This repository has been archived by the owner on Jun 8, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
executable file
·758 lines (612 loc) · 27.5 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
"""Utility classes and methods.
Author:
Chris Chute ([email protected])
"""
import logging
import os
import queue
import re
import shutil
import string
import torch
import torch.nn.functional as F
import torch.utils.data as data
import tqdm
import numpy as np
import ujson as json
from collections import Counter
class SQuAD(data.Dataset):
"""Stanford Question Answering Dataset (SQuAD).
Each item in the dataset is a tuple with the following entries (in order):
- context_idxs: Indices of the words in the context.
Shape (context_len,).
- context_char_idxs: Indices of the characters in the context.
Shape (context_len, max_word_len).
- question_idxs: Indices of the words in the question.
Shape (question_len,).
- question_char_idxs: Indices of the characters in the question.
Shape (question_len, max_word_len).
- y1: Index of word in the context where the answer begins.
-1 if no answer.
- y2: Index of word in the context where the answer ends.
-1 if no answer.
- id: ID of the example.
Args:
data_path (str): Path to .npz file containing pre-processed dataset.
use_v2 (bool): Whether to use SQuAD 2.0 questions. Otherwise only use SQuAD 1.1.
"""
def __init__(self, data_path, args):
super(SQuAD, self).__init__()
use_v2 = args.use_squad_v2
dataset = np.load(data_path)
self.context_idxs = torch.from_numpy(dataset['context_idxs']).long()
self.context_char_idxs = torch.from_numpy(dataset['context_char_idxs']).long()
self.context_pos_tags = torch.from_numpy(dataset['context_pos_tags']).long()
self.context_ner_tags = torch.from_numpy(dataset['context_ner_tags']).long()
self.context_freqs = torch.from_numpy(dataset['context_freqs']).double()
self.question_idxs = torch.from_numpy(dataset['ques_idxs']).long()
self.question_char_idxs = torch.from_numpy(dataset['ques_char_idxs']).long()
self.context_ques_features = torch.from_numpy(dataset['context_ques_features']).long()
self.y1s = torch.from_numpy(dataset['y1s']).long()
self.y2s = torch.from_numpy(dataset['y2s']).long()
if use_v2:
# SQuAD 2.0: Use index 0 for no-answer token (token 1 = OOV)
batch_size, c_len, w_len = self.context_char_idxs.size()
ones = torch.ones((batch_size, 1), dtype=torch.int64)
self.context_idxs = torch.cat((ones, self.context_idxs), dim=1)
self.question_idxs = torch.cat((ones, self.question_idxs), dim=1)
self.context_pos_tags = torch.cat((ones*(args.pos_size-1), self.context_pos_tags), dim=1)
self.context_ner_tags = torch.cat((ones*(args.ner_size-1), self.context_ner_tags), dim=1)
ones = torch.ones((batch_size, 1), dtype=torch.float64)
self.context_freqs = torch.cat((ones, self.context_freqs), dim=1)
zeros = torch.zeros((batch_size, 1, self.context_ques_features.shape[2]), dtype=torch.int64)
self.context_ques_features = torch.cat((zeros, self.context_ques_features), dim=1)
ones = torch.ones((batch_size, 1, w_len), dtype=torch.int64)
self.context_char_idxs = torch.cat((ones, self.context_char_idxs), dim=1)
self.question_char_idxs = torch.cat((ones, self.question_char_idxs), dim=1)
self.y1s += 1
self.y2s += 1
# SQuAD 1.1: Ignore no-answer examples
self.ids = torch.from_numpy(dataset['ids']).long()
self.valid_idxs = [idx for idx in range(len(self.ids))
if use_v2 or self.y1s[idx].item() >= 0]
def __getitem__(self, idx):
idx = self.valid_idxs[idx]
example = (self.context_idxs[idx],
self.context_char_idxs[idx],
self.question_idxs[idx],
self.question_char_idxs[idx],
self.context_pos_tags[idx],
self.context_ner_tags[idx],
self.context_freqs[idx],
self.context_ques_features[idx],
self.y1s[idx],
self.y2s[idx],
self.ids[idx])
return example
def __len__(self):
return len(self.valid_idxs)
def collate_fn(examples):
"""Create batch tensors from a list of individual examples returