structure expected by each content type.
+To account for this and simplify usage, the MLServer package exposes a set of utilities which will help you interact with your models via the V2 protocol.
+
+These helpers are mainly shaped as _"codecs"_.
+That is, abstractions which know how to _"encode"_ and _"decode"_ arbitrary Python datatypes to and from the V2 Inference Protocol.
+
+Generally, we recommend using the existing set of codecs to generate your V2 payloads.
+This will ensure that requests and responses follow the right structure, and should provide a more seamless experience.
+
+Following with our previous example, the same code could be rewritten using codecs as:
+
+
+```python
+import requests
+import numpy as np
+
+from mlserver.types import InferenceRequest, InferenceResponse
+from mlserver.codecs import NumpyCodec, StringCodec
+
+parameters_np = np.array([[1, 2], [3, 4]])
+parameters_str = ["hello world 😁"]
+
+payload = InferenceRequest(
+ inputs=[
+ NumpyCodec.encode_input("parameters-np", parameters_np),
+ # The `use_bytes=False` flag will ensure that the encoded payload is JSON-compatible
+ StringCodec.encode_input("parameters-str", parameters_str, use_bytes=False),
+ ]
+)
+
+response = requests.post(
+ "http://localhost:8080/v2/models/content-type-example/infer",
+ json=payload.model_dump()
+)
+
+response_payload = InferenceResponse.parse_raw(response.text)
+print(NumpyCodec.decode_output(response_payload.outputs[0]))
+print(StringCodec.decode_output(response_payload.outputs[1]))
+```
+
+Note that the rewritten snippet now makes use of the built-in `InferenceRequest` class, which represents a V2 inference request.
+On top of that, it also uses the `NumpyCodec` and `StringCodec` implementations, which know how to encode a Numpy array and a list of strings into V2-compatible request inputs.
+
+### Model Metadata
+
+Our next step will be to define the expected content type through the model metadata.
+This can be done by extending the `model-settings.json` file, and adding a section on inputs.
+
+
+```python
+%%writefile model-settings.json
+
+{
+ "name": "content-type-example",
+ "implementation": "runtime.EchoRuntime",
+ "inputs": [
+ {
+ "name": "metadata-np",
+ "datatype": "INT32",
+ "shape": [2, 2],
+ "parameters": {
+ "content_type": "np"
+ }
+ },
+ {
+ "name": "metadata-str",
+ "datatype": "BYTES",
+ "shape": [11],
+ "parameters": {
+ "content_type": "str"
+ }
+ }
+ ]
+}
+```
+
+After adding this metadata, we will re-start MLServer (e.g. `mlserver start .`) and we will send a new request without any explicit `parameters`.
+
+
+```python
+import requests
+
+payload = {
+ "inputs": [
+ {
+ "name": "metadata-np",
+ "datatype": "INT32",
+ "shape": [2, 2],
+ "data": [1, 2, 3, 4],
+ },
+ {
+ "name": "metadata-str",
+ "datatype": "BYTES",
+ "shape": [11],
+ "data": "hello world 😁",
+ }
+ ]
+}
+
+response = requests.post(
+ "http://localhost:8080/v2/models/content-type-example/infer",
+ json=payload
+)
+```
+
+As you should be able to see in the server logs, MLServer will cross-reference the input names against the model metadata to find the right content type.
+
+### Custom Codecs
+
+There may be cases where a custom inference runtime may need to encode / decode to custom datatypes.
+As an example, we can think of computer vision models which may only operate with `pillow` image objects.
+
+In these scenarios, it's possible to extend the `Codec` interface to write our custom encoding logic.
+A `Codec`, is simply an object which defines a `decode()` and `encode()` methods.
+To illustrate how this would work, we will extend our custom runtime to add a custom `PillowCodec`.
+
+
+```python
+%%writefile runtime.py
+import io
+import json
+
+from PIL import Image
+
+from mlserver import MLModel
+from mlserver.types import (
+ InferenceRequest,
+ InferenceResponse,
+ RequestInput,
+ ResponseOutput,
+)
+from mlserver.codecs import NumpyCodec, register_input_codec, DecodedParameterName
+from mlserver.codecs.utils import InputOrOutput
+
+
+_to_exclude = {
+ "parameters": {DecodedParameterName},
+ "inputs": {"__all__": {"parameters": {DecodedParameterName}}},
+}
+
+
+@register_input_codec
+class PillowCodec(NumpyCodec):
+ ContentType = "img"
+ DefaultMode = "L"
+
+ @classmethod
+ def can_encode(cls, payload: Image) -> bool:
+ return isinstance(payload, Image)
+
+ @classmethod
+ def _decode(cls, input_or_output: InputOrOutput) -> Image:
+ if input_or_output.datatype != "BYTES":
+ # If not bytes, assume it's an array
+ image_array = super().decode_input(input_or_output) # type: ignore
+ return Image.fromarray(image_array, mode=cls.DefaultMode)
+
+ encoded = input_or_output.data
+ if isinstance(encoded, str):
+ encoded = encoded.encode()
+
+ return Image.frombytes(
+ mode=cls.DefaultMode, size=input_or_output.shape, data=encoded
+ )
+
+ @classmethod
+ def encode_output(cls, name: str, payload: Image) -> ResponseOutput: # type: ignore
+ byte_array = io.BytesIO()
+ payload.save(byte_array, mode=cls.DefaultMode)
+
+ return ResponseOutput(
+ name=name, shape=payload.size, datatype="BYTES", data=byte_array.getvalue()
+ )
+
+ @classmethod
+ def decode_output(cls, response_output: ResponseOutput) -> Image:
+ return cls._decode(response_output)
+
+ @classmethod
+ def encode_input(cls, name: str, payload: Image) -> RequestInput: # type: ignore
+ output = cls.encode_output(name, payload)
+ return RequestInput(
+ name=output.name,
+ shape=output.shape,
+ datatype=output.datatype,
+ data=output.data,
+ )
+
+ @classmethod
+ def decode_input(cls, request_input: RequestInput) -> Image:
+ return cls._decode(request_input)
+
+
+class EchoRuntime(MLModel):
+ async def predict(self, payload: InferenceRequest) -> InferenceResponse:
+ outputs = []
+ for request_input in payload.inputs:
+ decoded_input = self.decode(request_input)
+ print(f"------ Encoded Input ({request_input.name}) ------")
+ as_dict = request_input.dict(exclude=_to_exclude) # type: ignore
+ print(json.dumps(as_dict, indent=2))
+ print(f"------ Decoded input ({request_input.name}) ------")
+ print(decoded_input)
+
+ outputs.append(
+ ResponseOutput(
+ name=request_input.name,
+ datatype=request_input.datatype,
+ shape=request_input.shape,
+ data=request_input.data,
+ )
+ )
+
+ return InferenceResponse(model_name=self.name, outputs=outputs)
+```
+
+We should now be able to restart our instance of MLServer (i.e. with the `mlserver start .` command), to send a few test requests.
+
+
+```python
+import requests
+
+payload = {
+ "inputs": [
+ {
+ "name": "image-int32",
+ "datatype": "INT32",
+ "shape": [8, 8],
+ "data": [
+ 1, 0, 1, 0, 1, 0, 1, 0,
+ 1, 0, 1, 0, 1, 0, 1, 0,
+ 1, 0, 1, 0, 1, 0, 1, 0,
+ 1, 0, 1, 0, 1, 0, 1, 0,
+ 1, 0, 1, 0, 1, 0, 1, 0,
+ 1, 0, 1, 0, 1, 0, 1, 0,
+ 1, 0, 1, 0, 1, 0, 1, 0,
+ 1, 0, 1, 0, 1, 0, 1, 0
+ ],
+ "parameters": {
+ "content_type": "img"
+ }
+ },
+ {
+ "name": "image-bytes",
+ "datatype": "BYTES",
+ "shape": [8, 8],
+ "data": (
+ "10101010"
+ "10101010"
+ "10101010"
+ "10101010"
+ "10101010"
+ "10101010"
+ "10101010"
+ "10101010"
+ ),
+ "parameters": {
+ "content_type": "img"
+ }
+ }
+ ]
+}
+
+response = requests.post(
+ "http://localhost:8080/v2/models/content-type-example/infer",
+ json=payload
+)
+```
+
+As you should be able to see in the MLServer logs, the server is now able to decode the payload into a Pillow image.
+This example also illustrates how `Codec` objects can be compatible with multiple `datatype` values (e.g. tensor and `BYTES` in this case).
+
+## Request Codecs
+
+So far, we've seen how you can specify codecs so that they get applied at the input level.
+However, it is also possible to use request-wide codecs that aggregate multiple inputs to decode the payload.
+This is usually relevant for cases where the models expect a multi-column input type, like a Pandas DataFrame.
+
+To illustrate this, we will first tweak our `EchoRuntime` so that it prints the decoded contents at the request level.
+
+
+```python
+%%writefile runtime.py
+import json
+
+from mlserver import MLModel
+from mlserver.types import InferenceRequest, InferenceResponse, ResponseOutput
+from mlserver.codecs import DecodedParameterName
+
+_to_exclude = {
+ "parameters": {DecodedParameterName},
+ 'inputs': {"__all__": {"parameters": {DecodedParameterName}}}
+}
+
+class EchoRuntime(MLModel):
+ async def predict(self, payload: InferenceRequest) -> InferenceResponse:
+ print("------ Encoded Input (request) ------")
+ as_dict = payload.dict(exclude=_to_exclude) # type: ignore
+ print(json.dumps(as_dict, indent=2))
+ print("------ Decoded input (request) ------")
+ decoded_request = None
+ if payload.parameters:
+ decoded_request = getattr(payload.parameters, DecodedParameterName)
+ print(decoded_request)
+
+ outputs = []
+ for request_input in payload.inputs:
+ outputs.append(
+ ResponseOutput(
+ name=request_input.name,
+ datatype=request_input.datatype,
+ shape=request_input.shape,
+ data=request_input.data
+ )
+ )
+
+ return InferenceResponse(model_name=self.name, outputs=outputs)
+
+```
+
+We should now be able to restart our instance of MLServer (i.e. with the `mlserver start .` command), to send a few test requests.
+
+
+```python
+import requests
+
+payload = {
+ "inputs": [
+ {
+ "name": "parameters-np",
+ "datatype": "INT32",
+ "shape": [2, 2],
+ "data": [1, 2, 3, 4],
+ "parameters": {
+ "content_type": "np"
+ }
+ },
+ {
+ "name": "parameters-str",
+ "datatype": "BYTES",
+ "shape": [2, 11],
+ "data": ["hello world 😁", "bye bye 😁"],
+ "parameters": {
+ "content_type": "str"
+ }
+ }
+ ],
+ "parameters": {
+ "content_type": "pd"
+ }
+}
+
+response = requests.post(
+ "http://localhost:8080/v2/models/content-type-example/infer",
+ json=payload
+)
+```
+
+
+```python
+
+```
diff --git a/docs-gb/examples/content-type/model-settings.json b/docs-gb/examples/content-type/model-settings.json
new file mode 100644
index 000000000..0565febb2
--- /dev/null
+++ b/docs-gb/examples/content-type/model-settings.json
@@ -0,0 +1,23 @@
+
+{
+ "name": "content-type-example",
+ "implementation": "runtime.EchoRuntime",
+ "inputs": [
+ {
+ "name": "metadata-np",
+ "datatype": "INT32",
+ "shape": [2, 2],
+ "parameters": {
+ "content_type": "np"
+ }
+ },
+ {
+ "name": "metadata-str",
+ "datatype": "BYTES",
+ "shape": [11],
+ "parameters": {
+ "content_type": "str"
+ }
+ }
+ ]
+}
diff --git a/docs-gb/examples/content-type/runtime.py b/docs-gb/examples/content-type/runtime.py
new file mode 100644
index 000000000..5e3d98985
--- /dev/null
+++ b/docs-gb/examples/content-type/runtime.py
@@ -0,0 +1,103 @@
+import io
+import json
+
+from PIL import Image
+
+from mlserver import MLModel
+from mlserver.types import (
+ InferenceRequest,
+ InferenceResponse,
+ RequestInput,
+ ResponseOutput,
+)
+from mlserver.codecs import InputCodec, register_input_codec, DecodedParameterName
+from mlserver.codecs.utils import InputOrOutput
+
+
+_to_exclude = {
+ "parameters": {DecodedParameterName},
+ "inputs": {"__all__": {"parameters": {DecodedParameterName}}},
+}
+
+
+@register_input_codec
+class PillowCodec(InputCodec):
+ ContentType = "img"
+ DefaultMode = "L"
+
+ @classmethod
+ def can_encode(cls, payload: Image.Image) -> bool:
+ return isinstance(payload, Image.Image)
+
+ @classmethod
+ def _decode(cls, input_or_output: InputOrOutput) -> Image.Image:
+ if input_or_output.datatype != "BYTES":
+ # If not bytes, assume it's an array
+ image_array = super().decode_input(input_or_output) # type: ignore
+ return Image.fromarray(image_array, mode=cls.DefaultMode)
+
+ encoded = input_or_output.data
+ if isinstance(encoded, str):
+ encoded = encoded.encode()
+
+ return Image.frombytes(
+ mode=cls.DefaultMode, size=input_or_output.shape, data=encoded
+ )
+
+ @classmethod
+ def encode_output( # type: ignore
+ cls,
+ name: str,
+ payload: Image.Image,
+ ) -> ResponseOutput: # type: ignore
+ byte_array = io.BytesIO()
+ payload.save(byte_array, mode=cls.DefaultMode)
+
+ return ResponseOutput(
+ name=name, shape=payload.size, datatype="BYTES", data=byte_array.getvalue()
+ )
+
+ @classmethod
+ def decode_output(cls, response_output: ResponseOutput) -> Image.Image:
+ return cls._decode(response_output)
+
+ @classmethod
+ def encode_input( # type: ignore
+ cls,
+ name: str,
+ payload: Image.Image,
+ ) -> RequestInput: # type: ignore
+ output = cls.encode_output(name, payload)
+ return RequestInput(
+ name=output.name,
+ shape=output.shape,
+ datatype=output.datatype,
+ data=output.data,
+ )
+
+ @classmethod
+ def decode_input(cls, request_input: RequestInput) -> Image.Image:
+ return cls._decode(request_input)
+
+
+class EchoRuntime(MLModel):
+ async def predict(self, payload: InferenceRequest) -> InferenceResponse:
+ outputs = []
+ for request_input in payload.inputs:
+ decoded_input = self.decode(request_input)
+ print(f"------ Encoded Input ({request_input.name}) ------")
+ as_dict = request_input.dict(exclude=_to_exclude) # type: ignore
+ print(json.dumps(as_dict, indent=2))
+ print(f"------ Decoded input ({request_input.name}) ------")
+ print(decoded_input)
+
+ outputs.append(
+ ResponseOutput(
+ name=request_input.name,
+ datatype=request_input.datatype,
+ shape=request_input.shape,
+ data=request_input.data,
+ )
+ )
+
+ return InferenceResponse(model_name=self.name, outputs=outputs)
diff --git a/docs-gb/examples/custom-json/README.ipynb b/docs-gb/examples/custom-json/README.ipynb
new file mode 100644
index 000000000..475bbb575
--- /dev/null
+++ b/docs-gb/examples/custom-json/README.ipynb
@@ -0,0 +1,317 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Serving a custom model with JSON serialization\n",
+ "\n",
+ "The `mlserver` package comes with inference runtime implementations for `scikit-learn` and `xgboost` models.\n",
+ "However, some times we may also need to roll out our own inference server, with custom logic to perform inference.\n",
+ "To support this scenario, MLServer makes it really easy to create your own extensions, which can then be containerised and deployed in a production environment."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "In this example, we create a simple `Hello World JSON` model that parses and modifies a JSON data chunk. This is often useful as a means to\n",
+ "quickly bootstrap existing models that utilize JSON based model inputs."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "The next step will be to serve our model using `mlserver`. \n",
+ "For that, we will first implement an extension which serve as the _runtime_ to perform inference using our custom `Hello World JSON` model."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Custom inference runtime\n",
+ "\n",
+ "This is a trivial model to demonstrate how to conceptually work with JSON inputs / outputs. In this example:\n",
+ "\n",
+ "- Parse the JSON input from the client\n",
+ "- Create a JSON response echoing back the client request as well as a server generated message\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile jsonmodels.py\n",
+ "import json\n",
+ "\n",
+ "from typing import Dict, Any\n",
+ "from mlserver import MLModel, types\n",
+ "from mlserver.codecs import StringCodec\n",
+ "\n",
+ "\n",
+ "class JsonHelloWorldModel(MLModel):\n",
+ " async def load(self) -> bool:\n",
+ " # Perform additional custom initialization here.\n",
+ " print(\"Initialize model\")\n",
+ "\n",
+ " # Set readiness flag for model\n",
+ " return await super().load()\n",
+ "\n",
+ " async def predict(self, payload: types.InferenceRequest) -> types.InferenceResponse:\n",
+ " request = self._extract_json(payload)\n",
+ " response = {\n",
+ " \"request\": request,\n",
+ " \"server_response\": \"Got your request. Hello from the server.\",\n",
+ " }\n",
+ " response_bytes = json.dumps(response).encode(\"UTF-8\")\n",
+ "\n",
+ " return types.InferenceResponse(\n",
+ " id=payload.id,\n",
+ " model_name=self.name,\n",
+ " model_version=self.version,\n",
+ " outputs=[\n",
+ " types.ResponseOutput(\n",
+ " name=\"echo_response\",\n",
+ " shape=[len(response_bytes)],\n",
+ " datatype=\"BYTES\",\n",
+ " data=[response_bytes],\n",
+ " parameters=types.Parameters(content_type=\"str\"),\n",
+ " )\n",
+ " ],\n",
+ " )\n",
+ "\n",
+ " def _extract_json(self, payload: types.InferenceRequest) -> Dict[str, Any]:\n",
+ " inputs = {}\n",
+ " for inp in payload.inputs:\n",
+ " inputs[inp.name] = json.loads(\n",
+ " \"\".join(self.decode(inp, default_codec=StringCodec))\n",
+ " )\n",
+ "\n",
+ " return inputs\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Settings files\n",
+ "\n",
+ "The next step will be to create 2 configuration files: \n",
+ "\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### `settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile settings.json\n",
+ "{\n",
+ " \"debug\": \"true\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### `model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "{\n",
+ " \"name\": \"json-hello-world\",\n",
+ " \"implementation\": \"jsonmodels.JsonHelloWorldModel\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request (REST)\n",
+ "\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "import json\n",
+ "from mlserver.types import InferenceResponse\n",
+ "from mlserver.codecs.string import StringRequestCodec\n",
+ "from pprint import PrettyPrinter\n",
+ "\n",
+ "pp = PrettyPrinter(indent=1)\n",
+ "\n",
+ "inputs = {\"name\": \"Foo Bar\", \"message\": \"Hello from Client (REST)!\"}\n",
+ "\n",
+ "# NOTE: this uses characters rather than encoded bytes. It is recommended that you use the `mlserver` types to assist in the correct encoding.\n",
+ "inputs_string = json.dumps(inputs)\n",
+ "\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"echo_request\",\n",
+ " \"shape\": [len(inputs_string)],\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"data\": [inputs_string],\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/json-hello-world/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "print(f\"full response:\\n\")\n",
+ "print(response)\n",
+ "# retrive text output as dictionary\n",
+ "inference_response = InferenceResponse.parse_raw(response.text)\n",
+ "raw_json = StringRequestCodec.decode_response(inference_response)\n",
+ "output = json.loads(raw_json[0])\n",
+ "print(f\"\\ndata part:\\n\")\n",
+ "pp.pprint(output)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request (gRPC)\n",
+ "\n",
+ "\n",
+ "Utilizing string data with the gRPC interface can be a bit tricky. To ensure we are correctly handling inputs and\n",
+ "outputs we will be handled correctly.\n",
+ "\n",
+ "For simplicity in this case, we leverage the Python types that `mlserver` provides out of the box. Alternatively,\n",
+ "the gRPC stubs can be generated regenerated from the V2 specification directly for use by non-Python as well as \n",
+ "Python clients."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "import json\n",
+ "import grpc\n",
+ "from mlserver.codecs.string import StringRequestCodec\n",
+ "import mlserver.grpc.converters as converters\n",
+ "import mlserver.grpc.dataplane_pb2_grpc as dataplane\n",
+ "import mlserver.types as types\n",
+ "from pprint import PrettyPrinter\n",
+ "\n",
+ "pp = PrettyPrinter(indent=1)\n",
+ "\n",
+ "model_name = \"json-hello-world\"\n",
+ "inputs = {\"name\": \"Foo Bar\", \"message\": \"Hello from Client (gRPC)!\"}\n",
+ "inputs_bytes = json.dumps(inputs).encode(\"UTF-8\")\n",
+ "\n",
+ "inference_request = types.InferenceRequest(\n",
+ " inputs=[\n",
+ " types.RequestInput(\n",
+ " name=\"echo_request\",\n",
+ " shape=[len(inputs_bytes)],\n",
+ " datatype=\"BYTES\",\n",
+ " data=[inputs_bytes],\n",
+ " parameters=types.Parameters(content_type=\"str\"),\n",
+ " )\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "inference_request_g = converters.ModelInferRequestConverter.from_types(\n",
+ " inference_request, model_name=model_name, model_version=None\n",
+ ")\n",
+ "\n",
+ "grpc_channel = grpc.insecure_channel(\"localhost:8081\")\n",
+ "grpc_stub = dataplane.GRPCInferenceServiceStub(grpc_channel)\n",
+ "\n",
+ "response = grpc_stub.ModelInfer(inference_request_g)\n",
+ "\n",
+ "print(f\"full response:\\n\")\n",
+ "print(response)\n",
+ "# retrive text output as dictionary\n",
+ "inference_response = converters.ModelInferResponseConverter.to_types(response)\n",
+ "raw_json = StringRequestCodec.decode_response(inference_response)\n",
+ "output = json.loads(raw_json[0])\n",
+ "print(f\"\\ndata part:\\n\")\n",
+ "pp.pprint(output)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3.8.13 ('central')",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.15"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "2465c4f56298bc06dbdad3e7519856d346ec0e9edf6ba2c905f0af711583810e"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/custom-json/README.md b/docs-gb/examples/custom-json/README.md
new file mode 100644
index 000000000..de67aa24f
--- /dev/null
+++ b/docs-gb/examples/custom-json/README.md
@@ -0,0 +1,218 @@
+# Serving a custom model with JSON serialization
+
+The `mlserver` package comes with inference runtime implementations for `scikit-learn` and `xgboost` models.
+However, some times we may also need to roll out our own inference server, with custom logic to perform inference.
+To support this scenario, MLServer makes it really easy to create your own extensions, which can then be containerised and deployed in a production environment.
+
+## Overview
+
+In this example, we create a simple `Hello World JSON` model that parses and modifies a JSON data chunk. This is often useful as a means to
+quickly bootstrap existing models that utilize JSON based model inputs.
+
+## Serving
+
+The next step will be to serve our model using `mlserver`.
+For that, we will first implement an extension which serve as the _runtime_ to perform inference using our custom `Hello World JSON` model.
+
+### Custom inference runtime
+
+This is a trivial model to demonstrate how to conceptually work with JSON inputs / outputs. In this example:
+
+- Parse the JSON input from the client
+- Create a JSON response echoing back the client request as well as a server generated message
+
+
+
+```python
+%%writefile jsonmodels.py
+import json
+
+from typing import Dict, Any
+from mlserver import MLModel, types
+from mlserver.codecs import StringCodec
+
+
+class JsonHelloWorldModel(MLModel):
+ async def load(self) -> bool:
+ # Perform additional custom initialization here.
+ print("Initialize model")
+
+ # Set readiness flag for model
+ return await super().load()
+
+ async def predict(self, payload: types.InferenceRequest) -> types.InferenceResponse:
+ request = self._extract_json(payload)
+ response = {
+ "request": request,
+ "server_response": "Got your request. Hello from the server.",
+ }
+ response_bytes = json.dumps(response).encode("UTF-8")
+
+ return types.InferenceResponse(
+ id=payload.id,
+ model_name=self.name,
+ model_version=self.version,
+ outputs=[
+ types.ResponseOutput(
+ name="echo_response",
+ shape=[len(response_bytes)],
+ datatype="BYTES",
+ data=[response_bytes],
+ parameters=types.Parameters(content_type="str"),
+ )
+ ],
+ )
+
+ def _extract_json(self, payload: types.InferenceRequest) -> Dict[str, Any]:
+ inputs = {}
+ for inp in payload.inputs:
+ inputs[inp.name] = json.loads(
+ "".join(self.decode(inp, default_codec=StringCodec))
+ )
+
+ return inputs
+
+```
+
+### Settings files
+
+The next step will be to create 2 configuration files:
+
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).
+
+#### `settings.json`
+
+
+```python
+%%writefile settings.json
+{
+ "debug": "true"
+}
+```
+
+#### `model-settings.json`
+
+
+```python
+%%writefile model-settings.json
+{
+ "name": "json-hello-world",
+ "implementation": "jsonmodels.JsonHelloWorldModel"
+}
+```
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request (REST)
+
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request from our test set.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+
+```python
+import requests
+import json
+from mlserver.types import InferenceResponse
+from mlserver.codecs.string import StringRequestCodec
+from pprint import PrettyPrinter
+
+pp = PrettyPrinter(indent=1)
+
+inputs = {"name": "Foo Bar", "message": "Hello from Client (REST)!"}
+
+# NOTE: this uses characters rather than encoded bytes. It is recommended that you use the `mlserver` types to assist in the correct encoding.
+inputs_string = json.dumps(inputs)
+
+inference_request = {
+ "inputs": [
+ {
+ "name": "echo_request",
+ "shape": [len(inputs_string)],
+ "datatype": "BYTES",
+ "data": [inputs_string],
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/json-hello-world/infer"
+response = requests.post(endpoint, json=inference_request)
+
+print(f"full response:\n")
+print(response)
+# retrive text output as dictionary
+inference_response = InferenceResponse.parse_raw(response.text)
+raw_json = StringRequestCodec.decode_response(inference_response)
+output = json.loads(raw_json[0])
+print(f"\ndata part:\n")
+pp.pprint(output)
+```
+
+### Send test inference request (gRPC)
+
+
+Utilizing string data with the gRPC interface can be a bit tricky. To ensure we are correctly handling inputs and
+outputs we will be handled correctly.
+
+For simplicity in this case, we leverage the Python types that `mlserver` provides out of the box. Alternatively,
+the gRPC stubs can be generated regenerated from the V2 specification directly for use by non-Python as well as
+Python clients.
+
+
+```python
+import requests
+import json
+import grpc
+from mlserver.codecs.string import StringRequestCodec
+import mlserver.grpc.converters as converters
+import mlserver.grpc.dataplane_pb2_grpc as dataplane
+import mlserver.types as types
+from pprint import PrettyPrinter
+
+pp = PrettyPrinter(indent=1)
+
+model_name = "json-hello-world"
+inputs = {"name": "Foo Bar", "message": "Hello from Client (gRPC)!"}
+inputs_bytes = json.dumps(inputs).encode("UTF-8")
+
+inference_request = types.InferenceRequest(
+ inputs=[
+ types.RequestInput(
+ name="echo_request",
+ shape=[len(inputs_bytes)],
+ datatype="BYTES",
+ data=[inputs_bytes],
+ parameters=types.Parameters(content_type="str"),
+ )
+ ]
+)
+
+inference_request_g = converters.ModelInferRequestConverter.from_types(
+ inference_request, model_name=model_name, model_version=None
+)
+
+grpc_channel = grpc.insecure_channel("localhost:8081")
+grpc_stub = dataplane.GRPCInferenceServiceStub(grpc_channel)
+
+response = grpc_stub.ModelInfer(inference_request_g)
+
+print(f"full response:\n")
+print(response)
+# retrive text output as dictionary
+inference_response = converters.ModelInferResponseConverter.to_types(response)
+raw_json = StringRequestCodec.decode_response(inference_response)
+output = json.loads(raw_json[0])
+print(f"\ndata part:\n")
+pp.pprint(output)
+```
diff --git a/docs-gb/examples/custom-json/jsonmodels.py b/docs-gb/examples/custom-json/jsonmodels.py
new file mode 100644
index 000000000..72c8399de
--- /dev/null
+++ b/docs-gb/examples/custom-json/jsonmodels.py
@@ -0,0 +1,46 @@
+import json
+
+from typing import Dict, Any
+from mlserver import MLModel, types
+from mlserver.codecs import StringCodec
+
+
+class JsonHelloWorldModel(MLModel):
+ async def load(self) -> bool:
+ # Perform additional custom initialization here.
+ print("Initialize model")
+
+ # Set readiness flag for model
+ return await super().load()
+
+ async def predict(self, payload: types.InferenceRequest) -> types.InferenceResponse:
+ request = self._extract_json(payload)
+ response = {
+ "request": request,
+ "server_response": "Got your request. Hello from the server.",
+ }
+ response_bytes = json.dumps(response).encode("UTF-8")
+
+ return types.InferenceResponse(
+ id=payload.id,
+ model_name=self.name,
+ model_version=self.version,
+ outputs=[
+ types.ResponseOutput(
+ name="echo_response",
+ shape=[len(response_bytes)],
+ datatype="BYTES",
+ data=[response_bytes],
+ parameters=types.Parameters(content_type="str"),
+ )
+ ],
+ )
+
+ def _extract_json(self, payload: types.InferenceRequest) -> Dict[str, Any]:
+ inputs = {}
+ for inp in payload.inputs:
+ inputs[inp.name] = json.loads(
+ "".join(self.decode(inp, default_codec=StringCodec))
+ )
+
+ return inputs
diff --git a/docs-gb/examples/custom-json/model-settings.json b/docs-gb/examples/custom-json/model-settings.json
new file mode 100644
index 000000000..c02bde27e
--- /dev/null
+++ b/docs-gb/examples/custom-json/model-settings.json
@@ -0,0 +1,4 @@
+{
+ "name": "json-hello-world",
+ "implementation": "jsonmodels.JsonHelloWorldModel"
+}
diff --git a/docs-gb/examples/custom-json/settings.json b/docs-gb/examples/custom-json/settings.json
new file mode 100644
index 000000000..f2ee7ab8d
--- /dev/null
+++ b/docs-gb/examples/custom-json/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
diff --git a/docs-gb/examples/custom/README.ipynb b/docs-gb/examples/custom/README.ipynb
new file mode 100644
index 000000000..ed47008f9
--- /dev/null
+++ b/docs-gb/examples/custom/README.ipynb
@@ -0,0 +1,507 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Serving a custom model\n",
+ "\n",
+ "The `mlserver` package comes with inference runtime implementations for `scikit-learn` and `xgboost` models.\n",
+ "However, some times we may also need to roll out our own inference server, with custom logic to perform inference.\n",
+ "To support this scenario, MLServer makes it really easy to create your own extensions, which can then be containerised and deployed in a production environment."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "In this example, we will train a [`numpyro` model](http://num.pyro.ai/en/stable/). \n",
+ "The `numpyro` library streamlines the implementation of probabilistic models, abstracting away advanced inference and training algorithms.\n",
+ "\n",
+ "Out of the box, `mlserver` doesn't provide an inference runtime for `numpyro`.\n",
+ "However, through this example we will see how easy is to develop our own."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training\n",
+ "\n",
+ "The first step will be to train our model.\n",
+ "This will be a very simple bayesian regression model, based on an example provided in the [`numpyro` docs](https://nbviewer.jupyter.org/github/pyro-ppl/numpyro/blob/master/notebooks/source/bayesian_regression.ipynb).\n",
+ "\n",
+ "Since this is a probabilistic model, during training we will compute an approximation to the posterior distribution of our model using MCMC."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Original source code and more details can be found in:\n",
+ "# https://nbviewer.jupyter.org/github/pyro-ppl/numpyro/blob/master/notebooks/source/bayesian_regression.ipynb\n",
+ "\n",
+ "\n",
+ "import numpyro\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "\n",
+ "from numpyro import distributions as dist\n",
+ "from jax import random\n",
+ "from numpyro.infer import MCMC, NUTS\n",
+ "\n",
+ "DATASET_URL = \"https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/WaffleDivorce.csv\"\n",
+ "dset = pd.read_csv(DATASET_URL, sep=\";\")\n",
+ "\n",
+ "standardize = lambda x: (x - x.mean()) / x.std()\n",
+ "\n",
+ "dset[\"AgeScaled\"] = dset.MedianAgeMarriage.pipe(standardize)\n",
+ "dset[\"MarriageScaled\"] = dset.Marriage.pipe(standardize)\n",
+ "dset[\"DivorceScaled\"] = dset.Divorce.pipe(standardize)\n",
+ "\n",
+ "\n",
+ "def model(marriage=None, age=None, divorce=None):\n",
+ " a = numpyro.sample(\"a\", dist.Normal(0.0, 0.2))\n",
+ " M, A = 0.0, 0.0\n",
+ " if marriage is not None:\n",
+ " bM = numpyro.sample(\"bM\", dist.Normal(0.0, 0.5))\n",
+ " M = bM * marriage\n",
+ " if age is not None:\n",
+ " bA = numpyro.sample(\"bA\", dist.Normal(0.0, 0.5))\n",
+ " A = bA * age\n",
+ " sigma = numpyro.sample(\"sigma\", dist.Exponential(1.0))\n",
+ " mu = a + M + A\n",
+ " numpyro.sample(\"obs\", dist.Normal(mu, sigma), obs=divorce)\n",
+ "\n",
+ "\n",
+ "# Start from this source of randomness. We will split keys for subsequent operations.\n",
+ "rng_key = random.PRNGKey(0)\n",
+ "rng_key, rng_key_ = random.split(rng_key)\n",
+ "\n",
+ "num_warmup, num_samples = 1000, 2000\n",
+ "\n",
+ "# Run NUTS.\n",
+ "kernel = NUTS(model)\n",
+ "mcmc = MCMC(kernel, num_warmup=num_warmup, num_samples=num_samples)\n",
+ "mcmc.run(\n",
+ " rng_key_, marriage=dset.MarriageScaled.values, divorce=dset.DivorceScaled.values\n",
+ ")\n",
+ "mcmc.print_summary()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Saving our trained model\n",
+ "\n",
+ "Now that we have _trained_ our model, the next step will be to save it so that it can be loaded afterwards at serving-time.\n",
+ "Note that, since this is a probabilistic model, we will only need to save the traces that approximate the posterior distribution over latent parameters.\n",
+ "\n",
+ "This will get saved in a `numpyro-divorce.json` file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import json\n",
+ "\n",
+ "samples = mcmc.get_samples()\n",
+ "serialisable = {}\n",
+ "for k, v in samples.items():\n",
+ " serialisable[k] = np.asarray(v).tolist()\n",
+ "\n",
+ "model_file_name = \"numpyro-divorce.json\"\n",
+ "with open(model_file_name, \"w\") as model_file:\n",
+ " json.dump(serialisable, model_file)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "The next step will be to serve our model using `mlserver`. \n",
+ "For that, we will first implement an extension which serve as the _runtime_ to perform inference using our custom `numpyro` model."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Custom inference runtime\n",
+ "\n",
+ "Our custom inference wrapper should be responsible of:\n",
+ "\n",
+ "- Loading the model from the set samples we saved previously.\n",
+ "- Running inference using our model structure, and the posterior approximated from the samples.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# %load models.py\n",
+ "import json\n",
+ "import numpyro\n",
+ "import numpy as np\n",
+ "\n",
+ "from jax import random\n",
+ "from mlserver import MLModel\n",
+ "from mlserver.codecs import decode_args\n",
+ "from mlserver.utils import get_model_uri\n",
+ "from numpyro.infer import Predictive\n",
+ "from numpyro import distributions as dist\n",
+ "from typing import Optional\n",
+ "\n",
+ "\n",
+ "class NumpyroModel(MLModel):\n",
+ " async def load(self) -> bool:\n",
+ " model_uri = await get_model_uri(self._settings)\n",
+ " with open(model_uri) as model_file:\n",
+ " raw_samples = json.load(model_file)\n",
+ "\n",
+ " self._samples = {}\n",
+ " for k, v in raw_samples.items():\n",
+ " self._samples[k] = np.array(v)\n",
+ "\n",
+ " self._predictive = Predictive(self._model, self._samples)\n",
+ "\n",
+ " return True\n",
+ "\n",
+ " @decode_args\n",
+ " async def predict(\n",
+ " self,\n",
+ " marriage: Optional[np.ndarray] = None,\n",
+ " age: Optional[np.ndarray] = None,\n",
+ " divorce: Optional[np.ndarray] = None,\n",
+ " ) -> np.ndarray:\n",
+ " predictions = self._predictive(\n",
+ " rng_key=random.PRNGKey(0), marriage=marriage, age=age, divorce=divorce\n",
+ " )\n",
+ "\n",
+ " obs = predictions[\"obs\"]\n",
+ " obs_mean = obs.mean()\n",
+ "\n",
+ " return np.asarray(obs_mean)\n",
+ "\n",
+ " def _model(self, marriage=None, age=None, divorce=None):\n",
+ " a = numpyro.sample(\"a\", dist.Normal(0.0, 0.2))\n",
+ " M, A = 0.0, 0.0\n",
+ " if marriage is not None:\n",
+ " bM = numpyro.sample(\"bM\", dist.Normal(0.0, 0.5))\n",
+ " M = bM * marriage\n",
+ " if age is not None:\n",
+ " bA = numpyro.sample(\"bA\", dist.Normal(0.0, 0.5))\n",
+ " A = bA * age\n",
+ " sigma = numpyro.sample(\"sigma\", dist.Exponential(1.0))\n",
+ " mu = a + M + A\n",
+ " numpyro.sample(\"obs\", dist.Normal(mu, sigma), obs=divorce)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Settings files\n",
+ "\n",
+ "The next step will be to create 2 configuration files: \n",
+ "\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### `settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# %load settings.json\n",
+ "{\n",
+ " \"debug\": \"true\"\n",
+ "}\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### `model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# %load model-settings.json\n",
+ "{\n",
+ " \"name\": \"numpyro-divorce\",\n",
+ " \"implementation\": \"models.NumpyroModel\",\n",
+ " \"parameters\": {\n",
+ " \"uri\": \"./numpyro-divorce.json\"\n",
+ " }\n",
+ "}\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "import numpy as np\n",
+ "\n",
+ "from mlserver.types import InferenceRequest\n",
+ "from mlserver.codecs import NumpyCodec\n",
+ "\n",
+ "x_0 = np.array([28.0])\n",
+ "inference_request = InferenceRequest(\n",
+ " inputs=[\n",
+ " NumpyCodec.encode_input(name=\"marriage\", payload=x_0)\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/numpyro-divorce/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request.model_dump())\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Deployment\n",
+ "\n",
+ "Now that we have written and tested our custom model, the next step is to deploy it.\n",
+ "With that goal in mind, the rough outline of steps will be to first build a custom image containing our code, and then deploy it.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Specifying requirements\n",
+ "MLServer will automatically find your requirements.txt file and install necessary python packages"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# %load requirements.txt\n",
+ "numpy==1.22.4\n",
+ "numpyro==0.8.0\n",
+ "jax==0.2.24\n",
+ "jaxlib==0.3.7\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Building a custom image"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```{note}\n",
+ "This section expects that Docker is available and running in the background. \n",
+ "```\n",
+ "\n",
+ "MLServer offers helpers to build a custom Docker image containing your code.\n",
+ "In this example, we will use the `mlserver build` subcommand to create an image, which we'll be able to deploy later.\n",
+ "\n",
+ "\n",
+ "Note that this section expects that Docker is available and running in the background, as well as a functional cluster with Seldon Core installed and some familiarity with `kubectl`. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "%%bash\n",
+ "mlserver build . -t 'my-custom-numpyro-server:0.1.0'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To ensure that the image is fully functional, we can spin up a container and then send a test request. To start the container, you can run something along the following lines in a separate terminal:\n",
+ "\n",
+ "```bash\n",
+ "docker run -it --rm -p 8080:8080 my-custom-numpyro-server:0.1.0\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "from mlserver.types import InferenceRequest\n",
+ "from mlserver.codecs import NumpyCodec\n",
+ "\n",
+ "x_0 = np.array([28.0])\n",
+ "inference_request = InferenceRequest(\n",
+ " inputs=[\n",
+ " NumpyCodec.encode_input(name=\"marriage\", payload=x_0)\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/numpyro-divorce/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request.model_dump())\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As we should be able to see, the server running within our Docker image responds as expected."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Deploying our custom image\n",
+ "\n",
+ "```{note}\n",
+ "This section expects access to a functional Kubernetes cluster with Seldon Core installed and some familiarity with `kubectl`. \n",
+ "```\n",
+ "\n",
+ "Now that we've built a custom image and verified that it works as expected, we can move to the next step and deploy it.\n",
+ "There is a large number of tools out there to deploy images.\n",
+ "However, for our example, we will focus on deploying it to a cluster running [Seldon Core](https://docs.seldon.io/projects/seldon-core/en/latest/).\n",
+ "\n",
+ "```{note}\n",
+ "Also consider that depending on your Kubernetes installation Seldon Core might expect to get the container image from a public container registry like [Docker hub](https://hub.docker.com/) or [Google Container Registry](https://cloud.google.com/container-registry). For that you need to do an extra step of pushing the container to the registry using `docker tag /` and `docker push /` and also updating the `image` section of the yaml file to `/`. \n",
+ "```\n",
+ "\n",
+ "For that, we will need to create a `SeldonDeployment` resource which instructs Seldon Core to deploy a model embedded within our custom image and compliant with the [V2 Inference Protocol](https://github.com/kserve/kserve/tree/master/docs/predict-api/v2).\n",
+ "This can be achieved by _applying_ (i.e. `kubectl apply`) a `SeldonDeployment` manifest to the cluster, similar to the one below:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile seldondeployment.yaml\n",
+ "apiVersion: machinelearning.seldon.io/v1\n",
+ "kind: SeldonDeployment\n",
+ "metadata:\n",
+ " name: numpyro-model\n",
+ "spec:\n",
+ " protocol: v2\n",
+ " predictors:\n",
+ " - name: default\n",
+ " graph:\n",
+ " name: numpyro-divorce\n",
+ " type: MODEL\n",
+ " componentSpecs:\n",
+ " - spec:\n",
+ " containers:\n",
+ " - name: numpyro-divorce\n",
+ " image: my-custom-numpyro-server:0.1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.8"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/custom/README.md b/docs-gb/examples/custom/README.md
new file mode 100644
index 000000000..4bf01139b
--- /dev/null
+++ b/docs-gb/examples/custom/README.md
@@ -0,0 +1,334 @@
+# Serving a custom model
+
+The `mlserver` package comes with inference runtime implementations for `scikit-learn` and `xgboost` models.
+However, some times we may also need to roll out our own inference server, with custom logic to perform inference.
+To support this scenario, MLServer makes it really easy to create your own extensions, which can then be containerised and deployed in a production environment.
+
+## Overview
+
+In this example, we will train a [`numpyro` model](http://num.pyro.ai/en/stable/).
+The `numpyro` library streamlines the implementation of probabilistic models, abstracting away advanced inference and training algorithms.
+
+Out of the box, `mlserver` doesn't provide an inference runtime for `numpyro`.
+However, through this example we will see how easy is to develop our own.
+
+## Training
+
+The first step will be to train our model.
+This will be a very simple bayesian regression model, based on an example provided in the [`numpyro` docs](https://nbviewer.jupyter.org/github/pyro-ppl/numpyro/blob/master/notebooks/source/bayesian_regression.ipynb).
+
+Since this is a probabilistic model, during training we will compute an approximation to the posterior distribution of our model using MCMC.
+
+```python
+# Original source code and more details can be found in:
+# https://nbviewer.jupyter.org/github/pyro-ppl/numpyro/blob/master/notebooks/source/bayesian_regression.ipynb
+
+
+import numpyro
+import numpy as np
+import pandas as pd
+
+from numpyro import distributions as dist
+from jax import random
+from numpyro.infer import MCMC, NUTS
+
+DATASET_URL = "https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/WaffleDivorce.csv"
+dset = pd.read_csv(DATASET_URL, sep=";")
+
+standardize = lambda x: (x - x.mean()) / x.std()
+
+dset["AgeScaled"] = dset.MedianAgeMarriage.pipe(standardize)
+dset["MarriageScaled"] = dset.Marriage.pipe(standardize)
+dset["DivorceScaled"] = dset.Divorce.pipe(standardize)
+
+
+def model(marriage=None, age=None, divorce=None):
+ a = numpyro.sample("a", dist.Normal(0.0, 0.2))
+ M, A = 0.0, 0.0
+ if marriage is not None:
+ bM = numpyro.sample("bM", dist.Normal(0.0, 0.5))
+ M = bM * marriage
+ if age is not None:
+ bA = numpyro.sample("bA", dist.Normal(0.0, 0.5))
+ A = bA * age
+ sigma = numpyro.sample("sigma", dist.Exponential(1.0))
+ mu = a + M + A
+ numpyro.sample("obs", dist.Normal(mu, sigma), obs=divorce)
+
+
+# Start from this source of randomness. We will split keys for subsequent operations.
+rng_key = random.PRNGKey(0)
+rng_key, rng_key_ = random.split(rng_key)
+
+num_warmup, num_samples = 1000, 2000
+
+# Run NUTS.
+kernel = NUTS(model)
+mcmc = MCMC(kernel, num_warmup=num_warmup, num_samples=num_samples)
+mcmc.run(
+ rng_key_, marriage=dset.MarriageScaled.values, divorce=dset.DivorceScaled.values
+)
+mcmc.print_summary()
+```
+
+### Saving our trained model
+
+Now that we have _trained_ our model, the next step will be to save it so that it can be loaded afterwards at serving-time.
+Note that, since this is a probabilistic model, we will only need to save the traces that approximate the posterior distribution over latent parameters.
+
+This will get saved in a `numpyro-divorce.json` file.
+
+```python
+import json
+
+samples = mcmc.get_samples()
+serialisable = {}
+for k, v in samples.items():
+ serialisable[k] = np.asarray(v).tolist()
+
+model_file_name = "numpyro-divorce.json"
+with open(model_file_name, "w") as model_file:
+ json.dump(serialisable, model_file)
+```
+
+## Serving
+
+The next step will be to serve our model using `mlserver`.
+For that, we will first implement an extension which serve as the _runtime_ to perform inference using our custom `numpyro` model.
+
+### Custom inference runtime
+
+Our custom inference wrapper should be responsible of:
+
+- Loading the model from the set samples we saved previously.
+- Running inference using our model structure, and the posterior approximated from the samples.
+
+```python
+# %load models.py
+import json
+import numpyro
+import numpy as np
+
+from jax import random
+from mlserver import MLModel
+from mlserver.codecs import decode_args
+from mlserver.utils import get_model_uri
+from numpyro.infer import Predictive
+from numpyro import distributions as dist
+from typing import Optional
+
+
+class NumpyroModel(MLModel):
+ async def load(self) -> bool:
+ model_uri = await get_model_uri(self._settings)
+ with open(model_uri) as model_file:
+ raw_samples = json.load(model_file)
+
+ self._samples = {}
+ for k, v in raw_samples.items():
+ self._samples[k] = np.array(v)
+
+ self._predictive = Predictive(self._model, self._samples)
+
+ return True
+
+ @decode_args
+ async def predict(
+ self,
+ marriage: Optional[np.ndarray] = None,
+ age: Optional[np.ndarray] = None,
+ divorce: Optional[np.ndarray] = None,
+ ) -> np.ndarray:
+ predictions = self._predictive(
+ rng_key=random.PRNGKey(0), marriage=marriage, age=age, divorce=divorce
+ )
+
+ obs = predictions["obs"]
+ obs_mean = obs.mean()
+
+ return np.asarray(obs_mean)
+
+ def _model(self, marriage=None, age=None, divorce=None):
+ a = numpyro.sample("a", dist.Normal(0.0, 0.2))
+ M, A = 0.0, 0.0
+ if marriage is not None:
+ bM = numpyro.sample("bM", dist.Normal(0.0, 0.5))
+ M = bM * marriage
+ if age is not None:
+ bA = numpyro.sample("bA", dist.Normal(0.0, 0.5))
+ A = bA * age
+ sigma = numpyro.sample("sigma", dist.Exponential(1.0))
+ mu = a + M + A
+ numpyro.sample("obs", dist.Normal(mu, sigma), obs=divorce)
+
+```
+
+### Settings files
+
+The next step will be to create 2 configuration files:
+
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).
+
+#### `settings.json`
+
+```python
+# %load settings.json
+{
+ "debug": "true"
+}
+
+```
+
+#### `model-settings.json`
+
+```python
+# %load model-settings.json
+{
+ "name": "numpyro-divorce",
+ "implementation": "models.NumpyroModel",
+ "parameters": {
+ "uri": "./numpyro-divorce.json"
+ }
+}
+
+```
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request from our test set.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+```python
+import requests
+import numpy as np
+
+from mlserver.types import InferenceRequest
+from mlserver.codecs import NumpyCodec
+
+x_0 = np.array([28.0])
+inference_request = InferenceRequest(
+ inputs=[
+ NumpyCodec.encode_input(name="marriage", payload=x_0)
+ ]
+)
+
+endpoint = "http://localhost:8080/v2/models/numpyro-divorce/infer"
+response = requests.post(endpoint, json=inference_request.model_dump())
+
+response.json()
+```
+
+## Deployment
+
+Now that we have written and tested our custom model, the next step is to deploy it.
+With that goal in mind, the rough outline of steps will be to first build a custom image containing our code, and then deploy it.
+
+### Specifying requirements
+
+MLServer will automatically find your requirements.txt file and install necessary python packages
+
+```python
+# %load requirements.txt
+numpy==1.22.4
+numpyro==0.8.0
+jax==0.2.24
+jaxlib==0.3.7
+
+```
+
+### Building a custom image
+
+```{note}
+This section expects that Docker is available and running in the background.
+```
+
+MLServer offers helpers to build a custom Docker image containing your code.
+In this example, we will use the `mlserver build` subcommand to create an image, which we'll be able to deploy later.
+
+Note that this section expects that Docker is available and running in the background, as well as a functional cluster with Seldon Core installed and some familiarity with `kubectl`.
+
+```bash
+%%bash
+mlserver build . -t 'my-custom-numpyro-server:0.1.0'
+```
+
+To ensure that the image is fully functional, we can spin up a container and then send a test request. To start the container, you can run something along the following lines in a separate terminal:
+
+```bash
+docker run -it --rm -p 8080:8080 my-custom-numpyro-server:0.1.0
+```
+
+```python
+import numpy as np
+
+from mlserver.types import InferenceRequest
+from mlserver.codecs import NumpyCodec
+
+x_0 = np.array([28.0])
+inference_request = InferenceRequest(
+ inputs=[
+ NumpyCodec.encode_input(name="marriage", payload=x_0)
+ ]
+)
+
+endpoint = "http://localhost:8080/v2/models/numpyro-divorce/infer"
+response = requests.post(endpoint, json=inference_request.model_dump())
+
+response.json()
+```
+
+As we should be able to see, the server running within our Docker image responds as expected.
+
+### Deploying our custom image
+
+```{note}
+This section expects access to a functional Kubernetes cluster with Seldon Core installed and some familiarity with `kubectl`.
+```
+
+Now that we've built a custom image and verified that it works as expected, we can move to the next step and deploy it.
+There is a large number of tools out there to deploy images.
+However, for our example, we will focus on deploying it to a cluster running [Seldon Core](https://docs.seldon.io/projects/seldon-core/en/latest/).
+
+```{note}
+Also consider that depending on your Kubernetes installation Seldon Core might expect to get the container image from a public container registry like [Docker hub](https://hub.docker.com/) or [Google Container Registry](https://cloud.google.com/container-registry). For that you need to do an extra step of pushing the container to the registry using `docker tag /` and `docker push /` and also updating the `image` section of the yaml file to `/`.
+```
+
+For that, we will need to create a `SeldonDeployment` resource which instructs Seldon Core to deploy a model embedded within our custom image and compliant with the [V2 Inference Protocol](https://github.com/kserve/kserve/tree/master/docs/predict-api/v2).
+This can be achieved by _applying_ (i.e. `kubectl apply`) a `SeldonDeployment` manifest to the cluster, similar to the one below:
+
+```python
+%%writefile seldondeployment.yaml
+apiVersion: machinelearning.seldon.io/v1
+kind: SeldonDeployment
+metadata:
+ name: numpyro-model
+spec:
+ protocol: v2
+ predictors:
+ - name: default
+ graph:
+ name: numpyro-divorce
+ type: MODEL
+ componentSpecs:
+ - spec:
+ containers:
+ - name: numpyro-divorce
+ image: my-custom-numpyro-server:0.1.0
+```
+
+```python
+
+```
diff --git a/docs-gb/examples/custom/model-settings.json b/docs-gb/examples/custom/model-settings.json
new file mode 100644
index 000000000..a1183fed4
--- /dev/null
+++ b/docs-gb/examples/custom/model-settings.json
@@ -0,0 +1,7 @@
+{
+ "name": "numpyro-divorce",
+ "implementation": "models.NumpyroModel",
+ "parameters": {
+ "uri": "./numpyro-divorce.json"
+ }
+}
diff --git a/docs-gb/examples/custom/models.py b/docs-gb/examples/custom/models.py
new file mode 100644
index 000000000..9d19914e4
--- /dev/null
+++ b/docs-gb/examples/custom/models.py
@@ -0,0 +1,55 @@
+import json
+import numpyro
+import numpy as np
+
+from jax import random
+from mlserver import MLModel
+from mlserver.codecs import decode_args
+from mlserver.utils import get_model_uri
+from numpyro.infer import Predictive
+from numpyro import distributions as dist
+from typing import Optional
+
+
+class NumpyroModel(MLModel):
+ async def load(self) -> bool:
+ model_uri = await get_model_uri(self._settings)
+ with open(model_uri) as model_file:
+ raw_samples = json.load(model_file)
+
+ self._samples = {}
+ for k, v in raw_samples.items():
+ self._samples[k] = np.array(v)
+
+ self._predictive = Predictive(self._model, self._samples)
+
+ return True
+
+ @decode_args
+ async def predict(
+ self,
+ marriage: Optional[np.ndarray] = None,
+ age: Optional[np.ndarray] = None,
+ divorce: Optional[np.ndarray] = None,
+ ) -> np.ndarray:
+ predictions = self._predictive(
+ rng_key=random.PRNGKey(0), marriage=marriage, age=age, divorce=divorce
+ )
+
+ obs = predictions["obs"]
+ obs_mean = obs.mean()
+
+ return np.asarray(obs_mean)
+
+ def _model(self, marriage=None, age=None, divorce=None):
+ a = numpyro.sample("a", dist.Normal(0.0, 0.2))
+ M, A = 0.0, 0.0
+ if marriage is not None:
+ bM = numpyro.sample("bM", dist.Normal(0.0, 0.5))
+ M = bM * marriage
+ if age is not None:
+ bA = numpyro.sample("bA", dist.Normal(0.0, 0.5))
+ A = bA * age
+ sigma = numpyro.sample("sigma", dist.Exponential(1.0))
+ mu = a + M + A
+ numpyro.sample("obs", dist.Normal(mu, sigma), obs=divorce)
diff --git a/docs-gb/examples/custom/numpyro-divorce.json b/docs-gb/examples/custom/numpyro-divorce.json
new file mode 100644
index 000000000..7ac262eef
--- /dev/null
+++ b/docs-gb/examples/custom/numpyro-divorce.json
@@ -0,0 +1 @@
+{"a": [0.16836269199848175, 0.1115364134311676, -0.07910443842411041, -0.11816214770078659, 0.08452288806438446, -0.030391020700335503, 0.026638995856046677, 0.10505851358175278, 0.061130501329898834, -0.1337549239397049, 0.05167083814740181, 0.16501200199127197, 0.14894653856754303, 0.01701565459370613, 0.07465790957212448, 0.04534807428717613, -0.04508528858423233, -0.13797052204608917, -0.2078494280576706, -0.059156011790037155, -0.0020909535232931376, 0.04330433905124664, -0.08640143275260925, 0.07770322263240814, -0.12219710648059845, 0.11799821257591248, 0.05668610706925392, -0.08289697021245956, -0.1818048059940338, 0.0777725875377655, -0.12004752457141876, 0.1720149964094162, 0.18308624625205994, -0.16976788640022278, -0.03600643575191498, -0.10082755982875824, -0.05176897719502449, -0.09520723670721054, -0.06507155299186707, -0.09418275207281113, -0.08906560391187668, 0.0854538157582283, 0.060308974236249924, 0.14416328072547913, -0.1851329207420349, -0.11498665064573288, 0.12001333385705948, 0.07115549594163895, 0.05926971510052681, 0.059881921857595444, 0.1626013070344925, -0.06873223185539246, 0.05356733128428459, 0.05356733128428459, 0.23673409223556519, 0.237444207072258, 0.29154592752456665, 0.1337151825428009, 0.022692056372761726, 0.18036018311977386, 0.13693183660507202, 0.12026671320199966, -0.010521572083234787, 0.08234323561191559, -0.011869342066347599, -0.03064286895096302, -0.14085538685321808, -0.14259649813175201, 0.059092774987220764, 0.001957992324605584, -0.052977170795202255, 0.07510455697774887, 0.06417155265808105, -0.06216321885585785, 0.12257689982652664, 0.004514152184128761, 0.058062393218278885, 0.1219962015748024, -0.0032405443489551544, -0.18108269572257996, -0.13082876801490784, 0.003989557269960642, 0.06167006492614746, -0.036801744252443314, -0.03734992444515228, 0.013259436935186386, -0.18957871198654175, -0.045233748853206635, -0.045233748853206635, -0.1336606740951538, -0.2189626693725586, 0.042772408574819565, -0.05529186129570007, -0.02930414117872715, 0.018484337255358696, -0.15458199381828308, 0.023829203099012375, 0.038360364735126495, 0.015199532732367516, 0.01238118577748537, -0.08423825353384018, -0.03721300885081291, 0.11595260351896286, 0.037502825260162354, 0.007266441360116005, -0.0736951157450676, 0.03644093871116638, 0.13151271641254425, -0.13996578752994537, -0.072147436439991, 0.06131122261285782, 0.04679153487086296, 0.0549926795065403, 0.00350874662399292, -0.0714113786816597, -0.05706984922289848, 0.02419370785355568, 0.02419370785355568, 0.08068908751010895, 0.13560673594474792, 0.026069505140185356, -0.057528164237737656, 0.13248035311698914, -0.03852362185716629, 0.005956900306046009, -0.1475573182106018, -0.01106713805347681, -0.19247101247310638, -0.2149151712656021, 0.09304925799369812, 0.059226326644420624, 0.07982828468084335, -0.04461333155632019, -0.055315881967544556, -0.03722609579563141, 0.018421119078993797, 0.02320302650332451, 0.11906448006629944, 0.2400672286748886, 0.14536453783512115, -0.08639334887266159, -0.20761846005916595, 0.17533589899539948, -0.00855164509266615, 0.008720937184989452, 0.08253267407417297, -0.1335073858499527, 0.05759328603744507, 0.04476076364517212, 0.014648868702352047, -0.011940506286919117, 0.15003763139247894, 0.09794504195451736, -0.0177474282681942, 0.04852041229605675, 0.019449474290013313, 0.016176113858819008, -0.016294419765472412, 0.12421870976686478, 0.01114725973457098, 0.01543912012130022, -0.00022499046463053674, 0.03380434215068817, 0.04455918073654175, 0.10314761847257614, -0.07646293193101883, -0.11363591998815536, 0.07088162750005722, 0.06312471628189087, -0.052461639046669006, 0.03582167997956276, 0.022605976089835167, -0.13015851378440857, -0.1597701460123062, -0.01235934253782034, 0.017918214201927185, 0.007101975381374359, -0.0552641861140728, -0.04520687088370323, -0.08473675698041916, 0.18462911248207092, 0.09253448247909546, -0.10514761507511139, 0.10656635463237762, 0.05131636559963226, 0.1634761393070221, 0.13589270412921906, 0.11134058982133865, 0.11942742019891739, -0.1341581791639328, 0.07594098895788193, 0.05668692663311958, -0.10067168623209, 0.1115122139453888, 0.11749419569969177, 0.11189292371273041, 0.1551065593957901, -0.04214942827820778, 0.04843347519636154, -0.02881244383752346, -0.07774541527032852, 0.04155794531106949, -0.029958726838231087, -0.04992673546075821, -0.0881694033741951, -0.1221732497215271, -0.04825633019208908, -0.09568740427494049, 0.28013595938682556, 0.16754046082496643, 0.16788546741008759, -0.08174242079257965, -0.011990495957434177, -0.0033985308837145567, -0.022970546036958694, -0.01731402985751629, -0.0732463002204895, -0.047994211316108704, 0.4355752468109131, -0.1605125367641449, -0.12497905641794205, 0.15933220088481903, 0.11955501139163971, -0.08248048275709152, -0.08245611190795898, 0.018994396552443504, -0.050627365708351135, 0.02585066854953766, 0.01815865933895111, -0.06727936863899231, 0.17826861143112183, 0.10750097781419754, -0.027273349463939667, -0.022617585957050323, -0.13881970942020416, -0.11010851711034775, -0.1914776712656021, -0.07041575014591217, -0.12311466783285141, 0.0199239831417799, -0.10360841453075409, -0.08053404092788696, -0.046396736055612564, -0.04428441822528839, 0.020700566470623016, 0.06487181037664413, 0.01602022536098957, 0.04853704944252968, 0.09862539917230606, 0.16657188534736633, -0.060013629496097565, 0.061842549592256546, 0.05002139136195183, -0.041937973350286484, 0.08887901157140732, 0.20197762548923492, -0.04593903198838234, -0.04872388392686844, -0.07916899770498276, 0.1918991059064865, 0.015107527375221252, -0.030080080032348633, 0.005309116095304489, 0.007898465730249882, 0.09715539216995239, 0.08374344557523727, 0.07992967218160629, 0.006168953608721495, -0.018875624984502792, -0.01833505369722843, -0.00463090930134058, -0.13018393516540527, -0.09576279670000076, 0.01129742618650198, -0.00836996827274561, -0.03392793610692024, 0.039359983056783676, 0.16200335323810577, -0.008296698331832886, 0.13360416889190674, -0.10988587886095047, -0.11184566468000412, -0.09834786504507065, -0.03404560312628746, 0.19597992300987244, 0.187693253159523, 0.1957906186580658, 0.16537325084209442, 0.16537325084209442, 0.10057418793439865, -0.09808265417814255, -0.15178364515304565, -0.08977070450782776, 0.12560585141181946, -0.037771761417388916, -0.08274569362401962, 0.09557834267616272, -0.048883043229579926, 0.003766358597204089, -0.09889936447143555, -0.03704599291086197, 0.23574461042881012, 0.21868453919887543, 0.008430855348706245, 0.042248260229825974, -0.17663662135601044, -0.010404674336314201, -0.16101686656475067, -0.06585510820150375, 0.13853761553764343, 0.11283610761165619, -0.21345067024230957, -0.1696895956993103, -0.26417213678359985, 0.08294732123613358, -0.1513323038816452, 0.16737543046474457, -0.1603410691022873, -2.6685878765420057e-05, 0.07030171155929565, 0.24445031583309174, 0.18311455845832825, 0.11517996340990067, 0.11534234881401062, -0.1504010558128357, 0.04485486447811127, -0.13926081359386444, -0.06447694450616837, 0.03984657675027847, 0.14969561994075775, 0.10317447781562805, 0.06618628650903702, -0.00651371106505394, 0.032258953899145126, -0.1228577122092247, 0.1373540759086609, 0.10767790675163269, 0.29969608783721924, -0.1749095767736435, -0.04195311665534973, 0.20342913269996643, 0.168209969997406, 0.14181625843048096, 2.0834891074628104e-06, -0.012309123761951923, 0.1195785254240036, 0.11518421769142151, 0.11505626887083054, 0.1837906837463379, 0.0347454771399498, -0.04198697954416275, 0.017155850306153297, -0.01241296622902155, -0.24869315326213837, 0.24038396775722504, -0.04453861340880394, -0.07539945840835571, -0.0024758244398981333, -0.21585971117019653, -0.05100461468100548, -0.00736196618527174, 0.12618441879749298, -0.03154097497463226, -0.08694277703762054, -0.03513874113559723, -0.04245832934975624, -0.156341552734375, -0.07711759209632874, -0.0554034560918808, -0.02958185225725174, 0.09447043389081955, 0.021830929443240166, -0.06350605934858322, 0.0031088588293641806, -0.01661374606192112, 0.015769902616739273, 0.026678062975406647, -0.003977423533797264, 0.05920962616801262, -0.03589046373963356, -0.022187113761901855, 0.07391952723264694, 0.039491958916187286, 0.04678887128829956, 0.12070415169000626, 0.11419375240802765, -0.11208003014326096, -0.04629720374941826, -0.12833674252033234, -0.004447568207979202, -0.02797544188797474, -0.09508682042360306, -0.20998750627040863, 0.07702358812093735, -0.009995201602578163, 0.01157123688608408, 0.012088367715477943, 0.06764426827430725, 0.06764426827430725, 0.13409413397312164, -0.261484295129776, 0.0861697867512703, -0.09894269704818726, -0.010059560649096966, 0.076807402074337, 0.005930088460445404, -0.06148979440331459, 0.0035528047010302544, -0.013319892808794975, -0.13283714652061462, -0.027280839160084724, 0.14040057361125946, -0.014786788262426853, 0.0064920722506940365, -0.07733012735843658, 0.02878420799970627, -0.1917257159948349, -0.14403316378593445, -0.13155348598957062, -0.13155348598957062, 0.1365441381931305, 0.13680601119995117, -0.05950235202908516, 0.07049015164375305, 0.003652977291494608, -0.033807095140218735, -0.01138163823634386, 0.2705720365047455, -0.20463618636131287, 0.24664346873760223, 0.018157299607992172, -0.05492135137319565, -0.08536840230226517, 0.09259437024593353, 0.05470014363527298, -0.031044036149978638, -0.0584101639688015, -0.004456821829080582, 0.12678669393062592, 0.30503836274147034, -0.1186431497335434, -0.18983545899391174, 0.011015340685844421, 0.07001796364784241, -0.07579395920038223, 0.07899591326713562, 0.09459835290908813, 0.1688622385263443, 0.11036422848701477, 0.254376083612442, 0.019043538719415665, 0.06822310388088226, -0.07399372011423111, 0.016636384651064873, 0.19123941659927368, 0.16108912229537964, -0.014781437814235687, 0.050422269850969315, -0.0024955018889158964, 0.07444695383310318, -0.08810538798570633, -0.025521524250507355, 0.03668191283941269, -0.05874694511294365, -0.023346848785877228, 0.0023993488866835833, 0.11608139425516129, -0.17261874675750732, 0.16557732224464417, 0.12242584675550461, -0.048822496086359024, -0.058250993490219116, 0.022997543215751648, 0.07182975858449936, 0.14643055200576782, 0.22675587236881256, 0.12318788468837738, 0.12550167739391327, 0.12280378490686417, 0.06985010206699371, -0.08084173500537872, 0.09780354797840118, -0.06510010361671448, 0.03642160817980766, -0.06672263890504837, -0.1323721706867218, -0.013878259807825089, 0.02349763922393322, 0.010267117992043495, -0.0707641988992691, -0.22696173191070557, 0.22822201251983643, 0.21138682961463928, 0.23611313104629517, -0.013555300422012806, -0.02611437253654003, 0.04254283383488655, -0.07840640842914581, -0.079469233751297, 0.057079218327999115, -0.05697314813733101, -0.14690403640270233, 0.20255863666534424, 0.19616475701332092, 0.22418531775474548, -0.21826958656311035, 0.10618066787719727, -0.1174827441573143, 0.07917755842208862, -0.10499566048383713, -0.022412842139601707, 0.08696823567152023, 0.2404436618089676, -0.08770541101694107, -0.06253963708877563, -0.11451037973165512, 0.040444742888212204, -0.019313788041472435, -0.06782300770282745, -0.013763390481472015, 0.022218065336346626, -0.037006862461566925, 0.019586781039834023, -0.015440141782164574, 0.09323552995920181, 0.11445089429616928, 0.03629114106297493, -0.14203353226184845, -0.04051291570067406, 0.04382936656475067, -0.13747338950634003, 0.02067568711936474, 0.04820241779088974, 0.17508955299854279, 0.25570303201675415, 0.23319002985954285, 0.1914675235748291, 0.15628422796726227, -0.09023920446634293, 9.189195407088846e-05, 0.0032823749352246523, -0.00125291442964226, 0.01589057594537735, 0.0053041172213852406, 0.1343720257282257, -0.10044491291046143, 0.05896021053195, 0.0062213861383497715, 0.12104862928390503, 0.11260676383972168, -0.031783878803253174, 0.051483944058418274, 0.0514184944331646, 0.07431872189044952, 0.009856326505541801, -0.007709151599556208, -0.1659308522939682, 0.12314233928918839, 0.17318588495254517, -0.1391354352235794, -0.10675929486751556, -0.09464272111654282, 0.12763270735740662, 0.13359010219573975, 0.14508911967277527, 0.24585357308387756, 0.21670465171337128, -0.19790711998939514, -0.17295782268047333, -0.15848560631275177, -0.14148816466331482, -0.05924069136381149, -0.014717113226652145, 0.02687637135386467, -0.0676172599196434, 0.0543251633644104, 0.17517240345478058, 0.1985512524843216, -0.18968349695205688, -0.21383200585842133, -0.14828714728355408, -0.06405974179506302, -0.1174643337726593, -0.054333362728357315, -0.06891105324029922, -0.0409737229347229, 0.03487185016274452, -0.07797642797231674, -0.04153845086693764, -0.21426624059677124, 0.20303848385810852, -0.03178810328245163, -0.02059762552380562, 0.0074723828583955765, 0.017871320247650146, 0.038031917065382004, 0.10728541016578674, -0.04621487110853195, -0.09975188225507736, 0.05800924822688103, 0.09640959650278091, 0.06749840080738068, 0.020599864423274994, 0.04131053388118744, 0.11835746467113495, -0.019422955811023712, -0.017155148088932037, 0.0051138512790203094, -0.007422720082104206, -0.016490845009684563, 0.0364595465362072, 0.022448448464274406, -0.00010266061872243881, 0.11828450113534927, 0.07273276895284653, -0.024989714846014977, -0.0146720539778471, 0.0741238221526146, 0.0741238221526146, 0.10998136550188065, -0.022257285192608833, 0.1544613391160965, -0.051119618117809296, -0.12461967766284943, 2.9127284506103024e-05, -0.008058982901275158, -0.17107465863227844, 0.05222448706626892, -0.07166767120361328, -0.03405385836958885, 0.04680870845913887, -0.061777349561452866, 0.10884814709424973, 0.028746359050273895, 0.04648603871464729, 0.06007763743400574, -0.059020932763814926, 0.07118412852287292, 0.10954451560974121, 0.1578342765569687, 0.14872092008590698, -0.1448572278022766, -0.21864774823188782, -0.23241257667541504, 0.239826038479805, 0.08449740707874298, 0.09560848772525787, 0.001668440061621368, 0.09307318925857544, -0.024183781817555428, 0.025817524641752243, 0.0953386127948761, 0.12299543619155884, 0.11347734183073044, 0.11853242665529251, -0.1432216763496399, -0.16005443036556244, -0.20178373157978058, -0.15686628222465515, -0.07175539433956146, -0.07944738864898682, -0.11323104798793793, 0.09669625759124756, 0.15668711066246033, -0.17242036759853363, 0.023731321096420288, 0.19663266837596893, 0.07915864139795303, 0.06025553122162819, -0.017834890633821487, -0.00932162906974554, -0.20678582787513733, -0.07609578967094421, 0.09104213863611221, -0.05034571886062622, 0.028209330514073372, 0.016870582476258278, -0.23310157656669617, -0.03572442755103111, -0.169973224401474, 0.1514534056186676, 0.17911559343338013, -0.19200271368026733, -0.15207745134830475, -0.21980497241020203, -0.22548577189445496, 0.2865324318408966, 0.26078587770462036, 0.07246870547533035, -0.034724537283182144, 0.006503402255475521, -0.11166498064994812, 0.09489575773477554, 0.12890732288360596, 0.13359777629375458, -0.1311049610376358, 0.08711807429790497, 0.05656084045767784, -0.1416184902191162, -0.12711554765701294, -0.05268494784832001, -0.1482098400592804, -0.010431746952235699, -0.08408556133508682, -0.08202214539051056, -0.07628601789474487, -0.07250022143125534, -0.11199129372835159, 0.07692570239305496, -0.1058352142572403, -0.07927250862121582, -0.15548956394195557, 0.042116694152355194, 0.042700059711933136, 0.08093570917844772, 0.14155755937099457, -0.1591803878545761, 0.014449473470449448, -0.05312788113951683, -0.06013013795018196, -0.011374353431165218, 0.028324251994490623, -0.033343032002449036, -0.02921985648572445, 0.05871126800775528, 0.05962592363357544, -0.10156019777059555, 0.032171595841646194, 0.12728990614414215, 0.14508889615535736, 0.1195538118481636, -0.09407021105289459, 0.0928138867020607, 0.004718467127531767, 0.15681463479995728, -0.005870259366929531, 0.049689628183841705, 0.10737735033035278, 0.07747812569141388, 0.03153347223997116, -0.08617392927408218, -0.031240716576576233, -0.035141557455062866, -0.042285796254873276, -0.05011514201760292, 0.03609282523393631, -0.05834193155169487, 0.01293911226093769, 0.012553173117339611, 0.05768418312072754, -0.042283132672309875, 0.0716254934668541, -0.043032482266426086, 0.13074910640716553, 0.14516574144363403, -0.1016203984618187, -0.11383187025785446, -0.09209034591913223, -0.14792180061340332, 0.12747980654239655, -0.008154300041496754, -0.002024448476731777, 0.08261636644601822, -0.004596272017806768, 0.026798974722623825, 0.016496116295456886, -0.05996542423963547, -0.12118039280176163, -0.2156522125005722, 0.02815897762775421, 0.027433115988969803, -0.022758901119232178, 0.03248220309615135, -0.00554995471611619, 0.06807593256235123, 0.08211548626422882, 0.08600804209709167, -0.054981205612421036, -0.054981205612421036, 0.0802745670080185, 0.12019786983728409, 0.2305435687303543, 0.2561269998550415, 0.2386731505393982, 0.04153486713767052, 0.05693337321281433, 0.07174386829137802, 0.08665478974580765, -0.03993925824761391, 0.0748804435133934, 0.04753795266151428, 0.020882243290543556, 0.06632638722658157, -0.15131522715091705, -0.1319742351770401, -0.061067987233400345, -0.019715726375579834, -0.057309530675411224, 0.12184043228626251, -0.1388079673051834, 0.04756925627589226, 0.04663960263133049, -0.058117665350437164, -0.05987443029880524, -0.04770621284842491, -0.07428625971078873, -0.09459245204925537, 0.04158935323357582, -0.05691299960017204, -0.02348797209560871, -0.14404049515724182, 0.14716115593910217, 0.04301510378718376, 0.1162952110171318, 0.07359594851732254, -0.10024922341108322, 0.27925485372543335, 0.05383332818746567, -0.14113245904445648, 0.037769388407468796, -0.14881280064582825, -0.07923460751771927, 0.020757179707288742, -0.012018558569252491, -0.08466190099716187, -0.11266914755105972, 0.03244558349251747, 0.030022773891687393, 0.12182293087244034, 0.010738561861217022, 0.15612229704856873, -0.0834461897611618, 0.11283741146326065, 0.040572237223386765, -0.030232341960072517, 0.04464038833975792, -0.09788613021373749, 0.011596551164984703, 0.11046776175498962, 0.026590101420879364, 0.11352380365133286, -0.0459706149995327, -0.008630860596895218, 0.02749774605035782, -0.026061423122882843, -0.03216411545872688, -0.013910195790231228, 0.02012045681476593, 0.20341937243938446, 0.0547785721719265, -0.07726704329252243, 0.08388694375753403, 0.04612043872475624, -0.05961647257208824, 0.03223613649606705, -0.12447226047515869, 0.27894631028175354, 0.18222564458847046, 0.1766943782567978, 0.07496832311153412, -0.023262469097971916, 0.019991224631667137, -0.01094401627779007, -0.12278613448143005, -0.16775034368038177, -0.015372874215245247, -0.068195641040802, 0.15673373639583588, -0.0005702383350580931, 0.08829639852046967, 0.08517207950353622, 0.2060576230287552, -0.1063142642378807, -0.32163769006729126, -0.3414955735206604, -0.027391046285629272, -0.1082327589392662, 0.03736463189125061, -0.01579759269952774, -0.10266709327697754, 0.04362393915653229, 0.1770409643650055, 0.024716898798942566, 0.21734298765659332, 0.14026853442192078, -0.13401365280151367, -0.14090214669704437, -0.17926183342933655, -0.17038555443286896, -0.2680198550224304, -0.3123040497303009, -0.14868281781673431, -0.06538400799036026, -0.12712602317333221, 0.07617203891277313, -0.2556387782096863, 0.040467698127031326, -0.0852384865283966, -0.04716017097234726, -0.0412764735519886, -0.0097422543913126, -0.10010246932506561, 0.06647193431854248, 0.15166926383972168, 0.04038872942328453, 0.15424580872058868, -0.008348125033080578, -0.01120627112686634, 0.0032821609638631344, 0.008477223105728626, 0.08086460828781128, 0.03514549881219864, 0.02924352139234543, 0.14069072902202606, -0.027045268565416336, -0.009766279719769955, -0.026853574439883232, -0.14443333446979523, 0.09557272493839264, -0.06333913654088974, -0.06211280822753906, 0.12673814594745636, 0.1335921436548233, -0.05585929751396179, -0.00023300621251109987, 0.08861573785543442, 0.0006394768133759499, 0.011501661501824856, -0.1266103982925415, 0.035756513476371765, -0.07845210283994675, 0.050947003066539764, 0.037766940891742706, -0.1253529191017151, -0.11432220041751862, 0.02770775929093361, -0.04272526502609253, -0.05555160343647003, -0.053797218948602676, -0.05081092566251755, -0.0012696021003648639, -0.02625066228210926, 0.008786608465015888, 0.04687456414103508, -0.06873981654644012, 0.0437353253364563, -0.0626358911395073, -0.012498162686824799, 0.027800334617495537, 0.047560013830661774, 0.019751226529479027, -0.027175337076187134, 0.18396537005901337, -0.09421023726463318, -0.0875791609287262, -0.09174760431051254, -0.10310830175876617, 0.01041141152381897, 0.0051549579948186874, 0.017120303586125374, -0.030675098299980164, -0.005069149658083916, -0.14416201412677765, -0.10848056524991989, -0.08613122999668121, 0.04278137534856796, -0.02221623621881008, 0.006033312529325485, 0.010414534248411655, 0.014718013815581799, 0.08175858110189438, 0.0827731192111969, -0.03859911859035492, 0.06516949832439423, 0.01511412300169468, -0.04580499976873398, 0.029867026954889297, 0.01892084814608097, 0.003302627010270953, -0.018024450168013573, 0.07207649946212769, 0.09301652759313583, -0.106571264564991, 0.001131146214902401, -0.01476236805319786, 0.043569210916757584, 0.1522308737039566, -0.007369189988821745, -0.16656728088855743, -0.02556244656443596, 0.06653334200382233, -0.1960497945547104, -0.05416426435112953, 0.3529340326786041, -0.3834443688392639, -0.0021814059000462294, 0.024247387424111366, 0.01331444550305605, -0.0998195931315422, -0.004211551509797573, 0.023147959262132645, -0.03663315623998642, -0.013297459110617638, -0.12043711543083191, -0.06437695026397705, 0.08564810454845428, 0.10411116480827332, -0.09521465003490448, -0.21785403788089752, -0.21144527196884155, 0.40748921036720276, -0.12399190664291382, -0.24447202682495117, 0.11579231172800064, -0.12805896997451782, -0.08188893646001816, -0.12968710064888, -0.04230048507452011, 0.07506474107503891, 0.03909257426857948, 0.05354331061244011, -0.08511122316122055, 0.10974621772766113, 0.060485370457172394, 0.19668488204479218, -0.1424528807401657, 0.21737965941429138, 0.20104393362998962, 0.20574405789375305, -0.1140708476305008, 0.05867188796401024, 0.0039957445114851, 0.15148821473121643, -0.06905466318130493, -0.1424701064825058, 0.05824444442987442, 0.09769271314144135, 0.027926046401262283, 0.044592708349227905, -0.042273759841918945, 0.056154657155275345, 0.07466869801282883, -0.1143091470003128, 0.10316441208124161, -0.155986025929451, 0.08128729462623596, -0.10536748170852661, -0.018042657524347305, 0.023482395336031914, 0.0002609141229186207, 0.09561096876859665, -0.14739888906478882, 0.03953307867050171, -0.12447522580623627, 0.17796191573143005, 0.2627890706062317, -0.44508638978004456, -0.34195685386657715, -0.23592768609523773, 0.017741026356816292, -0.05804569274187088, 0.047165922820568085, -0.040035802870988846, 0.04984942451119423, -0.030200788751244545, -0.030200788751244545, -0.06958819925785065, 0.030142037197947502, 0.0913708508014679, 0.19632647931575775, 0.0929466038942337, -0.11931782960891724, -0.04978494346141815, -0.13866156339645386, 0.04621327295899391, 0.036136891692876816, 0.1573222577571869, 0.1594471037387848, 0.13975979387760162, -0.09107014536857605, -0.12089461833238602, 0.10422946512699127, 0.1143726259469986, -0.013521983288228512, 0.1332635134458542, -0.05814039707183838, 0.025303035974502563, -0.013431998901069164, 0.09966741502285004, 0.10236386954784393, 0.17750924825668335, 0.20220567286014557, -0.1930008977651596, -0.12730759382247925, 0.12955135107040405, 0.1722792387008667, -0.13865222036838531, -0.13430672883987427, -0.15204080939292908, 0.18847587704658508, 0.23442885279655457, -0.15205428004264832, 0.02694876305758953, -0.06222081929445267, 0.0010633983183652163, -0.1051960363984108, 0.13652659952640533, -0.15804322063922882, -0.21633054316043854, 0.17546913027763367, 0.007254880852997303, 0.04256695881485939, 0.01927938498556614, 0.03470965102314949, -0.17209026217460632, 0.08392275124788284, 0.1506263166666031, -0.014874778687953949, -0.04794233664870262, -0.11974408477544785, 0.12559761106967926, 0.1197444498538971, 0.03947267308831215, 0.04199782758951187, -0.08582518994808197, -0.0015663444064557552, -0.021624069660902023, 0.04085583984851837, -0.08631935715675354, -0.09891852736473083, 0.009278363548219204, 0.07249711453914642, 0.13915053009986877, -0.04381848871707916, 0.025382239371538162, -0.07527168840169907, 0.09526550024747849, -0.07915569096803665, -0.044148921966552734, -0.1316882073879242, -0.07043087482452393, 0.011145565658807755, -0.04480621963739395, 0.02425215020775795, -0.13619700074195862, -0.16112332046031952, 0.09147967398166656, 0.04312005639076233, -0.17100855708122253, -0.1732758730649948, 0.13571970164775848, -0.13973356783390045, 0.1332777589559555, -0.03862661495804787, -0.01638416200876236, 0.06551627814769745, -0.01996687240898609, -0.034166768193244934, 0.18659579753875732, 0.05186838284134865, -0.07062505185604095, -0.10440482944250107, 0.06764186173677444, 0.021214095875620842, 0.054391276091337204, -0.06598976254463196, 0.10391329228878021, 0.0830097496509552, 0.0009913997491821647, -0.018022047355771065, -0.14199520647525787, -0.05200790986418724, -0.09961353242397308, -0.09996083378791809, -0.23028472065925598, 0.22686167061328888, 0.09258421510457993, 0.021371793001890182, -0.03668901324272156, -0.0770067647099495, 0.0004953858442604542, -0.026469796895980835, -0.02107033133506775, 0.0915830135345459, 0.07354072481393814, -0.0724143236875534, 0.11891086399555206, 0.2058621048927307, 0.10546450316905975, -0.056857746094465256, 0.1241801455616951, -0.14239954948425293, 0.17187772691249847, 0.22295615077018738, -0.20761968195438385, -0.00530114583671093, 0.13069698214530945, 0.039985738694667816, 0.13259917497634888, 0.10217489302158356, 0.10361886769533157, 0.05500677973031998, -0.18529419600963593, -0.030583882704377174, 0.10838121920824051, -0.09501398354768753, -0.09501398354768753, 0.009327111765742302, 0.0979083776473999, 0.012449293397367, 0.012449293397367, 0.06219195947051048, 0.29786503314971924, -0.2108880579471588, 0.10293672233819962, -0.12438574433326721, -0.08613813668489456, 0.15044140815734863, 0.14134740829467773, -0.19376103579998016, -0.11465257406234741, 0.029681513085961342, -0.07083963602781296, -0.1250206083059311, 0.0017978389514610171, 0.055145736783742905, 0.2186364382505417, 0.0662112757563591, 0.20272031426429749, -0.14577136933803558, 0.02120293118059635, 0.09260036796331406, 0.1859373301267624, 0.1183549016714096, 0.1544933319091797, 0.06350391358137131, 0.21077914535999298, 0.1604350209236145, -0.1351441890001297, -0.20903649926185608, -0.1207682266831398, -0.1141490563750267, 0.003311286913231015, -0.07875243574380875, 0.0793531984090805, 0.060023121535778046, 0.002355806762352586, -0.017795301973819733, -0.06499870121479034, -0.0042495643720030785, -0.011226928792893887, -0.038066525012254715, -0.0233629010617733, -0.17803366482257843, 0.1969204694032669, 0.25002190470695496, 0.021216461434960365, 0.07568225264549255, 0.06049826368689537, -0.08120973408222198, 0.03773810341954231, 0.019546909257769585, 0.12932243943214417, 0.05919758602976799, -0.01977144554257393, -0.004843553528189659, 0.1548021286725998, 0.07456674426794052, -0.07646560668945312, -0.007390933111310005, 0.06910727918148041, -0.08661733567714691, -0.0136776864528656, -0.020528195425868034, -0.03111645020544529, -0.3531114161014557, -0.23955538868904114, -0.2898789644241333, -0.24351565539836884, 0.06391536444425583, -0.04779620096087456, -0.19677899777889252, 0.015588932670652866, 0.05761873349547386, -0.04222721979022026, 0.034150075167417526, -0.025591949000954628, 0.002176310634240508, 0.22434183955192566, 0.23035673797130585, 0.03763297200202942, 0.08690723031759262, 0.07965049147605896, 0.09057562798261642, -0.059104420244693756, -0.02558455988764763, -0.02558455988764763, 0.10159614682197571, -0.020670194178819656, 0.03237016499042511, -0.020839873701334, 0.022330181673169136, 0.0606677420437336, 0.11341091990470886, 0.05785968527197838, 0.013996230438351631, 0.11425255239009857, -0.021784568205475807, 0.021130234003067017, 0.15123514831066132, 0.04355928301811218, -0.04117818549275398, 0.06359848380088806, -0.0149924261495471, -0.10902675241231918, 0.041740454733371735, -0.1184237152338028, 0.11326964199542999, 0.08363187313079834, -0.09191567450761795, -0.10131117701530457, 0.11000792682170868, -0.09765905886888504, -0.09801055490970612, 0.1000741720199585, 0.2110288143157959, -0.20302392542362213, -0.034601036459207535, -0.16709068417549133, -0.07924211025238037, 0.11246553808450699, 0.23800039291381836, 0.012527631595730782, -0.17141833901405334, -0.17361007630825043, -0.27234289050102234, -0.22024354338645935, -0.05132625624537468, 0.024478301405906677, 0.02204766683280468, -0.02735360711812973, 0.06449843943119049, 0.01839396543800831, 0.012065364047884941, 0.09313484281301498, 0.011747042648494244, 0.04029196500778198, 0.05793679133057594, -0.055275119841098785, -0.07969985157251358, -0.13942815363407135, -0.16751448810100555, -0.05011641979217529, 0.012853452004492283, -0.08963899314403534, 0.11943697929382324, 0.14255891740322113, 0.03580145537853241, 0.02693679742515087, -0.08334638923406601, 0.010843895375728607, 0.1291593313217163, 0.196046382188797, 0.22078175842761993, 0.034920115023851395, -0.10201839357614517, 0.13983462750911713, 0.13298451900482178, -0.10704582929611206, -0.02138487994670868, 0.043604545295238495, 0.04616821929812431, -0.1262657344341278, -0.20862255990505219, -0.10365499556064606, 0.1962745487689972, 0.08252649754285812, -0.07075165957212448, -0.19661936163902283, -0.029020391404628754, 0.07040616869926453, -0.22308403253555298, 0.19994838535785675, 0.12550416588783264, 0.16607458889484406, -0.014352998696267605, -0.080983005464077, -0.1439317911863327, -0.02006777562201023, 0.087783083319664, 0.017135431990027428, 0.09119034558534622, -0.12790341675281525, -0.0676126629114151, -0.11285438388586044, 0.09354861825704575, -0.11002136021852493, -0.19265295565128326, -0.06822989881038666, -0.06113726645708084, 0.01586279459297657, 0.08874847739934921, 0.11002085357904434, 0.1361544281244278, 0.2170652449131012, 0.06824251264333725, -0.04200078174471855, -0.01856212317943573, -0.0028492817655205727, 0.026521185413002968, -0.12794332206249237, -0.059119414538145065, -0.059119414538145065, -0.10309799015522003, 0.1822519749403, 0.043041594326496124, 0.03667822480201721, -0.019888389855623245, 0.007099549751728773, -0.054038193076848984, -0.024556368589401245, 0.03724571689963341, -0.023876840248703957, -0.09236295521259308, 0.030888400971889496, 0.04852578416466713, 0.011658329516649246, 0.15455509722232819, 0.1205611526966095, 0.1205611526966095, -0.05501198768615723, -0.08985384553670883, -0.22430384159088135, -0.09130412340164185, 0.07974988222122192, -0.05782747641205788, 0.10497232526540756, -0.05749816447496414, 0.0701051652431488, 0.020238902419805527, -0.037543389946222305, 0.047746092081069946, -0.06525246798992157, -0.12765944004058838, 0.16464710235595703, 0.19993750751018524, -0.17384278774261475, -0.21067489683628082, -0.14566001296043396, 0.05176021158695221, -0.07316108793020248, -0.07527090609073639, 0.1768413782119751, 0.17583952844142914, -0.1323118805885315, 0.03337115794420242, 0.132485494017601, 0.021925484761595726, -0.0626765713095665, -0.020481836050748825, -0.35893628001213074, -0.06751608848571777, -0.0750555470585823, -0.360691100358963, -0.275587797164917, -0.014009494334459305, -0.08836416155099869, 0.04021477326750755, 0.10051660239696503, 0.20119604468345642, 0.18038493394851685, 0.1284681260585785, 0.12486173957586288, 0.14120982587337494, 0.22764572501182556, 0.041005540639162064, 0.16425533592700958, 0.08752027899026871, 0.08259227126836777, 0.0611535981297493, -0.05000803619623184, -0.002483476884663105, -0.01689056120812893, -0.07934935390949249, -0.0932469293475151, -0.019231878221035004, 0.12231151759624481, -0.035390835255384445, 0.02775973081588745, -0.030165422707796097, 0.020681366324424744, 0.020681366324424744, -0.10122963041067123, -0.23951469361782074, -0.24906966090202332, -0.10842694342136383, 0.009610694833099842, 0.13143302500247955, -0.0770103707909584, -0.09561256319284439, -0.0021938506979495287, 0.19894105195999146, 0.1308470070362091, 0.10885083675384521, 0.08049153536558151, 0.03050742670893669, 0.07062278687953949, -0.07936079800128937, -0.07936079800128937, 0.07274572551250458, -0.0054357354529201984, 0.18350566923618317, -0.03471554070711136, -0.010703912004828453, 0.0007443540380336344, -0.1066729947924614, 0.15321029722690582, 0.07692636549472809, -0.041161686182022095, -0.041161686182022095, 0.05229601263999939, 0.03079061023890972, -0.21034125983715057, -0.052147530019283295, 0.15524637699127197, -0.15850944817066193, 0.17124667763710022, 0.22837403416633606, 0.24632738530635834, 0.1251944601535797, 0.08241439610719681, -0.16192243993282318, 0.1307365447282791, 0.152587428689003, 0.13596491515636444, 0.08111196011304855, -0.09883077442646027, -0.15486255288124084, -0.15533192455768585, 0.03296330198645592, 0.03296330198645592, 0.17088788747787476, 0.039594195783138275, 0.014870971441268921, -0.04414607584476471, -0.019002070650458336, -0.1298115849494934, 0.10856819152832031, 0.09845101088285446, -0.03621399402618408, 0.08747261762619019, -0.11883837729692459, -0.006688273511826992, 0.0953771099448204, 0.0842096358537674, -0.03201839700341225, -0.08778984099626541, 0.16665682196617126, -0.007891767658293247, -0.22819530963897705, -0.18538904190063477, 0.08502227813005447, -0.08537624776363373, -0.10600312799215317, 0.1498432159423828, 0.18420591950416565, 0.1549862176179886, 0.21337728202342987, 0.09091728180646896, -0.0788804441690445, 0.12425754964351654, 0.1440935730934143, 0.11719461530447006, 0.251548171043396, 0.16843099892139435, -0.011310193687677383, -0.011310193687677383, 0.02999976836144924, 0.05171971395611763, 0.021384676918387413, 0.001855196664109826, -0.053539689630270004, -0.02110661193728447, -0.07169913500547409, 0.07390736043453217, 0.04887432977557182, 0.1424633115530014, -0.1372675746679306, -0.1976519227027893, 0.17616364359855652, -0.003333308733999729, 0.06292281299829483, 0.15719914436340332, -0.022971907630562782, -0.005692407488822937, -0.12765228748321533, 0.035352032631635666, -0.10652399063110352, 0.15817268192768097, -0.05642380565404892, -0.011005472391843796, -0.1137397438287735, 0.11773431301116943, 0.27498769760131836, 0.05689210072159767, -0.23282599449157715, -0.06892507523298264, -0.012432402931153774, -0.15870341658592224, 0.17383010685443878, -0.02821512334048748, 0.009632343426346779, -0.14268231391906738, 0.02450357936322689, 0.02549929730594158, -0.08729381859302521, 0.05574226751923561, -0.1650468111038208, -0.1766108125448227, 0.18531504273414612, 0.15359120070934296, 0.02448580600321293, -0.06706319004297256, -0.0005512057687155902, 0.004283001180738211, -0.033405400812625885, -0.14353936910629272, 0.003350437618792057, -0.01652355119585991, 0.024036388844251633, 0.09366799145936966, 0.09035419672727585, 0.14218011498451233, -5.912824417464435e-05, -0.00315600773319602, 0.09345417469739914, 0.09039230644702911, 0.05359635874629021, -0.1683690845966339, 0.011479351669549942, 0.042701173573732376, -0.065874382853508, -0.10060148686170578, 0.11667192727327347, 0.018347902223467827, 0.10612884908914566, 0.12319959700107574, 0.05344296246767044, 0.02211015857756138, -0.03384709358215332, 0.02121386118233204, -0.1892724186182022, -0.0013245557202026248, -0.19220519065856934, -0.1420070081949234, -0.08690673857927322, -0.08690673857927322, 0.16668301820755005, 0.15712694823741913, -0.042216893285512924, -0.05662721022963524, 0.05064430832862854, 0.05999674275517464, -0.07705732434988022, 0.07826926559209824, 0.138868048787117, 0.05047677829861641, -0.02552698366343975, -0.02651308849453926, -0.08264169096946716, 0.20227521657943726, 0.20227521657943726, -0.07066795229911804, 0.018162665888667107, -0.015624566935002804, -0.07704978436231613, 0.027306867763400078, 0.1622461974620819, 0.02350829355418682, 0.13115231692790985, 0.2197965681552887, -0.1433480829000473, 0.17917998135089874, 0.08766576647758484, 0.11576991528272629, 0.21332313120365143, -0.19314518570899963, 0.1388198584318161, -0.14261257648468018, -0.09867123514413834, 0.09105497598648071, 0.01970878802239895, -0.04769107326865196, -0.0274435356259346, -0.1262667328119278, -0.030692698433995247, 0.004126283340156078, 0.024021383374929428, -0.0744009017944336, 0.09247991442680359, -0.0675889402627945, 0.035244960337877274, -0.09396736323833466, -0.20473073422908783, -0.07302112877368927, 0.02048972249031067, 0.03550884500145912, 0.03226637467741966, -0.03582441806793213, 0.039700210094451904, -0.15329095721244812, -0.1964786797761917, 0.20194795727729797, 0.0496712289750576, 0.140321746468544, 0.10352910310029984, -0.07939860969781876, -0.06760770827531815, 0.06665652245283127, 0.17748808860778809, -0.0570777952671051, -0.0489475391805172, -0.1055009737610817, -0.1866062879562378, -0.1980316936969757, 0.1894228756427765, -0.18526679277420044, 0.09590066969394684, -0.08373479545116425, -0.14176897704601288, -0.011944944970309734, -0.12769241631031036, 0.1561294049024582, -0.17898480594158173, -0.041437193751335144, -0.1452903002500534, 0.23501360416412354, 0.07539011538028717, -0.03770243003964424, 0.19709837436676025, -0.0869971439242363, 0.21151474118232727, 0.1995382159948349, 0.14268343150615692, 0.13390272855758667, 0.04529038816690445, 0.0863189846277237, 0.11406543850898743, -0.0014160998398438096, 0.055926259607076645, 0.12286730110645294, 0.09715691953897476, 0.09477413445711136, 0.12898118793964386, -0.009086559526622295, 0.15765537321567535, 0.012345460243523121, -0.11625462770462036, -0.0948655903339386, -0.12515370547771454, -0.14542096853256226, -0.06826271116733551, -0.024281634017825127, 0.14610959589481354, 0.11878696829080582, -0.24303258955478668, -0.15574391186237335, -0.07531056553125381, 0.09650255739688873, 0.07862862199544907, -0.12902773916721344, -0.04633641988039017, 0.029977232217788696, 0.0206682737916708, -0.01698734052479267, 0.21018242835998535, 0.23707315325737, -0.04448623210191727, 2.6288274966645986e-05, 0.001728613511659205, -0.08686603605747223, -0.19479230046272278, 0.003803602186962962, -0.13432754576206207, 0.09879519045352936, -0.04193199798464775, 0.02242453210055828, 0.011446086689829826, -0.0742458775639534, -0.04849439114332199, 0.012656910344958305, 0.03957356512546539, 0.022501226514577866, -0.09896530956029892, -0.05101386085152626, 0.035748112946748734, -0.05426952987909317, -0.001442775479517877, -0.0741850733757019, -0.16766300797462463, -0.10342992842197418, -0.043234579265117645, 0.15314064919948578, 0.14484894275665283, 0.1489942967891693, 0.0871429592370987, -0.018972689285874367, -0.08981671929359436, -0.10258165746927261, -0.1488390415906906, 0.045284271240234375, 0.10600235313177109, 0.17474466562271118, 0.21687431633472443, 0.18083898723125458, 0.242248997092247, -0.22810137271881104, -0.1746908575296402, -0.19708377122879028, -0.2339307963848114, -0.06815862655639648, 0.11014467477798462, -0.07781827449798584, 0.05680635944008827, 0.11832546442747116, -0.09727192670106888, -0.08823317289352417, 0.13238747417926788, 0.14899779856204987, 0.01640775427222252, -0.086262047290802, -0.06545712053775787, 0.009581927210092545, -0.314221054315567, -0.14732205867767334, 0.06726200133562088, 0.011664469726383686, -0.15508288145065308, -0.23377744853496552, -0.05887393280863762, -0.016938824206590652, 0.1948123723268509, -0.057913247495889664, 0.01949203573167324, 0.12606583535671234, -0.04313289001584053, 0.05422564968466759, 0.044682539999485016, -0.09242607653141022, 0.10210247337818146, 0.09568049013614655, -0.11341864615678787, 0.05387142673134804, 0.018116910010576248, -0.1302698403596878, -0.10802769660949707, 0.09502583742141724, -0.04521695524454117, -0.06139310821890831, -0.04958443343639374, 0.05639360472559929, 0.012268788181245327, 0.11495257914066315, 0.20202359557151794, -0.22397780418395996, -0.25716131925582886, -0.05359046161174774, 0.004216180182993412, 0.05721664801239967, 0.08311136811971664, 0.14649651944637299, 0.30628082156181335, 0.19421374797821045, 0.12018782645463943, -0.03155460208654404, -0.09961453080177307, -0.17058086395263672, 0.11198103427886963, -0.1295117437839508, -0.07992186397314072, -0.052500031888484955, -0.08834302425384521, -0.03250586614012718, -0.03843264654278755, -0.043288640677928925, 0.09531857073307037, 0.002447121776640415, 0.1714697927236557, 0.3041766285896301, -0.2657814025878906, -0.16121812164783478, 0.13227753341197968, -0.012024075724184513, 0.17206276953220367, 0.030842609703540802, -0.033325422555208206, 0.04739125072956085, -0.10792281478643417, -0.036242417991161346, 0.035474080592393875, -0.035835567861795425, -0.19976182281970978, -0.10695579648017883, 0.07988937944173813, -0.07769136875867844, 0.027316177263855934, 0.09094322472810745, -0.06013099104166031, 0.017940271645784378, -0.034299712628126144, 0.06849883496761322, 0.025365956127643585, -0.007268301676958799, 0.0067826262675225735, 0.032450251281261444, 0.04041953757405281, 0.04621464014053345, 0.05572483316063881, 0.06764499843120575, -0.0982947051525116, -0.10612719506025314, -0.002125686500221491, 0.12975959479808807, -0.03983095660805702, -0.042916443198919296, -0.1294654905796051, 0.18434740602970123, 0.1576107144355774, 0.18568715453147888, -0.28378716111183167, 0.2706766724586487, 0.16316546499729156, 0.0829375609755516, 0.12383479624986649, 0.012302592396736145, 0.11027690023183823, -0.11688549816608429, -0.19976162910461426, -0.18296410143375397, -0.06472697108983994, -0.17588087916374207, -0.20813122391700745, 0.03723905235528946, 0.02618616260588169, 0.04094088822603226, -0.117456816136837, -0.08202462643384933, 0.19184303283691406, 0.24534568190574646, -0.21338042616844177, 0.101700559258461, -0.10926277935504913, 0.05159145966172218, -0.11146571487188339, -0.045939553529024124, 0.10533319413661957, 0.17917431890964508, 0.02963556908071041, 0.08923780173063278, -0.10482709854841232, -0.0229658130556345, 0.059311751276254654, 0.05267888680100441, -0.04720931127667427, 0.05063139274716377, 0.030942896381020546, 0.057951416820287704, -0.1045415848493576, -0.13397465646266937, 0.002141754375770688, 0.08580266684293747, -0.10546673089265823, -0.07005435228347778, -0.12269239127635956, -0.18295332789421082, 0.15990813076496124, 0.16820821166038513, 0.1381302922964096, -0.04231470823287964, 0.012521050870418549, -0.0990355834364891, -0.13483589887619019, -0.12496526539325714, 0.09711696952581406, 0.06231990084052086, 0.05882672592997551, 0.028809932991862297, -0.14042975008487701, -0.027139052748680115, 0.12949317693710327, -0.08797287195920944, 0.028683843091130257, -0.05539849400520325, 0.07538821548223495, -0.0651421844959259, 0.1231137290596962, 0.2020321488380432, 0.20352526009082794, 0.2501662075519562, 0.28537309169769287], "bM": [0.31769588589668274, 0.2948145568370819, 0.26794758439064026, 0.25149789452552795, 0.22375181317329407, 0.33808237314224243, 0.32582104206085205, 0.5788730978965759, 0.10747400671243668, 0.567528486251831, 0.6078179478645325, 0.5451685786247253, 0.48095378279685974, 0.2630017399787903, 0.19024741649627686, 0.2976856529712677, 0.4230898320674896, 0.1853308230638504, 0.40897178649902344, 0.36514919996261597, 0.1712045669555664, 0.5059937834739685, 0.19639329612255096, 0.3891763389110565, 0.39148756861686707, 0.3094072639942169, 0.24468399584293365, 0.441449910402298, 0.5821312665939331, 0.41379591822624207, 0.3954823613166809, 0.23869982361793518, 0.24268747866153717, 0.42243820428848267, 0.4787469506263733, 0.4773154556751251, 0.4269742965698242, 0.33423560857772827, 0.4605661630630493, 0.47055792808532715, 0.22835159301757812, 0.49578675627708435, 0.37813296914100647, 0.4240691065788269, 0.47436490654945374, 0.5288617610931396, 0.39652371406555176, 0.41717907786369324, 0.49420544505119324, 0.4673486351966858, 0.3584693372249603, 0.2583528757095337, 0.5655248761177063, 0.5655248761177063, 0.6120885610580444, 0.4135681390762329, 0.47350502014160156, 0.4925658404827118, 0.13703462481498718, 0.3533371090888977, 0.35418015718460083, 0.3920816481113434, 0.5506255626678467, 0.2858971953392029, 0.22606994211673737, 0.3343479335308075, 0.4833413362503052, 0.17329609394073486, 0.47592583298683167, 0.4085536599159241, 0.41895100474357605, 0.35090211033821106, 0.45687350630760193, 0.15218284726142883, 0.5685083866119385, 0.46058934926986694, 0.3341943323612213, 0.22727470099925995, 0.5752065181732178, 0.15162649750709534, 0.0860409066081047, 0.223622664809227, 0.27150958776474, 0.4354059398174286, 0.39021676778793335, 0.6078923344612122, 0.35525432229042053, 0.3555201292037964, 0.3555201292037964, 0.37314045429229736, 0.5825802683830261, 0.5182785391807556, 0.3752756714820862, 0.6129681468009949, 0.22023853659629822, 0.31880757212638855, 0.44319039583206177, 0.29319870471954346, 0.1456313580274582, 0.21296238899230957, 0.3731418550014496, 0.3342820405960083, 0.3513665497303009, 0.42227035760879517, 0.29168134927749634, 0.2940315902233124, 0.1557014286518097, 0.4913861155509949, 0.1911347508430481, 0.22631436586380005, 0.5853564739227295, 0.46237653493881226, 0.4395979046821594, 0.2618696093559265, 0.10867627710103989, 0.25406134128570557, 0.24331116676330566, 0.24331116676330566, 0.5570898056030273, 0.5966227650642395, 0.0855095237493515, 0.5911027789115906, 0.524739682674408, 0.32713979482650757, 0.4542165994644165, 0.3237626552581787, 0.41758978366851807, 0.34724706411361694, 0.3040120601654053, 0.3063746392726898, 0.3034186363220215, 0.23025904595851898, 0.25368738174438477, 0.3276989459991455, 0.3584512174129486, 0.4200690686702728, 0.44338345527648926, 0.4599178731441498, 0.361017107963562, 0.4385172128677368, 0.16147463023662567, 0.3179263174533844, 0.4313887655735016, 0.27388516068458557, 0.23640620708465576, 0.2793041169643402, 0.38254934549331665, 0.42875975370407104, 0.17964747548103333, 0.5568831562995911, 0.257553368806839, 0.3847740590572357, 0.43369609117507935, 0.37019920349121094, 0.3178849220275879, 0.25814032554626465, 0.4175938665866852, 0.38444656133651733, 0.2899535000324249, 0.37501999735832214, 0.48138296604156494, 0.28291192650794983, 0.4132700562477112, 0.2657913863658905, 0.29861128330230713, 0.5136871337890625, 0.4460448920726776, 0.5404850244522095, 0.37525463104248047, 0.45607730746269226, 0.4233354330062866, 0.2728644013404846, 0.37126272916793823, 0.5452062487602234, 0.463112473487854, 0.4651554822921753, 0.4577741324901581, 0.5522905588150024, 0.38240692019462585, 0.3878316879272461, 0.2858547568321228, 0.27902016043663025, 0.5845770239830017, 0.25127485394477844, 0.5021287798881531, 0.12589377164840698, 0.3550112545490265, 0.3323107361793518, 0.3571666181087494, 0.3082495331764221, 0.23247773945331573, 0.27434951066970825, 0.34380507469177246, 0.4736522138118744, 0.47626981139183044, 0.5464152693748474, 0.3160223960876465, 0.39281603693962097, 0.33446821570396423, 0.4447505474090576, 0.10892414301633835, 0.1803564876317978, 0.5154584050178528, 0.3868893086910248, 0.35958096385002136, 0.41073790192604065, 0.3437139689922333, 0.4389798641204834, 0.2688746750354767, 0.2862132787704468, 0.31172072887420654, 0.3865174353122711, 0.25628289580345154, 0.01461836602538824, 0.6987910866737366, -0.0028879609890282154, 0.1345132291316986, 0.575219988822937, 0.4114866852760315, 0.2132977843284607, 0.2658396363258362, 0.2547353506088257, 0.10045002400875092, 0.6547797322273254, 0.6729370951652527, 0.17307855188846588, 0.2513493597507477, 0.4385381042957306, 0.27310118079185486, 0.031238175928592682, 0.053264372050762177, 0.24567662179470062, 0.3600597083568573, 0.3429635465145111, 0.6299297213554382, 0.28159382939338684, 0.34113946557044983, 0.4447886049747467, 0.28665968775749207, 0.5440194010734558, 0.45937681198120117, 0.46339720487594604, 0.3470097780227661, 0.4667763411998749, 0.34380432963371277, 0.431876003742218, 0.2589362859725952, 0.4222204387187958, 0.3047620356082916, 0.3238542377948761, 0.20540255308151245, 0.2849877178668976, 0.2582875192165375, 0.4287905693054199, 0.33558812737464905, 0.2836323082447052, 0.3548983335494995, 0.3781803846359253, 0.15266090631484985, 0.4738779067993164, 0.33755624294281006, 0.33905285596847534, 0.2798117697238922, 0.2822854220867157, 0.42111775279045105, 0.46228522062301636, 0.31236883997917175, 0.41227203607559204, 0.3504185080528259, 0.2761266827583313, 0.5922718048095703, 0.27976277470588684, 0.13289617002010345, 0.20466375350952148, 0.4191790819168091, 0.39218541979789734, 0.1756448596715927, 0.1707850694656372, 0.19336450099945068, 0.31035086512565613, 0.30201226472854614, 0.40817975997924805, 0.29292216897010803, 0.39705318212509155, 0.3158627152442932, 0.2821016311645508, 0.28815028071403503, 0.28538423776626587, 0.28538423776626587, 0.3404845595359802, 0.2691788971424103, 0.4158477485179901, 0.2672971189022064, 0.4432847499847412, 0.3783910870552063, 0.44813641905784607, 0.2393195480108261, 0.45488518476486206, 0.27372437715530396, 0.4359837472438812, 0.26624977588653564, 0.4797118902206421, 0.36339205503463745, 0.2054889053106308, 0.3782869875431061, 0.3849306106567383, 0.6485542058944702, 0.5277430415153503, 0.2109997421503067, 0.49469155073165894, 0.19287854433059692, 0.4826423227787018, 0.5396129488945007, 0.24876423180103302, 0.4098786413669586, 0.41952481865882874, 0.49943816661834717, 0.22812508046627045, 0.3295941650867462, 0.30108383297920227, 0.36979004740715027, 0.18723830580711365, 0.09580566734075546, 0.30595988035202026, 0.38420823216438293, 0.4055316746234894, 0.24113991856575012, 0.13260766863822937, 0.5397355556488037, 0.2756270468235016, 0.14284354448318481, 0.051838066428899765, 0.2505020201206207, 0.3438560664653778, 0.4439946413040161, 0.2691037356853485, 0.26297083497047424, 0.35401758551597595, 0.40947386622428894, 0.31836575269699097, 0.31712979078292847, 0.20210982859134674, 0.2900596261024475, 0.41565945744514465, 0.22154325246810913, 0.34607595205307007, 0.15814881026744843, 0.2252107411623001, 0.32376450300216675, 0.440622478723526, 0.26439234614372253, 0.09319040179252625, 0.3614909052848816, 0.531792402267456, 0.2542153000831604, 0.28756818175315857, 0.4496507942676544, 0.4626980423927307, 0.3605140745639801, 0.45659855008125305, 0.13430637121200562, 0.5253959894180298, 0.1555711030960083, 0.33015313744544983, 0.39972564578056335, 0.44112324714660645, 0.29643023014068604, 0.4581840932369232, 0.2924785614013672, 0.44616416096687317, 0.480127215385437, 0.265423446893692, 0.2805037498474121, 0.5157032012939453, 0.597195029258728, 0.173566997051239, 0.32231447100639343, 0.3369761109352112, 0.1796124279499054, 0.28570425510406494, 0.37129268050193787, 0.36823469400405884, 0.3056049942970276, 0.29711249470710754, 0.33252429962158203, 0.33077472448349, 0.4486778974533081, 0.3938458561897278, 0.20870542526245117, 0.41309332847595215, 0.2954472303390503, 0.3184817433357239, 0.3782821297645569, 0.5268189907073975, 0.36131012439727783, 0.2615933418273926, 0.2632218897342682, 0.26556509733200073, 0.26556509733200073, 0.3495579659938812, 0.28496110439300537, 0.26496970653533936, 0.1753140687942505, 0.5850188732147217, 0.4931735396385193, 0.3226427435874939, 0.32835841178894043, 0.3783477246761322, 0.3343803286552429, 0.24693571031093597, 0.2279818207025528, 0.38374263048171997, 0.4682937264442444, 0.25991812348365784, 0.2855572998523712, 0.4670237898826599, 0.5517591238021851, 0.5467337965965271, 0.41680625081062317, 0.41680625081062317, 0.1342666894197464, 0.19961413741111755, 0.453264981508255, 0.37956705689430237, 0.16547232866287231, 0.4545004367828369, 0.25079241394996643, 0.45492422580718994, 0.23471032083034515, 0.47299724817276, 0.220150887966156, 0.1477842926979065, 0.2640087306499481, 0.41163191199302673, 0.45109468698501587, 0.3814072608947754, 0.3933614194393158, 0.22432206571102142, 0.4365973472595215, 0.3927602171897888, 0.2302459180355072, 0.28618836402893066, 0.36587288975715637, 0.3978188931941986, 0.31418803334236145, 0.40417587757110596, 0.3388824164867401, 0.620354413986206, 0.4621497392654419, 0.21447473764419556, 0.2320103645324707, 0.3877387046813965, 0.25396493077278137, 0.35978519916534424, 0.3954627811908722, 0.3700931966304779, 0.30678290128707886, 0.38271453976631165, 0.30042898654937744, 0.3854292929172516, 0.4349474608898163, 0.38942134380340576, 0.2629586160182953, 0.44807663559913635, 0.3266315460205078, 0.30667760968208313, 0.3153204023838043, 0.25127485394477844, 0.460693895816803, 0.16759318113327026, 0.18958045542240143, 0.28741058707237244, 0.20770443975925446, 0.1603831946849823, 0.2589778006076813, 0.31971579790115356, 0.4794984459877014, 0.21161139011383057, 0.3169856369495392, 0.3237578570842743, 0.4488174021244049, 0.13482756912708282, 0.6036363244056702, -0.13050290942192078, 0.17681409418582916, 0.37013858556747437, 0.4661993682384491, 0.389607697725296, 0.1523139923810959, 0.5257246494293213, 0.1454164832830429, 0.2871337831020355, 0.21476687490940094, 0.22469548881053925, 0.3833616077899933, 0.4431767761707306, 0.283979207277298, 0.46411818265914917, 0.4003698527812958, 0.24156565964221954, 0.4512428641319275, 0.2742512822151184, 0.2269357442855835, 0.37062567472457886, 0.43845486640930176, 0.33114567399024963, 0.29393795132637024, 0.3670099377632141, 0.4134690761566162, 0.46830615401268005, 0.49582210183143616, 0.290823370218277, 0.21293406188488007, 0.41584086418151855, 0.30788055062294006, 0.36626362800598145, 0.28144049644470215, 0.5548778176307678, 0.5826097726821899, 0.19745640456676483, 0.25735095143318176, 0.42785048484802246, 0.35270464420318604, 0.42117759585380554, 0.3184233605861664, 0.41853418946266174, 0.23489104211330414, 0.26479843258857727, 0.49085283279418945, 0.4647442102432251, 0.5115346312522888, 0.2470502108335495, 0.4438214600086212, 0.3362492620944977, 0.41037458181381226, 0.5150782465934753, 0.7113876342773438, 0.5025273561477661, 0.30265092849731445, 0.2241135686635971, 0.6216261982917786, 0.08421611040830612, 0.6430659890174866, 0.07461964339017868, 0.6626403331756592, 0.48533621430397034, 0.2231518030166626, 0.396953821182251, 0.21725647151470184, 0.3722553253173828, 0.5841489434242249, 0.4765472710132599, 0.43600115180015564, 0.28600582480430603, 0.24698159098625183, 0.5929166674613953, 0.5376085042953491, 0.14010322093963623, 0.376444548368454, 0.32895296812057495, 0.08310503512620926, 0.26106515526771545, 0.38318464159965515, 0.44183242321014404, 0.5484662652015686, 0.3065384030342102, 0.28568997979164124, 0.5724078416824341, 0.5088114738464355, 0.4093661904335022, 0.2455160766839981, 0.3276940584182739, 0.3089974522590637, 0.2751062214374542, 0.5590113401412964, 0.03587092086672783, 0.3276594281196594, 0.4351629614830017, 0.24829478561878204, 0.30782151222229004, 0.37691912055015564, 0.5802796483039856, 0.2944236099720001, 0.47427642345428467, 0.4700632393360138, 0.2975723445415497, 0.3945680260658264, 0.39487436413764954, 0.510045051574707, 0.3341921269893646, 0.40935957431793213, 0.24621471762657166, 0.3257817029953003, 0.35752782225608826, 0.4194992184638977, 0.40019240975379944, 0.19432012736797333, 0.4238629639148712, 0.5038729906082153, 0.16711848974227905, 0.03535958752036095, 0.3223384916782379, 0.2763414978981018, 0.39174553751945496, 0.2902528643608093, 0.29233068227767944, 0.3603953421115875, 0.08092816174030304, 0.3198687732219696, 0.4367033541202545, 0.291413277387619, 0.41862186789512634, 0.2613503038883209, 0.3235310912132263, 0.2952934801578522, 0.41431373357772827, 0.33201879262924194, 0.503604531288147, 0.503604531288147, 0.5277533531188965, 0.37769702076911926, 0.12084563076496124, 0.04849207028746605, 0.2545735538005829, 0.308139443397522, 0.5105876326560974, 0.047932107001543045, 0.6463497877120972, 0.46564292907714844, 0.24224638938903809, 0.32726845145225525, 0.3572286069393158, 0.52737957239151, 0.590941309928894, 0.5245333313941956, 0.4650195837020874, 0.0071297152899205685, 0.24610675871372223, 0.25401756167411804, 0.23033879697322845, 0.23565146327018738, 0.4554288983345032, 0.4330350160598755, 0.2601795792579651, 0.4213505685329437, -0.05592327564954758, 0.19793817400932312, 0.4610884189605713, 0.32553747296333313, 0.37247413396835327, 0.2477293312549591, 0.23288939893245697, 0.23508788645267487, 0.234839528799057, 0.2847509980201721, 0.32853078842163086, 0.5304368734359741, 0.5656495094299316, 0.23516929149627686, 0.2345583438873291, 0.3263985514640808, 0.2748372554779053, 0.49932026863098145, 0.5157233476638794, 0.5423956513404846, 0.31634849309921265, 0.545452356338501, 0.5292308330535889, 0.732257604598999, -0.06218459829688072, 0.6542097926139832, 0.5268221497535706, 0.33265602588653564, 0.3624553084373474, 0.2907730042934418, 0.4032023549079895, 0.5145116448402405, 0.49559468030929565, 0.3655445873737335, 0.4115222096443176, 0.37185803055763245, 0.2669653296470642, 0.41037362813949585, 0.26964759826660156, 0.1652574986219406, 0.4472845792770386, 0.26593464612960815, 0.45295271277427673, 0.7558552622795105, 0.31111815571784973, 0.4712740480899811, 0.522152304649353, 0.24140030145645142, 0.4482091963291168, 0.3112984895706177, 0.3623693585395813, 0.46352091431617737, 0.2375161498785019, 0.4265190362930298, 0.30833229422569275, 0.48456239700317383, 0.7235822081565857, 0.05815690755844116, 0.2581128478050232, 0.23081140220165253, 0.16736601293087006, 0.15388180315494537, 0.20120848715305328, 0.48402130603790283, 0.36926913261413574, 0.22214671969413757, 0.4622247517108917, 0.45195040106773376, 0.49853748083114624, 0.679351806640625, 0.5653585195541382, 0.1946522295475006, 0.37298673391342163, 0.4060063660144806, 0.39147692918777466, 0.3359434902667999, 0.2507767975330353, 0.24012602865695953, 0.5032559037208557, 0.5314257740974426, 0.11748629808425903, 0.701999306678772, 0.4654654562473297, 0.5623421669006348, 0.4367486536502838, 0.285133957862854, 0.5006107091903687, 0.5767005085945129, 0.33843863010406494, 0.48870620131492615, 0.3365464210510254, 0.3510459065437317, 0.3109765350818634, 0.2223423719406128, 0.8034796118736267, 0.09312444925308228, 0.18140149116516113, 0.4507909119129181, 0.29387640953063965, 0.5581368803977966, 0.43013033270835876, 0.14796583354473114, 0.14642952382564545, 0.16251975297927856, 0.3716542422771454, 0.39931392669677734, 0.33089372515678406, 0.3674503266811371, 0.47637197375297546, 0.4467194974422455, 0.21069073677062988, 0.5432506203651428, 0.5278288722038269, 0.5697264671325684, 0.10383269935846329, 0.2646317183971405, 0.3658333122730255, 0.3002880811691284, 0.3137320578098297, 0.42335206270217896, 0.27963581681251526, 0.4274713397026062, 0.6366013884544373, 0.4886764585971832, 0.3664042055606842, 0.19253413379192352, 0.47771450877189636, 0.23945049941539764, 0.5362737774848938, 0.5416398048400879, 0.5612748265266418, 0.5944700241088867, 0.13485413789749146, 0.13485413789749146, 0.48713549971580505, 0.40623608231544495, 0.47174471616744995, 0.2971911132335663, 0.44059765338897705, 0.3332425057888031, 0.358013391494751, 0.46633899211883545, 0.5434021949768066, 0.514930248260498, 0.25920233130455017, 0.28259795904159546, 0.29513558745384216, 0.45519140362739563, 0.5625701546669006, 0.5533524751663208, 0.41850730776786804, 0.20286151766777039, 0.307311087846756, 0.3811800181865692, 0.3850371241569519, 0.20813213288784027, 0.1499491184949875, 0.4889162480831146, 0.35641419887542725, 0.1615615040063858, 0.37571489810943604, 0.20728056132793427, 0.3866901099681854, 0.39338549971580505, 0.49880245327949524, 0.36399340629577637, 0.27419233322143555, 0.27920228242874146, 0.31608667969703674, 0.12588311731815338, 0.5557853579521179, 0.13674288988113403, 0.29645293951034546, 0.466854453086853, 0.5293465852737427, 0.2399398386478424, 0.46182215213775635, 0.2832587957382202, 0.4167178273200989, 0.4525950849056244, 0.12524603307247162, 0.4025154709815979, 0.24457959830760956, 0.2622569799423218, 0.31051990389823914, 0.40960708260536194, 0.29250672459602356, 0.5076607465744019, 0.4538239538669586, 0.1240190789103508, 0.3622856140136719, 0.12651671469211578, 0.3618754744529724, 0.39376384019851685, 0.35149040818214417, 0.34496986865997314, 0.4112880825996399, 0.14711478352546692, 0.3089005649089813, 0.4554111659526825, 0.313722163438797, 0.34827864170074463, 0.2806278467178345, 0.44820737838745117, 0.24215902388095856, 0.47837144136428833, 0.2322646826505661, 0.36476609110832214, 0.3110685646533966, 0.49307239055633545, 0.28974848985671997, 0.2284497618675232, 0.40033072233200073, 0.4333805739879608, 0.4360286593437195, 0.31062355637550354, 0.32917046546936035, 0.20477893948554993, 0.2855011820793152, 0.3125091791152954, 0.31271880865097046, 0.14134931564331055, 0.44721025228500366, 0.27899253368377686, 0.290143758058548, 0.06411697715520859, 0.2191876769065857, 0.5041012167930603, 0.4533997178077698, 0.4405810534954071, 0.28880804777145386, 0.40425625443458557, 0.37908637523651123, 0.408173531293869, 0.3366880416870117, 0.5186470150947571, 0.43515637516975403, 0.386638343334198, 0.33081763982772827, 0.22284497320652008, 0.37253859639167786, 0.25169801712036133, 0.0004648602625820786, -0.012258806265890598, -0.05128210037946701, 0.112175352871418, 0.05405411496758461, 0.6068271994590759, 0.08459185808897018, 0.5749090909957886, 0.4247606098651886, 0.32077327370643616, 0.4084550440311432, 0.1466214656829834, 0.05028882995247841, 0.3908482789993286, 0.27529463171958923, 0.4437180161476135, 0.41832786798477173, 0.31347522139549255, 0.45187297463417053, 0.3204563558101654, 0.3434809148311615, 0.3862212598323822, 0.5559992790222168, 0.42571064829826355, 0.25418373942375183, 0.28478989005088806, 0.19519776105880737, 0.33807554841041565, 0.47953081130981445, 0.20562134683132172, 0.494743287563324, 0.30480626225471497, 0.38031402230262756, 0.2794337272644043, 0.5065518021583557, -0.08460350334644318, 0.49615713953971863, 0.5240840315818787, 0.18930521607398987, 0.48225411772727966, 0.19567100703716278, 0.26625242829322815, 0.4349689781665802, 0.30457812547683716, 0.4086267054080963, 0.39767229557037354, 0.38827866315841675, 0.4695153534412384, 0.44866690039634705, 0.4801451861858368, 0.2934757471084595, 0.3479171693325043, 0.5752055048942566, 0.5057729482650757, 0.2291894257068634, 0.26152631640434265, 0.24190473556518555, 0.43680399656295776, 0.1393914371728897, 0.5185807347297668, 0.4654330909252167, 0.4143953323364258, 0.31789854168891907, 0.312822163105011, 0.37291401624679565, 0.37410908937454224, 0.47687792778015137, 0.28581297397613525, 0.33115246891975403, 0.26987919211387634, 0.3841252326965332, 0.31290826201438904, 0.3271101415157318, 0.37310877442359924, 0.22026598453521729, 0.555123507976532, 0.43518587946891785, 0.21527250111103058, 0.374210000038147, 0.40755775570869446, 0.4744213819503784, 0.21525609493255615, 0.5405440926551819, 0.31666865944862366, 0.5881607532501221, 0.28897568583488464, 0.3852909505367279, 0.43474385142326355, 0.37795111536979675, 0.32521355152130127, 0.30197417736053467, 0.2709951102733612, 0.42592501640319824, 0.25565579533576965, 0.24945314228534698, 0.499431848526001, 0.33600014448165894, 0.33295542001724243, 0.48930028080940247, 0.545137345790863, 0.20911580324172974, 0.5336282253265381, 0.04374893382191658, 0.1629052609205246, 0.3033228814601898, 0.025329725816845894, 0.1652013510465622, 0.5587306618690491, 0.2238452434539795, 0.5578637719154358, 0.6770056486129761, 0.5318605899810791, 0.2512879967689514, 0.4309825003147125, 0.2915872037410736, 0.2415619194507599, 0.280662477016449, 0.11543180048465729, 0.5083877444267273, 0.21250994503498077, 0.4961630702018738, 0.5499861836433411, 0.33143383264541626, 0.36240026354789734, 0.32200339436531067, 0.3762504756450653, 0.36740991473197937, 0.41353872418403625, 0.41881510615348816, 0.32793524861335754, 0.11276412755250931, 0.5624167323112488, 0.6978302001953125, 0.0036272676661610603, 0.0775027647614479, 0.11226338148117065, 0.303996205329895, 0.2569049596786499, 0.16799400746822357, 0.5735732913017273, 0.5711830854415894, 0.5405629277229309, 0.2059805542230606, 0.46526777744293213, 0.19450199604034424, 0.47247064113616943, 0.2814367115497589, 0.3567825257778168, 0.39405858516693115, 0.3341445326805115, 0.2623154819011688, 0.3085959553718567, 0.2329862266778946, 0.5334727764129639, 0.17900438606739044, 0.45141738653182983, 0.1715206652879715, 0.5612560510635376, 0.5588706731796265, 0.45207950472831726, 0.26768234372138977, 0.43117737770080566, 0.3060956299304962, 0.4257897436618805, 0.28291258215904236, 0.4239557385444641, 0.2673146426677704, 0.4084436893463135, 0.1556483656167984, 0.4948669672012329, 0.45271551609039307, 0.5331910252571106, 0.24602694809436798, 0.2548014223575592, 0.46414291858673096, 0.541198194026947, 0.26585403084754944, 0.383995920419693, 0.383995920419693, 0.28912484645843506, 0.30385780334472656, 0.6153407096862793, 0.27133914828300476, 0.2723178565502167, 0.46467217803001404, 0.44434937834739685, 0.2733260989189148, 0.24142977595329285, 0.19549687206745148, 0.5770724415779114, 0.5549434423446655, 0.5076746344566345, 0.3196690082550049, 0.32084259390830994, 0.49047914147377014, 0.32074353098869324, 0.06743086874485016, 0.22467435896396637, 0.24746914207935333, 0.5105583071708679, 0.12117548286914825, 0.6177854537963867, 0.37690094113349915, 0.14280560612678528, 0.04639162868261337, 0.6530014276504517, 0.35080885887145996, 0.19785426557064056, 0.5108093619346619, 0.20304790139198303, 0.4085332751274109, 0.4405091106891632, 0.11694253981113434, 0.35163414478302, 0.377998411655426, 0.47932568192481995, 0.2829054594039917, 0.33460500836372375, 0.32247960567474365, 0.46842169761657715, 0.2637093961238861, 0.2817593514919281, 0.34146690368652344, 0.3496929705142975, 0.26099613308906555, 0.6483059525489807, 0.5491276383399963, 0.11509247869253159, 0.5192810893058777, 0.512641191482544, 0.3012971580028534, 0.21885813772678375, 0.3018991947174072, 0.35915714502334595, 0.3585001528263092, 0.39400553703308105, 0.43649008870124817, 0.3397848308086395, 0.3481392562389374, 0.2867140471935272, 0.41492775082588196, 0.3241387903690338, 0.295591801404953, 0.33899179100990295, 0.28449302911758423, 0.38694578409194946, 0.2291267365217209, 0.539158284664154, 0.42044514417648315, 0.1494644731283188, 0.2806910276412964, 0.2128162831068039, 0.09618756920099258, 0.5746573209762573, 0.45559197664260864, 0.2356547862291336, 0.20943494141101837, 0.2606450915336609, 0.3789091408252716, 0.441213995218277, 0.4677468240261078, 0.42303505539894104, 0.4569243788719177, 0.22561043500900269, 0.4198022782802582, 0.3592362105846405, 0.4875062108039856, 0.4528922736644745, 0.25994226336479187, 0.39204534888267517, 0.11448974907398224, 0.6020541787147522, 0.5285760760307312, 0.4477858245372772, 0.6242080926895142, 0.120348259806633, 0.23374062776565552, 0.14900849759578705, 0.6924170255661011, 0.07964266836643219, 0.040238864719867706, 0.3764002025127411, 0.4116157591342926, 0.412469744682312, 0.555036723613739, 0.3049663305282593, 0.2796478271484375, 0.17268329858779907, 0.569044291973114, 0.4760403335094452, 0.5047406554222107, 0.2946884036064148, 0.4823991060256958, 0.49579524993896484, 0.27531740069389343, 0.3729148507118225, 0.3288552463054657, 0.14586177468299866, 0.46558982133865356, 0.36655130982398987, 0.26097625494003296, 0.49432769417762756, 0.228054016828537, 0.19277746975421906, 0.4858717918395996, 0.21519993245601654, 0.28827524185180664, 0.3692629933357239, 0.38633647561073303, 0.3863210678100586, 0.2568078637123108, 0.4071498513221741, 0.3097897171974182, 0.330514132976532, 0.3463907837867737, 0.37876561284065247, 0.3242368698120117, 0.18328014016151428, 0.3724251389503479, 0.3724251389503479, 0.31179094314575195, 0.3319864869117737, 0.407965749502182, 0.407965749502182, 0.36492568254470825, 0.30942079424858093, 0.2833258807659149, 0.42051103711128235, 0.27760422229766846, 0.271655410528183, 0.5157690048217773, 0.3829517364501953, 0.33797410130500793, 0.26048582792282104, 0.42232561111450195, 0.23306943476200104, 0.12358996272087097, 0.10054998099803925, 0.33244410157203674, 0.3461237847805023, 0.3682515621185303, 0.32104456424713135, 0.3633308410644531, 0.32995742559432983, 0.293250173330307, 0.5025110244750977, 0.4925405979156494, 0.2761882245540619, 0.4881197512149811, 0.33993998169898987, 0.21153075993061066, 0.40540504455566406, 0.37422144412994385, 0.4322447180747986, 0.445210337638855, 0.13080644607543945, 0.540772020816803, 0.15283848345279694, 0.23503656685352325, 0.3026295602321625, 0.23918594419956207, 0.110258087515831, 0.1822766214609146, 0.2300439327955246, 0.2238224446773529, 0.09091443568468094, 0.13173620402812958, 0.5268867015838623, 0.48407605290412903, 0.17932955920696259, 0.25772586464881897, 0.28453290462493896, 0.4267818033695221, 0.1168731078505516, 0.33098697662353516, 0.21496659517288208, 0.27674081921577454, 0.38345569372177124, 0.2752833366394043, 0.30758342146873474, 0.35776486992836, 0.2851196229457855, 0.2217082381248474, 0.29561030864715576, 0.4154168963432312, 0.3733435273170471, 0.4739589989185333, 0.39341118931770325, 0.38329294323921204, 0.4035089313983917, 0.40253502130508423, 0.21712476015090942, 0.44089195132255554, 0.14064902067184448, 0.268449604511261, 0.1491290181875229, 0.1807456910610199, 0.07430091500282288, 0.6889386773109436, 0.028334658592939377, 0.5156865119934082, 0.4813714027404785, 0.37532782554626465, 0.2865872383117676, 0.2732153832912445, 0.20350557565689087, 0.46270468831062317, 0.26779451966285706, 0.3391355276107788, 0.3391355276107788, 0.37456753849983215, 0.3160371780395508, 0.3633955121040344, 0.3264893591403961, 0.5399941205978394, 0.38912615180015564, 0.1616334617137909, 0.06361225247383118, 0.3361174464225769, 0.18024268746376038, 0.11469948291778564, 0.1294211894273758, 0.5932718515396118, 0.562705934047699, 0.21352195739746094, 0.3435041308403015, 0.3231150209903717, 0.18538686633110046, 0.32767945528030396, 0.35262542963027954, 0.3425622284412384, 0.3287353217601776, 0.38307985663414, 0.45235198736190796, 0.4181731939315796, 0.3580327332019806, 0.4345681369304657, 0.37046244740486145, 0.21887202560901642, 0.39690130949020386, 0.3019166886806488, 0.3076075315475464, 0.4678066074848175, 0.26315271854400635, 0.34923607110977173, 0.41168150305747986, 0.24428339302539825, 0.23824740946292877, 0.2842181622982025, 0.41280561685562134, 0.25830015540122986, 0.5212552547454834, 0.12127509713172913, 0.458758682012558, 0.271159291267395, 0.48292213678359985, 0.2753790616989136, 0.29238319396972656, 0.3369772434234619, 0.18268217146396637, 0.05485311150550842, 0.4985428750514984, 0.62413489818573, 0.4744734764099121, 0.46250882744789124, 0.42510634660720825, 0.3566072881221771, 0.4449674189090729, 0.4124019742012024, 0.42689642310142517, 0.3620356023311615, 0.3416159152984619, 0.3739127814769745, 0.5280286073684692, 0.3106308877468109, 0.47558289766311646, 0.4840695559978485, 0.582065761089325, 0.5821616649627686, 0.1507764607667923, 0.5644304752349854, 0.03413255140185356, 0.6985580921173096, 0.3984638750553131, 0.36386987566947937, 0.36632460355758667, 0.3840785324573517, 0.26763641834259033, 0.4417799115180969, 0.38055434823036194, 0.2780047357082367, 0.3334481120109558, 0.28572794795036316, 0.4192086160182953, 0.26599299907684326, 0.1387103646993637, 0.2818456292152405, 0.43783411383628845, 0.24090462923049927, 0.4718054533004761, 0.3117535710334778, 0.3681633472442627, 0.19823125004768372, 0.3873209059238434, 0.19055160880088806, 0.3075179159641266, 0.191147580742836, 0.32176560163497925, 0.3494340479373932, 0.11276818066835403, 0.20045417547225952, 0.15404222905635834, 0.18622072041034698, 0.2147289514541626, 0.04769501835107803, 0.08940523862838745, 0.2495514452457428, 0.2965835928916931, 0.47249409556388855, 0.11230012774467468, 0.34656617045402527, 0.4839637577533722, 0.5075684189796448, 0.37208208441734314, 0.4092673361301422, 0.4092673361301422, 0.383938193321228, 0.3211161196231842, 0.4223913848400116, 0.251629501581192, 0.2925501763820648, 0.4795873761177063, 0.23232828080654144, 0.4230395555496216, 0.4565289616584778, 0.5008116364479065, 0.5710210800170898, 0.25045686960220337, 0.2208707481622696, 0.3610783815383911, 0.3465918004512787, 0.32192617654800415, 0.32192617654800415, 0.3542559742927551, 0.31617027521133423, 0.40365123748779297, 0.21171429753303528, 0.4670405387878418, 0.19969028234481812, 0.4108020067214966, 0.43820318579673767, 0.3347821533679962, 0.42625588178634644, 0.405354380607605, 0.38083869218826294, 0.31090471148490906, 0.4267701506614685, 0.29776135087013245, 0.37363314628601074, 0.3170926868915558, 0.21047210693359375, 0.20614783465862274, 0.46052443981170654, 0.4272386133670807, 0.22471943497657776, 0.4314422011375427, 0.41170138120651245, 0.32762864232063293, 0.31525716185569763, 0.17286016047000885, 0.35688430070877075, 0.3866708278656006, 0.422181636095047, 0.3847869634628296, 0.5131226778030396, 0.4531475901603699, 0.43800032138824463, 0.32046374678611755, 0.507040798664093, 0.4508962333202362, 0.3116970658302307, 0.37077590823173523, 0.2220526784658432, 0.23385585844516754, 0.20764729380607605, 0.2609523832798004, 0.6494811177253723, 0.4059358537197113, 0.25413694977760315, 0.41312089562416077, 0.3280833959579468, 0.3557935953140259, 0.3822459280490875, 0.33025452494621277, 0.40264207124710083, 0.4503062963485718, 0.20241740345954895, 0.5443400144577026, 0.597845196723938, 0.4750302731990814, 0.2933723032474518, 0.08155553787946701, 0.48611319065093994, 0.32997581362724304, 0.32997581362724304, 0.3830398917198181, 0.40193718671798706, 0.4002988338470459, 0.563194215297699, 0.5982642769813538, 0.16698221862316132, 0.5084382891654968, 0.38840770721435547, 0.2845318615436554, 0.11679977178573608, 0.2720859944820404, 0.4003477692604065, 0.35171636939048767, 0.2574496567249298, 0.3540346324443817, 0.3326825499534607, 0.3326825499534607, 0.48393967747688293, 0.42856261134147644, 0.35161951184272766, 0.3357393741607666, 0.3898712992668152, 0.31877726316452026, 0.3903771638870239, 0.28847822546958923, 0.3177229166030884, 0.3402833044528961, 0.3402833044528961, 0.3160978853702545, 0.30064505338668823, 0.35745322704315186, 0.14249038696289062, 0.24845203757286072, 0.4416564702987671, 0.43923109769821167, 0.42990806698799133, 0.5679249167442322, 0.41262632608413696, 0.24003241956233978, 0.592129647731781, 0.17563557624816895, 0.10109364986419678, 0.34191691875457764, 0.4389595687389374, 0.5484544634819031, 0.478227436542511, 0.45605888962745667, 0.3736158609390259, 0.3736158609390259, 0.2578187882900238, 0.35587278008461, 0.39522334933280945, 0.28009483218193054, 0.35722973942756653, 0.15252284705638885, 0.6124013662338257, 0.5060534477233887, 0.31335514783859253, 0.2681124806404114, 0.3582112491130829, 0.2917051911354065, 0.2547500431537628, 0.2530817687511444, 0.2686080038547516, 0.4425601661205292, 0.3001668453216553, 0.08073373138904572, 0.387424111366272, 0.2943102717399597, 0.2854621708393097, 0.4895085394382477, 0.26308682560920715, 0.29258421063423157, 0.3101304769515991, 0.2909381687641144, 0.29230961203575134, 0.41752707958221436, 0.23175540566444397, 0.5362603068351746, 0.6118804812431335, 0.5233760476112366, 0.32766789197921753, 0.28033918142318726, 0.3500808775424957, 0.3500808775424957, 0.4128064513206482, 0.3732621669769287, 0.5743560194969177, 0.4774215817451477, 0.2966671884059906, 0.38108721375465393, 0.4325762987136841, 0.33708399534225464, 0.4857091009616852, 0.4725148677825928, 0.10001754015684128, 0.42203569412231445, 0.2861389219760895, 0.37155696749687195, 0.3531617224216461, 0.0014452248578891158, 0.1937190145254135, 0.13730476796627045, 0.3606131970882416, 0.39034342765808105, 0.25071075558662415, 0.273017019033432, 0.43622684478759766, 0.3718241751194, 0.3200898766517639, 0.21710185706615448, 0.46902433037757874, 0.23947547376155853, 0.18561501801013947, 0.502280056476593, 0.2308240830898285, 0.2571795880794525, 0.24392744898796082, 0.41140007972717285, 0.3529324233531952, 0.17142461240291595, 0.2016684114933014, 0.2285134345293045, 0.5576053261756897, 0.4620221257209778, 0.4141102135181427, 0.41367316246032715, 0.3089425265789032, 0.15693682432174683, 0.19290263950824738, 0.5055228471755981, 0.6324455738067627, 0.17848169803619385, 0.10833195596933365, 0.4904111623764038, 0.2558152973651886, 0.3426852524280548, 0.3444102108478546, 0.35986319184303284, 0.3894349932670593, 0.27077698707580566, 0.3070846199989319, 0.5001115202903748, 0.3714420795440674, 0.452466756105423, 0.41225704550743103, 0.31141501665115356, 0.3483578562736511, 0.5044522285461426, 0.3149435520172119, 0.37969672679901123, 0.30567145347595215, 0.3246971070766449, 0.3177454173564911, 0.3102949857711792, 0.21324576437473297, 0.36932772397994995, 0.4013174772262573, 0.10600586235523224, 0.3236764967441559, 0.5225486159324646, 0.5373345017433167, 0.3980376720428467, 0.41987550258636475, 0.41987550258636475, 0.20516201853752136, 0.24432699382305145, 0.2799261212348938, 0.42514514923095703, 0.29830092191696167, 0.36045223474502563, 0.2672305405139923, 0.46105673909187317, 0.5154535174369812, 0.20558218657970428, 0.3605717420578003, 0.26411139965057373, 0.34523099660873413, 0.44679075479507446, 0.44679075479507446, 0.36247238516807556, 0.3264698386192322, 0.39419102668762207, 0.3312024474143982, 0.24214091897010803, 0.4208707809448242, 0.43403685092926025, 0.2237931191921234, 0.2106570303440094, 0.42315536737442017, 0.3671472668647766, 0.4426474869251251, 0.3528672456741333, 0.37941116094589233, 0.21055352687835693, 0.40685778856277466, 0.25389477610588074, 0.2530645430088043, 0.4621579647064209, 0.2998127341270447, 0.4272666573524475, 0.3427949845790863, 0.4107155501842499, 0.3699548542499542, 0.35445815324783325, 0.2607187032699585, 0.4471096098423004, 0.2908994257450104, 0.3270491361618042, 0.08669545501470566, 0.4400979280471802, 0.38749101758003235, 0.3810878396034241, 0.32265761494636536, 0.33106282353401184, 0.2319824993610382, 0.4912492036819458, 0.19204039871692657, 0.516886830329895, 0.5210127830505371, 0.3189835250377655, 0.42401647567749023, 0.3029254376888275, 0.35377001762390137, 0.5090619921684265, 0.5464373826980591, 0.12483768910169601, 0.6857748031616211, 0.6152541041374207, 0.13229118287563324, 0.5536718368530273, 0.21611787378787994, 0.18650493025779724, 0.5178175568580627, 0.2807110548019409, 0.45707520842552185, 0.2592288851737976, 0.29902711510658264, 0.39350488781929016, 0.4214197099208832, 0.2457517385482788, 0.31476834416389465, 0.21992386877536774, 0.5205115675926208, 0.44017085433006287, 0.4689387381076813, 0.46365708112716675, 0.24827523529529572, 0.4494381248950958, 0.2581551671028137, 0.5250825881958008, 0.4254462420940399, 0.3879307508468628, 0.33629706501960754, 0.32510092854499817, 0.4281972646713257, 0.3986360430717468, 0.4773191809654236, 0.6731859445571899, 0.5658257603645325, 0.4843434691429138, 0.3586239218711853, 0.3674607574939728, 0.4231815040111542, 0.37637951970100403, 0.4638679623603821, 0.41058772802352905, 0.3675709068775177, 0.34378582239151, 0.47623464465141296, 0.2886449098587036, 0.35495027899742126, 0.3758765161037445, 0.15644758939743042, 0.3186170160770416, 0.33565452694892883, 0.2925633490085602, 0.22174137830734253, 0.49067050218582153, 0.48723384737968445, 0.37220656871795654, 0.2479081004858017, 0.3754546046257019, 0.39709532260894775, 0.428112655878067, 0.3262748718261719, 0.33299165964126587, 0.4717201292514801, 0.3074951171875, 0.44864511489868164, 0.20176032185554504, 0.18543019890785217, 0.20811991393566132, 0.43464475870132446, 0.42330679297447205, 0.18977640569210052, 0.4169917404651642, 0.25762006640434265, 0.3254842162132263, 0.4639015793800354, 0.08213070034980774, 0.03891240060329437, 0.36339235305786133, 0.4603515863418579, 0.34883490204811096, 0.4110178053379059, 0.34542062878608704, 0.39270782470703125, 0.4288315176963806, 0.46022093296051025, 0.35983526706695557, 0.5157331228256226, 0.4188639521598816, 0.6910006403923035, -0.003045733319595456, 0.8438548445701599, 0.3659090995788574, 0.3260544240474701, 0.2792501449584961, 0.40864798426628113, 0.33692610263824463, 0.40915781259536743, 0.5139083862304688, 0.4451695680618286, 0.2601912319660187, 0.43941882252693176, 0.40119704604148865, 0.33351942896842957, 0.17692990601062775, 0.47406044602394104, 0.22177523374557495, 0.46798884868621826, 0.39971300959587097, 0.307142972946167, 0.3383218050003052, 0.3697420358657837, 0.3054603338241577, 0.22622105479240417, 0.40288299322128296, 0.5999253392219543, 0.10436632484197617, 0.2978561818599701, 0.33920061588287354, 0.4576798677444458, 0.11356350034475327, 0.603394627571106, 0.12460276484489441, 0.10525567829608917, 0.2819472551345825, 0.21203508973121643, 0.41198989748954773, 0.3912932574748993, 0.3600441813468933, 0.47971275448799133, 0.4983196556568146, 0.28925174474716187, 0.41171467304229736, 0.25748252868652344, 0.12631002068519592, 0.3076019585132599, 0.34475788474082947, 0.3577031195163727, 0.17674975097179413, 0.29568666219711304, 0.3620637357234955, 0.4411889612674713, 0.24431173503398895, 0.4178961515426636, 0.3173403739929199, 0.3441161811351776, 0.4161752462387085, 0.04864727705717087, 0.5005354881286621, 0.34906458854675293, 0.6375983357429504, 0.6499708294868469, 0.2559496760368347, 0.5032897591590881, 0.3546708822250366, 0.45402348041534424, 0.568412184715271, 0.03633696213364601, 0.2516813576221466, 0.5650106072425842, 0.32878196239471436, 0.4209551215171814, 0.3102997839450836, 0.5362446308135986, 0.5779240727424622, 0.6439771056175232, 0.24150450527668, 0.20303264260292053, 0.1519700139760971, 0.5621213912963867, 0.16378770768642426, 0.5323050618171692, 0.2703167796134949, 0.3520144522190094, 0.5298316478729248, 0.20112359523773193, 0.33650290966033936, 0.39418089389801025, 0.22505515813827515, 0.6213935017585754, 0.06228598207235336, 0.3222568929195404, 0.2376946210861206, 0.46082842350006104, 0.2429262101650238, 0.19913509488105774, 0.5117082595825195, 0.17975963652133942, 0.4816835820674896, 0.29173147678375244, 0.4841505289077759, 0.32739537954330444, 0.5102302432060242, 0.29313167929649353, 0.3116534650325775, 0.31378695368766785, 0.412892609834671, 0.16752052307128906, 0.4579591155052185, 0.2321350872516632, 0.3510306477546692, 0.3289211094379425, 0.36644360423088074, 0.3706161081790924, 0.31320738792419434, 0.3539407551288605, 0.5014634132385254, 0.22849127650260925, 0.16882656514644623, 0.23935671150684357, 0.45339488983154297, 0.33729901909828186, 0.06958680599927902, 0.5882039666175842, 0.27913883328437805, 0.3817223310470581, 0.29173198342323303, 0.3767620623111725, 0.2709730565547943, 0.1538262814283371, 0.5373480319976807, 0.2189650684595108, 0.3526850640773773, 0.21725475788116455, 0.36163827776908875, 0.3565770983695984, 0.2674312889575958, 0.5523155331611633, 0.5317447781562805, 0.49532485008239746, 0.6450867652893066, 0.12253117561340332, 0.3889661133289337, 0.4012752175331116, 0.20076049864292145, 0.3799387514591217, 0.29430338740348816, 0.4149680733680725, 0.42783012986183167, 0.4346957504749298, 0.5475738048553467, -0.03907591477036476, 0.37617194652557373, 0.32733047008514404, 0.4520081877708435, 0.25239142775535583, 0.485615611076355, 0.2504945397377014, 0.2343454360961914, 0.44817274808883667, 0.30404770374298096, 0.41075170040130615, 0.27013301849365234, 0.3098001778125763, 0.4567866325378418, 0.3681912422180176, 0.3498171865940094, 0.43344876170158386, 0.10898856818675995, 0.5856651067733765, 0.4442794620990753, 0.4528687000274658, 0.339847594499588, 0.09036983549594879, 0.4449595808982849, 0.49461737275123596, 0.4121101498603821, 0.20822086930274963, 0.45135602355003357, 0.21404965221881866, 0.43187952041625977, 0.20340202748775482, 0.7310391068458557, 0.31134822964668274, 0.43002256751060486, 0.310638427734375, 0.3169676959514618, 0.38336530327796936, 0.5950914025306702, 0.3239811062812805, 0.3770895302295685, 0.4188745617866516, 0.5420220494270325, 0.6190211176872253], "sigma": [0.9858211278915405, 0.8356587290763855, 1.1371452808380127, 1.002927303314209, 0.917742908000946, 0.9761953353881836, 1.1229090690612793, 0.9261443614959717, 0.984253466129303, 0.9181814193725586, 1.025070071220398, 1.403393030166626, 1.3125680685043335, 0.9066871404647827, 0.8756104707717896, 0.977053165435791, 0.9723954796791077, 0.8737626075744629, 0.9971284866333008, 1.056036114692688, 0.8992721438407898, 0.9038774967193604, 0.8874735832214355, 0.8987097144126892, 0.8929256200790405, 0.96766197681427, 0.8782822489738464, 0.9039863348007202, 0.885517418384552, 1.0881356000900269, 0.7672638893127441, 1.1893525123596191, 1.2590861320495605, 0.7121700048446655, 0.9398995637893677, 0.9967126250267029, 0.923297643661499, 0.8506996631622314, 1.1331292390823364, 1.1933324337005615, 0.7865583300590515, 1.1110947132110596, 0.7927067875862122, 1.146498203277588, 0.8918053507804871, 0.8934503793716431, 1.043806791305542, 0.9194046258926392, 0.8087981939315796, 0.8121647834777832, 0.963154137134552, 0.9153118133544922, 0.938051700592041, 0.938051700592041, 1.0508227348327637, 0.8534865379333496, 0.7941300272941589, 0.822981595993042, 0.9598761796951294, 1.162338137626648, 1.1813467741012573, 1.1111576557159424, 0.8512349128723145, 0.7858806848526001, 1.2443219423294067, 1.3275644779205322, 1.0234646797180176, 0.9900046586990356, 0.9032103419303894, 0.8901829123497009, 0.8758649230003357, 0.9790239930152893, 0.9043256640434265, 0.897634744644165, 0.9876109957695007, 0.9706664085388184, 0.8161537647247314, 0.8296982049942017, 0.9987432360649109, 0.9330039024353027, 0.9860943555831909, 1.063827633857727, 0.8889474868774414, 0.967527449131012, 0.9800035953521729, 0.9281191825866699, 0.9734728336334229, 0.8646700978279114, 0.8646700978279114, 0.8912106156349182, 1.1207127571105957, 1.2940638065338135, 0.9784940481185913, 0.9216076731681824, 1.0072404146194458, 0.9080247282981873, 0.8935428857803345, 0.8778950572013855, 0.9728082418441772, 0.8381658792495728, 0.8908932209014893, 0.7969996929168701, 1.0629751682281494, 0.8235875368118286, 0.760674774646759, 0.8653316497802734, 1.0956476926803589, 0.7696455717086792, 1.0198087692260742, 1.0200170278549194, 0.8606716394424438, 1.0340734720230103, 0.9523634314537048, 0.8976062536239624, 0.9697232246398926, 1.0750898122787476, 0.8645352721214294, 0.8645352721214294, 0.9976995587348938, 0.9341205954551697, 0.9030066728591919, 1.0074280500411987, 0.9868353009223938, 1.095363974571228, 0.9677750468254089, 0.9036232233047485, 0.9076329469680786, 0.9678704142570496, 1.0812671184539795, 1.0730525255203247, 0.8098741769790649, 0.7987704277038574, 0.8482773303985596, 1.0381118059158325, 0.8502775430679321, 1.0140608549118042, 1.0131564140319824, 0.914006769657135, 0.8792636394500732, 0.9186280369758606, 0.903914213180542, 0.9587629437446594, 0.9856940507888794, 0.9131007194519043, 0.9824795722961426, 1.1038864850997925, 0.8032961487770081, 0.8054315447807312, 0.8196693658828735, 1.071825385093689, 0.7928360104560852, 1.0565353631973267, 0.9590867161750793, 0.8945540189743042, 0.9689886569976807, 0.8536666631698608, 1.0195382833480835, 0.8605679869651794, 0.9747530221939087, 0.8486877083778381, 0.9474993944168091, 0.9492219686508179, 0.9135387539863586, 0.9636460542678833, 0.9573413133621216, 0.9439994096755981, 0.9611332416534424, 0.9814482927322388, 1.0562350749969482, 0.8119718432426453, 0.9036703109741211, 0.9868382215499878, 0.8472899794578552, 0.8569765090942383, 1.2545909881591797, 1.3344333171844482, 0.8048833012580872, 0.8961930871009827, 0.8305115699768066, 0.9990620017051697, 0.886457622051239, 0.9615974426269531, 0.9020671844482422, 0.9611882567405701, 0.8817692399024963, 1.2408313751220703, 0.8319946527481079, 0.841008722782135, 0.8205167055130005, 0.9755101203918457, 0.8659700155258179, 0.8817074298858643, 0.9955441951751709, 0.8649173378944397, 0.8354541063308716, 0.8866454362869263, 0.8253910541534424, 0.8671509027481079, 0.9834046363830566, 0.8605544567108154, 1.0236268043518066, 0.9309699535369873, 0.9163508415222168, 1.0562989711761475, 0.8750569820404053, 0.9922460913658142, 0.8801752328872681, 0.9707657694816589, 0.9527243971824646, 0.8998566269874573, 1.0940494537353516, 0.9043337106704712, 1.0630820989608765, 0.9731221795082092, 0.974632978439331, 0.915433943271637, 0.9189901947975159, 0.9943932294845581, 0.9473770260810852, 0.9627581834793091, 1.044439435005188, 1.0101526975631714, 0.976552426815033, 1.1956554651260376, 1.1440201997756958, 0.895285964012146, 0.9366130828857422, 0.9087249040603638, 0.960946261882782, 1.0467820167541504, 1.002516269683838, 1.0447933673858643, 0.8337960243225098, 1.0303772687911987, 0.9514224529266357, 0.9533035755157471, 0.9557738304138184, 0.9075828194618225, 1.0312947034835815, 0.829214870929718, 1.099520206451416, 0.9461260437965393, 0.9663774967193604, 0.884833574295044, 0.9312075972557068, 0.9849362969398499, 0.8090308904647827, 1.0005642175674438, 0.8680907487869263, 0.9823943972587585, 0.9040303230285645, 0.9251159429550171, 1.0409650802612305, 0.832042396068573, 0.866901159286499, 0.9262765049934387, 0.9056165218353271, 0.9189968109130859, 0.9099774956703186, 0.9436296224594116, 1.083366870880127, 1.1359796524047852, 1.0861791372299194, 1.0979732275009155, 1.2944927215576172, 0.9373773336410522, 0.9758108258247375, 1.0003485679626465, 0.8180865049362183, 1.0256414413452148, 1.0062990188598633, 1.0491544008255005, 0.9209853410720825, 0.9622604846954346, 1.1177499294281006, 0.8189626336097717, 0.9779527187347412, 0.9020272493362427, 0.9238479733467102, 0.9238036870956421, 0.9011155962944031, 0.9007380604743958, 0.9812174439430237, 1.075576901435852, 1.2472202777862549, 1.1251507997512817, 1.019956111907959, 0.9518800377845764, 0.9518800377845764, 0.9037400484085083, 0.8753398060798645, 0.8524045348167419, 0.9391148090362549, 0.9423048496246338, 0.9799019694328308, 0.8932706117630005, 0.9212909936904907, 0.939593493938446, 0.8449939489364624, 0.933058500289917, 1.1139369010925293, 0.9622179269790649, 0.9331663846969604, 0.8442572355270386, 0.8830013871192932, 0.816222608089447, 0.8445462584495544, 0.9337621331214905, 0.9017860889434814, 0.9765403866767883, 1.0421751737594604, 0.8697341680526733, 1.1133265495300293, 0.8677685856819153, 0.7083734273910522, 1.2228574752807617, 0.8330854773521423, 1.1540038585662842, 0.8840181231498718, 0.977402925491333, 1.0004990100860596, 0.9981899261474609, 1.2142295837402344, 0.9610432386398315, 0.9113205075263977, 0.9613465070724487, 0.8671180009841919, 0.9384309649467468, 0.9519714713096619, 1.0364587306976318, 0.9596107602119446, 0.9093365669250488, 0.9449642896652222, 0.9350099563598633, 0.9840781688690186, 0.9171770215034485, 0.9891225099563599, 0.9923433661460876, 0.858784019947052, 0.8080194592475891, 1.046535849571228, 1.145728349685669, 1.0998834371566772, 1.0363365411758423, 1.0761480331420898, 0.9113944172859192, 0.8504598736763, 1.0925533771514893, 0.9451689124107361, 0.8668301105499268, 0.951616108417511, 0.8805809617042542, 1.0668834447860718, 0.998997688293457, 0.955855131149292, 1.0832748413085938, 0.9172922968864441, 0.8073453903198242, 0.8138830065727234, 0.7902277112007141, 1.0165355205535889, 0.8805311918258667, 0.9999111890792847, 0.961625874042511, 0.9383335709571838, 1.05762779712677, 0.8863646984100342, 1.019411325454712, 0.8868465423583984, 1.0585252046585083, 0.9780791401863098, 0.9485545754432678, 0.9508695006370544, 1.0199030637741089, 0.9529984593391418, 0.745851993560791, 1.0900721549987793, 0.9523646235466003, 1.0296735763549805, 0.9146416187286377, 0.9942198395729065, 0.8137631416320801, 0.9106767177581787, 0.9158551692962646, 0.8769763112068176, 0.8821778297424316, 0.918778657913208, 0.8908722400665283, 1.0629030466079712, 1.1154422760009766, 0.8301174640655518, 0.8383972644805908, 1.1340972185134888, 0.8359709978103638, 1.0754445791244507, 1.0659295320510864, 1.0719071626663208, 0.7992079854011536, 0.7992079854011536, 0.9404354095458984, 1.0274183750152588, 0.7766762375831604, 1.0212632417678833, 0.8575131297111511, 0.943464994430542, 0.9293614625930786, 0.9214994311332703, 0.9812489748001099, 0.9267864227294922, 0.8003986477851868, 0.932353138923645, 0.9237471222877502, 0.9552586674690247, 0.9480772614479065, 0.9619470238685608, 0.9035773277282715, 0.919058084487915, 0.9003459215164185, 0.8734520673751831, 0.8734520673751831, 0.9533686637878418, 0.9709146022796631, 1.0485656261444092, 0.8535280227661133, 1.1134824752807617, 1.1127976179122925, 1.1304088830947876, 0.7925758957862854, 1.0155514478683472, 0.9031806588172913, 1.0048470497131348, 0.9131973385810852, 0.8859959840774536, 0.9982190728187561, 1.0154876708984375, 1.0110453367233276, 1.1677364110946655, 0.7388386726379395, 1.001420259475708, 0.9035221338272095, 1.1341791152954102, 0.976956844329834, 0.9859062433242798, 1.1288470029830933, 0.961775541305542, 0.9329938292503357, 1.1307438611984253, 0.8791571855545044, 0.9936924576759338, 0.9290462732315063, 0.8686812520027161, 0.8983191847801208, 1.0171786546707153, 1.1464399099349976, 0.9764953851699829, 1.0490983724594116, 0.9974688291549683, 0.8086832165718079, 1.0232802629470825, 0.8491871953010559, 0.997433602809906, 0.962610125541687, 0.8700085282325745, 0.9909414649009705, 0.953098475933075, 0.9455384016036987, 0.8837623000144958, 0.9740382432937622, 0.8544686436653137, 0.8466157913208008, 0.9540250897407532, 0.9047809839248657, 1.0299456119537354, 0.9663412570953369, 0.9590852856636047, 0.8918051719665527, 0.7998626232147217, 1.2323851585388184, 1.062275767326355, 1.0014338493347168, 0.9508286118507385, 0.9477435350418091, 0.9736341238021851, 1.0602459907531738, 1.0366647243499756, 1.141894817352295, 0.8346563577651978, 1.0496143102645874, 0.8942768573760986, 0.9094820022583008, 0.9855989217758179, 0.9671579599380493, 0.9576278328895569, 0.9490615129470825, 0.931881308555603, 0.8710275888442993, 0.8964512348175049, 0.8794931769371033, 0.9631314277648926, 0.9803225994110107, 0.8370265364646912, 0.8124047517776489, 0.9094891548156738, 1.0686582326889038, 0.9341448545455933, 0.8754739165306091, 0.8264157176017761, 0.9610037803649902, 0.9412769675254822, 0.9269403219223022, 0.9063559770584106, 0.8614534735679626, 1.0402023792266846, 0.9667527675628662, 0.9993871450424194, 0.8442184329032898, 0.8707849979400635, 1.0675805807113647, 1.0075548887252808, 0.8287657499313354, 0.9033838510513306, 1.1167590618133545, 0.8754238486289978, 1.0182108879089355, 0.8874914646148682, 1.0794715881347656, 0.8487546443939209, 0.8307147026062012, 0.9980888962745667, 0.965877115726471, 0.8618238568305969, 0.9343556761741638, 0.9116078019142151, 0.8385048508644104, 0.8286513090133667, 1.0684583187103271, 1.0367783308029175, 1.1148841381072998, 0.9531747102737427, 0.9049258828163147, 0.9582264423370361, 0.9053254127502441, 1.0005357265472412, 0.9070000648498535, 1.0843768119812012, 0.9447797536849976, 0.9293385148048401, 0.8940821290016174, 0.9702261686325073, 0.94906085729599, 0.9937037229537964, 0.8015185594558716, 0.7827010750770569, 1.0257562398910522, 0.9805233478546143, 0.9061965346336365, 0.9983859062194824, 0.9104492664337158, 0.854163646697998, 1.1277137994766235, 0.9429455399513245, 0.9524641633033752, 0.8775050044059753, 0.9387709498405457, 1.2072556018829346, 1.0175273418426514, 0.9992042183876038, 1.0266865491867065, 1.0306675434112549, 0.9145159721374512, 1.0057222843170166, 1.0088621377944946, 0.9974011182785034, 0.9044672250747681, 1.0823205709457397, 0.8620086908340454, 1.1733059883117676, 0.9842340350151062, 1.1147323846817017, 1.016937494277954, 1.103536605834961, 0.9698308110237122, 1.0406039953231812, 0.9698821306228638, 0.9816464185714722, 0.9598914384841919, 0.8832406401634216, 0.9687849283218384, 0.9243704080581665, 0.963683009147644, 0.8379191160202026, 0.9938626885414124, 1.0944933891296387, 0.7916535139083862, 0.8247967958450317, 0.9631648063659668, 1.124660611152649, 0.8177357912063599, 0.8191232681274414, 1.0645811557769775, 1.079053521156311, 0.985419750213623, 1.0011513233184814, 1.0005360841751099, 0.9182640910148621, 0.8713346719741821, 1.034531593322754, 0.923180103302002, 0.9892725348472595, 0.8802899718284607, 0.984595775604248, 0.7935009598731995, 0.8541731834411621, 0.9298166036605835, 1.1246981620788574, 0.792208731174469, 1.042458176612854, 0.8908627033233643, 0.8908627033233643, 0.8993687629699707, 0.9554029703140259, 0.8587334156036377, 1.0048221349716187, 0.9612167477607727, 0.9364905953407288, 1.017165184020996, 0.9749963879585266, 0.951029360294342, 0.9781045317649841, 0.892145574092865, 0.845716655254364, 1.0116984844207764, 1.0168194770812988, 0.8690805435180664, 0.9303986430168152, 1.005301594734192, 0.9432209730148315, 0.8376600742340088, 0.8703213930130005, 0.8814926743507385, 0.8819772601127625, 0.9811061024665833, 0.8761639595031738, 0.9339859485626221, 0.9777035713195801, 1.1669048070907593, 0.8946703672409058, 0.8882207274436951, 0.9175724983215332, 0.9222487211227417, 1.0201314687728882, 0.8670406341552734, 1.0913523435592651, 1.0321108102798462, 1.034411072731018, 0.9101799130439758, 1.0244635343551636, 1.1588046550750732, 0.8896135091781616, 0.9166515469551086, 0.9730125665664673, 0.8403275012969971, 0.8644981980323792, 0.8489261269569397, 0.8547194004058838, 1.0347442626953125, 0.9895656108856201, 0.965939998626709, 0.8365662693977356, 1.0823307037353516, 0.8876433372497559, 0.945803165435791, 1.0343892574310303, 0.8289911150932312, 0.9292569756507874, 0.9110720157623291, 1.0350041389465332, 0.9870375990867615, 0.8686150312423706, 1.015318512916565, 0.921841561794281, 0.9057493209838867, 0.9564785361289978, 0.9335748553276062, 1.100022792816162, 0.7906374931335449, 1.0106358528137207, 1.1251031160354614, 0.9466457962989807, 0.8347256183624268, 1.1479175090789795, 0.942480742931366, 0.9678972363471985, 0.9065759778022766, 0.9276609420776367, 1.1830480098724365, 0.8844967484474182, 0.8837587237358093, 1.0493723154067993, 1.0458120107650757, 0.8331124782562256, 0.9080380797386169, 1.0004630088806152, 0.9189732074737549, 0.9079778790473938, 0.9659633636474609, 1.076930046081543, 1.0156158208847046, 0.8760435581207275, 1.0492044687271118, 0.9956574440002441, 0.967287003993988, 0.866718590259552, 0.8464555144309998, 1.041674256324768, 0.9711639881134033, 0.9444705247879028, 0.9318886995315552, 0.955959141254425, 0.9574587345123291, 0.9997611045837402, 0.9508180022239685, 0.9287863373756409, 0.9699540138244629, 0.9200544357299805, 0.920305609703064, 1.0657446384429932, 0.9790685176849365, 0.9298864006996155, 0.9008386135101318, 0.9863231182098389, 0.9517163634300232, 0.9920124411582947, 0.9783210754394531, 0.8324137330055237, 0.9229524731636047, 1.0264965295791626, 0.8816896080970764, 1.1062549352645874, 1.0361007452011108, 0.8829781413078308, 1.0277857780456543, 0.8188542723655701, 1.0243382453918457, 0.8726916313171387, 0.9221311807632446, 0.9396401047706604, 0.8277290463447571, 1.018682599067688, 1.0514225959777832, 0.7808865308761597, 1.0078791379928589, 0.8136506080627441, 1.0434554815292358, 1.0119752883911133, 0.8958530426025391, 0.8033453822135925, 0.8451207876205444, 0.903619647026062, 0.9637610912322998, 0.9361664652824402, 0.9620323777198792, 0.9376868009567261, 0.8869640827178955, 0.9731776714324951, 1.0191504955291748, 0.9129523038864136, 0.9774904847145081, 1.1773430109024048, 0.7972252368927002, 0.8681749105453491, 0.8627884387969971, 0.9216842651367188, 1.0000046491622925, 0.9128382802009583, 0.9120632410049438, 0.8943127989768982, 0.909985363483429, 0.909985363483429, 1.0112955570220947, 1.2215118408203125, 0.9894867539405823, 0.8107825517654419, 0.95936518907547, 1.0521610975265503, 0.7441891431808472, 0.9517823457717896, 0.898030698299408, 0.8347931504249573, 1.0793137550354004, 1.0494987964630127, 0.9516206383705139, 0.9846838712692261, 1.1843104362487793, 1.1127349138259888, 0.8820609450340271, 1.0005866289138794, 0.8828320503234863, 1.038201928138733, 0.9995736479759216, 0.9254578948020935, 0.7277683019638062, 1.137377381324768, 0.8637338876724243, 0.895843505859375, 0.9902043342590332, 1.0481538772583008, 0.91196209192276, 0.8976283669471741, 0.9949304461479187, 0.9502010345458984, 0.8450523614883423, 0.9550769329071045, 0.9462993741035461, 0.9886250495910645, 0.8744300603866577, 1.0538660287857056, 1.0467802286148071, 0.8653841614723206, 0.7991294264793396, 1.034023642539978, 0.877274751663208, 0.9362501502037048, 0.9099095463752747, 0.9611700177192688, 0.8162254691123962, 1.156400442123413, 0.9938560128211975, 0.9264938235282898, 0.9371511936187744, 0.8191372156143188, 0.9694892764091492, 0.9307211637496948, 0.9253045916557312, 0.9221602082252502, 1.0063425302505493, 0.9664304852485657, 0.9460065960884094, 1.083391785621643, 0.8839793801307678, 0.9450725317001343, 0.9050021767616272, 0.8859661817550659, 0.956354022026062, 0.8545671701431274, 0.9803427457809448, 1.05817711353302, 0.8865513205528259, 1.0569043159484863, 0.8900628089904785, 0.8722145557403564, 0.897439181804657, 0.8056392669677734, 0.9917321801185608, 1.0971492528915405, 1.0760561227798462, 0.9080888032913208, 0.8076784610748291, 0.7600771188735962, 0.9505660533905029, 0.8810886740684509, 0.8045772910118103, 0.7428332567214966, 0.9767605066299438, 1.068115234375, 1.0211580991744995, 0.8778824806213379, 0.9945376515388489, 0.8345152139663696, 1.0154379606246948, 0.9575753808021545, 0.9992889165878296, 1.0547927618026733, 1.1222281455993652, 1.1134841442108154, 1.029412865638733, 0.994710385799408, 0.8550633192062378, 0.8186101913452148, 1.047701358795166, 1.0811586380004883, 0.9520317316055298, 0.8207265734672546, 0.7718544006347656, 0.8247345685958862, 0.9985257387161255, 1.0754566192626953, 1.037721037864685, 1.0333051681518555, 1.0560554265975952, 1.0136758089065552, 1.05070960521698, 0.8551855087280273, 0.9753904938697815, 0.915054440498352, 1.1616400480270386, 0.7306684255599976, 0.744664192199707, 1.0582711696624756, 0.8702992796897888, 1.1150907278060913, 0.9254865646362305, 0.9353684782981873, 1.1125082969665527, 1.027848243713379, 0.822044849395752, 1.1854579448699951, 0.7514278888702393, 1.0658109188079834, 1.0814926624298096, 0.9787307977676392, 0.8942756056785583, 0.9156169891357422, 0.9100043177604675, 0.9767593741416931, 0.8645954132080078, 0.9893034100532532, 0.9636242389678955, 1.001181960105896, 0.7967987060546875, 0.9276968836784363, 0.9822726845741272, 1.1306897401809692, 0.8481739163398743, 1.0243560075759888, 0.8574895858764648, 0.9499047994613647, 0.9339690804481506, 0.9089158773422241, 0.9881920218467712, 0.9576835036277771, 0.9002827405929565, 1.0722547769546509, 0.7932957410812378, 0.9424068331718445, 0.8583141565322876, 0.8201479315757751, 0.8515813946723938, 0.9634130597114563, 1.0101958513259888, 1.1435571908950806, 0.7868669033050537, 1.0744330883026123, 0.9685381650924683, 0.8167772889137268, 1.1588436365127563, 0.7616751194000244, 1.0446137189865112, 1.05903959274292, 0.7860432267189026, 0.8348421454429626, 0.8800105452537537, 1.0660258531570435, 0.8897227048873901, 0.9662805199623108, 0.9352564215660095, 0.887255847454071, 0.9917231202125549, 0.860755443572998, 0.9825200438499451, 0.8733776807785034, 0.9640340805053711, 0.990515947341919, 0.8415369391441345, 1.0249131917953491, 0.9527456760406494, 0.8419839143753052, 1.0936073064804077, 0.7452103495597839, 0.911322832107544, 0.9849884510040283, 0.9905895590782166, 0.973075270652771, 0.8834967613220215, 0.958685040473938, 0.8330331444740295, 0.7787264585494995, 1.0670002698898315, 1.1078128814697266, 0.717257559299469, 1.177349328994751, 1.0024964809417725, 0.8997641205787659, 1.005570411682129, 0.8347305059432983, 0.8792392015457153, 0.9335978031158447, 0.8714783787727356, 1.0762462615966797, 0.8836275935173035, 0.9808239340782166, 0.9984848499298096, 1.098616600036621, 1.069226861000061, 0.911338210105896, 1.0556261539459229, 0.8541319370269775, 0.8675370812416077, 0.8312797546386719, 0.8779677748680115, 0.9870252013206482, 0.8020448088645935, 0.7630081176757812, 0.7830566763877869, 0.7759013175964355, 1.1513067483901978, 0.9409728050231934, 0.9494625926017761, 0.8795608282089233, 1.031743049621582, 1.0499777793884277, 1.1226716041564941, 0.9983171224594116, 0.9079327583312988, 0.9852654933929443, 0.9898203015327454, 0.9090883135795593, 0.9828799366950989, 0.881980836391449, 0.7822756171226501, 1.0702818632125854, 0.9951066970825195, 1.1592299938201904, 1.0355949401855469, 0.9599320888519287, 0.8092959523200989, 0.986502468585968, 1.0518954992294312, 0.9507559537887573, 0.9214727282524109, 0.87162846326828, 0.9089871644973755, 0.9960874915122986, 0.9592772126197815, 0.9683374166488647, 0.9648658037185669, 0.8990519642829895, 0.7810189723968506, 0.8480415344238281, 0.8400766849517822, 1.0937446355819702, 0.8735986948013306, 0.9673722386360168, 0.8382666110992432, 1.0520423650741577, 0.9873232245445251, 1.0165926218032837, 0.7856659293174744, 1.1213054656982422, 0.8461495637893677, 1.0272858142852783, 0.8080196380615234, 1.105963945388794, 0.7736665606498718, 0.9859266877174377, 1.2066079378128052, 0.8567613959312439, 0.8767312169075012, 0.8785437345504761, 1.0728882551193237, 1.0509154796600342, 0.7857656478881836, 0.8631809949874878, 1.0064719915390015, 0.9415819048881531, 0.9415819048881531, 0.8612228035926819, 1.0729100704193115, 1.0181074142456055, 1.0358757972717285, 1.0582307577133179, 0.8862743377685547, 1.0146358013153076, 1.2203772068023682, 1.1806057691574097, 1.000996708869934, 1.1750564575195312, 1.1637554168701172, 1.027645230293274, 0.9450125694274902, 1.0123776197433472, 0.835302472114563, 0.8527904748916626, 1.0467902421951294, 1.0293426513671875, 0.9907379746437073, 0.8979398012161255, 1.0061556100845337, 0.9022472500801086, 0.8440700769424438, 1.1976344585418701, 1.1791770458221436, 0.8177704215049744, 0.9109368920326233, 0.9572024941444397, 1.0036526918411255, 0.8653489947319031, 1.0444693565368652, 1.0254297256469727, 0.9131094217300415, 1.0881849527359009, 1.136401653289795, 0.7500050663948059, 0.8334987163543701, 0.8003717064857483, 0.8686155676841736, 0.9420772194862366, 0.9380542635917664, 0.9355618357658386, 1.0584356784820557, 0.8367027640342712, 1.0049201250076294, 1.0085848569869995, 0.9623841643333435, 0.8878865242004395, 1.0345789194107056, 1.0849114656448364, 1.0137027502059937, 1.1059668064117432, 0.9238967299461365, 0.8621742129325867, 0.8796881437301636, 0.9241890907287598, 0.9398024082183838, 0.8050163984298706, 1.098092794418335, 0.9882450103759766, 0.8748347759246826, 0.9107722043991089, 0.9950888752937317, 0.9123036861419678, 0.8209985494613647, 1.1334573030471802, 0.9670793414115906, 1.0069915056228638, 1.1264455318450928, 0.8309668302536011, 0.9771104454994202, 1.0954220294952393, 0.9775143265724182, 0.9238961935043335, 0.7970923185348511, 1.0965840816497803, 0.9725357294082642, 1.035274863243103, 0.9258701801300049, 1.115249752998352, 1.1355161666870117, 0.9520105123519897, 0.9613669514656067, 0.9498459100723267, 1.0416934490203857, 0.9093791246414185, 0.7663792371749878, 0.8240392208099365, 0.8404126763343811, 0.8265417218208313, 0.8368121385574341, 0.9761461019515991, 0.9907931089401245, 0.740283727645874, 1.2453632354736328, 0.7371600866317749, 0.7833945751190186, 0.747175395488739, 1.2150136232376099, 0.7484219670295715, 0.82630854845047, 1.0744246244430542, 1.059780240058899, 0.9774717688560486, 1.0017619132995605, 1.0512878894805908, 1.0079532861709595, 0.8643810749053955, 0.9374787211418152, 0.9957399964332581, 1.0867184400558472, 1.006258249282837, 0.7975079417228699, 0.9435514211654663, 0.862655520439148, 1.031967282295227, 0.8594011664390564, 0.9404218196868896, 0.8221368789672852, 0.8594080209732056, 0.9916782379150391, 0.9788744449615479, 0.8959444761276245, 1.034171223640442, 0.9496636986732483, 0.8553378582000732, 0.9702768325805664, 0.7819244265556335, 0.8070060610771179, 0.7957395911216736, 0.8266057968139648, 0.8658954501152039, 1.026018738746643, 0.9950001239776611, 0.9513590335845947, 0.8472821712493896, 0.7791244983673096, 0.9485964775085449, 0.9141263365745544, 0.9141263365745544, 0.9574308395385742, 0.9267113208770752, 0.9144952893257141, 0.9144952893257141, 0.8890312314033508, 1.048809289932251, 0.8975780010223389, 0.9985000491142273, 0.8756484389305115, 1.0471434593200684, 0.8439953327178955, 0.8671265840530396, 1.0947990417480469, 1.050652027130127, 0.8336803913116455, 1.071837067604065, 0.9558554887771606, 0.9585984945297241, 1.003068208694458, 0.9539535641670227, 0.9682838320732117, 0.9046540260314941, 1.0698565244674683, 0.9183768630027771, 0.8980422616004944, 0.964076578617096, 0.9260311722755432, 0.8380486965179443, 0.9061263799667358, 1.053543210029602, 0.9759440422058105, 1.0017369985580444, 1.0090913772583008, 0.8587661385536194, 0.9224454164505005, 0.936574399471283, 0.8962044715881348, 0.9680805802345276, 1.4213060140609741, 1.315901517868042, 1.4050272703170776, 1.4106786251068115, 0.8595877289772034, 0.8970493078231812, 0.96436607837677, 1.2146961688995361, 1.1021440029144287, 0.8021881580352783, 0.9502493739128113, 1.010801076889038, 0.99272620677948, 0.8606292009353638, 0.9469611048698425, 0.988965630531311, 0.9317643046379089, 1.2047816514968872, 1.1963138580322266, 0.9167446494102478, 0.9578450322151184, 0.9896517992019653, 0.9917237162590027, 0.8583166003227234, 0.9024859666824341, 0.7667736411094666, 1.0702288150787354, 0.9610073566436768, 0.799089252948761, 0.9167197346687317, 1.0545982122421265, 0.9558460116386414, 1.0815441608428955, 0.9549625515937805, 0.8884819149971008, 1.0347553491592407, 0.9669685959815979, 1.0015748739242554, 1.2367993593215942, 0.8890613317489624, 1.0027741193771362, 0.9781011343002319, 1.0268242359161377, 0.9983736276626587, 0.9261058568954468, 1.0284743309020996, 0.9070962071418762, 0.9777219295501709, 0.8576518297195435, 0.9469506740570068, 0.8578965663909912, 0.8578965663909912, 0.8104068040847778, 1.0874735116958618, 0.9296538233757019, 0.8770932555198669, 0.9861311316490173, 0.9623421430587769, 1.036853313446045, 0.9393957257270813, 0.8535623550415039, 1.0234237909317017, 0.9146713614463806, 0.789128303527832, 1.0477999448776245, 1.0420011281967163, 0.8246827125549316, 1.073184847831726, 1.0027073621749878, 0.9508118033409119, 0.9142208695411682, 0.9004367589950562, 0.7702145576477051, 0.8160214424133301, 1.0670429468154907, 0.8460410833358765, 1.0506929159164429, 0.7731614112854004, 0.8882619738578796, 1.025449514389038, 1.027829647064209, 0.9095370769500732, 0.9832080006599426, 0.7708045244216919, 0.9270380735397339, 0.9508184790611267, 1.1199331283569336, 1.0620633363723755, 0.8220221400260925, 0.8074358105659485, 0.833031177520752, 0.8533119559288025, 0.8865339159965515, 0.9365692734718323, 0.8550029397010803, 1.1329073905944824, 0.7799454927444458, 0.9587374925613403, 0.8537365198135376, 0.9248787760734558, 0.9258349537849426, 0.9864131808280945, 0.8878459334373474, 1.0198252201080322, 1.0109591484069824, 0.9158633947372437, 0.8415603637695312, 1.038825273513794, 0.7917703986167908, 0.9761442542076111, 0.9017594456672668, 0.8915165066719055, 0.992289662361145, 0.9375585913658142, 1.0913716554641724, 0.9543352723121643, 0.9234686493873596, 0.9238522052764893, 0.9836499094963074, 0.9124226570129395, 0.8688052892684937, 1.0798959732055664, 0.9662892818450928, 0.8766148686408997, 1.0515563488006592, 0.9353080987930298, 0.8612534999847412, 0.7943722009658813, 0.9265071749687195, 0.9120202660560608, 0.9145926237106323, 0.9749312996864319, 0.9167173504829407, 0.8526133298873901, 1.1340327262878418, 0.788747251033783, 1.1591800451278687, 0.9638554453849792, 1.0426520109176636, 0.96403968334198, 0.8678686022758484, 1.025802493095398, 0.8675119280815125, 0.9181098341941833, 0.8830570578575134, 0.9105432033538818, 1.0948755741119385, 1.0142079591751099, 1.025577187538147, 0.9652669429779053, 0.889998733997345, 1.0433069467544556, 0.8870358467102051, 0.8832694292068481, 0.8894331455230713, 0.8696449398994446, 0.8762853145599365, 0.883759081363678, 1.0000900030136108, 0.7998756766319275, 0.8999195694923401, 1.1610890626907349, 0.8601120710372925, 0.8650984764099121, 0.8212307691574097, 0.8337312340736389, 0.8653701543807983, 0.8653701543807983, 0.9164541363716125, 0.9466025829315186, 0.8822765350341797, 1.007863998413086, 1.1100420951843262, 0.8557162880897522, 1.0200676918029785, 1.252038598060608, 1.088138461112976, 1.0456854104995728, 1.2668445110321045, 0.7796851396560669, 0.7857092618942261, 1.0282610654830933, 0.89057457447052, 1.0154417753219604, 1.0154417753219604, 0.8302211761474609, 0.8272581100463867, 1.0647497177124023, 1.0677529573440552, 0.8065728545188904, 1.079267978668213, 0.8740720152854919, 0.9086657166481018, 0.9422250986099243, 0.9953519105911255, 0.9120914936065674, 0.9207503199577332, 0.8669524192810059, 1.010999321937561, 0.9703490138053894, 0.9747480154037476, 0.8979711532592773, 0.906731903553009, 0.961345911026001, 0.83788001537323, 0.899957001209259, 0.8968204855918884, 1.0040680170059204, 0.9970270395278931, 0.906720757484436, 0.954667329788208, 0.8247513771057129, 0.9213486909866333, 1.0013612508773804, 1.0489895343780518, 0.9877760410308838, 1.0598286390304565, 1.0163365602493286, 0.9719109535217285, 0.971813440322876, 0.8624005317687988, 0.8342487812042236, 0.903340756893158, 0.8729977607727051, 0.9735366702079773, 0.8468160629272461, 1.0300990343093872, 1.1206198930740356, 0.9378504753112793, 0.8633431792259216, 0.9558646082878113, 0.8743993043899536, 0.9851561188697815, 0.9327443838119507, 1.1650515794754028, 0.8505853414535522, 0.7599114775657654, 0.7532728910446167, 0.7235312461853027, 0.9802921414375305, 0.9345620274543762, 1.0672343969345093, 0.8930246233940125, 0.880929708480835, 0.9341667890548706, 0.9339591264724731, 0.9339591264724731, 0.8444783687591553, 0.867082953453064, 0.7854751348495483, 0.9620447754859924, 0.9129565954208374, 0.9479606747627258, 0.8249245882034302, 0.9543336629867554, 0.8724753856658936, 0.9180646538734436, 0.8984020352363586, 0.912095844745636, 0.8525094389915466, 0.8631078004837036, 0.9415265321731567, 0.8927480578422546, 0.8927480578422546, 1.0034900903701782, 0.9786807894706726, 0.9079874753952026, 0.8673291206359863, 0.9727070331573486, 0.8580347299575806, 0.9304476976394653, 0.9378355145454407, 0.8920297622680664, 0.9774119853973389, 0.9774119853973389, 1.0857654809951782, 1.0389353036880493, 0.9415303468704224, 1.113966941833496, 0.9019057154655457, 0.8673302531242371, 1.0316435098648071, 0.998316764831543, 0.9543027281761169, 1.0385186672210693, 0.8801539540290833, 0.9691746234893799, 0.8842650651931763, 0.8905225992202759, 1.0039703845977783, 0.9865607023239136, 0.8984028100967407, 0.8198716044425964, 0.846161961555481, 0.9651655554771423, 0.9651655554771423, 0.898007333278656, 0.959298312664032, 0.9985971450805664, 1.1004964113235474, 1.0621615648269653, 0.9977266788482666, 0.8279250264167786, 0.924356997013092, 0.9442436695098877, 1.08443284034729, 0.8487645387649536, 0.9255795478820801, 0.8222061991691589, 0.850028395652771, 0.8481317162513733, 1.077394962310791, 0.9539421200752258, 1.0026987791061401, 1.0764938592910767, 1.1371984481811523, 0.8938121199607849, 0.9238688945770264, 0.9751176238059998, 0.9568493962287903, 1.0905290842056274, 1.122192621231079, 1.146711826324463, 0.8493598103523254, 0.9576081037521362, 0.9880120158195496, 0.982379674911499, 1.1780428886413574, 0.9248548150062561, 1.0087828636169434, 0.9224115610122681, 0.9224115610122681, 0.8763083815574646, 1.0233855247497559, 1.1203725337982178, 1.1249654293060303, 1.087680459022522, 0.87968510389328, 0.9996333122253418, 0.8605506420135498, 0.8215875029563904, 0.7915449738502502, 0.8205516934394836, 1.011387825012207, 0.87905353307724, 1.0304956436157227, 0.9356346726417542, 0.872810423374176, 1.1078811883926392, 0.8294885754585266, 0.8943817019462585, 0.8133412599563599, 1.0999914407730103, 0.7996140718460083, 1.0007820129394531, 0.9578514099121094, 0.8859178423881531, 0.9679506421089172, 0.858496904373169, 0.9676141142845154, 1.000340461730957, 0.9204920530319214, 0.9593030214309692, 1.2566531896591187, 0.8453410267829895, 1.0333082675933838, 1.0231422185897827, 0.8814542293548584, 0.832340657711029, 0.9501870274543762, 0.9681795239448547, 1.0195696353912354, 0.8581981658935547, 0.9182502031326294, 0.9472300410270691, 0.9419388175010681, 0.957942008972168, 0.9061720371246338, 0.9816493988037109, 0.8777358531951904, 1.0483813285827637, 0.822330892086029, 0.8196893334388733, 0.7803784608840942, 0.8037455081939697, 1.0015305280685425, 1.022485375404358, 0.9249979257583618, 0.870395302772522, 0.7845830321311951, 0.9511935710906982, 1.0392825603485107, 0.77858567237854, 0.8894606828689575, 1.0013996362686157, 0.9284135699272156, 0.935375452041626, 0.9479503035545349, 0.9037684202194214, 0.952398955821991, 0.8663070201873779, 0.855612576007843, 0.8889530301094055, 0.7900497913360596, 1.0261338949203491, 0.8748582005500793, 0.9037261009216309, 0.9659357666969299, 1.0882526636123657, 0.9851419925689697, 0.9637152552604675, 0.9637152552604675, 1.003400444984436, 1.1154687404632568, 1.0311603546142578, 0.8354924917221069, 0.9346823692321777, 0.8802577257156372, 0.9478741884231567, 0.8578774929046631, 0.9331368207931519, 0.8764069080352783, 0.8195285797119141, 1.0099083185195923, 1.1360278129577637, 0.7732313275337219, 0.7732313275337219, 0.8264186382293701, 0.9141300916671753, 0.8533194065093994, 0.8172652125358582, 1.1880040168762207, 1.1644219160079956, 0.9734420776367188, 0.8803778290748596, 0.9315956234931946, 0.9009075164794922, 0.9849733114242554, 0.9267722368240356, 0.9075106382369995, 0.9689084887504578, 0.6753361225128174, 0.9316175580024719, 0.9415116310119629, 0.9661064743995667, 0.8235073089599609, 1.0163506269454956, 0.8868966698646545, 1.2069649696350098, 0.9375367164611816, 0.9632343649864197, 0.9109131097793579, 0.9397237300872803, 0.9239677786827087, 1.1158641576766968, 1.1161481142044067, 1.1559420824050903, 0.9781202077865601, 0.9373106956481934, 1.0928455591201782, 0.7907930612564087, 1.0487456321716309, 0.7984607219696045, 0.9945001006126404, 0.8756384253501892, 0.8969705700874329, 0.8619285225868225, 0.9885463714599609, 0.9618085026741028, 1.0212212800979614, 1.0038775205612183, 0.9729098677635193, 0.8389610648155212, 1.026873230934143, 0.8743839859962463, 0.892139732837677, 0.9178441166877747, 0.9873528480529785, 0.8786807656288147, 0.8785902857780457, 1.001895546913147, 0.8682988882064819, 0.9755290746688843, 0.8914890289306641, 0.9360939860343933, 0.8730594515800476, 0.8300660252571106, 1.048088788986206, 0.8723409175872803, 1.161689043045044, 0.8240628242492676, 1.0519551038742065, 1.0102020502090454, 0.9394269585609436, 0.8611335754394531, 1.0318982601165771, 0.8965898752212524, 0.9670373797416687, 0.9343938827514648, 0.8476744890213013, 0.8366740942001343, 0.9659962058067322, 1.0062919855117798, 0.7602642774581909, 0.7847982048988342, 0.8138476014137268, 0.8296544551849365, 0.8082517385482788, 0.9663666486740112, 0.8578819632530212, 0.9321945905685425, 0.9689115285873413, 1.0887207984924316, 1.112261176109314, 0.8868193626403809, 1.3059639930725098, 0.8662635684013367, 0.9982167482376099, 1.0597527027130127, 0.9640792608261108, 0.8310653567314148, 0.9330445528030396, 0.7466675639152527, 1.0527355670928955, 0.7845965623855591, 1.1316174268722534, 0.8838157653808594, 0.708764910697937, 0.9392947554588318, 0.847863495349884, 0.8863310813903809, 0.9754873514175415, 1.0970823764801025, 0.9839752912521362, 1.0506974458694458, 1.134619116783142, 0.8318159580230713, 1.0172678232192993, 0.9383506774902344, 1.170225977897644, 0.7850456237792969, 0.7847105860710144, 0.8738510012626648, 1.1852086782455444, 0.8728132247924805, 0.925308883190155, 0.8378202319145203, 1.0413010120391846, 0.980908989906311, 0.9985629320144653, 0.8768323063850403, 0.7741987109184265, 0.8641887903213501, 1.0141675472259521, 0.9468163251876831, 0.8459447026252747, 0.8773643970489502, 0.9888978600502014, 1.0166743993759155, 0.9004536867141724, 0.9772952795028687, 0.9289409518241882, 0.9626182317733765, 0.8516003489494324, 0.846300482749939, 0.8498742580413818, 0.8194946646690369, 1.1503639221191406, 1.062868595123291, 1.0250060558319092, 0.8604058623313904, 1.0330785512924194, 0.9351664781570435, 0.9659889340400696, 1.1337964534759521, 0.920812726020813, 0.9604896903038025, 0.918514609336853, 0.937384843826294, 1.1082046031951904, 0.834777295589447, 0.7986810207366943, 1.1051313877105713, 0.9546328186988831, 0.9678826928138733, 0.9554076194763184, 0.8946895599365234, 1.0097204446792603, 0.9626741409301758, 0.96438068151474, 0.9898458123207092, 0.8852550387382507, 1.0307414531707764, 0.9619316458702087, 0.8764281272888184, 0.9155590534210205, 0.9485913515090942, 0.9875988364219666, 0.9655600786209106, 1.0679677724838257, 0.9562649130821228, 0.9970214366912842, 0.8754063844680786, 0.9724807739257812, 0.8292840123176575, 0.8480510711669922, 0.9781421422958374, 0.9168695211410522, 0.9646484851837158, 0.8535568118095398, 0.7399126291275024, 0.8214044570922852, 0.9738543629646301, 0.925178587436676, 0.9031115174293518, 0.9011886715888977, 0.8718597292900085, 0.9566197395324707, 0.9329301714897156, 0.9924536943435669, 0.9294790625572205, 1.0724725723266602, 0.9921984076499939, 0.9065525531768799, 0.9283216595649719, 0.86700439453125, 0.8139470815658569, 0.8888737559318542, 1.165383219718933, 1.1180744171142578, 0.8105950355529785, 0.9404389262199402, 0.8749454021453857, 1.0071461200714111, 0.9506322145462036, 0.9593179225921631, 0.9537745118141174, 1.040743112564087, 1.069231390953064, 1.013314962387085, 0.898281991481781, 0.9440208673477173, 0.9954072833061218, 1.0762300491333008, 0.794802725315094, 1.0317659378051758, 0.9469811916351318, 0.9666061401367188, 0.8543579578399658, 1.094810128211975, 0.8727679252624512, 1.0039187669754028, 0.9842396974563599, 0.9630187749862671, 0.8851181268692017, 0.9933412671089172, 1.0130796432495117, 0.8770749568939209, 1.0114916563034058, 0.8769311904907227, 0.9520741105079651, 0.9197714924812317, 0.9102057814598083, 0.9662784337997437, 0.8668088912963867, 0.9736012816429138, 1.11592435836792, 0.7941883206367493, 0.9758131504058838, 0.8298015594482422, 1.0748265981674194, 1.0533969402313232, 0.7716712951660156, 1.0498735904693604, 0.8693009614944458, 0.843551754951477, 0.9872921705245972, 1.1078633069992065, 0.8088118433952332, 0.9936026930809021, 1.0110281705856323, 0.8691015243530273, 0.8850824236869812, 0.9658653736114502, 0.9431730508804321, 0.9992104172706604, 0.9358418583869934, 0.7918218374252319, 0.9860981106758118, 0.966322660446167, 0.9570357799530029, 0.8669847249984741, 1.169688105583191, 1.1047190427780151, 1.009205937385559, 0.9059618711471558, 0.9100287556648254, 1.015044927597046, 0.8732219338417053, 0.8789782524108887, 0.8659168481826782, 0.9393527507781982, 1.2254738807678223, 1.0567829608917236, 0.9275707006454468, 0.9175806045532227, 0.9327367544174194, 0.907793402671814, 0.9459435939788818, 0.978469729423523, 0.9155595302581787, 0.9476921558380127, 0.9830538630485535, 0.9302493929862976, 0.8513083457946777, 0.8651341199874878, 0.9934322834014893, 0.9396684169769287, 0.8620086908340454, 0.9057984948158264, 0.8796471953392029, 0.9689429402351379, 0.9903467297554016, 0.8225939273834229, 0.9403619170188904, 0.7524480223655701, 0.9358119368553162, 0.8960384130477905, 1.033176302909851, 1.254338264465332, 0.8202888369560242, 0.8641112446784973, 0.8880855441093445, 0.8820427060127258, 0.8619278073310852, 1.262308120727539, 1.0629005432128906, 1.079046607017517, 0.9569432735443115, 0.8945013284683228, 0.913141667842865, 0.8142311573028564, 1.02670156955719, 0.9096766710281372, 0.9779590368270874, 1.04099702835083, 0.9173223376274109, 0.9041040539741516, 0.8643894195556641, 1.06810462474823, 0.9669666290283203, 0.8488339185714722, 0.8968145847320557, 1.0282841920852661, 1.0447977781295776]}
\ No newline at end of file
diff --git a/docs-gb/examples/custom/requirements.txt b/docs-gb/examples/custom/requirements.txt
new file mode 100644
index 000000000..fe4a9486f
--- /dev/null
+++ b/docs-gb/examples/custom/requirements.txt
@@ -0,0 +1,4 @@
+numpy==1.22.4
+numpyro==0.8.0
+jax==0.2.24
+jaxlib==0.3.7
diff --git a/docs-gb/examples/custom/seldondeployment.yaml b/docs-gb/examples/custom/seldondeployment.yaml
new file mode 100644
index 000000000..02a3bd9dc
--- /dev/null
+++ b/docs-gb/examples/custom/seldondeployment.yaml
@@ -0,0 +1,16 @@
+apiVersion: machinelearning.seldon.io/v1
+kind: SeldonDeployment
+metadata:
+ name: numpyro-model
+spec:
+ protocol: v2
+ predictors:
+ - name: default
+ graph:
+ name: numpyro-divorce
+ type: MODEL
+ componentSpecs:
+ - spec:
+ containers:
+ - name: numpyro-divorce
+ image: my-custom-numpyro-server:0.1.0
diff --git a/docs-gb/examples/custom/settings.json b/docs-gb/examples/custom/settings.json
new file mode 100644
index 000000000..f2ee7ab8d
--- /dev/null
+++ b/docs-gb/examples/custom/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
diff --git a/docs-gb/examples/huggingface/.gitignore b/docs-gb/examples/huggingface/.gitignore
new file mode 100644
index 000000000..e6ee07331
--- /dev/null
+++ b/docs-gb/examples/huggingface/.gitignore
@@ -0,0 +1 @@
+mlruns
diff --git a/docs-gb/examples/huggingface/README.ipynb b/docs-gb/examples/huggingface/README.ipynb
new file mode 100644
index 000000000..aee20b946
--- /dev/null
+++ b/docs-gb/examples/huggingface/README.ipynb
@@ -0,0 +1,748 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "8c519626",
+ "metadata": {},
+ "source": [
+ "# Serving HuggingFace Transformer Models\n",
+ "\n",
+ "Out of the box, MLServer supports the deployment and serving of HuggingFace Transformer models with the following features:\n",
+ "\n",
+ "- Loading of Transformer Model artifacts from the Hugging Face Hub.\n",
+ "- Model quantization & optimization using the Hugging Face Optimum library\n",
+ "- Request batching for GPU optimization (via adaptive batching and request batching)\n",
+ "\n",
+ "In this example, we will showcase some of this features using an example model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "b5b2588c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Import required dependencies\n",
+ "import requests"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f1fed35e",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "Since we're using a pretrained model, we can skip straight to serving."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a205410c",
+ "metadata": {},
+ "source": [
+ "### `model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "6df62443",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting ./model-settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile ./model-settings.json\n",
+ "{\n",
+ " \"name\": \"transformer\",\n",
+ " \"implementation\": \"mlserver_huggingface.HuggingFaceRuntime\",\n",
+ " \"parameters\": {\n",
+ " \"extra\": {\n",
+ " \"task\": \"text-generation\",\n",
+ " \"pretrained_model\": \"distilgpt2\"\n",
+ " }\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c6a6e8b2",
+ "metadata": {},
+ "source": [
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b664c591",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "759ad7df",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'model_name': 'transformer',\n",
+ " 'id': 'eb160c6b-8223-4342-ad92-6ac301a9fa5d',\n",
+ " 'parameters': {},\n",
+ " 'outputs': [{'name': 'output',\n",
+ " 'shape': [1, 1],\n",
+ " 'datatype': 'BYTES',\n",
+ " 'parameters': {'content_type': 'hg_jsonlist'},\n",
+ " 'data': ['{\"generated_text\": \"this is a testnet with 1-3,000-bit nodes as nodes.\"}']}]}"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"args\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"data\": [\"this is a test\"],\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "requests.post(\n",
+ " \"http://localhost:8080/v2/models/transformer/infer\", json=inference_request\n",
+ ").json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0edbcf72",
+ "metadata": {},
+ "source": [
+ "### Using Optimum Optimized Models\n",
+ "\n",
+ "We can also leverage the Optimum library that allows us to access quantized and optimized models. \n",
+ "\n",
+ "We can download pretrained optimized models from the hub if available by enabling the `optimum_model` flag:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "6d185281",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting ./model-settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile ./model-settings.json\n",
+ "{\n",
+ " \"name\": \"transformer\",\n",
+ " \"implementation\": \"mlserver_huggingface.HuggingFaceRuntime\",\n",
+ " \"parameters\": {\n",
+ " \"extra\": {\n",
+ " \"task\": \"text-generation\",\n",
+ " \"pretrained_model\": \"distilgpt2\",\n",
+ " \"optimum_model\": true\n",
+ " }\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "90925ef0",
+ "metadata": {},
+ "source": [
+ "Once again, you are able to run the model using the MLServer CLI. As before this needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6945db96",
+ "metadata": {},
+ "source": [
+ "### Send Test Request to Optimum Optimized Model\n",
+ "\n",
+ "The request can now be sent using the same request structure but using optimized models for better performance."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "39d8b438",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'model_name': 'transformer',\n",
+ " 'id': '9c482c8d-b21e-44b1-8a42-7650a9dc01ef',\n",
+ " 'parameters': {},\n",
+ " 'outputs': [{'name': 'output',\n",
+ " 'shape': [1, 1],\n",
+ " 'datatype': 'BYTES',\n",
+ " 'parameters': {'content_type': 'hg_jsonlist'},\n",
+ " 'data': ['{\"generated_text\": \"this is a test of the \\\\\"safe-code-safe-code-safe-code\\\\\" approach. The method only accepts two parameters as parameters: the code. The parameter \\'unsafe-code-safe-code-safe-code\\' should\"}']}]}"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"args\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"data\": [\"this is a test\"],\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "requests.post(\n",
+ " \"http://localhost:8080/v2/models/transformer/infer\", json=inference_request\n",
+ ").json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ad88a78f",
+ "metadata": {},
+ "source": [
+ "## Testing Supported Tasks\n",
+ "\n",
+ "We can support multiple other transformers other than just text generation, below includes examples for a few other tasks supported.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e9ee06c8",
+ "metadata": {},
+ "source": [
+ "### Question Answering"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "4492dc01",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting ./model-settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile ./model-settings.json\n",
+ "{\n",
+ " \"name\": \"transformer\",\n",
+ " \"implementation\": \"mlserver_huggingface.HuggingFaceRuntime\",\n",
+ " \"parameters\": {\n",
+ " \"extra\": {\n",
+ " \"task\": \"question-answering\"\n",
+ " }\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9abf39e0",
+ "metadata": {},
+ "source": [
+ "Once again, you are able to run the model using the MLServer CLI.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "d7aaf365",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'model_name': 'transformer',\n",
+ " 'id': '4efac938-86d8-41a1-b78f-7690b2dcf197',\n",
+ " 'parameters': {},\n",
+ " 'outputs': [{'name': 'output',\n",
+ " 'shape': [1, 1],\n",
+ " 'datatype': 'BYTES',\n",
+ " 'parameters': {'content_type': 'hg_jsonlist'},\n",
+ " 'data': ['{\"score\": 0.9869915843009949, \"start\": 12, \"end\": 18, \"answer\": \"Seldon\"}']}]}"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"question\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"data\": [\"what is your name?\"],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"context\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"data\": [\"Hello, I am Seldon, how is it going\"],\n",
+ " },\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "requests.post(\n",
+ " \"http://localhost:8080/v2/models/transformer/infer\", json=inference_request\n",
+ ").json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5aa51356",
+ "metadata": {},
+ "source": [
+ "### Sentiment Analysis"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "8e70c7d7",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting ./model-settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile ./model-settings.json\n",
+ "{\n",
+ " \"name\": \"transformer\",\n",
+ " \"implementation\": \"mlserver_huggingface.HuggingFaceRuntime\",\n",
+ " \"parameters\": {\n",
+ " \"extra\": {\n",
+ " \"task\": \"text-classification\"\n",
+ " }\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ed336525",
+ "metadata": {},
+ "source": [
+ "Once again, you are able to run the model using the MLServer CLI.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "2f704413",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'model_name': 'transformer',\n",
+ " 'id': '835eabbd-daeb-4423-a64f-a7c4d7c60a9b',\n",
+ " 'parameters': {},\n",
+ " 'outputs': [{'name': 'output',\n",
+ " 'shape': [1, 1],\n",
+ " 'datatype': 'BYTES',\n",
+ " 'parameters': {'content_type': 'hg_jsonlist'},\n",
+ " 'data': ['{\"label\": \"NEGATIVE\", \"score\": 0.9996137022972107}']}]}"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"args\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"data\": [\"This is terrible!\"],\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "requests.post(\n",
+ " \"http://localhost:8080/v2/models/transformer/infer\", json=inference_request\n",
+ ").json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fe6655d9",
+ "metadata": {},
+ "source": [
+ "## GPU Acceleration\n",
+ "\n",
+ "We can also evaluate GPU acceleration, we can test the speed on CPU vs GPU using the following parameters\n",
+ "\n",
+ "### Testing with CPU\n",
+ "\n",
+ "We first test the time taken with the device=-1 which configures CPU by default"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "827472eb",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting ./model-settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile ./model-settings.json\n",
+ "{\n",
+ " \"name\": \"transformer\",\n",
+ " \"implementation\": \"mlserver_huggingface.HuggingFaceRuntime\",\n",
+ " \"max_batch_size\": 128,\n",
+ " \"max_batch_time\": 1,\n",
+ " \"parameters\": {\n",
+ " \"extra\": {\n",
+ " \"task\": \"text-generation\",\n",
+ " \"device\": -1\n",
+ " }\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eceb4d12",
+ "metadata": {},
+ "source": [
+ "Once again, you are able to run the model using the MLServer CLI.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "888501c1",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Elapsed time: 66.42268538899953\n"
+ ]
+ }
+ ],
+ "source": [
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"text_inputs\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"data\": [\"This is a generation for the work\" for i in range(512)],\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "# Benchmark time\n",
+ "import time\n",
+ "\n",
+ "start_time = time.monotonic()\n",
+ "\n",
+ "requests.post(\n",
+ " \"http://localhost:8080/v2/models/transformer/infer\", json=inference_request\n",
+ ")\n",
+ "\n",
+ "print(f\"Elapsed time: {time.monotonic() - start_time}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "92756662",
+ "metadata": {},
+ "source": [
+ "We can see that it takes 81 seconds which is 8 times longer than the gpu example below."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cd2e208c",
+ "metadata": {},
+ "source": [
+ "### Testing with GPU\n",
+ "\n",
+ "IMPORTANT: Running the code below requries having a machine with GPU configured correctly to work for Tensorflow/Pytorch.\n",
+ " \n",
+ "Now we'll run the benchmark with GPU configured, which we can do by setting `device=0`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "032b8f4e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting ./model-settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile ./model-settings.json\n",
+ "{\n",
+ " \"name\": \"transformer\",\n",
+ " \"implementation\": \"mlserver_huggingface.HuggingFaceRuntime\",\n",
+ " \"parameters\": {\n",
+ " \"extra\": {\n",
+ " \"task\": \"text-generation\",\n",
+ " \"device\": 0\n",
+ " }\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "1b6bd339",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Elapsed time: 11.27933280000434\n"
+ ]
+ }
+ ],
+ "source": [
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"text_inputs\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"data\": [\"This is a generation for the work\" for i in range(512)],\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "# Benchmark time\n",
+ "import time\n",
+ "\n",
+ "start_time = time.monotonic()\n",
+ "\n",
+ "requests.post(\n",
+ " \"http://localhost:8080/v2/models/transformer/infer\", json=inference_request\n",
+ ")\n",
+ "\n",
+ "print(f\"Elapsed time: {time.monotonic() - start_time}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c929108c",
+ "metadata": {},
+ "source": [
+ "We can see that the elapsed time is 8 times less than the CPU version!"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5d790b37",
+ "metadata": {},
+ "source": [
+ "### Adaptive Batching with GPU\n",
+ "\n",
+ "We can also see how the adaptive batching capabilities can allow for GPU acceleration by grouping multiple incoming requests so they get processed in GPU batch.\n",
+ "\n",
+ "In our case we can enable adaptive batching with the `max_batch_size` which in our case we will set it ot 128.\n",
+ "\n",
+ "We will also configure `max_batch_time` which specifies` the maximum amount of time the MLServer orchestrator will wait before sending for inference."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "810a4abe",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting ./model-settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile ./model-settings.json\n",
+ "{\n",
+ " \"name\": \"transformer\",\n",
+ " \"implementation\": \"mlserver_huggingface.HuggingFaceRuntime\",\n",
+ " \"max_batch_size\": 128,\n",
+ " \"max_batch_time\": 1,\n",
+ " \"parameters\": {\n",
+ " \"extra\": {\n",
+ " \"task\": \"text-generation\",\n",
+ " \"pretrained_model\": \"distilgpt2\",\n",
+ " \"device\": 0\n",
+ " }\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e063ccb6",
+ "metadata": {},
+ "source": [
+ "In order to achieve the throughput required of 50 requests per second, we will use the tool `vegeta` which performs load testing.\n",
+ "\n",
+ "We can now see that we are able to see that the requests are batched and we receive 100% success eventhough the requests are sent one-by-one."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "1a787909",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requests [total, rate, throughput] 150, 50.34, 22.28\n",
+ "Duration [total, attack, wait] 6.732s, 2.98s, 3.753s\n",
+ "Latencies [min, mean, 50, 90, 95, 99, max] 1.975s, 3.168s, 3.22s, 4.065s, 4.183s, 4.299s, 4.318s\n",
+ "Bytes In [total, mean] 60978, 406.52\n",
+ "Bytes Out [total, mean] 12300, 82.00\n",
+ "Success [ratio] 100.00%\n",
+ "Status Codes [code:count] 200:150 \n",
+ "Error Set:\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%bash\n",
+ "jq -ncM '{\"method\": \"POST\", \"header\": {\"Content-Type\": [\"application/json\"] }, \"url\": \"http://localhost:8080/v2/models/transformer/infer\", \"body\": \"{\\\"inputs\\\":[{\\\"name\\\":\\\"text_inputs\\\",\\\"shape\\\":[1],\\\"datatype\\\":\\\"BYTES\\\",\\\"data\\\":[\\\"test\\\"]}]}\" | @base64 }' \\\n",
+ " | vegeta \\\n",
+ " -cpus=\"2\" \\\n",
+ " attack \\\n",
+ " -duration=\"3s\" \\\n",
+ " -rate=\"50\" \\\n",
+ " -format=json \\\n",
+ " | vegeta \\\n",
+ " report \\\n",
+ " -type=text"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0ddcb458",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs-gb/examples/huggingface/README.md b/docs-gb/examples/huggingface/README.md
new file mode 100644
index 000000000..b4c3cd1c9
--- /dev/null
+++ b/docs-gb/examples/huggingface/README.md
@@ -0,0 +1,456 @@
+# Serving HuggingFace Transformer Models
+
+Out of the box, MLServer supports the deployment and serving of HuggingFace Transformer models with the following features:
+
+- Loading of Transformer Model artifacts from the Hugging Face Hub.
+- Model quantization & optimization using the Hugging Face Optimum library
+- Request batching for GPU optimization (via adaptive batching and request batching)
+
+In this example, we will showcase some of this features using an example model.
+
+
+```python
+# Import required dependencies
+import requests
+```
+
+## Serving
+
+Since we're using a pretrained model, we can skip straight to serving.
+
+### `model-settings.json`
+
+
+```python
+%%writefile ./model-settings.json
+{
+ "name": "transformer",
+ "implementation": "mlserver_huggingface.HuggingFaceRuntime",
+ "parameters": {
+ "extra": {
+ "task": "text-generation",
+ "pretrained_model": "distilgpt2"
+ }
+ }
+}
+```
+
+ Overwriting ./model-settings.json
+
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request
+
+
+
+```python
+inference_request = {
+ "inputs": [
+ {
+ "name": "args",
+ "shape": [1],
+ "datatype": "BYTES",
+ "data": ["this is a test"],
+ }
+ ]
+}
+
+requests.post(
+ "http://localhost:8080/v2/models/transformer/infer", json=inference_request
+).json()
+```
+
+
+
+
+ {'model_name': 'transformer',
+ 'id': 'eb160c6b-8223-4342-ad92-6ac301a9fa5d',
+ 'parameters': {},
+ 'outputs': [{'name': 'output',
+ 'shape': [1, 1],
+ 'datatype': 'BYTES',
+ 'parameters': {'content_type': 'hg_jsonlist'},
+ 'data': ['{"generated_text": "this is a testnet with 1-3,000-bit nodes as nodes."}']}]}
+
+
+
+### Using Optimum Optimized Models
+
+We can also leverage the Optimum library that allows us to access quantized and optimized models.
+
+We can download pretrained optimized models from the hub if available by enabling the `optimum_model` flag:
+
+
+```python
+%%writefile ./model-settings.json
+{
+ "name": "transformer",
+ "implementation": "mlserver_huggingface.HuggingFaceRuntime",
+ "parameters": {
+ "extra": {
+ "task": "text-generation",
+ "pretrained_model": "distilgpt2",
+ "optimum_model": true
+ }
+ }
+}
+```
+
+ Overwriting ./model-settings.json
+
+
+Once again, you are able to run the model using the MLServer CLI. As before this needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+### Send Test Request to Optimum Optimized Model
+
+The request can now be sent using the same request structure but using optimized models for better performance.
+
+
+```python
+inference_request = {
+ "inputs": [
+ {
+ "name": "args",
+ "shape": [1],
+ "datatype": "BYTES",
+ "data": ["this is a test"],
+ }
+ ]
+}
+
+requests.post(
+ "http://localhost:8080/v2/models/transformer/infer", json=inference_request
+).json()
+```
+
+
+
+
+ {'model_name': 'transformer',
+ 'id': '9c482c8d-b21e-44b1-8a42-7650a9dc01ef',
+ 'parameters': {},
+ 'outputs': [{'name': 'output',
+ 'shape': [1, 1],
+ 'datatype': 'BYTES',
+ 'parameters': {'content_type': 'hg_jsonlist'},
+ 'data': ['{"generated_text": "this is a test of the \\"safe-code-safe-code-safe-code\\" approach. The method only accepts two parameters as parameters: the code. The parameter \'unsafe-code-safe-code-safe-code\' should"}']}]}
+
+
+
+## Testing Supported Tasks
+
+We can support multiple other transformers other than just text generation, below includes examples for a few other tasks supported.
+
+
+
+### Question Answering
+
+
+```python
+%%writefile ./model-settings.json
+{
+ "name": "transformer",
+ "implementation": "mlserver_huggingface.HuggingFaceRuntime",
+ "parameters": {
+ "extra": {
+ "task": "question-answering"
+ }
+ }
+}
+```
+
+ Overwriting ./model-settings.json
+
+
+Once again, you are able to run the model using the MLServer CLI.
+
+```shell
+mlserver start .
+```
+
+
+```python
+inference_request = {
+ "inputs": [
+ {
+ "name": "question",
+ "shape": [1],
+ "datatype": "BYTES",
+ "data": ["what is your name?"],
+ },
+ {
+ "name": "context",
+ "shape": [1],
+ "datatype": "BYTES",
+ "data": ["Hello, I am Seldon, how is it going"],
+ },
+ ]
+}
+
+requests.post(
+ "http://localhost:8080/v2/models/transformer/infer", json=inference_request
+).json()
+```
+
+
+
+
+ {'model_name': 'transformer',
+ 'id': '4efac938-86d8-41a1-b78f-7690b2dcf197',
+ 'parameters': {},
+ 'outputs': [{'name': 'output',
+ 'shape': [1, 1],
+ 'datatype': 'BYTES',
+ 'parameters': {'content_type': 'hg_jsonlist'},
+ 'data': ['{"score": 0.9869915843009949, "start": 12, "end": 18, "answer": "Seldon"}']}]}
+
+
+
+### Sentiment Analysis
+
+
+```python
+%%writefile ./model-settings.json
+{
+ "name": "transformer",
+ "implementation": "mlserver_huggingface.HuggingFaceRuntime",
+ "parameters": {
+ "extra": {
+ "task": "text-classification"
+ }
+ }
+}
+```
+
+ Overwriting ./model-settings.json
+
+
+Once again, you are able to run the model using the MLServer CLI.
+
+```shell
+mlserver start .
+```
+
+
+```python
+inference_request = {
+ "inputs": [
+ {
+ "name": "args",
+ "shape": [1],
+ "datatype": "BYTES",
+ "data": ["This is terrible!"],
+ }
+ ]
+}
+
+requests.post(
+ "http://localhost:8080/v2/models/transformer/infer", json=inference_request
+).json()
+```
+
+
+
+
+ {'model_name': 'transformer',
+ 'id': '835eabbd-daeb-4423-a64f-a7c4d7c60a9b',
+ 'parameters': {},
+ 'outputs': [{'name': 'output',
+ 'shape': [1, 1],
+ 'datatype': 'BYTES',
+ 'parameters': {'content_type': 'hg_jsonlist'},
+ 'data': ['{"label": "NEGATIVE", "score": 0.9996137022972107}']}]}
+
+
+
+## GPU Acceleration
+
+We can also evaluate GPU acceleration, we can test the speed on CPU vs GPU using the following parameters
+
+### Testing with CPU
+
+We first test the time taken with the device=-1 which configures CPU by default
+
+
+```python
+%%writefile ./model-settings.json
+{
+ "name": "transformer",
+ "implementation": "mlserver_huggingface.HuggingFaceRuntime",
+ "max_batch_size": 128,
+ "max_batch_time": 1,
+ "parameters": {
+ "extra": {
+ "task": "text-generation",
+ "device": -1
+ }
+ }
+}
+```
+
+ Overwriting ./model-settings.json
+
+
+Once again, you are able to run the model using the MLServer CLI.
+
+```shell
+mlserver start .
+```
+
+
+```python
+inference_request = {
+ "inputs": [
+ {
+ "name": "text_inputs",
+ "shape": [1],
+ "datatype": "BYTES",
+ "data": ["This is a generation for the work" for i in range(512)],
+ }
+ ]
+}
+
+# Benchmark time
+import time
+
+start_time = time.monotonic()
+
+requests.post(
+ "http://localhost:8080/v2/models/transformer/infer", json=inference_request
+)
+
+print(f"Elapsed time: {time.monotonic() - start_time}")
+```
+
+ Elapsed time: 66.42268538899953
+
+
+We can see that it takes 81 seconds which is 8 times longer than the gpu example below.
+
+### Testing with GPU
+
+IMPORTANT: Running the code below requries having a machine with GPU configured correctly to work for Tensorflow/Pytorch.
+
+Now we'll run the benchmark with GPU configured, which we can do by setting `device=0`
+
+
+```python
+%%writefile ./model-settings.json
+{
+ "name": "transformer",
+ "implementation": "mlserver_huggingface.HuggingFaceRuntime",
+ "parameters": {
+ "extra": {
+ "task": "text-generation",
+ "device": 0
+ }
+ }
+}
+```
+
+ Overwriting ./model-settings.json
+
+
+
+```python
+inference_request = {
+ "inputs": [
+ {
+ "name": "text_inputs",
+ "shape": [1],
+ "datatype": "BYTES",
+ "data": ["This is a generation for the work" for i in range(512)],
+ }
+ ]
+}
+
+# Benchmark time
+import time
+
+start_time = time.monotonic()
+
+requests.post(
+ "http://localhost:8080/v2/models/transformer/infer", json=inference_request
+)
+
+print(f"Elapsed time: {time.monotonic() - start_time}")
+```
+
+ Elapsed time: 11.27933280000434
+
+
+We can see that the elapsed time is 8 times less than the CPU version!
+
+### Adaptive Batching with GPU
+
+We can also see how the adaptive batching capabilities can allow for GPU acceleration by grouping multiple incoming requests so they get processed in GPU batch.
+
+In our case we can enable adaptive batching with the `max_batch_size` which in our case we will set it ot 128.
+
+We will also configure `max_batch_time` which specifies` the maximum amount of time the MLServer orchestrator will wait before sending for inference.
+
+
+```python
+%%writefile ./model-settings.json
+{
+ "name": "transformer",
+ "implementation": "mlserver_huggingface.HuggingFaceRuntime",
+ "max_batch_size": 128,
+ "max_batch_time": 1,
+ "parameters": {
+ "extra": {
+ "task": "text-generation",
+ "pretrained_model": "distilgpt2",
+ "device": 0
+ }
+ }
+}
+```
+
+ Overwriting ./model-settings.json
+
+
+In order to achieve the throughput required of 50 requests per second, we will use the tool `vegeta` which performs load testing.
+
+We can now see that we are able to see that the requests are batched and we receive 100% success eventhough the requests are sent one-by-one.
+
+
+```bash
+%%bash
+jq -ncM '{"method": "POST", "header": {"Content-Type": ["application/json"] }, "url": "http://localhost:8080/v2/models/transformer/infer", "body": "{\"inputs\":[{\"name\":\"text_inputs\",\"shape\":[1],\"datatype\":\"BYTES\",\"data\":[\"test\"]}]}" | @base64 }' \
+ | vegeta \
+ -cpus="2" \
+ attack \
+ -duration="3s" \
+ -rate="50" \
+ -format=json \
+ | vegeta \
+ report \
+ -type=text
+```
+
+ Requests [total, rate, throughput] 150, 50.34, 22.28
+ Duration [total, attack, wait] 6.732s, 2.98s, 3.753s
+ Latencies [min, mean, 50, 90, 95, 99, max] 1.975s, 3.168s, 3.22s, 4.065s, 4.183s, 4.299s, 4.318s
+ Bytes In [total, mean] 60978, 406.52
+ Bytes Out [total, mean] 12300, 82.00
+ Success [ratio] 100.00%
+ Status Codes [code:count] 200:150
+ Error Set:
+
+
+
+```python
+
+```
diff --git a/docs-gb/examples/kafka/.gitignore b/docs-gb/examples/kafka/.gitignore
new file mode 100644
index 000000000..2a003536c
--- /dev/null
+++ b/docs-gb/examples/kafka/.gitignore
@@ -0,0 +1 @@
+kafka_*
diff --git a/docs-gb/examples/kafka/README.ipynb b/docs-gb/examples/kafka/README.ipynb
new file mode 100644
index 000000000..343544977
--- /dev/null
+++ b/docs-gb/examples/kafka/README.ipynb
@@ -0,0 +1,342 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Serving models through Kafka\n",
+ "\n",
+ "Out of the box, MLServer provides support to receive inference requests from Kafka.\n",
+ "The Kafka server can run side-by-side with the REST and gRPC ones, and adds a new interface to interact with your model.\n",
+ "The inference responses coming back from your model, will also get written back to their own output topic.\n",
+ "\n",
+ "In this example, we will showcase the integration with Kafka by serving a [Scikit-Learn](../sklearn/README) model thorugh Kafka."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Run Kafka\n",
+ "\n",
+ "We are going to start by running a simple local docker deployment of kafka that we can test against. This will be a minimal cluster that will consist of a single zookeeper node and a single broker.\n",
+ "\n",
+ "You need to have Java installed in order for it to work correctly."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!wget https://apache.mirrors.nublue.co.uk/kafka/2.8.0/kafka_2.12-2.8.0.tgz\n",
+ "!tar -zxvf kafka_2.12-2.8.0.tgz\n",
+ "!./kafka_2.12-2.8.0/bin/kafka-storage.sh format -t OXn8RTSlQdmxwjhKnSB_6A -c ./kafka_2.12-2.8.0/config/kraft/server.properties"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Run the no-zookeeper kafka broker\n",
+ "\n",
+ "Now you can just run it with the following command outside the terminal:\n",
+ "```\n",
+ "!./kafka_2.12-2.8.0/bin/kafka-server-start.sh ./kafka_2.12-2.8.0/config/kraft/server.properties\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Create Topics\n",
+ "\n",
+ "Now we can create the input and output topics required"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!./kafka_2.12-2.8.0/bin/kafka-topics.sh --create --topic mlserver-input --partitions 1 --replication-factor 1 --bootstrap-server localhost:9092\n",
+ "!./kafka_2.12-2.8.0/bin/kafka-topics.sh --create --topic mlserver-output --partitions 1 --replication-factor 1 --bootstrap-server localhost:9092"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training\n",
+ "\n",
+ "The first step will be to train a simple `scikit-learn` model.\n",
+ "For that, we will use the [MNIST example from the `scikit-learn` documentation](https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html) which trains an SVM model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Original source code and more details can be found in:\n",
+ "# https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html\n",
+ "\n",
+ "# Import datasets, classifiers and performance metrics\n",
+ "from sklearn import datasets, svm, metrics\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "# The digits dataset\n",
+ "digits = datasets.load_digits()\n",
+ "\n",
+ "# To apply a classifier on this data, we need to flatten the image, to\n",
+ "# turn the data in a (samples, feature) matrix:\n",
+ "n_samples = len(digits.images)\n",
+ "data = digits.images.reshape((n_samples, -1))\n",
+ "\n",
+ "# Create a classifier: a support vector classifier\n",
+ "classifier = svm.SVC(gamma=0.001)\n",
+ "\n",
+ "# Split data into train and test subsets\n",
+ "X_train, X_test, y_train, y_test = train_test_split(\n",
+ " data, digits.target, test_size=0.5, shuffle=False)\n",
+ "\n",
+ "# We learn the digits on the first half of the digits\n",
+ "classifier.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Saving our trained model\n",
+ "\n",
+ "To save our trained model, we will serialise it using `joblib`.\n",
+ "While this is not a perfect approach, it's currently the recommended method to persist models to disk in the [`scikit-learn` documentation](https://scikit-learn.org/stable/modules/model_persistence.html).\n",
+ "\n",
+ "Our model will be persisted as a file named `mnist-svm.joblib`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import joblib\n",
+ "\n",
+ "model_file_name = \"mnist-svm.joblib\"\n",
+ "joblib.dump(classifier, model_file_name)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "Now that we have trained and saved our model, the next step will be to serve it using `mlserver`. \n",
+ "For that, we will need to create 2 configuration files: \n",
+ "\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).\n",
+ "\n",
+ "Note that, the `settings.json` file will contain our Kafka configuration, including the address of the Kafka broker and the input / output topics that will be used for inference."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile settings.json\n",
+ "{\n",
+ " \"debug\": \"true\",\n",
+ " \"kafka_enabled\": \"true\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "{\n",
+ " \"name\": \"mnist-svm\",\n",
+ " \"implementation\": \"mlserver_sklearn.SKLearnModel\",\n",
+ " \"parameters\": {\n",
+ " \"uri\": \"./mnist-svm.joblib\",\n",
+ " \"version\": \"v0.1.0\"\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "x_0 = X_test[0:1]\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict\",\n",
+ " \"shape\": x_0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": x_0.tolist()\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/mnist-svm/versions/v0.1.0/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send inference request through Kafka\n",
+ "\n",
+ "Now that we have verified that our server is accepting REST requests, we will try to send a new inference request through Kafka.\n",
+ "For this, we just need to send a request to the `mlserver-input` topic (which is the default input topic):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import json\n",
+ "from kafka import KafkaProducer\n",
+ "\n",
+ "producer = KafkaProducer(bootstrap_servers=\"localhost:9092\")\n",
+ "\n",
+ "headers = {\n",
+ " \"mlserver-model\": b\"mnist-svm\",\n",
+ " \"mlserver-version\": b\"v0.1.0\",\n",
+ "}\n",
+ "\n",
+ "producer.send(\n",
+ " \"mlserver-input\",\n",
+ " json.dumps(inference_request).encode(\"utf-8\"),\n",
+ " headers=list(headers.items()))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Once the message has gone into the queue, the Kafka server running within MLServer should receive this message and run inference.\n",
+ "The prediction output should then get posted into an output queue, which will be named `mlserver-output` by default."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from kafka import KafkaConsumer\n",
+ "\n",
+ "consumer = KafkaConsumer(\n",
+ " \"mlserver-output\",\n",
+ " bootstrap_servers=\"localhost:9092\",\n",
+ " auto_offset_reset=\"earliest\")\n",
+ "\n",
+ "for msg in consumer:\n",
+ " print(f\"key: {msg.key}\")\n",
+ " print(f\"value: {msg.value}\\n\")\n",
+ " break"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As we should now be able to see above, the results of our inference request should now be visible in the output Kafka queue."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/kafka/README.md b/docs-gb/examples/kafka/README.md
new file mode 100644
index 000000000..b547d7b21
--- /dev/null
+++ b/docs-gb/examples/kafka/README.md
@@ -0,0 +1,208 @@
+# Serving models through Kafka
+
+Out of the box, MLServer provides support to receive inference requests from Kafka.
+The Kafka server can run side-by-side with the REST and gRPC ones, and adds a new interface to interact with your model.
+The inference responses coming back from your model, will also get written back to their own output topic.
+
+In this example, we will showcase the integration with Kafka by serving a [Scikit-Learn](../sklearn/README) model thorugh Kafka.
+
+## Run Kafka
+
+We are going to start by running a simple local docker deployment of kafka that we can test against. This will be a minimal cluster that will consist of a single zookeeper node and a single broker.
+
+You need to have Java installed in order for it to work correctly.
+
+
+```python
+!wget https://apache.mirrors.nublue.co.uk/kafka/2.8.0/kafka_2.12-2.8.0.tgz
+!tar -zxvf kafka_2.12-2.8.0.tgz
+!./kafka_2.12-2.8.0/bin/kafka-storage.sh format -t OXn8RTSlQdmxwjhKnSB_6A -c ./kafka_2.12-2.8.0/config/kraft/server.properties
+```
+
+### Run the no-zookeeper kafka broker
+
+Now you can just run it with the following command outside the terminal:
+```
+!./kafka_2.12-2.8.0/bin/kafka-server-start.sh ./kafka_2.12-2.8.0/config/kraft/server.properties
+```
+
+### Create Topics
+
+Now we can create the input and output topics required
+
+
+```python
+!./kafka_2.12-2.8.0/bin/kafka-topics.sh --create --topic mlserver-input --partitions 1 --replication-factor 1 --bootstrap-server localhost:9092
+!./kafka_2.12-2.8.0/bin/kafka-topics.sh --create --topic mlserver-output --partitions 1 --replication-factor 1 --bootstrap-server localhost:9092
+```
+
+## Training
+
+The first step will be to train a simple `scikit-learn` model.
+For that, we will use the [MNIST example from the `scikit-learn` documentation](https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html) which trains an SVM model.
+
+
+```python
+# Original source code and more details can be found in:
+# https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
+
+# Import datasets, classifiers and performance metrics
+from sklearn import datasets, svm, metrics
+from sklearn.model_selection import train_test_split
+
+# The digits dataset
+digits = datasets.load_digits()
+
+# To apply a classifier on this data, we need to flatten the image, to
+# turn the data in a (samples, feature) matrix:
+n_samples = len(digits.images)
+data = digits.images.reshape((n_samples, -1))
+
+# Create a classifier: a support vector classifier
+classifier = svm.SVC(gamma=0.001)
+
+# Split data into train and test subsets
+X_train, X_test, y_train, y_test = train_test_split(
+ data, digits.target, test_size=0.5, shuffle=False)
+
+# We learn the digits on the first half of the digits
+classifier.fit(X_train, y_train)
+```
+
+### Saving our trained model
+
+To save our trained model, we will serialise it using `joblib`.
+While this is not a perfect approach, it's currently the recommended method to persist models to disk in the [`scikit-learn` documentation](https://scikit-learn.org/stable/modules/model_persistence.html).
+
+Our model will be persisted as a file named `mnist-svm.joblib`
+
+
+```python
+import joblib
+
+model_file_name = "mnist-svm.joblib"
+joblib.dump(classifier, model_file_name)
+```
+
+## Serving
+
+Now that we have trained and saved our model, the next step will be to serve it using `mlserver`.
+For that, we will need to create 2 configuration files:
+
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).
+
+Note that, the `settings.json` file will contain our Kafka configuration, including the address of the Kafka broker and the input / output topics that will be used for inference.
+
+### `settings.json`
+
+
+```python
+%%writefile settings.json
+{
+ "debug": "true",
+ "kafka_enabled": "true"
+}
+```
+
+### `model-settings.json`
+
+
+```python
+%%writefile model-settings.json
+{
+ "name": "mnist-svm",
+ "implementation": "mlserver_sklearn.SKLearnModel",
+ "parameters": {
+ "uri": "./mnist-svm.joblib",
+ "version": "v0.1.0"
+ }
+}
+```
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request from our test set.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+
+```python
+import requests
+
+x_0 = X_test[0:1]
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": x_0.shape,
+ "datatype": "FP32",
+ "data": x_0.tolist()
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/mnist-svm/versions/v0.1.0/infer"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+### Send inference request through Kafka
+
+Now that we have verified that our server is accepting REST requests, we will try to send a new inference request through Kafka.
+For this, we just need to send a request to the `mlserver-input` topic (which is the default input topic):
+
+
+```python
+import json
+from kafka import KafkaProducer
+
+producer = KafkaProducer(bootstrap_servers="localhost:9092")
+
+headers = {
+ "mlserver-model": b"mnist-svm",
+ "mlserver-version": b"v0.1.0",
+}
+
+producer.send(
+ "mlserver-input",
+ json.dumps(inference_request).encode("utf-8"),
+ headers=list(headers.items()))
+```
+
+Once the message has gone into the queue, the Kafka server running within MLServer should receive this message and run inference.
+The prediction output should then get posted into an output queue, which will be named `mlserver-output` by default.
+
+
+```python
+from kafka import KafkaConsumer
+
+consumer = KafkaConsumer(
+ "mlserver-output",
+ bootstrap_servers="localhost:9092",
+ auto_offset_reset="earliest")
+
+for msg in consumer:
+ print(f"key: {msg.key}")
+ print(f"value: {msg.value}\n")
+ break
+```
+
+As we should now be able to see above, the results of our inference request should now be visible in the output Kafka queue.
+
+
+```python
+
+```
diff --git a/docs-gb/examples/kafka/inference-request.json b/docs-gb/examples/kafka/inference-request.json
new file mode 100644
index 000000000..9e1a9fdd1
--- /dev/null
+++ b/docs-gb/examples/kafka/inference-request.json
@@ -0,0 +1,15 @@
+{
+ "id": "request-0",
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": [3],
+ "datatype": "INT32",
+ "data": [ 0., 0., 1., 11., 14., 15., 3., 0., 0., 1., 13., 16., 12.,
+ 16., 8., 0., 0., 8., 16., 4., 6., 16., 5., 0., 0., 5.,
+ 15., 11., 13., 14., 0., 0., 0., 0., 2., 12., 16., 13., 0.,
+ 0., 0., 0., 0., 13., 16., 16., 6., 0., 0., 0., 0., 16.,
+ 16., 16., 7., 0., 0., 0., 0., 11., 13., 12., 1., 0.]
+ }
+ ]
+}
diff --git a/docs-gb/examples/kafka/mnist-svm.joblib b/docs-gb/examples/kafka/mnist-svm.joblib
new file mode 100644
index 000000000..783b1f158
Binary files /dev/null and b/docs-gb/examples/kafka/mnist-svm.joblib differ
diff --git a/docs-gb/examples/kafka/model-settings.json b/docs-gb/examples/kafka/model-settings.json
new file mode 100644
index 000000000..6dab01679
--- /dev/null
+++ b/docs-gb/examples/kafka/model-settings.json
@@ -0,0 +1,8 @@
+{
+ "name": "mnist-svm",
+ "implementation": "mlserver_sklearn.SKLearnModel",
+ "parameters": {
+ "uri": "./mnist-svm.joblib",
+ "version": "v0.1.0"
+ }
+}
diff --git a/docs-gb/examples/kafka/settings.json b/docs-gb/examples/kafka/settings.json
new file mode 100644
index 000000000..635566736
--- /dev/null
+++ b/docs-gb/examples/kafka/settings.json
@@ -0,0 +1,4 @@
+{
+ "debug": "true",
+ "kafka_enabled": "true"
+}
diff --git a/docs-gb/examples/lightgbm/README.ipynb b/docs-gb/examples/lightgbm/README.ipynb
new file mode 100644
index 000000000..2f803d522
--- /dev/null
+++ b/docs-gb/examples/lightgbm/README.ipynb
@@ -0,0 +1,215 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Serving LightGBM models\n",
+ "\n",
+ "Out of the box, `mlserver` supports the deployment and serving of `lightgbm` models.\n",
+ "By default, it will assume that these models have been [serialised using the `bst.save_model()` method](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.Booster.html).\n",
+ "\n",
+ "In this example, we will cover how we can train and serialise a simple model, to then serve it using `mlserver`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training\n",
+ "\n",
+ "To test the LightGBM Server, first we need to generate a simple LightGBM model using Python. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import lightgbm as lgb\n",
+ "from sklearn.datasets import load_iris\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "import os\n",
+ "\n",
+ "model_dir = \".\"\n",
+ "BST_FILE = \"iris-lightgbm.bst\"\n",
+ "\n",
+ "iris = load_iris()\n",
+ "y = iris['target']\n",
+ "X = iris['data']\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)\n",
+ "dtrain = lgb.Dataset(X_train, label=y_train)\n",
+ "\n",
+ "params = {\n",
+ " 'objective':'multiclass', \n",
+ " 'metric':'softmax',\n",
+ " 'num_class': 3\n",
+ "}\n",
+ "lgb_model = lgb.train(params=params, train_set=dtrain)\n",
+ "model_file = os.path.join(model_dir, BST_FILE)\n",
+ "lgb_model.save_model(model_file)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Our model will be persisted as a file named `iris-lightgbm.bst`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "Now that we have trained and saved our model, the next step will be to serve it using `mlserver`. \n",
+ "For that, we will need to create 2 configuration files: \n",
+ "\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile settings.json\n",
+ "{\n",
+ " \"debug\": \"true\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "{\n",
+ " \"name\": \"iris-lgb\",\n",
+ " \"implementation\": \"mlserver_lightgbm.LightGBMModel\",\n",
+ " \"parameters\": {\n",
+ " \"uri\": \"./iris-lightgbm.bst\",\n",
+ " \"version\": \"v0.1.0\"\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "x_0 = X_test[0:1]\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict-prob\",\n",
+ " \"shape\": x_0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": x_0.tolist()\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8788/v2/models/iris-lgb/versions/v0.1.0/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As we can see above, the model predicted the probability for each class, and the probability of class `1` is the biggest, close to `0.99`, which matches what's on the test set."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y_test[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/lightgbm/README.md b/docs-gb/examples/lightgbm/README.md
new file mode 100644
index 000000000..4e79fa0ce
--- /dev/null
+++ b/docs-gb/examples/lightgbm/README.md
@@ -0,0 +1,117 @@
+# Serving LightGBM models
+
+Out of the box, `mlserver` supports the deployment and serving of `lightgbm` models.
+By default, it will assume that these models have been [serialised using the `bst.save_model()` method](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.Booster.html).
+
+In this example, we will cover how we can train and serialise a simple model, to then serve it using `mlserver`.
+
+## Training
+
+To test the LightGBM Server, first we need to generate a simple LightGBM model using Python.
+
+
+```python
+import lightgbm as lgb
+from sklearn.datasets import load_iris
+from sklearn.model_selection import train_test_split
+import os
+
+model_dir = "."
+BST_FILE = "iris-lightgbm.bst"
+
+iris = load_iris()
+y = iris['target']
+X = iris['data']
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
+dtrain = lgb.Dataset(X_train, label=y_train)
+
+params = {
+ 'objective':'multiclass',
+ 'metric':'softmax',
+ 'num_class': 3
+}
+lgb_model = lgb.train(params=params, train_set=dtrain)
+model_file = os.path.join(model_dir, BST_FILE)
+lgb_model.save_model(model_file)
+```
+
+Our model will be persisted as a file named `iris-lightgbm.bst`.
+
+## Serving
+
+Now that we have trained and saved our model, the next step will be to serve it using `mlserver`.
+For that, we will need to create 2 configuration files:
+
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).
+
+### `settings.json`
+
+
+```python
+%%writefile settings.json
+{
+ "debug": "true"
+}
+```
+
+### `model-settings.json`
+
+
+```python
+%%writefile model-settings.json
+{
+ "name": "iris-lgb",
+ "implementation": "mlserver_lightgbm.LightGBMModel",
+ "parameters": {
+ "uri": "./iris-lightgbm.bst",
+ "version": "v0.1.0"
+ }
+}
+```
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request from our test set.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+
+```python
+import requests
+
+x_0 = X_test[0:1]
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict-prob",
+ "shape": x_0.shape,
+ "datatype": "FP32",
+ "data": x_0.tolist()
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/iris-lgb/versions/v0.1.0/infer"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+As we can see above, the model predicted the probability for each class, and the probability of class `1` is the biggest, close to `0.99`, which matches what's on the test set.
+
+
+```python
+y_test[0]
+```
diff --git a/docs-gb/examples/lightgbm/iris-lightgbm.bst b/docs-gb/examples/lightgbm/iris-lightgbm.bst
new file mode 100644
index 000000000..454353fa0
--- /dev/null
+++ b/docs-gb/examples/lightgbm/iris-lightgbm.bst
@@ -0,0 +1,5537 @@
+tree
+version=v3
+num_class=3
+num_tree_per_iteration=3
+label_index=0
+max_feature_idx=3
+objective=multiclass num_class:3
+feature_names=Column_0 Column_1 Column_2 Column_3
+feature_infos=[4.2999999999999998:7.9000000000000004] [2:4.4000000000000004] [1:6.9000000000000004] [0.10000000000000001:2.5]
+tree_sizes=524 708 524 636 736 632 638 734 634 638 721 636 640 723 638 746 738 637 742 721 742 743 636 741 744 738 741 744 620 739 744 720 741 743 634 740 745 619 743 742 633 740 747 721 741 745 636 739 636 735 741 636 619 738 640 723 741 637 638 742 638 619 739 745 637 741 637 621 740 640 637 740 637 622 742 642 619 742 639 635 535 640 622 739 744 639 535 641 622 738 637 637 741 637 625 641 639 639 642 639 623 746 637 627 644 641 644 746 641 616 747 644 617 644 642 620 645 753 622 644 647 623 647 647 618 640 753 622 647 642 535 640 754 623 644 648 540 648 756 623 651 647 745 647 646 538 644 755 623 651 647 540 645 753 540 649 757 748 647 650 642 651 737 539 644 756 638 646 649 541 647 649 539 647 743 625 650 646 641 649 650 538 640 759 646 652 755 627 540 652 539 643 651 643 651 652 642 542 758 540 643 743 751 653 654 648 644 653 635 638 655 645 647 654 631 735 762 646 541 654 647 732 760 648 736 748 539 653 765 648 644 750 640 741 654 644 651 657 539 655 765 644 646 750 646 645 764 642 740 658 542 656 754 639 654 656 643 648 768 642 649 658 644 652 748 644 650 766 643 650 748 537 651 770 644 738 769 748 752 751 643 644 769 752 752 658 644 639 770 641 647 755 752 753 662 641 644 769 644 754
+
+Tree=0
+num_leaves=4
+num_cat=0
+split_feature=2 0 0
+split_gain=65.2989 0.0376254 3.55271e-15
+threshold=3.1500000000000004 4.9500000000000011 6.3500000000000005
+decision_type=2 2 2
+left_child=1 -1 -2
+right_child=2 -3 -4
+leaf_value=-0.94861228531534858 -1.1736122903444903 -0.9572661316626232 -1.1736122903444903
+leaf_weight=8.8888889551162737 21.777777940034866 11.555555641651152 17.777777910232544
+leaf_count=20 49 26 40
+internal_value=0 1.45109 -0.75
+internal_weight=0 20.4444 39.5556
+internal_count=135 46 89
+shrinkage=1
+
+
+Tree=1
+num_leaves=6
+num_cat=0
+split_feature=2 3 2 2 2
+split_gain=14.7457 38.41 0.302027 0.0573373 1.77636e-15
+threshold=1.8 1.6500000000000001 4.4500000000000011 5.5500000000000007 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 2 -2 -3 -1
+right_child=1 3 -4 -5 -6
+leaf_value=-1.2174442287830562 -1.0048168644675761 -1.2064753568144004 -1.0289790649579715 -1.2174442287830562 -1.2174442287830562
+leaf_weight=8.6825788021087664 11.287352442741396 9.1167077422142047 9.5508366823196393 9.9849656224250776 9.9849656224250776
+leaf_count=20 26 21 22 23 23
+internal_value=0 0.342923 1.28183 -0.681344 -0.733696
+internal_weight=0 39.9399 20.8382 19.1017 18.6675
+internal_count=135 92 48 44 43
+shrinkage=1
+
+
+Tree=2
+num_leaves=4
+num_cat=0
+split_feature=2 2 0
+split_gain=57.2149 0.973611 0.0789948
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011
+decision_type=2 2 2
+left_child=2 -2 -1
+right_child=1 -3 -4
+leaf_value=-1.1213402157070762 -0.95347617297923726 -0.91151016229727744 -1.1318317183775661
+leaf_weight=9.5315228104591352 9.5315228104591387 13.162579119205473 29.048450469970703
+leaf_count=21 21 29 64
+internal_value=0 1.25991 -0.741125
+internal_weight=0 22.6941 38.58
+internal_count=135 50 85
+shrinkage=1
+
+
+Tree=3
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 3
+split_gain=54.5466 0.0312796 0.000275266 9.39502e-05
+threshold=3.1500000000000004 4.9500000000000011 4.7500000000000009 1.9500000000000002
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.13072289936373621 -0.072627960242994602 0.12306660172357238 -0.071837479921029887 -0.072263849608318623
+leaf_weight=9.446909576654436 16.728227108716965 12.262638449668883 8.8799112141132372 12.36343854665756
+leaf_count=20 39 26 21 29
+internal_value=0 1.26398 -0.723245 -0.720856
+internal_weight=0 21.7095 37.9716 21.2433
+internal_count=135 46 89 50
+shrinkage=0.1
+
+
+Tree=4
+num_leaves=6
+num_cat=0
+split_feature=3 3 3 0 2
+split_gain=13.0954 31.9311 0.245148 0.0595988 0.000124711
+threshold=0.45000000000000007 1.6500000000000001 1.3500000000000003 6.5500000000000007 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 2 -2 -3 -1
+right_child=1 3 -4 -5 -6
+leaf_value=-0.070822294389287055 0.12247408901765702 -0.071392936749075292 0.10129499195239083 -0.060004904246303781 -0.071351193890463335
+leaf_weight=8.3026013076305407 11.958223074674608 9.2306846678257006 10.065604776144026 9.1519648134708387 9.6281191706657392
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.315791 1.12795 -0.657233 -0.711063
+internal_weight=0 40.4065 22.0238 18.3826 17.9307
+internal_count=135 92 48 44 43
+shrinkage=0.1
+
+
+Tree=5
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 2
+split_gain=48.1745 0.773296 0.080866 0.00013584
+threshold=4.7500000000000009 1.9500000000000002 4.9500000000000011 3.1500000000000004
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.062999062838131434 0.089785638473431018 0.12633527660434876 -0.073546743711738777 -0.073995772364838883
+leaf_weight=9.1839535832405073 9.9356614947319049 13.868978470563887 11.31472957134247 16.653153359889984
+leaf_count=21 21 29 26 38
+internal_value=0 1.1108 -0.711406 -0.738141
+internal_weight=0 23.8046 37.1518 27.9679
+internal_count=135 50 85 64
+shrinkage=0.1
+
+
+Tree=6
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 1
+split_gain=46.3012 0.0233962 0.000704636 6.57427e-05
+threshold=3.1500000000000004 4.9500000000000011 4.7500000000000009 2.8500000000000001
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.11625591878138464 -0.070487324676201502 0.10975331186547535 -0.069378125652308151 -0.069746678381214039
+leaf_weight=9.8035210967063922 16.072760134935379 12.702349871397017 8.0348587930202502 12.172469735145567
+leaf_count=20 39 26 20 30
+internal_value=0 1.12586 -0.699932 -0.696001
+internal_weight=0 22.5059 36.2801 20.2073
+internal_count=135 46 89 50
+shrinkage=0.1
+
+
+Tree=7
+num_leaves=6
+num_cat=0
+split_feature=3 3 3 0 2
+split_gain=11.5269 26.7079 0.180565 0.0615518 0.000115528
+threshold=0.45000000000000007 1.6500000000000001 1.3500000000000003 6.5500000000000007 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 2 -2 -3 -1
+right_child=1 3 -4 -5 -6
+leaf_value=-0.068568915137632566 0.10842167152220561 -0.06937001780423778 0.090592629908749167 -0.057546630997219329 -0.069090557770355443
+leaf_weight=7.8984967768192318 12.470728904008867 8.8443119227886218 10.432242125272749 8.768351733684538 9.1800867021083814
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.291014 1.00301 -0.634838 -0.688493
+internal_weight=0 40.5156 22.903 17.6127 17.0786
+internal_count=135 92 48 44 43
+shrinkage=0.1
+
+
+Tree=8
+num_leaves=5
+num_cat=0
+split_feature=2 2 0 2
+split_gain=41.0666 0.65878 0.0809635 0.000395006
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 3.1500000000000004
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.060214410017509969 0.080309127481090134 0.1135753884189757 -0.070790524510894418 -0.071573690451883179
+leaf_weight=8.8254508972167951 10.206583708524706 14.284087002277372 10.777796536684038 16.001895904541016
+leaf_count=21 21 29 26 38
+internal_value=0 0.997115 -0.68521 -0.712585
+internal_weight=0 24.4907 35.6051 26.7797
+internal_count=135 50 85 64
+shrinkage=0.1
+
+
+Tree=9
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=39.7874 0.0188486 0.00103615 9.79768e-05
+threshold=3.1500000000000004 4.9500000000000011 4.7500000000000009 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.10531478102932737 -0.068569448907660077 0.099528193679975452 -0.067731764976692435 -0.067273720280563373
+leaf_weight=9.9733484685421008 15.381857544183729 12.922784715890883 8.0850896537303942 11.055474817752836
+leaf_count=20 39 26 21 29
+internal_value=0 1.02049 -0.679583 -0.674672
+internal_weight=0 22.8961 34.5224 19.1406
+internal_count=135 46 89 50
+shrinkage=0.1
+
+
+Tree=10
+num_leaves=6
+num_cat=0
+split_feature=2 3 2 0 2
+split_gain=10.2965 22.7586 0.162645 0.0651985 0.000337139
+threshold=1.8 1.6500000000000001 4.4500000000000011 6.5500000000000007 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 2 -2 -3 -1
+right_child=1 3 -4 -5 -6
+leaf_value=-0.066576750075136901 0.098732523266425745 -0.067636547902747216 0.081986621968414122 -0.055184192166498072 -0.067490692190494944
+leaf_weight=7.4790468215942409 12.707035928964617 8.4563582539558428 10.670164138078688 8.3629560768604261 8.7679791450500471
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.272647 0.910891 -0.614449 -0.6707
+internal_weight=0 40.1965 23.3772 16.8193 16.247
+internal_count=135 92 48 44 43
+shrinkage=0.1
+
+
+Tree=11
+num_leaves=5
+num_cat=0
+split_feature=2 2 0 2
+split_gain=35.332 0.569397 0.0819569 0.000596531
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 3.1500000000000004
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.057661966119191138 0.072861342702466539 0.10357991672055951 -0.068433507869654242 -0.069420191095290559
+leaf_weight=8.4474988281726819 10.354498803615572 14.461666941642759 10.215857475996019 15.310677140951155
+leaf_count=21 21 29 26 38
+internal_value=0 0.907626 -0.661999 -0.690253
+internal_weight=0 24.8162 33.974 25.5265
+internal_count=135 50 85 64
+shrinkage=0.1
+
+
+Tree=12
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=34.4989 0.0191463 0.00122226 0.000221973
+threshold=3.1500000000000004 4.9500000000000011 4.7500000000000009 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.097035582045206334 -0.066847175078923612 0.09120974163312684 -0.066026322468390394 -0.065317133651137588
+leaf_weight=9.9858709573745745 14.664321184158323 12.965579003095625 7.6711388826370266 10.392644077539442
+leaf_count=20 39 26 21 29
+internal_value=0 0.937445 -0.661689 -0.656183
+internal_weight=0 22.9514 32.7281 18.0638
+internal_count=135 46 89 50
+shrinkage=0.1
+
+
+Tree=13
+num_leaves=6
+num_cat=0
+split_feature=2 3 3 0 2
+split_gain=9.11852 19.4457 0.133395 0.0691822 0.000280566
+threshold=1.8 1.6500000000000001 1.3500000000000003 6.5500000000000007 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 2 -2 -3 -1
+right_child=1 3 -4 -5 -6
+leaf_value=-0.064813738672469534 0.090094980240881264 -0.066092646708657984 0.075008069211459694 -0.052944884276068929 -0.065671772446012855
+leaf_weight=7.0517294704914084 12.819242864847185 8.0592196285724658 10.796272248029707 7.950019657611846 8.2920947968959791
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.255191 0.831977 -0.595636 -0.652774
+internal_weight=0 39.6248 23.6155 16.0092 15.3438
+internal_count=135 92 48 44 43
+shrinkage=0.1
+
+
+Tree=14
+num_leaves=5
+num_cat=0
+split_feature=2 2 0 2
+split_gain=30.6141 0.514076 0.0844649 0.000663043
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 3.1500000000000004
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.055246620155912265 0.066602574584968433 0.095759054222726986 -0.066428131988677183 -0.06749635742161661
+leaf_weight=8.0460437238216382 10.409502893686296 14.430294722318648 9.6563915312290209 14.589385360479353
+leaf_count=21 21 29 26 38
+internal_value=0 0.835406 -0.641247 -0.670709
+internal_weight=0 24.8398 32.2918 24.2458
+internal_count=135 50 85 64
+shrinkage=0.1
+
+
+Tree=15
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=30.1372 0.0197217 0.00137091 0.000552922 1.44818e-05
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.090439882220101658 -0.064777500220019602 0.084497332969349054 -0.063609754358598114 -0.065754204242468153 -0.064573921154119071
+leaf_weight=9.8764748871326464 7.0415242314338737 12.851687580347059 9.7301964759826642 7.2189711630344382 6.9363806247711182
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.870797 -0.645924 -0.650435 -0.646765
+internal_weight=0 22.7282 30.9271 21.1969 13.9779
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=16
+num_leaves=6
+num_cat=0
+split_feature=3 3 2 0 2
+split_gain=8.18245 16.8194 0.129524 0.0735127 0.000492221
+threshold=0.45000000000000007 1.6500000000000001 4.4500000000000011 6.5500000000000007 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 2 -2 -3 -1
+right_child=1 3 -4 -5 -6
+leaf_value=-0.063251152460237145 0.083962515186324485 -0.064719881039493513 0.069083909589524359 -0.050808040043028226 -0.064421377421074497
+leaf_weight=6.62287989258766 12.727312594652178 7.6585629880428296 10.829302012920378 7.5357615649700165 7.8602883517742157
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.242113 0.771226 -0.578202 -0.638863
+internal_weight=0 38.7509 23.5566 15.1943 14.4832
+internal_count=135 92 48 44 43
+shrinkage=0.1
+
+
+Tree=17
+num_leaves=5
+num_cat=0
+split_feature=2 2 0 2
+split_gain=26.676 0.479617 0.0872452 0.000674724
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 3.1500000000000004
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.053006839857279379 0.061250419532088388 0.089513865876158727 -0.06467491919778251 -0.065783557598948536
+leaf_weight=7.6404379010200527 10.386504828929903 14.229751646518705 9.0932209491729754 13.852680951356886
+leaf_count=21 21 29 26 38
+internal_value=0 0.775885 -0.622624 -0.653442
+internal_weight=0 24.6163 30.5863 22.9459
+internal_count=135 50 85 64
+shrinkage=0.1
+
+
+Tree=18
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=26.4779 0.0182071 0.00154982 0.00070653 6.12968e-06
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.084869966827678389 -0.063327115379587781 0.079102706781963184 -0.062113256044936144 -0.064509741085873401 -0.063190746652887722
+leaf_weight=9.6690133512020129 6.6436954736709648 12.61670809984207 9.076903432607649 6.8771075010299674 6.5417331457138062
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.816049 -0.631975 -0.63688 -0.632595
+internal_weight=0 22.2857 29.1394 20.0625 13.1854
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=19
+num_leaves=6
+num_cat=0
+split_feature=2 3 3 0 2
+split_gain=7.28127 14.5558 0.114977 0.0782409 0.000407732
+threshold=1.8 1.6500000000000001 1.3500000000000003 6.5500000000000007 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 2 -2 -3 -1
+right_child=1 3 -4 -5 -6
+leaf_value=-0.061864781256160045 0.078191223712912511 -0.063504352073534595 0.064113547914145863 -0.048754120891266121 -0.062964747829374654
+leaf_weight=6.198106646537779 12.555328756570818 7.260272949934004 10.78532028198242 7.1255356669425964 7.3852151036262512
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.229214 0.716862 -0.561983 -0.624628
+internal_weight=0 37.7265 23.3406 14.3858 13.5833
+internal_count=135 92 48 44 43
+shrinkage=0.1
+
+
+Tree=20
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 0
+split_gain=23.3447 0.459454 0.0896498 0.000696957 0.000116637
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 5.3000000000000016
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.050951666323970857 0.056576860782661026 0.084447449835990923 -0.063110182936982978 -0.064623282856106398 -0.063675848993926046
+leaf_weight=7.2470307350158718 10.298756688833238 13.895735770463942 6.8765732944011706 6.9996460974216452 7.7570453882217407
+leaf_count=21 21 29 21 20 23
+internal_value=0 0.725839 -0.605779 -0.638026 -0.6341
+internal_weight=0 24.1945 28.8803 21.6333 14.6336
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=21
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=23.3793 0.0194188 0.0016573 0.000847788 1.4581e-06
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.080480102348056137 -0.062029954956960176 0.074438819434774511 -0.060796850274256832 -0.063402933292080979 -0.061961387173888417
+leaf_weight=9.3870450258255023 6.2493515312671715 12.282444596290587 8.4396852999925596 6.5400978326797476 6.1566011011600494
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.770559 -0.619624 -0.624816 -0.619959
+internal_weight=0 21.6695 27.3857 18.9461 12.406
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=22
+num_leaves=5
+num_cat=0
+split_feature=3 2 0 2
+split_gain=6.56115 12.8791 0.237706 0.000593123
+threshold=0.45000000000000007 5.0500000000000007 6.0500000000000007 1.4500000000000002
+decision_type=2 2 2 2
+left_child=3 2 -2 -1
+right_child=1 -3 -4 -5
+leaf_value=-0.060634304262362472 0.058161227952770747 -0.057182760515966005 0.078690124885337706 -0.062004641204883221
+leaf_weight=5.7823831737041456 13.827347427606584 13.153620302677153 9.5262984633445722 6.960862785577774
+leaf_count=20 30 41 21 23
+internal_value=0 0.219595 0.665353 -0.613828
+internal_weight=0 36.5073 23.3536 12.7432
+internal_count=135 92 51 43
+shrinkage=0.1
+
+
+Tree=23
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 0
+split_gain=20.5048 0.44836 0.0930382 0.000670501 9.10653e-05
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 5.3000000000000016
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.048967876628342843 0.052456027170212527 0.080285265504016434 -0.061769197449425731 -0.063268273630656166 -0.062285420186238519
+leaf_weight=6.8498513698577908 10.158745765686037 13.459689766168593 6.4382640123367327 6.6245179176330558 7.282770037651062
+leaf_count=21 21 29 21 20 23
+internal_value=0 0.683154 -0.590483 -0.624421 -0.620432
+internal_weight=0 23.6184 27.1954 20.3456 13.721
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=24
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=20.7032 0.0191805 0.00153763 0.000704292 1.08545e-05
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.076638931624452622 -0.060979484197958789 0.070527351647410266 -0.059661371853216461 -0.062205155025817249 -0.060786548088964436
+leaf_weight=9.0444475412368792 5.9014847576618248 11.880467832088469 7.8462851643562308 6.1709206402301779 5.7640252709388733
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.73169 -0.60828 -0.613412 -0.608842
+internal_weight=0 20.9249 25.6827 17.8364 11.6655
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=25
+num_leaves=6
+num_cat=0
+split_feature=3 3 2 0 2
+split_gain=5.8493 11.3781 0.100819 0.0976039 0.000468024
+threshold=0.45000000000000007 1.6500000000000001 4.4500000000000011 6.5500000000000007 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 2 -2 -3 -1
+right_child=1 3 -4 -5 -6
+leaf_value=-0.059540115215293801 0.070361040732047617 -0.06213389435175648 0.056905944106193998 -0.044772770227981283 -0.060801033648819759
+leaf_weight=5.3790603876113874 11.917723476886751 6.6452994644641858 10.453584492206572 6.3160959482192993 6.5018584132194519
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.208794 0.640738 -0.536738 -0.602302
+internal_weight=0 35.3327 22.3713 12.9614 11.8809
+internal_count=135 92 48 44 43
+shrinkage=0.1
+
+
+Tree=26
+num_leaves=6
+num_cat=0
+split_feature=3 2 0 1 2
+split_gain=18.2909 0.697044 0.120438 0.00014696 8.31213e-06
+threshold=1.6500000000000001 4.4500000000000011 6.5500000000000007 3.2500000000000004 3.5500000000000003
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.061177463771639788 0.081309771583161883 -0.026485955382269874 0.065772312370335234 -0.060715966403288024 -0.061344146263874147
+leaf_weight=5.9399475902319008 10.100993901491167 8.1842863559722883 9.8575352132320386 8.4111449122428876 6.0278985798358917
+leaf_count=20 22 22 22 29 20
+internal_value=0 -0.511365 0.736358 -0.610363 -0.612614
+internal_weight=0 28.5633 19.9585 20.379 11.9678
+internal_count=135 91 44 69 40
+shrinkage=0.1
+
+
+Tree=27
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=18.3546 0.0178011 0.00125026 0.000529274 4.26454e-06
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.073235371873322325 -0.059911784496376214 0.067219630772271471 -0.058690237709289918 -0.061033284564386552 -0.059786852320781764
+leaf_weight=8.6362370848655718 5.5186025202274376 11.427843183279036 7.298091009259223 5.7775201648473731 5.4115258902311325
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.69809 -0.597822 -0.602591 -0.598499
+internal_weight=0 20.0641 24.0057 16.7076 10.9301
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=28
+num_leaves=5
+num_cat=0
+split_feature=2 2 0 2
+split_gain=5.2966 10.1667 0.232209 0.000624749
+threshold=1.8 5.0500000000000007 6.0500000000000007 1.4500000000000002
+decision_type=2 2 2 2
+left_child=3 2 -2 -1
+right_child=1 -3 -4 -5
+leaf_value=-0.058581226884588146 0.051510153217811432 -0.054935965540917009 0.072321363754449253 -0.060088878018752637
+leaf_weight=4.9975736290216428 13.090756922960283 11.777243345975874 9.0804795920848829 6.1075869649648666
+leaf_count=20 30 41 21 23
+internal_value=0 0.201489 0.600336 -0.594104
+internal_weight=0 33.9485 22.1712 11.1052
+internal_count=135 92 51 43
+shrinkage=0.1
+
+
+Tree=29
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 0
+split_gain=16.094 0.429354 0.101787 0.000782927 7.97826e-05
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 5.3000000000000016
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.045264915597539174 0.046009153670060983 0.074064431683092999 -0.05951147271581822 -0.061189241544034205 -0.060028479620651637
+leaf_weight=6.0601608753204372 9.7387628555297869 12.40092149376869 5.5941868275403994 5.9648667871952048 6.3990352153778076
+leaf_count=21 21 29 21 20 23
+internal_value=0 0.617235 -0.564713 -0.60253 -0.597873
+internal_weight=0 22.1397 24.0182 17.9581 11.9932
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=30
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=16.3574 0.0198399 0.00115609 0.000471812 1.28091e-05
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.070642393094645775 -0.059065455974373217 0.064142144004547721 -0.057789768554793369 -0.060107842316522699 -0.058841716809300587
+leaf_weight=8.230788469314577 5.1926756203174609 10.931856483221052 6.7506433129310599 5.4375247359275809 5.0445983111858368
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.669341 -0.588839 -0.59355 -0.589552
+internal_weight=0 19.1626 22.4254 15.6748 10.2373
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=31
+num_leaves=6
+num_cat=0
+split_feature=2 3 0 3 2
+split_gain=4.73624 8.9048 0.113499 0.107059 0.00049789
+threshold=1.8 1.6500000000000001 6.5500000000000007 1.3500000000000003 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 3 -3 -2 -1
+right_child=1 2 -4 -5 -6
+leaf_value=-0.057711698936581193 0.064731732211490631 -0.060832048502234039 -0.041003843433891678 0.050462414646547417 -0.059109010974982758
+leaf_weight=4.6266711950302106 11.059611141681673 5.9793018698692304 5.5818341076374054 10.023239910602568 5.6813987493515015
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.192714 -0.512588 0.579478 -0.584818
+internal_weight=0 32.644 11.5611 21.0829 10.3081
+internal_count=135 92 44 48 43
+shrinkage=0.1
+
+
+Tree=32
+num_leaves=6
+num_cat=0
+split_feature=3 3 0 1 2
+split_gain=14.3406 0.670546 0.120952 0.000125752 1.84178e-05
+threshold=1.6500000000000001 1.3500000000000003 6.5500000000000007 3.2500000000000004 3.5500000000000003
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.059081869004108757 0.075579491876562918 -0.023672340602685794 0.059346122341182153 -0.058675300221414796 -0.059347115469465167
+leaf_weight=5.1686483025550896 9.3603386878967303 7.7062948048114768 9.0057938098907453 7.289444997906684 5.3043429255485535
+leaf_count=20 22 22 22 29 20
+internal_value=0 -0.483066 0.676195 -0.589942 -0.592162
+internal_weight=0 25.4687 18.3661 17.7624 10.473
+internal_count=135 91 44 69 40
+shrinkage=0.1
+
+
+Tree=33
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=14.5783 0.0207965 0.00093317 0.000364187 5.62882e-06
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.068301675406019224 -0.058198178939105984 0.061468677464951632 -0.057026579000198398 -0.059170785153237329 -0.058044680766617451
+leaf_weight=7.7830120027065304 4.8361038416624087 10.4141528904438 6.2568814307451239 5.071154072880744 4.7211658209562302
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.643912 -0.580486 -0.584858 -0.581224
+internal_weight=0 18.1972 20.8853 14.6284 9.55727
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=34
+num_leaves=5
+num_cat=0
+split_feature=3 2 0 2
+split_gain=4.29515 8.12735 0.234883 0.000596169
+threshold=0.45000000000000007 5.0500000000000007 6.0500000000000007 1.4500000000000002
+decision_type=2 2 2 2
+left_child=3 2 -2 -1
+right_child=1 -3 -4 -5
+leaf_value=-0.05694670792110347 0.04612815091159117 -0.052973887623766439 0.067776320242041235 -0.05853246674055862
+leaf_weight=4.2797985821962339 12.201211899518972 10.503202512860296 8.5061137676238996 5.3151242434978485
+leaf_count=20 30 41 21 23
+internal_value=0 0.186776 0.550207 -0.578251
+internal_weight=0 31.2105 20.7073 9.59492
+internal_count=135 92 51 43
+shrinkage=0.1
+
+
+Tree=35
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 1
+split_gain=12.7446 0.424251 0.111279 0.000735728 7.33891e-05
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 3.2500000000000004
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.041770810265841639 0.04067753744280142 0.069633886946172438 -0.058299436893388325 -0.059459305094606986 -0.057767326239451383
+leaf_weight=5.3161544203758266 9.2202533185482043 11.213441550731657 4.8446755409240705 5.3290929347276679 5.5742417275905609
+leaf_count=21 21 29 20 20 24
+internal_value=0 0.56568 -0.542806 -0.585036 -0.580148
+internal_weight=0 20.4337 21.0642 15.748 10.4189
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=36
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=13.0536 0.0217262 0.000859812 0.000340405 1.23879e-05
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.06628551043249567 -0.057515166757067276 0.059107953325807643 -0.056307742395382367 -0.058446165853275361 -0.057279491552798281
+leaf_weight=7.3493900001049068 4.5386955291032809 9.8955638706684095 5.7633814662694922 4.7651615738868704 4.3852847963571548
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.621669 -0.573324 -0.577637 -0.573994
+internal_weight=0 17.245 19.4525 13.6891 8.92398
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=37
+num_leaves=5
+num_cat=0
+split_feature=2 2 0 2
+split_gain=3.85031 7.09775 0.225052 0.000477912
+threshold=1.8 5.0500000000000007 6.0500000000000007 1.4500000000000002
+decision_type=2 2 2 2
+left_child=3 2 -2 -1
+right_child=1 -3 -4 -5
+leaf_value=-0.056252547689379331 0.043322220270817433 -0.051468522151748589 0.064883338735016935 -0.057729194137598153
+leaf_weight=3.9467960745096189 11.79746618866921 9.8671124279499036 8.210003733634947 4.9289601445198059
+leaf_count=20 30 41 21 23
+internal_value=0 0.179396 0.521698 -0.570726
+internal_weight=0 29.8746 20.0075 8.87576
+internal_count=135 92 51 43
+shrinkage=0.1
+
+
+Tree=38
+num_leaves=6
+num_cat=0
+split_feature=3 2 0 2 0
+split_gain=11.3262 0.649092 0.124828 9.55183e-05 6.77185e-05
+threshold=1.6500000000000001 4.4500000000000011 6.5500000000000007 3.1500000000000004 4.9500000000000011
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.057464027375157989 0.071417844229324484 -0.021074611926104068 0.054088771027204635 -0.057700977269930134 -0.056942094213666389
+leaf_weight=4.5167366117239016 8.5371159315109271 7.2611060589551917 8.1015284359455091 5.3153039067983618 5.5286597460508347
+leaf_count=20 22 22 22 23 26
+internal_value=0 -0.457119 0.629801 -0.573582 -0.571768
+internal_weight=0 22.6218 16.6386 15.3607 10.0454
+internal_count=135 91 44 69 46
+shrinkage=0.1
+
+
+Tree=39
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=11.6691 0.0232664 0.0006458 0.000199837 1.86488e-05
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.064525687624357911 -0.05689186116784567 0.056870832158917153 -0.055723555891262155 -0.057578386480087645 -0.056592506793290101
+leaf_weight=6.8924400806427029 4.2541050612926501 9.3663876056671125 5.3430263549089423 4.4029134362936011 4.0739434361457825
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.601159 -0.566463 -0.570335 -0.567454
+internal_weight=0 16.2588 18.074 12.731 8.32805
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=40
+num_leaves=5
+num_cat=0
+split_feature=3 2 0 2
+split_gain=3.49728 6.32742 0.208603 0.000545129
+threshold=0.45000000000000007 5.0500000000000007 6.0500000000000007 1.4500000000000002
+decision_type=2 2 2 2
+left_child=3 2 -2 -1
+right_child=1 -3 -4 -5
+leaf_value=-0.0556401958778047 0.04138717205904658 -0.050416531141964295 0.062533685792582339 -0.05727831019879677
+leaf_weight=3.6382884532213193 11.351040363311773 9.2836737930774671 7.9196138381957999 4.5998350977897644
+leaf_count=20 30 41 21 23
+internal_value=0 0.174047 0.500777 -0.565549
+internal_weight=0 28.5543 19.2707 8.23812
+internal_count=135 92 51 43
+shrinkage=0.1
+
+
+Tree=41
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 1
+split_gain=10.1397 0.40686 0.124387 0.000570134 8.72877e-05
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 3.2500000000000004
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.038166238299854265 0.036476123723194524 0.066034668837761809 -0.056959428845272289 -0.057986211340386153 -0.056336571697858932
+leaf_weight=4.6444796770811108 8.7298017442226428 9.9806363582611066 4.2497368603944761 4.7160632312297812 4.781430572271347
+leaf_count=21 21 29 20 20 24
+internal_value=0 0.522434 -0.523149 -0.57095 -0.566297
+internal_weight=0 18.7104 18.3917 13.7472 9.03117
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=42
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=10.4868 0.0246271 0.000597003 0.000191959 2.38749e-05
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.063008277317786035 -0.056333830251641875 0.054891702494569088 -0.055145122366317939 -0.057006881907616713 -0.055982958447735098
+leaf_weight=6.4693436026573172 3.9871407300233859 8.8550229370594007 4.9048787355422965 4.1319404691457748 3.7757921814918518
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.583182 -0.560735 -0.564563 -0.561632
+internal_weight=0 15.3244 16.7998 11.8949 7.76293
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=43
+num_leaves=6
+num_cat=0
+split_feature=2 3 0 3 2
+split_gain=3.14238 5.76908 0.161662 0.114467 0.000443261
+threshold=1.8 1.6500000000000001 6.5500000000000007 1.3500000000000003 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 3 -3 -2 -1
+right_child=1 2 -4 -5 -6
+leaf_value=-0.05508439057561082 0.057532907455709215 -0.05988176324133701 -0.033353682141532497 0.041592687238345194 -0.056622680797008468
+leaf_weight=3.3451466113328925 9.1534255743026787 4.9308618605136854 4.3008539229631424 8.8709257245063764 4.2570157051086426
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.167622 -0.475229 0.496877 -0.559458
+internal_weight=0 27.2561 9.23172 18.0244 7.60216
+internal_count=135 92 44 48 43
+shrinkage=0.1
+
+
+Tree=44
+num_leaves=6
+num_cat=0
+split_feature=3 3 0 2 0
+split_gain=9.14958 0.602611 0.141454 0.000100914 4.12725e-05
+threshold=1.6500000000000001 1.3500000000000003 6.5500000000000007 3.1500000000000004 4.9500000000000011
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.056117356998996774 0.069010081988439331 -0.019464303320829008 0.049550821241094938 -0.056453851196700877 -0.055677331322735293
+leaf_weight=3.8818070590496081 7.7702919840812665 6.8005109876394263 7.194336861371994 4.6501126885414115 4.7276733443140984
+leaf_count=20 22 22 22 23 26
+internal_value=0 -0.43666 0.596549 -0.560785 -0.558757
+internal_weight=0 20.0601 14.9646 13.2596 8.60948
+internal_count=135 91 44 69 46
+shrinkage=0.1
+
+
+Tree=45
+num_leaves=6
+num_cat=0
+split_feature=2 0 2 3 0
+split_gain=9.41028 0.0262653 0.000475505 0.000155866 1.34656e-05
+threshold=3.1500000000000004 4.9500000000000011 5.3500000000000005 1.5500000000000003 5.8500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 3 4 -2
+right_child=2 -3 -4 -5 -6
+leaf_value=0.061692447875937841 -0.055744281630157481 0.053031731038226719 -0.054667865032672992 -0.056400050756824582 -0.055470885160999676
+leaf_weight=6.0321671962738064 3.6918516010045987 8.3472474813461286 4.5271933674812308 3.8330908715724945 3.518421858549118
+leaf_count=20 20 26 29 20 20
+internal_value=0 0.566649 -0.55531 -0.558848 -0.556109
+internal_weight=0 14.3794 15.5706 11.0434 7.21027
+internal_count=135 46 89 60 40
+shrinkage=0.1
+
+
+Tree=46
+num_leaves=5
+num_cat=0
+split_feature=3 2 0 2
+split_gain=2.86852 5.14394 0.219968 0.000518466
+threshold=0.45000000000000007 5.0500000000000007 6.0500000000000007 1.4500000000000002
+decision_type=2 2 2 2
+left_child=3 2 -2 -1
+right_child=1 -3 -4 -5
+leaf_value=-0.054592784797024924 0.037533523151677628 -0.048717935539712494 0.060218264623123144 -0.056322199842371648
+leaf_weight=3.0754478871822348 10.382159173488622 8.2660006433725339 7.2662547230720511 3.9727521538734436
+leaf_count=20 30 41 21 23
+internal_value=0 0.163823 0.468733 -0.555676
+internal_weight=0 25.9144 17.6484 7.0482
+internal_count=135 92 51 43
+shrinkage=0.1
+
+
+Tree=47
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 1
+split_gain=8.11628 0.414246 0.134765 0.000489645 7.07662e-05
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 3.2500000000000004
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.034849118246770526 0.032408526534301742 0.063662668227988481 -0.055797863814564613 -0.056822558736203392 -0.055193311840918892
+leaf_weight=4.0543042421340934 8.161594510078432 8.8275333344936353 3.6826146021485311 4.1781336516141891 4.0829725563526154
+leaf_count=21 21 29 20 20 24
+internal_value=0 0.486481 -0.506022 -0.559497 -0.5548
+internal_weight=0 16.9891 15.998 11.9437 7.76559
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=48
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=8.56887 0.137234 0.0121028 0.000194293
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.041317167139518884 -0.06102070405936149 0.061821555501810621 -0.0551074221796427 -0.054200813333694177
+leaf_weight=5.2653302997350719 4.4530384689569464 8.5883131027221662 5.5022988766431791 4.1442199498414993
+leaf_count=21 23 29 33 29
+internal_value=0 0.540285 -0.567085 -0.547179
+internal_weight=0 13.8536 14.0996 9.64652
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=49
+num_leaves=6
+num_cat=0
+split_feature=3 3 0 2 2
+split_gain=2.57844 4.61488 0.182538 0.125413 0.00040656
+threshold=0.45000000000000007 1.6500000000000001 6.5500000000000007 4.4500000000000011 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 3 -3 -2 -1
+right_child=1 2 -4 -5 -6
+leaf_value=-0.054146295092118803 0.055039726506129344 -0.059347182272923509 -0.029421707925384306 0.03760089740588056 -0.055743140098952482
+leaf_weight=2.8211696445941952 8.2001178860664421 4.4111402630805951 3.7892610728740692 8.2960434257984144 3.6666351109743118
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.157915 -0.455191 0.462696 -0.550488
+internal_weight=0 24.6966 8.2004 16.4962 6.4878
+internal_count=135 92 44 48 43
+shrinkage=0.1
+
+
+Tree=50
+num_leaves=6
+num_cat=0
+split_feature=3 2 0 2 0
+split_gain=7.30445 0.587442 0.149452 7.60369e-05 2.54045e-05
+threshold=1.6500000000000001 4.4500000000000011 6.5500000000000007 3.1500000000000004 4.9500000000000011
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.055037199665002881 0.06666795802876932 -0.017151737790610102 0.045467994362775307 -0.055373445323245923 -0.054663673639019909
+leaf_weight=3.3231931626796776 6.9657722562551481 6.4014132618904105 6.3626928925514221 4.0201472193002701 4.0276276767253876
+leaf_count=20 22 22 22 23 26
+internal_value=0 -0.413827 0.565476 -0.550238 -0.548325
+internal_weight=0 17.7724 13.3285 11.371 7.35082
+internal_count=135 91 44 69 46
+shrinkage=0.1
+
+
+Tree=51
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=7.71153 0.137566 0.0102253 0.000155478
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.039552097181645138 -0.060316068868574046 0.06071856167303398 -0.054665739512177569 -0.053822445178902251
+leaf_weight=4.983082294464114 4.1423212438821784 8.0001418292522413 5.109223395586012 3.8216184005141258
+leaf_count=21 23 29 33 29
+internal_value=0 0.525947 -0.562096 -0.543049
+internal_weight=0 12.9832 13.0732 8.93084
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=52
+num_leaves=5
+num_cat=0
+split_feature=2 2 0 2
+split_gain=2.36364 4.21005 0.235145 0.00045443
+threshold=1.8 5.0500000000000007 6.0500000000000007 1.4500000000000002
+decision_type=2 2 2 2
+left_child=3 2 -2 -1
+right_child=1 -3 -4 -5
+leaf_value=-0.053764049617128044 0.034027014407858845 -0.047089091841606444 0.058572800154318407 -0.05551855603553494
+leaf_weight=2.5991309657692936 9.4861299395561272 7.3756868243217459 6.6310466825962058 3.4170260205864906
+leaf_count=20 30 41 21 23
+internal_value=0 0.154885 0.441258 -0.547606
+internal_weight=0 23.4929 16.1172 6.01616
+internal_count=135 92 51 43
+shrinkage=0.1
+
+
+Tree=53
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 1
+split_gain=6.52162 0.422961 0.142418 0.000441018 5.74444e-05
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 3.2500000000000004
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.031843332261224232 0.028718412673581436 0.061893854359037437 -0.05482171009987194 -0.05587762435315366 -0.054232069946545197
+leaf_weight=3.5744786411523846 7.6069401204586011 7.766597792506218 3.174017019569872 3.7023323774337769 3.4461298733949661
+leaf_count=21 21 29 20 20 24
+internal_value=0 0.454784 -0.490465 -0.550036 -0.545148
+internal_weight=0 15.3735 13.897 10.3225 6.62015
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=54
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 2
+split_gain=6.981 0.0301657 0.000368926 0.000111227
+threshold=3.1500000000000004 4.9500000000000011 6.0500000000000007 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.058791686776973898 -0.054963872269310821 0.048564680350223474 -0.054216496028556188 -0.053443309906979236
+leaf_weight=4.9720720201730746 5.0195825323462469 6.8681136220693588 3.9847672134637833 3.4901495575904846
+leaf_count=20 32 26 28 29
+internal_value=0 0.528593 -0.543008 -0.538555
+internal_weight=0 11.8402 12.4945 7.47492
+internal_count=135 46 89 57
+shrinkage=0.1
+
+
+Tree=55
+num_leaves=6
+num_cat=0
+split_feature=2 3 0 3 2
+split_gain=2.12906 3.70116 0.205012 0.131793 0.000340632
+threshold=1.8 1.6500000000000001 6.5500000000000007 1.3500000000000003 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=4 3 -3 -2 -1
+right_child=1 2 -4 -5 -6
+leaf_value=-0.053416380022974053 0.052770543410124361 -0.058968872451876542 -0.025330571309955564 0.034087171452357956 -0.055000253151554296
+leaf_weight=2.3908013552427319 7.3622496128082293 3.9493119195103636 3.3475213050842285 7.7499837875366211 3.1426747441291809
+leaf_count=20 26 22 22 22 23
+internal_value=0 0.149495 -0.435368 0.431892 -0.543159
+internal_weight=0 22.4091 7.29683 15.1122 5.53348
+internal_count=135 92 44 48 43
+shrinkage=0.1
+
+
+Tree=56
+num_leaves=6
+num_cat=0
+split_feature=3 3 0 1 2
+split_gain=5.84622 0.571552 0.159297 6.38186e-05 5.45709e-06
+threshold=1.6500000000000001 1.3500000000000003 6.5500000000000007 3.2500000000000004 3.5500000000000003
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.054283875752663059 0.064865864824801903 -0.015013107515960966 0.041616191804666934 -0.05385841533933379 -0.054476440319994802
+leaf_weight=2.8850674405694026 6.2113548815250379 6.0377112478017798 5.6073392629623413 3.8472785502672195 3.0039868205785751
+leaf_count=20 22 22 22 29 20
+internal_value=0 -0.391854 0.538351 -0.541752 -0.543821
+internal_weight=0 15.774 11.8187 9.73633 5.88905
+internal_count=135 91 44 69 40
+shrinkage=0.1
+
+
+Tree=57
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=6.36072 0.127555 0.00944868 0.000110654
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.037164318836434666 -0.059781449156747317 0.058941557965116353 -0.05391446861993246 -0.053142853367219779
+leaf_weight=4.386575713753702 3.6413408815860731 6.9525948464870453 4.3999129757285118 3.2176564410328865
+leaf_count=21 23 29 33 29
+internal_value=0 0.50517 -0.555914 -0.535885
+internal_weight=0 11.3392 11.2589 7.61757
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=58
+num_leaves=5
+num_cat=0
+split_feature=2 3 3 2
+split_gain=2.00714 3.13401 0.761744 0.000374996
+threshold=5.1500000000000012 0.45000000000000007 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.053092588464336524 -0.057336022680302627 0.055076672510191042 0.011936295039761626 -0.054822614351306767
+leaf_weight=2.1899295747280183 4.7769042626023284 9.0106492042541522 7.4996247291564933 2.9282281249761581
+leaf_count=20 33 33 26 23
+internal_value=0 0.142864 0.354806 -0.540824
+internal_weight=0 21.6284 16.5103 5.11816
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=59
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 1
+split_gain=5.25517 0.431238 0.150283 0.000368061 4.76864e-05
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 3.2500000000000004
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.028831903373815783 0.025329201970401116 0.060563893768668525 -0.054045701890355624 -0.055079645415106876 -0.053463962212555477
+leaf_weight=3.1524533405900028 7.0838222950696927 6.8156296759843826 2.7379835918545705 3.2707181423902512 2.9031980410218239
+leaf_count=21 21 29 20 20 24
+internal_value=0 0.426066 -0.475976 -0.542357 -0.537463
+internal_weight=0 13.8995 12.0644 8.9119 5.64118
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=60
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=5.7679 0.126225 0.00791583 0.000106102
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.035872257287516938 -0.059171002449903955 0.058182381142572126 -0.053623686007839066 -0.05283656362003445
+leaf_weight=4.1767095923423785 3.3996720463037473 6.4555666297674179 4.1106987968087196 2.9354446604847908
+leaf_count=21 23 29 33 29
+internal_value=0 0.494182 -0.552079 -0.532958
+internal_weight=0 10.6323 10.4458 7.04614
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=61
+num_leaves=5
+num_cat=0
+split_feature=2 2 3 2
+split_gain=1.80396 2.7894 0.726176 0.000307713
+threshold=5.1500000000000012 1.8 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.052810526850664764 -0.056739029392051388 0.053852215546433158 0.01095248743302317 -0.054444356716164759
+leaf_weight=2.0121617689728799 4.3985520228743544 8.4787518382072431 7.3804311603307715 2.698915034532547
+leaf_count=20 33 33 26 23
+internal_value=0 0.138175 0.338879 -0.537465
+internal_weight=0 20.5703 15.8592 4.71108
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=62
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 1
+split_gain=4.6674 0.416936 0.155633 0.000337723 3.74101e-05
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 3.2500000000000004
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.027286143077100217 0.024014386695491122 0.059560996131847836 -0.053656280188325335 -0.054706229022370323 -0.053117583813128623
+leaf_weight=3.0074529200792339 6.9385467767715436 6.2918101847171783 2.5129365473985654 3.0574739351868629 2.6471197605133057
+leaf_count=21 21 29 20 20 24
+internal_value=0 0.409189 -0.4675 -0.538734 -0.533799
+internal_weight=0 13.2304 11.225 8.21753 5.16006
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=63
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 0
+split_gain=5.28079 0.171131 0.00648598 0.000208399 3.79382e-05
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 6.3500000000000005
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.056120744362515129 -0.058988709006631335 -0.027229983084649689 -0.053417592055870711 0.057113129347935568 -0.052870524299609804
+leaf_weight=3.8805866986513156 3.0623461529612523 2.9431584402918807 2.805685430765152 4.6538522988557816 2.3123954907059669
+leaf_count=20 21 24 24 23 23
+internal_value=0 -0.479087 -0.553485 0.566619 -0.531704
+internal_weight=0 11.1236 8.18043 8.53444 5.11808
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=64
+num_leaves=5
+num_cat=0
+split_feature=2 3 3 2
+split_gain=1.62191 2.50721 0.702395 0.000316074
+threshold=5.1500000000000012 0.45000000000000007 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.052556571129541922 -0.056185966921467559 0.053036654689615083 0.010023901065560137 -0.054280269448284249
+leaf_weight=1.8483886569738448 4.0469961762428275 7.9533355981111509 7.2640046924352646 2.5062613114714622
+leaf_count=20 33 33 26 23
+internal_value=0 0.133582 0.325045 -0.535486
+internal_weight=0 19.572 15.2173 4.35465
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=65
+num_leaves=6
+num_cat=0
+split_feature=3 2 0 1 0
+split_gain=4.24028 0.513896 0.188883 4.30696e-05 2.50078e-06
+threshold=1.6500000000000001 4.4500000000000011 6.5500000000000007 3.2500000000000004 5.4500000000000011
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.053427046780749513 0.063251859977718886 -0.013225644695197792 0.035456236950621133 -0.052868016193803082 -0.053280847865561365
+leaf_weight=2.376857668161394 5.281379282474516 5.5663959980010986 4.5518862456083298 2.9657112807035446 2.3042788282036781
+leaf_count=20 22 22 22 29 20
+internal_value=0 -0.363403 0.503851 -0.531662 -0.533551
+internal_weight=0 13.2132 9.83327 7.64685 4.68114
+internal_count=135 91 44 69 40
+shrinkage=0.1
+
+
+Tree=66
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=4.79475 0.115458 0.00531533 7.9273e-05
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.034193138333897623 -0.057997896899406522 0.057070638938157982 -0.053119215192282326 -0.052385819020130009
+leaf_weight=3.6508383601903933 2.9361748173832876 5.5741924196481705 3.5869225785136223 2.501798078417778
+leaf_count=21 23 29 33 29
+internal_value=0 0.480168 -0.545031 -0.528179
+internal_weight=0 9.22503 9.0249 6.08872
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=67
+num_leaves=5
+num_cat=0
+split_feature=2 2 3 2
+split_gain=1.49383 2.26304 0.638804 0.000353862
+threshold=5.1500000000000012 1.8 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.052308404799522069 -0.055992365152209844 0.051852336455652619 0.0099793322993460606 -0.054210792925078993
+leaf_weight=1.6848519891500533 3.766354799270629 7.4502943903207761 7.1300868391990662 2.3298468962311745
+leaf_count=20 33 33 26 23
+internal_value=0 0.130698 0.313756 -0.534124
+internal_weight=0 18.5951 14.5804 4.0147
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=68
+num_leaves=6
+num_cat=0
+split_feature=3 3 0 1 2
+split_gain=3.78164 0.499144 0.192628 3.19705e-05 3.88797e-08
+threshold=1.6500000000000001 1.3500000000000003 6.5500000000000007 3.2500000000000004 3.5500000000000003
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.053042936459983418 0.062557486518619296 -0.012554683739182988 0.033637073354061138 -0.052594769512820119 -0.053023886959236835
+leaf_weight=2.1477408111095446 4.9762238860130292 5.475315198302269 4.2873435169458389 2.7133344635367393 2.1379257142543793
+leaf_count=20 22 22 22 29 20
+internal_value=0 -0.351708 0.491726 -0.528634 -0.530334
+internal_weight=0 12.4743 9.26357 6.999 4.28567
+internal_count=135 91 44 69 40
+shrinkage=0.1
+
+
+Tree=69
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 2
+split_gain=4.37099 0.0299596 0.000165876 4.40654e-05
+threshold=3.1500000000000004 4.9500000000000011 6.0500000000000007 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.055705892083189837 -0.05341841279967055 0.043569673480753156 -0.052795375911094081 -0.052204048228148087
+leaf_weight=3.5057056248188037 3.5251266583800298 4.8456048369407654 2.7623946592211723 2.3174070864915848
+leaf_count=20 32 26 28 29
+internal_value=0 0.486642 -0.528914 -0.525256
+internal_weight=0 8.35131 8.60493 5.0798
+internal_count=135 46 89 57
+shrinkage=0.1
+
+
+Tree=70
+num_leaves=5
+num_cat=0
+split_feature=2 3 3 2
+split_gain=1.38504 2.03083 0.582895 0.000268208
+threshold=5.1500000000000012 0.45000000000000007 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.052104234156227704 -0.055817669647709761 0.050666783875322918 0.009879363221376336 -0.053832738311631767
+leaf_weight=1.5478974357247417 3.509343519806861 7.0238784402608854 6.9913442507386208 2.1371200531721115
+leaf_count=20 33 33 26 23
+internal_value=0 0.129517 0.303204 -0.531067
+internal_weight=0 17.7002 14.0152 3.68502
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=71
+num_leaves=6
+num_cat=0
+split_feature=2 2 0 2 1
+split_gain=3.37893 0.398673 0.169321 0.000392258 1.85781e-05
+threshold=4.7500000000000009 5.3500000000000005 4.9500000000000011 4.2500000000000009 3.2500000000000004
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=-0.022579753573637975 0.020242456583000917 0.057848515421881921 -0.052725518615145878 -0.054079332776079264 -0.052291821971241242
+leaf_weight=2.5019051954150218 6.3340464383363706 5.0799159556627274 1.9420507550239563 2.6394316703081131 2.0099503993988037
+leaf_count=21 21 29 20 20 24
+internal_value=0 0.369795 -0.447284 -0.531354 -0.525049
+internal_weight=0 11.414 9.09334 6.59143 3.952
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=72
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=4.00861 0.105444 0.0045055 5.92239e-05
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.032650662718779366 -0.057527956567668653 0.056095239570177563 -0.052678782985739664 -0.05199231961235299
+leaf_weight=3.1907210648059827 2.5528247356414804 4.8109032213687897 3.1114308089017868 2.1084447503089905
+leaf_count=21 23 29 33 29
+internal_value=0 0.467465 -0.540852 -0.524015
+internal_weight=0 8.00162 7.7727 5.21988
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=73
+num_leaves=5
+num_cat=0
+split_feature=2 2 3 2
+split_gain=1.24455 1.83963 0.573448 0.000310668
+threshold=5.1500000000000012 1.8 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.051906004522539032 -0.055340282357473285 0.050347844825955425 0.0090011451654898635 -0.053842466938211542
+leaf_weight=1.4124168157577579 3.2240884378552428 6.541897699236868 6.8843565583229065 2.0038693137466908
+leaf_count=20 33 33 26 23
+internal_value=0 0.124762 0.291472 -0.530419
+internal_weight=0 16.8425 13.4263 3.41629
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=74
+num_leaves=6
+num_cat=0
+split_feature=3 2 0 1 0
+split_gain=3.07207 0.454977 0.218215 2.26298e-05 3.01896e-06
+threshold=1.6500000000000001 4.4500000000000011 6.5500000000000007 3.2500000000000004 5.4500000000000011
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.052631689332943404 0.061978566262796457 -0.011889317694849319 0.029237826048639805 -0.052141825119500676 -0.052449830984343117
+leaf_weight=1.8806506507098695 4.4944543018937093 5.2100093960762024 3.7210446745157242 2.2777025327086449 1.7737990692257879
+leaf_count=20 22 22 22 29 20
+internal_value=0 -0.334517 0.471493 -0.523892 -0.525434
+internal_weight=0 11.1422 8.2155 5.93215 3.65445
+internal_count=135 91 44 69 40
+shrinkage=0.1
+
+
+Tree=75
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=3.63799 0.0307169 0.000123072 3.27883e-05
+threshold=3.1500000000000004 4.9500000000000011 4.5500000000000007 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.054842756798157491 -0.052987340366675822 0.041652171209514283 -0.052396042019802393 -0.051848605267748531
+leaf_weight=3.0361322164535522 2.9594945833086967 4.2181617617607117 2.4828139320015907 1.9560438841581342
+leaf_count=20 31 26 29 29
+internal_value=0 0.471728 -0.524878 -0.521548
+internal_weight=0 7.25429 7.39835 4.43886
+internal_count=135 46 89 58
+shrinkage=0.1
+
+
+Tree=76
+num_leaves=5
+num_cat=0
+split_feature=2 2 3 2
+split_gain=1.15738 1.65303 0.5224 0.000233142
+threshold=5.1500000000000012 1.8 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.051739101171410541 -0.055194042427318672 0.049246690139888652 0.0089802763932314358 -0.053490419595849562
+leaf_weight=1.2968768700957363 3.0089853480458251 6.1639637649059278 6.7504123523831367 1.8366352915763853
+leaf_count=20 33 33 26 23
+internal_value=0 0.1239 0.281992 -0.527656
+internal_weight=0 16.0479 12.9144 3.13351
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=77
+num_leaves=6
+num_cat=0
+split_feature=3 3 0 1 2
+split_gain=2.73374 0.440725 0.224184 1.97527e-05 9.53853e-07
+threshold=1.6500000000000001 1.3500000000000003 6.5500000000000007 3.2500000000000004 3.5500000000000003
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.052375534120498217 0.061429650113744488 -0.011306043789768745 0.02721180868390809 -0.051930835603252436 -0.052269031909705055
+leaf_weight=1.7180977910757085 4.2276056930422774 5.1286297291517258 3.4997236877679825 2.0701768212020397 1.6471506357192991
+leaf_count=20 22 22 22 29 20
+internal_value=0 -0.323334 0.459323 -0.521739 -0.523234
+internal_weight=0 10.5641 7.72733 5.43543 3.36525
+internal_count=135 91 44 69 40
+shrinkage=0.1
+
+
+Tree=78
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=3.34707 0.0982438 0.0037582 3.60351e-05
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.030914661376333315 -0.057107414926208036 0.055291730136470589 -0.052296888734676444 -0.051719933094398408
+leaf_weight=2.7531179189682007 2.200510635972023 4.1383943632245064 2.6788148321211338 1.8166647292673586
+leaf_count=21 23 29 33 29
+internal_value=0 0.455532 -0.537212 -0.520637
+internal_weight=0 6.89151 6.69599 4.49548
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=79
+num_leaves=5
+num_cat=0
+split_feature=2 3 3 2
+split_gain=1.07735 1.51639 0.491222 0.00026032
+threshold=5.1500000000000012 0.45000000000000007 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.051577882529568492 -0.055058010235900234 0.048921040488813849 0.008981513706631342 -0.053504383054390287
+leaf_weight=1.1837389133870631 2.8113536089658728 5.757755443453787 6.6200743541121483 1.7213887088000772
+leaf_count=20 33 33 26 23
+internal_value=0 0.122998 0.275601 -0.527194
+internal_weight=0 15.283 12.3778 2.90513
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=80
+num_leaves=4
+num_cat=0
+split_feature=2 1 2
+split_gain=2.47238 0.965238 0.0181293
+threshold=5.0500000000000007 2.8500000000000001 4.0500000000000007
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0042284100510581396 0.047351160360014743 -0.051934588785038205 -0.063146876581931036
+leaf_weight=4.6145557425916213 6.8619322478771201 3.1866050474345684 2.6341917514801025
+leaf_count=29 41 45 20
+internal_value=0 -0.299294 -0.570087
+internal_weight=0 10.4354 5.8208
+internal_count=135 94 65
+shrinkage=0.1
+
+
+Tree=81
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=3.04034 0.0985413 0.00302654 3.24132e-05
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.02967344606217083 -0.056608896974170979 0.054916395687229003 -0.052139345256078877 -0.051569813322190253
+leaf_weight=2.5995041728019714 2.0454250425100327 3.8175139799714088 2.5010484531521797 1.6641929894685743
+leaf_count=21 23 29 33 29
+internal_value=0 0.446906 -0.534587 -0.519118
+internal_weight=0 6.41702 6.21067 4.16524
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=82
+num_leaves=5
+num_cat=0
+split_feature=2 2 3 2
+split_gain=0.976317 1.35404 0.474995 0.000201626
+threshold=5.1500000000000012 1.8 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.051441038513824547 -0.054671558837958018 0.048076670974930541 0.0081028416862344264 -0.053210538615894191
+leaf_weight=1.0864903964102297 2.5882647298276416 5.453307665884493 6.5346572697162628 1.5809155739843843
+leaf_count=20 33 33 26 23
+internal_value=0 0.119488 0.262869 -0.524898
+internal_weight=0 14.6554 11.988 2.66741
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=83
+num_leaves=6
+num_cat=0
+split_feature=3 0 0 2 0
+split_gain=2.2383 0.402891 0.247872 5.01485e-05 1.34152e-05
+threshold=1.6500000000000001 5.8500000000000005 6.5500000000000007 3.1500000000000004 4.9500000000000011
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.051983382666445636 0.06099367820520997 -0.01082004891768645 0.022873966755901871 -0.052457778258900412 -0.051559099098059585
+leaf_weight=1.4601831547915956 3.8338924646377555 4.9041958563029766 3.0731008276343346 1.6217442527413366 1.5219679810106752
+leaf_count=20 22 25 22 20 26
+internal_value=0 -0.307647 0.440332 -0.520102 -0.517668
+internal_weight=0 9.50809 6.90699 4.6039 2.98215
+internal_count=135 91 44 66 46
+shrinkage=0.1
+
+
+Tree=84
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 3
+split_gain=2.77929 0.134184 0.00234867 0.000134137 2.67612e-05
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 1.6500000000000001
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.053110600290140191 -0.056331130135130372 -0.022222205915270465 -0.052150492344270993 0.054163204343752963 -0.051554387484690004
+leaf_weight=2.189468689262867 1.9368047825992103 1.8770809583365915 1.6062063351273539 2.7080435007810593 1.4179589040577409
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.449955 -0.536123 0.536926 -0.51871
+internal_weight=0 6.83805 4.96097 4.89751 3.02417
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=85
+num_leaves=5
+num_cat=0
+split_feature=2 3 3 2
+split_gain=0.911834 1.24364 0.447153 0.000210714
+threshold=5.1500000000000012 0.45000000000000007 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.051317641078458688 -0.054552897963104731 0.047732702450388576 0.0080842441788545067 -0.053198985011195681
+leaf_weight=0.99761046096682848 2.4231887310743323 5.119504086673258 6.4009869396686554 1.4763513989746568
+leaf_count=20 33 33 26 23
+internal_value=0 0.11889 0.257033 -0.524403
+internal_weight=0 13.9945 11.5205 2.47396
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=86
+num_leaves=4
+num_cat=0
+split_feature=2 1 2
+split_gain=2.00106 0.933361 0.0175801
+threshold=5.0500000000000007 2.8500000000000001 4.0500000000000007
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0057991181857494668 0.045343438300920288 -0.051611584173554353 -0.063376210584480813
+leaf_weight=4.3687790147960168 6.0988512635231027 2.6738186962902546 2.4195837564766407
+leaf_count=29 41 45 20
+internal_value=0 -0.281129 -0.572003
+internal_weight=0 9.46218 5.0934
+internal_count=135 94 65
+shrinkage=0.1
+
+
+Tree=87
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=2.55459 0.0270183 6.29837e-05 1.39672e-05
+threshold=3.1500000000000004 4.9500000000000011 4.5500000000000007 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.053455599710472937 -0.052279733352068293 0.039057530427023784 -0.051772509029914419 -0.051356931431981147
+leaf_weight=2.2105595916509628 2.2256455346941948 3.1756143569946289 1.8496654108166697 1.4370551668107507
+leaf_count=20 31 26 29 29
+internal_value=0 0.449667 -0.51869 -0.515908
+internal_weight=0 5.38617 5.51237 3.28672
+internal_count=135 46 89 58
+shrinkage=0.1
+
+
+Tree=88
+num_leaves=5
+num_cat=0
+split_feature=2 2 3 2
+split_gain=0.823238 1.11701 0.426972 0.000214629
+threshold=5.1500000000000012 1.8 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.051190854184929961 -0.05420625312564549 0.046866909203316987 0.0073589009160659885 -0.053173569958589087
+leaf_weight=0.90606415271758978 2.2310103811323652 4.818170100450514 6.3282218128442764 1.3737580552697179
+leaf_count=20 33 33 26 23
+internal_value=0 0.11392 0.244367 -0.523856
+internal_weight=0 13.4262 11.1464 2.27982
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=89
+num_leaves=6
+num_cat=0
+split_feature=3 0 0 2 0
+split_gain=1.84142 0.36413 0.270461 4.2316e-05 8.58084e-06
+threshold=1.6500000000000001 5.8500000000000005 6.5500000000000007 3.1500000000000004 4.9500000000000011
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.051654172430104867 0.060616759125024171 -0.010364023613394122 0.018605792052312629 -0.052149720515796798 -0.051283403660285977
+leaf_weight=1.2307750619947899 3.4959646090865144 4.665609922260046 2.7283903211355209 1.420739412307739 1.2665361650288103
+leaf_count=20 22 25 22 20 26
+internal_value=0 -0.292384 0.422016 -0.51714 -0.514661
+internal_weight=0 8.58366 6.22435 3.91805 2.49731
+internal_count=135 91 44 66 46
+shrinkage=0.1
+
+
+Tree=90
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=2.35869 0.0848391 0.00198369 2.42575e-05
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 1.6500000000000001
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.027866824642590785 -0.055798895567932993 0.054182149155451879 -0.051854117092161846 -0.051315836455642388
+leaf_weight=2.0458576455712318 1.6434327065944669 3.053864024579525 1.5429002158343794 1.8303916826844213
+leaf_count=21 23 29 24 38
+internal_value=0 0.436252 -0.5295 -0.51562
+internal_weight=0 5.09972 5.01672 3.37329
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=91
+num_leaves=5
+num_cat=0
+split_feature=3 3 3 2
+split_gain=0.772071 1.02061 0.207341 0.000176769
+threshold=1.8500000000000003 0.45000000000000007 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.051081265307978962 -0.052597163868347875 0.039478791902583334 0.011430277690776605 -0.052961373827785929
+leaf_weight=0.8261346928775305 2.196307923644782 4.8299489542841894 5.8007411733269691 1.2670665979385374
+leaf_count=20 33 34 25 23
+internal_value=0 0.116064 0.241738 -0.522193
+internal_weight=0 12.7239 10.6307 2.0932
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=92
+num_leaves=6
+num_cat=0
+split_feature=3 0 0 2 0
+split_gain=1.63459 0.351713 0.277008 3.65927e-05 5.73852e-06
+threshold=1.6500000000000001 5.8500000000000005 6.5500000000000007 3.1500000000000004 4.9500000000000011
+decision_type=2 2 2 2 2
+left_child=1 3 -2 4 -1
+right_child=2 -3 -4 -5 -6
+leaf_value=-0.051492708975866414 0.060194143833932769 -0.0097875498368980296 0.016485497436083317 -0.051994005014635004 -0.05117551031681164
+leaf_weight=1.117517478764056 3.2969779893755922 4.5871416740119457 2.5882368087768555 1.3092908039689062 1.164841942489147
+leaf_count=20 22 25 22 20 26
+internal_value=0 -0.281371 0.409717 -0.515726 -0.513308
+internal_weight=0 8.17879 5.88521 3.59165 2.28236
+internal_count=135 91 44 66 46
+shrinkage=0.1
+
+
+Tree=93
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=2.14587 0.086223 0.00159978 2.1746e-05
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 1.6500000000000001
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.026493067409111261 -0.055408411703110075 0.053918927587192057 -0.051743731013941897 -0.05121585107247744
+leaf_weight=1.9339116141200066 1.5232651792466638 2.8147056922316551 1.447913743555546 1.6927116215229032
+leaf_count=21 23 29 24 38
+internal_value=0 0.427495 -0.527491 -0.514592
+internal_weight=0 4.74862 4.66389 3.14063
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=94
+num_leaves=5
+num_cat=0
+split_feature=2 2 3 2
+split_gain=0.750945 0.939248 0.364654 0.000176293
+threshold=5.1500000000000012 1.8 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.050989812421156022 -0.054349402394192385 0.045948446215376616 0.0077628342834679944 -0.052942094524624096
+leaf_weight=0.75831513851880927 2.0120846349745998 4.2729629650711995 6.0298961699008942 1.1858834996819494
+leaf_count=20 33 33 26 23
+internal_value=0 0.115698 0.235998 -0.521806
+internal_weight=0 12.2471 10.3029 1.9442
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=95
+num_leaves=5
+num_cat=0
+split_feature=2 1 1 3
+split_gain=1.51468 0.887702 0.0198788 5.12814e-05
+threshold=5.0500000000000007 2.8500000000000001 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=0.0077885597845953796 0.042931304219778095 -0.065529305731004336 -0.051219693436539364 -0.052176781305777867
+leaf_weight=3.9787432700395566 5.2110236287117013 1.9481498375535007 1.0489961728453638 1.200531657785177
+leaf_count=29 41 22 23 20
+internal_value=0 -0.260556 -0.581345 -0.517305
+internal_weight=0 8.17642 4.19768 2.24953
+internal_count=135 94 65 43
+shrinkage=0.1
+
+
+Tree=96
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 3
+split_gain=1.97018 0.0261329 4.24116e-05 1.0053e-05
+threshold=3.1500000000000004 4.9500000000000011 4.5500000000000007 1.8500000000000003
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.05277723630278134 -0.051907883008880551 0.036923269233354011 -0.051478561621088673 -0.051086895721449525
+leaf_weight=1.7536848485469816 1.8204007260501383 2.553756482899189 1.2901090625673535 1.3319101445376871
+leaf_count=20 31 26 25 33
+internal_value=0 0.433779 -0.515371 -0.512796
+internal_weight=0 4.30744 4.44242 2.62202
+internal_count=135 46 89 58
+shrinkage=0.1
+
+
+Tree=97
+num_leaves=5
+num_cat=0
+split_feature=2 3 3 2
+split_gain=0.682688 0.841548 0.352125 0.00013981
+threshold=5.1500000000000012 0.45000000000000007 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.050907281810516694 -0.054023044324265128 0.045259770749850214 0.0070543337507251828 -0.052721505478132438
+leaf_weight=0.69645879045128722 1.8551039621233947 4.0514823570847494 5.9628716483712196 1.0889002308249471
+leaf_count=20 33 33 26 23
+internal_value=0 0.11235 0.22511 -0.520138
+internal_weight=0 11.7997 10.0144 1.78536
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=98
+num_leaves=5
+num_cat=0
+split_feature=2 1 1 3
+split_gain=1.32592 0.853189 0.0156246 4.51365e-05
+threshold=5.0500000000000007 2.8500000000000001 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=0.008266371733117393 0.041540445340063389 -0.064237024607177007 -0.051116773734974801 -0.052052742270433487
+leaf_weight=3.9313353821635246 4.9099215418100357 1.8643466979265215 0.96065030619502101 1.1112343706190584
+leaf_count=29 41 22 23 20
+internal_value=0 -0.246849 -0.575952 -0.516188
+internal_weight=0 7.86757 3.93623 2.07188
+internal_count=135 94 65 43
+shrinkage=0.1
+
+
+Tree=99
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=1.81202 0.0801364 0.00130689 1.57657e-05
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 1.6500000000000001
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.02500234624216487 -0.055094199038665449 0.053509056624222277 -0.051528942095069558 -0.05104518947660637
+leaf_weight=1.6632672920823095 1.3345787003636358 2.4222703091800213 1.2616257444024088 1.4456811398267744
+leaf_count=21 23 29 24 38
+internal_value=0 0.419037 -0.525331 -0.512706
+internal_weight=0 4.08554 4.04189 2.70731
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=100
+num_leaves=5
+num_cat=0
+split_feature=3 2 3 2
+split_gain=0.627362 0.779396 0.185172 0.000147002
+threshold=1.8500000000000003 1.8 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.050824171690425857 -0.05230600004544185 0.038262963735832711 0.010197660622845953 -0.05275950016866237
+leaf_weight=0.63479362055659205 1.8046899922192103 4.0872452780604345 5.5339232571423054 1.0281618684530256
+leaf_count=20 33 34 25 23
+internal_value=0 0.11194 0.221203 -0.520207
+internal_weight=0 11.2841 9.62117 1.66296
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=101
+num_leaves=6
+num_cat=0
+split_feature=3 0 0 2 0
+split_gain=1.23121 0.318409 0.302163 2.77668e-05 3.03568e-06
+threshold=1.6500000000000001 6.5500000000000007 5.8500000000000005 3.1500000000000004 4.9500000000000011
+decision_type=2 2 2 2 2
+left_child=2 -2 3 4 -1
+right_child=1 -3 -4 -5 -6
+leaf_value=-0.05114943676814037 0.060024740741219523 0.0094179544410677492 -0.0092452298425026794 -0.051657693622531559 -0.050886264111306811
+leaf_weight=0.8665866516530516 2.9070412144064903 2.1723389849066734 4.2820093296468258 1.0975312180817125 0.88685822673141956
+leaf_count=20 22 22 25 20 26
+internal_value=0 0.383813 -0.260394 -0.512632 -0.510163
+internal_weight=0 5.07938 7.13299 2.85098 1.75344
+internal_count=135 44 91 66 46
+shrinkage=0.1
+
+
+Tree=102
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 3
+split_gain=1.65621 0.025706 3.09997e-05 8.27643e-06
+threshold=3.1500000000000004 4.9500000000000011 4.5500000000000007 1.8500000000000003
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.052376223082410578 -0.051690071107791197 0.0354108981144289 -0.051305337696030719 -0.050922826817686118
+leaf_weight=1.490292124450207 1.5886674635112288 2.2288588024675846 1.129406236112118 1.1332392916083334
+leaf_count=20 31 26 25 33
+internal_value=0 0.42209 -0.513515 -0.511138
+internal_weight=0 3.71915 3.85131 2.26265
+internal_count=135 46 89 58
+shrinkage=0.1
+
+
+Tree=103
+num_leaves=5
+num_cat=0
+split_feature=2 2 3 2
+split_gain=0.608355 0.702175 0.316132 0.000109697
+threshold=5.1500000000000012 1.8 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.050756304151271685 -0.053957352022796702 0.044516387900159576 0.0067828635883825017 -0.052501980245663243
+leaf_weight=0.58317676000296959 1.6546600051224238 3.619056783616541 5.7447575703263283 0.94049794413149357
+leaf_count=20 33 33 26 23
+internal_value=0 0.111224 0.213666 -0.518338
+internal_weight=0 10.8875 9.36381 1.52367
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=104
+num_leaves=5
+num_cat=0
+split_feature=2 1 1 3
+split_gain=1.08503 0.808579 0.0141549 4.25216e-05
+threshold=5.0500000000000007 2.8500000000000001 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=0.0092206836599949601 0.039677899484324486 -0.064200369684704855 -0.050929057420003448 -0.051910617578831614
+leaf_weight=3.7348435819149017 4.4400793090462685 1.7114472016692164 0.80314710736274686 0.97970597073435772
+leaf_count=29 41 22 23 20
+internal_value=0 -0.231284 -0.577043 -0.514684
+internal_weight=0 7.22914 3.4943 1.78285
+internal_count=135 94 65 43
+shrinkage=0.1
+
+
+Tree=105
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=1.53457 0.0751508 0.00107861 1.16856e-05
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 1.6500000000000001
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.023419923201873753 -0.054834040444039112 0.053151701384845762 -0.051352224035870454 -0.050905409183309804
+leaf_weight=1.4348325058817866 1.168220302090049 2.0862523093819618 1.1067394316196444 1.2423855997622011
+leaf_count=21 23 29 24 38
+internal_value=0 0.410361 -0.523508 -0.511159
+internal_weight=0 3.52108 3.51735 2.34913
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=106
+num_leaves=5
+num_cat=0
+split_feature=2 3 3 2
+split_gain=0.553794 0.645261 0.314645 0.000119875
+threshold=5.1500000000000012 0.45000000000000007 1.4500000000000002 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 3 -3 -1
+right_child=-2 2 -4 -5
+leaf_value=-0.050687331710470941 -0.053663704425866245 0.044566272204363384 0.0061512821145238879 -0.052584952736693995
+leaf_weight=0.53152746334671852 1.5280912220478065 3.4107994437217695 5.6875499188899994 0.89080842398107052
+leaf_count=20 33 33 26 23
+internal_value=0 0.107605 0.205523 -0.518758
+internal_weight=0 10.5207 9.09835 1.42234
+internal_count=135 102 59 43
+shrinkage=0.1
+
+
+Tree=107
+num_leaves=6
+num_cat=0
+split_feature=3 0 0 2 0
+split_gain=1.0014 0.340157 0.277782 2.18792e-05 1.81896e-06
+threshold=1.6500000000000001 6.5500000000000007 5.8500000000000005 3.1500000000000004 4.9500000000000011
+decision_type=2 2 2 2 2
+left_child=2 -2 3 4 -1
+right_child=1 -3 -4 -5 -6
+leaf_value=-0.050962591931053174 0.059789402797526828 0.0048878154645654705 -0.0085255171976447771 -0.051462270309206484 -0.050740151106909742
+leaf_weight=0.72734416276216529 2.653432697057724 1.9636908844113348 4.126452699303627 0.96853705868124962 0.74329307861626148
+leaf_count=20 22 22 25 20 26
+internal_value=0 0.364394 -0.243397 -0.510932 -0.508502
+internal_weight=0 4.61712 6.56563 2.43917 1.47064
+internal_count=135 44 91 66 46
+shrinkage=0.1
+
+
+Tree=108
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=1.40109 0.0751256 0.00084614 1.03908e-05
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 1.6500000000000001
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.022255605184283364 -0.054471582117151564 0.052974328466346469 -0.051280618563350089 -0.050845067336254893
+leaf_weight=1.3577578738331797 1.0783755071461203 1.924650501459837 1.0407119281589987 1.1563015598803756
+leaf_count=21 23 29 24 38
+internal_value=0 0.402676 -0.521774 -0.510514
+internal_weight=0 3.28241 3.27539 2.19701
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=109
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=0.522798 0.595179 0.47172 0.333407
+threshold=5.1500000000000012 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.060596575155643928 -0.05356407425441289 -0.052301818088107438 0.048964318643123131 0.008394796011430292
+leaf_weight=1.0482744984328736 1.445163885131479 0.84175330027937789 3.625967074185608 4.5899302363395691
+leaf_count=21 33 24 35 22
+internal_value=0 0.10739 0.189949 0.262996
+internal_weight=0 10.1059 9.05765 8.2159
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=110
+num_leaves=6
+num_cat=0
+split_feature=3 0 0 2 0
+split_gain=0.886139 0.344126 0.266469 1.79247e-05 1.64327e-06
+threshold=1.6500000000000001 6.5500000000000007 5.8500000000000005 3.1500000000000004 4.9500000000000011
+decision_type=2 2 2 2 2
+left_child=2 -2 3 4 -1
+right_child=1 -3 -4 -5 -6
+leaf_value=-0.050891679788492711 0.05941544438524269 0.0029116575432283393 -0.0080584809422771051 -0.051359045139651241 -0.050670919581780965
+leaf_weight=0.6740041393786671 2.5104069896042347 1.8888522051274774 4.0638103261590004 0.89195275865495183 0.67473510280251503
+leaf_count=20 22 22 25 20 26
+internal_value=0 0.351552 -0.233244 -0.510112 -0.507812
+internal_weight=0 4.39926 6.3045 2.24069 1.34874
+internal_count=135 44 91 66 46
+shrinkage=0.1
+
+
+Tree=111
+num_leaves=5
+num_cat=0
+split_feature=2 0 3 1
+split_gain=1.28724 0.0232419 1.90898e-05 9.59763e-06
+threshold=3.1500000000000004 4.9500000000000011 1.8500000000000003 2.7500000000000004
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.051864922263012009 -0.051512891681069511 0.033759757455923141 -0.050735681816142443 -0.051094423875782481
+leaf_weight=1.1705661639571192 0.99339626356959421 1.7982820123434065 0.89904156140983083 1.2226138412952421
+leaf_count=20 22 26 33 34
+internal_value=0 0.408983 -0.511243 -0.51282
+internal_weight=0 2.96885 3.11505 2.21601
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=112
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=0.4948 0.5409 0.421324 0.306888
+threshold=5.1500000000000012 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.059688669057315361 -0.05346313449133875 -0.052088899179867358 0.04830805825479792 0.0085204146784125644
+leaf_weight=0.9787245374172916 1.3685136493295438 0.76591862179338732 3.3944351598620415 4.5199346244335175
+leaf_count=21 33 24 35 22
+internal_value=0 0.107853 0.187315 0.255851
+internal_weight=0 9.65901 8.68029 7.91437
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=113
+num_leaves=5
+num_cat=0
+split_feature=2 1 1 3
+split_gain=0.815829 0.760035 0.0147477 3.77841e-05
+threshold=5.0500000000000007 2.8500000000000001 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=0.010705410756338844 0.036930294258947997 -0.065460795679074757 -0.050712034852779087 -0.051748968863966807
+leaf_weight=3.4263568595051765 3.8624369725584984 1.5111556444317105 0.61594136804342248 0.81819939240813244
+leaf_count=29 41 22 23 20
+internal_value=0 -0.213159 -0.585673 -0.513036
+internal_weight=0 6.37165 2.9453 1.43414
+internal_count=135 94 65 43
+shrinkage=0.1
+
+
+Tree=114
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=1.17858 0.068422 0.000671264 6.19769e-06
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 1.6500000000000001
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.020914752848618372 -0.054188150559946219 0.05262647237171221 -0.051102566508611336 -0.050740791771046928
+leaf_weight=1.1624325439333918 0.93247488699853442 1.6407241076231001 0.89934570901095856 1.0001479629427192
+leaf_count=21 23 29 24 38
+internal_value=0 0.39476 -0.519908 -0.509121
+internal_weight=0 2.80316 2.83197 1.89949
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=115
+num_leaves=5
+num_cat=0
+split_feature=3 0 2 2
+split_gain=0.46463 0.4992 0.384796 0.278634
+threshold=1.8500000000000003 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.059383318790939138 -0.05194055332017148 -0.051929333884999297 0.047689697139837603 0.0088929796484626313
+leaf_weight=0.91138456761836895 1.3498485097661621 0.70811677351593771 3.1852570474147797 4.4197846408933401
+leaf_count=21 33 24 35 22
+internal_value=0 0.108749 0.185774 0.251424
+internal_weight=0 9.22454 8.31316 7.60504
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=116
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 1
+split_gain=0.732022 0.374637 0.0295551 7.39221e-06
+threshold=1.8500000000000003 2.8500000000000001 5.8500000000000005 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=0.0055065381587117157 0.052380174534437662 -0.051021495912493491 -0.031478778989616193 -0.050544874217094665
+leaf_weight=4.3617173284292221 2.1394827216863632 0.68755740858614467 2.0141504351049662 0.61779793724417686
+leaf_count=31 33 21 21 29
+internal_value=0 -0.137598 -0.39075 -0.507959
+internal_weight=0 7.68122 3.31951 1.30536
+internal_count=135 102 71 50
+shrinkage=0.1
+
+
+Tree=117
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 3
+split_gain=1.08597 0.0795745 0.000461279 5.21307e-05 5.04194e-06
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 1.6500000000000001
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.051132162388235841 -0.053781204067910406 -0.017362137471863173 -0.051091076715838235 0.052170575075753726 -0.050705209375045648
+leaf_weight=0.84185391291975964 0.95627173967659551 0.92020280566066481 0.76634084992110707 1.1355854757130144 0.60672257468104362
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.422593 -0.52095 0.517285 -0.509206
+internal_weight=0 3.24954 2.32934 1.97744 1.37306
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=118
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=0.436121 0.459317 0.339108 0.270764
+threshold=5.1500000000000012 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.059048301175955033 -0.053390771663629905 -0.051749601123405889 0.047085603004589645 0.0082176696345741818
+leaf_weight=0.85855726059526094 1.213329914025963 0.64383055828511526 3.0041520856320858 4.442991029471159
+leaf_count=21 33 24 35 22
+internal_value=0 0.104976 0.178774 0.238969
+internal_weight=0 8.94953 8.09097 7.44714
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=119
+num_leaves=5
+num_cat=0
+split_feature=2 3 1 1
+split_gain=0.69004 0.531172 0.000883643 2.90307e-06
+threshold=5.1500000000000012 1.4500000000000002 2.8500000000000001 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.054564070726109241 0.053500038510851146 0.0049123483414047174 -0.050790698421728869 -0.05049230988327813
+leaf_weight=1.0269885659217837 1.9567015152424572 5.1235325932502747 0.7818226572126149 0.5593176893889904
+leaf_count=20 33 26 27 29
+internal_value=0 -0.131905 -0.523566 -0.506663
+internal_weight=0 7.49166 2.36813 1.34114
+internal_count=135 102 76 56
+shrinkage=0.1
+
+
+Tree=120
+num_leaves=5
+num_cat=0
+split_feature=2 0 3 1
+split_gain=0.992312 0.0193643 1.16665e-05 5.68884e-06
+threshold=3.1500000000000004 4.9500000000000011 1.8500000000000003 2.7500000000000004
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.051380648381711441 -0.051248424365477024 0.032656601119291195 -0.050567836457725703 -0.050889801941381402
+leaf_weight=0.8875867668539289 0.80103010125458252 1.4623262062668798 0.69592580292373885 0.98780228663235903
+leaf_count=20 22 26 33 34
+internal_value=0 0.397289 -0.509152 -0.510504
+internal_weight=0 2.34991 2.48476 1.78883
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=121
+num_leaves=5
+num_cat=0
+split_feature=3 0 2 2
+split_gain=0.395438 0.420993 0.309822 0.248851
+threshold=1.8500000000000003 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.058801850742636302 -0.051791926386465806 -0.051728528469517032 0.046398005656028786 0.0081828812391485598
+leaf_weight=0.80115084443241169 1.1691499883309013 0.59926377050578572 2.7979830615222454 4.3581491112709045
+leaf_count=21 33 24 35 22
+internal_value=0 0.102115 0.173407 0.231246
+internal_weight=0 8.55655 7.7554 7.15613
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=122
+num_leaves=5
+num_cat=0
+split_feature=2 3 1 1
+split_gain=0.61529 0.497138 0.000768669 2.26877e-06
+threshold=5.1500000000000012 1.4500000000000002 2.8500000000000001 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.054398629878610917 0.053181129519430076 0.0048639642292687196 -0.05072428235744969 -0.050447938352557876
+leaf_weight=0.95225862599909328 1.7916125059127805 5.0824343115091324 0.71335209161043145 0.50913035497069359
+leaf_count=20 33 26 27 29
+internal_value=0 -0.122568 -0.522685 -0.506092
+internal_weight=0 7.25718 2.17474 1.22248
+internal_count=135 102 76 56
+shrinkage=0.1
+
+
+Tree=123
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=0.917096 0.0578501 0.000409759 3.83658e-06
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 1.8500000000000003
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.019424139552666416 -0.053590072976757136 0.052328468762168047 -0.050856201414147317 -0.050523650821754841
+leaf_weight=0.90530571341514621 0.7550661284476522 1.3038607370108364 0.97325250972062316 0.53907556924968958
+leaf_count=21 23 29 34 28
+internal_value=0 0.388444 -0.516875 -0.507377
+internal_weight=0 2.20917 2.26739 1.51233
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=124
+num_leaves=5
+num_cat=0
+split_feature=3 0 2 2
+split_gain=0.364433 0.385782 0.27959 0.233403
+threshold=1.8500000000000003 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.058551749248209765 -0.05171127187967775 -0.05159683681818527 0.045742628711717255 0.0079150475808259912
+leaf_weight=0.7481064610183219 1.0858545769006021 0.5540961893275379 2.6231069937348366 4.3132758447900414
+leaf_count=21 33 24 35 22
+internal_value=0 0.09921 0.167597 0.222202
+internal_weight=0 8.23859 7.49048 6.93638
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=125
+num_leaves=5
+num_cat=0
+split_feature=2 1 1 2
+split_gain=0.561987 0.484812 0.0319668 0.0193822
+threshold=5.1500000000000012 2.8500000000000001 3.0500000000000003 1.5500000000000003
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=0.0090673990831952652 0.05305892353672062 -0.05536664129032827 -0.050465737016348156 -0.024622240009306309
+leaf_weight=4.3177866451442242 1.6563183162361381 1.4121445342898371 0.44360505789518334 0.83919689152389765
+leaf_count=34 33 23 25 20
+internal_value=0 -0.11705 -0.449862 -0.335592
+internal_weight=0 7.01273 2.69495 1.2828
+internal_count=135 102 68 45
+shrinkage=0.1
+
+
+Tree=126
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 3
+split_gain=0.845858 0.0651659 0.000276124 5.31036e-05 2.26925e-06
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 1.6500000000000001
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050853471069540551 -0.053208557580382655 -0.016826483482057036 -0.05087015050603453 0.052044167258562361 -0.050579240324950626
+leaf_weight=0.63839072361588456 0.77873746864497695 0.74725013412535179 0.60953868459910132 0.90632441453635681 0.478745904751122
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.417826 -0.517709 0.515521 -0.507422
+internal_weight=0 2.61427 1.86702 1.54472 1.08828
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=127
+num_leaves=5
+num_cat=0
+split_feature=3 0 2 2
+split_gain=0.336715 0.355221 0.24709 0.223839
+threshold=1.8500000000000003 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.058190695934417502 -0.051643777020756509 -0.051446574962735615 0.045133319374177298 0.0073936459609653428
+leaf_weight=0.70491442922502745 1.0116561502218244 0.50335234962403763 2.475190531462431 4.3049670979380608
+leaf_count=21 33 24 35 22
+internal_value=0 0.0959235 0.161525 0.21171
+internal_weight=0 7.98842 7.28351 6.78016
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=128
+num_leaves=5
+num_cat=0
+split_feature=2 3 1 1
+split_gain=0.513274 0.445304 0.000674287 1.50983e-06
+threshold=5.1500000000000012 1.4500000000000002 2.8500000000000001 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.054302129379490638 0.052945615178524696 0.0047137945408722995 -0.050620757148710727 -0.050375297894014452
+leaf_weight=0.86628739163279522 1.53208034299314 4.9491985961794853 0.60555704310536362 0.42750526871532202
+leaf_count=20 33 26 27 29
+internal_value=0 -0.110828 -0.522446 -0.505192
+internal_weight=0 6.84855 1.89935 1.03306
+internal_count=135 102 76 56
+shrinkage=0.1
+
+
+Tree=129
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=0.7747 0.0530441 0.000242542 3.22151e-06
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.018213256531871551 -0.053014260822242767 0.052204351814078322 -0.050781549414664118 -0.050462855256588494
+leaf_weight=0.77837812528014205 0.64906247239559878 1.11925265006721 0.76289806701242902 0.54290308244526397
+leaf_count=21 23 29 29 33
+internal_value=0 0.382617 -0.514344 -0.50649
+internal_weight=0 1.89763 1.95486 1.3058
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=130
+num_leaves=4
+num_cat=0
+split_feature=0 1 2
+split_gain=0.312097 0.219556 0.0814497
+threshold=6.3500000000000005 2.7500000000000004 3.5500000000000003
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0091845798298314362 0.0362704507597741 -0.05196693993433843 -0.016726555366789582
+leaf_weight=3.46108019631356 2.0886234492063522 0.94373450335115228 2.1500458046793938
+leaf_count=26 40 44 25
+internal_value=0 -0.0811875 -0.274764
+internal_weight=0 6.55486 3.09378
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=131
+num_leaves=5
+num_cat=0
+split_feature=2 1 1 2
+split_gain=0.471127 0.434081 0.0257882 0.0173186
+threshold=5.1500000000000012 2.8500000000000001 3.0500000000000003 1.5500000000000003
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=0.0092471952598297286 0.052833750924136724 -0.052983574149557178 -0.05038634763581297 -0.023972938554953242
+leaf_weight=4.1483716685324907 1.4251132663339374 1.3470042431727054 0.3669615397229789 0.7672594515606761
+leaf_count=34 33 23 25 20
+internal_value=0 -0.105424 -0.436286 -0.325186
+internal_weight=0 6.6296 2.48123 1.13422
+internal_count=135 102 68 45
+shrinkage=0.1
+
+
+Tree=132
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 3
+split_gain=0.71862 0.057109 0.000178236 3.93081e-05 1.55265e-06
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 1.6500000000000001
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050718031234759264 -0.052773199265412823 -0.016721533033401025 -0.050775717713302353 0.051834684887118454 -0.050517391739636298
+leaf_weight=0.53450700454413913 0.69389746244996808 0.65989827178418636 0.53618385177105676 0.76847466267645359 0.41102653834968805
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.415656 -0.515556 0.513766 -0.506636
+internal_weight=0 2.30101 1.64111 1.30298 0.94721
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=133
+num_leaves=5
+num_cat=0
+split_feature=3 0 2 2
+split_gain=0.308841 0.316134 0.202005 0.213876
+threshold=1.8500000000000003 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.058201332425702745 -0.051594906245959964 -0.05129391421212795 0.044814261824460945 0.0066435940129312048
+leaf_weight=0.63647540565580119 0.93803953006863583 0.42563111893832672 2.2416853215545416 4.2527477024123073
+leaf_count=21 33 24 35 22
+internal_value=0 0.0924193 0.15445 0.19819
+internal_weight=0 7.55654 6.92006 6.49443
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=134
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 1
+split_gain=0.447438 0.290136 0.0230616 2.82415e-06
+threshold=1.8500000000000003 2.8500000000000001 5.8500000000000005 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=0.006907483442098356 0.051819181549599594 -0.050692501983005317 -0.02999645419948567 -0.050312580622323536
+leaf_weight=3.9265612494200468 1.4175810720771549 0.43512792512774495 1.7793569481000302 0.3555243406444788
+leaf_count=31 33 21 21 29
+internal_value=0 -0.101895 -0.363109 -0.505217
+internal_weight=0 6.49657 2.57001 0.790652
+internal_count=135 102 71 50
+shrinkage=0.1
+
+
+Tree=135
+num_leaves=5
+num_cat=0
+split_feature=2 0 3 1
+split_gain=0.660549 0.0140326 5.55954e-06 2.57018e-06
+threshold=3.1500000000000004 4.9500000000000011 1.8500000000000003 2.7500000000000004
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.050858710606421866 -0.050944452644830433 0.031304174923016827 -0.050381802803051538 -0.050660328215891753
+leaf_weight=0.56944818608462844 0.57688174489885546 1.0321391727775333 0.45748848794028152 0.71050881873816252
+leaf_count=20 22 26 33 34
+internal_value=0 0.382568 -0.506812 -0.507876
+internal_weight=0 1.60159 1.74488 1.28739
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=136
+num_leaves=4
+num_cat=0
+split_feature=0 1 2
+split_gain=0.294229 0.211503 0.0622782
+threshold=6.3500000000000005 2.7500000000000004 3.5500000000000003
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0087842411894923627 0.035750536395901755 -0.051793978649512719 -0.019025397558254338
+leaf_weight=3.3404255239292979 2.0024758144281805 0.80615540640428685 2.0673514897935092
+leaf_count=26 40 44 25
+internal_value=0 -0.0832695 -0.282185
+internal_weight=0 6.21393 2.87351
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=137
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 1
+split_gain=0.420238 0.384708 0.000542603 1.08769e-06
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050524829886406566 0.05285086760383996 0.0045582260080685184 -0.054134377615874633 -0.05028625066071031
+leaf_weight=0.5204415265470741 1.2965655876323579 4.7846678644418716 0.76734878774732351 0.30196320079267025
+leaf_count=27 33 26 22 27
+internal_value=0 -0.0960247 -0.522218 -0.504372
+internal_weight=0 6.37442 1.58975 0.822405
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=138
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 2
+split_gain=0.609435 0.0516886 0.000149378 3.1552e-05 9.54577e-07
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050593222112250993 -0.052637914692479783 -0.016229364297930274 -0.050680198777147079 0.051687268499958076 -0.050463389106087553
+leaf_weight=0.44214822165668033 0.62167880497872852 0.58464194461703289 0.46005165576934814 0.65280219353735447 0.36355023318901658
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.413187 -0.514678 0.512455 -0.505845
+internal_weight=0 2.02992 1.44528 1.09495 0.823602
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=139
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=0.286189 0.279883 0.168054 0.204619
+threshold=5.1500000000000012 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.058268219941283776 -0.052907084236028482 -0.051181808235398529 0.044492464787085739 0.005899231969729842
+leaf_weight=0.57279850542545308 0.83930923743173469 0.36695997230708582 2.035573722794652 4.225709144026041
+leaf_count=21 33 24 35 22
+internal_value=0 0.0879574 0.145913 0.184461
+internal_weight=0 7.20104 6.62824 6.26128
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=140
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 1
+split_gain=0.394275 0.360344 0.000424506 8.87843e-07
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050487713517404179 0.052772843004673956 0.0043659538552716501 -0.053789135382726561 -0.050263253135523836
+leaf_weight=0.48175941407680489 1.2366242576390503 4.7698092088103294 0.72443384677171696 0.27785664796829224
+leaf_count=27 33 26 22 27
+internal_value=0 -0.0902336 -0.520573 -0.504056
+internal_weight=0 6.25386 1.48405 0.759616
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=141
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=0.561135 0.0448749 0.000132351 2.32859e-06
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.015273846469318609 -0.052495270607527247 0.051829491420651012 -0.050640665913303906 -0.050325802836868633
+leaf_weight=0.56826645508408569 0.51500335801392771 0.82093239948153485 0.61434320081025362 0.38026980310678482
+leaf_count=21 23 29 29 33
+internal_value=0 0.36876 -0.51194 -0.505203
+internal_weight=0 1.3892 1.50962 0.994613
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=142
+num_leaves=6
+num_cat=0
+split_feature=0 3 3 1 2
+split_gain=0.3005 0.503429 0.223895 0.0628898 4.02353e-05
+threshold=6.5500000000000007 1.6500000000000001 0.45000000000000007 2.7500000000000004 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=1 2 4 -4 -1
+right_child=-2 -3 3 -5 -6
+leaf_value=-0.050218120145216927 0.041792550842191467 -0.056647939461680022 0.027009447377381996 0.001740557030795996 -0.052075989000934186
+leaf_weight=0.16988417040556658 1.5405996982008217 1.5627374830655751 2.4685192070901394 1.6388227008283136 0.3714214856736362
+leaf_count=20 29 22 20 21 23
+internal_value=0 -0.0754638 0.0896011 0.169272 -0.514929
+internal_weight=0 6.21139 4.64865 4.10734 0.541306
+internal_count=135 106 84 41 43
+shrinkage=0.1
+
+
+Tree=143
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 1
+split_gain=0.363007 0.26628 0.0188217 2.02569e-06
+threshold=1.8500000000000003 2.8500000000000001 5.8500000000000005 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=0.0077438453705430833 0.051654094300506492 -0.050605707848052288 -0.030021418950576098 -0.050240249736971887
+leaf_weight=3.7329381462186575 1.1903862599283455 0.34399530384689603 1.6926373559981582 0.27127644047141075
+leaf_count=31 33 21 21 29
+internal_value=0 -0.0876453 -0.354661 -0.504446
+internal_weight=0 6.04085 2.30791 0.615272
+internal_count=135 102 71 50
+shrinkage=0.1
+
+
+Tree=144
+num_leaves=5
+num_cat=0
+split_feature=2 0 3 1
+split_gain=0.513751 0.0128719 3.67925e-06 1.60751e-06
+threshold=3.1500000000000004 4.9500000000000011 1.8500000000000003 2.7500000000000004
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.050647614191324464 -0.050807438928568385 0.029462713376180144 -0.050299299032896094 -0.050561789278782236
+leaf_weight=0.43486116360873006 0.48112533614039399 0.8424027431756258 0.35259401611983765 0.59687311854213476
+leaf_count=20 22 26 33 34
+internal_value=0 0.366754 -0.505797 -0.506714
+internal_weight=0 1.27726 1.43059 1.078
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=145
+num_leaves=4
+num_cat=0
+split_feature=0 1 2
+split_gain=0.274508 0.184479 0.0456237
+threshold=6.3500000000000005 2.7500000000000004 3.5500000000000003
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0076890088949549146 0.035640096046405854 -0.051551395257357684 -0.020791186195779521
+leaf_weight=3.1230692900717258 1.854490009602159 0.64226467860862646 1.9345742622390389
+leaf_count=26 40 44 25
+internal_value=0 -0.0865249 -0.28458
+internal_weight=0 5.69991 2.57684
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=146
+num_leaves=5
+num_cat=0
+split_feature=2 1 1 2
+split_gain=0.347949 0.332361 0.0189798 0.014484
+threshold=5.1500000000000012 2.8500000000000001 3.0500000000000003 1.5500000000000003
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=0.0092076743182218628 0.052683826240620894 -0.048064762661361456 -0.050243433812407506 -0.020920698691697895
+leaf_weight=3.8294640947133303 1.1080791456624863 1.2519116541370752 0.22999248187988983 0.62955968081951141
+leaf_count=34 33 23 25 20
+internal_value=0 -0.083554 -0.402087 -0.287667
+internal_weight=0 5.94093 2.11146 0.859552
+internal_count=135 102 68 45
+shrinkage=0.1
+
+
+Tree=147
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 2
+split_gain=0.47849 0.0452209 9.87932e-05 1.87012e-05 6.77086e-07
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050460928690452739 -0.052321616638354385 -0.015142503307027766 -0.050583994543697532 0.051418410383113948 -0.050381362907525568
+leaf_weight=0.33950323052704368 0.53061189875006654 0.48510916484519834 0.38735000696033239 0.5110588651150465 0.28714876668527722
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.40923 -0.513008 0.510362 -0.504977
+internal_weight=0 1.69022 1.20511 0.850562 0.674499
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=148
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=0.253089 0.232447 0.129139 0.19649
+threshold=5.1500000000000012 4.9500000000000011 1.8 4.6500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=-0.057865553039064779 -0.052758959810088296 -0.051048183297131899 0.044525849530522764 0.0047961636559058444
+leaf_weight=0.49176181340590103 0.7550768945366142 0.29468543827533711 1.7825672812759874 4.126553438603878
+leaf_count=21 33 24 35 22
+internal_value=0 0.0831337 0.135592 0.167812
+internal_weight=0 6.69557 6.20381 5.90912
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=149
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 1
+split_gain=0.327479 0.313672 0.000306024 7.10337e-07
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 3.1500000000000008
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050438279417274426 0.052614130014929844 0.0042794915936745018 -0.053460167235278799 -0.050220951365729995
+leaf_weight=0.35559036675840594 1.0594496512785552 4.6282905638217926 0.64703908748924732 0.26062413258478045
+leaf_count=23 33 26 22 31
+internal_value=0 -0.0777525 -0.519413 -0.503464
+internal_weight=0 5.89154 1.26325 0.616214
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=150
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=0.442773 0.0398306 8.85803e-05 1.69179e-06
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.013073142814750104 -0.052211280918648344 0.051566857508955344 -0.05055251158049158 -0.050251464496761628
+leaf_weight=0.45660219527781032 0.43632220011204453 0.65355914924293756 0.52199178002774715 0.29058950208127499
+leaf_count=21 23 29 29 33
+internal_value=0 0.357346 -0.51062 -0.504449
+internal_weight=0 1.11016 1.2489 0.812581
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=151
+num_leaves=4
+num_cat=0
+split_feature=0 1 2
+split_gain=0.272038 0.177115 0.0359915
+threshold=6.3500000000000005 2.7500000000000004 3.5500000000000003
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0072075407689342038 0.036248040141772617 -0.051459700156856449 -0.022467093382828988
+leaf_weight=3.0096374684944749 1.7570537659339605 0.55473832087591324 1.8768085776828227
+leaf_count=26 40 44 25
+internal_value=0 -0.0900925 -0.290815
+internal_weight=0 5.44118 2.43155
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=152
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 1
+split_gain=0.304843 0.224658 0.0182934 1.47639e-06
+threshold=1.8500000000000003 2.8500000000000001 5.8500000000000005 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=0.0076479116207443347 0.051560888831338282 -0.050537412943196296 -0.028340863839082089 -0.050186084065648784
+leaf_weight=3.579121807590127 1.0267157536000011 0.28094391431659493 1.631149139255285 0.2082907878793776
+leaf_count=31 33 21 21 29
+internal_value=0 -0.0763344 -0.334277 -0.503878
+internal_weight=0 5.69951 2.12038 0.489235
+internal_count=135 102 71 50
+shrinkage=0.1
+
+
+Tree=153
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 2
+split_gain=0.408641 0.0392092 6.3218e-05 1.39533e-05 5.28819e-07
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050393064435432781 -0.052002885676154076 -0.015301083442562724 -0.050530912264691891 0.051293677009371645 -0.050339332685205664
+leaf_weight=0.28535796422511367 0.4711910863406954 0.42813169863075007 0.34598036110401154 0.433156886138022 0.24690282298251989
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.408562 -0.511383 0.50936 -0.504511
+internal_weight=0 1.49221 1.06407 0.718515 0.592883
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=154
+num_leaves=4
+num_cat=0
+split_feature=0 1 2
+split_gain=0.243743 0.167535 0.0335966
+threshold=6.3500000000000005 2.7500000000000004 3.5500000000000003
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0071257075745687973 0.034437058867171182 -0.051316535284684606 -0.022268912394390578
+leaf_weight=2.9909228989854455 1.7456561909057198 0.50706939143128726 1.8541165366768835
+leaf_count=26 40 44 25
+internal_value=0 -0.0859432 -0.285069
+internal_weight=0 5.35211 2.36119
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=155
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 1
+split_gain=0.289282 0.282888 0.00024078 5.73793e-07
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 3.1500000000000008
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.05039633329180903 0.052497894032091742 0.0040912272939186596 -0.053237682631201648 -0.050184929862869758
+leaf_weight=0.31613630615174748 0.95404418092220988 4.5544441379606724 0.59519843570888042 0.2161895758472383
+leaf_count=23 33 26 22 31
+internal_value=0 -0.0701083 -0.518557 -0.503105
+internal_weight=0 5.68197 1.12752 0.532326
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=156
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 2
+split_gain=0.373515 0.0377201 5.30773e-05 1.04081e-05 4.55087e-07
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050357043524281435 -0.051889236127265405 -0.015156931141710586 -0.050502582317680816 0.051173833867368103 -0.050318536086746371
+leaf_weight=0.2587412586435679 0.44898030441254361 0.41223557665944088 0.32797221560031176 0.39292181376367807 0.22757494170218703
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.406279 -0.510807 0.508495 -0.504272
+internal_weight=0 1.41676 1.00453 0.651663 0.555547
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=157
+num_leaves=6
+num_cat=0
+split_feature=0 3 3 1 2
+split_gain=0.229808 0.461009 0.142193 0.0555651 1.31954e-05
+threshold=6.5500000000000007 1.6500000000000001 0.45000000000000007 2.7500000000000004 1.4500000000000002
+decision_type=2 2 2 2 2
+left_child=1 2 4 -4 -1
+right_child=-2 -3 3 -5 -6
+leaf_value=-0.050140851753302212 0.037491541467329068 -0.05629806207718744 0.025132743739768239 0.00016786170046109535 -0.051466594108412367
+leaf_weight=0.10845012241043139 1.4380488237366078 1.4287460530176757 2.2827277146279816 1.462892599403858 0.24396848841570321
+leaf_count=20 29 22 20 21 23
+internal_value=0 -0.0738456 0.0966871 0.153824 -0.510586
+internal_weight=0 5.52678 4.09804 3.74562 0.352419
+internal_count=135 106 84 41 43
+shrinkage=0.1
+
+
+Tree=158
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=0.27734 0.20191 0.018676 1.56403e-06
+threshold=1.8500000000000003 2.8500000000000001 5.8500000000000005 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=0.0077301743877874335 0.051509025895254371 -0.050189315591944332 -0.026881969515210637 -0.050572114055267237
+leaf_weight=3.5117230247706175 0.95536954328417756 0.20732039539143479 1.6183322174474595 0.21999411750584841
+leaf_count=31 33 29 21 21
+internal_value=0 -0.0681771 -0.317918 -0.503864
+internal_weight=0 5.55737 2.04565 0.427315
+internal_count=135 102 71 50
+shrinkage=0.1
+
+
+Tree=159
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=0.345039 0.0366466 4.9845e-05 1.24047e-06
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.010042090279164233 -0.051834587736885207 0.051272446357065606 -0.050489251323388752 -0.050203939979595817
+leaf_weight=0.37317952048033487 0.37002557236701222 0.51044505927711725 0.45229879720136518 0.22981502232141796
+leaf_count=21 23 29 29 33
+internal_value=0 0.338597 -0.509001 -0.503931
+internal_weight=0 0.883625 1.05214 0.682114
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=160
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.227312 0.190842 0.103285 0.0851825
+threshold=5.1500000000000012 4.9500000000000011 6.1500000000000012 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=-0.057672289024684888 -0.052752934989418312 0.011420867659152798 0.026969702277627312 -0.024651559842458235
+leaf_weight=0.4138127090409397 0.68734211870469131 2.0679036825895314 2.6762237437069416 0.95786703331395973
+leaf_count=21 33 28 20 33
+internal_value=0 0.0790015 0.12659 1.43362e-05
+internal_weight=0 6.11581 5.70199 3.02577
+internal_count=135 102 81 61
+shrinkage=0.1
+
+
+Tree=161
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 1
+split_gain=0.273312 0.251659 0.000169862 4.73803e-07
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 3.1500000000000008
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050363428183196446 0.052595432482357242 0.0035945029319800637 -0.052886240594598857 -0.050155436579606583
+leaf_weight=0.28114618547260734 0.90876586735248555 4.4497453086078167 0.54938893672078848 0.17941655544564128
+leaf_count=23 33 26 22 31
+internal_value=0 -0.0663383 -0.516988 -0.502824
+internal_weight=0 5.4597 1.00995 0.460563
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=162
+num_leaves=6
+num_cat=0
+split_feature=2 1 0 2 2
+split_gain=0.321203 0.0330807 3.52314e-05 4.05202e-06 3.658e-07
+threshold=1.8 3.0500000000000003 5.7500000000000009 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.05030558572444907 -0.051649564477895274 -0.015208705116006433 -0.050459155767107404 0.050858267345143066 -0.050282690603525762
+leaf_weight=0.21851879544556152 0.4047668366692958 0.3642106805928052 0.29420199850574136 0.33759516896679997 0.1955486198421568
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.406149 -0.509592 0.506411 -0.503887
+internal_weight=0 1.25873 0.894517 0.556114 0.489751
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=163
+num_leaves=4
+num_cat=0
+split_feature=0 1 2
+split_gain=0.223114 0.143532 0.0264782
+threshold=6.3500000000000005 2.7500000000000004 3.5500000000000003
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0061145328822005355 0.033823168607080061 -0.051091423630357638 -0.022780834538781145
+leaf_weight=2.8238310744054615 1.6334602199494836 0.40641885949298767 1.7653535727877168
+leaf_count=26 40 44 25
+internal_value=0 -0.0875056 -0.280788
+internal_weight=0 4.9956 2.17177
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=164
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=0.244235 0.195556 0.0165935 1.63716e-06
+threshold=1.8500000000000003 2.8500000000000001 5.8500000000000005 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=0.0083473809117174825 0.051446154219195378 -0.050159954294387535 -0.026912877672509251 -0.050580052224796362
+leaf_weight=3.40490064304322 0.8556688674725591 0.17384536704048503 1.5693545127287505 0.19890327891334889
+leaf_count=31 33 29 21 21
+internal_value=0 -0.0609584 -0.314177 -0.503841
+internal_weight=0 5.347 1.9421 0.372749
+internal_count=135 102 71 50
+shrinkage=0.1
+
+
+Tree=165
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 2 2
+split_gain=0.295274 0.0315886 2.95778e-05 5.79103e-06 3.1159e-07
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.05028172436137579 -0.051558009963279555 -0.015235572811419693 -0.05043796521508969 0.050974755892735826 -0.050270129229853439
+leaf_weight=0.19902637461200368 0.38494427222758504 0.35095864720642567 0.27989832405000925 0.30587871326133609 0.18289346108213067
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.404653 -0.509104 0.507016 -0.503716
+internal_weight=0 1.19869 0.847736 0.504905 0.462792
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=166
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 1
+split_gain=0.20655 0.17312 0.107609 0.162562
+threshold=5.1500000000000012 4.9500000000000011 4.6500000000000012 3.2500000000000004
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=-0.057463771574263404 -0.052637764870693105 0.051113906307400425 0.003048874654312448 -0.024853315064642542
+leaf_weight=0.38420968502759922 0.63345987536013115 1.2363565335981546 3.9284591358155012 0.36480213701725001
+leaf_count=21 33 34 22 25
+internal_value=0 0.0744488 0.119549 0.338058
+internal_weight=0 5.91383 5.52962 1.60116
+internal_count=135 102 81 59
+shrinkage=0.1
+
+
+Tree=167
+num_leaves=5
+num_cat=0
+split_feature=2 1 1 3
+split_gain=0.241841 0.234931 0.0167503 0.0115127
+threshold=5.1500000000000012 2.8500000000000001 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=0.0092927346216958914 0.052488220242685041 -0.042191460060451991 -0.050138764470547881 -0.015611904092972619
+leaf_weight=3.5032230885699391 0.8214375041425227 1.1709300954826174 0.11868225131183852 0.51846166327595711
+leaf_count=34 33 23 23 22
+internal_value=0 -0.0581656 -0.350915 -0.220433
+internal_weight=0 5.3113 1.80807 0.637144
+internal_count=135 102 68 45
+shrinkage=0.1
+
+
+Tree=168
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 3
+split_gain=0.276203 0.00860405 1.27417e-06 2.7254e-07
+threshold=3.1500000000000004 4.9500000000000011 5.1500000000000012 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.050323357735024832 -0.050386653646107275 0.02625277278199328 -0.050161762117249979 -0.050512527075504909
+leaf_weight=0.21382587123662236 0.29364011948928243 0.48608393827453256 0.17894260259345174 0.4152885964140296
+leaf_count=20 30 26 33 26
+internal_value=0 0.336065 -0.504002 -0.504604
+internal_weight=0 0.69991 0.887871 0.708929
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=169
+num_leaves=4
+num_cat=0
+split_feature=0 1 1
+split_gain=0.213154 0.142029 0.0248118
+threshold=6.3500000000000005 2.7500000000000004 3.2500000000000004
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0060590656832319985 0.033467541713519643 -0.034805405201345584 -0.0092448872918762543
+leaf_weight=2.7317035784944892 1.5746960826218126 1.5751552546862515 0.50041802646592248
+leaf_count=26 40 35 34
+internal_value=0 -0.0892369 -0.286428
+internal_weight=0 4.80728 2.07557
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=170
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=0.221718 0.161198 0.0172795 1.18333e-06
+threshold=1.8500000000000003 2.8500000000000001 5.8500000000000005 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=0.0075783224805589175 0.05142435755488111 -0.050131291722970019 -0.024743029561254407 -0.050519253861641557
+leaf_weight=3.3452281039208174 0.78572112694382656 0.14289050619117905 1.5494484566152094 0.17478933883830905
+leaf_count=31 33 29 21 21
+internal_value=0 -0.0555993 -0.29099 -0.503448
+internal_weight=0 5.21236 1.86713 0.31768
+internal_count=135 102 71 50
+shrinkage=0.1
+
+
+Tree=171
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=0.258632 0.0315886 2.79679e-05 7.95447e-07
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.007083227379587876 -0.051540763263921541 0.051050793492363911 -0.050416044715130143 -0.050152177773160556
+leaf_weight=0.28161000739783049 0.29988780571147799 0.38929420569911599 0.3707892308011651 0.16512299259193242
+leaf_count=21 23 29 29 33
+internal_value=0 0.325955 -0.507675 -0.503347
+internal_weight=0 0.670904 0.8358 0.535912
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=172
+num_leaves=4
+num_cat=0
+split_feature=0 1 1
+split_gain=0.191196 0.13506 0.0233355
+threshold=6.3500000000000005 2.7500000000000004 3.2500000000000004
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0061017435585366629 0.031807444312850972 -0.03394915153096139 -0.0088290769589882846
+leaf_weight=2.7175912284292281 1.5650639922823755 1.5509407422505321 0.48559159948490555
+leaf_count=26 40 35 34
+internal_value=0 -0.0848914 -0.279595
+internal_weight=0 4.75412 2.03653
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=173
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 1
+split_gain=0.2169 0.218983 0.000115077 3.86278e-07
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 3.1500000000000008
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050327581197717242 0.052386943611742301 0.003769073126210071 -0.052600140162303591 -0.050110753952929979
+leaf_weight=0.23522809986025084 0.74359757546335459 4.3294408731162548 0.4936566399410367 0.1262648596893996
+leaf_count=23 33 26 22 31
+internal_value=0 -0.0536477 -0.516075 -0.502518
+internal_weight=0 5.18459 0.85515 0.361493
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=174
+num_leaves=6
+num_cat=0
+split_feature=2 1 0 2 2
+split_gain=0.243552 0.0267225 1.96559e-05 2.31234e-06 2.04604e-07
+threshold=1.8 3.0500000000000003 5.7500000000000009 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050229870920282242 -0.051373868705858562 -0.014949696376094574 -0.050381520022183282 0.050715335855051773 -0.050231430191726892
+leaf_weight=0.15890863304957761 0.33236983185633995 0.29243588261306286 0.23916362691670656 0.25646420894190669 0.14643826079554856
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.404314 -0.508103 0.505296 -0.503245
+internal_weight=0 1.01041 0.717972 0.415373 0.385602
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=175
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=0.182491 0.154872 0.104169 0.136597
+threshold=5.1500000000000012 4.9500000000000011 4.6500000000000012 1.8
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=-0.057329453079004999 -0.052461144442879394 -0.050756724533726344 0.0026344633371479936 0.045396306640266809
+leaf_weight=0.35195329482667137 0.56995333358645428 0.1672432874329387 3.8669203091412783 1.2673056516796348
+leaf_count=21 33 24 22 35
+internal_value=0 0.0690772 0.111723 0.341865
+internal_weight=0 5.65342 5.30147 1.43455
+internal_count=135 102 81 59
+shrinkage=0.1
+
+
+Tree=176
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 1
+split_gain=0.207545 0.205101 9.00093e-05 3.2961e-07
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 3.1500000000000008
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050309861477872586 0.05233052563346146 0.0034510960340414613 -0.052379456239610302 -0.050101519759294659
+leaf_weight=0.22303770855069149 0.71430966444313515 4.3097928240895271 0.46874379087239504 0.1151352785527706
+leaf_count=23 33 26 22 31
+internal_value=0 -0.0521204 -0.514824 -0.502389
+internal_weight=0 5.11671 0.806917 0.338173
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=177
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 3
+split_gain=0.224247 0.00754173 8.30696e-07 1.7383e-07
+threshold=3.1500000000000004 4.9500000000000011 5.1500000000000012 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.05026398017816415 -0.050335321950674076 0.025215591619202751 -0.050126459121310897 -0.05044407116563069
+leaf_weight=0.16936040902510285 0.2508427994325757 0.41411922033876175 0.13709725474473089 0.3550043767318129
+leaf_count=20 30 26 33 26
+internal_value=0 0.324861 -0.503487 -0.50399
+internal_weight=0 0.58348 0.742944 0.605847
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=178
+num_leaves=5
+num_cat=0
+split_feature=0 3 1 0
+split_gain=0.197779 0.38808 0.0913256 0.058494
+threshold=6.5500000000000007 1.6500000000000001 2.7500000000000004 5.3000000000000016
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=0.022804871046748661 0.036570836844865638 -0.055641937470417693 -0.051028704876227661 -0.00022200894029880477
+leaf_weight=2.044154583010823 1.2646922776475547 1.2554044378921387 0.27934220863971848 1.2003008159808812
+leaf_count=21 29 22 36 27
+internal_value=0 -0.0790036 0.0910828 -0.0981382
+internal_weight=0 4.7792 3.5238 1.47964
+internal_count=135 106 84 63
+shrinkage=0.1
+
+
+Tree=179
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 3
+split_gain=0.197878 0.150414 0.0143828 1.23899e-06
+threshold=1.8500000000000003 2.8500000000000001 5.8500000000000005 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=0.0075852343099622552 0.051413539288586364 -0.050101223449467075 -0.025004470370900696 -0.050541282807761323
+leaf_weight=3.2162179769948125 0.70302348397672165 0.10970936366356898 1.4928700760938225 0.15349472407251596
+leaf_count=31 33 29 21 21
+internal_value=0 -0.052666 -0.288045 -0.503579
+internal_weight=0 4.97229 1.75607 0.263204
+internal_count=135 102 71 50
+shrinkage=0.1
+
+
+Tree=180
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 2
+split_gain=0.208411 0.0278909 1.83273e-05 5.22965e-07
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.0051640840924000809 -0.051355336238988192 0.05093968580180265 -0.050359951150525523 -0.05011934437396677
+leaf_weight=0.22890637535601852 0.25524355610832566 0.31803810968995094 0.31525980168953538 0.12661589763592929
+leaf_count=21 23 29 29 33
+internal_value=0 0.317818 -0.506807 -0.50291
+internal_weight=0 0.546944 0.697119 0.441876
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=181
+num_leaves=4
+num_cat=0
+split_feature=0 1 1
+split_gain=0.179643 0.123391 0.0281658
+threshold=6.3500000000000005 2.7500000000000004 3.2500000000000004
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0055897374019821013 0.031697845904227279 -0.034772619229713746 -0.0055993277793287529
+leaf_weight=2.5712158000096679 1.46758611430414 1.4510873265098778 0.42871559388004232
+leaf_count=26 40 35 34
+internal_value=0 -0.0864661 -0.281192
+internal_weight=0 4.45102 1.8798
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=182
+num_leaves=5
+num_cat=0
+split_feature=1 0 0 0
+split_gain=0.193837 0.349289 0.353769 0.00053671
+threshold=2.6500000000000008 6.0500000000000007 6.5500000000000007 5.5500000000000007
+decision_type=2 2 2 2
+left_child=-1 3 -3 -2
+right_child=1 2 -4 -5
+leaf_value=0.03095390408351258 -0.050278644854051924 0.043418676683427998 -0.028533175486455127 -0.055984502546735843
+leaf_weight=1.6161028519272802 0.1971102170646194 1.4517627716995778 1.2910114922560749 1.0073624593205748
+leaf_count=20 44 24 27 20
+internal_value=0 -0.101616 0.0955126 -0.550507
+internal_weight=0 3.94725 2.74277 1.20447
+internal_count=135 115 51 64
+shrinkage=0.1
+
+
+Tree=183
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 0 2
+split_gain=0.197829 0.0225828 1.27694e-05 3.18106e-06 1.15961e-07
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 4.9500000000000011 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050234794656590011 -0.051198577784733856 -0.014870984916524691 -0.050325229432498834 0.050857230920680389 -0.050201580854094409
+leaf_weight=0.14728559134528041 0.28327179769985378 0.24770877929404375 0.2008301499299705 0.18554091453552249 0.12187367223668844
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.403098 -0.507086 0.505818 -0.502785
+internal_weight=0 0.853684 0.605976 0.332827 0.322704
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=184
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.172885 0.134976 0.0820055 0.0514164
+threshold=5.1500000000000012 6.1500000000000012 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.056514030854721564 -0.05248939987175464 0.024077732203196183 0.0071701848639435101 -0.023750595256343269
+leaf_weight=0.30896293756086413 0.54128848260734219 2.4514547027647495 1.8141710748896005 0.76435207342728961
+leaf_count=21 33 20 28 33
+internal_value=0 0.0682136 -0.0782917 -0.0199567
+internal_weight=0 5.33894 2.88749 2.57852
+internal_count=135 102 82 61
+shrinkage=0.1
+
+
+Tree=185
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 1
+split_gain=0.191624 0.176079 5.82002e-05 2.466e-07
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 3.1500000000000008
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050279799609654056 0.052363674309388278 0.0027041276127203698 -0.052072488476460704 -0.050077690735629336
+leaf_weight=0.19311048788949839 0.65847604488953937 4.1701738238334656 0.42401016410440207 0.087826279690489173
+leaf_count=23 33 26 22 31
+internal_value=0 -0.0510967 -0.513329 -0.502166
+internal_weight=0 4.87512 0.704947 0.280937
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=186
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 0 2
+split_gain=0.18094 0.0224774 1.07282e-05 2.5981e-06 9.71727e-08
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 4.9500000000000011 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050211698360275739 -0.05113151805589148 -0.014238130000837507 -0.050307360313197415 0.05080088788196218 -0.050190077512904691
+leaf_weight=0.13295810553245246 0.26948037883266807 0.2405985195655376 0.18942813249304888 0.17122460063546896 0.11265788797754794
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.398793 -0.506728 0.505434 -0.502636
+internal_weight=0 0.812165 0.571566 0.304183 0.302086
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=187
+num_leaves=5
+num_cat=0
+split_feature=3 0 2 2
+split_gain=0.162927 0.122435 0.0985441 0.106243
+threshold=1.8500000000000003 4.9500000000000011 4.6500000000000012 1.8
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=-0.056224024884435356 -0.051385113257208084 -0.050605394661440532 0.0022665379125801064 0.045170566141719576
+leaf_weight=0.29228967335075129 0.53298877913039167 0.12955806963145722 3.7043819837272167 1.0923524377867577
+leaf_count=21 33 24 22 35
+internal_value=0 0.0665856 0.103896 0.350155
+internal_weight=0 5.21858 4.92629 1.22191
+internal_count=135 102 81 59
+shrinkage=0.1
+
+
+Tree=188
+num_leaves=4
+num_cat=0
+split_feature=3 1 1
+split_gain=0.181153 0.133002 0.013548
+threshold=1.8500000000000003 2.8500000000000001 3.2500000000000004
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0072791573775422835 0.051430039896172508 -0.024307048229962769 -0.051343392887677211
+leaf_weight=3.1026412984356284 0.64711313834413875 1.452414534287527 0.21245572483167041
+leaf_count=31 33 40 31
+internal_value=0 -0.0495594 -0.277572
+internal_weight=0 4.76751 1.66487
+internal_count=135 102 71
+shrinkage=0.1
+
+
+Tree=189
+num_leaves=5
+num_cat=0
+split_feature=3 1 1 2
+split_gain=0.170624 0.0248629 9.70676e-06 2.86446e-07
+threshold=1.0500000000000003 3.2500000000000004 2.7500000000000004 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.0033719668321638037 -0.05109984812672589 0.050860939448370945 -0.050304611861806549 -0.050100666954149414
+leaf_weight=0.18926366372033956 0.21329123736359176 0.26406601700000465 0.28552680998109281 0.090758474892936647
+leaf_count=21 23 29 33 29
+internal_value=0 0.310344 -0.505609 -0.502554
+internal_weight=0 0.45333 0.589577 0.376285
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=190
+num_leaves=4
+num_cat=0
+split_feature=0 1 1
+split_gain=0.164626 0.117087 0.0303142
+threshold=6.3500000000000005 2.7500000000000004 3.2500000000000004
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0054348892395167415 0.031037157546601437 -0.035237513937189116 -0.0033833052225767388
+leaf_weight=2.4677680358290672 1.3915917621925471 1.377672523492947 0.3814779656240716
+leaf_count=26 40 35 34
+internal_value=0 -0.0861724 -0.283298
+internal_weight=0 4.22692 1.75915
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=191
+num_leaves=5
+num_cat=0
+split_feature=1 0 0 0
+split_gain=0.174798 0.325341 0.326013 0.000374696
+threshold=2.6500000000000008 6.0500000000000007 6.5500000000000007 5.5500000000000007
+decision_type=2 2 2 2
+left_child=-1 3 -3 -2
+right_child=1 2 -4 -5
+leaf_value=0.029902683159296783 -0.050275349464518226 0.042557107464768845 -0.028143805320427314 -0.055495746417066893
+leaf_weight=1.5532584795728324 0.1601191330701115 1.3899272284470501 1.2288130475208161 0.97287379717454325
+leaf_count=20 44 24 27 20
+internal_value=0 -0.0998808 0.0938154 -0.54758
+internal_weight=0 3.75173 2.61874 1.13299
+internal_count=135 115 51 64
+shrinkage=0.1
+
+
+Tree=192
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 3
+split_gain=0.161421 0.00585424 3.88662e-07 6.87484e-08
+threshold=3.1500000000000004 4.9500000000000011 5.1500000000000012 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.050189483248539293 -0.050270219700492426 0.023902185513310508 -0.050098717960498279 -0.050347922178196738
+leaf_weight=0.1165999141521752 0.19451521732844407 0.30984241119585926 0.10017319687176496 0.2746276194229722
+leaf_count=20 30 26 33 26
+internal_value=0 0.310898 -0.502775 -0.503157
+internal_weight=0 0.426442 0.569316 0.469143
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=193
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.156934 0.128646 0.0672057 0.0428387
+threshold=5.1500000000000012 6.1500000000000012 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.055802261149981984 -0.052481388362431547 0.023424153093183381 0.0052442955887791786 -0.023973504268944942
+leaf_weight=0.26987226458732072 0.49603747553192074 2.3770239758305252 1.7337930956855419 0.70621051592752326
+leaf_count=21 33 20 28 33
+internal_value=0 0.0644449 -0.0844958 -0.0321222
+internal_weight=0 5.0869 2.70988 2.44
+internal_count=135 102 82 61
+shrinkage=0.1
+
+
+Tree=194
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 3
+split_gain=0.171899 0.155444 3.92039e-05 1.86447e-07
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050068093740251632 0.052352194703251864 0.002358578035360825 -0.051833626236687441 -0.050260765911104781
+leaf_weight=0.072057194425724336 0.59312287438660849 4.059398990124464 0.38720893044956023 0.1657639192417264
+leaf_count=29 33 26 22 25
+internal_value=0 -0.0478932 -0.512129 -0.502024
+internal_weight=0 4.68443 0.62503 0.237821
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=195
+num_leaves=5
+num_cat=0
+split_feature=3 1 1 2
+split_gain=0.149204 0.0241686 9.10539e-06 2.09838e-07
+threshold=1.0500000000000003 3.2500000000000004 2.7500000000000004 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.0013782132493358264 -0.051088043587924695 0.050784062379499575 -0.050275115996581604 -0.050088980935936105
+leaf_weight=0.1715865102596581 0.19611104403156787 0.23410125751979649 0.25930646224878728 0.079022969934158013
+leaf_count=21 23 29 33 29
+internal_value=0 0.298878 -0.505459 -0.502316
+internal_weight=0 0.405688 0.53444 0.338329
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=196
+num_leaves=5
+num_cat=0
+split_feature=3 0 0 1
+split_gain=0.14767 0.10398 0.0672941 0.0442497
+threshold=1.8500000000000003 6.2500000000000009 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.055539559249630457 -0.051358424207179926 0.022418554440687508 0.0065392912948884817 -0.023167596323464108
+leaf_weight=0.25545507587958161 0.48762768646702159 2.2198642024304718 1.8157439893111589 0.6927016011904924
+leaf_count=21 33 21 27 33
+internal_value=0 0.0630121 -0.0664366 -0.016642
+internal_weight=0 4.98376 2.7639 2.50845
+internal_count=135 102 81 60
+shrinkage=0.1
+
+
+Tree=197
+num_leaves=4
+num_cat=0
+split_feature=3 1 1
+split_gain=0.162016 0.115755 0.0130632
+threshold=1.8500000000000003 2.8500000000000001 3.2500000000000004
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0068687305915284816 0.051393884543688206 -0.023219112353854154 -0.051347460038066228
+leaf_weight=3.0070481346920133 0.58114715386182059 1.3944063710514454 0.18728099891450245
+leaf_count=31 33 40 31
+internal_value=0 -0.0465023 -0.265497
+internal_weight=0 4.58874 1.58169
+internal_count=135 102 71
+shrinkage=0.1
+
+
+Tree=198
+num_leaves=6
+num_cat=0
+split_feature=3 1 0 0 2
+split_gain=0.140003 0.0184035 6.07998e-06 1.67612e-06 5.39842e-08
+threshold=0.45000000000000007 3.0500000000000003 5.7500000000000009 4.9500000000000011 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050163201046103272 -0.050945951725344711 -0.013691846479212953 -0.050257767682432689 0.050705156637343624 -0.050159543581118959
+leaf_weight=0.10035064816474916 0.22332224459387359 0.19094805466011169 0.15294058714061975 0.13230125559493899 0.08823507244233042
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.398264 -0.5057 0.504714 -0.502218
+internal_weight=0 0.655446 0.464498 0.232652 0.241176
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=199
+num_leaves=4
+num_cat=0
+split_feature=0 1 1
+split_gain=0.142432 0.109276 0.0316342
+threshold=6.3500000000000005 2.7500000000000004 3.2500000000000004
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0054638575502240355 0.029615473712829937 -0.034880133338682055 -0.00052746227456480636
+leaf_weight=2.400256315479055 1.3222262096824122 1.3222025220748035 0.3362293880782089
+leaf_count=26 40 35 34
+internal_value=0 -0.0817537 -0.279155
+internal_weight=0 4.05869 1.65843
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=200
+num_leaves=5
+num_cat=0
+split_feature=1 0 0 0
+split_gain=0.158449 0.311364 0.295641 0.000269625
+threshold=2.6500000000000008 6.0500000000000007 6.5500000000000007 5.5500000000000007
+decision_type=2 2 2 2
+left_child=-1 3 -3 -2
+right_child=1 2 -4 -5
+leaf_value=0.028928943575047796 -0.050298975624282642 0.041785801509184109 -0.027102095280917605 -0.055057195169992704
+leaf_weight=1.501111594494432 0.13614733237773202 1.3351774637121709 1.1679461167659608 0.95047396281734109
+leaf_count=20 44 24 27 20
+internal_value=0 -0.0976137 0.0964302 -0.54461
+internal_weight=0 3.58974 2.50312 1.08662
+internal_count=135 115 51 64
+shrinkage=0.1
+
+
+Tree=201
+num_leaves=6
+num_cat=0
+split_feature=2 1 0 2 2
+split_gain=0.133271 0.0169799 5.09289e-06 6.51126e-07 4.26447e-08
+threshold=1.8 3.0500000000000003 5.7500000000000009 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050132379727178947 -0.050889762166305141 -0.014498463139965485 -0.050244290693337405 0.050489703990156509 -0.050155125453347008
+leaf_weight=0.079806745750829564 0.21309290244244039 0.185428433236666 0.14500902756117284 0.14126417064107957 0.08512567391153425
+leaf_count=20 21 24 22 23 25
+internal_value=0 -0.399074 -0.505375 0.503607 -0.502113
+internal_weight=0 0.628656 0.443228 0.221071 0.230135
+internal_count=135 92 68 43 47
+shrinkage=0.1
+
+
+Tree=202
+num_leaves=6
+num_cat=0
+split_feature=2 0 0 2 2
+split_gain=0.144656 0.112348 0.0572718 0.0386074 0.0374737
+threshold=5.1500000000000012 6.1500000000000012 4.9500000000000011 4.1500000000000012 1.6500000000000001
+decision_type=2 2 2 2 2
+left_child=1 2 -1 4 -4
+right_child=-2 -3 3 -5 -6
+leaf_value=-0.055160566056496586 -0.052529992877952097 0.022146399688641974 -0.050414982112320685 -0.010326057617966252 0.030813547043469575
+leaf_weight=0.23616203252458975 0.46016990765929205 2.3078724849037826 0.064946671598591244 1.8259862987324593 0.45249864622019231
+leaf_count=21 33 20 20 20 21
+internal_value=0 0.0611724 -0.0822349 -0.0349335 0.206182
+internal_weight=0 4.88747 2.57959 2.34343 0.517445
+internal_count=135 102 82 61 41
+shrinkage=0.1
+
+
+Tree=203
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 3
+split_gain=0.155629 0.140913 2.50099e-05 1.61148e-07
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050054162770584887 0.052401021041165355 0.0022490777905420202 -0.051576555434990103 -0.050252092262706577
+leaf_weight=0.056434685015119501 0.53935048496350635 3.9587655533105135 0.35844209033530205 0.15172321337740868
+leaf_count=29 33 26 22 25
+internal_value=0 -0.0442679 -0.510703 -0.501984
+internal_weight=0 4.52537 0.5666 0.208158
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=204
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 3
+split_gain=0.124986 0.00467255 2.18046e-07 4.29049e-08
+threshold=3.1500000000000004 4.9500000000000011 5.1500000000000012 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.050142631619696947 -0.050223634174510902 0.022989970785517021 -0.050077216425849017 -0.050291337973722351
+leaf_weight=0.084405087865889072 0.15927378088235855 0.2543840347789228 0.075116234424058334 0.22700746054761112
+leaf_count=20 30 26 33 26
+internal_value=0 0.297547 -0.502331 -0.502634
+internal_weight=0 0.338789 0.461397 0.386281
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=205
+num_leaves=5
+num_cat=0
+split_feature=3 0 0 1
+split_gain=0.132893 0.0887883 0.0574602 0.0366288
+threshold=1.8500000000000003 6.2500000000000009 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.054911718584045116 -0.051328251706380425 0.020853003245514382 0.0055285218459393297 -0.022249678583634549
+leaf_weight=0.22419290588004548 0.44410277716815455 2.1645061695016921 1.7560981502756479 0.65054633049294341
+leaf_count=21 33 21 27 33
+internal_value=0 0.0585147 -0.0649095 -0.0198028
+internal_weight=0 4.79534 2.63084 2.40664
+internal_count=135 102 81 60
+shrinkage=0.1
+
+
+Tree=206
+num_leaves=5
+num_cat=0
+split_feature=1 0 0 0
+split_gain=0.145985 0.290039 0.264649 0.000106233
+threshold=2.6500000000000008 6.0500000000000007 6.5500000000000007 5.5500000000000007
+decision_type=2 2 2 2
+left_child=-1 3 -3 -2
+right_child=1 2 -4 -5
+leaf_value=0.028025167188177089 -0.050317348328984469 0.040314213500634188 -0.025783208469217684 -0.053488864676996643
+leaf_weight=1.4694446250796316 0.11892910301685355 1.2989388862624767 1.1351311281323431 0.94344036257825792
+leaf_count=20 44 24 27 20
+internal_value=0 -0.095381 0.0948961 -0.531338
+internal_weight=0 3.49644 2.43407 1.06237
+internal_count=135 115 51 64
+shrinkage=0.1
+
+
+Tree=207
+num_leaves=5
+num_cat=0
+split_feature=3 1 1 2
+split_gain=0.117719 0.0211871 5.53776e-06 1.23927e-07
+threshold=1.0500000000000003 3.2500000000000004 2.7500000000000004 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=-0.0013491712210333268 -0.050936459229025378 0.050713656350990323 -0.050234465767498328 -0.050075826369443056
+leaf_weight=0.1336405819747597 0.15942446631379426 0.18830308027099815 0.21703083510510623 0.063694573706015931
+leaf_count=21 23 29 33 29
+internal_value=0 0.291021 -0.504658 -0.501985
+internal_weight=0 0.321944 0.44015 0.280725
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=208
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.140223 0.209279 0.119874 0.0611082
+threshold=4.9500000000000011 6.5500000000000007 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.054552427324317289 -0.035204004969726352 0.023644758097256375 0.035930255612175978 0.001077365838885701
+leaf_weight=0.20866635598940808 1.75292490440188 0.922222624067217 1.5493286112323406 0.74494278943166115
+leaf_count=21 21 23 32 38
+internal_value=0 -0.149167 0.180137 0.246136
+internal_weight=0 2.67515 2.50294 2.29427
+internal_count=135 44 91 70
+shrinkage=0.1
+
+
+Tree=209
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.153224 0.188886 0.0790678 0.023699
+threshold=4.9500000000000011 6.5500000000000007 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=0.036119048546454827 0.036307637417703063 -0.018217342309562106 -0.032522024206931281 -0.007917558531526335
+leaf_weight=0.23500878096092528 1.7970162155106666 0.9828230277635156 1.3467540710698811 0.55189892824273545
+leaf_count=21 21 23 32 38
+internal_value=0 0.170301 -0.185974 -0.2537
+internal_weight=0 2.77984 2.13366 1.89865
+internal_count=135 44 91 70
+shrinkage=0.1
+
+
+Tree=210
+num_leaves=5
+num_cat=0
+split_feature=3 1 1 2
+split_gain=0.112032 0.0196922 4.24716e-06 1.04204e-07
+threshold=1.0500000000000003 3.2500000000000004 2.7500000000000004 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=-0.00029642576708859388 -0.050856702165801342 0.050680447400627548 -0.050222312700353246 -0.050073445416059209
+leaf_weight=0.1315357971470803 0.14793236809782684 0.17876883468125015 0.20445012545678765 0.061063845350872725
+leaf_count=21 23 29 33 29
+internal_value=0 0.290717 -0.504273 -0.501881
+internal_weight=0 0.310305 0.413446 0.265514
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=211
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.132999 0.0855399 0.0465559 0.0299334
+threshold=5.1500000000000012 6.1500000000000012 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.054159722761396169 -0.052509293366158762 0.019912489667619215 0.004078078322641468 -0.02180106894496088
+leaf_weight=0.19405277213081751 0.42631160106975569 2.2436581356450915 1.6129202800802889 0.61827324819751073
+leaf_count=21 33 20 28 33
+internal_value=0 0.0583982 -0.0717917 -0.0309314
+internal_weight=0 4.6689 2.42525 2.23119
+internal_count=135 102 82 61
+shrinkage=0.1
+
+
+Tree=212
+num_leaves=5
+num_cat=0
+split_feature=2 1 1 3
+split_gain=0.142506 0.12133 0.016643 0.00548205
+threshold=5.1500000000000012 2.8500000000000001 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 -1 -3 -4
+right_child=-2 2 3 -5
+leaf_value=0.0071502254743915934 0.052379796349342533 -0.035596384445038903 -0.05004281141528736 -0.0081659050546333527
+leaf_weight=2.9568874510005116 0.49319597473368038 0.99026272585615494 0.034092980320565403 0.37624658702407032
+leaf_count=34 33 23 23 22
+internal_value=0 -0.0433412 -0.285793 -0.116452
+internal_weight=0 4.35749 1.4006 0.41034
+internal_count=135 102 68 45
+shrinkage=0.1
+
+
+Tree=213
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 0
+split_gain=0.104752 0.00432205 1.4261e-07 2.30841e-08
+threshold=3.1500000000000004 4.9500000000000011 5.1500000000000012 6.0500000000000007
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.050125785979591435 -0.050251570781964898 0.021908428118588234 -0.050065477677943865 -0.050197571581759352
+leaf_weight=0.072249913355335579 0.20192694710567596 0.21827336144633591 0.062259292521048337 0.13021815964020789
+leaf_count=20 32 26 33 24
+internal_value=0 0.289258 -0.502044 -0.502304
+internal_weight=0 0.290523 0.394404 0.332145
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=214
+num_leaves=5
+num_cat=0
+split_feature=3 0 2 2
+split_gain=0.126166 0.0681672 0.0952591 0.067358
+threshold=1.8500000000000003 4.9500000000000011 4.6500000000000012 1.8
+decision_type=2 2 2 2
+left_child=1 -1 3 -3
+right_child=-2 2 -4 -5
+leaf_value=-0.053926194993417956 -0.051400348911527595 -0.050417888002533662 0.00068342262843478971 0.045328027471841129
+leaf_weight=0.1839810736128128 0.42228891700506199 0.080561840906739124 3.4991453501861542 0.83544864039868116
+leaf_count=21 33 24 22 35
+internal_value=0 0.0571357 0.0819878 0.369073
+internal_weight=0 4.59914 4.41516 0.91601
+internal_count=135 102 81 59
+shrinkage=0.1
+
+
+Tree=215
+num_leaves=6
+num_cat=0
+split_feature=2 0 0 2 2
+split_gain=0.141353 0.140573 0.118892 1.51771e-05 1.14602e-07
+threshold=4.7500000000000009 6.5500000000000007 4.9500000000000011 4.2500000000000009 1.8
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=0.033548605015773593 0.022068266333191366 -0.020763991125947304 -0.050034815184643068 -0.051231763178058935 -0.050252002745837035
+leaf_weight=0.21290252468315876 2.7476880134781827 1.0625357762910423 0.028230691212229431 0.560606385814026 0.17427973740268499
+leaf_count=21 26 24 24 20 20
+internal_value=0 0.101239 -0.325288 -0.509637 -0.502217
+internal_weight=0 3.81022 0.976019 0.763117 0.20251
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=216
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 2
+split_gain=0.100326 0.0133288 2.70605e-06 1.25627e-06 2.46393e-08
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050119837369660053 -0.050739946758914502 -0.014102654992063174 -0.050197868630642128 0.05067669948698536 -0.050119980578799794
+leaf_weight=0.068723365198820829 0.15733599266968668 0.14457204705104232 0.11428457743022592 0.098690832732245312 0.063006650889292359
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.394759 -0.504381 0.504481 -0.501702
+internal_weight=0 0.479199 0.334627 0.167414 0.177291
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=217
+num_leaves=5
+num_cat=0
+split_feature=3 0 0 1
+split_gain=0.119488 0.066335 0.042065 0.0357233
+threshold=1.8500000000000003 6.2500000000000009 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.053616869449137697 -0.051350924682233547 0.018665376971845962 0.0054173723856815468 -0.023323847049756815
+leaf_weight=0.17028302338440005 0.40173821698408563 2.0792618810664862 1.6611605319194498 0.58466237864922721
+leaf_count=21 33 21 27 33
+internal_value=0 0.0557078 -0.0569822 -0.0206492
+internal_weight=0 4.49537 2.41611 2.24582
+internal_count=135 102 81 60
+shrinkage=0.1
+
+
+Tree=218
+num_leaves=4
+num_cat=0
+split_feature=3 1 1
+split_gain=0.129527 0.0733038 0.0134136
+threshold=1.8500000000000003 2.8500000000000001 3.2500000000000004
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.0051712324035150699 0.05137156649762166 -0.019424761576281757 -0.05129549539074113
+leaf_weight=2.7934568277560174 0.46516853524371971 1.2729128454811869 0.14734307024627913
+leaf_count=31 33 40 31
+internal_value=0 -0.0423343 -0.227312
+internal_weight=0 4.21371 1.42026
+internal_count=135 102 71
+shrinkage=0.1
+
+
+Tree=219
+num_leaves=5
+num_cat=0
+split_feature=3 1 1 2
+split_gain=0.0938978 0.0167556 2.94077e-06 6.74562e-08
+threshold=1.0500000000000003 3.2500000000000004 2.7500000000000004 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=-0.00044656781793709428 -0.050769468373620091 0.05061368339733581 -0.050194397478577929 -0.050062776225852028
+leaf_weight=0.11242093588225543 0.1254735590191558 0.15004397486336529 0.17433636146597564 0.050135289115132771
+leaf_count=21 23 29 33 29
+internal_value=0 0.287432 -0.503817 -0.50165
+internal_weight=0 0.262465 0.349945 0.224472
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=220
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.118658 0.0700065 0.0375799 0.0314087
+threshold=5.1500000000000012 6.1500000000000012 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.053438545680323774 -0.052504994252467158 0.018279903749841456 0.0041875141765202149 -0.02318583124457041
+leaf_weight=0.16077963169664178 0.38406163174659003 2.1696155592799187 1.5353513807058337 0.57659119646996249
+leaf_count=21 33 20 28 33
+internal_value=0 0.0543162 -0.0683377 -0.0328581
+internal_weight=0 4.44234 2.27272 2.11194
+internal_count=135 102 82 61
+shrinkage=0.1
+
+
+Tree=221
+num_leaves=6
+num_cat=0
+split_feature=2 0 0 2 2
+split_gain=0.127424 0.129239 0.103337 1.10192e-05 8.2636e-08
+threshold=4.7500000000000009 6.5500000000000007 4.9500000000000011 4.2500000000000009 1.8
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=0.03237057393084055 0.020922183392830054 -0.020621797985204717 -0.05003048970256644 -0.051109028886274346 -0.050229283761174873
+leaf_weight=0.19022655801381905 2.6986492068972443 1.0363987926393745 0.024091314873658121 0.50801222049631178 0.1583703737705946
+leaf_count=21 26 24 24 20 20
+internal_value=0 0.0939459 -0.328902 -0.508696 -0.50203
+internal_weight=0 3.73505 0.8807 0.690474 0.182462
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=222
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 2
+split_gain=0.0888112 0.012104 1.94604e-06 8.22143e-07 1.81148e-08
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050111723606179215 -0.05066124920301808 -0.014209200101506954 -0.050178692700636809 0.05058889085656524 -0.05010797386259043
+leaf_weight=0.062961650895886123 0.14423673297278583 0.13302581943571568 0.10277739667799324 0.084660823689773679 0.055933380441274494
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.393541 -0.503954 0.503854 -0.501538
+internal_weight=0 0.435973 0.302948 0.147622 0.158711
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=223
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.113764 0.0617146 0.0350991 0.0293311
+threshold=5.1500000000000012 6.1500000000000012 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.053155869683512449 -0.052430826901594091 0.017417408685886808 0.0042088086815772622 -0.022678273151212069
+leaf_weight=0.14954857737757299 0.37002418685005967 2.1445989941712469 1.5153782218694689 0.55408603430259962
+leaf_count=21 33 20 28 33
+internal_value=0 0.0532041 -0.0637092 -0.0299004
+internal_weight=0 4.36361 2.21901 2.06946
+internal_count=135 102 82 61
+shrinkage=0.1
+
+
+Tree=224
+num_leaves=6
+num_cat=0
+split_feature=2 0 0 2 2
+split_gain=0.121951 0.120822 0.0932453 9.17034e-06 6.84984e-08
+threshold=4.7500000000000009 6.5500000000000007 4.9500000000000011 4.2500000000000009 1.8
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=0.030305285754845587 0.020254311130673452 -0.020149424585867853 -0.050027826063978514 -0.051043574948948879 -0.050217207235634845
+leaf_weight=0.18090228567598376 2.678064137580805 1.022784682922065 0.021880118642002344 0.48140395991504192 0.15024949563667178
+leaf_count=21 26 24 24 20 20
+internal_value=0 0.0908814 -0.33232 -0.508196 -0.501931
+internal_weight=0 3.70085 0.834436 0.653534 0.17213
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=225
+num_leaves=6
+num_cat=0
+split_feature=2 1 2 2 2
+split_gain=0.0842131 0.0112024 1.66021e-06 1.91603e-07 1.55852e-08
+threshold=1.8 3.0500000000000003 4.4500000000000011 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050100753869047832 -0.050626524900858394 -0.014979700080560619 -0.050168808007006349 0.050343774806352493 -0.050101394869149524
+leaf_weight=0.051008404232561595 0.13685649156104773 0.12987552728736773 0.097220665076747523 0.089133025263436139 0.052984654466854408
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.393491 -0.503746 0.502553 -0.50145
+internal_weight=0 0.416937 0.287062 0.140141 0.150205
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=226
+num_leaves=4
+num_cat=0
+split_feature=2 1 2
+split_gain=0.108941 0.0580027 0.070422
+threshold=5.1500000000000012 2.8500000000000001 3.5500000000000003
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=-0.0029109686062383693 -0.05235876193707855 -0.050526274235767901 0.028856242266864521
+leaf_weight=2.8923480500234291 0.35650098288897414 0.1224876501073594 1.2751454534009097
+leaf_count=34 33 44 24
+internal_value=0 0.0517194 0.218992
+internal_weight=0 4.28998 1.39763
+internal_count=135 102 68
+shrinkage=0.1
+
+
+Tree=227
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 3
+split_gain=0.116574 0.100331 1.02512e-05 6.02236e-08
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050040208393764329 0.052233568788199992 0.0014461138130521887 -0.051196741104595926 -0.050187158474726802
+leaf_weight=0.037768885784316697 0.40836653683800239 3.6419405564665794 0.26398302591405809 0.10660876269685104
+leaf_count=29 33 26 22 25
+internal_value=0 -0.038241 -0.508262 -0.501487
+internal_weight=0 4.0503 0.408361 0.144378
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=228
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 2
+split_gain=0.0779029 0.0103489 1.44925e-06 6.26565e-07 1.23714e-08
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050098232259699109 -0.050599739732199993 -0.015414203676998472 -0.050158491594371628 0.050545389384350825 -0.050096297320112483
+leaf_weight=0.054721527267247438 0.13018489256501198 0.12334083946188912 0.091468788566999124 0.073326313518919051 0.049178757646586746
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.394246 -0.503593 0.503543 -0.501367
+internal_weight=0 0.394173 0.270832 0.128048 0.140648
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=229
+num_leaves=5
+num_cat=0
+split_feature=3 0 0 1
+split_gain=0.104573 0.0521463 0.0329004 0.0310062
+threshold=1.8500000000000003 6.2500000000000009 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.052936343240317589 -0.051405634652911848 0.016890482754453224 0.0047536871417962791 -0.023262411017173287
+leaf_weight=0.13659975747577879 0.35523378738434974 1.9838100313208997 1.5716556175611915 0.52765912743052457
+leaf_count=21 33 21 27 33
+internal_value=0 0.0508871 -0.0538239 -0.0228811
+internal_weight=0 4.21972 2.23591 2.09931
+internal_count=135 102 81 60
+shrinkage=0.1
+
+
+Tree=230
+num_leaves=5
+num_cat=0
+split_feature=1 0 0 0
+split_gain=0.113722 0.34609 0.238812 0.000910288
+threshold=2.6500000000000008 6.0500000000000007 6.5500000000000007 5.5500000000000007
+decision_type=2 2 2 2
+left_child=-1 3 -3 -2
+right_child=1 2 -4 -5
+leaf_value=0.026169486883738397 -0.050278118084217976 0.043361881555722348 -0.023173604947581809 -0.061289611741961597
+leaf_weight=1.2991867968812583 0.082417766330764031 1.1720302053727212 0.9994723058771342 0.84247337648412213
+leaf_count=20 44 24 27 20
+internal_value=0 -0.0908109 0.127378 -0.603084
+internal_weight=0 3.09639 2.1715 0.924891
+internal_count=135 115 51 64
+shrinkage=0.1
+
+
+Tree=231
+num_leaves=6
+num_cat=0
+split_feature=2 1 2 2 2
+split_gain=0.0730204 0.00958312 1.23118e-06 1.42472e-07 9.40396e-09
+threshold=1.8 3.0500000000000003 4.4500000000000011 1.4500000000000002 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050087885303380465 -0.050567556776266211 -0.016157743235250027 -0.050149514975657096 0.050315953035938825 -0.050094159715693531
+leaf_weight=0.042527310084551566 0.12345350318355486 0.12035132973687725 0.086488348722923533 0.076955683645792305 0.047569374699378393
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.394526 -0.503397 0.502348 -0.501299
+internal_weight=0 0.377863 0.257511 0.119483 0.134058
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=232
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.104203 0.143375 0.0669303 0.0436201
+threshold=4.9500000000000011 6.5500000000000007 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.052725984393321157 -0.0299575636102365 0.02072032968943141 0.032356315126479462 -0.00058005061016059894
+leaf_weight=0.12692788764252361 1.6636577558820138 0.84019463649019588 1.3148337078746406 0.57924510352313507
+leaf_count=21 21 23 32 38
+internal_value=0 -0.129521 0.175728 0.222838
+internal_weight=0 2.50385 2.02101 1.89408
+internal_count=135 44 91 70
+shrinkage=0.1
+
+
+Tree=233
+num_leaves=6
+num_cat=0
+split_feature=2 0 0 2 2
+split_gain=0.113088 0.107852 0.0815427 7.35547e-06 4.53549e-08
+threshold=4.7500000000000009 6.5500000000000007 4.9500000000000011 4.2500000000000009 1.8
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=0.030785331430489699 0.019190528867672235 -0.019810446505662972 -0.050022311515837019 -0.050985605490184063 -0.050197411118273319
+leaf_weight=0.15432517003500823 2.6333335572853689 0.97031695675104834 0.016619493078906089 0.44434484513476485 0.13459630799479785
+leaf_count=21 26 24 24 20 20
+internal_value=0 0.0868915 -0.339945 -0.507806 -0.501782
+internal_weight=0 3.60365 0.749886 0.595561 0.151216
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=234
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 3
+split_gain=0.0706923 0.00304056 4.95837e-08 1.1757e-08
+threshold=3.1500000000000004 4.9500000000000011 5.1500000000000012 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.050090102586898416 -0.050138925180977956 0.02117776635750715 -0.050053686441712514 -0.050185093390250596
+leaf_weight=0.04810460185399279 0.092353074171114727 0.14915668475441635 0.046934622747357935 0.13695525249931961
+leaf_count=20 30 26 33 26
+internal_value=0 0.282284 -0.501473 -0.501665
+internal_weight=0 0.197261 0.276243 0.229308
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=235
+num_leaves=5
+num_cat=0
+split_feature=3 0 0 1
+split_gain=0.102013 0.0456082 0.0281125 0.0290963
+threshold=1.8500000000000003 6.2500000000000009 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.052513096606703648 -0.051426369510163786 0.016110465870504628 0.0045723808271768583 -0.023262331859482344
+leaf_weight=0.11771844609756987 0.3468163716897833 1.9538765712641175 1.53268259158358 0.4974310899269766
+leaf_count=21 33 21 27 33
+internal_value=0 0.0505465 -0.0500279 -0.0224785
+internal_weight=0 4.10171 2.14783 2.03011
+internal_count=135 102 81 60
+shrinkage=0.1
+
+
+Tree=236
+num_leaves=5
+num_cat=0
+split_feature=3 3 3 3
+split_gain=0.110001 0.0536394 0.00379721 2.96056e-07
+threshold=1.8500000000000003 1.4500000000000002 1.2500000000000002 0.35000000000000003
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050060917608232613 0.051435888197719763 0.00013324872219137621 -0.030473911772210434 -0.050370085819062896
+leaf_weight=0.041813292744336976 0.39646726334467519 3.488656165311113 0.2414939037989825 0.1194705644447822
+leaf_count=36 33 25 20 21
+internal_value=0 -0.03856 -0.384088 -0.502899
+internal_weight=0 3.89143 0.402778 0.161284
+internal_count=135 102 77 57
+shrinkage=0.1
+
+
+Tree=237
+num_leaves=5
+num_cat=0
+split_feature=3 1 1 2
+split_gain=0.0663353 0.0127273 1.31444e-06 3.28334e-08
+threshold=1.0500000000000003 3.2500000000000004 2.7500000000000004 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=-0.0022077125262207069 -0.050602770114215684 0.050483181905443486 -0.050156675616936902 -0.05005220955096959
+leaf_weight=0.080761422868818045 0.091391555673908442 0.10602326173102485 0.13157041795784608 0.039005349244689569
+leaf_count=21 23 29 33 29
+internal_value=0 0.277008 -0.502967 -0.501328
+internal_weight=0 0.186785 0.261967 0.170576
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=238
+num_leaves=4
+num_cat=0
+split_feature=2 1 2
+split_gain=0.100687 0.0526519 0.055686
+threshold=5.1500000000000012 2.8500000000000001 3.5500000000000003
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=-0.00283804808832048 -0.052443518918641553 -0.050471519289104642 0.027618157677100082
+leaf_weight=2.7661548838950694 0.33068677963456128 0.098904034646693506 1.1906569730490444
+leaf_count=34 33 44 24
+internal_value=0 0.0494153 0.21629
+internal_weight=0 4.05572 1.28956
+internal_count=135 102 68
+shrinkage=0.1
+
+
+Tree=239
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 3
+split_gain=0.10662 0.0816622 5.81246e-06 3.51785e-08
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050029229099500652 0.05231602242971372 0.00082080847375386526 -0.051004766460110644 -0.050159396165101434
+leaf_weight=0.027210231404751872 0.37286194000625966 3.5170823456719518 0.22222375569981523 0.087616167729720459
+leaf_count=29 33 26 22 25
+internal_value=0 -0.0368532 -0.507063 -0.501286
+internal_weight=0 3.85413 0.33705 0.114826
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=240
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 2
+split_gain=0.0607095 0.00811074 9.0194e-07 3.56345e-07 5.14848e-09
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 5.0500000000000007
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050077642852300756 -0.050515640984692661 -0.016234673303443824 -0.050125913939386993 0.050463482346296343 -0.050080959326278499
+leaf_weight=0.041154393169563264 0.10771110438508912 0.10247787483967841 0.072433379245921969 0.057212410611100495 0.039297508075833321
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.394621 -0.503092 0.503021 -0.501101
+internal_weight=0 0.32192 0.219442 0.0983668 0.111731
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=241
+num_leaves=5
+num_cat=0
+split_feature=3 2 0 1
+split_gain=0.0955371 0.127922 0.0696617 0.0637322
+threshold=1.5500000000000003 5.3500000000000005 5.8500000000000005 3.0500000000000003
+decision_type=2 2 2 2
+left_child=2 -2 3 -1
+right_child=1 -3 -4 -5
+leaf_value=0.048411831777541783 0.023642454229113347 -0.052472019319321876 -0.022940387701403903 -0.050447466120608214
+leaf_weight=0.27782391296932507 1.9665105877793396 0.24873531761113543 1.7444002011325208 0.085212727659381926
+leaf_count=29 20 28 21 37
+internal_value=0 0.150961 -0.146462 0.252074
+internal_weight=0 2.21525 2.10744 0.363037
+internal_count=135 48 87 66
+shrinkage=0.1
+
+
+Tree=242
+num_leaves=5
+num_cat=0
+split_feature=1 0 0 0
+split_gain=0.102103 0.350871 0.219425 0.000998262
+threshold=2.6500000000000008 6.0500000000000007 6.5500000000000007 5.5500000000000007
+decision_type=2 2 2 2
+left_child=-1 3 -3 -2
+right_child=1 2 -4 -5
+leaf_value=0.025233385835823158 -0.050281117164962953 0.043593163766102332 -0.022027229795402965 -0.063017175283632071
+leaf_weight=1.2446280193980781 0.066623928170884361 1.1156232354114766 0.93803749664220959 0.8068805036600678
+leaf_count=20 44 24 27 20
+internal_value=0 -0.0895955 0.136202 -0.620458
+internal_weight=0 2.92717 2.05366 0.873504
+internal_count=135 115 51 64
+shrinkage=0.1
+
+
+Tree=243
+num_leaves=6
+num_cat=0
+split_feature=2 1 2 2 0
+split_gain=0.0566869 0.00715418 6.7359e-07 7.0159e-08 4.16639e-09
+threshold=1.8 3.0500000000000003 4.4500000000000011 1.4500000000000002 6.2500000000000009
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050072571551854211 -0.050466370825866483 -0.01753741486638747 -0.050117405710434243 0.050255692645764787 -0.050075363527744512
+leaf_weight=0.032403215940576047 0.098592946713324636 0.098993864958174527 0.070941424812190235 0.059049022383987904 0.035301079493365251
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.396105 -0.502781 0.501908 -0.501034
+internal_weight=0 0.303829 0.204835 0.0914522 0.106243
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=244
+num_leaves=5
+num_cat=0
+split_feature=3 0 0 1
+split_gain=0.0938627 0.0522778 0.0247219 0.0279221
+threshold=1.8500000000000003 6.2500000000000009 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=1 2 -1 -4
+right_child=-2 -3 3 -5
+leaf_value=-0.052422308711215483 -0.05143718786490864 0.016757026580408712 0.0030552593004342711 -0.024907389657200601
+leaf_weight=0.10956555492885024 0.32091452679014754 1.9025790570303796 1.496922997292131 0.46898067521397008
+leaf_count=21 33 21 27 33
+internal_value=0 0.0478383 -0.0619199 -0.0361543
+internal_weight=0 3.97805 2.07547 1.9659
+internal_count=135 102 81 60
+shrinkage=0.1
+
+
+Tree=245
+num_leaves=5
+num_cat=0
+split_feature=3 0 3 0
+split_gain=0.1001 0.0517056 0.0512932 2.50031e-07
+threshold=1.8500000000000003 6.2500000000000009 1.2500000000000002 5.0500000000000007
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050094251089721903 0.051442572632157603 -0.015360982535775114 0.01257556117762643 -0.050381185998235378
+leaf_weight=0.04452666285214979 0.36180947191314761 1.8846958560170604 1.7734579670941455 0.095509834995027645
+leaf_count=29 33 21 24 28
+internal_value=0 -0.0360461 0.0797483 -0.5029
+internal_weight=0 3.79819 1.91349 0.140036
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=246
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 0
+split_gain=0.052696 0.00685158 5.71896e-07 2.64469e-07 3.49917e-09
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 6.2500000000000009
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050068275018432473 -0.050442190774131493 -0.017545506938189143 -0.05011175136945082 0.050427897035438013 -0.050072082509023147
+leaf_weight=0.034681611228734255 0.093651426315773278 0.095508696365868673 0.067103990237228572 0.049832408025395125 0.03325692361977417
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.39471 -0.502645 0.502803 -0.500986
+internal_weight=0 0.289521 0.194012 0.084514 0.100361
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=247
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.0903815 0.118439 0.0528476 0.0353661
+threshold=4.9500000000000011 6.5500000000000007 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.052277386218262369 -0.027579790672190636 0.019722902436801342 0.030702936037013684 -0.00066473777228473431
+leaf_weight=0.1030538170307408 1.6264265686040746 0.78471159934997536 1.2170765290502457 0.51007626333739597
+leaf_count=21 21 23 32 38
+internal_value=0 -0.12185 0.172884 0.214392
+internal_weight=0 2.41114 1.83021 1.72715
+internal_count=135 44 91 70
+shrinkage=0.1
+
+
+Tree=248
+num_leaves=6
+num_cat=0
+split_feature=2 0 0 2 2
+split_gain=0.0974962 0.0883475 0.0698034 5.40954e-06 1.90674e-08
+threshold=4.7500000000000009 6.5500000000000007 4.9500000000000011 4.2500000000000009 1.8
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 4 -4
+right_child=1 -3 3 -5 -6
+leaf_value=0.032952305970406916 0.017226513392450488 -0.019298573190671135 -0.0500146989406293 -0.050919676602222269 -0.050155725749694874
+leaf_weight=0.12339985396829424 2.5729158298345287 0.89176187245175231 0.010552581894444302 0.40217618853785098 0.10479083436075598
+leaf_count=21 26 24 24 20 20
+internal_value=0 0.0782544 -0.346315 -0.507465 -0.501428
+internal_weight=0 3.46468 0.640919 0.51752 0.115343
+internal_count=135 50 85 64 44
+shrinkage=0.1
+
+
+Tree=249
+num_leaves=5
+num_cat=0
+split_feature=3 1 1 2
+split_gain=0.0512021 0.0102944 5.38891e-07 1.92161e-08
+threshold=1.0500000000000003 3.2500000000000004 2.7500000000000004 5.1500000000000012
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=-0.0032059864454150235 -0.050451937096007371 0.050390577408072713 -0.050133668131081145 -0.050045585102531737
+leaf_weight=0.063854509731754661 0.070793268561828882 0.081673961656633765 0.10812146891839802 0.032126780119142495
+leaf_count=21 23 29 33 29
+internal_value=0 0.268737 -0.50227 -0.501135
+internal_weight=0 0.145528 0.211042 0.140248
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=250
+num_leaves=4
+num_cat=0
+split_feature=2 1 2
+split_gain=0.0893062 0.041557 0.0408694
+threshold=5.1500000000000012 2.8500000000000001 3.5500000000000003
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=-0.002367310304345685 -0.052371381368429483 -0.050378327555728714 0.024868875427586389
+leaf_weight=2.6799052126589236 0.29664102391689073 0.077142055728472672 1.1221469936426727
+leaf_count=34 33 44 24
+internal_value=0 0.0455664 0.200287
+internal_weight=0 3.87919 1.19929
+internal_count=135 102 68
+shrinkage=0.1
+
+
+Tree=251
+num_leaves=5
+num_cat=0
+split_feature=2 3 0 3
+split_gain=0.0942656 0.068874 3.88917e-06 1.94422e-08
+threshold=5.1500000000000012 1.4500000000000002 5.6500000000000012 0.25000000000000006
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050022508177584801 0.052251495874567837 0.00049347968516463066 -0.050899994585167897 -0.05013352988131823
+leaf_weight=0.020258281059796324 0.33111494139302511 3.4320721393451095 0.19373003367218189 0.071252672205446288
+leaf_count=29 33 26 22 25
+internal_value=0 -0.0343063 -0.506462 -0.50109
+internal_weight=0 3.71731 0.285241 0.091511
+internal_count=135 102 76 54
+shrinkage=0.1
+
+
+Tree=252
+num_leaves=6
+num_cat=0
+split_feature=2 1 2 2 0
+split_gain=0.0470278 0.00584605 3.91585e-07 4.38986e-08 2.35791e-09
+threshold=1.8 3.0500000000000003 4.4500000000000011 1.4500000000000002 6.2500000000000009
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050061660342143537 -0.050388794800445905 -0.018341978194687646 -0.050098860185589206 0.050221547904564207 -0.050064173751606746
+leaf_weight=0.026477777922991663 0.083961856085807071 0.086184518004301935 0.059333048760890961 0.048859796661417931 0.029263705495395698
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.396111 -0.502341 0.501654 -0.500874
+internal_weight=0 0.258743 0.172559 0.0753376 0.0885968
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=253
+num_leaves=5
+num_cat=0
+split_feature=3 2 0 1
+split_gain=0.0906924 0.114694 0.0562726 0.0498649
+threshold=1.5500000000000003 5.3500000000000005 5.8500000000000005 3.0500000000000003
+decision_type=2 2 2 2
+left_child=2 -2 3 -1
+right_child=1 -3 -4 -5
+leaf_value=0.04832143095536038 0.022801073107377914 -0.052403022961895966 -0.021849906194131394 -0.05035939445225223
+leaf_weight=0.22417460230644781 1.907542377128266 0.22691903944360081 1.695885920897126 0.066366803235723637
+leaf_count=29 20 28 21 37
+internal_value=0 0.14806 -0.148834 0.257803
+internal_weight=0 2.13446 1.98643 0.290541
+internal_count=135 48 87 66
+shrinkage=0.1
+
+
+Tree=254
+num_leaves=5
+num_cat=0
+split_feature=3 3 3 0
+split_gain=0.0891837 0.0411535 0.00265119 1.46638e-07
+threshold=1.8500000000000003 1.4500000000000002 1.2500000000000002 5.0500000000000007
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050079428445117903 0.051424475531741745 -0.00012690113887470466 -0.031097939293950907 -0.050320153488219048
+leaf_weight=0.03718379340716671 0.32375036610756058 3.369103393284604 0.19105659669730807 0.07920939099858515
+leaf_count=29 33 25 20 28
+internal_value=0 -0.0332294 -0.383459 -0.502432
+internal_weight=0 3.67655 0.30745 0.116393
+internal_count=135 102 77 57
+shrinkage=0.1
+
+
+Tree=255
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 3
+split_gain=0.0440132 0.0020744 1.65137e-08 4.2473e-09
+threshold=3.1500000000000004 4.9500000000000011 5.1500000000000012 1.4500000000000002
+decision_type=2 2 2 2
+left_child=1 -1 3 -2
+right_child=2 -3 -4 -5
+leaf_value=0.050058130330576892 -0.050099141330754174 0.019495115515800961 -0.050038287249281901 -0.050132613756285138
+leaf_weight=0.028980651521123946 0.063055857899598777 0.095021438901312649 0.029954603392980061 0.095054793986491859
+leaf_count=20 30 26 33 26
+internal_value=0 0.26638 -0.501064 -0.501193
+internal_weight=0 0.124002 0.188065 0.158111
+internal_count=135 46 89 56
+shrinkage=0.1
+
+
+Tree=256
+num_leaves=5
+num_cat=0
+split_feature=3 2 0 1
+split_gain=0.0864304 0.106281 0.0499638 0.0460829
+threshold=1.5500000000000003 5.3500000000000005 5.8500000000000005 3.0500000000000003
+decision_type=2 2 2 2
+left_child=2 -2 3 -1
+right_child=1 -3 -4 -5
+leaf_value=0.048110166216024541 0.021962779786383373 -0.052307333390401979 -0.020978036948704773 -0.050345240058716927
+leaf_weight=0.20661058058612969 1.9076695866533555 0.21432191725762084 1.6977621844271196 0.061748125401209109
+leaf_count=29 20 28 21 37
+internal_value=0 0.144615 -0.146402 0.25456
+internal_weight=0 2.12199 1.96612 0.268359
+internal_count=135 48 87 66
+shrinkage=0.1
+
+
+Tree=257
+num_leaves=5
+num_cat=0
+split_feature=3 0 3 0
+split_gain=0.085318 0.0431101 0.0383096 1.36872e-07
+threshold=1.8500000000000003 6.2500000000000009 1.2500000000000002 5.0500000000000007
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050071950709210444 0.051398572957622651 -0.014104925917826572 0.011186914970420724 -0.050314983756880996
+leaf_weight=0.033709042836563508 0.3104138608323409 1.8228485734434796 1.733444800134748 0.074140142052783631
+leaf_count=29 33 21 24 28
+internal_value=0 -0.0320334 0.0758904 -0.50239
+internal_weight=0 3.66414 1.84129 0.107849
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=258
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 0
+split_gain=0.0404434 0.00504187 2.72668e-07 1.2898e-07 1.48694e-09
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 6.2500000000000009
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050053385621690073 -0.050346920681278585 -0.018741979983437872 -0.050087617761196107 0.050341076318791422 -0.050058449379451836
+leaf_weight=0.02654842467745766 0.072291308140847818 0.076847539428854361 0.052488216024357832 0.037732199125457562 0.026201281623798423
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.395935 -0.502067 0.502223 -0.500779
+internal_weight=0 0.227828 0.150981 0.0642806 0.0786895
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=259
+num_leaves=5
+num_cat=0
+split_feature=3 2 0 1
+split_gain=0.0819391 0.0998544 0.0458481 0.0428314
+threshold=1.5500000000000003 5.3500000000000005 5.8500000000000005 3.0500000000000003
+decision_type=2 2 2 2
+left_child=2 -2 3 -1
+right_child=1 -3 -4 -5
+leaf_value=0.047932074862412688 0.021270608703882792 -0.052249270376054847 -0.020207659618968542 -0.05032280682413607
+leaf_weight=0.19439399908878827 1.9017494222498499 0.2046151573449605 1.7003416473744435 0.057486445890390321
+leaf_count=29 20 28 21 37
+internal_value=0 0.141288 -0.143094 0.255075
+internal_weight=0 2.10636 1.95222 0.25188
+internal_count=135 48 87 66
+shrinkage=0.1
+
+
+Tree=260
+num_leaves=5
+num_cat=0
+split_feature=3 0 3 0
+split_gain=0.0814984 0.042194 0.0354309 1.26995e-07
+threshold=1.8500000000000003 6.2500000000000009 1.2500000000000002 5.0500000000000007
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050065127535874547 0.051370536845406878 -0.013906007799889989 0.010923745707977071 -0.050309547459989681
+leaf_weight=0.030609524299507807 0.2971050020714755 1.815210909117013 1.7374749210430307 0.069578112597810091
+leaf_count=29 33 21 24 28
+internal_value=0 -0.0309223 0.0758944 -0.502349
+internal_weight=0 3.65287 1.83766 0.100188
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=261
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=0.0379301 0.00179431 1.07639e-08 2.63434e-09
+threshold=3.1500000000000004 4.9500000000000011 4.7500000000000009 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.050049106327442042 -0.050115392462469405 0.019184411279615392 -0.050078614515603817 -0.0500373530253065
+leaf_weight=0.024346336285816506 0.099200328346341862 0.083209644362796098 0.041913170760381042 0.024528646186809056
+leaf_count=20 39 26 21 29
+internal_value=0 0.261709 -0.500945 -0.500634
+internal_weight=0 0.107556 0.165642 0.0664418
+internal_count=135 46 89 50
+shrinkage=0.1
+
+
+Tree=262
+num_leaves=5
+num_cat=0
+split_feature=3 2 1 0
+split_gain=0.0779426 0.0939105 0.0460334 0.041388
+threshold=1.5500000000000003 5.3500000000000005 2.8500000000000001 5.3000000000000016
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.019858922134502695 0.020612649517547123 -0.052190847516179951 -0.050294993348317676 0.048842335165719113
+leaf_weight=1.6949496722081674 1.8963378837215716 0.19543798362428777 0.054221666134253499 0.18854770550387911
+leaf_count=26 20 28 36 25
+internal_value=0 0.138105 -0.140257 0.267004
+internal_weight=0 2.09178 1.93772 0.242769
+internal_count=135 48 87 61
+shrinkage=0.1
+
+
+Tree=263
+num_leaves=5
+num_cat=0
+split_feature=3 0 3 0
+split_gain=0.078001 0.0412137 0.0327569 1.17654e-07
+threshold=1.8500000000000003 6.2500000000000009 1.2500000000000002 5.0500000000000007
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050059018336989405 0.051342300179356141 -0.013697017902373263 0.010667785845986126 -0.050304745168278736
+leaf_weight=0.027778470655904001 0.28499343580915582 1.8078155452385543 1.7412683760048819 0.065265257202554494
+leaf_count=29 33 21 24 28
+internal_value=0 -0.0298175 0.0757873 -0.502314
+internal_weight=0 3.64213 1.83431 0.0930437
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=264
+num_leaves=6
+num_cat=0
+split_feature=2 1 2 2 0
+split_gain=0.0352322 0.00431479 2.3701e-07 2.05408e-08 8.3065e-10
+threshold=1.8 3.0500000000000003 4.4500000000000011 1.4500000000000002 6.2500000000000009
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050043690087306525 -0.050334083289554243 -0.019227528351557124 -0.050076873863285236 0.050172166509669415 -0.05005379091146929
+leaf_weight=0.018882912496337667 0.065586231736233458 0.067454248521244153 0.04584166215499863 0.036496388813247904 0.023623331464477811
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.398816 -0.501977 0.501284 -0.50069
+internal_weight=0 0.202505 0.135051 0.0553793 0.069465
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=265
+num_leaves=5
+num_cat=0
+split_feature=3 2 1 0
+split_gain=0.0738604 0.0883563 0.0428289 0.038501
+threshold=1.5500000000000003 5.3500000000000005 2.8500000000000001 5.3000000000000016
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.019185262610912881 0.019969025001676518 -0.052132190128368311 -0.050276238581804238 0.048672468116933293
+leaf_weight=1.6958109369152223 1.8904345754417593 0.18675238448486187 0.050426089008396846 0.17860063764965162
+leaf_count=26 20 28 36 25
+internal_value=0 0.134867 -0.137034 0.268864
+internal_weight=0 2.07719 1.92484 0.229027
+internal_count=135 48 87 61
+shrinkage=0.1
+
+
+Tree=266
+num_leaves=5
+num_cat=0
+split_feature=3 0 3 0
+split_gain=0.0744705 0.0398244 0.0311366 1.05504e-07
+threshold=1.8500000000000003 6.2500000000000009 1.2500000000000002 5.0500000000000007
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050056736624547106 0.051312585367309663 -0.013426543677670506 0.010467596741135819 -0.050296849613342999
+leaf_weight=0.0257833395298811 0.27294799307128403 1.7971551684895528 1.7433078902540726 0.063045133487321436
+leaf_count=29 33 21 24 28
+internal_value=0 -0.0284985 0.075249 -0.502272
+internal_weight=0 3.62929 1.83214 0.0888285
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=267
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 0
+split_gain=0.0326397 0.00408891 2.18196e-07 6.9971e-08 5.99102e-10
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 6.2500000000000009
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.05004092330729968 -0.050325724656928361 -0.019244536077116257 -0.050071830928022337 0.050280817447246606 -0.050051644460060135
+leaf_weight=0.02010729382163845 0.063200165808666497 0.063976517994888127 0.042666604218538851 0.030755981977563351 0.022431661745940801
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.398956 -0.501934 0.50186 -0.500649
+internal_weight=0 0.192275 0.128298 0.0508633 0.0650983
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=268
+num_leaves=5
+num_cat=0
+split_feature=3 2 0 1
+split_gain=0.0702645 0.0832067 0.0408809 0.0357002
+threshold=1.5500000000000003 5.3500000000000005 5.8500000000000005 3.0500000000000003
+decision_type=2 2 2 2
+left_child=2 -2 3 -1
+right_child=1 -3 -4 -5
+leaf_value=0.048048462364593897 0.019358671644529563 -0.052073340858472553 -0.018710564099003388 -0.05026514577539775
+leaf_weight=0.17329110272112336 1.8850088294129821 0.17851236778369628 1.690896554966457 0.046940437983721495
+leaf_count=29 20 28 21 37
+internal_value=0 0.131792 -0.134322 0.270938
+internal_weight=0 2.06352 1.91113 0.220232
+internal_count=135 48 87 66
+shrinkage=0.1
+
+
+Tree=269
+num_leaves=5
+num_cat=0
+split_feature=3 0 2 2
+split_gain=0.0712266 0.0384546 0.0295707 1.04083e-08
+threshold=1.8500000000000003 6.2500000000000009 4.1500000000000012 1.6500000000000001
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050026125471736571 0.051282757153352169 -0.01315439768468544 0.01027683675369072 -0.050112500539101539
+leaf_weight=0.017585302994121643 0.2619211779674514 1.7869778856402261 1.7447599067818371 0.067504433187423274
+leaf_count=39 33 21 20 22
+internal_value=0 -0.0272021 0.0746951 -0.500946
+internal_weight=0 3.61683 1.82985 0.0850897
+internal_count=135 102 81 61
+shrinkage=0.1
+
+
+Tree=270
+num_leaves=6
+num_cat=0
+split_feature=2 1 2 2 0
+split_gain=0.0304194 0.0036555 1.6248e-07 1.42592e-08 4.57855e-10
+threshold=1.8 3.0500000000000003 4.4500000000000011 1.4500000000000002 6.2500000000000009
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050036775083315721 -0.050294868541193895 -0.020064315481690742 -0.050067690971599348 0.050153157556744481 -0.050049558495650126
+leaf_weight=0.015820022905245423 0.057900825806427754 0.060893966030562297 0.0400964540312998 0.031466985412407666 0.02133546275581466
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.400012 -0.501747 0.501142 -0.500614
+internal_weight=0 0.180227 0.119333 0.047287 0.0614319
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=271
+num_leaves=4
+num_cat=0
+split_feature=0 1 1
+split_gain=0.0710845 0.154928 0.043802
+threshold=6.3500000000000005 2.7500000000000004 3.2500000000000004
+decision_type=2 2 2
+left_child=1 -1 -3
+right_child=-2 2 -4
+leaf_value=0.010049612316671765 0.025815053658428386 -0.043860926006890455 0.01797412266333457
+leaf_weight=1.9804407801711938 0.858747584556113 0.97956257977057215 0.12972938719030935
+leaf_count=26 40 35 34
+internal_value=0 -0.0670935 -0.366294
+internal_weight=0 3.08973 1.10929
+internal_count=135 95 69
+shrinkage=0.1
+
+
+Tree=272
+num_leaves=5
+num_cat=0
+split_feature=3 0 3 0
+split_gain=0.068224 0.0374491 0.0278997 1.04149e-07
+threshold=1.8500000000000003 6.2500000000000009 1.2500000000000002 5.0500000000000007
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.05004960653089912 0.051252310972007255 -0.012951148245130698 0.010077968844618701 -0.050306104729758362
+leaf_weight=0.021701089441194976 0.25137398394872423 1.7801285606110466 1.7465763024520127 0.058513749419944361
+leaf_count=29 33 21 24 28
+internal_value=0 -0.0262897 0.0742954 -0.502367
+internal_weight=0 3.60692 1.82679 0.0802148
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=273
+num_leaves=6
+num_cat=0
+split_feature=3 1 1 1 0
+split_gain=0.0289057 0.00718123 1.55037e-07 5.79782e-09 9.8779e-11
+threshold=1.0500000000000003 3.2500000000000004 2.7500000000000004 3.0500000000000003 6.3500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 -2 4 -4
+right_child=2 -3 3 -5 -6
+leaf_value=-0.0083390886396966599 -0.050304062374015759 0.050249154583918036 -0.050054805974950857 -0.050103561862065549 -0.050044651264243817
+leaf_weight=0.037239626282826073 0.045330879249377176 0.047741225018398843 0.032860882027307525 0.040700192403164685 0.013520546315703539
+leaf_count=21 23 29 20 22 20
+internal_value=0 0.245751 -0.501541 -0.50076 -0.500518
+internal_weight=0 0.0849809 0.132412 0.0870816 0.0463814
+internal_count=135 50 85 62 40
+shrinkage=0.1
+
+
+Tree=274
+num_leaves=5
+num_cat=0
+split_feature=3 2 1 0
+split_gain=0.0683809 0.0816301 0.042664 0.0340221
+threshold=1.5500000000000003 5.3500000000000005 2.8500000000000001 5.3000000000000016
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.018776574510047234 0.019285843342244223 -0.052109446864498671 -0.050252619945227277 0.048808900932559775
+leaf_weight=1.6675911113852637 1.8483159253373744 0.17533587709476697 0.043523829066543729 0.17042748662061058
+leaf_count=26 20 28 36 25
+internal_value=0 0.130999 -0.133829 0.286569
+internal_weight=0 2.02365 1.88154 0.213951
+internal_count=135 48 87 61
+shrinkage=0.1
+
+
+Tree=275
+num_leaves=6
+num_cat=0
+split_feature=2 0 0 2 2
+split_gain=0.066842 0.073073 0.0704825 3.54525e-06 3.78e-09
+threshold=4.7500000000000009 4.9500000000000011 6.5500000000000007 4.2500000000000009 1.8
+decision_type=2 2 2 2 2
+left_child=1 -1 -2 4 -3
+right_child=2 3 -4 -5 -6
+leaf_value=0.041941536760900545 0.014078007555868674 -0.05000754201872061 -0.020923781288502571 -0.050874965253831221 -0.050099419603800321
+leaf_weight=0.10644763325399288 2.5426573594741062 0.0048117480328073716 0.74354489368852206 0.35390893532894552 0.064536376536125317
+leaf_count=21 26 24 24 20 20
+internal_value=0 -0.321205 0.0615841 -0.507469 -0.50093
+internal_weight=0 0.529705 3.2862 0.423257 0.0693481
+internal_count=135 85 50 64 44
+shrinkage=0.1
+
+
+Tree=276
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 0
+split_gain=0.0275235 0.00338807 1.24524e-07 4.42413e-08 2.76752e-10
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 6.2500000000000009
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050035880341751549 -0.050268787071650625 -0.019688992588708352 -0.050059935712796044 0.050243314574920483 -0.050045067491540057
+leaf_weight=0.017191942606586963 0.053705543774412952 0.054922650175285526 0.035749941278481856 0.025580136483768001 0.01926564316090662
+leaf_count=20 23 24 20 23 25
+internal_value=0 -0.399335 -0.501605 0.501599 -0.500547
+internal_weight=0 0.163644 0.108721 0.0427721 0.0550156
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=277
+num_leaves=6
+num_cat=0
+split_feature=3 0 1 1 3
+split_gain=0.0678582 0.24802 0.0886768 0.0347959 0.00359241
+threshold=1.6500000000000001 6.5500000000000007 2.7500000000000004 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 -4 -5
+right_child=1 -3 3 4 -6
+leaf_value=0.0238756889934175 -0.054072347345381702 0.034046099682198766 -0.024231451782661659 -0.050011577615647999 0.029365288815964959
+leaf_weight=1.6297744660405449 0.78103261364594789 0.5404302078532055 0.7475445963500531 0.0059136871859664089 0.15898724635917461
+leaf_count=21 22 22 27 23 20
+internal_value=0 -0.180351 0.0990113 -0.150597 0.265187
+internal_weight=0 1.32146 2.54222 0.912446 0.164901
+internal_count=135 44 91 70 43
+shrinkage=0.1
+
+
+Tree=278
+num_leaves=6
+num_cat=0
+split_feature=3 0 1 1 3
+split_gain=0.0704897 0.238375 0.0828705 0.0578023 2.79101e-07
+threshold=1.6500000000000001 6.5500000000000007 2.7500000000000004 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 -4 -5
+right_child=1 -3 3 4 -6
+leaf_value=-0.022886100061625093 0.054096116706972563 -0.031180580502542323 0.02622010582957281 -0.050010676258251119 -0.050671613832062257
+leaf_weight=1.5828096943441785 0.7983382701349907 0.55614150036126375 0.73040535501786497 0.0067980443564010775 0.10621077920950484
+leaf_count=21 22 22 27 23 20
+internal_value=0 0.19082 -0.0939521 0.159227 -0.506319
+internal_weight=0 1.35448 2.42622 0.843414 0.113009
+internal_count=135 44 91 70 43
+shrinkage=0.1
+
+
+Tree=279
+num_leaves=6
+num_cat=0
+split_feature=2 1 2 2 0
+split_gain=0.0261576 0.00340119 9.9521e-08 1.10959e-08 2.32378e-10
+threshold=1.8 3.0500000000000003 4.4500000000000011 1.4500000000000002 6.3500000000000005
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050033182899511565 -0.050248658808777158 -0.01908167573902398 -0.050054904659140004 0.050143455755163539 -0.050039273385831563
+leaf_weight=0.013616911601275206 0.050164231477538131 0.053828955016797408 0.039345437282463536 0.02766001678537577 0.012542247102828696
+leaf_count=20 23 24 24 23 21
+internal_value=0 -0.394203 -0.501482 0.501071 -0.500511
+internal_weight=0 0.155881 0.102052 0.0412769 0.0518877
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=280
+num_leaves=5
+num_cat=0
+split_feature=3 2 1 0
+split_gain=0.070857 0.0795474 0.0394099 0.0307864
+threshold=1.5500000000000003 5.3500000000000005 2.8500000000000001 5.3000000000000016
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.018818704772095348 0.019971070676074419 -0.051895628495287019 -0.050230029995736697 0.048705422905452503
+leaf_weight=1.6409180477494376 1.7596363976481368 0.16879163146950291 0.039414259772456606 0.1557045946829021
+leaf_count=26 20 28 36 25
+internal_value=0 0.136807 -0.137666 0.287203
+internal_weight=0 1.92843 1.83604 0.195119
+internal_count=135 48 87 61
+shrinkage=0.1
+
+
+Tree=281
+num_leaves=5
+num_cat=0
+split_feature=3 2 1 0
+split_gain=0.0688308 0.0839757 0.0665021 1.39763e-07
+threshold=1.5500000000000003 5.3500000000000005 2.8500000000000001 5.3000000000000016
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=0.021137522816433454 -0.018828140652224101 0.051813070630353321 -0.0500106608808824 -0.050375166623946845
+leaf_weight=1.5928630320122468 1.7634554589167235 0.18603464079205867 0.011443125556979685 0.13028116722853156
+leaf_count=26 20 28 36 25
+internal_value=0 -0.12087 0.15297 -0.503457
+internal_weight=0 1.94949 1.73459 0.141724
+internal_count=135 48 87 61
+shrinkage=0.1
+
+
+Tree=282
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 0
+split_gain=0.0244007 0.00320174 9.12961e-08 3.82075e-08 2.08214e-10
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 6.3500000000000005
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.05003242629801366 -0.050242248189800311 -0.019237605351896926 -0.050052042364838394 0.050237923257392306 -0.050036713423798646
+leaf_weight=0.014732882191310637 0.048331671743653722 0.051163621144951321 0.037216062366496765 0.02344668481964618 0.011630170760327021
+leaf_count=20 23 24 24 23 21
+internal_value=0 -0.394848 -0.501448 0.501586 -0.500484
+internal_weight=0 0.148342 0.0971779 0.0381796 0.0488462
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=283
+num_leaves=6
+num_cat=0
+split_feature=3 0 1 1 3
+split_gain=0.0681956 0.217558 0.0715927 0.0263992 0.00293998
+threshold=1.6500000000000001 6.5500000000000007 2.7500000000000004 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 -4 -5
+right_child=1 -3 3 4 -6
+leaf_value=0.022273365002230983 -0.053813083455890899 0.030305816832064777 -0.021143608162077471 -0.050010246303479979 0.027977193240604617
+leaf_weight=1.6228986701462425 0.73552011012361584 0.5282972322893329 0.72267308513983131 0.0050040432397508985 0.14214520090899896
+leaf_count=21 22 22 27 23 20
+internal_value=0 -0.186499 0.0986635 -0.132824 0.253251
+internal_weight=0 1.26382 2.49272 0.869822 0.147149
+internal_count=135 44 91 70 43
+shrinkage=0.1
+
+
+Tree=284
+num_leaves=6
+num_cat=0
+split_feature=3 0 1 1 3
+split_gain=0.0707893 0.209295 0.0665103 0.0465641 1.82322e-07
+threshold=1.6500000000000001 6.5500000000000007 2.7500000000000004 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 -4 -5
+right_child=1 -3 3 4 -6
+leaf_value=-0.021339966385537729 0.05383359629549124 -0.027662997266594082 0.022923518757078366 -0.05000876296977317 -0.050597067671752871
+leaf_weight=1.580469302833081 0.75079444293805842 0.54305165121331811 0.70734847188577976 0.00558560162608046 0.092608003113127779
+leaf_count=21 22 22 27 23 20
+internal_value=0 0.196279 -0.0942044 0.139656 -0.505636
+internal_weight=0 1.29385 2.38601 0.805542 0.0981936
+internal_count=135 44 91 70 43
+shrinkage=0.1
+
+
+Tree=285
+num_leaves=5
+num_cat=0
+split_feature=2 0 2 2
+split_gain=0.023708 0.00110749 3.06175e-09 4.5731e-10
+threshold=3.1500000000000004 4.9500000000000011 4.7500000000000009 5.3500000000000005
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=0.050030440031250435 -0.050077660056543197 0.018349209435919375 -0.050051463415200032 -0.050030267404198497
+leaf_weight=0.013684331672266126 0.064863362902542576 0.056974159408127889 0.026107092540769369 0.016683804984495509
+leaf_count=20 39 26 21 29
+internal_value=0 0.244849 -0.50064 -0.500432
+internal_weight=0 0.0706585 0.107654 0.0427909
+internal_count=135 46 89 50
+shrinkage=0.1
+
+
+Tree=286
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.0752031 0.0660037 0.0404699 0.0374574
+threshold=4.9500000000000011 6.5500000000000007 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.051944367185348332 -0.023114232148107271 0.015662457723454995 0.030142431561867564 -0.0072628507795085883
+leaf_weight=0.080301733600208883 1.5175203216203956 0.61761439213296387 1.0939074985217301 0.35446308282553207
+leaf_count=21 21 23 32 38
+internal_value=0 -0.118976 0.17157 0.209882
+internal_weight=0 2.13513 1.52867 1.44837
+internal_count=135 44 91 70
+shrinkage=0.1
+
+
+Tree=287
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.0754956 0.0613726 0.0321971 0.0299162
+threshold=4.9500000000000011 6.5500000000000007 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=0.041423463927132219 0.02345285907598434 -0.013561146466553368 -0.028876352494423465 0.0070470483469202072
+leaf_weight=0.08837984019191969 1.5259847532870483 0.63411080185323931 1.0429259053198618 0.2980766057880827
+leaf_count=21 21 23 32 38
+internal_value=0 0.125871 -0.170384 -0.208913
+internal_weight=0 2.1601 1.42938 1.341
+internal_count=135 44 91 70
+shrinkage=0.1
+
+
+Tree=288
+num_leaves=6
+num_cat=0
+split_feature=3 1 1 1 0
+split_gain=0.0232281 0.00566809 8.39577e-08 3.25519e-09 3.83692e-11
+threshold=1.0500000000000003 3.2500000000000004 2.7500000000000004 3.0500000000000003 6.3500000000000005
+decision_type=2 2 2 2 2
+left_child=1 -1 -2 4 -4
+right_child=2 -3 3 -5 -6
+leaf_value=-0.0080551267781250931 -0.050250460326068551 0.050213393272652465 -0.050040082126345489 -0.050081819287570967 -0.050032798675056916
+leaf_weight=0.029236288275569681 0.034865432186052203 0.038915690514841117 0.024189424089854583 0.033041120856069028 0.010317990880139403
+leaf_count=21 23 29 20 22 20
+internal_value=0 0.25217 -0.501244 -0.500594 -0.500379
+internal_weight=0 0.068152 0.102414 0.0675485 0.0345074
+internal_count=135 50 85 62 40
+shrinkage=0.1
+
+
+Tree=289
+num_leaves=5
+num_cat=0
+split_feature=3 2 1 0
+split_gain=0.0668356 0.0724309 0.0349505 0.027566
+threshold=1.5500000000000003 5.3500000000000005 2.8500000000000001 5.3000000000000016
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.018355728422515812 0.019456311843699586 -0.051649554372486729 -0.050218710097069075 0.048613236810445923
+leaf_weight=1.5938379077124412 1.7005691388330886 0.15643402134446649 0.035348890847671899 0.1399650473613292
+leaf_count=26 20 28 36 25
+internal_value=0 0.134664 -0.136942 0.286856
+internal_weight=0 1.857 1.76915 0.175314
+internal_count=135 48 87 61
+shrinkage=0.1
+
+
+Tree=290
+num_leaves=5
+num_cat=0
+split_feature=3 0 3 0
+split_gain=0.0670338 0.0320589 0.0233595 1.14432e-07
+threshold=1.8500000000000003 6.2500000000000009 1.2500000000000002 5.0500000000000007
+decision_type=2 2 2 2
+left_child=1 2 3 -1
+right_child=-2 -3 -4 -5
+leaf_value=-0.050041687728757084 0.051662055677462349 -0.013045765949102726 0.009046661644701753 -0.050342564925899475
+leaf_weight=0.016642499962473134 0.24100030471163325 1.615734613209497 1.6295539005659518 0.05256787112011807
+leaf_count=29 33 21 24 28
+internal_value=0 -0.0296144 0.0663 -0.502702
+internal_weight=0 3.3145 1.69876 0.0692104
+internal_count=135 102 81 57
+shrinkage=0.1
+
+
+Tree=291
+num_leaves=6
+num_cat=0
+split_feature=2 1 2 2 0
+split_gain=0.0211453 0.00282534 6.61337e-08 6.33869e-09 1.03369e-10
+threshold=1.8 3.0500000000000003 4.4500000000000011 1.4500000000000002 6.3500000000000005
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.050028512245183093 -0.050218693314280319 -0.018808040590855696 -0.050042784314159372 0.05012140524138884 -0.050031047586699906
+leaf_weight=0.010880821355385706 0.042100270540686317 0.044154330476885661 0.030772275582421568 0.022609577557886951 0.0099241113130119629
+leaf_count=20 23 24 24 23 21
+internal_value=0 -0.392366 -0.501308 0.500912 -0.500399
+internal_weight=0 0.126951 0.0827967 0.0334904 0.0406964
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=292
+num_leaves=6
+num_cat=0
+split_feature=3 0 1 1 3
+split_gain=0.066822 0.186612 0.0621003 0.0226403 0.00234202
+threshold=1.6500000000000001 6.5500000000000007 2.7500000000000004 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 -4 -5
+right_child=1 -3 3 4 -6
+leaf_value=0.021324549092473347 -0.053652465346537372 0.026356902335131334 -0.019713566496540699 -0.050007723899065631 0.027925552062510503
+leaf_weight=1.5894491159124307 0.67679618353577076 0.51207780797267333 0.69301680586067949 0.0039764419198036185 0.12737995073985076
+leaf_count=21 22 22 27 23 20
+internal_value=0 -0.191904 0.0977319 -0.124986 0.255663
+internal_weight=0 1.18887 2.41382 0.824373 0.131356
+internal_count=135 44 91 70 43
+shrinkage=0.1
+
+
+Tree=293
+num_leaves=6
+num_cat=0
+split_feature=3 0 1 1 3
+split_gain=0.0691544 0.179977 0.0575017 0.040317 1.30344e-07
+threshold=1.6500000000000001 6.5500000000000007 2.7500000000000004 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 -4 -5
+right_child=1 -3 3 4 -6
+leaf_value=-0.020477438128989181 0.05366538004709568 -0.024047425170166569 0.021218244667196615 -0.050007565950288914 -0.050548325409550135
+leaf_weight=1.552329306839966 0.68901537985948358 0.52514522930141538 0.68055926536908362 0.0047077659110072992 0.08382499674189603
+leaf_count=21 22 22 27 23 20
+internal_value=0 0.200533 -0.0939945 0.129603 -0.505196
+internal_weight=0 1.21416 2.32142 0.769092 0.0885328
+internal_count=135 44 91 70 43
+shrinkage=0.1
+
+
+Tree=294
+num_leaves=5
+num_cat=0
+split_feature=3 1 0 1
+split_gain=0.0205277 0.00538385 6.25655e-08 2.2554e-09
+threshold=1.0500000000000003 3.2500000000000004 5.8500000000000005 3.0500000000000003
+decision_type=2 2 2 2
+left_child=1 -1 -2 -4
+right_child=2 -3 3 -5
+leaf_value=-0.0091985786664901936 -0.050228801640819193 0.050200520372594509 -0.050034835987431296 -0.050073426780850416
+leaf_weight=0.026976610126439479 0.030742137838387865 0.035130995456711389 0.031043188464536801 0.029570776227046736
+leaf_count=21 23 29 40 22
+internal_value=0 0.244004 -0.501126 -0.500537
+internal_weight=0 0.0621076 0.0913561 0.060614
+internal_count=135 50 85 62
+shrinkage=0.1
+
+
+Tree=295
+num_leaves=5
+num_cat=0
+split_feature=3 2 1 0
+split_gain=0.0712248 0.0702977 0.0349031 0.025243
+threshold=1.5500000000000003 5.3500000000000005 2.8500000000000001 5.3000000000000016
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=-0.018761003365330247 0.020307992254331275 -0.051505130870992302 -0.050206267497106466 0.048607879023256036
+leaf_weight=1.5784344251733275 1.6246063279977532 0.14879647169436783 0.032054830633569398 0.13360990081855562
+leaf_count=26 20 28 36 25
+internal_value=0 0.142825 -0.14178 0.294881
+internal_weight=0 1.7734 1.7441 0.165665
+internal_count=135 48 87 61
+shrinkage=0.1
+
+
+Tree=296
+num_leaves=5
+num_cat=0
+split_feature=2 0 0 1
+split_gain=0.0709499 0.0463121 0.0261896 0.0244223
+threshold=4.9500000000000011 6.5500000000000007 4.9500000000000011 2.9500000000000006
+decision_type=2 2 2 2
+left_child=2 -2 -1 -4
+right_child=1 -3 3 -5
+leaf_value=0.040558127003589232 0.021766992349898571 -0.010913753869888916 -0.027724271903854115 0.0058713956807362241
+leaf_weight=0.074371408329170996 1.4858885882858888 0.61230963643174607 1.0039862514240665 0.27582866712327803
+leaf_count=21 21 23 32 38
+internal_value=0 0.122299 -0.171313 -0.204837
+internal_weight=0 2.0982 1.35419 1.27981
+internal_count=135 44 91 70
+shrinkage=0.1
+
+
+Tree=297
+num_leaves=6
+num_cat=0
+split_feature=3 1 2 0 0
+split_gain=0.0192332 0.00264531 4.91046e-08 2.12564e-08 6.35415e-11
+threshold=0.45000000000000007 3.0500000000000003 4.4500000000000011 4.9500000000000011 6.3500000000000005
+decision_type=2 2 2 2 2
+left_child=3 2 -2 -1 -4
+right_child=1 -3 4 -5 -6
+leaf_value=0.05002764568542211 -0.050197097785381652 -0.018392762630046702 -0.050037228317203065 0.050198355259487709 -0.050027536247556861
+leaf_weight=0.011935669739614241 0.038604852335993201 0.04055870819138363 0.027031941819586791 0.018756895689875815 0.0090219240082660673
+leaf_count=20 23 24 24 23 21
+internal_value=0 -0.389506 -0.501187 0.50132 -0.500348
+internal_weight=0 0.115217 0.0746587 0.0306926 0.0360539
+internal_count=135 92 68 43 45
+shrinkage=0.1
+
+
+Tree=298
+num_leaves=5
+num_cat=0
+split_feature=3 3 0 1
+split_gain=0.0650425 0.0681316 0.0330892 0.0235153
+threshold=1.5500000000000003 2.0500000000000003 5.8500000000000005 3.0500000000000003
+decision_type=2 2 2 2
+left_child=2 -2 3 -1
+right_child=1 -3 -4 -5
+leaf_value=0.048461820735748291 0.019382175872001455 -0.052613037564168907 -0.018107075547556407 -0.050182026894826259
+leaf_weight=0.12838314243708773 1.6332333279133306 0.14294874187180528 1.5620517783099783 0.029770109598757696
+leaf_count=29 25 23 21 37
+internal_value=0 0.135879 -0.13694 0.298935
+internal_weight=0 1.77618 1.72021 0.158153
+internal_count=135 48 87 66
+shrinkage=0.1
+
+
+Tree=299
+num_leaves=6
+num_cat=0
+split_feature=3 0 1 1 3
+split_gain=0.0663299 0.157822 0.0467941 0.0344284 1.00772e-07
+threshold=1.6500000000000001 6.5500000000000007 2.7500000000000004 3.0500000000000003 0.25000000000000006
+decision_type=2 2 2 2 2
+left_child=2 -2 -1 -4 -5
+right_child=1 -3 3 4 -6
+leaf_value=-0.01916346789323194 0.053431390253121928 -0.020846921818184257 0.018915882525882555 -0.05000726405776279 -0.050500707889953533
+leaf_weight=1.5372248118510476 0.6391967034578554 0.51775558281224221 0.66167679257341649 0.0043777598330052561 0.075788833477417952
+leaf_count=21 22 22 27 23 20
+internal_value=0 0.201906 -0.0920932 0.114174 -0.504738
+internal_weight=0 1.15695 2.27907 0.741843 0.0801666
+internal_count=135 44 91 70 43
+shrinkage=0.1
+
+
+end of trees
+
+feature importances:
+Column_2=435
+Column_0=343
+Column_3=276
+Column_1=225
+
+parameters:
+[boosting: gbdt]
+[objective: multiclass]
+[metric: multi_logloss]
+[tree_learner: serial]
+[device_type: cpu]
+[data: ]
+[valid: ]
+[num_iterations: 100]
+[learning_rate: 0.1]
+[num_leaves: 31]
+[num_threads: 0]
+[max_depth: -1]
+[min_data_in_leaf: 20]
+[min_sum_hessian_in_leaf: 0.001]
+[bagging_fraction: 1]
+[pos_bagging_fraction: 1]
+[neg_bagging_fraction: 1]
+[bagging_freq: 0]
+[bagging_seed: 3]
+[feature_fraction: 1]
+[feature_fraction_bynode: 1]
+[feature_fraction_seed: 2]
+[early_stopping_round: 0]
+[first_metric_only: 0]
+[max_delta_step: 0]
+[lambda_l1: 0]
+[lambda_l2: 0]
+[min_gain_to_split: 0]
+[drop_rate: 0.1]
+[max_drop: 50]
+[skip_drop: 0.5]
+[xgboost_dart_mode: 0]
+[uniform_drop: 0]
+[drop_seed: 4]
+[top_rate: 0.2]
+[other_rate: 0.1]
+[min_data_per_group: 100]
+[max_cat_threshold: 32]
+[cat_l2: 10]
+[cat_smooth: 10]
+[max_cat_to_onehot: 4]
+[top_k: 20]
+[monotone_constraints: ]
+[feature_contri: ]
+[forcedsplits_filename: ]
+[forcedbins_filename: ]
+[refit_decay_rate: 0.9]
+[cegb_tradeoff: 1]
+[cegb_penalty_split: 0]
+[cegb_penalty_feature_lazy: ]
+[cegb_penalty_feature_coupled: ]
+[verbosity: 1]
+[max_bin: 255]
+[max_bin_by_feature: ]
+[min_data_in_bin: 3]
+[bin_construct_sample_cnt: 200000]
+[histogram_pool_size: -1]
+[data_random_seed: 1]
+[output_model: LightGBM_model.txt]
+[snapshot_freq: -1]
+[input_model: ]
+[output_result: LightGBM_predict_result.txt]
+[initscore_filename: ]
+[valid_data_initscores: ]
+[pre_partition: 0]
+[enable_bundle: 1]
+[max_conflict_rate: 0]
+[is_enable_sparse: 1]
+[sparse_threshold: 0.8]
+[use_missing: 1]
+[zero_as_missing: 0]
+[two_round: 0]
+[save_binary: 0]
+[header: 0]
+[label_column: ]
+[weight_column: ]
+[group_column: ]
+[ignore_column: ]
+[categorical_feature: ]
+[predict_raw_score: 0]
+[predict_leaf_index: 0]
+[predict_contrib: 0]
+[num_iteration_predict: -1]
+[pred_early_stop: 0]
+[pred_early_stop_freq: 10]
+[pred_early_stop_margin: 10]
+[convert_model_language: ]
+[convert_model: gbdt_prediction.cpp]
+[num_class: 3]
+[is_unbalance: 0]
+[scale_pos_weight: 1]
+[sigmoid: 1]
+[boost_from_average: 1]
+[reg_sqrt: 0]
+[alpha: 0.9]
+[fair_c: 1]
+[poisson_max_delta_step: 0.7]
+[tweedie_variance_power: 1.5]
+[max_position: 20]
+[lambdamart_norm: 1]
+[label_gain: ]
+[metric_freq: 1]
+[is_provide_training_metric: 0]
+[eval_at: ]
+[multi_error_top_k: 1]
+[num_machines: 1]
+[local_listen_port: 12400]
+[time_out: 120]
+[machine_list_filename: ]
+[machines: ]
+[gpu_platform_id: -1]
+[gpu_device_id: -1]
+[gpu_use_dp: 0]
+
+end of parameters
+
+pandas_categorical:null
diff --git a/docs-gb/examples/lightgbm/model-settings.json b/docs-gb/examples/lightgbm/model-settings.json
new file mode 100644
index 000000000..a9f1264a5
--- /dev/null
+++ b/docs-gb/examples/lightgbm/model-settings.json
@@ -0,0 +1,8 @@
+{
+ "name": "iris-lgb",
+ "implementation": "mlserver_lightgbm.LightGBMModel",
+ "parameters": {
+ "uri": "./iris-lightgbm.bst",
+ "version": "v0.1.0"
+ }
+}
diff --git a/docs-gb/examples/lightgbm/settings.json b/docs-gb/examples/lightgbm/settings.json
new file mode 100644
index 000000000..f2ee7ab8d
--- /dev/null
+++ b/docs-gb/examples/lightgbm/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
diff --git a/docs-gb/examples/mlflow/.gitignore b/docs-gb/examples/mlflow/.gitignore
new file mode 100644
index 000000000..e6ee07331
--- /dev/null
+++ b/docs-gb/examples/mlflow/.gitignore
@@ -0,0 +1 @@
+mlruns
diff --git a/docs-gb/examples/mlflow/README.ipynb b/docs-gb/examples/mlflow/README.ipynb
new file mode 100644
index 000000000..3ca8b5968
--- /dev/null
+++ b/docs-gb/examples/mlflow/README.ipynb
@@ -0,0 +1,507 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "8c519626",
+ "metadata": {},
+ "source": [
+ "# Serving MLflow models\n",
+ "\n",
+ "Out of the box, MLServer supports the deployment and serving of MLflow models with the following features:\n",
+ "\n",
+ "- Loading of MLflow Model artifacts.\n",
+ "- Support of dataframes, dict-of-tensors and tensor inputs.\n",
+ "\n",
+ "In this example, we will showcase some of this features using an example model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "655ea442",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from IPython.core.magic import register_line_cell_magic\n",
+ "\n",
+ "@register_line_cell_magic\n",
+ "def writetemplate(line, cell):\n",
+ " with open(line, 'w') as f:\n",
+ " f.write(cell.format(**globals()))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6b029264",
+ "metadata": {},
+ "source": [
+ "## Training\n",
+ "\n",
+ "The first step will be to train and serialise a MLflow model.\n",
+ "For that, we will use the [linear regression examle from the MLflow docs](https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a6c4dd0c",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "# %load src/train.py\n",
+ "# Original source code and more details can be found in:\n",
+ "# https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html\n",
+ "\n",
+ "# The data set used in this example is from\n",
+ "# http://archive.ics.uci.edu/ml/datasets/Wine+Quality\n",
+ "# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.\n",
+ "# Modeling wine preferences by data mining from physicochemical properties.\n",
+ "# In Decision Support Systems, Elsevier, 47(4):547-553, 2009.\n",
+ "\n",
+ "import warnings\n",
+ "import sys\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.linear_model import ElasticNet\n",
+ "from urllib.parse import urlparse\n",
+ "import mlflow\n",
+ "import mlflow.sklearn\n",
+ "from mlflow.models.signature import infer_signature\n",
+ "\n",
+ "import logging\n",
+ "\n",
+ "logging.basicConfig(level=logging.WARN)\n",
+ "logger = logging.getLogger(__name__)\n",
+ "\n",
+ "\n",
+ "def eval_metrics(actual, pred):\n",
+ " rmse = np.sqrt(mean_squared_error(actual, pred))\n",
+ " mae = mean_absolute_error(actual, pred)\n",
+ " r2 = r2_score(actual, pred)\n",
+ " return rmse, mae, r2\n",
+ "\n",
+ "\n",
+ "if __name__ == \"__main__\":\n",
+ " warnings.filterwarnings(\"ignore\")\n",
+ " np.random.seed(40)\n",
+ "\n",
+ " # Read the wine-quality csv file from the URL\n",
+ " csv_url = (\n",
+ " \"http://archive.ics.uci.edu/ml\"\n",
+ " \"/machine-learning-databases/wine-quality/winequality-red.csv\"\n",
+ " )\n",
+ " try:\n",
+ " data = pd.read_csv(csv_url, sep=\";\")\n",
+ " except Exception as e:\n",
+ " logger.exception(\n",
+ " \"Unable to download training & test CSV, \"\n",
+ " \"check your internet connection. Error: %s\",\n",
+ " e,\n",
+ " )\n",
+ "\n",
+ " # Split the data into training and test sets. (0.75, 0.25) split.\n",
+ " train, test = train_test_split(data)\n",
+ "\n",
+ " # The predicted column is \"quality\" which is a scalar from [3, 9]\n",
+ " train_x = train.drop([\"quality\"], axis=1)\n",
+ " test_x = test.drop([\"quality\"], axis=1)\n",
+ " train_y = train[[\"quality\"]]\n",
+ " test_y = test[[\"quality\"]]\n",
+ "\n",
+ " alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5\n",
+ " l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5\n",
+ "\n",
+ " with mlflow.start_run():\n",
+ " lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)\n",
+ " lr.fit(train_x, train_y)\n",
+ "\n",
+ " predicted_qualities = lr.predict(test_x)\n",
+ "\n",
+ " (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)\n",
+ "\n",
+ " print(\"Elasticnet model (alpha=%f, l1_ratio=%f):\" % (alpha, l1_ratio))\n",
+ " print(\" RMSE: %s\" % rmse)\n",
+ " print(\" MAE: %s\" % mae)\n",
+ " print(\" R2: %s\" % r2)\n",
+ "\n",
+ " mlflow.log_param(\"alpha\", alpha)\n",
+ " mlflow.log_param(\"l1_ratio\", l1_ratio)\n",
+ " mlflow.log_metric(\"rmse\", rmse)\n",
+ " mlflow.log_metric(\"r2\", r2)\n",
+ " mlflow.log_metric(\"mae\", mae)\n",
+ "\n",
+ " tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme\n",
+ " model_signature = infer_signature(train_x, train_y)\n",
+ "\n",
+ " # Model registry does not work with file store\n",
+ " if tracking_url_type_store != \"file\":\n",
+ "\n",
+ " # Register the model\n",
+ " # There are other ways to use the Model Registry,\n",
+ " # which depends on the use case,\n",
+ " # please refer to the doc for more information:\n",
+ " # https://mlflow.org/docs/latest/model-registry.html#api-workflow\n",
+ " mlflow.sklearn.log_model(\n",
+ " lr,\n",
+ " \"model\",\n",
+ " registered_model_name=\"ElasticnetWineModel\",\n",
+ " signature=model_signature,\n",
+ " )\n",
+ " else:\n",
+ " mlflow.sklearn.log_model(lr, \"model\", signature=model_signature)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b7d20bab",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!python src/train.py"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8ca5814a",
+ "metadata": {},
+ "source": [
+ "The training script will also serialise our trained model, leveraging the [MLflow Model format](https://www.mlflow.org/docs/latest/models.html).\n",
+ "By default, we should be able to find the saved artifact under the `mlruns` folder."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8fa51242",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "\n",
+ "[experiment_file_path] = !ls -td ./mlruns/0/* | head -1\n",
+ "model_path = os.path.join(experiment_file_path, \"artifacts\", \"model\")\n",
+ "print(model_path)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e20a516b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!ls {model_path} "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f1fed35e",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "Now that we have trained and serialised our model, we are ready to start serving it.\n",
+ "For that, the initial step will be to set up a `model-settings.json` that instructs MLServer to load our artifact using the MLflow Inference Runtime."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6df62443",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writetemplate ./model-settings.json\n",
+ "{{\n",
+ " \"name\": \"wine-classifier\",\n",
+ " \"implementation\": \"mlserver_mlflow.MLflowRuntime\",\n",
+ " \"parameters\": {{\n",
+ " \"uri\": \"{model_path}\"\n",
+ " }}\n",
+ "}}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c6a6e8b2",
+ "metadata": {},
+ "source": [
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b664c591",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.\n",
+ "\n",
+ "Note that, the request specifies the value `pd` as its *content type*, whereas every input specifies the *content type* `np`.\n",
+ "These parameters will instruct MLServer to:\n",
+ "\n",
+ "- Convert every input value to a NumPy array, using the data type and shape information provided.\n",
+ "- Group all the different inputs into a Pandas DataFrame, using their names as the column names.\n",
+ "\n",
+ "To learn more about how MLServer uses content type parameters, you can check this [worked out example](../content-type/README.md)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "759ad7df",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"fixed acidity\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [7.4],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"volatile acidity\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [0.7000],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"citric acid\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [0],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"residual sugar\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [1.9],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"chlorides\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [0.076],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"free sulfur dioxide\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [11],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"total sulfur dioxide\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [34],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"density\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [0.9978],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"pH\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [3.51],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"sulphates\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [0.56],\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"alcohol\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": [9.4],\n",
+ " },\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/wine-classifier/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0bfc1203",
+ "metadata": {},
+ "source": [
+ "As we can see in the output above, the predicted quality score for our input wine was `5.57`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b2fcd821",
+ "metadata": {},
+ "source": [
+ "### MLflow Scoring Protocol\n",
+ "\n",
+ "MLflow currently ships with an [scoring server with its own protocol](https://www.mlflow.org/docs/latest/models.html#deploy-mlflow-models).\n",
+ "In order to provide a drop-in replacement, the MLflow runtime in MLServer also exposes a custom endpoint which matches the signature of the MLflow's `/invocations` endpoint.\n",
+ "\n",
+ "As an example, we can try to send the same request that sent previously, but using MLflow's protocol.\n",
+ "Note that, in both cases, the request will be handled by the same MLServer instance."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "84361b87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "inference_request = {\n",
+ " \"dataframe_split\": {\n",
+ " \"columns\": [\n",
+ " \"alcohol\",\n",
+ " \"chlorides\",\n",
+ " \"citric acid\",\n",
+ " \"density\",\n",
+ " \"fixed acidity\",\n",
+ " \"free sulfur dioxide\",\n",
+ " \"pH\",\n",
+ " \"residual sugar\",\n",
+ " \"sulphates\",\n",
+ " \"total sulfur dioxide\",\n",
+ " \"volatile acidity\",\n",
+ " ],\n",
+ " \"data\": [[7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4]]\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/invocations\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8be5c51c",
+ "metadata": {},
+ "source": [
+ "As we can see above, the predicted quality for our input is `5.57`, matching the prediction we obtained above."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dc9c0c19",
+ "metadata": {},
+ "source": [
+ "### MLflow Model Signature\n",
+ "\n",
+ "MLflow lets users define a [_model signature_](https://www.mlflow.org/docs/latest/models.html#model-signature-and-input-example), where they can specify what types of inputs does the model accept, and what types of outputs it returns. \n",
+ "Similarly, the [V2 inference protocol](https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2) employed by MLServer defines a [_metadata endpoint_](https://github.com/kubeflow/kfserving/blob/master/docs/predict-api/v2/required_api.md#model-metadata) which can be used to query what inputs and outputs does the model accept.\n",
+ "However, even though they serve similar functions, the data schemas used by each one of them are not compatible between them.\n",
+ "\n",
+ "To solve this, if your model defines a MLflow model signature, MLServer will convert _on-the-fly_ this signature to a metadata schema compatible with the V2 Inference Protocol.\n",
+ "This will also include specifying any extra [content type](../content-type/README.md) that is required to correctly decode / encode your data.\n",
+ "\n",
+ "As an example, we can first have a look at the model signature saved for our MLflow model.\n",
+ "This can be seen directly on the `MLModel` file saved by our model.\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d0a0400a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!cat {model_path}/MLmodel"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cde189a4",
+ "metadata": {},
+ "source": [
+ "We can then query the metadata endpoint, to see the model metadata inferred by MLServer from our test model's signature.\n",
+ "For this, we will use the `/v2/models/wine-classifier/` endpoint."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8a5d0080",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/wine-classifier\"\n",
+ "response = requests.get(endpoint)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eeb11edd",
+ "metadata": {},
+ "source": [
+ "As we should be able to see, the model metadata now matches the information contained in our model signature, including any extra content types necessary to decode our data correctly."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6d185281",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs-gb/examples/mlflow/README.md b/docs-gb/examples/mlflow/README.md
new file mode 100644
index 000000000..06cb6724a
--- /dev/null
+++ b/docs-gb/examples/mlflow/README.md
@@ -0,0 +1,356 @@
+# Serving MLflow models
+
+Out of the box, MLServer supports the deployment and serving of MLflow models with the following features:
+
+- Loading of MLflow Model artifacts.
+- Support of dataframes, dict-of-tensors and tensor inputs.
+
+In this example, we will showcase some of this features using an example model.
+
+
+```python
+from IPython.core.magic import register_line_cell_magic
+
+@register_line_cell_magic
+def writetemplate(line, cell):
+ with open(line, 'w') as f:
+ f.write(cell.format(**globals()))
+```
+
+## Training
+
+The first step will be to train and serialise a MLflow model.
+For that, we will use the [linear regression examle from the MLflow docs](https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html).
+
+
+```python
+# %load src/train.py
+# Original source code and more details can be found in:
+# https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html
+
+# The data set used in this example is from
+# http://archive.ics.uci.edu/ml/datasets/Wine+Quality
+# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
+# Modeling wine preferences by data mining from physicochemical properties.
+# In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
+
+import warnings
+import sys
+
+import pandas as pd
+import numpy as np
+from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
+from sklearn.model_selection import train_test_split
+from sklearn.linear_model import ElasticNet
+from urllib.parse import urlparse
+import mlflow
+import mlflow.sklearn
+from mlflow.models.signature import infer_signature
+
+import logging
+
+logging.basicConfig(level=logging.WARN)
+logger = logging.getLogger(__name__)
+
+
+def eval_metrics(actual, pred):
+ rmse = np.sqrt(mean_squared_error(actual, pred))
+ mae = mean_absolute_error(actual, pred)
+ r2 = r2_score(actual, pred)
+ return rmse, mae, r2
+
+
+if __name__ == "__main__":
+ warnings.filterwarnings("ignore")
+ np.random.seed(40)
+
+ # Read the wine-quality csv file from the URL
+ csv_url = (
+ "http://archive.ics.uci.edu/ml"
+ "/machine-learning-databases/wine-quality/winequality-red.csv"
+ )
+ try:
+ data = pd.read_csv(csv_url, sep=";")
+ except Exception as e:
+ logger.exception(
+ "Unable to download training & test CSV, "
+ "check your internet connection. Error: %s",
+ e,
+ )
+
+ # Split the data into training and test sets. (0.75, 0.25) split.
+ train, test = train_test_split(data)
+
+ # The predicted column is "quality" which is a scalar from [3, 9]
+ train_x = train.drop(["quality"], axis=1)
+ test_x = test.drop(["quality"], axis=1)
+ train_y = train[["quality"]]
+ test_y = test[["quality"]]
+
+ alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5
+ l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5
+
+ with mlflow.start_run():
+ lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
+ lr.fit(train_x, train_y)
+
+ predicted_qualities = lr.predict(test_x)
+
+ (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
+
+ print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))
+ print(" RMSE: %s" % rmse)
+ print(" MAE: %s" % mae)
+ print(" R2: %s" % r2)
+
+ mlflow.log_param("alpha", alpha)
+ mlflow.log_param("l1_ratio", l1_ratio)
+ mlflow.log_metric("rmse", rmse)
+ mlflow.log_metric("r2", r2)
+ mlflow.log_metric("mae", mae)
+
+ tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
+ model_signature = infer_signature(train_x, train_y)
+
+ # Model registry does not work with file store
+ if tracking_url_type_store != "file":
+
+ # Register the model
+ # There are other ways to use the Model Registry,
+ # which depends on the use case,
+ # please refer to the doc for more information:
+ # https://mlflow.org/docs/latest/model-registry.html#api-workflow
+ mlflow.sklearn.log_model(
+ lr,
+ "model",
+ registered_model_name="ElasticnetWineModel",
+ signature=model_signature,
+ )
+ else:
+ mlflow.sklearn.log_model(lr, "model", signature=model_signature)
+
+```
+
+
+```python
+!python src/train.py
+```
+
+The training script will also serialise our trained model, leveraging the [MLflow Model format](https://www.mlflow.org/docs/latest/models.html).
+By default, we should be able to find the saved artifact under the `mlruns` folder.
+
+
+```python
+import os
+
+[experiment_file_path] = !ls -td ./mlruns/0/* | head -1
+model_path = os.path.join(experiment_file_path, "artifacts", "model")
+print(model_path)
+```
+
+
+```python
+!ls {model_path}
+```
+
+## Serving
+
+Now that we have trained and serialised our model, we are ready to start serving it.
+For that, the initial step will be to set up a `model-settings.json` that instructs MLServer to load our artifact using the MLflow Inference Runtime.
+
+
+```python
+%%writetemplate ./model-settings.json
+{{
+ "name": "wine-classifier",
+ "implementation": "mlserver_mlflow.MLflowRuntime",
+ "parameters": {{
+ "uri": "{model_path}"
+ }}
+}}
+```
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request from our test set.
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+Note that, the request specifies the value `pd` as its *content type*, whereas every input specifies the *content type* `np`.
+These parameters will instruct MLServer to:
+
+- Convert every input value to a NumPy array, using the data type and shape information provided.
+- Group all the different inputs into a Pandas DataFrame, using their names as the column names.
+
+To learn more about how MLServer uses content type parameters, you can check this [worked out example](../content-type/README.md).
+
+
+```python
+import requests
+
+inference_request = {
+ "inputs": [
+ {
+ "name": "fixed acidity",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [7.4],
+ },
+ {
+ "name": "volatile acidity",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [0.7000],
+ },
+ {
+ "name": "citric acid",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [0],
+ },
+ {
+ "name": "residual sugar",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [1.9],
+ },
+ {
+ "name": "chlorides",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [0.076],
+ },
+ {
+ "name": "free sulfur dioxide",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [11],
+ },
+ {
+ "name": "total sulfur dioxide",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [34],
+ },
+ {
+ "name": "density",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [0.9978],
+ },
+ {
+ "name": "pH",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [3.51],
+ },
+ {
+ "name": "sulphates",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [0.56],
+ },
+ {
+ "name": "alcohol",
+ "shape": [1],
+ "datatype": "FP32",
+ "data": [9.4],
+ },
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/wine-classifier/infer"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+As we can see in the output above, the predicted quality score for our input wine was `5.57`.
+
+### MLflow Scoring Protocol
+
+MLflow currently ships with an [scoring server with its own protocol](https://www.mlflow.org/docs/latest/models.html#deploy-mlflow-models).
+In order to provide a drop-in replacement, the MLflow runtime in MLServer also exposes a custom endpoint which matches the signature of the MLflow's `/invocations` endpoint.
+
+As an example, we can try to send the same request that sent previously, but using MLflow's protocol.
+Note that, in both cases, the request will be handled by the same MLServer instance.
+
+
+```python
+import requests
+
+inference_request = {
+ "dataframe_split": {
+ "columns": [
+ "fixed acidity",
+ "volatile acidity",
+ "citric acid",
+ "residual sugar",
+ "chlorides",
+ "free sulfur dioxide",
+ "total sulfur dioxide",
+ "density",
+ "pH",
+ "sulphates",
+ "alcohol",
+ ],
+ "data": [[7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4]]
+ }
+}
+
+endpoint = "http://localhost:8080/invocations"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+As we can see above, the predicted quality for our input is `5.57`, matching the prediction we obtained above.
+
+### MLflow Model Signature
+
+MLflow lets users define a [_model signature_](https://www.mlflow.org/docs/latest/models.html#model-signature-and-input-example), where they can specify what types of inputs does the model accept, and what types of outputs it returns.
+Similarly, the [V2 inference protocol](https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2) employed by MLServer defines a [_metadata endpoint_](https://github.com/kubeflow/kfserving/blob/master/docs/predict-api/v2/required_api.md#model-metadata) which can be used to query what inputs and outputs does the model accept.
+However, even though they serve similar functions, the data schemas used by each one of them are not compatible between them.
+
+To solve this, if your model defines a MLflow model signature, MLServer will convert _on-the-fly_ this signature to a metadata schema compatible with the V2 Inference Protocol.
+This will also include specifying any extra [content type](../content-type/README.md) that is required to correctly decode / encode your data.
+
+As an example, we can first have a look at the model signature saved for our MLflow model.
+This can be seen directly on the `MLModel` file saved by our model.
+
+
+
+
+
+```python
+!cat {model_path}/MLmodel
+```
+
+We can then query the metadata endpoint, to see the model metadata inferred by MLServer from our test model's signature.
+For this, we will use the `/v2/models/wine-classifier/` endpoint.
+
+
+```python
+import requests
+
+
+endpoint = "http://localhost:8080/v2/models/wine-classifier"
+response = requests.get(endpoint)
+
+response.json()
+```
+
+As we should be able to see, the model metadata now matches the information contained in our model signature, including any extra content types necessary to decode our data correctly.
+
+
+```python
+
+```
diff --git a/docs-gb/examples/mlflow/model-settings.json b/docs-gb/examples/mlflow/model-settings.json
new file mode 100644
index 000000000..39c98e953
--- /dev/null
+++ b/docs-gb/examples/mlflow/model-settings.json
@@ -0,0 +1,7 @@
+{
+ "name": "wine-classifier",
+ "implementation": "mlserver_mlflow.MLflowRuntime",
+ "parameters": {
+ "uri": "./mlruns/0/6cd26d62883641188b4f7616725ed838/artifacts/model"
+ }
+}
diff --git a/docs-gb/examples/mlflow/src/train.py b/docs-gb/examples/mlflow/src/train.py
new file mode 100644
index 000000000..1278b1dc9
--- /dev/null
+++ b/docs-gb/examples/mlflow/src/train.py
@@ -0,0 +1,102 @@
+# Original source code and more details can be found in:
+# https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html
+
+# The data set used in this example is from
+# http://archive.ics.uci.edu/ml/datasets/Wine+Quality
+# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
+# Modeling wine preferences by data mining from physicochemical properties.
+# In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
+
+import warnings
+import sys
+
+import pandas as pd
+import numpy as np
+from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
+from sklearn.model_selection import train_test_split
+from sklearn.linear_model import ElasticNet
+from urllib.parse import urlparse
+import mlflow
+import mlflow.sklearn
+from mlflow.models.signature import infer_signature
+
+import logging
+
+logging.basicConfig(level=logging.WARN)
+logger = logging.getLogger(__name__)
+
+
+def eval_metrics(actual, pred):
+ rmse = np.sqrt(mean_squared_error(actual, pred))
+ mae = mean_absolute_error(actual, pred)
+ r2 = r2_score(actual, pred)
+ return rmse, mae, r2
+
+
+if __name__ == "__main__":
+ warnings.filterwarnings("ignore")
+ np.random.seed(40)
+
+ # Read the wine-quality csv file from the URL
+ csv_url = (
+ "http://archive.ics.uci.edu/ml"
+ "/machine-learning-databases/wine-quality/winequality-red.csv"
+ )
+ try:
+ data = pd.read_csv(csv_url, sep=";")
+ except Exception as e:
+ logger.exception(
+ "Unable to download training & test CSV, "
+ "check your internet connection. Error: %s",
+ e,
+ )
+
+ # Split the data into training and test sets. (0.75, 0.25) split.
+ train, test = train_test_split(data)
+
+ # The predicted column is "quality" which is a scalar from [3, 9]
+ train_x = train.drop(["quality"], axis=1)
+ test_x = test.drop(["quality"], axis=1)
+ train_y = train[["quality"]]
+ test_y = test[["quality"]]
+
+ alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5
+ l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5
+
+ with mlflow.start_run():
+ lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
+ lr.fit(train_x, train_y)
+
+ predicted_qualities = lr.predict(test_x)
+
+ (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
+
+ print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))
+ print(" RMSE: %s" % rmse)
+ print(" MAE: %s" % mae)
+ print(" R2: %s" % r2)
+
+ mlflow.log_param("alpha", alpha)
+ mlflow.log_param("l1_ratio", l1_ratio)
+ mlflow.log_metric("rmse", rmse)
+ mlflow.log_metric("r2", r2)
+ mlflow.log_metric("mae", mae)
+
+ tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
+ model_signature = infer_signature(train_x, train_y)
+
+ # Model registry does not work with file store
+ if tracking_url_type_store != "file":
+ # Register the model
+ # There are other ways to use the Model Registry,
+ # which depends on the use case,
+ # please refer to the doc for more information:
+ # https://mlflow.org/docs/latest/model-registry.html#api-workflow
+ mlflow.sklearn.log_model(
+ lr,
+ "model",
+ registered_model_name="ElasticnetWineModel",
+ signature=model_signature,
+ )
+ else:
+ mlflow.sklearn.log_model(lr, "model", signature=model_signature)
diff --git a/docs-gb/examples/mllib/data/.part-00000-3b569ac9-e283-4220-ba6c-31088ed23cb8-c000.snappy.parquet.crc b/docs-gb/examples/mllib/data/.part-00000-3b569ac9-e283-4220-ba6c-31088ed23cb8-c000.snappy.parquet.crc
new file mode 100644
index 000000000..e62ae8b4d
Binary files /dev/null and b/docs-gb/examples/mllib/data/.part-00000-3b569ac9-e283-4220-ba6c-31088ed23cb8-c000.snappy.parquet.crc differ
diff --git a/docs-gb/examples/mllib/data/_SUCCESS b/docs-gb/examples/mllib/data/_SUCCESS
new file mode 100644
index 000000000..e69de29bb
diff --git a/docs-gb/examples/mllib/data/part-00000-3b569ac9-e283-4220-ba6c-31088ed23cb8-c000.snappy.parquet b/docs-gb/examples/mllib/data/part-00000-3b569ac9-e283-4220-ba6c-31088ed23cb8-c000.snappy.parquet
new file mode 100644
index 000000000..9f3cb17ce
Binary files /dev/null and b/docs-gb/examples/mllib/data/part-00000-3b569ac9-e283-4220-ba6c-31088ed23cb8-c000.snappy.parquet differ
diff --git a/docs-gb/examples/mllib/metadata/.part-00000.crc b/docs-gb/examples/mllib/metadata/.part-00000.crc
new file mode 100644
index 000000000..39e758e5b
Binary files /dev/null and b/docs-gb/examples/mllib/metadata/.part-00000.crc differ
diff --git a/docs-gb/examples/mllib/metadata/_SUCCESS b/docs-gb/examples/mllib/metadata/_SUCCESS
new file mode 100644
index 000000000..e69de29bb
diff --git a/docs-gb/examples/mllib/metadata/part-00000 b/docs-gb/examples/mllib/metadata/part-00000
new file mode 100644
index 000000000..333195048
--- /dev/null
+++ b/docs-gb/examples/mllib/metadata/part-00000
@@ -0,0 +1 @@
+{"class":"org.apache.spark.mllib.classification.LogisticRegressionModel","version":"1.0","numFeatures":692,"numClasses":2}
diff --git a/docs-gb/examples/mllib/model-settings.json b/docs-gb/examples/mllib/model-settings.json
new file mode 100644
index 000000000..56eff7193
--- /dev/null
+++ b/docs-gb/examples/mllib/model-settings.json
@@ -0,0 +1,9 @@
+{
+ "name": "spark-mllib",
+ "implementation": "mlserver-mllib.MLlibModel",
+ "parameters": {
+ "uri": "./",
+ "format": "LogisticRegression",
+ "version": "v0.1.0"
+ }
+}
diff --git a/docs-gb/examples/mms/Makefile b/docs-gb/examples/mms/Makefile
new file mode 100644
index 000000000..db6e4ee5b
--- /dev/null
+++ b/docs-gb/examples/mms/Makefile
@@ -0,0 +1,5 @@
+upload:
+ gsutil cp -r models/* gs://seldon-models/mlserver/mms
+ gsutil cp -r models/mnist-svm gs://seldon-models/mlserver/mms-sklearn
+ gsutil cp -r models/mushroom-xgboost gs://seldon-models/mlserver/mms-xgboost
+
diff --git a/docs-gb/examples/mms/README.ipynb b/docs-gb/examples/mms/README.ipynb
new file mode 100644
index 000000000..a565461da
--- /dev/null
+++ b/docs-gb/examples/mms/README.ipynb
@@ -0,0 +1,363 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Multi-Model Serving\n",
+ "\n",
+ "MLServer has been built with Multi-Model Serving (MMS) in mind.\n",
+ "This means that, within a single instance of MLServer, you can serve multiple models under different paths.\n",
+ "This also includes multiple versions of the same model.\n",
+ "\n",
+ "This notebook shows an example of how you can leverage MMS with MLServer."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training\n",
+ "\n",
+ "We will first start by training 2 different models:\n",
+ "\n",
+ "| Name | Framework | Source | Trained Model Path |\n",
+ "| ------------------ | -------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------- |\n",
+ "| `mnist-svm` | `scikit-learn` | [MNIST example from the `scikit-learn` documentation](https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html) | `./models/mnist-svm/model.joblib` |\n",
+ "| `mushroom-xgboost` | `xgboost` | [Mushrooms example from the `xgboost` Getting Started guide](https://xgboost.readthedocs.io/en/latest/get_started.html#python) | `./models/mushroom-xgboost/model.json` |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Training our `mnist-svm` model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Original source code and more details can be found in:\n",
+ "# https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html\n",
+ "\n",
+ "# Import datasets, classifiers and performance metrics\n",
+ "from sklearn import datasets, svm, metrics\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "# The digits dataset\n",
+ "digits = datasets.load_digits()\n",
+ "\n",
+ "# To apply a classifier on this data, we need to flatten the image, to\n",
+ "# turn the data in a (samples, feature) matrix:\n",
+ "n_samples = len(digits.images)\n",
+ "data = digits.images.reshape((n_samples, -1))\n",
+ "\n",
+ "# Create a classifier: a support vector classifier\n",
+ "classifier = svm.SVC(gamma=0.001)\n",
+ "\n",
+ "# Split data into train and test subsets\n",
+ "X_train, X_test_digits, y_train, y_test_digits = train_test_split(\n",
+ " data, digits.target, test_size=0.5, shuffle=False)\n",
+ "\n",
+ "# We learn the digits on the first half of the digits\n",
+ "classifier.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import joblib\n",
+ "import os\n",
+ "\n",
+ "mnist_svm_path = os.path.join(\"models\", \"mnist-svm\")\n",
+ "os.makedirs(mnist_svm_path, exist_ok=True)\n",
+ "\n",
+ "mnist_svm_model_path = os.path.join(mnist_svm_path, \"model.joblib\")\n",
+ "joblib.dump(classifier, mnist_svm_model_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Training our `mushroom-xgboost` model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Original code and extra details can be found in:\n",
+ "# https://xgboost.readthedocs.io/en/latest/get_started.html#python\n",
+ "\n",
+ "import os\n",
+ "import xgboost as xgb\n",
+ "import requests\n",
+ "\n",
+ "from urllib.parse import urlparse\n",
+ "from sklearn.datasets import load_svmlight_file\n",
+ "\n",
+ "\n",
+ "TRAIN_DATASET_URL = 'https://raw.githubusercontent.com/dmlc/xgboost/master/demo/data/agaricus.txt.train'\n",
+ "TEST_DATASET_URL = 'https://raw.githubusercontent.com/dmlc/xgboost/master/demo/data/agaricus.txt.test'\n",
+ "\n",
+ "\n",
+ "def _download_file(url: str) -> str:\n",
+ " parsed = urlparse(url)\n",
+ " file_name = os.path.basename(parsed.path)\n",
+ " file_path = os.path.join(os.getcwd(), file_name)\n",
+ " \n",
+ " res = requests.get(url)\n",
+ " \n",
+ " with open(file_path, 'wb') as file:\n",
+ " file.write(res.content)\n",
+ " \n",
+ " return file_path\n",
+ "\n",
+ "train_dataset_path = _download_file(TRAIN_DATASET_URL)\n",
+ "test_dataset_path = _download_file(TEST_DATASET_URL)\n",
+ "\n",
+ "# NOTE: Workaround to load SVMLight files from the XGBoost example\n",
+ "X_train, y_train = load_svmlight_file(train_dataset_path)\n",
+ "X_test_agar, y_test_agar = load_svmlight_file(test_dataset_path)\n",
+ "X_train = X_train.toarray()\n",
+ "X_test_agar = X_test_agar.toarray()\n",
+ "\n",
+ "# read in data\n",
+ "dtrain = xgb.DMatrix(data=X_train, label=y_train)\n",
+ "\n",
+ "# specify parameters via map\n",
+ "param = {'max_depth':2, 'eta':1, 'objective':'binary:logistic' }\n",
+ "num_round = 2\n",
+ "bst = xgb.train(param, dtrain, num_round)\n",
+ "\n",
+ "bst"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "\n",
+ "mushroom_xgboost_path = os.path.join(\"models\", \"mushroom-xgboost\")\n",
+ "os.makedirs(mushroom_xgboost_path, exist_ok=True)\n",
+ "\n",
+ "mushroom_xgboost_model_path = os.path.join(mushroom_xgboost_path, \"model.json\")\n",
+ "bst.save_model(mushroom_xgboost_model_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "The next step will be serving both our models within the same MLServer instance.\n",
+ "For that, we will just need to create a `model-settings.json` file local to each of our models and a server-wide `settings.json`.\n",
+ "That is,\n",
+ "\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `models/mnist-svm/model-settings.json`: holds the configuration specific to our `mnist-svm` model (e.g. input type, runtime to use, etc.).\n",
+ "- `models/mushroom-xgboost/model-settings.json`: holds the configuration specific to our `mushroom-xgboost` model (e.g. input type, runtime to use, etc.).\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile settings.json\n",
+ "{\n",
+ " \"debug\": \"true\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `models/mnist-svm/model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile models/mnist-svm/model-settings.json\n",
+ "{\n",
+ " \"name\": \"mnist-svm\",\n",
+ " \"implementation\": \"mlserver_sklearn.SKLearnModel\",\n",
+ " \"parameters\": {\n",
+ " \"version\": \"v0.1.0\"\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `models/mushroom-xgboost/model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile models/mushroom-xgboost/model-settings.json\n",
+ "{\n",
+ " \"name\": \"mushroom-xgboost\",\n",
+ " \"implementation\": \"mlserver_xgboost.XGBoostModel\",\n",
+ " \"parameters\": {\n",
+ " \"version\": \"v0.1.0\"\n",
+ " }\n",
+ "}\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Testing\n",
+ "\n",
+ "By this point, we should have both our models getting served by MLServer.\n",
+ "To make sure that everything is working as expected, let's send a request from each test set.\n",
+ "\n",
+ "For that, we can use the Python types that the `mlserver` package provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Testing our `mnist-svm` model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "x_0 = X_test_digits[0:1]\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict\",\n",
+ " \"shape\": x_0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": x_0.tolist()\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/mnist-svm/versions/v0.1.0/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Testing our `mushroom-xgboost` model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "x_0 = X_test_agar[0:1]\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict\",\n",
+ " \"shape\": x_0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": x_0.tolist()\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/mushroom-xgboost/versions/v0.1.0/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/mms/README.md b/docs-gb/examples/mms/README.md
new file mode 100644
index 000000000..6a477cf46
--- /dev/null
+++ b/docs-gb/examples/mms/README.md
@@ -0,0 +1,242 @@
+# Multi-Model Serving
+
+MLServer has been built with [Multi-Model Serving (MMS)](https://www.seldon.io/what-is-multi-model-serving-and-how-does-it-transform-your-ml-infrastructure) in mind.
+This means that, within a single instance of MLServer, you can serve multiple models under different paths.
+This also includes multiple versions of the same model.
+
+This notebook shows an example of how you can leverage MMS with MLServer.
+
+## Training
+
+We will first start by training 2 different models:
+
+| Name | Framework | Source | Trained Model Path |
+| ------------------ | -------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------- |
+| `mnist-svm` | `scikit-learn` | [MNIST example from the `scikit-learn` documentation](https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html) | `./models/mnist-svm/model.joblib` |
+| `mushroom-xgboost` | `xgboost` | [Mushrooms example from the `xgboost` Getting Started guide](https://xgboost.readthedocs.io/en/latest/get_started.html#python) | `./models/mushroom-xgboost/model.json` |
+
+
+### Training our `mnist-svm` model
+
+
+```python
+# Original source code and more details can be found in:
+# https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
+
+# Import datasets, classifiers and performance metrics
+from sklearn import datasets, svm, metrics
+from sklearn.model_selection import train_test_split
+
+# The digits dataset
+digits = datasets.load_digits()
+
+# To apply a classifier on this data, we need to flatten the image, to
+# turn the data in a (samples, feature) matrix:
+n_samples = len(digits.images)
+data = digits.images.reshape((n_samples, -1))
+
+# Create a classifier: a support vector classifier
+classifier = svm.SVC(gamma=0.001)
+
+# Split data into train and test subsets
+X_train, X_test_digits, y_train, y_test_digits = train_test_split(
+ data, digits.target, test_size=0.5, shuffle=False)
+
+# We learn the digits on the first half of the digits
+classifier.fit(X_train, y_train)
+```
+
+
+```python
+import joblib
+import os
+
+mnist_svm_path = os.path.join("models", "mnist-svm")
+os.makedirs(mnist_svm_path, exist_ok=True)
+
+mnist_svm_model_path = os.path.join(mnist_svm_path, "model.joblib")
+joblib.dump(classifier, mnist_svm_model_path)
+```
+
+### Training our `mushroom-xgboost` model
+
+
+```python
+# Original code and extra details can be found in:
+# https://xgboost.readthedocs.io/en/latest/get_started.html#python
+
+import os
+import xgboost as xgb
+import requests
+
+from urllib.parse import urlparse
+from sklearn.datasets import load_svmlight_file
+
+
+TRAIN_DATASET_URL = 'https://raw.githubusercontent.com/dmlc/xgboost/master/demo/data/agaricus.txt.train'
+TEST_DATASET_URL = 'https://raw.githubusercontent.com/dmlc/xgboost/master/demo/data/agaricus.txt.test'
+
+
+def _download_file(url: str) -> str:
+ parsed = urlparse(url)
+ file_name = os.path.basename(parsed.path)
+ file_path = os.path.join(os.getcwd(), file_name)
+
+ res = requests.get(url)
+
+ with open(file_path, 'wb') as file:
+ file.write(res.content)
+
+ return file_path
+
+train_dataset_path = _download_file(TRAIN_DATASET_URL)
+test_dataset_path = _download_file(TEST_DATASET_URL)
+
+# NOTE: Workaround to load SVMLight files from the XGBoost example
+X_train, y_train = load_svmlight_file(train_dataset_path)
+X_test_agar, y_test_agar = load_svmlight_file(test_dataset_path)
+X_train = X_train.toarray()
+X_test_agar = X_test_agar.toarray()
+
+# read in data
+dtrain = xgb.DMatrix(data=X_train, label=y_train)
+
+# specify parameters via map
+param = {'max_depth':2, 'eta':1, 'objective':'binary:logistic' }
+num_round = 2
+bst = xgb.train(param, dtrain, num_round)
+
+bst
+```
+
+
+```python
+import os
+
+mushroom_xgboost_path = os.path.join("models", "mushroom-xgboost")
+os.makedirs(mushroom_xgboost_path, exist_ok=True)
+
+mushroom_xgboost_model_path = os.path.join(mushroom_xgboost_path, "model.json")
+bst.save_model(mushroom_xgboost_model_path)
+```
+
+## Serving
+
+The next step will be serving both our models within the same MLServer instance.
+For that, we will just need to create a `model-settings.json` file local to each of our models and a server-wide `settings.json`.
+That is,
+
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `models/mnist-svm/model-settings.json`: holds the configuration specific to our `mnist-svm` model (e.g. input type, runtime to use, etc.).
+- `models/mushroom-xgboost/model-settings.json`: holds the configuration specific to our `mushroom-xgboost` model (e.g. input type, runtime to use, etc.).
+
+
+
+### `settings.json`
+
+
+```python
+%%writefile settings.json
+{
+ "debug": "true"
+}
+```
+
+### `models/mnist-svm/model-settings.json`
+
+
+```python
+%%writefile models/mnist-svm/model-settings.json
+{
+ "name": "mnist-svm",
+ "implementation": "mlserver_sklearn.SKLearnModel",
+ "parameters": {
+ "version": "v0.1.0"
+ }
+}
+```
+
+### `models/mushroom-xgboost/model-settings.json`
+
+
+```python
+%%writefile models/mushroom-xgboost/model-settings.json
+{
+ "name": "mushroom-xgboost",
+ "implementation": "mlserver_xgboost.XGBoostModel",
+ "parameters": {
+ "version": "v0.1.0"
+ }
+}
+
+```
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+## Testing
+
+By this point, we should have both our models getting served by MLServer.
+To make sure that everything is working as expected, let's send a request from each test set.
+
+For that, we can use the Python types that the `mlserver` package provides out of box, or we can build our request manually.
+
+### Testing our `mnist-svm` model
+
+
+```python
+import requests
+
+x_0 = X_test_digits[0:1]
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": x_0.shape,
+ "datatype": "FP32",
+ "data": x_0.tolist()
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/mnist-svm/versions/v0.1.0/infer"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+### Testing our `mushroom-xgboost` model
+
+
+```python
+import requests
+
+x_0 = X_test_agar[0:1]
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": x_0.shape,
+ "datatype": "FP32",
+ "data": x_0.tolist()
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/mushroom-xgboost/versions/v0.1.0/infer"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+
+```python
+
+```
diff --git a/docs-gb/examples/mms/agaricus.txt.test b/docs-gb/examples/mms/agaricus.txt.test
new file mode 100644
index 000000000..83bdd2666
--- /dev/null
+++ b/docs-gb/examples/mms/agaricus.txt.test
@@ -0,0 +1,1611 @@
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 5:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 5:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 5:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 3:1 9:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 3:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 52:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 9:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 2:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
diff --git a/docs-gb/examples/mms/agaricus.txt.train b/docs-gb/examples/mms/agaricus.txt.train
new file mode 100644
index 000000000..10c790226
--- /dev/null
+++ b/docs-gb/examples/mms/agaricus.txt.train
@@ -0,0 +1,6513 @@
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 5:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 5:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 8:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 2:1 8:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 1:1 8:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 1:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 3:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 5:1 9:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 5:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 5:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 5:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 1:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 1:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 1:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 2:1 9:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 3:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 3:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 5:1 8:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 5:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 1:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 1:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 5:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 52:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 52:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 3:1 10:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 2:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 52:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 1:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 4:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
diff --git a/docs-gb/examples/mms/models/mnist-svm/model-settings.json b/docs-gb/examples/mms/models/mnist-svm/model-settings.json
new file mode 100644
index 000000000..5554718b9
--- /dev/null
+++ b/docs-gb/examples/mms/models/mnist-svm/model-settings.json
@@ -0,0 +1,7 @@
+{
+ "name": "mnist-svm",
+ "implementation": "mlserver_sklearn.SKLearnModel",
+ "parameters": {
+ "version": "v0.1.0"
+ }
+}
diff --git a/docs-gb/examples/mms/models/mnist-svm/model.joblib b/docs-gb/examples/mms/models/mnist-svm/model.joblib
new file mode 100644
index 000000000..8fdf30764
Binary files /dev/null and b/docs-gb/examples/mms/models/mnist-svm/model.joblib differ
diff --git a/docs-gb/examples/mms/models/mushroom-xgboost/model-settings.json b/docs-gb/examples/mms/models/mushroom-xgboost/model-settings.json
new file mode 100644
index 000000000..6c31bacc8
--- /dev/null
+++ b/docs-gb/examples/mms/models/mushroom-xgboost/model-settings.json
@@ -0,0 +1,7 @@
+{
+ "name": "mushroom-xgboost",
+ "implementation": "mlserver_xgboost.XGBoostModel",
+ "parameters": {
+ "version": "v0.1.0"
+ }
+}
diff --git a/docs-gb/examples/mms/models/mushroom-xgboost/model.json b/docs-gb/examples/mms/models/mushroom-xgboost/model.json
new file mode 100644
index 000000000..05990f0d2
--- /dev/null
+++ b/docs-gb/examples/mms/models/mushroom-xgboost/model.json
@@ -0,0 +1 @@
+{"learner":{"attributes":{"best_iteration":"1","best_ntree_limit":"2"},"feature_names":[],"feature_types":[],"gradient_booster":{"model":{"gbtree_model_param":{"num_trees":"2","size_leaf_vector":"0"},"tree_info":[0,0],"trees":[{"base_weights":[-7.150529E-2,1.2955159E0,-1.8666193E0,1.7121772E0,-1.7004405E0,-1.9407086E0,1.8596492E0],"categories":[],"categories_nodes":[],"categories_segments":[],"categories_sizes":[],"default_left":[true,true,true,false,false,false,false],"id":0,"left_children":[1,3,5,-1,-1,-1,-1],"loss_changes":[4.000531E3,1.158212E3,1.9817383E2,0E0,0E0,0E0,0E0],"parents":[2147483647,0,0,1,1,2,2],"right_children":[2,4,6,-1,-1,-1,-1],"split_conditions":[5E-1,5E-1,5E-1,1.7121772E0,-1.7004405E0,-1.9407086E0,1.8596492E0],"split_indices":[28,55,108,0,0,0,0],"split_type":[0,0,0,0,0,0,0],"sum_hessian":[1.62825E3,9.245E2,7.0375E2,8.12E2,1.125E2,6.905E2,1.325E1],"tree_param":{"num_deleted":"0","num_feature":"126","num_nodes":"7","size_leaf_vector":"0"}},{"base_weights":[-9.3191065E-2,7.8292646E-2,-6.2362447E0,7.8471756E-1,-9.6853036E-1],"categories":[],"categories_nodes":[],"categories_segments":[],"categories_sizes":[],"default_left":[true,true,false,false,false],"id":1,"left_children":[1,3,-1,-1,-1],"loss_changes":[8.3254504E2,5.697251E2,0E0,0E0,0E0],"parents":[2147483647,0,0,1,1],"right_children":[2,4,-1,-1,-1],"split_conditions":[5E-1,5E-1,-6.2362447E0,7.8471756E-1,-9.6853036E-1],"split_indices":[59,28,0,0,0],"split_type":[0,0,0,0,0],"sum_hessian":[7.8885205E2,7.683897E2,2.0462389E1,4.5893686E2,3.0945282E2],"tree_param":{"num_deleted":"0","num_feature":"126","num_nodes":"5","size_leaf_vector":"0"}}]},"name":"gbtree"},"learner_model_param":{"base_score":"5E-1","num_class":"0","num_feature":"126"},"objective":{"name":"binary:logistic","reg_loss_param":{"scale_pos_weight":"1"}}},"version":[1,5,0]}
\ No newline at end of file
diff --git a/docs-gb/examples/mms/settings.json b/docs-gb/examples/mms/settings.json
new file mode 100644
index 000000000..f2ee7ab8d
--- /dev/null
+++ b/docs-gb/examples/mms/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
diff --git a/docs-gb/examples/model-repository/README.ipynb b/docs-gb/examples/model-repository/README.ipynb
new file mode 100644
index 000000000..70625bda7
--- /dev/null
+++ b/docs-gb/examples/model-repository/README.ipynb
@@ -0,0 +1,184 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Model Repository API\n",
+ "\n",
+ "MLServer supports loading and unloading models dynamically from a models repository.\n",
+ "This allows you to enable and disable the models accessible by MLServer on demand.\n",
+ "This extension builds on top of the support for [Multi-Model Serving](../mms/README.md), letting you change at runtime which models is MLServer currently serving.\n",
+ "\n",
+ "The API to manage the model repository is modelled after [Triton's Model Repository extension](https://github.com/triton-inference-server/server/blob/master/docs/protocol/extension_model_repository.md) to the V2 Dataplane and is thus fully compatible with it.\n",
+ "\n",
+ "This notebook will walk you through an example using the Model Repository API.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training\n",
+ "\n",
+ "First of all, we will need to train some models.\n",
+ "For that, we will re-use the models we trained previously in the [Multi-Model Serving example](../mms/README.md).\n",
+ "You can check the details on how they are trained following that notebook."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!cp -r ../mms/models/* ./models"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "Next up, we will start our `mlserver` inference server.\n",
+ "Note that, by default, this will **load all our models**.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## List available models\n",
+ "\n",
+ "Now that we've got our inference server up and running, and serving 2 different models, we can start using the Model Repository API.\n",
+ "To get us started, we will first list all available models in the repository."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "response = requests.post(\"http://localhost:8080/v2/repository/index\", json={})\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As we can see, the repository lists 2 models (i.e. `mushroom-xgboost` and `mnist-svm`).\n",
+ "Note that the state for both is set to `READY`.\n",
+ "This means that both models are loaded, and thus ready for inference."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Unloading our `mushroom-xgboost` model\n",
+ "\n",
+ "We will now try to unload one of the 2 models, `mushroom-xgboost`.\n",
+ "This will unload the model from the inference server but will keep it available on our model repository."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "requests.post(\"http://localhost:8080/v2/repository/models/mushroom-xgboost/unload\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If we now try to list the models available in our repository, we will see that the `mushroom-xgboost` model is flagged as `UNAVAILABLE`.\n",
+ "This means that it's present in the repository but it's not loaded for inference."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "response = requests.post(\"http://localhost:8080/v2/repository/index\", json={})\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Loading our `mushroom-xgboost` model back\n",
+ "\n",
+ "We will now load our model back into our inference server."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "requests.post(\"http://localhost:8080/v2/repository/models/mushroom-xgboost/load\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If we now try to list the models again, we will see that our `mushroom-xgboost` is back again, ready for inference."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "response = requests.post(\"http://localhost:8080/v2/repository/index\", json={})\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/model-repository/README.md b/docs-gb/examples/model-repository/README.md
new file mode 100644
index 000000000..e7b4de4e0
--- /dev/null
+++ b/docs-gb/examples/model-repository/README.md
@@ -0,0 +1,88 @@
+# Model Repository API
+
+MLServer supports loading and unloading models dynamically from a models repository.
+This allows you to enable and disable the models accessible by MLServer on demand.
+This extension builds on top of the support for [Multi-Model Serving](../mms/README.md), letting you change at runtime which models is MLServer currently serving.
+
+The API to manage the model repository is modelled after [Triton's Model Repository extension](https://github.com/triton-inference-server/server/blob/master/docs/protocol/extension_model_repository.md) to the V2 Dataplane and is thus fully compatible with it.
+
+This notebook will walk you through an example using the Model Repository API.
+
+
+## Training
+
+First of all, we will need to train some models.
+For that, we will re-use the models we trained previously in the [Multi-Model Serving example](../mms/README.md).
+You can check the details on how they are trained following that notebook.
+
+
+```python
+!cp -r ../mms/models/* ./models
+```
+
+## Serving
+
+Next up, we will start our `mlserver` inference server.
+Note that, by default, this will **load all our models**.
+
+```shell
+mlserver start .
+```
+
+## List available models
+
+Now that we've got our inference server up and running, and serving 2 different models, we can start using the Model Repository API.
+To get us started, we will first list all available models in the repository.
+
+
+```python
+import requests
+
+response = requests.post("http://localhost:8080/v2/repository/index", json={})
+response.json()
+```
+
+As we can, the repository lists 2 models (i.e. `mushroom-xgboost` and `mnist-svm`).
+Note that the state for both is set to `READY`.
+This means that both models are loaded, and thus ready for inference.
+
+## Unloading our `mushroom-xgboost` model
+
+We will now try to unload one of the 2 models, `mushroom-xgboost`.
+This will unload the model from the inference server but will keep it available on our model repository.
+
+
+```python
+requests.post("http://localhost:8080/v2/repository/models/mushroom-xgboost/unload")
+```
+
+If we now try to list the models available in our repository, we will see that the `mushroom-xgboost` model is flagged as `UNAVAILABLE`.
+This means that it's present in the repository but it's not loaded for inference.
+
+
+```python
+response = requests.post("http://localhost:8080/v2/repository/index", json={})
+response.json()
+```
+
+## Loading our `mushroom-xgboost` model back
+
+We will now load our model back into our inference server.
+
+
+```python
+requests.post("http://localhost:8080/v2/repository/models/mushroom-xgboost/load")
+```
+
+If we now try to list the models again, we will see that our `mushroom-xgboost` is back again, ready for inference.
+
+
+```python
+response = requests.post("http://localhost:8080/v2/repository/index", json={})
+response.json()
+```
+
+
+```python
+
+```
diff --git a/docs-gb/examples/model-repository/models/mnist-svm/model-settings.json b/docs-gb/examples/model-repository/models/mnist-svm/model-settings.json
new file mode 100644
index 000000000..5554718b9
--- /dev/null
+++ b/docs-gb/examples/model-repository/models/mnist-svm/model-settings.json
@@ -0,0 +1,7 @@
+{
+ "name": "mnist-svm",
+ "implementation": "mlserver_sklearn.SKLearnModel",
+ "parameters": {
+ "version": "v0.1.0"
+ }
+}
diff --git a/docs-gb/examples/model-repository/models/mnist-svm/model.joblib b/docs-gb/examples/model-repository/models/mnist-svm/model.joblib
new file mode 100644
index 000000000..8fdf30764
Binary files /dev/null and b/docs-gb/examples/model-repository/models/mnist-svm/model.joblib differ
diff --git a/docs-gb/examples/model-repository/models/mushroom-xgboost/model-settings.json b/docs-gb/examples/model-repository/models/mushroom-xgboost/model-settings.json
new file mode 100644
index 000000000..6c31bacc8
--- /dev/null
+++ b/docs-gb/examples/model-repository/models/mushroom-xgboost/model-settings.json
@@ -0,0 +1,7 @@
+{
+ "name": "mushroom-xgboost",
+ "implementation": "mlserver_xgboost.XGBoostModel",
+ "parameters": {
+ "version": "v0.1.0"
+ }
+}
diff --git a/docs-gb/examples/model-repository/models/mushroom-xgboost/model.json b/docs-gb/examples/model-repository/models/mushroom-xgboost/model.json
new file mode 100644
index 000000000..5547e6516
--- /dev/null
+++ b/docs-gb/examples/model-repository/models/mushroom-xgboost/model.json
@@ -0,0 +1 @@
+{"learner":{"attributes":{},"gradient_booster":{"model":{"gbtree_model_param":{"num_trees":"2","size_leaf_vector":"0"},"tree_info":[0,0],"trees":[{"base_weights":[-7.15052932500839233e-02,1.29551589488983154e+00,-1.86661934852600098e+00,1.71217715740203857e+00,-1.70044052600860596e+00,-1.94070863723754883e+00,1.85964918136596680e+00],"default_left":[true,true,true,false,false,false,false],"id":0,"leaf_child_counts":[0,0,0,0,0,0,0],"left_children":[1,3,5,-1,-1,-1,-1],"loss_changes":[4.00053100585937500e+03,1.15821203613281250e+03,1.98173828125000000e+02,0.00000000000000000e+00,0.00000000000000000e+00,0.00000000000000000e+00,0.00000000000000000e+00],"parents":[2147483647,0,0,1,1,2,2],"right_children":[2,4,6,-1,-1,-1,-1],"split_conditions":[-9.53674316406250000e-07,-9.53674316406250000e-07,-9.53674316406250000e-07,1.71217715740203857e+00,-1.70044052600860596e+00,-1.94070863723754883e+00,1.85964918136596680e+00],"split_indices":[28,55,108,0,0,0,0],"sum_hessian":[1.62825000000000000e+03,9.24500000000000000e+02,7.03750000000000000e+02,8.12000000000000000e+02,1.12500000000000000e+02,6.90500000000000000e+02,1.32500000000000000e+01],"tree_param":{"num_deleted":"0","num_feature":"126","num_nodes":"7","size_leaf_vector":"0"}},{"base_weights":[-9.31910648941993713e-02,7.82926455140113831e-02,-6.23624467849731445e+00,7.84717559814453125e-01,-9.68530356884002686e-01],"default_left":[true,true,false,false,false],"id":1,"leaf_child_counts":[0,0,0,0,0],"left_children":[1,3,-1,-1,-1],"loss_changes":[8.32545043945312500e+02,5.69725097656250000e+02,0.00000000000000000e+00,0.00000000000000000e+00,0.00000000000000000e+00],"parents":[2147483647,0,0,1,1],"right_children":[2,4,-1,-1,-1],"split_conditions":[-9.53674316406250000e-07,-9.53674316406250000e-07,-6.23624467849731445e+00,7.84717559814453125e-01,-9.68530356884002686e-01],"split_indices":[59,28,0,0,0],"sum_hessian":[7.88852050781250000e+02,7.68389709472656250e+02,2.04623889923095703e+01,4.58936859130859375e+02,3.09452819824218750e+02],"tree_param":{"num_deleted":"0","num_feature":"126","num_nodes":"5","size_leaf_vector":"0"}}]},"name":"gbtree"},"learner_model_param":{"base_score":"0.500000","num_class":"0","num_feature":"126"},"objective":{"name":"binary:logistic","reg_loss_param":{"scale_pos_weight":"1"}}},"version":[1,1,1]}
\ No newline at end of file
diff --git a/docs-gb/examples/sklearn/README.ipynb b/docs-gb/examples/sklearn/README.ipynb
new file mode 100644
index 000000000..297832352
--- /dev/null
+++ b/docs-gb/examples/sklearn/README.ipynb
@@ -0,0 +1,235 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Serving Scikit-Learn models\n",
+ "\n",
+ "Out of the box, `mlserver` supports the deployment and serving of `scikit-learn` models.\n",
+ "By default, it will assume that these models have been [serialised using `joblib`](https://scikit-learn.org/stable/modules/model_persistence.html).\n",
+ "\n",
+ "In this example, we will cover how we can train and serialise a simple model, to then serve it using `mlserver`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training\n",
+ "\n",
+ "The first step will be to train a simple `scikit-learn` model.\n",
+ "For that, we will use the [MNIST example from the `scikit-learn` documentation](https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html) which trains an SVM model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Original source code and more details can be found in:\n",
+ "# https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html\n",
+ "\n",
+ "# Import datasets, classifiers and performance metrics\n",
+ "from sklearn import datasets, svm, metrics\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "# The digits dataset\n",
+ "digits = datasets.load_digits()\n",
+ "\n",
+ "# To apply a classifier on this data, we need to flatten the image, to\n",
+ "# turn the data in a (samples, feature) matrix:\n",
+ "n_samples = len(digits.images)\n",
+ "data = digits.images.reshape((n_samples, -1))\n",
+ "\n",
+ "# Create a classifier: a support vector classifier\n",
+ "classifier = svm.SVC(gamma=0.001)\n",
+ "\n",
+ "# Split data into train and test subsets\n",
+ "X_train, X_test, y_train, y_test = train_test_split(\n",
+ " data, digits.target, test_size=0.5, shuffle=False)\n",
+ "\n",
+ "# We learn the digits on the first half of the digits\n",
+ "classifier.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Saving our trained model\n",
+ "\n",
+ "To save our trained model, we will serialise it using `joblib`.\n",
+ "While this is not a perfect approach, it's currently the recommended method to persist models to disk in the [`scikit-learn` documentation](https://scikit-learn.org/stable/modules/model_persistence.html).\n",
+ "\n",
+ "Our model will be persisted as a file named `mnist-svm.joblib`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import joblib\n",
+ "\n",
+ "model_file_name = \"mnist-svm.joblib\"\n",
+ "joblib.dump(classifier, model_file_name)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "Now that we have trained and saved our model, the next step will be to serve it using `mlserver`. \n",
+ "For that, we will need to create 2 configuration files: \n",
+ "\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile settings.json\n",
+ "{\n",
+ " \"debug\": \"true\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "{\n",
+ " \"name\": \"mnist-svm\",\n",
+ " \"implementation\": \"mlserver_sklearn.SKLearnModel\",\n",
+ " \"parameters\": {\n",
+ " \"uri\": \"./mnist-svm.joblib\",\n",
+ " \"version\": \"v0.1.0\"\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "x_0 = X_test[0:1]\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict\",\n",
+ " \"shape\": x_0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": x_0.tolist()\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/mnist-svm/versions/v0.1.0/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As we can see above, the model predicted the input as the number `8`, which matches what's on the test set."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y_test[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/sklearn/README.md b/docs-gb/examples/sklearn/README.md
new file mode 100644
index 000000000..5034cae41
--- /dev/null
+++ b/docs-gb/examples/sklearn/README.md
@@ -0,0 +1,138 @@
+# Serving Scikit-Learn models
+
+Out of the box, `mlserver` supports the deployment and serving of `scikit-learn` models.
+By default, it will assume that these models have been [serialised using `joblib`](https://scikit-learn.org/stable/modules/model_persistence.html).
+
+In this example, we will cover how we can train and serialise a simple model, to then serve it using `mlserver`.
+
+## Training
+
+The first step will be to train a simple `scikit-learn` model.
+For that, we will use the [MNIST example from the `scikit-learn` documentation](https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html) which trains an SVM model.
+
+
+```python
+# Original source code and more details can be found in:
+# https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
+
+# Import datasets, classifiers and performance metrics
+from sklearn import datasets, svm, metrics
+from sklearn.model_selection import train_test_split
+
+# The digits dataset
+digits = datasets.load_digits()
+
+# To apply a classifier on this data, we need to flatten the image, to
+# turn the data in a (samples, feature) matrix:
+n_samples = len(digits.images)
+data = digits.images.reshape((n_samples, -1))
+
+# Create a classifier: a support vector classifier
+classifier = svm.SVC(gamma=0.001)
+
+# Split data into train and test subsets
+X_train, X_test, y_train, y_test = train_test_split(
+ data, digits.target, test_size=0.5, shuffle=False)
+
+# We learn the digits on the first half of the digits
+classifier.fit(X_train, y_train)
+```
+
+### Saving our trained model
+
+To save our trained model, we will serialise it using `joblib`.
+While this is not a perfect approach, it's currently the recommended method to persist models to disk in the [`scikit-learn` documentation](https://scikit-learn.org/stable/modules/model_persistence.html).
+
+Our model will be persisted as a file named `mnist-svm.joblib`
+
+
+```python
+import joblib
+
+model_file_name = "mnist-svm.joblib"
+joblib.dump(classifier, model_file_name)
+```
+
+## Serving
+
+Now that we have trained and saved our model, the next step will be to serve it using `mlserver`.
+For that, we will need to create 2 configuration files:
+
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).
+
+### `settings.json`
+
+
+```python
+%%writefile settings.json
+{
+ "debug": "true"
+}
+```
+
+### `model-settings.json`
+
+
+```python
+%%writefile model-settings.json
+{
+ "name": "mnist-svm",
+ "implementation": "mlserver_sklearn.SKLearnModel",
+ "parameters": {
+ "uri": "./mnist-svm.joblib",
+ "version": "v0.1.0"
+ }
+}
+```
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request from our test set.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+
+```python
+import requests
+
+x_0 = X_test[0:1]
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": x_0.shape,
+ "datatype": "FP32",
+ "data": x_0.tolist()
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/mnist-svm/versions/v0.1.0/infer"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+As we can see above, the model predicted the input as the number `8`, which matches what's on the test set.
+
+
+```python
+y_test[0]
+```
+
+
+```python
+
+```
diff --git a/docs-gb/examples/sklearn/inference-request.json b/docs-gb/examples/sklearn/inference-request.json
new file mode 100644
index 000000000..9e1a9fdd1
--- /dev/null
+++ b/docs-gb/examples/sklearn/inference-request.json
@@ -0,0 +1,15 @@
+{
+ "id": "request-0",
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": [3],
+ "datatype": "INT32",
+ "data": [ 0., 0., 1., 11., 14., 15., 3., 0., 0., 1., 13., 16., 12.,
+ 16., 8., 0., 0., 8., 16., 4., 6., 16., 5., 0., 0., 5.,
+ 15., 11., 13., 14., 0., 0., 0., 0., 2., 12., 16., 13., 0.,
+ 0., 0., 0., 0., 13., 16., 16., 6., 0., 0., 0., 0., 16.,
+ 16., 16., 7., 0., 0., 0., 0., 11., 13., 12., 1., 0.]
+ }
+ ]
+}
diff --git a/docs-gb/examples/sklearn/mnist-svm.joblib b/docs-gb/examples/sklearn/mnist-svm.joblib
new file mode 100644
index 000000000..8fdf30764
Binary files /dev/null and b/docs-gb/examples/sklearn/mnist-svm.joblib differ
diff --git a/docs-gb/examples/sklearn/model-settings.json b/docs-gb/examples/sklearn/model-settings.json
new file mode 100644
index 000000000..6dab01679
--- /dev/null
+++ b/docs-gb/examples/sklearn/model-settings.json
@@ -0,0 +1,8 @@
+{
+ "name": "mnist-svm",
+ "implementation": "mlserver_sklearn.SKLearnModel",
+ "parameters": {
+ "uri": "./mnist-svm.joblib",
+ "version": "v0.1.0"
+ }
+}
diff --git a/docs-gb/examples/sklearn/settings.json b/docs-gb/examples/sklearn/settings.json
new file mode 100644
index 000000000..f2ee7ab8d
--- /dev/null
+++ b/docs-gb/examples/sklearn/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
diff --git a/docs-gb/examples/streaming/README.ipynb b/docs-gb/examples/streaming/README.ipynb
new file mode 100644
index 000000000..13755c6d9
--- /dev/null
+++ b/docs-gb/examples/streaming/README.ipynb
@@ -0,0 +1,388 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Streaming support\n",
+ "\n",
+ "The `mlserver` package comes with built-in support for streaming data. This allows you to process data in real-time, without having to wait for the entire response to be available. It supports both REST and gRPC APIs."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "In this example, we create a simple `Identity Text Model` which simply splits the input text into words and returns them one by one. We will use this model to demonstrate how to stream the response from the server to the client. This particular example can provide a good starting point for building more complex streaming models such as the ones based on Large Language Models (LLMs) where streaming is an essential feature to hide the latency of the model."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "The next step will be to serve our model using `mlserver`. For that, we will first implement an extension that serves as the runtime to perform inference using our custom `TextModel`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Custom inference runtime\n",
+ "\n",
+ "This is a trivial model to demonstrate streaming support. The model simply splits the input text into words and returns them one by one. In this example we do the following:\n",
+ "\n",
+ "- split the text into words using the white space as the delimiter.\n",
+ "- wait 0.5 seconds between each word to simulate a slow model.\n",
+ "- return each word one by one."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting text_model.py\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile text_model.py\n",
+ "\n",
+ "import asyncio\n",
+ "from typing import AsyncIterator\n",
+ "from mlserver import MLModel\n",
+ "from mlserver.types import InferenceRequest, InferenceResponse\n",
+ "from mlserver.codecs import StringCodec\n",
+ "\n",
+ "\n",
+ "class TextModel(MLModel):\n",
+ "\n",
+ " async def predict_stream(\n",
+ " self, payloads: AsyncIterator[InferenceRequest]\n",
+ " ) -> AsyncIterator[InferenceResponse]:\n",
+ " payload = [_ async for _ in payloads][0]\n",
+ " text = StringCodec.decode_input(payload.inputs[0])[0]\n",
+ " words = text.split(\" \")\n",
+ "\n",
+ " split_text = []\n",
+ " for i, word in enumerate(words):\n",
+ " split_text.append(word if i == 0 else \" \" + word)\n",
+ "\n",
+ " for word in split_text:\n",
+ " await asyncio.sleep(0.5)\n",
+ " yield InferenceResponse(\n",
+ " model_name=self._settings.name,\n",
+ " outputs=[\n",
+ " StringCodec.encode_output(\n",
+ " name=\"output\",\n",
+ " payload=[word],\n",
+ " use_bytes=True,\n",
+ " ),\n",
+ " ],\n",
+ " )\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As it can be seen, the `predict_stream` method receives as an input an `AsyncIterator` of `InferenceRequest` and returns an `AsyncIterator` of `InferenceResponse`. This definition covers all types of possible input-output combinations for streaming: unary-stream, stream-unary, stream-stream. It is up to the client and server to send/receive the appropriate number of requests/responses which should be known apriori.\n",
+ "\n",
+ "Note that although unary-unary can be covered by `predict_stream` method as well, `mlserver` already covers that through the `predict` method.\n",
+ "\n",
+ "One important limitation to keep in mind is that for the REST API, the client will not be able to send a stream of requests. The client will have to send a single request with the entire input text. The server will then stream the response back to the client. gRPC API, on the other hand, supports all types of streaming listed above."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Settings file\n",
+ "\n",
+ "The next step will be to create 2 configuration files:\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### settings.json"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile settings.json\n",
+ "\n",
+ "{\n",
+ " \"debug\": false,\n",
+ " \"parallel_workers\": 0,\n",
+ " \"gzip_enabled\": false\n",
+ "}\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note the currently there are three main limitations of the streaming support in MLServer:\n",
+ "\n",
+ "- distributed workers are not supported (i.e., the `parallel_workers` setting should be set to `0`)\n",
+ "- `gzip` middleware is not supported for REST (i.e., `gzip_enabled` setting should be set to `false`)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### model-settings.json"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting model-settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "\n",
+ "{\n",
+ " \"name\": \"text-model\",\n",
+ "\n",
+ " \"implementation\": \"text_model.TextModel\",\n",
+ " \n",
+ " \"versions\": [\"text-model/v1.2.3\"],\n",
+ " \"platform\": \"mlserver\",\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"name\": \"prompt\",\n",
+ " \"shape\": [1]\n",
+ " }\n",
+ " ],\n",
+ " \"outputs\": [\n",
+ " {\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"name\": \"output\",\n",
+ " \"shape\": [1]\n",
+ " }\n",
+ " ]\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Start serving the model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be run from the same directory where our config files are or point to the folder where they are.\n",
+ "\n",
+ "```bash\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be run in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Inference request\n",
+ "\n",
+ "To test our model, we will use the following inference request:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting generate-request.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile generate-request.json\n",
+ "\n",
+ "{\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"prompt\",\n",
+ " \"shape\": [1],\n",
+ " \"datatype\": \"BYTES\",\n",
+ " \"data\": [\"What is the capital of France?\"],\n",
+ " \"parameters\": {\n",
+ " \"content_type\": \"str\"\n",
+ " }\n",
+ " }\n",
+ " ],\n",
+ " \"outputs\": [\n",
+ " {\n",
+ " \"name\": \"output\"\n",
+ " }\n",
+ " ]\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test generate stream request (REST)\n",
+ "\n",
+ "To send a REST streaming request to the server, we will use the following Python code:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "['What']\n",
+ "[' is']\n",
+ "[' the']\n",
+ "[' capital']\n",
+ "[' of']\n",
+ "[' France?']\n"
+ ]
+ }
+ ],
+ "source": [
+ "import httpx\n",
+ "from httpx_sse import connect_sse\n",
+ "from mlserver import types\n",
+ "from mlserver.codecs import StringCodec\n",
+ "\n",
+ "inference_request = types.InferenceRequest.parse_file(\"./generate-request.json\")\n",
+ "\n",
+ "with httpx.Client() as client:\n",
+ " with connect_sse(client, \"POST\", \"http://localhost:8080/v2/models/text-model/generate_stream\", json=inference_request.dict()) as event_source:\n",
+ " for sse in event_source.iter_sse():\n",
+ " response = types.InferenceResponse.parse_raw(sse.data)\n",
+ " print(StringCodec.decode_output(response.outputs[0]))\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test generate stream request (gRPC)\n",
+ "\n",
+ "To send a gRPC streaming request to the server, we will use the following Python code:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "['What']\n",
+ "[' is']\n",
+ "[' the']\n",
+ "[' capital']\n",
+ "[' of']\n",
+ "[' France?']\n"
+ ]
+ }
+ ],
+ "source": [
+ "import grpc\n",
+ "import mlserver.types as types\n",
+ "from mlserver.codecs import StringCodec\n",
+ "from mlserver.grpc.converters import ModelInferResponseConverter\n",
+ "import mlserver.grpc.converters as converters\n",
+ "import mlserver.grpc.dataplane_pb2_grpc as dataplane\n",
+ "\n",
+ "inference_request = types.InferenceRequest.parse_file(\"./generate-request.json\")\n",
+ "\n",
+ "# need to convert from string to bytes for grpc\n",
+ "inference_request.inputs[0] = StringCodec.encode_input(\"prompt\", inference_request.inputs[0].data.root)\n",
+ "inference_request_g = converters.ModelInferRequestConverter.from_types(\n",
+ " inference_request, model_name=\"text-model\", model_version=None\n",
+ ")\n",
+ "\n",
+ "async def get_inference_request_stream(inference_request):\n",
+ " yield inference_request\n",
+ "\n",
+ "async with grpc.aio.insecure_channel(\"localhost:8081\") as grpc_channel:\n",
+ " grpc_stub = dataplane.GRPCInferenceServiceStub(grpc_channel)\n",
+ " inference_request_stream = get_inference_request_stream(inference_request_g)\n",
+ " \n",
+ " async for response in grpc_stub.ModelStreamInfer(inference_request_stream):\n",
+ " response = ModelInferResponseConverter.to_types(response)\n",
+ " print(StringCodec.decode_output(response.outputs[0]))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that for gRPC, the request is transformed into an async generator which is then passed to the `ModelStreamInfer` method. The response is also an async generator which can be iterated over to get the response."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "python3.10",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/docs-gb/examples/streaming/README.md b/docs-gb/examples/streaming/README.md
new file mode 100644
index 000000000..d91aa7492
--- /dev/null
+++ b/docs-gb/examples/streaming/README.md
@@ -0,0 +1,213 @@
+# Streaming support
+
+The `mlserver` package comes with built-in support for streaming data. This allows you to process data in real-time, without having to wait for the entire response to be available. It supports both REST and gRPC APIs.
+
+## Overview
+
+In this example, we create a simple `Identity Text Model` which simply splits the input text into words and returns them one by one. We will use this model to demonstrate how to stream the response from the server to the client. This particular example can provide a good starting point for building more complex streaming models such as the ones based on Large Language Models (LLMs) where streaming is an essential feature to hide the latency of the model.
+
+## Serving
+
+The next step will be to serve our model using `mlserver`. For that, we will first implement an extension that serves as the runtime to perform inference using our custom `TextModel`.
+
+### Custom inference runtime
+
+This is a trivial model to demonstrate streaming support. The model simply splits the input text into words and returns them one by one. In this example we do the following:
+
+- split the text into words using the white space as the delimiter.
+- wait 0.5 seconds between each word to simulate a slow model.
+- return each word one by one.
+
+
+```python
+%%writefile text_model.py
+
+import asyncio
+from typing import AsyncIterator
+from mlserver import MLModel
+from mlserver.types import InferenceRequest, InferenceResponse
+from mlserver.codecs import StringCodec
+
+
+class TextModel(MLModel):
+
+ async def predict_stream(
+ self, payloads: AsyncIterator[InferenceRequest]
+ ) -> AsyncIterator[InferenceResponse]:
+ payload = [_ async for _ in payloads][0]
+ text = StringCodec.decode_input(payload.inputs[0])[0]
+ words = text.split(" ")
+
+ split_text = []
+ for i, word in enumerate(words):
+ split_text.append(word if i == 0 else " " + word)
+
+ for word in split_text:
+ await asyncio.sleep(0.5)
+ yield InferenceResponse(
+ model_name=self._settings.name,
+ outputs=[
+ StringCodec.encode_output(
+ name="output",
+ payload=[word],
+ use_bytes=True,
+ ),
+ ],
+ )
+
+```
+
+As it can be seen, the `predict_stream` method receives as an input an `AsyncIterator` of `InferenceRequest` and returns an `AsyncIterator` of `InferenceResponse`. This definition covers all types of possible input-output combinations for streaming: unary-stream, stream-unary, stream-stream. It is up to the client and server to send/receive the appropriate number of requests/responses which should be known apriori.
+
+Note that although unary-unary can be covered by `predict_stream` method as well, `mlserver` already covers that through the `predict` method.
+
+One important limitation to keep in mind is that for the REST API, the client will not be able to send a stream of requests. The client will have to send a single request with the entire input text. The server will then stream the response back to the client. gRPC API, on the other hand, supports all types of streaming listed above.
+
+### Settings file
+
+The next step will be to create 2 configuration files:
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).
+
+#### settings.json
+
+
+```python
+%%writefile settings.json
+
+{
+ "debug": false,
+ "parallel_workers": 0,
+ "gzip_enabled": false
+}
+
+```
+
+Note the currently there are three main limitations of the streaming support in MLServer:
+
+- distributed workers are not supported (i.e., the `parallel_workers` setting should be set to `0`)
+- `gzip` middleware is not supported for REST (i.e., `gzip_enabled` setting should be set to `false`)
+
+#### model-settings.json
+
+
+```python
+%%writefile model-settings.json
+
+{
+ "name": "text-model",
+
+ "implementation": "text_model.TextModel",
+
+ "versions": ["text-model/v1.2.3"],
+ "platform": "mlserver",
+ "inputs": [
+ {
+ "datatype": "BYTES",
+ "name": "prompt",
+ "shape": [1]
+ }
+ ],
+ "outputs": [
+ {
+ "datatype": "BYTES",
+ "name": "output",
+ "shape": [1]
+ }
+ ]
+}
+```
+
+#### Start serving the model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be run from the same directory where our config files are or point to the folder where they are.
+
+```bash
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be run in the background on a separate terminal.
+
+#### Inference request
+
+To test our model, we will use the following inference request:
+
+
+```python
+%%writefile generate-request.json
+
+{
+ "inputs": [
+ {
+ "name": "prompt",
+ "shape": [1],
+ "datatype": "BYTES",
+ "data": ["What is the capital of France?"],
+ "parameters": {
+ "content_type": "str"
+ }
+ }
+ ],
+ "outputs": [
+ {
+ "name": "output"
+ }
+ ]
+}
+```
+
+### Send test generate stream request (REST)
+
+To send a REST streaming request to the server, we will use the following Python code:
+
+
+```python
+import httpx
+from httpx_sse import connect_sse
+from mlserver import types
+from mlserver.codecs import StringCodec
+
+inference_request = types.InferenceRequest.parse_file("./generate-request.json")
+
+with httpx.Client() as client:
+ with connect_sse(client, "POST", "http://localhost:8080/v2/models/text-model/generate_stream", json=inference_request.dict()) as event_source:
+ for sse in event_source.iter_sse():
+ response = types.InferenceResponse.parse_raw(sse.data)
+ print(StringCodec.decode_output(response.outputs[0]))
+
+```
+
+### Send test generate stream request (gRPC)
+
+To send a gRPC streaming request to the server, we will use the following Python code:
+
+
+```python
+import grpc
+import mlserver.types as types
+from mlserver.codecs import StringCodec
+from mlserver.grpc.converters import ModelInferResponseConverter
+import mlserver.grpc.converters as converters
+import mlserver.grpc.dataplane_pb2_grpc as dataplane
+
+inference_request = types.InferenceRequest.parse_file("./generate-request.json")
+
+# need to convert from string to bytes for grpc
+inference_request.inputs[0] = StringCodec.encode_input("prompt", inference_request.inputs[0].data.root)
+inference_request_g = converters.ModelInferRequestConverter.from_types(
+ inference_request, model_name="text-model", model_version=None
+)
+
+async def get_inference_request_stream(inference_request):
+ yield inference_request
+
+async with grpc.aio.insecure_channel("localhost:8081") as grpc_channel:
+ grpc_stub = dataplane.GRPCInferenceServiceStub(grpc_channel)
+ inference_request_stream = get_inference_request_stream(inference_request_g)
+
+ async for response in grpc_stub.ModelStreamInfer(inference_request_stream):
+ response = ModelInferResponseConverter.to_types(response)
+ print(StringCodec.decode_output(response.outputs[0]))
+```
+
+Note that for gRPC, the request is transformed into an async generator which is then passed to the `ModelStreamInfer` method. The response is also an async generator which can be iterated over to get the response.
diff --git a/docs-gb/examples/streaming/generate-request.json b/docs-gb/examples/streaming/generate-request.json
new file mode 100644
index 000000000..a61935f08
--- /dev/null
+++ b/docs-gb/examples/streaming/generate-request.json
@@ -0,0 +1,19 @@
+
+{
+ "inputs": [
+ {
+ "name": "prompt",
+ "shape": [1],
+ "datatype": "BYTES",
+ "data": ["What is the capital of France?"],
+ "parameters": {
+ "content_type": "str"
+ }
+ }
+ ],
+ "outputs": [
+ {
+ "name": "output"
+ }
+ ]
+}
diff --git a/docs-gb/examples/streaming/model-settings.json b/docs-gb/examples/streaming/model-settings.json
new file mode 100644
index 000000000..caf8a6ad3
--- /dev/null
+++ b/docs-gb/examples/streaming/model-settings.json
@@ -0,0 +1,23 @@
+
+{
+ "name": "text-model",
+
+ "implementation": "text_model.TextModel",
+
+ "versions": ["text-model/v1.2.3"],
+ "platform": "mlserver",
+ "inputs": [
+ {
+ "datatype": "BYTES",
+ "name": "prompt",
+ "shape": [1]
+ }
+ ],
+ "outputs": [
+ {
+ "datatype": "BYTES",
+ "name": "output",
+ "shape": [1]
+ }
+ ]
+}
diff --git a/docs-gb/examples/streaming/settings.json b/docs-gb/examples/streaming/settings.json
new file mode 100644
index 000000000..3a95c2882
--- /dev/null
+++ b/docs-gb/examples/streaming/settings.json
@@ -0,0 +1,6 @@
+
+{
+ "debug": false,
+ "parallel_workers": 0,
+ "gzip_enabled": false
+}
diff --git a/docs-gb/examples/streaming/text_model.py b/docs-gb/examples/streaming/text_model.py
new file mode 100644
index 000000000..d851f3bb9
--- /dev/null
+++ b/docs-gb/examples/streaming/text_model.py
@@ -0,0 +1,32 @@
+import asyncio
+from typing import AsyncIterator
+from mlserver import MLModel
+from mlserver.types import InferenceRequest, InferenceResponse
+from mlserver.codecs import StringCodec
+
+
+class TextModel(MLModel):
+
+ async def predict_stream(
+ self, payloads: AsyncIterator[InferenceRequest]
+ ) -> AsyncIterator[InferenceResponse]:
+ payload = [_ async for _ in payloads][0]
+ text = StringCodec.decode_input(payload.inputs[0])[0]
+ words = text.split(" ")
+
+ split_text = []
+ for i, word in enumerate(words):
+ split_text.append(word if i == 0 else " " + word)
+
+ for word in split_text:
+ await asyncio.sleep(0.5)
+ yield InferenceResponse(
+ model_name=self._settings.name,
+ outputs=[
+ StringCodec.encode_output(
+ name="output",
+ payload=[word],
+ use_bytes=True,
+ ),
+ ],
+ )
diff --git a/docs-gb/examples/tempo/README.ipynb b/docs-gb/examples/tempo/README.ipynb
new file mode 100644
index 000000000..69c9af5a3
--- /dev/null
+++ b/docs-gb/examples/tempo/README.ipynb
@@ -0,0 +1,254 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Running a Tempo pipeline in MLServer\n",
+ "\n",
+ "This example walks you through how to create and serialise a [Tempo pipeline](https://github.com/SeldonIO/tempo), which can then be served through MLServer.\n",
+ "This pipeline can contain custom Python arbitrary code."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Creating the pipeline\n",
+ "\n",
+ "The first step will be to create our Tempo pipeline."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import os\n",
+ "\n",
+ "from tempo import ModelFramework, Model, Pipeline, pipeline\n",
+ "from tempo.seldon import SeldonDockerRuntime\n",
+ "from tempo.kfserving import KFServingV2Protocol\n",
+ "\n",
+ "\n",
+ "MODELS_PATH = os.path.join(os.getcwd(), 'models')\n",
+ "\n",
+ "docker_runtime = SeldonDockerRuntime()\n",
+ "\n",
+ "sklearn_iris_path = os.path.join(MODELS_PATH, 'sklearn-iris')\n",
+ "sklearn_model = Model(\n",
+ " name=\"test-iris-sklearn\",\n",
+ " runtime=docker_runtime,\n",
+ " platform=ModelFramework.SKLearn,\n",
+ " uri=\"gs://seldon-models/sklearn/iris\",\n",
+ " local_folder=sklearn_iris_path,\n",
+ ")\n",
+ "\n",
+ "xgboost_iris_path = os.path.join(MODELS_PATH, 'xgboost-iris')\n",
+ "xgboost_model = Model(\n",
+ " name=\"test-iris-xgboost\",\n",
+ " runtime=docker_runtime,\n",
+ " platform=ModelFramework.XGBoost,\n",
+ " uri=\"gs://seldon-models/xgboost/iris\",\n",
+ " local_folder=xgboost_iris_path,\n",
+ ")\n",
+ "\n",
+ "inference_pipeline_path = os.path.join(MODELS_PATH, 'inference-pipeline')\n",
+ "@pipeline(\n",
+ " name=\"inference-pipeline\",\n",
+ " models=[sklearn_model, xgboost_model],\n",
+ " runtime=SeldonDockerRuntime(protocol=KFServingV2Protocol()),\n",
+ " local_folder=inference_pipeline_path\n",
+ ")\n",
+ "def inference_pipeline(payload: np.ndarray) -> np.ndarray:\n",
+ " res1 = sklearn_model(payload)\n",
+ " if res1[0][0] > 0.7:\n",
+ " return res1\n",
+ " else:\n",
+ " return xgboost_model(payload)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This pipeline can then be serialised using `cloudpickle`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "inference_pipeline.save(save_env=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving the pipeline\n",
+ "\n",
+ "Once we have our pipeline created and serialised, we can then create a `model-settings.json` file.\n",
+ "This configuration file will hold the configuration specific to our MLOps pipeline."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Overwriting ./model-settings.json\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%writefile ./model-settings.json\n",
+ "{\n",
+ " \"name\": \"inference-pipeline\",\n",
+ " \"implementation\": \"tempo.mlserver.InferenceRuntime\",\n",
+ " \"parameters\": {\n",
+ " \"uri\": \"./models/inference-pipeline\"\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Deploy our pipeline components\n",
+ "\n",
+ "Additionally, we will also need to deploy our pipeline components.\n",
+ "That is, the SKLearn and XGBoost models.\n",
+ "We can do that as:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tempo:Deploying test-iris-sklearn\n",
+ "INFO:tempo:Deploying test-iris-xgboost\n",
+ "INFO:tempo:Deploying inference-pipeline\n"
+ ]
+ }
+ ],
+ "source": [
+ "inference_pipeline.deploy()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'model_name': 'inference-pipeline',\n",
+ " 'model_version': None,\n",
+ " 'id': '4a13e269-b5ea-4270-8568-cc0819dc435d',\n",
+ " 'parameters': None,\n",
+ " 'outputs': [{'name': 'output0',\n",
+ " 'shape': [1, 3],\n",
+ " 'datatype': 'FP64',\n",
+ " 'parameters': None,\n",
+ " 'data': [0.8260199086532507, 0.038597383243756514, 0.1353827081029928]}]}"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import requests\n",
+ "\n",
+ "x_0 = np.array([[0.1, 3.1, 1.5, 0.2]])\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict\",\n",
+ " \"shape\": x_0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": x_0.tolist()\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/inference-pipeline/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/tempo/README.md b/docs-gb/examples/tempo/README.md
new file mode 100644
index 000000000..e4e0cb021
--- /dev/null
+++ b/docs-gb/examples/tempo/README.md
@@ -0,0 +1,135 @@
+# Running a Tempo pipeline in MLServer
+
+This example walks you through how to create and serialise a [Tempo pipeline](https://github.com/SeldonIO/tempo), which can then be served through MLServer.
+This pipeline can contain custom Python arbitrary code.
+
+## Creating the pipeline
+
+The first step will be to create our Tempo pipeline.
+
+
+```python
+import numpy as np
+import os
+
+from tempo import ModelFramework, Model, Pipeline, pipeline
+from tempo.seldon import SeldonDockerRuntime
+from tempo.kfserving import KFServingV2Protocol
+
+
+MODELS_PATH = os.path.join(os.getcwd(), 'models')
+
+docker_runtime = SeldonDockerRuntime()
+
+sklearn_iris_path = os.path.join(MODELS_PATH, 'sklearn-iris')
+sklearn_model = Model(
+ name="test-iris-sklearn",
+ runtime=docker_runtime,
+ platform=ModelFramework.SKLearn,
+ uri="gs://seldon-models/sklearn/iris",
+ local_folder=sklearn_iris_path,
+)
+
+xgboost_iris_path = os.path.join(MODELS_PATH, 'xgboost-iris')
+xgboost_model = Model(
+ name="test-iris-xgboost",
+ runtime=docker_runtime,
+ platform=ModelFramework.XGBoost,
+ uri="gs://seldon-models/xgboost/iris",
+ local_folder=xgboost_iris_path,
+)
+
+inference_pipeline_path = os.path.join(MODELS_PATH, 'inference-pipeline')
+@pipeline(
+ name="inference-pipeline",
+ models=[sklearn_model, xgboost_model],
+ runtime=SeldonDockerRuntime(protocol=KFServingV2Protocol()),
+ local_folder=inference_pipeline_path
+)
+def inference_pipeline(payload: np.ndarray) -> np.ndarray:
+ res1 = sklearn_model(payload)
+ if res1[0][0] > 0.7:
+ return res1
+ else:
+ return xgboost_model(payload)
+
+```
+
+This pipeline can then be serialised using `cloudpickle`.
+
+
+```python
+inference_pipeline.save(save_env=False)
+```
+
+## Serving the pipeline
+
+Once we have our pipeline created and serialised, we can then create a `model-settings.json` file.
+This configuration file will hold the configuration specific to our MLOps pipeline.
+
+
+```python
+%%writefile ./model-settings.json
+{
+ "name": "inference-pipeline",
+ "implementation": "tempo.mlserver.InferenceRuntime",
+ "parameters": {
+ "uri": "./models/inference-pipeline"
+ }
+}
+```
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Deploy our pipeline components
+
+Additionally, we will also need to deploy our pipeline components.
+That is, the SKLearn and XGBoost models.
+We can do that as:
+
+
+```python
+inference_pipeline.deploy()
+```
+
+### Send test inference request
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+
+```python
+import requests
+
+x_0 = np.array([[0.1, 3.1, 1.5, 0.2]])
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": x_0.shape,
+ "datatype": "FP32",
+ "data": x_0.tolist()
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/inference-pipeline/infer"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+
+```python
+
+```
diff --git a/docs-gb/examples/tempo/model-settings.json b/docs-gb/examples/tempo/model-settings.json
new file mode 100644
index 000000000..c6b541837
--- /dev/null
+++ b/docs-gb/examples/tempo/model-settings.json
@@ -0,0 +1,7 @@
+{
+ "name": "inference-pipeline",
+ "implementation": "tempo.mlserver.InferenceRuntime",
+ "parameters": {
+ "uri": "./models/inference-pipeline"
+ }
+}
diff --git a/docs-gb/examples/tempo/models/inference-pipeline/model.pickle b/docs-gb/examples/tempo/models/inference-pipeline/model.pickle
new file mode 100644
index 000000000..8ee275e99
Binary files /dev/null and b/docs-gb/examples/tempo/models/inference-pipeline/model.pickle differ
diff --git a/docs-gb/examples/tempo/models/sklearn-iris/metadata.yaml b/docs-gb/examples/tempo/models/sklearn-iris/metadata.yaml
new file mode 100644
index 000000000..07858a389
--- /dev/null
+++ b/docs-gb/examples/tempo/models/sklearn-iris/metadata.yaml
@@ -0,0 +1,12 @@
+
+name: iris
+versions: [iris/v1]
+platform: sklearn
+inputs:
+- datatype: BYTES
+ name: input
+ shape: [ 4 ]
+outputs:
+- datatype: BYTES
+ name: output
+ shape: [ 3 ]
diff --git a/docs-gb/examples/tempo/models/sklearn-iris/model.joblib b/docs-gb/examples/tempo/models/sklearn-iris/model.joblib
new file mode 100644
index 000000000..6f0eb22a1
Binary files /dev/null and b/docs-gb/examples/tempo/models/sklearn-iris/model.joblib differ
diff --git a/docs-gb/examples/tempo/models/xgboost-iris/metadata.yaml b/docs-gb/examples/tempo/models/xgboost-iris/metadata.yaml
new file mode 100644
index 000000000..06f492412
--- /dev/null
+++ b/docs-gb/examples/tempo/models/xgboost-iris/metadata.yaml
@@ -0,0 +1,12 @@
+
+name: xgboost-iris
+versions: [xgboost-iris/v1]
+platform: sklearn
+inputs:
+- datatype: BYTES
+ name: input
+ shape: [ 1, 4 ]
+outputs:
+- datatype: BYTES
+ name: output
+ shape: [ 1, 1 ]
diff --git a/docs-gb/examples/tempo/models/xgboost-iris/model.bst b/docs-gb/examples/tempo/models/xgboost-iris/model.bst
new file mode 100644
index 000000000..cebe94083
Binary files /dev/null and b/docs-gb/examples/tempo/models/xgboost-iris/model.bst differ
diff --git a/docs-gb/examples/xgboost/README.ipynb b/docs-gb/examples/xgboost/README.ipynb
new file mode 100644
index 000000000..425f8c131
--- /dev/null
+++ b/docs-gb/examples/xgboost/README.ipynb
@@ -0,0 +1,254 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Serving XGBoost models\n",
+ "\n",
+ "Out of the box, `mlserver` supports the deployment and serving of `xgboost` models.\n",
+ "By default, it will assume that these models have been [serialised using the `bst.save_model()` method](https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html).\n",
+ "\n",
+ "In this example, we will cover how we can train and serialise a simple model, to then serve it using `mlserver`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training\n",
+ "\n",
+ "The first step will be to train a simple `xgboost` model.\n",
+ "For that, we will use the [mushrooms example from the `xgboost` Getting Started guide](https://xgboost.readthedocs.io/en/latest/get_started.html#python)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Original code and extra details can be found in:\n",
+ "# https://xgboost.readthedocs.io/en/latest/get_started.html#python\n",
+ "\n",
+ "import os\n",
+ "import xgboost as xgb\n",
+ "import requests\n",
+ "\n",
+ "from urllib.parse import urlparse\n",
+ "from sklearn.datasets import load_svmlight_file\n",
+ "\n",
+ "\n",
+ "TRAIN_DATASET_URL = 'https://raw.githubusercontent.com/dmlc/xgboost/master/demo/data/agaricus.txt.train'\n",
+ "TEST_DATASET_URL = 'https://raw.githubusercontent.com/dmlc/xgboost/master/demo/data/agaricus.txt.test'\n",
+ "\n",
+ "\n",
+ "def _download_file(url: str) -> str:\n",
+ " parsed = urlparse(url)\n",
+ " file_name = os.path.basename(parsed.path)\n",
+ " file_path = os.path.join(os.getcwd(), file_name)\n",
+ " \n",
+ " res = requests.get(url)\n",
+ " \n",
+ " with open(file_path, 'wb') as file:\n",
+ " file.write(res.content)\n",
+ " \n",
+ " return file_path\n",
+ "\n",
+ "train_dataset_path = _download_file(TRAIN_DATASET_URL)\n",
+ "test_dataset_path = _download_file(TEST_DATASET_URL)\n",
+ "\n",
+ "# NOTE: Workaround to load SVMLight files from the XGBoost example\n",
+ "X_train, y_train = load_svmlight_file(train_dataset_path)\n",
+ "X_test, y_test = load_svmlight_file(test_dataset_path)\n",
+ "X_train = X_train.toarray()\n",
+ "X_test = X_test.toarray()\n",
+ "\n",
+ "# read in data\n",
+ "dtrain = xgb.DMatrix(data=X_train, label=y_train)\n",
+ "\n",
+ "# specify parameters via map\n",
+ "param = {'max_depth':2, 'eta':1, 'objective':'binary:logistic' }\n",
+ "num_round = 2\n",
+ "bst = xgb.train(param, dtrain, num_round)\n",
+ "\n",
+ "bst"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Saving our trained model\n",
+ "\n",
+ "To save our trained model, we will serialise it using `bst.save_model()` and the JSON format.\n",
+ "This is the [approach by the XGBoost project](https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html).\n",
+ "\n",
+ "Our model will be persisted as a file named `mushroom-xgboost.json`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model_file_name = 'mushroom-xgboost.json'\n",
+ "bst.save_model(model_file_name)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Serving\n",
+ "\n",
+ "Now that we have trained and saved our model, the next step will be to serve it using `mlserver`. \n",
+ "For that, we will need to create 2 configuration files: \n",
+ "\n",
+ "- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).\n",
+ "- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile settings.json\n",
+ "{\n",
+ " \"debug\": \"true\"\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `model-settings.json`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%writefile model-settings.json\n",
+ "{\n",
+ " \"name\": \"mushroom-xgboost\",\n",
+ " \"implementation\": \"mlserver_xgboost.XGBoostModel\",\n",
+ " \"parameters\": {\n",
+ " \"uri\": \"./mushroom-xgboost.json\",\n",
+ " \"version\": \"v0.1.0\"\n",
+ " }\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Start serving our model\n",
+ "\n",
+ "Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.\n",
+ "\n",
+ "```shell\n",
+ "mlserver start .\n",
+ "```\n",
+ "\n",
+ "Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Send test inference request\n",
+ "\n",
+ "We now have our model being served by `mlserver`.\n",
+ "To make sure that everything is working as expected, let's send a request from our test set.\n",
+ "\n",
+ "For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "x_0 = X_test[0:1]\n",
+ "inference_request = {\n",
+ " \"inputs\": [\n",
+ " {\n",
+ " \"name\": \"predict\",\n",
+ " \"shape\": x_0.shape,\n",
+ " \"datatype\": \"FP32\",\n",
+ " \"data\": x_0.tolist()\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "endpoint = \"http://localhost:8080/v2/models/mushroom-xgboost/versions/v0.1.0/infer\"\n",
+ "response = requests.post(endpoint, json=inference_request)\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As we can see above, the model predicted the input as close to `0`, which matches what's on the test set."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y_test[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/docs-gb/examples/xgboost/README.md b/docs-gb/examples/xgboost/README.md
new file mode 100644
index 000000000..e5b2d3c1b
--- /dev/null
+++ b/docs-gb/examples/xgboost/README.md
@@ -0,0 +1,157 @@
+# Serving XGBoost models
+
+Out of the box, `mlserver` supports the deployment and serving of `xgboost` models.
+By default, it will assume that these models have been [serialised using the `bst.save_model()` method](https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html).
+
+In this example, we will cover how we can train and serialise a simple model, to then serve it using `mlserver`.
+
+## Training
+
+The first step will be to train a simple `xgboost` model.
+For that, we will use the [mushrooms example from the `xgboost` Getting Started guide](https://xgboost.readthedocs.io/en/latest/get_started.html#python).
+
+
+```python
+# Original code and extra details can be found in:
+# https://xgboost.readthedocs.io/en/latest/get_started.html#python
+
+import os
+import xgboost as xgb
+import requests
+
+from urllib.parse import urlparse
+from sklearn.datasets import load_svmlight_file
+
+
+TRAIN_DATASET_URL = 'https://raw.githubusercontent.com/dmlc/xgboost/master/demo/data/agaricus.txt.train'
+TEST_DATASET_URL = 'https://raw.githubusercontent.com/dmlc/xgboost/master/demo/data/agaricus.txt.test'
+
+
+def _download_file(url: str) -> str:
+ parsed = urlparse(url)
+ file_name = os.path.basename(parsed.path)
+ file_path = os.path.join(os.getcwd(), file_name)
+
+ res = requests.get(url)
+
+ with open(file_path, 'wb') as file:
+ file.write(res.content)
+
+ return file_path
+
+train_dataset_path = _download_file(TRAIN_DATASET_URL)
+test_dataset_path = _download_file(TEST_DATASET_URL)
+
+# NOTE: Workaround to load SVMLight files from the XGBoost example
+X_train, y_train = load_svmlight_file(train_dataset_path)
+X_test, y_test = load_svmlight_file(test_dataset_path)
+X_train = X_train.toarray()
+X_test = X_test.toarray()
+
+# read in data
+dtrain = xgb.DMatrix(data=X_train, label=y_train)
+
+# specify parameters via map
+param = {'max_depth':2, 'eta':1, 'objective':'binary:logistic' }
+num_round = 2
+bst = xgb.train(param, dtrain, num_round)
+
+bst
+```
+
+### Saving our trained model
+
+To save our trained model, we will serialise it using `bst.save_model()` and the JSON format.
+This is the [approach by the XGBoost project](https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html).
+
+Our model will be persisted as a file named `mushroom-xgboost.json`.
+
+
+```python
+model_file_name = 'mushroom-xgboost.json'
+bst.save_model(model_file_name)
+```
+
+## Serving
+
+Now that we have trained and saved our model, the next step will be to serve it using `mlserver`.
+For that, we will need to create 2 configuration files:
+
+- `settings.json`: holds the configuration of our server (e.g. ports, log level, etc.).
+- `model-settings.json`: holds the configuration of our model (e.g. input type, runtime to use, etc.).
+
+### `settings.json`
+
+
+```python
+%%writefile settings.json
+{
+ "debug": "true"
+}
+```
+
+### `model-settings.json`
+
+
+```python
+%%writefile model-settings.json
+{
+ "name": "mushroom-xgboost",
+ "implementation": "mlserver_xgboost.XGBoostModel",
+ "parameters": {
+ "uri": "./mushroom-xgboost.json",
+ "version": "v0.1.0"
+ }
+}
+```
+
+### Start serving our model
+
+Now that we have our config in-place, we can start the server by running `mlserver start .`. This needs to either be ran from the same directory where our config files are or pointing to the folder where they are.
+
+```shell
+mlserver start .
+```
+
+Since this command will start the server and block the terminal, waiting for requests, this will need to be ran in the background on a separate terminal.
+
+### Send test inference request
+
+We now have our model being served by `mlserver`.
+To make sure that everything is working as expected, let's send a request from our test set.
+
+For that, we can use the Python types that `mlserver` provides out of box, or we can build our request manually.
+
+
+```python
+import requests
+
+x_0 = X_test[0:1]
+inference_request = {
+ "inputs": [
+ {
+ "name": "predict",
+ "shape": x_0.shape,
+ "datatype": "FP32",
+ "data": x_0.tolist()
+ }
+ ]
+}
+
+endpoint = "http://localhost:8080/v2/models/mushroom-xgboost/versions/v0.1.0/infer"
+response = requests.post(endpoint, json=inference_request)
+
+response.json()
+```
+
+As we can see above, the model predicted the input as close to `0`, which matches what's on the test set.
+
+
+```python
+y_test[0]
+```
+
+
+```python
+
+```
diff --git a/docs-gb/examples/xgboost/agaricus.txt.test b/docs-gb/examples/xgboost/agaricus.txt.test
new file mode 100644
index 000000000..83bdd2666
--- /dev/null
+++ b/docs-gb/examples/xgboost/agaricus.txt.test
@@ -0,0 +1,1611 @@
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 5:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 5:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 5:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 3:1 9:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 3:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 52:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 9:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 2:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
diff --git a/docs-gb/examples/xgboost/agaricus.txt.train b/docs-gb/examples/xgboost/agaricus.txt.train
new file mode 100644
index 000000000..10c790226
--- /dev/null
+++ b/docs-gb/examples/xgboost/agaricus.txt.train
@@ -0,0 +1,6513 @@
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 6:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 6:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 4:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 124:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 20:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 123:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 45:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 9:1 11:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 123:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 1:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 24:1 34:1 36:1 39:1 51:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 124:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 20:1 21:1 23:1 34:1 37:1 40:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 21:1 24:1 34:1 37:1 40:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 21:1 24:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 111:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 124:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 9:1 20:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 10:1 20:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 21:1 23:1 34:1 37:1 40:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 1:1 9:1 19:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 20:1 21:1 23:1 34:1 36:1 39:1 48:1 53:1 60:1 65:1 67:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 19:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 122:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 124:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 20:1 21:1 24:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 116:1 122:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 1:1 10:1 19:1 21:1 23:1 34:1 36:1 39:1 45:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 122:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 48:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 114:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 51:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 124:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 44:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 37:1 39:1 48:1 54:1 58:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 39:1 41:1 54:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 105:1 114:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 42:1 54:1 58:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 106:1 117:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 117:1 126:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 7:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 36:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 82:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 14:1 22:1 25:1 34:1 37:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 73:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 14:1 22:1 25:1 34:1 36:1 40:1 49:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 82:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 19:1 22:1 25:1 34:1 36:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 16:1 22:1 25:1 34:1 37:1 40:1 48:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 16:1 22:1 25:1 34:1 37:1 40:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 5:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 7:1 14:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 22:1 25:1 34:1 36:1 40:1 42:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 49:1 54:1 55:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 7:1 18:1 21:1 29:1 34:1 36:1 39:1 42:1 54:1 55:1 65:1 69:1 73:1 86:1 88:1 92:1 95:1 102:1 106:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 5:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 8:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 2:1 8:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 1:1 8:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 1:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 3:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 5:1 9:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 5:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 5:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 5:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 1:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 1:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 1:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 2:1 9:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 3:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 44:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 3:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+0 4:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 1:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 5:1 8:1 19:1 21:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 112:1 115:1 121:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 5:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 5:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 3:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 9:1 15:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 9:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 9:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 1:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 1:1 9:1 19:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 4:1 7:1 13:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+0 4:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 3:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 1:1 10:1 19:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 9:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 5:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 17:1 22:1 29:1 34:1 36:1 40:1 49:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+0 3:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 48:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 118:1 126:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 4:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 120:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 65:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+0 3:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 3:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+0 5:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 3:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 1:1 9:1 20:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 1:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 1:1 10:1 12:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 69:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 48:1 53:1 55:1 64:1 68:1 70:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 123:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+0 5:1 10:1 18:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 76:1 85:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 7:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 123:1
+1 1:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 70:1 80:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 61:1 65:1 69:1 76:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 5:1 7:1 11:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 64:1 67:1 77:1 87:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 79:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 7:1 14:1 22:1 27:1 34:1 36:1 39:1 44:1 53:1 55:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 100:1 108:1 119:1 126:1
+1 3:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 45:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 122:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 120:1
+1 3:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+0 3:1 7:1 11:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 55:1 62:1 66:1 77:1 79:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 19:1 22:1 29:1 34:1 36:1 40:1 51:1 53:1 61:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 99:1 108:1 119:1 126:1
+1 4:1 10:1 19:1 21:1 27:1 34:1 36:1 39:1 51:1 54:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 124:1
+1 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 46:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 109:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 80:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 4:1 10:1 14:1 21:1 27:1 34:1 36:1 39:1 44:1 54:1 55:1 62:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 20:1 22:1 27:1 34:1 36:1 39:1 45:1 53:1 55:1 64:1 68:1 71:1 84:1 88:1 92:1 95:1 100:1 108:1 118:1 120:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 12:1 21:1 29:1 34:1 36:1 39:1 50:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 98:1 112:1 115:1 125:1
+1 4:1 10:1 12:1 21:1 27:1 34:1 36:1 39:1 48:1 54:1 55:1 65:1 66:1 77:1 86:1 88:1 92:1 95:1 102:1 108:1 118:1 124:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 1:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 52:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 9:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 52:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 3:1 10:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 2:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 52:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 4:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 9:1 18:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 4:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 4:1 10:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 3:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 1:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 3:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 3:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 20:1 22:1 29:1 34:1 37:1 40:1 51:1 53:1 56:1 63:1 67:1 78:1 87:1 88:1 93:1 95:1 98:1 112:1 115:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 126:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 3:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 9:1 11:1 22:1 28:1 34:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 4:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 4:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 9:1 14:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 4:1 9:1 11:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+0 1:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 4:1 9:1 16:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 28:1 32:1 36:1 39:1 51:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 13:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 9:1 11:1 21:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 4:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 3:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+0 3:1 9:1 11:1 22:1 29:1 34:1 36:1 39:1 51:1 53:1 55:1 63:1 67:1 70:1 79:1 88:1 92:1 96:1 102:1 112:1 119:1 123:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 3:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 5:1 10:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 4:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 1:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 113:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 118:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
+0 1:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 115:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+1 5:1 10:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 7:1 14:1 22:1 29:1 34:1 37:1 39:1 48:1 53:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 7:1 19:1 22:1 29:1 34:1 37:1 39:1 45:1 53:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 117:1 120:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 118:1 121:1
+1 3:1 10:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 10:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 18:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+1 3:1 10:1 11:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 3:1 9:1 13:1 22:1 28:1 34:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 75:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 68:1 77:1 84:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 123:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 106:1 115:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 110:1 115:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 113:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 115:1 121:1
+1 5:1 9:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+0 1:1 10:1 19:1 22:1 29:1 34:1 37:1 39:1 51:1 53:1 61:1 65:1 69:1 77:1 86:1 88:1 92:1 96:1 102:1 112:1 116:1 120:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 106:1 118:1 121:1
+0 5:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 47:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+1 4:1 9:1 13:1 22:1 28:1 32:1 36:1 39:1 52:1 53:1 56:1 64:1 67:1 72:1 81:1 88:1 92:1 94:1 101:1 112:1 115:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 118:1 121:1
+1 5:1 9:1 11:1 22:1 31:1 34:1 36:1 40:1 43:1 54:1 61:1 65:1 68:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 121:1
+1 5:1 10:1 18:1 22:1 26:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+1 5:1 9:1 11:1 22:1 27:1 34:1 36:1 40:1 43:1 54:1 61:1 64:1 69:1 75:1 86:1 88:1 92:1 95:1 98:1 112:1 118:1 126:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 90:1 95:1 102:1 107:1 118:1 121:1
+0 4:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 42:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 107:1 115:1 121:1
+0 3:1 10:1 11:1 22:1 29:1 32:1 36:1 39:1 52:1 53:1 61:1 65:1 69:1 74:1 83:1 88:1 91:1 95:1 102:1 110:1 115:1 121:1
diff --git a/docs-gb/examples/xgboost/model-settings.json b/docs-gb/examples/xgboost/model-settings.json
new file mode 100644
index 000000000..0573fc346
--- /dev/null
+++ b/docs-gb/examples/xgboost/model-settings.json
@@ -0,0 +1,8 @@
+{
+ "name": "mushroom-xgboost",
+ "implementation": "mlserver_xgboost.XGBoostModel",
+ "parameters": {
+ "uri": "./mushroom-xgboost.json",
+ "version": "v0.1.0"
+ }
+}
diff --git a/docs-gb/examples/xgboost/mushroom-xgboost.json b/docs-gb/examples/xgboost/mushroom-xgboost.json
new file mode 100644
index 000000000..05990f0d2
--- /dev/null
+++ b/docs-gb/examples/xgboost/mushroom-xgboost.json
@@ -0,0 +1 @@
+{"learner":{"attributes":{"best_iteration":"1","best_ntree_limit":"2"},"feature_names":[],"feature_types":[],"gradient_booster":{"model":{"gbtree_model_param":{"num_trees":"2","size_leaf_vector":"0"},"tree_info":[0,0],"trees":[{"base_weights":[-7.150529E-2,1.2955159E0,-1.8666193E0,1.7121772E0,-1.7004405E0,-1.9407086E0,1.8596492E0],"categories":[],"categories_nodes":[],"categories_segments":[],"categories_sizes":[],"default_left":[true,true,true,false,false,false,false],"id":0,"left_children":[1,3,5,-1,-1,-1,-1],"loss_changes":[4.000531E3,1.158212E3,1.9817383E2,0E0,0E0,0E0,0E0],"parents":[2147483647,0,0,1,1,2,2],"right_children":[2,4,6,-1,-1,-1,-1],"split_conditions":[5E-1,5E-1,5E-1,1.7121772E0,-1.7004405E0,-1.9407086E0,1.8596492E0],"split_indices":[28,55,108,0,0,0,0],"split_type":[0,0,0,0,0,0,0],"sum_hessian":[1.62825E3,9.245E2,7.0375E2,8.12E2,1.125E2,6.905E2,1.325E1],"tree_param":{"num_deleted":"0","num_feature":"126","num_nodes":"7","size_leaf_vector":"0"}},{"base_weights":[-9.3191065E-2,7.8292646E-2,-6.2362447E0,7.8471756E-1,-9.6853036E-1],"categories":[],"categories_nodes":[],"categories_segments":[],"categories_sizes":[],"default_left":[true,true,false,false,false],"id":1,"left_children":[1,3,-1,-1,-1],"loss_changes":[8.3254504E2,5.697251E2,0E0,0E0,0E0],"parents":[2147483647,0,0,1,1],"right_children":[2,4,-1,-1,-1],"split_conditions":[5E-1,5E-1,-6.2362447E0,7.8471756E-1,-9.6853036E-1],"split_indices":[59,28,0,0,0],"split_type":[0,0,0,0,0],"sum_hessian":[7.8885205E2,7.683897E2,2.0462389E1,4.5893686E2,3.0945282E2],"tree_param":{"num_deleted":"0","num_feature":"126","num_nodes":"5","size_leaf_vector":"0"}}]},"name":"gbtree"},"learner_model_param":{"base_score":"5E-1","num_class":"0","num_feature":"126"},"objective":{"name":"binary:logistic","reg_loss_param":{"scale_pos_weight":"1"}}},"version":[1,5,0]}
\ No newline at end of file
diff --git a/docs-gb/examples/xgboost/settings.json b/docs-gb/examples/xgboost/settings.json
new file mode 100644
index 000000000..f2ee7ab8d
--- /dev/null
+++ b/docs-gb/examples/xgboost/settings.json
@@ -0,0 +1,3 @@
+{
+ "debug": "true"
+}
diff --git a/docs-gb/getting-started.md b/docs-gb/getting-started.md
new file mode 100644
index 000000000..ed5b41da4
--- /dev/null
+++ b/docs-gb/getting-started.md
@@ -0,0 +1,493 @@
+# Getting Started with MLServer
+
+This guide will help you get started creating machine learning microservices with MLServer
+in less than 30 minutes. Our use case will be to create a service that helps us compare the similarity
+between two documents. Think about whenever you are comparing a book, news article, blog post,
+or tutorial to read next, wouldn't it be great to have a way to compare with
+similar ones that you have already read and liked (without having to rely on a recommendation's system)?
+That's what we'll focus on this guide, on creating a document similarity service. 📜 + 📃 = 😎👌🔥
+
+The code is showcased as if it were cells inside a notebook but you can run each of the steps
+inside Python files with minimal effort.
+
+## 00 What is MLServer?
+
+MLServer is an open-source Python library for building production-ready asynchronous APIs for machine learning models.
+
+## 01 Dependencies
+
+The first step is to install `mlserver`, the `spacy` library, and the [language model](https://spacy.io/models/en#en_core_web_lg)
+`spacy` will need for our use case. We will also download the `wikipedia-api` library to
+test our use case with a few fun summaries.
+
+If you've never heard of [spaCy](https://spacy.io/) before, it is an open-source Python
+library for advanced natural language processing that excels at large-scale information
+extraction and retrieval tasks, among many others. The model we'll use is a pre-trained
+model on English text from the web. This model will help us get started with our use case
+faster than if we had to train a model from scratch for our use case.
+
+Let's first install these libraries.
+
+
+```python
+pip install mlserver spacy wikipedia-api
+```
+
+We will also need to download the language model separately once we have spaCy inside our virtual environment.
+
+
+```python
+python -m spacy download en_core_web_lg
+```
+
+If you're going over this guide inside a notebook, don't forget to add an exclamation mark `!`
+in front of the two commands above. If you are in VSCode, you can keep them as they are and
+change the cell type to bash.
+
+## 02 Set Up
+
+![setup](images/mlserver_setup.png)
+
+At its core, MLServer requires that users give it 3 things, a `model-settings.json` file with
+information about the model, an (optional) `settings.json` file with information related to the server you
+are about to set up, and a `.py` file with the load-predict recipe for your model (as shown in the
+picture above).
+
+Let's create a directory for our model.
+
+
+```python
+mkdir -p similarity_model
+```
+
+Before we create a service that allows us to compare the similarity between two documents, it is
+good practice to first test that our solution works first, especially if we're using a pre-trained
+model and/or a pipeline.
+
+
+```python
+import spacy
+```
+
+
+```python
+nlp = spacy.load("en_core_web_lg")
+```
+
+Now that we have our model loaded, let's look at the similarity of the abstracts of
+[Barbieheimer](https://en.wikipedia.org/wiki/Barbenheimer) using the `wikipedia-api`
+Python library. The main requirement of the API is that we pass into the main class,
+`Wikipedia()`, a project name, an email and the language we want information to be
+returned in. After that, we can search the for the movie summaries we want by passing
+the title of the movie to the `.page()` method and accessing the summary of it with
+the `.summary` attribute.
+
+Feel free to change the movies for other topics you might be interested in.
+
+You can run the following lines inside a notebook or, conversely, add them to a `app.py` file.
+
+```python
+import wikipediaapi
+```
+
+
+```python
+wiki_wiki = wikipediaapi.Wikipedia('MyMovieEval (example@example.com)', 'en')
+```
+
+
+```python
+barbie = wiki_wiki.page('Barbie_(film)').summary
+oppenheimer = wiki_wiki.page('Oppenheimer_(film)').summary
+
+print(barbie)
+print()
+print(oppenheimer)
+```
+If you created an `app.py` file with the code above, make sure you run `python app.py` from
+the terminal.
+
+```
+Barbie is a 2023 American fantasy comedy film directed by Greta Gerwig and written by Gerwig and Noah Baumbach. Based on the Barbie fashion dolls by Mattel, it is the first live-action Barbie film after numerous computer-animated direct-to-video and streaming television films. The film stars Margot Robbie as Barbie and Ryan Gosling as Ken, and follows the two on a journey of self-discovery following an existential crisis. The film also features an ensemble cast that includes America Ferrera, Kate McKinnon, Issa Rae, Rhea Perlman, and Will Ferrell...
+
+Oppenheimer is a 2023 biographical thriller film written and directed by Christopher Nolan. Based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin, the film chronicles the life of J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project, and thereby ushering in the Atomic Age. Cillian Murphy stars as Oppenheimer, with Emily Blunt as Oppenheimer's wife Katherine "Kitty" Oppenheimer; Matt Damon as General Leslie Groves, director of the Manhattan Project; and Robert Downey Jr. as Lewis Strauss, a senior member of the United States Atomic Energy Commission. The ensemble supporting cast includes Florence Pugh, Josh Hartnett, Casey Affleck, Rami Malek, Gary Oldman and Kenneth Branagh...
+```
+
+Now that we have our two summaries, let's compare them using spacy.
+
+
+```python
+doc1 = nlp(barbie)
+doc2 = nlp(oppenheimer)
+```
+
+
+```python
+doc1.similarity(doc2)
+```
+
+
+
+
+ 0.9866910567224084
+
+
+
+Notice that both summaries have information about the other movie, about "films" in general,
+and about the dates each aired on (which is the same). The reality is that, the model hasn't seen
+any of these movies so it might be generalizing to the context of each article, "movies,"
+rather than their content, "dolls as humans and the atomic bomb."
+
+You should, of course, play around with different pages and see if what you get back is coherent with
+what you would expect.
+
+Time to create a machine learning API for our use-case. 😎
+
+## 03 Building a Service
+
+MLServer allows us to wrap machine learning models into APIs and build microservices with
+replicas of a single model, or different models all together.
+
+To create a service with MLServer, we will define a class with two asynchronous functions, one that
+loads the model and another one to run inference (or predict) with. The former will load the
+`spacy` model we tested in the last section, and the latter will take in a list with the two
+documents we want to compare. Lastly, our function will return a `numpy` array with a single
+value, our similarity score. We'll write the file to our `similarity_model` directory and call
+it `my_model.py`.
+
+
+```python
+# similarity_model/my_model.py
+
+from mlserver.codecs import decode_args
+from mlserver import MLModel
+from typing import List
+import numpy as np
+import spacy
+
+class MyKulModel(MLModel):
+
+ async def load(self):
+ self.model = spacy.load("en_core_web_lg")
+
+ @decode_args
+ async def predict(self, docs: List[str]) -> np.ndarray:
+
+ doc1 = self.model(docs[0])
+ doc2 = self.model(docs[1])
+
+ return np.array(doc1.similarity(doc2))
+```
+
+Now that we have our model file ready to go, the last piece of the puzzle is to tell MLServer a bit of info
+about it. In particular, it wants (or needs) to know the name of the model and how to implement
+it. The former can be anything you want (and it will be part of the URL of your API), and the latter will
+follow the recipe of `name_of_py_file_with_your_model.class_with_your_model`.
+
+Let's create the `model-settings.json` file MLServer is expecting inside our `similarity_model` directory
+and add the name and the implementation of our model to it.
+
+
+```json
+# similarity_model/model-settings.json
+
+{
+ "name": "doc-sim-model",
+ "implementation": "my_model.MyKulModel"
+}
+```
+
+
+Now that everything is in place, we can start serving predictions locally to test how things would play
+out for our future users. We'll initiate our server via the command line, and later on we'll see how to
+do the same via Python files. Here's where we are at right now in the process of developing microservices
+with MLServer.
+
+![start](images/start_service.png)
+
+As you can see in the image, our server will be initialized with three entry points, one for HTTP requests,
+another for gRPC, and another for the metrics. To learn more about the powerful metrics feature of MLServer,
+please visit the relevant docs page [here](https://mlserver.readthedocs.io/en/latest/user-guide/metrics.html).
+To learn more about gRPC, please see this tutorial [here](https://realpython.com/python-microservices-grpc/).
+
+To start our service, open up a terminal and run the following command.
+
+```bash
+mlserver start similarity_model/
+```
+
+Note: If this is a fresh terminal, make sure you activate your environment before you run the command above.
+If you run the command above from your notebook (e.g. `!mlserver start similarity_model/`),
+you will have to send the request below from another notebook or terminal since the cell will continue to run
+until you turn it off.
+
+## 04 Testing our Service
+
+Time to become a client of our service and test it. For this, we'll set up the payload we'll send
+to our service and use the `requests` library to [POST](https://www.baeldung.com/cs/http-get-vs-post) our request.
+
+
+```python
+from mlserver.codecs import StringCodec
+import requests
+```
+
+Please note that the request below uses the variables we created earlier with the summaries
+of Barbie and Oppenheimer. If you are sending this POST request from a fresh python file, make
+sure you move those lines of code above into your request file.
+
+
+```python
+inference_request = {
+ "inputs": [
+ StringCodec.encode_input(name='docs', payload=[barbie, oppenheimer], use_bytes=False).model_dump()
+ ]
+}
+print(inference_request)
+```
+
+
+
+
+ {'inputs': [{'name': 'docs',
+ 'shape': [2, 1],
+ 'datatype': 'BYTES',
+ 'parameters': {'content_type': 'str'},
+ 'data': [
+ 'Barbie is a 2023 American fantasy comedy...',
+ 'Oppenheimer is a 2023 biographical thriller...'
+ ]
+ }]
+ }
+
+
+
+
+```python
+r = requests.post('http://0.0.0.0:8080/v2/models/doc-sim-model/infer', json=inference_request)
+```
+
+
+```python
+r.json()
+```
+
+```
+{'model_name': 'doc-sim-model',
+ 'id': 'a4665ddb-1868-4523-bd00-a25902d9b124',
+ 'parameters': {},
+ 'outputs': [{'name': 'output-0',
+ 'shape': [1],
+ 'datatype': 'FP64',
+ 'parameters': {'content_type': 'np'},
+ 'data': [0.9866910567224084]}]}
+```
+
+
+
+```python
+print(f"Our movies are {round(r.json()['outputs'][0]['data'][0] * 100, 4)}% similar!")
+```
+
+```
+Our movies are 98.6691% similar
+```
+
+
+Let's decompose what just happened.
+
+The `URL` for our service might seem a bit odd if you've never heard of the
+[V2/Open Inference Protocol (OIP)](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html).
+This protocol is a set of specifications that allows machine learning models to be shared and deployed in a
+standardized way. This protocol enables the use of machine learning models on a variety of platforms and
+devices without requiring changes to the model or its code. The OIP is useful because it allows us
+to integrate machine learning into a wide range of applications in a standard way.
+
+All URLs you create with MLServer will have the following structure.
+
+![v2](images/urlv2.png)
+
+This kind of protocol is a standard adopted by different companies like NVIDIA, Tensorflow Serving,
+KServe, and others, to keep everyone on the same page. If you think about driving cars globally,
+your country has to apply a standard for driving on a particular side of the road, and this ensures
+you and everyone else stays on the left (or the right depending on where you are at). Adopting this
+means that you won't have to wonder where the next driver is going to come out of when you are driving
+and are about to take a turn, instead, you can focus on getting to where you're going to without much worrying.
+
+Let's describe what each of the components of our `inference_request` does.
+- `name`: this maps one-to-one to the name of the parameter in your `predict()` function.
+- `shape`: represents the shape of the elements in our `data`. In our case, it is a list with `[2]` strings.
+- `datatype`: the different data types expected by the server, e.g., str, numpy array, pandas dataframe, bytes, etc.
+- `parameters`: allows us to specify the `content_type` beyond the data types
+- `data`: the inputs to our predict function.
+
+To learn more about the OIP and how MLServer content types work, please have a looks at their
+[docs page here](https://mlserver.readthedocs.io/en/latest/user-guide/content-type.html).
+
+## 05 Creating Model Replicas
+
+Say you need to meet the demand of a high number of users and one model might not be enough, or is not using
+all of the resources of the virtual machine instance it was allocated to. What we can do in this case is
+to create multiple replicas of our model to increase the throughput of the requests that come in. This
+can be particularly useful at the peak times of our server. To do this, we need to tweak the settings of
+our server via the `settings.json` file. In it, we'll add the number of independent models we want to
+have to the parameter `"parallel_workers": 3`.
+
+Let's stop our server, change the settings of it, start it again, and test it.
+
+
+```json
+# similarity_model/settings.json
+
+{
+ "parallel_workers": 3
+}
+```
+
+
+```bash
+mlserver start similarity_model
+```
+
+![multiplemodels](images/multiple_models.png)
+
+As you can see in the output of the terminal in the picture above, we now have 3 models running in
+parallel. The reason you might see 4 is because, by default, MLServer will print the name of the
+initialized model if it is one or more, and it will also print one for each of the replicas
+specified in the settings.
+
+Let's get a few more [twin films examples](https://en.wikipedia.org/wiki/Twin_films) to test our
+server. Get as creative as you'd like. 💡
+
+
+```python
+deep_impact = wiki_wiki.page('Deep_Impact_(film)').summary
+armageddon = wiki_wiki.page('Armageddon_(1998_film)').summary
+
+antz = wiki_wiki.page('Antz').summary
+a_bugs_life = wiki_wiki.page("A_Bug's_Life").summary
+
+the_dark_night = wiki_wiki.page('The_Dark_Knight').summary
+mamma_mia = wiki_wiki.page('Mamma_Mia!_(film)').summary
+```
+
+
+```python
+def get_sim_score(movie1, movie2):
+ response = requests.post(
+ 'http://0.0.0.0:8080/v2/models/doc-sim-model/infer',
+ json={
+ "inputs": [
+ StringCodec.encode_input(name='docs', payload=[movie1, movie2], use_bytes=False).model_dump()
+ ]
+ })
+ return response.json()['outputs'][0]['data'][0]
+```
+
+Let's first test that the function works as intended.
+
+
+```python
+get_sim_score(deep_impact, armageddon)
+```
+
+
+
+
+ 0.9569279450151813
+
+
+
+Now let's map three POST requests at the same time.
+
+
+```python
+results = list(
+ map(get_sim_score, (deep_impact, antz, the_dark_night), (armageddon, a_bugs_life, mamma_mia))
+)
+results
+```
+
+
+
+
+ [0.9569279450151813, 0.9725374771538605, 0.9626173937217876]
+
+
+
+We can also test it one by one.
+
+
+```python
+for movie1, movie2 in zip((deep_impact, antz, the_dark_night), (armageddon, a_bugs_life, mamma_mia)):
+ print(get_sim_score(movie1, movie2))
+```
+
+ 0.9569279450151813
+ 0.9725374771538605
+ 0.9626173937217876
+
+
+## 06 Packaging our Service
+
+![serving3](images/serving_2.png)
+
+For the last step of this guide, we are going to package our model and service into a
+docker image that we can reuse in another project or share with colleagues immediately. This step
+requires that we have docker installed and configured in our PCs, so if you need to set up docker,
+you can do so by following the instructions in the documentation [here](https://docs.docker.com/get-docker/).
+
+The first step is to create a `requirements.txt` file with all of our dependencies and add it to
+the directory we've been using for our service (`similarity_model`).
+
+
+```python
+# similarity_model/requirements.txt
+
+mlserver
+spacy==3.6.0
+https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.6.0/en_core_web_lg-3.6.0-py3-none-any.whl
+```
+
+
+The next step is to build a docker image with our model, its dependencies and our server. If you've never heard
+of **docker images** before, here's a short description.
+
+> A Docker image is a lightweight, standalone, and executable package that includes everything needed to run a piece of software, including code, libraries, dependencies, and settings. It's like a carry-on bag for your application, containing everything it needs to travel safely and run smoothly in different environments. Just as a carry-on bag allows you to bring your essentials with you on a trip, a Docker image enables you to transport your application and its requirements across various computing environments, ensuring consistent and reliable deployment.
+
+MLServer has a convenient function that lets us create docker images with our services. Let's use it.
+
+
+```python
+mlserver build similarity_model/ -t 'fancy_ml_service'
+```
+
+We can check that our image was successfully build not only by looking at the logs of the previous
+command but also with the `docker images` command.
+
+
+```bash
+docker images
+```
+
+Let's test that our image works as intended with the following command. Make sure you have closed your
+previous server by using `CTRL + C` in your terminal.
+
+
+```bash
+docker run -it --rm -p 8080:8080 fancy_ml_service
+```
+
+Now that you have a packaged and fully-functioning microservice with our model, we could deploy our container
+to a production serving platform like [Seldon Core](https://docs.seldon.io/projects/seldon-core/en/latest/#),
+or via different offerings available through the many cloud providers out there (e.g. AWS Lambda, Google
+Cloud Run, etc.). You could also run this image on KServe, a Kubernetes native tool for model serving, or
+anywhere else where you can bring your docker image with you.
+
+To learn more about MLServer and the different ways in which you can use it, head over to the
+[examples](https://mlserver.readthedocs.io/en/latest/examples/index.html) section
+or the [user guide](https://mlserver.readthedocs.io/en/latest/user-guide/index.html). To learn about
+some of the deployment options available, head over to the docs [here](https://mlserver.readthedocs.io/en/stable/user-guide/deployment/index.html).
+
+To keep up to date with what we are up to at Seldon, make sure you join our
+[Slack community](https://join.slack.com/t/seldondev/shared_invite/zt-vejg6ttd-ksZiQs3O_HOtPQsen_labg).
diff --git a/docs-gb/images/adaptive-batching.svg b/docs-gb/images/adaptive-batching.svg
new file mode 100644
index 000000000..231396b10
--- /dev/null
+++ b/docs-gb/images/adaptive-batching.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs-gb/images/architecture.svg b/docs-gb/images/architecture.svg
new file mode 100644
index 000000000..e16470b67
--- /dev/null
+++ b/docs-gb/images/architecture.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs-gb/images/content-type.svg b/docs-gb/images/content-type.svg
new file mode 100644
index 000000000..38a2b5dce
--- /dev/null
+++ b/docs-gb/images/content-type.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs-gb/images/favicon.ico b/docs-gb/images/favicon.ico
new file mode 100644
index 000000000..4b1ce0d3d
Binary files /dev/null and b/docs-gb/images/favicon.ico differ
diff --git a/docs-gb/images/input-codecs.svg b/docs-gb/images/input-codecs.svg
new file mode 100644
index 000000000..30d149396
--- /dev/null
+++ b/docs-gb/images/input-codecs.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs-gb/images/kserve-logo.png b/docs-gb/images/kserve-logo.png
new file mode 100644
index 000000000..11675d395
Binary files /dev/null and b/docs-gb/images/kserve-logo.png differ
diff --git a/docs-gb/images/mlserver-logo.png b/docs-gb/images/mlserver-logo.png
new file mode 100755
index 000000000..87c988630
Binary files /dev/null and b/docs-gb/images/mlserver-logo.png differ
diff --git a/docs-gb/images/mlserver-release.png b/docs-gb/images/mlserver-release.png
new file mode 100644
index 000000000..7a91c5e9a
Binary files /dev/null and b/docs-gb/images/mlserver-release.png differ
diff --git a/docs-gb/images/mlserver_setup.png b/docs-gb/images/mlserver_setup.png
new file mode 100644
index 000000000..830fb26de
Binary files /dev/null and b/docs-gb/images/mlserver_setup.png differ
diff --git a/docs-gb/images/multiple_models.png b/docs-gb/images/multiple_models.png
new file mode 100644
index 000000000..2f861eff8
Binary files /dev/null and b/docs-gb/images/multiple_models.png differ
diff --git a/docs-gb/images/parallel-inference.svg b/docs-gb/images/parallel-inference.svg
new file mode 100644
index 000000000..d11d9d049
--- /dev/null
+++ b/docs-gb/images/parallel-inference.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs-gb/images/request-codecs.svg b/docs-gb/images/request-codecs.svg
new file mode 100644
index 000000000..7eee58aff
--- /dev/null
+++ b/docs-gb/images/request-codecs.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs-gb/images/seldon-core-logo.png b/docs-gb/images/seldon-core-logo.png
new file mode 100644
index 000000000..1aa6dbe72
Binary files /dev/null and b/docs-gb/images/seldon-core-logo.png differ
diff --git a/docs-gb/images/serving_2.png b/docs-gb/images/serving_2.png
new file mode 100644
index 000000000..fb2ea10dc
Binary files /dev/null and b/docs-gb/images/serving_2.png differ
diff --git a/docs-gb/images/start_service.png b/docs-gb/images/start_service.png
new file mode 100644
index 000000000..385e052ce
Binary files /dev/null and b/docs-gb/images/start_service.png differ
diff --git a/docs-gb/images/swagger-ui-model.png b/docs-gb/images/swagger-ui-model.png
new file mode 100644
index 000000000..a877636b7
Binary files /dev/null and b/docs-gb/images/swagger-ui-model.png differ
diff --git a/docs-gb/images/swagger-ui.png b/docs-gb/images/swagger-ui.png
new file mode 100644
index 000000000..07c0990e0
Binary files /dev/null and b/docs-gb/images/swagger-ui.png differ
diff --git a/docs-gb/images/urlv2.png b/docs-gb/images/urlv2.png
new file mode 100644
index 000000000..6f233bd4f
Binary files /dev/null and b/docs-gb/images/urlv2.png differ
diff --git a/docs-gb/images/versioning-scheme.png b/docs-gb/images/versioning-scheme.png
new file mode 100644
index 000000000..19f02ff7b
Binary files /dev/null and b/docs-gb/images/versioning-scheme.png differ
diff --git a/docs-gb/reference/README.md b/docs-gb/reference/README.md
new file mode 100644
index 000000000..02577ad8e
--- /dev/null
+++ b/docs-gb/reference/README.md
@@ -0,0 +1,2 @@
+# Reference
+
diff --git a/docs-gb/reference/api/codecs.md b/docs-gb/reference/api/codecs.md
new file mode 100644
index 000000000..53e876a57
--- /dev/null
+++ b/docs-gb/reference/api/codecs.md
@@ -0,0 +1,33 @@
+# Codecs
+
+Codecs are used to encapsulate the logic required to encode / decode payloads
+following the [Open Inference
+Protocol](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html)
+into high-level Python types.
+You can read more about the high-level concepts behind codecs in the
+[](../../user-guide/content-type) section of the docs, as well as how to use
+them.
+
+## Base Codecs
+
+All the codecs within MLServer extend from either the {class}`InputCodec `
+or the {class}`RequestCodec ` base classes.
+These define the interface to deal with input (outputs) and request (responses)
+respectively.
+
+```{eval-rst}
+.. automodule:: mlserver.codecs
+ :members: InputCodec, RequestCodec
+```
+
+## Built-in Codecs
+
+The `mlserver` package will include a set of built-in codecs to cover common
+conversions.
+You can learn more about these in the [](../../user-guide/content-type.md#available-content-types) section of
+the docs.
+
+```{eval-rst}
+.. automodule:: mlserver.codecs
+ :members: NumpyCodec, NumpyRequestCodec, StringCodec, StringRequestCodec, Base64Codec, DatetimeCodec, PandasCodec
+```
diff --git a/docs-gb/reference/api/index.md b/docs-gb/reference/api/index.md
new file mode 100644
index 000000000..3229feba9
--- /dev/null
+++ b/docs-gb/reference/api/index.md
@@ -0,0 +1,17 @@
+# Python API
+
+MLServer can be installed as a Python package, which exposes a public
+framework which can be used to build [custom inference
+runtimes](../../user-guide/custom) and [codecs](../../user-guide/content-type).
+
+Below, you can find the main reference for the Python API exposed by the
+MLServer framework.
+
+```{toctree}
+:titlesonly:
+
+./model.md
+./types.md
+./codecs.md
+./metrics.md
+```
diff --git a/docs-gb/reference/api/metrics.md b/docs-gb/reference/api/metrics.md
new file mode 100644
index 000000000..f82edd24e
--- /dev/null
+++ b/docs-gb/reference/api/metrics.md
@@ -0,0 +1,13 @@
+# Metrics
+
+The MLServer package exposes a set of methods that let you register and track
+custom metrics.
+This can be used within your own [custom inference
+runtimes](../../user-guide/custom).
+To learn more about how to expose custom metrics, check out the [metrics usage
+guide](../../user-guide/metrics).
+
+```{eval-rst}
+.. automodule:: mlserver
+ :members: register, log
+```
diff --git a/docs-gb/reference/api/model.md b/docs-gb/reference/api/model.md
new file mode 100644
index 000000000..0fe340ffc
--- /dev/null
+++ b/docs-gb/reference/api/model.md
@@ -0,0 +1,22 @@
+# MLModel
+
+The `MLModel` class is the base class for all [custom inference
+runtimes](../../user-guide/custom).
+It exposes the main interface that MLServer will use to interact with ML
+models.
+
+The bulk of its public interface are the {func}`load()
+`, {func}`unload() ` and
+{func}`predict() ` methods.
+However, it also contains helpers with encoding / decoding of requests and
+responses, as well as properties to access the most common bits of the model's
+metadata.
+
+When writing [custom runtimes](../../user-guide/custom), **this class should be
+extended to implement your own load and predict logic**.
+
+```{eval-rst}
+.. autoclass:: mlserver.MLModel
+ :members:
+ :member-order: bysource
+```
diff --git a/docs-gb/reference/api/types.md b/docs-gb/reference/api/types.md
new file mode 100644
index 000000000..c8d1dab92
--- /dev/null
+++ b/docs-gb/reference/api/types.md
@@ -0,0 +1,6 @@
+# Types
+
+```{eval-rst}
+.. automodule:: mlserver.types
+ :members:
+```
diff --git a/docs-gb/reference/cli.md b/docs-gb/reference/cli.md
new file mode 100644
index 000000000..cb56a8bd3
--- /dev/null
+++ b/docs-gb/reference/cli.md
@@ -0,0 +1,19 @@
+# MLServer CLI
+
+The MLServer package includes a `mlserver` CLI designed to help with some of
+the common tasks involved with a model's lifecycle.
+Below, you can find the full list of supported subcommands.
+Note that you can also get a similar high-level outline at any time by running:
+
+```bash
+mlserver --help
+```
+
+## Commands
+
+```{eval-rst}
+
+.. click:: mlserver.cli.main:root
+ :prog: mlserver
+ :nested: full
+```
diff --git a/docs-gb/reference/model-settings.md b/docs-gb/reference/model-settings.md
new file mode 100644
index 000000000..7d1998108
--- /dev/null
+++ b/docs-gb/reference/model-settings.md
@@ -0,0 +1,29 @@
+# Model Settings
+
+In MLServer, each loaded model can be configured separately.
+This configuration will include model information (e.g. metadata about the
+accepted inputs), but also model-specific settings (e.g. number of [parallel
+workers](../user-guide/parallel-inference) to run inference).
+
+This configuration will usually be provided through a `model-settings.json`
+file which **sits next to the model artifacts**.
+However, it's also possible to provide this through environment variables
+prefixed with `MLSERVER_MODEL_` (e.g. `MLSERVER_MODEL_IMPLEMENTATION`). Note
+that, in the latter case, this environment variables will be shared across all
+loaded models (unless they get overriden by a `model-settings.json` file).
+Additionally, if no `model-settings.json` file is found, MLServer will also try
+to load a _"default"_ model from these environment variables.
+
+## Settings
+
+```{eval-rst}
+
+.. autopydantic_settings:: mlserver.settings.ModelSettings
+```
+
+## Extra Model Parameters
+
+```{eval-rst}
+
+.. autopydantic_settings:: mlserver.settings.ModelParameters
+```
diff --git a/docs-gb/reference/python-api/README.md b/docs-gb/reference/python-api/README.md
new file mode 100644
index 000000000..c9f57933d
--- /dev/null
+++ b/docs-gb/reference/python-api/README.md
@@ -0,0 +1,2 @@
+# Python API
+
diff --git a/docs-gb/reference/settings.md b/docs-gb/reference/settings.md
new file mode 100644
index 000000000..ca282a53d
--- /dev/null
+++ b/docs-gb/reference/settings.md
@@ -0,0 +1,15 @@
+# MLServer Settings
+
+MLServer can be configured through a `settings.json` file on the root folder
+from where MLServer is started.
+Note that these are server-wide settings (e.g. gRPC or HTTP port) which are
+separate from the [invidual model settings](./model-settings).
+Alternatively, this configuration can also be passed through **environment
+variables** prefixed with `MLSERVER_` (e.g. `MLSERVER_GRPC_PORT`).
+
+## Settings
+
+```{eval-rst}
+
+.. autopydantic_settings:: mlserver.settings.Settings
+```
diff --git a/docs-gb/references.bib b/docs-gb/references.bib
new file mode 100644
index 000000000..5cef1330a
--- /dev/null
+++ b/docs-gb/references.bib
@@ -0,0 +1,18 @@
+
+@article{zhiFiberPlatformEfficient2020,
+ title = {Fiber: {{A Platform}} for {{Efficient Development}} and {{Distributed Training}} for {{Reinforcement Learning}} and {{Population}}-{{Based Methods}}},
+ shorttitle = {Fiber},
+ author = {Zhi, Jiale and Wang, Rui and Clune, Jeff and Stanley, Kenneth O.},
+ year = {2020},
+ month = mar,
+ abstract = {Recent advances in machine learning are consistently enabled by increasing amounts of computation. Reinforcement learning (RL) and population-based methods in particular pose unique challenges for efficiency and flexibility to the underlying distributed computing frameworks. These challenges include frequent interaction with simulations, the need for dynamic scaling, and the need for a user interface with low adoption cost and consistency across different backends. In this paper we address these challenges while still retaining development efficiency and flexibility for both research and practical applications by introducing Fiber, a scalable distributed computing framework for RL and population-based methods. Fiber aims to significantly expand the accessibility of large-scale parallel computation to users of otherwise complicated RL and population-based approaches without the need to for specialized computational expertise.},
+ archiveprefix = {arXiv},
+ eprint = {2003.11164},
+ eprinttype = {arxiv},
+ file = {/home/agm/Zotero/storage/5U97ZXVW/Zhi et al. - 2020 - Fiber A Platform for Efficient Development and Di.pdf;/home/agm/Zotero/storage/JZAVAE4T/2003.html},
+ journal = {arXiv:2003.11164 [cs, stat]},
+ keywords = {Computer Science - Machine Learning,Statistics - Machine Learning},
+ primaryclass = {cs, stat}
+}
+
+
diff --git a/docs-gb/runtimes/README.md b/docs-gb/runtimes/README.md
new file mode 100644
index 000000000..2edb06f8c
--- /dev/null
+++ b/docs-gb/runtimes/README.md
@@ -0,0 +1,32 @@
+# Inference Runtimes
+
+Inference runtimes allow you to define how your model should be used within
+MLServer.
+You can think of them as the **backend glue** between MLServer and your machine
+learning framework of choice.
+
+![](../images/architecture.svg)
+
+Out of the box, MLServer comes with a set of pre-packaged runtimes which let
+you interact with a subset of common ML frameworks.
+This allows you to start serving models saved in these frameworks straight
+away.
+To avoid bringing in dependencies for frameworks that you don't need to use,
+these runtimes are implemented as independent (and optional) Python packages.
+This mechanism also allows you to **rollout your [own custom runtimes](./custom.md) very easily**.
+
+To pick which runtime you want to use for your model, you just need to make
+sure that the right package is installed, and then point to the correct runtime
+class in your `model-settings.json` file.
+
+## Included Inference Runtimes
+
+| Framework | Package Name | Implementation Class | Example | Documentation |
+| ----------- | ----------- | --------------- | --------- | ------------------- |
+| Scikit-Learn | `mlserver-sklearn` | `mlserver_sklearn.SKLearnModel` | [Scikit-Learn example](../examples/sklearn/README.md) | [MLServer SKLearn](./sklearn.md) |
+| XGBoost | `mlserver-xgboost` | `mlserver_xgboost.XGBoostModel` | [XGBoost example](../examples/xgboost/README.md) | [MLServer XGBoost](./xgboost.md) |
+| Spark MLlib | `mlserver-mllib` | `mlserver_mllib.MLlibModel` | [MLlib example](../examples/mllib/README.md) | [MLServer MLlib](./mllib.md) |
+| LightGBM | `mlserver-lightgbm` | `mlserver_lightgbm.LightGBMModel` | [LightGBM example](../examples/lightgbm/README.md) | [MLServer LightGBM](./lightgbm.md) |
+| CatBoost | `mlserver-catboost` | `mlserver_catboost.CatboostModel` | [CatBoost example](../examples/catboost/README.md) | [MLServer CatBoost](./catboost.md) |
+| MLflow | `mlserver-mlflow` | `mlserver_mlflow.MLflowRuntime` | [MLflow example](../examples/mlflow/README.md) | [MLServer MLflow](./mlflow.md) |
+| Alibi-Detect | `mlserver-alibi-detect` | `mlserver_alibi_detect.AlibiDetectRuntime` | [Alibi-detect example](../examples/alibi-detect/README.md) | [MLServer Alibi-Detect](./alibi-detect.md) |
\ No newline at end of file
diff --git a/docs-gb/runtimes/alibi-detect.md b/docs-gb/runtimes/alibi-detect.md
new file mode 100644
index 000000000..87716db21
--- /dev/null
+++ b/docs-gb/runtimes/alibi-detect.md
@@ -0,0 +1,58 @@
+# Alibi-Detect runtime for MLServer
+
+This package provides a MLServer runtime compatible with
+[alibi-detect](https://docs.seldon.io/projects/alibi-detect/en/latest/index.html)
+models.
+
+## Usage
+
+You can install the `mlserver-alibi-detect` runtime, alongside `mlserver`, as:
+
+```bash
+pip install mlserver mlserver-alibi-detect
+```
+
+For further information on how to use MLServer with Alibi-Detect, you can check
+out this [worked out example](../../docs/examples/alibi-detect/README.md).
+
+## Content Types
+
+If no [content type](../../docs/user-guide/content-type) is present on the
+request or metadata, the Alibi-Detect runtime will try to decode the payload
+as a [NumPy Array](../../docs/user-guide/content-type).
+To avoid this, either send a different content type explicitly, or define the
+correct one as part of your [model's
+metadata](../../docs/reference/model-settings).
+
+## Settings
+
+The Alibi Detect runtime exposes a couple setting flags which can be used to
+customise how the runtime behaves.
+These settings can be added under the `parameters.extra` section of your
+`model-settings.json` file, e.g.
+
+```{code-block} json
+---
+emphasize-lines: 6-8
+---
+{
+ "name": "drift-detector",
+ "implementation": "mlserver_alibi_detect.AlibiDetectRuntime",
+ "parameters": {
+ "uri": "./alibi-detect-artifact/",
+ "extra": {
+ "batch_size": 5
+ }
+ }
+}
+```
+
+### Reference
+
+You can find the full reference of the accepted extra settings for the Alibi
+Detect runtime below:
+
+```{eval-rst}
+
+.. autopydantic_settings:: mlserver_alibi_detect.runtime.AlibiDetectSettings
+```
diff --git a/docs-gb/runtimes/alibi-explain.md b/docs-gb/runtimes/alibi-explain.md
new file mode 100644
index 000000000..e29fcd0b0
--- /dev/null
+++ b/docs-gb/runtimes/alibi-explain.md
@@ -0,0 +1,11 @@
+# Alibi-Explain runtime for MLServer
+
+This package provides a MLServer runtime compatible with Alibi-Explain.
+
+## Usage
+
+You can install the runtime, alongside `mlserver`, as:
+
+```bash
+pip install mlserver mlserver-alibi-explain
+```
diff --git a/docs-gb/runtimes/catboost.md b/docs-gb/runtimes/catboost.md
new file mode 100644
index 000000000..3dfd52b51
--- /dev/null
+++ b/docs-gb/runtimes/catboost.md
@@ -0,0 +1,23 @@
+# CatBoost runtime for MLServer
+
+This package provides a MLServer runtime compatible with CatBoost's `CatboostClassifier`.
+
+## Usage
+
+You can install the runtime, alongside `mlserver`, as:
+
+```bash
+pip install mlserver mlserver-catboost
+```
+
+For further information on how to use MLServer with CatBoost, you can check out
+this [worked out example](../../docs/examples/catboost/README.md).
+
+## Content Types
+
+If no [content type](../../docs/user-guide/content-type) is present on the
+request or metadata, the CatBoost runtime will try to decode the payload as
+a [NumPy Array](../../docs/user-guide/content-type).
+To avoid this, either send a different content type explicitly, or define the
+correct one as part of your [model's
+metadata](../../docs/reference/model-settings).
diff --git a/docs-gb/runtimes/custom.md b/docs-gb/runtimes/custom.md
new file mode 100644
index 000000000..fecaec258
--- /dev/null
+++ b/docs-gb/runtimes/custom.md
@@ -0,0 +1,11 @@
+# Custom Inference Runtimes
+
+There may be cases where the [inference runtimes](./README.md) offered
+out-of-the-box by MLServer may not be enough, or where you may need **extra
+custom functionality** which is not included in MLServer (e.g. custom codecs).
+To cover these cases, MLServer lets you create custom runtimes very easily.
+
+To learn more about how you can write custom runtimes with MLServer, check out
+the [Custom Runtimes user guide](../user-guide/custom.md). Alternatively, you can also
+see this [end-to-end example](../examples/custom/README.md) which walks through the
+process of writing a custom runtime.
\ No newline at end of file
diff --git a/docs-gb/runtimes/huggingface.md b/docs-gb/runtimes/huggingface.md
new file mode 100644
index 000000000..04db06ccb
--- /dev/null
+++ b/docs-gb/runtimes/huggingface.md
@@ -0,0 +1,77 @@
+# HuggingFace runtime for MLServer
+
+This package provides a MLServer runtime compatible with HuggingFace Transformers.
+
+## Usage
+
+You can install the runtime, alongside `mlserver`, as:
+
+```bash
+pip install mlserver mlserver-huggingface
+```
+
+For further information on how to use MLServer with HuggingFace, you can check
+out this [worked out example](../../docs/examples/huggingface/README.md).
+
+## Content Types
+
+The HuggingFace runtime will always decode the input request using its own
+built-in codec.
+Therefore, [content type annotations](../../docs/user-guide/content-type) at
+the request level will **be ignored**.
+Note that this **doesn't include [input-level content
+type](../../docs/user-guide/content-type#Codecs) annotations**, which will be
+respected as usual.
+
+## Settings
+
+The HuggingFace runtime exposes a couple extra parameters which can be used to
+customise how the runtime behaves.
+These settings can be added under the `parameters.extra` section of your
+`model-settings.json` file, e.g.
+
+```{code-block} json
+---
+emphasize-lines: 5-8
+---
+{
+ "name": "qa",
+ "implementation": "mlserver_huggingface.HuggingFaceRuntime",
+ "parameters": {
+ "extra": {
+ "task": "question-answering",
+ "optimum_model": true
+ }
+ }
+}
+```
+
+````{note}
+These settings can also be injected through environment variables prefixed with `MLSERVER_MODEL_HUGGINGFACE_`, e.g.
+
+```bash
+MLSERVER_MODEL_HUGGINGFACE_TASK="question-answering"
+MLSERVER_MODEL_HUGGINGFACE_OPTIMUM_MODEL=true
+```
+````
+
+### Loading models
+#### Local models
+It is possible to load a local model into a HuggingFace pipeline by specifying the model artefact folder path in `parameters.uri` in `model-settings.json`.
+
+#### HuggingFace models
+Models in the HuggingFace hub can be loaded by specifying their name in `parameters.extra.pretrained_model` in `model-settings.json`.
+
+````{note}
+If `parameters.extra.pretrained_model` is specified, it takes precedence over `parameters.uri`.
+````
+
+### Reference
+
+You can find the full reference of the accepted extra settings for the
+HuggingFace runtime below:
+
+```{eval-rst}
+
+.. autopydantic_settings:: mlserver_huggingface.settings.HuggingFaceSettings
+```
diff --git a/docs-gb/runtimes/lightgbm.md b/docs-gb/runtimes/lightgbm.md
new file mode 100644
index 000000000..c93566205
--- /dev/null
+++ b/docs-gb/runtimes/lightgbm.md
@@ -0,0 +1,23 @@
+# LightGBM runtime for MLServer
+
+This package provides a MLServer runtime compatible with LightGBM.
+
+## Usage
+
+You can install the runtime, alongside `mlserver`, as:
+
+```bash
+pip install mlserver mlserver-lightgbm
+```
+
+For further information on how to use MLServer with LightGBM, you can check out
+this [worked out example](../../docs/examples/lightgbm/README.md).
+
+## Content Types
+
+If no [content type](../../docs/user-guide/content-type) is present on the
+request or metadata, the LightGBM runtime will try to decode the payload as
+a [NumPy Array](../../docs/user-guide/content-type).
+To avoid this, either send a different content type explicitly, or define the
+correct one as part of your [model's
+metadata](../../docs/reference/model-settings).
diff --git a/docs-gb/runtimes/mlflow.md b/docs-gb/runtimes/mlflow.md
new file mode 100644
index 000000000..c29d12031
--- /dev/null
+++ b/docs-gb/runtimes/mlflow.md
@@ -0,0 +1,27 @@
+# MLflow runtime for MLServer
+
+This package provides a MLServer runtime compatible with [MLflow
+models](https://www.mlflow.org/docs/latest/models.html).
+
+## Usage
+
+You can install the runtime, alongside `mlserver`, as:
+
+```bash
+pip install mlserver mlserver-mlflow
+```
+
+## Content Types
+
+The MLflow inference runtime introduces a new `dict` content type, which
+decodes an incoming V2 request as a [dictionary of
+tensors](https://www.mlflow.org/docs/latest/models.html#deploy-mlflow-models).
+This is useful for certain MLflow-serialised models, which will expect that the
+model inputs are serialised in this format.
+
+```{note}
+The `dict` content type can be _stacked_ with other content types, like
+[`np`](../../docs/user-guide/content-type).
+This allows the user to use a different set of content types to decode each of
+the dict entries.
+```
diff --git a/docs-gb/runtimes/mllib.md b/docs-gb/runtimes/mllib.md
new file mode 100644
index 000000000..b1b5c5f81
--- /dev/null
+++ b/docs-gb/runtimes/mllib.md
@@ -0,0 +1,14 @@
+# Spark MLlib runtime for MLServer
+
+This package provides a MLServer runtime compatible with Spark MLlib.
+
+## Usage
+
+You can install the runtime, alongside `mlserver`, as:
+
+```bash
+pip install mlserver mlserver-mllib
+```
+
+For further information on how to use MLServer with Spark MLlib, you can check
+out the [MLServer repository](https://github.com/SeldonIO/MLServer).
diff --git a/docs-gb/runtimes/sklearn.md b/docs-gb/runtimes/sklearn.md
new file mode 100644
index 000000000..6158f41f1
--- /dev/null
+++ b/docs-gb/runtimes/sklearn.md
@@ -0,0 +1,63 @@
+# Scikit-Learn runtime for MLServer
+
+This package provides a MLServer runtime compatible with Scikit-Learn.
+
+## Usage
+
+You can install the runtime, alongside `mlserver`, as:
+
+```bash
+pip install mlserver mlserver-sklearn
+```
+
+For further information on how to use MLServer with Scikit-Learn, you can check
+out this [worked out example](../../docs/examples/sklearn/README.md).
+
+## Content Types
+
+If no [content type](../../docs/user-guide/content-type) is present on the
+request or metadata, the Scikit-Learn runtime will try to decode the payload as
+a [NumPy Array](../../docs/user-guide/content-type).
+To avoid this, either send a different content type explicitly, or define the
+correct one as part of your [model's
+metadata](../../docs/reference/model-settings).
+
+## Model Outputs
+
+The Scikit-Learn inference runtime exposes a number of outputs depending on the
+model type.
+These outputs match to the `predict`, `predict_proba` and `transform` methods
+of the Scikit-Learn model.
+
+| Output | Returned By Default | Availability |
+| --------------- | ------------------- | -------------------------------------------------------------------------------------------------------------------- |
+| `predict` | ✅ | Available on most models, but not in [Scikit-Learn pipelines](https://scikit-learn.org/stable/modules/compose.html). |
+| `predict_proba` | ❌ | Only available on non-regressor models. |
+| `transform` | ❌ | Only available on [Scikit-Learn pipelines](https://scikit-learn.org/stable/modules/compose.html). |
+
+By default, the runtime will only return the output of `predict`.
+However, you are able to control which outputs you want back through the
+`outputs` field of your {class}`InferenceRequest
+` payload.
+
+For example, to only return the model's `predict_proba` output, you could
+define a payload such as:
+
+```{code-block} json
+---
+emphasize-lines: 10-12
+---
+{
+ "inputs": [
+ {
+ "name": "my-input",
+ "datatype": "INT32",
+ "shape": [2, 2],
+ "data": [1, 2, 3, 4]
+ }
+ ],
+ "outputs": [
+ { "name": "predict_proba" }
+ ]
+}
+```
diff --git a/docs-gb/runtimes/xgboost.md b/docs-gb/runtimes/xgboost.md
new file mode 100644
index 000000000..cff6b104b
--- /dev/null
+++ b/docs-gb/runtimes/xgboost.md
@@ -0,0 +1,93 @@
+# XGBoost runtime for MLServer
+
+This package provides a MLServer runtime compatible with XGBoost.
+
+## Usage
+
+You can install the runtime, alongside `mlserver`, as:
+
+```bash
+pip install mlserver mlserver-xgboost
+```
+
+For further information on how to use MLServer with XGBoost, you can check out
+this [worked out example](../../docs/examples/xgboost/README.md).
+
+## XGBoost Artifact Type
+
+The XGBoost inference runtime will expect that your model is serialised via one
+of the following methods:
+
+| Extension | Docs | Example |
+| --------- | -------------------------------------------------------------------------------------------------------------------- | ---------------------------------- |
+| `*.json` | [JSON Format](https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html#introduction-to-model-io) | `booster.save_model("model.json")` |
+| `*.ubj` | [Binary JSON Format](https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html#introduction-to-model-io) | `booster.save_model("model.ubj")` |
+| `*.bst` | [(Old) Binary Format](https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html#introduction-to-model-io) | `booster.save_model("model.bst")` |
+
+````{note}
+By default, the runtime will look for a file called `model.[json | ubj | bst]`.
+However, this can be modified through the `parameters.uri` field of your
+{class}`ModelSettings ` config (see the
+section on [Model Settings](../../docs/reference/model-settings.md) for more
+details).
+
+```{code-block} json
+---
+emphasize-lines: 3-5
+---
+{
+ "name": "foo",
+ "parameters": {
+ "uri": "./my-own-model-filename.json"
+ }
+}
+```
+````
+
+## Content Types
+
+If no [content type](../../docs/user-guide/content-type) is present on the
+request or metadata, the XGBoost runtime will try to decode the payload as a
+[NumPy Array](../../docs/user-guide/content-type).
+To avoid this, either send a different content type explicitly, or define the
+correct one as part of your [model's
+metadata](../../docs/reference/model-settings).
+
+## Model Outputs
+
+The XGBoost inference runtime exposes a number of outputs depending on the
+model type.
+These outputs match to the `predict` and `predict_proba` methods of the XGBoost
+model.
+
+| Output | Returned By Default | Availability |
+| --------------- | ------------------- | --------------------------------------------------------------------- |
+| `predict` | ✅ | Available on all XGBoost models. |
+| `predict_proba` | ❌ | Only available on non-regressor models (i.e. `XGBClassifier` models). |
+
+By default, the runtime will only return the output of `predict`.
+However, you are able to control which outputs you want back through the
+`outputs` field of your {class}`InferenceRequest
+` payload.
+
+For example, to only return the model's `predict_proba` output, you could
+define a payload such as:
+
+```{code-block} json
+---
+emphasize-lines: 10-12
+---
+{
+ "inputs": [
+ {
+ "name": "my-input",
+ "datatype": "INT32",
+ "shape": [2, 2],
+ "data": [1, 2, 3, 4]
+ }
+ ],
+ "outputs": [
+ { "name": "predict_proba" }
+ ]
+}
+```
diff --git a/docs-gb/user-guide/README.md b/docs-gb/user-guide/README.md
new file mode 100644
index 000000000..ba623ff35
--- /dev/null
+++ b/docs-gb/user-guide/README.md
@@ -0,0 +1,2 @@
+# User Guide
+
diff --git a/docs-gb/user-guide/adaptive-batching.md b/docs-gb/user-guide/adaptive-batching.md
new file mode 100644
index 000000000..66d26b455
--- /dev/null
+++ b/docs-gb/user-guide/adaptive-batching.md
@@ -0,0 +1,165 @@
+# Adaptive Batching
+
+MLServer includes support to batch requests together transparently on-the-fly.
+We refer to this as "adaptive batching", although it can also be known as
+"predictive batching".
+
+![](../assets/adaptive-batching.svg)
+
+## Benefits
+
+There are usually two main reasons to adopt adaptive batching:
+
+- **Maximise resource usage**.
+ Usually, inference operations are “vectorised” (i.e. are designed to operate
+ across batches).
+ For example, a GPU is designed to operate on multiple data points at the same
+ time.
+ Therefore, to make sure that it’s used at maximum capacity, we need to run
+ inference across batches.
+
+- **Minimise any inference overhead**.
+ Usually, all models will have to _“pay”_ a constant overhead when running any
+ type of inference.
+ This can be something like IO to communicate with the GPU or some kind of
+ processing in the incoming data.
+ Up to a certain size, this overhead tends to not scale linearly with the
+ number of data points.
+ Therefore, it’s in our interest to send as large batches as we can without
+ deteriorating performance.
+
+However, these benefits will usually scale only up to a certain point, which is
+usually determined by either the infrastructure, the machine learning
+framework used to train your model, or a combination of both.
+Therefore, to maximise the performance improvements brought in by adaptive
+batching it will be important to [configure it with the appropriate values for
+your model](#usage).
+Since these values are usually found through experimentation, **MLServer won't
+enable by default adaptive batching on newly loaded models**.
+
+## Usage
+
+MLServer lets you configure adaptive batching independently for each model
+through two main parameters:
+
+- **Maximum batch size**, that is how many requests you want to group together.
+- **Maximum batch time**, that is how much time we should wait for new
+ requests until we reach our maximum batch size.
+
+### `max_batch_size`
+
+The `max_batch_size` field of the `model-settings.json` file (or
+alternatively, the `MLSERVER_MODEL_MAX_BATCH_SIZE` global environment
+variable) controls the maximum number of requests that should be grouped
+together on each batch.
+The expected values are:
+
+- `N`, where `N > 1`, will create batches of up to `N` elements.
+- `0` or `1`, will disable adaptive batching.
+
+### `max_batch_time`
+
+The `max_batch_time` field of the `model-settings.json` file (or
+alternatively, the `MLSERVER_MODEL_MAX_BATCH_TIME` global environment
+variable) controls the time that MLServer should wait for new requests to come
+in until we reach our maximum batch size.
+
+The expected format is in seconds, but it will take fractional values.
+That is, 500ms could be expressed as `0.5`.
+
+The expected values are:
+
+- `T`, where `T > 0`, will wait `T` seconds at most.
+- `0`, will disable adaptive batching.
+
+### Merge and split of custom parameters
+
+MLserver allows adding custom parameters to the `parameters` field of the requests.
+These parameters are received as a merged list of parameters inside the server, e.g.
+```python
+# request 1
+types.RequestInput(
+ name="parameters-np",
+ shape=[1],
+ datatype="BYTES",
+ data=[],
+ parameters=types.Parameters(
+ custom-param='value-1',
+ )
+)
+
+# request 2
+types.RequestInput(
+ name="parameters-np",
+ shape=[1],
+ datatype="BYTES",
+ data=[],
+ parameters=types.Parameters(
+ custom-param='value-2',
+ )
+)
+```
+
+is received as follows in the batched request in the server:
+```python
+types.RequestInput(
+ name="parameters-np",
+ shape=[2],
+ datatype="BYTES",
+ data=[],
+ parameters=types.Parameters(
+ custom-param=['value-1', 'value-2'],
+ )
+)
+```
+
+The same way if the request is sent back from the server as a batched request
+
+```python
+types.ResponseOutput(
+ name="foo",
+ datatype="INT32",
+ shape=[3, 3],
+ data=[1, 2, 3, 4, 5, 6, 7, 8, 9],
+ parameters=types.Parameters(
+ content_type="np",
+ foo=["foo_1", "foo_2"],
+ bar=["bar_1", "bar_2", "bar_3"],
+ ),
+)
+```
+
+it will be returned unbatched from the server as follows:
+
+```python
+# Request 1
+types.ResponseOutput(
+ name="foo",
+ datatype="INT32",
+ shape=[1, 3],
+ data=[1, 2, 3],
+ parameters=types.Parameters(
+ content_type="np", foo="foo_1", bar="'bar_1"
+ ),
+)
+
+# Request 2
+types.ResponseOutput(
+ name="foo",
+ datatype="INT32",
+ shape=[1, 3],
+ data=[4, 5, 6],
+ parameters=types.Parameters(
+ content_type="np", foo="foo_2", bar="bar_2"
+ ),
+)
+
+# Request 3
+types.ResponseOutput(
+ name="foo",
+ datatype="INT32",
+ shape=[1, 3],
+ data=[7, 8, 9],
+ parameters=types.Parameters(content_type="np", bar="bar_3"),
+)
+```
diff --git a/docs-gb/user-guide/content-type.md b/docs-gb/user-guide/content-type.md
new file mode 100644
index 000000000..be3796b24
--- /dev/null
+++ b/docs-gb/user-guide/content-type.md
@@ -0,0 +1,649 @@
+# Content Types (and Codecs)
+
+Machine learning models generally expect their inputs to be passed down as a
+particular Python type.
+Most commonly, this type ranges from _"general purpose"_ NumPy arrays or Pandas
+DataFrames to more granular definitions, like `datetime` objects, `Pillow`
+images, etc.
+Unfortunately, the definition of the [V2 Inference Protocol](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html)
+doesn't cover any of the specific use cases.
+This protocol can be thought of a wider _"lower level"_ spec, which only
+defines what fields a payload should have.
+
+To account for this gap, MLServer introduces support for **content types**,
+which offer a way to let MLServer know how it should _"decode"_ V2-compatible
+payloads.
+When shaped in the right way, these payloads should _"encode"_ all the
+information required to extract the higher level Python type that will be
+required for a model.
+
+To illustrate the above, we can think of a Scikit-Learn pipeline, which takes
+in a Pandas DataFrame and returns a NumPy Array.
+Without the use of **content types**, the V2 payload itself would probably lack
+information about how this payload should be treated by MLServer
+Likewise, the Scikit-Learn pipeline wouldn't know how to treat a raw V2
+payload.
+In this scenario, the use of content types allows us to specify information on
+what's the actual _"higher level"_ information encoded within the V2 protocol
+payloads.
+
+![Content Types](../images/content-type.svg)
+
+## Usage
+
+{% hint style="info" %}
+Some inference runtimes may apply a content type by default if none is present.
+To learn more about each runtime's defaults, please check the [relevant
+inference runtime's docs](../runtimes/index).
+{% endhint %}
+
+To let MLServer know that a particular payload must be decoded / encoded as a
+different Python data type (e.g. NumPy Array, Pandas DataFrame, etc.), you can
+specify it through the `content_type` field of the `parameters` section of
+your request.
+
+As an example, we can consider the following dataframe, containing two columns:
+Age and First Name.
+
+| First Name | Age |
+| ---------- | --- |
+| Joanne | 34 |
+| Michael | 22 |
+
+This table, could be specified in the V2 protocol as the following payload, where we declare that:
+
+- The whole set of inputs should be decoded as a Pandas Dataframe (i.e. setting
+ the content type as `pd`).
+- The First Name column should be decoded as a UTF-8 string (i.e. setting the content
+ type as `str`).
+
+```json
+{
+ "parameters": {
+ "content_type": "pd"
+ },
+ "inputs": [
+ {
+ "name": "First Name",
+ "datatype": "BYTES",
+ "parameters": {
+ "content_type": "str"
+ },
+ "shape": [2],
+ "data": ["Joanne", "Michael"]
+ },
+ {
+ "name": "Age",
+ "datatype": "INT32",
+ "shape": [2],
+ "data": [34, 22]
+ },
+ ]
+}
+```
+
+To learn more about the available content types and how to use them, you can
+see all the available ones in the [Available Content
+Types](#available-content-types) section below.
+
+{% hint style="info" %}
+It's important to keep in mind that content types can be specified at both the
+**request level** and the **input level**.
+The former will apply to the **entire set of inputs**, whereas the latter will
+only apply to a **particular input** of the payload.
+{% endhint %}
+
+### Codecs
+
+Under the hood, the conversion between content types is implemented using
+_codecs_.
+In the MLServer architecture, codecs are an abstraction which know how to
+_encode_ and _decode_ high-level Python types to and from the V2 Inference
+Protocol.
+
+Depending on the high-level Python type, encoding / decoding operations may
+require access to multiple input or output heads.
+For example, a Pandas Dataframe would need to aggregate all of the
+input-/output-heads present in a V2 Inference Protocol response.
+
+![Request Codecs](../images/request-codecs.svg)
+
+However, a Numpy array or a list of strings, could be encoded directly as an
+input head within a larger request.
+
+![Input Codecs](../images/input-codecs.svg)
+
+To account for this, codecs can work at either the request- / response-level
+(known as **request codecs**), or the input- / output-level (known as **input
+codecs**).
+Each of these codecs, expose the following **public interface**, where `Any`
+represents a high-level Python datatype (e.g. a Pandas Dataframe, a Numpy
+Array, etc.):
+
+- **Request Codecs**
+ - `encode_request() `
+ - `decode_request() `
+ - `encode_response() `
+ - `decode_response() `
+- **Input Codecs**
+ - `encode_input() `
+ - `decode_input() `
+ - `encode_output() `
+ - `decode_output() `
+
+Note that, these methods can also be used as helpers to **encode requests and
+decode responses on the client side**.
+This can help to abstract away from the user most of the details about the
+underlying structure of V2-compatible payloads.
+
+For example, in the example above, we could use codecs to encode the DataFrame
+into a V2-compatible request simply as:
+
+```python
+import pandas as pd
+
+from mlserver.codecs import PandasCodec
+
+dataframe = pd.DataFrame({'First Name': ["Joanne", "Michael"], 'Age': [34, 22]})
+
+inference_request = PandasCodec.encode_request(dataframe)
+print(inference_request)
+```
+
+For a full end-to-end example on how content types and codecs work under the
+hood, feel free to check out this [Content Type Decoding
+example](../examples/content-type/README.md).
+
+#### Converting to / from JSON
+
+When using MLServer's request codecs, the output of encoding payloads will
+always be one of the classes within the `mlserver.types` package (i.e.
+`InferenceRequest ` or
+`InferenceResponse `).
+Therefore, if you want to use them with `requests` (or other package outside of
+MLServer) you will need to **convert them to a Python dict or a JSON string**.
+
+Luckily, these classes leverage [Pydantic](https://docs.pydantic.dev/latest/)
+under the hood.
+Therefore you can just call the `.model_dump()` or `.model_dump_json()` method to convert them.
+Likewise, to read them back from JSON, we can always pass the JSON fields as
+kwargs to the class' constructor (or use any of the [other methods](https://docs.pydantic.dev/latest/usage/models/#model-properties)
+available within Pydantic).
+
+For example, if we want to send an inference request to model `foo`, we could
+do something along the following lines:
+
+```python
+import pandas as pd
+import requests
+
+from mlserver.codecs import PandasCodec
+
+dataframe = pd.DataFrame({'First Name': ["Joanne", "Michael"], 'Age': [34, 22]})
+
+inference_request = PandasCodec.encode_request(dataframe)
+
+# raw_request will be a Python dictionary compatible with `requests`'s `json` kwarg
+raw_request = inference_request.dict()
+
+response = requests.post("localhost:8080/v2/models/foo/infer", json=raw_request)
+
+# raw_response will be a dictionary (loaded from the response's JSON),
+# therefore we can pass it as the InferenceResponse constructors' kwargs
+raw_response = response.json()
+inference_response = InferenceResponse(**raw_response)
+```
+
+#### Support for NaN values
+
+The NaN (Not a Number) value is used in Numpy and other scientific libraries to
+describe an invalid or missing value (e.g. a division by zero).
+In some scenarios, it may be desirable to let your models receive and / or
+output NaN values (e.g. these can be useful sometimes with GBTs, like XGBoost
+models).
+This is why MLServer supports encoding NaN values on your request / response
+payloads under some conditions.
+
+In order to send / receive NaN values, you must ensure that:
+
+- You are using the `REST` interface.
+- The input / output entry containing NaN values uses either the `FP16`, `FP32`
+ or `FP64` datatypes.
+- You are either using the [Pandas codec](#pandas-dataframe) or the [Numpy codec](#numpy-array).
+
+Assuming those conditions are satisfied, any `null` value within your tensor
+payload will be converted to NaN.
+
+For example, if you take the following Numpy array:
+
+```python
+import numpy as np
+
+foo = np.array([[1.2, 2.3], [np.NaN, 4.5]])
+```
+
+We could encode it as:
+
+```json
+{
+ "inputs": [
+ {
+ "name": "foo",
+ "parameters": {
+ "content_type": "np"
+ },
+ "data": [1.2, 2.3, null, 4.5]
+ "datatype": "FP64",
+ "shape": [2, 2],
+ }
+ ]
+}
+```
+
+
+### Model Metadata
+
+Content types can also be defined as part of the [model's
+metadata](../reference/model-settings).
+This lets the user pre-configure what content types should a model use by
+default to decode / encode its requests / responses, without the need to
+specify it on each request.
+
+For example, to configure the content type values of the [example
+above](#usage), one could create a `model-settings.json` file like the one
+below:
+
+```json
+{
+ "parameters": {
+ "content_type": "pd"
+ },
+ "inputs": [
+ {
+ "name": "First Name",
+ "datatype": "BYTES",
+ "parameters": {
+ "content_type": "str"
+ },
+ "shape": [-1],
+ },
+ {
+ "name": "Age",
+ "datatype": "INT32",
+ "shape": [-1],
+ },
+ ]
+}
+```
+
+It's important to keep in mind that content types passed explicitly as part of
+the request will always **take precedence over the model's metadata**.
+Therefore, we can leverage this to override the model's metadata when needed.
+
+## Available Content Types
+
+Out of the box, MLServer supports the following list of content types.
+However, this can be extended through the use of 3rd-party or custom runtimes.
+
+| Python Type | Content Type | Request Level | Request Codec | Input Level | Input Codec |
+| ------------------------------------- | ------------ | ------------- | ------------------------------------------- | ----------- | ------------------------------- |
+| [NumPy Array](#numpy-array) | `np` | ✅ | `mlserver.codecs.NumpyRequestCodec` | ✅ | `mlserver.codecs.NumpyCodec` |
+| [Pandas DataFrame](#pandas-dataframe) | `pd` | ✅ | `mlserver.codecs.PandasCodec` | ❌ | |
+| [UTF-8 String](#utf-8-string) | `str` | ✅ | `mlserver.codecs.string.StringRequestCodec` | ✅ | `mlserver.codecs.StringCodec` |
+| [Base64](#base64) | `base64` | ❌ | | ✅ | `mlserver.codecs.Base64Codec` |
+| [Datetime](#datetime) | `datetime` | ❌ | | ✅ | `mlserver.codecs.DatetimeCodec` |
+
+{% hint style="info" %}
+MLServer allows you extend the supported content types by **adding custom
+ones**.
+To learn more about how to write your own custom content types, you can check
+this [full end-to-end example](../examples/content-type/README.md).
+You can also learn more about building custom extensions for MLServer on the
+[Custom Inference Runtime section](../runtimes/custom) of the docs.
+{% endhint %}
+
+### NumPy Array
+
+{% hint style="info" %}
+The [V2 Inference
+Protocol](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html) expects
+that the `data` of each input is sent as a **flat array**.
+Therefore, the `np` content type will expect that tensors are sent flattened.
+The information in the `shape` field will then be used to reshape the vector
+into the right dimensions.
+{% endhint %}
+
+The `np` content type will decode / encode V2 payloads to a NumPy Array, taking
+into account the following:
+
+- The `datatype` field will be matched to the closest [NumPy `dtype`](https://numpy.org/doc/stable/reference/arrays.dtypes.html).
+- The `shape` field will be used to reshape the flattened array expected by the
+ V2 protocol into the expected tensor shape.
+
+{% hint style="info" %}
+By default, MLServer will always assume that an array with a single-dimensional
+shape, e.g. `[N]`, is equivalent to `[N, 1]`.
+That is, each entry will be treated like a single one-dimensional data point
+(i.e. instead of a `[1, D]` array, where the full array is a single
+`D`-dimensional data point).
+To avoid any ambiguity, where possible, the **Numpy codec will always
+explicitly encode `[N]` arrays as `[N, 1]`**.
+{% endhint %}
+
+For example, if we think of the following NumPy Array:
+
+```python
+import numpy as np
+
+foo = np.array([[1, 2], [3, 4]])
+```
+
+We could encode it as the input `foo` in a V2 protocol request as:
+
+{% tabs %}
+{% tab title="JSON payload" %}
+```json
+{
+ "inputs": [
+ {
+ "name": "foo",
+ "parameters": {
+ "content_type": "np"
+ },
+ "data": [1, 2, 3, 4]
+ "datatype": "INT32",
+ "shape": [2, 2],
+ }
+ ]
+}
+```
+{% endtab %}
+
+{% tab title="NumPy Request Codec" %}
+```python
+from mlserver.codecs import NumpyRequestCodec
+
+# Encode an entire V2 request
+inference_request = NumpyRequestCodec.encode_request(foo)
+```
+{% endtab %}
+
+{% tab title="NumPy Input Codec" %}
+```python
+from mlserver.types import InferenceRequest
+from mlserver.codecs import NumpyCodec
+
+# We can use the `NumpyCodec` to encode a single input head with name `foo`
+# within a larger request
+inference_request = InferenceRequest(
+ inputs=[
+ NumpyCodec.encode_input("foo", foo)
+ ]
+)
+```
+{% endtab %}
+
+{% endtabs %}
+
+When using the NumPy Array content type at the **request-level**, it will decode
+the entire request by considering only the first `input` element.
+This can be used as a helper for models which only expect a single tensor.
+
+### Pandas DataFrame
+
+{% hint style="info" %}
+The `pd` content type can be _stacked_ with other content types.
+This allows the user to use a different set of content types to decode each of
+the columns.
+{% endhint %}
+
+The `pd` content type will decode / encode a V2 request into a Pandas
+DataFrame.
+For this, it will expect that the DataFrame is shaped in a **columnar way**.
+That is,
+
+- Each entry of the `inputs` list (or `outputs`, in the case of
+ responses), will represent a column of the DataFrame.
+- Each of these entires, will contain all the row elements for that particular
+ column.
+- The `shape` field of each `input` (or `output`) entry will contain (at least)
+ the amount of rows included in the dataframe.
+
+For example, if we consider the following dataframe:
+
+| A | B | C |
+| --- | --- | --- |
+| a1 | b1 | c1 |
+| a2 | b2 | c2 |
+| a3 | b3 | c3 |
+| a4 | b4 | c4 |
+
+We could encode it to the V2 Inference Protocol as:
+
+{% tabs %}
+{% tab title="JSON Payload" %}
+```json
+{
+ "parameters": {
+ "content_type": "pd"
+ },
+ "inputs": [
+ {
+ "name": "A",
+ "data": ["a1", "a2", "a3", "a4"]
+ "datatype": "BYTES",
+ "shape": [4],
+ },
+ {
+ "name": "B",
+ "data": ["b1", "b2", "b3", "b4"]
+ "datatype": "BYTES",
+ "shape": [4],
+ },
+ {
+ "name": "C",
+ "data": ["c1", "c2", "c3", "c4"]
+ "datatype": "BYTES",
+ "shape": [4],
+ },
+ ]
+}
+```
+{% endtab %}
+
+{% tab title="Pandas Request Codec" %}
+```python
+import pandas as pd
+
+from mlserver.codecs import PandasCodec
+
+foo = pd.DataFrame({
+ "A": ["a1", "a2", "a3", "a4"],
+ "B": ["b1", "b2", "b3", "b4"],
+ "C": ["c1", "c2", "c3", "c4"]
+})
+
+inference_request = PandasCodec.encode_request(foo)
+```
+{% endtab %}
+{% endtabs %}
+
+### UTF-8 String
+
+The `str` content type lets you encode / decode a V2 input into a UTF-8
+Python string, taking into account the following:
+
+- The expected `datatype` is `BYTES`.
+- The `shape` field represents the number of "strings" that are encoded in
+ the payload (e.g. the `["hello world", "one more time"]` payload will have a
+ shape of 2 elements).
+
+For example, when if we consider the following list of strings:
+
+```python
+foo = ["bar", "bar2"]
+```
+
+We could encode it to the V2 Inference Protocol as:
+
+{% tabs %}
+{% tab title="JSON Payload" %}
+```json
+{
+ "parameters": {
+ "content_type": "str"
+ },
+ "inputs": [
+ {
+ "name": "foo",
+ "data": ["bar", "bar2"]
+ "datatype": "BYTES",
+ "shape": [2],
+ }
+ ]
+}
+```
+{% endtab %}
+
+{% tab title="String Request Codec" %}
+```python
+from mlserver.codecs.string import StringRequestCodec
+
+# Encode an entire V2 request
+inference_request = StringRequestCodec.encode_request(foo, use_bytes=False)
+```
+{% endtab %}
+
+{% tab title="String Input Codec" %}
+```python
+from mlserver.types import InferenceRequest
+from mlserver.codecs import StringCodec
+
+# We can use the `StringCodec` to encode a single input head with name `foo`
+# within a larger request
+inference_request = InferenceRequest(
+ inputs=[
+ StringCodec.encode_input("foo", foo, use_bytes=False)
+ ]
+)
+```
+{% endtab %}
+{% endtabs %}
+
+When using the `str` content type at the request-level, it will decode the
+entire request by considering only the first `input` element.
+This can be used as a helper for models which only expect a single string or a
+set of strings.
+
+### Base64
+
+The `base64` content type will decode a binary V2 payload into a Base64-encoded
+string (and viceversa), taking into account the following:
+
+- The expected `datatype` is `BYTES`.
+- The `data` field should contain the base64-encoded binary strings.
+- The `shape` field represents the number of binary strings that are encoded in
+ the payload.
+
+For example, if we think of the following _"bytes array"_:
+
+```python
+foo = b"Python is fun"
+```
+
+We could encode it as the input `foo` of a V2 request as:
+
+{% tabs %}
+
+{% tab title="JSON Payload" %}
+```json
+{
+ "inputs": [
+ {
+ "name": "foo",
+ "parameters": {
+ "content_type": "base64"
+ },
+ "data": ["UHl0aG9uIGlzIGZ1bg=="]
+ "datatype": "BYTES",
+ "shape": [1],
+ }
+ ]
+}
+```
+{% endtab %}
+
+{% tab title="Base64 Input Codec" %}
+```python
+from mlserver.types import InferenceRequest
+from mlserver.codecs import Base64Codec
+
+# We can use the `Base64Codec` to encode a single input head with name `foo`
+# within a larger request
+inference_request = InferenceRequest(
+ inputs=[
+ Base64Codec.encode_input("foo", foo, use_bytes=False)
+ ]
+)
+```
+{% endtab %}
+{% endtabs %}
+
+### Datetime
+
+The `datetime` content type will decode a V2 input into a [Python
+`datetime.datetime`
+object](https://docs.python.org/3/library/datetime.html#datetime.datetime),
+taking into account the following:
+
+- The expected `datatype` is `BYTES`.
+- The `data` field should contain the dates serialised following the [ISO 8601
+ standard](https://en.wikipedia.org/wiki/ISO_8601).
+- The `shape` field represents the number of datetimes that are encoded in
+ the payload.
+
+For example, if we think of the following `datetime` object:
+
+```python
+import datetime
+
+foo = datetime.datetime(2022, 1, 11, 11, 0, 0)
+```
+
+We could encode it as the input `foo` of a V2 request as:
+
+{% tabs %}
+
+{% tab title="JSON Payload" %}
+```json
+{
+ "inputs": [
+ {
+ "name": "foo",
+ "parameters": {
+ "content_type": "datetime"
+ },
+ "data": ["2022-01-11T11:00:00"]
+ "datatype": "BYTES",
+ "shape": [1],
+ }
+ ]
+}
+```
+{% endtab %}
+
+{% tab title="Datetime Input Codec" %}
+```python
+from mlserver.types import InferenceRequest
+from mlserver.codecs import DatetimeCodec
+
+# We can use the `DatetimeCodec` to encode a single input head with name `foo`
+# within a larger request
+inference_request = InferenceRequest(
+ inputs=[
+ DatetimeCodec.encode_input("foo", foo, use_bytes=False)
+ ]
+)
+```
+{% endtab %}
+{% endtabs %}
diff --git a/docs-gb/user-guide/custom.md b/docs-gb/user-guide/custom.md
new file mode 100644
index 000000000..a3a9f7f2c
--- /dev/null
+++ b/docs-gb/user-guide/custom.md
@@ -0,0 +1,347 @@
+# Custom Inference Runtimes
+
+There may be cases where the inference runtimes offered
+out-of-the-box by MLServer may not be enough, or where you may need **extra
+custom functionality** which is not included in MLServer (e.g. custom codecs).
+To cover these cases, MLServer lets you create custom runtimes very easily.
+
+This page covers some of the bigger points that need to be taken into account
+when extending MLServer.
+You can also see this [end-to-end example](../examples/custom/README.md) which
+walks through the process of writing a custom runtime.
+
+## Writing a custom inference runtime
+
+MLServer is designed as an easy-to-extend framework, encouraging users to write
+their own custom runtimes easily.
+The starting point for this is the `MLModel `
+abstract class, whose main methods are:
+
+- `load() `:
+ Responsible for loading any artifacts related to a model (e.g. model
+ weights, pickle files, etc.).
+- `unload() `:
+ Responsible for unloading the model, freeing any resources (e.g. GPU memory,
+ etc.).
+- `predict() `:
+ Responsible for using a model to perform inference on an incoming data point.
+
+Therefore, the _"one-line version"_ of how to write a custom runtime is to
+write a custom class extending from `MLModel `,
+and then overriding those methods with your custom logic.
+
+```python
+from mlserver import MLModel
+from mlserver.types import InferenceRequest, InferenceResponse
+
+class MyCustomRuntime(MLModel):
+
+ async def load(self) -> bool:
+ # TODO: Replace for custom logic to load a model artifact
+ self._model = load_my_custom_model()
+ return True
+
+ async def predict(self, payload: InferenceRequest) -> InferenceResponse:
+ # TODO: Replace for custom logic to run inference
+ return self._model.predict(payload)
+```
+
+### Simplified interface
+
+MLServer exposes an alternative _"simplified" interface_ which can be used to
+write custom runtimes.
+This interface can be enabled by decorating your `predict()` method with the
+`mlserver.codecs.decode_args` decorator.
+This will let you specify in the method signature both how you want your
+request payload to be decoded and how to encode the response back.
+
+Based on the information provided in the method signature, MLServer will
+automatically decode the request payload into the different inputs specified as
+keyword arguments.
+Under the hood, this is implemented through [MLServer's codecs and content types
+system](./content-type.md).
+
+{% hint style="info" %}
+MLServer's _"simplified" interface_ aims to cover use cases where encoding /
+decoding can be done through one of the codecs built-in into the MLServer
+package.
+However, there are instances where this may not be enough (e.g. variable number
+of inputs, variable content types, etc.).
+For these types of cases, please use MLServer's [_"advanced"
+interface_](#writing-a-custom-inference-runtime), where you will have full
+control over the full encoding / decoding process.
+{% endhint %}
+
+As an example of the above, let's assume a model which
+
+- Takes two lists of strings as inputs:
+ - `questions`, containing multiple questions to ask our model.
+ - `context`, containing multiple contexts for each of the
+ questions.
+- Returns a Numpy array with some predictions as the output.
+
+Leveraging MLServer's simplified notation, we can represent the above as the
+following custom runtime:
+
+```python
+from mlserver import MLModel
+from mlserver.codecs import decode_args
+from typing import List
+
+class MyCustomRuntime(MLModel):
+
+ async def load(self) -> bool:
+ # TODO: Replace for custom logic to load a model artifact
+ self._model = load_my_custom_model()
+ return True
+
+ @decode_args
+ async def predict(self, questions: List[str], context: List[str]) -> np.ndarray:
+ # TODO: Replace for custom logic to run inference
+ return self._model.predict(questions, context)
+```
+
+Note that, the method signature of our `predict` method now specifies:
+
+- The input names that we should be looking for in the request
+ payload (i.e. `questions` and `context`).
+- The expected content type for each of the request inputs (i.e. `List[str]` on
+ both cases).
+- The expected content type of the response outputs (i.e. `np.ndarray`).
+
+### Read and write headers
+
+{% hint style="info" %}
+The `headers` field within the `parameters` section of the request / response
+is managed by MLServer.
+Therefore, incoming payloads where this field has been explicitly modified will
+be overriden.
+{% endhint %}
+
+There are occasions where custom logic must be made conditional to extra
+information sent by the client outside of the payload.
+To allow for these use cases, MLServer will map all incoming HTTP headers (in
+the case of REST) or metadata (in the case of gRPC) into the `headers` field of
+the `parameters` object within the `InferenceRequest` instance.
+
+```python
+from mlserver import MLModel
+from mlserver.types import InferenceRequest, InferenceResponse
+
+class CustomHeadersRuntime(MLModel):
+
+ ...
+
+ async def predict(self, payload: InferenceRequest) -> InferenceResponse:
+ if payload.parameters and payload.parametes.headers:
+ # These are all the incoming HTTP headers / gRPC metadata
+ print(payload.parameters.headers)
+ ...
+```
+
+Similarly, to return any HTTP headers (in the case of REST) or metadata (in the
+case of gRPC), you can append any values to the `headers` field within the
+`parameters` object of the returned `InferenceResponse` instance.
+
+```python
+from mlserver import MLModel
+from mlserver.types import InferenceRequest, InferenceResponse
+
+class CustomHeadersRuntime(MLModel):
+
+ ...
+
+ async def predict(self, payload: InferenceRequest) -> InferenceResponse:
+ ...
+ return InferenceResponse(
+ # Include any actual outputs from inference
+ outputs=[],
+ parameters=Parameters(headers={"foo": "bar"})
+ )
+```
+
+## Loading a custom MLServer runtime
+
+MLServer lets you load custom runtimes dynamically into a running instance of
+MLServer.
+Once you have your custom runtime ready, all you need to is to move it to your
+model folder, next to your `model-settings.json` configuration file.
+
+For example, if we assume a flat model repository where each folder represents
+a model, you would end up with a folder structure like the one below:
+
+```bash
+.
+└── models
+ └── sum-model
+ ├── model-settings.json
+ ├── models.py
+```
+
+Note that, from the example above, we are assuming that:
+
+- Your custom runtime code lives in the `models.py` file.
+- The `implementation` field of your `model-settings.json` configuration file
+ contains the import path of your custom runtime (e.g.
+ `models.MyCustomRuntime`).
+
+ ```json
+ {
+ "model": "sum-model",
+ "implementation": "models.MyCustomRuntime"
+ }
+ ```
+
+### Loading a custom Python environment
+
+More often that not, your custom runtimes will depend on external 3rd party
+dependencies which are not included within the main MLServer package.
+In these cases, to load your custom runtime, MLServer will need access to these
+dependencies.
+
+It is possible to load this custom set of dependencies by providing them
+through an [environment tarball](../examples/conda/README.md), whose path can be
+specified within your `model-settings.json` file.
+
+{% hint style="warning" %}
+To load a custom environment, [parallel inference](./parallel-inference.md)
+**must** be enabled.
+{% endhint %}
+
+{% hint style="warning" %}
+The main MLServer process communicates with workers in custom environments via
+[`multiprocessing.Queue`](https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue)
+using pickled objects. Custom environments therefore **must** use the same
+version of MLServer and a compatible version of Python with the same
+[default pickle protocol](https://docs.python.org/3/library/pickle.html#pickle.DEFAULT_PROTOCOL)
+as the main process. Consult the tables below for environment compatibility.
+{% endhint %}
+
+| Status | Description |
+| ------ | ------------ |
+| 🔴 | Unsupported |
+| 🟢 | Supported |
+| 🔵 | Untested |
+
+| Worker Python \ Server Python | 3.9 | 3.10 | 3.11 |
+| ----------------------------- | --- | ---- | ---- |
+| 3.9 | 🟢 | 🟢 | 🔵 |
+| 3.10 | 🟢 | 🟢 | 🔵 |
+| 3.11 | 🔵 | 🔵 | 🔵 |
+
+If we take the [previous example](#loading-a-custom-mlserver-runtime) above as
+a reference, we could extend it to include our custom environment as:
+
+```bash
+.
+└── models
+ └── sum-model
+ ├── environment.tar.gz
+ ├── model-settings.json
+ ├── models.py
+```
+
+Note that, in the folder layout above, we are assuming that:
+
+- The `environment.tar.gz` tarball contains a pre-packaged version of your
+ custom environment.
+- The `environment_tarball` field of your `model-settings.json` configuration file
+ points to your pre-packaged custom environment (i.e.
+ `./environment.tar.gz`).
+
+ ```json
+ {
+ "model": "sum-model",
+ "implementation": "models.MyCustomRuntime",
+ "parameters": {
+ "environment_tarball": "./environment.tar.gz"
+ }
+ }
+ ```
+
+## Building a custom MLServer image
+
+{% hint style="info" %}
+The `mlserver build` command expects that a Docker runtime is available and
+running in the background.
+{% endhint %}
+
+MLServer offers built-in utilities to help you build a custom MLServer image.
+This image can contain any custom code (including custom inference runtimes),
+as well as any custom environment, provided either through a
+[Conda environment file](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
+or a `requirements.txt` file.
+
+To leverage these, we can use the `mlserver build` command.
+Assuming that we're currently on the folder containing our custom inference
+runtime, we should be able to just run:
+
+```bash
+mlserver build . -t my-custom-server
+```
+
+The output will be a Docker image named `my-custom-server`, ready to be used.
+
+### Custom Environment
+
+The [`mlserver build`](../reference/cli.md) subcommand will search for any Conda
+environment file (i.e. named either as `environment.yaml` or `conda.yaml`) and
+/ or any `requirements.txt` present in your root folder.
+These can be used to tell MLServer what Python environment is required in the
+final Docker image.
+
+{% hint style="info" %}
+The environment built by the `mlserver build` will be global to the whole
+MLServer image (i.e. every loaded model will, by default, use that custom
+environment).
+For Multi-Model Serving scenarios, it may be better to use [per-model custom
+environments](#loading-a-custom-python-environment) instead - which will allow
+you to run multiple custom environments at the same time.
+{% endhint %}
+
+### Default Settings
+
+The `mlserver build` subcommand will treat any
+[`settings.json`](../reference/settings.md) or
+[`model-settings.json`](../reference/model-settings.md) files present on your root
+folder as the default settings that must be set in your final image.
+Therefore, these files can be used to configure things like the default
+inference runtime to be used, or to even include **embedded models** that will
+always be present within your custom image.
+
+{% hint style="info" %}
+Default setting values can still be overriden by external environment variables
+or model-specific `model-settings.json`.
+{% endhint %}
+
+### Custom Dockerfile
+
+Out-of-the-box, the `mlserver build` subcommand leverages a default
+`Dockerfile` which takes into account a number of requirements, like
+
+- Supporting arbitrary user IDs.
+- Building your [base custom environment](#custom-environment) on the fly.
+- Configure a set of [default setting values](#default-settings).
+
+However, there may be occasions where you need to customise your `Dockerfile`
+even further.
+This may be the case, for example, when you need to provide extra environment
+variables or when you need to customise your Docker build process (e.g. by
+using other _"Docker-less"_ tools, like
+[Kaniko](https://github.com/GoogleContainerTools/kaniko) or
+[Buildah](https://buildah.io/)).
+
+To account for these cases, MLServer also includes a [`mlserver dockerfile`](../reference/cli.md)
+subcommand which will just generate a `Dockerfile` (and optionally a `.dockerignore` file)
+exactly like the one used by the `mlserver build` command.
+This `Dockerfile` can then be customised according to your needs.
+
+{% hint style="info" %}
+The base `Dockerfile` requires [Docker's Buildkit](https://docs.docker.com/build/buildkit/) to be enabled.
+To ensure BuildKit is used, you can use the `DOCKER_BUILDKIT=1` environment
+variable, e.g.
+
+```bash
+DOCKER_BUILDKIT=1 docker build . -t my-custom-runtime:0.1.0
+```
+{% endhint %}
diff --git a/docs-gb/user-guide/deployment/README.md b/docs-gb/user-guide/deployment/README.md
new file mode 100644
index 000000000..65c6064c7
--- /dev/null
+++ b/docs-gb/user-guide/deployment/README.md
@@ -0,0 +1,14 @@
+# Deployment
+
+MLServer is currently used as the core Python inference server in some of most
+popular Kubernetes-native serving frameworks, including [Seldon Core](https://docs.seldon.io/projects/seldon-core/en/latest/graph/protocols.html#v2-kfserving-protocol)
+and [KServe (formerly known as KFServing)](https://kserve.github.io/website/modelserving/v1beta1/sklearn/v2/).
+This allows MLServer users to leverage the usability and maturity of these
+frameworks to take their model deployments to the next level of their MLOps
+journey, ensuring that they are served in a robust and scalable infrastructure.
+
+{% hint style="info" %}
+In general, it should be possible to deploy models using MLServer into **any serving engine compatible with the V2 protocol**. Alternatively, it's also possible to manage MLServer deployments manually as regular processes (i.e. in a non-Kubernetes-native way). However, this may be more involved and highly dependant on the deployment infrastructure.
+{% endhint %}
+
+
diff --git a/docs-gb/user-guide/deployment/kserve.md b/docs-gb/user-guide/deployment/kserve.md
new file mode 100644
index 000000000..ad46f795f
--- /dev/null
+++ b/docs-gb/user-guide/deployment/kserve.md
@@ -0,0 +1,132 @@
+# Deployment with KServe
+
+MLServer is used as the [core Python inference server](https://kserve.github.io/website/modelserving/v1beta1/sklearn/v2/) in
+[KServe (formerly known as KFServing)](https://kserve.github.io/website/).
+This allows for a straightforward avenue to deploy your models into a scalable
+serving infrastructure backed by Kubernetes.
+
+{% hint style="info" %}
+This section assumes a basic knowledge of KServe and Kubernetes, as well as
+access to a working Kubernetes cluster with KServe installed.
+To learn more about [KServe](https://kserve.github.io/website/) or
+[how to install it](https://kserve.github.io/website/get_started/), please visit the
+[KServe documentation](https://kserve.github.io/website/).
+{% endhint %}
+
+## Serving Runtimes
+
+KServe provides built-in [serving runtimes](https://kserve.github.io/website/modelserving/v1beta1/serving_runtime/)
+to deploy models trained in common ML frameworks. These allow you to deploy your models
+into a robust infrastructure by just pointing to where the model artifacts are stored remotely.
+
+Some of these runtimes leverage MLServer as the core inference server.
+Therefore, it should be straightforward to move from your local testing to your
+serving infrastructure.
+
+### Usage
+
+To use any of the built-in serving runtimes offered by KServe, it should be
+enough to select the relevant one your `InferenceService` manifest.
+
+For example, to serve a Scikit-Learn model, you could use a manifest like the
+one below:
+
+```yaml
+apiVersion: serving.kserve.io/v1beta1
+kind: InferenceService
+metadata:
+ name: my-model
+spec:
+ predictor:
+ sklearn:
+ protocolVersion: v2
+ storageUri: gs://seldon-models/sklearn/iris
+```
+
+As you can see highlighted above, the `InferenceService` manifest will only
+need to specify the following points:
+
+- The model artifact is a Scikit-Learn model. Therefore, we will use the
+ `sklearn` serving runtime to deploy it.
+- The model will be served using the [V2 inference protocol](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html),
+ which can be enabled by setting the `protocolVersion` field to `v2`.
+
+Once you have your `InferenceService` manifest ready, then the next step is to
+apply it to your cluster.
+There are multiple ways to do this, but the simplest is probably to just apply
+it directly through `kubectl`, by running:
+
+```bash
+kubectl apply -f my-inferenceservice-manifest.yaml
+```
+
+### Supported Serving Runtimes
+
+As mentioned above, KServe offers support for built-in serving runtimes, some
+of which leverage MLServer as the inference server.
+Below you can find a table listing these runtimes, and the MLServer inference
+runtime that they correspond to.
+
+| Framework | MLServer Runtime | KServe Serving Runtime | Documentation |
+| ------------ | ------------------------------------------ | ---------------------- | -------------------------------------------------------------------------------------------- |
+| Scikit-Learn | [MLServer SKLearn](../../runtimes/sklearn.md) | `sklearn` | [SKLearn Serving Runtime](https://kserve.github.io/website/modelserving/v1beta1/sklearn/v2/) |
+| XGBoost | [MLServer XGBoost](../../runtimes/xgboost.md) | `xgboost` | [XGBoost Serving Runtime](https://kserve.github.io/website/modelserving/v1beta1/xgboost/) |
+
+Note that, on top of the ones shown above (backed by MLServer), KServe also
+provides a [wider set](https://kserve.github.io/website/modelserving/v1beta1/serving_runtime/) of
+serving runtimes.
+To see the full list, please visit the [KServe documentation](https://kserve.github.io/website/modelserving/v1beta1/serving_runtime/).
+
+## Custom Runtimes
+
+Sometimes, the serving runtimes built into KServe may not be enough for our use case.
+The framework provided by MLServer makes it easy to [write custom runtimes](../../runtimes/custom.md),
+which can then get packaged up as images. These images then become self-contained model
+servers with your custom runtime. Therefore, it's easy to deploy them into your serving infrastructure leveraging
+KServe support for [custom runtimes](https://kserve.github.io/website/modelserving/v1beta1/custom/custom_model/#deploy-the-custom-predictor-on-kserve).
+
+### Usage
+
+The `InferenceService` manifest gives you full control over the containers used
+to deploy your machine learning model. This can be leveraged to point your deployment to the
+[custom MLServer image containing your custom logic](../../runtimes/custom.md).
+For example, if we assume that our custom image has been tagged as
+`my-custom-server:0.1.0`, we could write an `InferenceService` manifest like
+the one below:
+
+```yaml
+apiVersion: serving.kserve.io/v1beta1
+kind: InferenceService
+metadata:
+ name: my-model
+spec:
+ predictor:
+ containers:
+ - name: classifier
+ image: my-custom-server:0.1.0
+ env:
+ - name: PROTOCOL
+ value: v2
+ ports:
+ - containerPort: 8080
+ protocol: TCP
+```
+
+As we can see highlighted above, the main points that we'll need to take into
+account are:
+
+- Pointing to our custom MLServer `image` in the custom container section of
+ our `InferenceService`.
+- Explicitly choosing the [V2 inference protocol](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html) to
+ serve our model.
+- Let KServe know what port will be exposed by our custom container to send
+ inference requests.
+
+Once you have your `InferenceService` manifest ready, then the next step is to
+apply it to your cluster.
+There are multiple ways to do this, but the simplest is probably to just apply
+it directly through `kubectl`, by running:
+
+```bash
+kubectl apply -f my-inferenceservice-manifest.yaml
+```
diff --git a/docs-gb/user-guide/deployment/seldon-core.md b/docs-gb/user-guide/deployment/seldon-core.md
new file mode 100644
index 000000000..9b72b3256
--- /dev/null
+++ b/docs-gb/user-guide/deployment/seldon-core.md
@@ -0,0 +1,146 @@
+# Deployment with Seldon Core
+
+MLServer is used as the [core Python inference server](https://docs.seldon.io/projects/seldon-core/en/latest/graph/protocols.html#v2-kfserving-protocol)
+in [Seldon Core](https://docs.seldon.io/projects/seldon-core/en/latest/index.html).
+Therefore, it should be straightforward to deploy your models either by using one of the
+[built-in pre-packaged servers](https://docs.seldon.io/projects/seldon-core/en/latest/workflow/overview.html#two-types-of-model-servers)
+or by pointing to a [custom image of MLServer](../../runtimes/custom.md).
+
+{% hint style="info" %}
+This section assumes a basic knowledge of Seldon Core and Kubernetes, as well
+as access to a working Kubernetes cluster with Seldon Core installed.
+To learn more about [Seldon Core](https://docs.seldon.io/projects/seldon-core/en/latest/) or
+[how to install it](https://docs.seldon.io/projects/seldon-core/en/latest/nav/installation.html),
+please visit the [Seldon Core documentation](https://docs.seldon.io/projects/seldon-core/en/latest/index.html).
+{% endhint %}
+
+## Pre-packaged Servers
+
+Out of the box, Seldon Core comes a few MLServer runtimes pre-configured to run straight away.
+This allows you to deploy a MLServer instance by just pointing to where your
+model artifact is and specifying what ML framework was used to train it.
+
+### Usage
+
+To let Seldon Core know what framework was used to train your model, you can
+use the `implementation` field of your `SeldonDeployment` manifest.
+For example, to deploy a Scikit-Learn artifact stored remotely in GCS, one
+could do:
+
+```yaml
+apiVersion: machinelearning.seldon.io/v1
+kind: SeldonDeployment
+metadata:
+ name: my-model
+spec:
+ protocol: v2
+ predictors:
+ - name: default
+ graph:
+ name: classifier
+ implementation: SKLEARN_SERVER
+ modelUri: gs://seldon-models/sklearn/iris
+```
+
+As you can see highlighted above, all that we need to specify is that:
+
+- Our **inference deployment should use the [V2 inference protocol](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html)**,
+ which is done by **setting the `protocol` field to `kfserving`**.
+- Our **model artifact is a serialised Scikit-Learn model**, therefore it
+ should be served using the [MLServer SKLearn runtime](../../runtimes/sklearn.md),
+ which is done by **setting the `implementation` field to `SKLEARN_SERVER`**.
+
+Note that, while the `protocol` should always be set to `kfserving` (i.e. so
+that models are served using the [V2 inference protocol](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html)), the
+value of the `implementation` field will be dependant on your ML framework.
+The valid values of the `implementation` field are [pre-determined by Seldon Core](https://docs.seldon.io/projects/seldon-core/en/latest/graph/protocols.html#v2-kfserving-protocol).
+However, it should also be possible to [configure and add new ones](https://docs.seldon.io/projects/seldon-core/en/latest/servers/custom.html#adding-a-new-inference-server)
+(e.g. to support a [custom MLServer runtime](../../runtimes/custom.md)).
+
+Once you have your `SeldonDeployment` manifest ready, then the next step is to
+apply it to your cluster.
+There are multiple ways to do this, but the simplest is probably to just apply
+it directly through `kubectl`, by running:
+
+```bash
+kubectl apply -f my-seldondeployment-manifest.yaml
+```
+
+To consult the supported values of the `implementation` field where MLServer is
+used, you can check the support table below.
+
+### Supported Pre-packaged Servers
+
+As mentioned above, pre-packaged servers come built-in into Seldon Core.
+Therefore, only a pre-determined subset of them will be supported for a given
+release of Seldon Core.
+
+The table below shows a list of the currently supported values of the
+`implementation` field.
+Each row will also show what ML framework they correspond to and also what
+MLServer runtime will be enabled internally on your model deployment when used.
+
+| Framework | MLServer Runtime | Seldon Core Pre-packaged Server | Documentation |
+| ------------ | ------------------------------------------------ | ------------------------------- | -------------------------------------------------------------------------------------------- |
+| Scikit-Learn | [MLServer SKLearn](../../runtimes/sklearn.md) | `SKLEARN_SERVER` | [SKLearn Server](https://docs.seldon.io/projects/seldon-core/en/latest/servers/sklearn.html) |
+| XGBoost | [MLServer XGBoost](../../runtimes/xgboost.md) | `XGBOOST_SERVER` | [XGBoost Server](https://docs.seldon.io/projects/seldon-core/en/latest/servers/xgboost.html) |
+| MLflow | [MLServer MLflow](../../runtimes/mlflow.md) | `MLFLOW_SERVER` | [MLflow Server](https://docs.seldon.io/projects/seldon-core/en/latest/servers/mlflow.html) |
+
+Note that, on top of the ones shown above (backed by MLServer), Seldon Core
+**also provides a [wider set](https://docs.seldon.io/projects/seldon-core/en/latest/nav/config/servers.html)**
+of pre-packaged servers. To check the full list, please visit the
+[Seldon Core documentation](https://docs.seldon.io/projects/seldon-core/en/latest/nav/config/servers.html).
+
+## Custom Runtimes
+
+There could be cases where the pre-packaged MLServer runtimes supported
+out-of-the-box in Seldon Core may not be enough for our use case.
+The framework provided by MLServer makes it easy to [write custom runtimes](../../runtimes/custom.md),
+which can then get packaged up as images. These images then become self-contained
+model servers with your custom runtime. Therefore Seldon Core makes it as easy
+to deploy them into your serving infrastructure.
+
+### Usage
+
+The `componentSpecs` field of the `SeldonDeployment` manifest will allow us to
+let Seldon Core know what image should be used to serve a custom model.
+For example, if we assume that our custom image has been tagged as
+`my-custom-server:0.1.0`, we could write our `SeldonDeployment` manifest as
+follows:
+
+```yaml
+apiVersion: machinelearning.seldon.io/v1
+kind: SeldonDeployment
+metadata:
+ name: my-model
+spec:
+ protocol: v2
+ predictors:
+ - name: default
+ graph:
+ name: classifier
+ componentSpecs:
+ - spec:
+ containers:
+ - name: classifier
+ image: my-custom-server:0.1.0
+```
+
+As we can see highlighted on the snippet above, all that's needed to deploy a
+custom MLServer image is:
+
+- Letting Seldon Core know that the model deployment will be served through the
+ [V2 inference protocol](https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/v2-protocol.html)) by
+ setting the `protocol` field to `v2`.
+- Pointing our model container to use our **custom MLServer image**, by
+ specifying it on the `image` field of the `componentSpecs` section of the
+ manifest.
+
+Once you have your `SeldonDeployment` manifest ready, then the next step is to
+apply it to your cluster.
+There are multiple ways to do this, but the simplest is probably to just apply
+it directly through `kubectl`, by running:
+
+```bash
+kubectl apply -f my-seldondeployment-manifest.yaml
+```
diff --git a/docs-gb/user-guide/metrics.md b/docs-gb/user-guide/metrics.md
new file mode 100644
index 000000000..f91d38bf4
--- /dev/null
+++ b/docs-gb/user-guide/metrics.md
@@ -0,0 +1,123 @@
+# Metrics
+
+Out-of-the-box, MLServer exposes a set of metrics that help you monitor your
+machine learning workloads in production.
+These include standard metrics like number of requests and latency.
+
+On top of these, you can also register and track your own [custom metrics](#custom-metrics)
+as part of your [custom inference runtimes](./custom.md).
+
+## Default Metrics
+
+By default, MLServer will expose metrics around inference requests (count and
+error rate) and the status of its internal requests queues.
+These internal queues are used for [adaptive batching](./adaptive-batching.md) and
+[communication with the inference workers](./parallel-inference.md).
+
+| Metric Name | Description |
+| ----------------------------- | ------------------------------------------------------------------- |
+| `model_infer_request_success` | Number of successful inference requests. |
+| `model_infer_request_failure` | Number of failed inference requests. |
+| `batch_request_queue` | Queue size for the [adaptive batching](./adaptive-batching.md) queue. |
+| `parallel_request_queue` | Queue size for the [inference workers](./parallel-inference.md) queue. |
+
+### REST Server Metrics
+
+On top of the default set of metrics, MLServer's REST server will also expose a
+set of metrics specific to REST.
+
+{% hint style="info" %}
+The prefix for the REST-specific metrics will be dependent on the
+`metrics_rest_server_prefix` flag from the [MLServer settings](#settings).
+{% endhint %}
+
+| Metric Name | Description |
+| ----------------------------------------- | -------------------------------------------------------------- |
+| `[rest_server]_requests` | Number of REST requests, labelled by endpoint and status code. |
+| `[rest_server]_requests_duration_seconds` | Latency of REST requests. |
+| `[rest_server]_requests_in_progress` | Number of in-flight REST requests. |
+
+### gRPC Server Metrics
+
+On top of the default set of metrics, MLServer's gRPC server will also expose a
+set of metrics specific to gRPC.
+
+| Metric Name | Description |
+| --------------------- | ---------------------------------------------------------- |
+| `grpc_server_handled` | Number of gRPC requests, labelled by gRPC code and method. |
+| `grpc_server_started` | Number of in-flight gRPC requests. |
+
+## Custom Metrics
+
+MLServer allows you to register custom metrics within your custom inference
+runtimes.
+This can be done through the `mlserver.register()` and `mlserver.log()`
+methods.
+
+- `mlserver.register`: Register a new metric.
+- `mlserver.log`:
+ Log a new set of metric / value pairs.
+ If there's any unregistered metric, it will get registered on-the-fly.
+
+{% hint style="info" %}
+Under the hood, metrics logged through the `mlserver.log` method will get
+exposed to Prometheus as a Histogram.
+{% endhint %}
+
+Custom metrics will generally be registered in the `load()
+` method and then used in the `predict()
+` method of your [custom runtime](./custom).
+
+```python
+import mlserver
+
+from mlserver.types import InferenceRequest, InferenceResponse
+
+class MyCustomRuntime(mlserver.MLModel):
+ async def load(self) -> bool:
+ self._model = load_my_custom_model()
+ mlserver.register("my_custom_metric", "This is a custom metric example")
+ return True
+
+ async def predict(self, payload: InferenceRequest) -> InferenceResponse:
+ mlserver.log(my_custom_metric=34)
+ # TODO: Replace for custom logic to run inference
+ return self._model.predict(payload)
+```
+
+## Metrics Labelling
+
+For metrics specific to a model (e.g. [custom metrics](#custom-metrics),
+request counts, etc), MLServer will always label these with the **model name**
+and **model version**.
+Downstream, this will allow to aggregate and query metrics per model.
+
+{% hint style="info" %}
+If these labels are not present on a specific metric, this means that those
+metrics can't be sliced at the model level.
+{% endhint %}
+
+Below, you can find the list of standardised labels that you will be able to
+find on model-specific metrics:
+
+| Label Name | Description |
+| --------------- | ----------------------------------- |
+| `model_name` | Model Name (e.g. `my-custom-model`) |
+| `model_version` | Model Version (e.g. `v1.2.3`) |
+
+## Settings
+
+MLServer will expose metric values through a metrics endpoint exposed on its
+own metric server.
+This endpoint can be polled by [Prometheus](https://prometheus.io/) or other
+[OpenMetrics](https://openmetrics.io/)-compatible backends.
+
+Below you can find the [settings](../reference/settings.md) available to control
+the behaviour of the metrics server:
+
+| Label Name | Description | Default |
+| ----------- | ------------ | ------------ |
+| `metrics_endpoint` | Path under which the metrics endpoint will be exposed. | `/metrics` |
+| `metrics_port` | Port used to serve the metrics server. | `8082` |
+| `metrics_rest_server_prefix` | Prefix used for metric names specific to MLServer's REST inference interface. | `rest_server` |
+| `metrics_dir` | Directory used to store internal metric files (used to support metrics sharing across [inference workers](./parallel-inference.md)). This is equivalent to Prometheus' [`$PROMETHEUS_MULTIPROC_DIR`](https://github.com/prometheus/client_python/tree/master#multiprocess-mode-eg-gunicorn) env var. | MLServer's current working directory (i.e. `$PWD`) |
diff --git a/docs-gb/user-guide/openapi.md b/docs-gb/user-guide/openapi.md
new file mode 100644
index 000000000..b43a92555
--- /dev/null
+++ b/docs-gb/user-guide/openapi.md
@@ -0,0 +1,47 @@
+# OpenAPI Support
+
+MLServer follows the Open Inference Protocol (previously known as the "V2
+Protocol").
+You can find the full OpenAPI spec for the Open Inference Protocol in the links
+below:
+
+| Name | Description | OpenAPI Spec |
+| -------------------------- | ---------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------- |
+| Open Inference Protocol | Main dataplane for inference, health and metadata | [dataplane.json](https://github.com/SeldonIO/mlserver/openapi/dataplane.json) |
+| Model Repository Extension | Extension to the protocol to provide a control plane which lets you load / unload models dynamically | [model_repository.json](https://github.com/SeldonIO/mlserver/openapi/model_repository.json) |
+
+## Swagger UI
+
+On top of the OpenAPI spec above, MLServer also autogenerates a Swagger UI
+which can be used to interact dynamycally with the Open Inference Protocol.
+
+The autogenerated Swagger UI can be accessed under the `/v2/docs` endpoint.
+
+{% hint style="info" %}
+Besides the Swagger UI, you can also access the _raw_ OpenAPI spec through the
+`/v2/docs/dataplane.json` endpoint.
+{% endhint %}
+
+![](../images/swagger-ui.png)
+
+## Model Swagger UI
+
+Alongside the [general API documentation](#Swagger-UI), MLServer will also
+autogenerate a Swagger UI tailored to individual models, showing the endpoints
+available for each one.
+
+The model-specific autogenerated Swagger UI can be accessed under the following
+endpoints:
+
+- `/v2/models/{model_name}/docs`
+- `/v2/models/{model_name}/versions/{model_version}/docs`
+
+{% hint style="info" %}
+Besides the Swagger UI, you can also access the model-specific _raw_ OpenAPI spec through
+the following endpoints:
+
+- `/v2/models/{model_name}/docs/dataplane.json`
+- `/v2/models/{model_name}/versions/{model_version}/docs/dataplane.json`
+{% endhint %}
+
+![](../images/swagger-ui-model.png)
diff --git a/docs-gb/user-guide/parallel-inference.md b/docs-gb/user-guide/parallel-inference.md
new file mode 100644
index 000000000..8a7c583b1
--- /dev/null
+++ b/docs-gb/user-guide/parallel-inference.md
@@ -0,0 +1,82 @@
+# Parallel Inference
+
+Out of the box, MLServer includes support to offload inference workloads to a
+pool of workers running in separate processes.
+This allows MLServer to scale out beyond the limitations of the Python
+interpreter.
+To learn more about why this can be beneficial, you can check the [concurrency
+section](#concurrency-in-python) below.
+
+![](../images/parallel-inference.svg)
+
+By default, MLServer will spin up a pool with only one worker process to run
+inference.
+All models will be loaded uniformly across the inference pool workers.
+To read more about advanced settings, please see the [usage section
+below](#usage).
+
+## Concurrency in Python
+
+The [Global Interpreter Lock (GIL)](https://wiki.python.org/moin/GlobalInterpreterLock)
+is a mutex lock that exists in most Python interpreters (e.g. CPython).
+Its main purpose is to lock Python’s execution so that it only runs on a single
+processor at the same time.
+This simplifies certain things to the interpreter.
+However, it also adds the limitation that a **single Python process will never
+be able to leverage multiple cores**.
+
+When we think about MLServer's support for [Multi-Model Serving (MMS)](../examples/mms/README.md),
+this could lead to scenarios where a
+**heavily-used model starves the other models** running within the same
+MLServer instance.
+Similarly, even if we don’t take MMS into account, the **GIL also makes it harder
+to scale inference for a single model**.
+
+To work around this limitation, MLServer offloads the model inference to a pool
+of workers, where each worker is a separate Python process (and thus has its
+own separate GIL).
+This means that we can get full access to the underlying hardware.
+
+### Overhead
+
+Managing the Inter-Process Communication (IPC) between the main MLServer
+process and the inference pool workers brings in some overhead.
+Under the hood, MLServer uses the `multiprocessing` library to implement the
+distributed processing management, which has been shown to offer the smallest
+possible overhead when implementing these type of distributed strategies
+{cite}`zhiFiberPlatformEfficient2020`.
+
+The extra overhead introduced by other libraries is usually brought in as a
+trade off in exchange of other advanced features for complex distributed
+processing scenarios.
+However, MLServer's use case is simple enough to not require any of these.
+
+Despite the above, even though this overhead is minimised, this **it can still
+be particularly noticeable for lightweight inference methods**, where the extra
+IPC overhead can take a large percentage of the overall time.
+In these cases (which can only be assessed on a model-by-model basis), the user
+has the option to [disable the parallel inference feature](#usage).
+
+For regular models where inference can take a bit more time, this overhead is
+usually offset by the benefit of having multiple cores to compute inference on.
+
+## Usage
+
+By default, MLServer will always create an inference pool with one single worker.
+The number of workers (i.e. the size of the inference pool) can be adjusted
+globally through the server-level `parallel_workers` setting.
+
+### `parallel_workers`
+
+The `parallel_workers` field of the `settings.json` file (or alternatively, the
+`MLSERVER_PARALLEL_WORKERS` global environment variable) controls the size of
+MLServer's inference pool.
+The expected values are:
+
+- `N`, where `N > 0`, will create a pool of `N` workers.
+- `0`, will disable the parallel inference feature.
+ In other words, inference will happen within the main MLServer process.
+
+## References
+
+Jiale Zhi, Rui Wang, Jeff Clune, and Kenneth O. Stanley. Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods. arXiv:2003.11164 [cs, stat], March 2020. [arXiv:2003.11164](https://arxiv.org/abs/2003.11164).
\ No newline at end of file
diff --git a/docs-gb/user-guide/streaming.md b/docs-gb/user-guide/streaming.md
new file mode 100644
index 000000000..2bae71a26
--- /dev/null
+++ b/docs-gb/user-guide/streaming.md
@@ -0,0 +1,44 @@
+# Streaming
+
+Out of the box, MLServer includes support for streaming data to your models. Streaming support is available for
+both the REST and gRPC servers.
+
+
+## REST Server
+
+Streaming support for the REST server is limited only to server streaming. This means that the client sends
+a single request to the server, and the server responds with a stream of data.
+
+The streaming endpoints are available for both the `infer` and `generate` methods through the following endpoints:
+
+- `/v2/models/{model_name}/versions/{model_version}/infer_stream`
+- `/v2/models/{model_name}/infer_stream`
+- `/v2/models/{model_name}/versions/{model_version}/generate_stream`
+- `/v2/models/{model_name}/generate_stream`
+
+Note that for REST, the `generate` and `generate_stream` endpoints are aliases for the `infer` and `infer_stream`
+endpoints, respectively. Those names are used to better reflect the nature of the operation for Large Language Models (LLMs).
+
+
+## gRPC Server
+
+Streaming support for the gRPC server is available for both client and server streaming. This means that the
+client sends a stream of data to the server, and the server responds with a stream of data.
+
+The two streams operate independently, so the client and the server can read and write data however they want
+(e.g., the server could either wait to receive all the client messages before sending a response or it can send
+a response after each message). Note that bi-directional streaming covers all the possible combinations of client
+and server streaming: unary-stream, stream-unary, and stream-stream. The unary-unary case can be covered as well
+by the bi-directional streaming, but `mlserver` already has the `predict` method dedicated to this use case. The
+logic for how the requests are received, and processed, and the responses are sent back should be built into the runtime logic.
+
+The stub method for streaming to be used by the client is `ModelStreamInfer`.
+
+
+## Limitation
+
+There are three main limitations of the streaming support in MLServer:
+
+- the `parallel_workers` setting should be set to `0` to disable distributed workers (to be addressed in future releases)
+- for REST, the `gzip_enabled` setting should be set to `false` to disable GZIP compression, as streaming is not
+compatible with GZIP compression (see issue [here]( https://github.com/encode/starlette/issues/20#issuecomment-704106436))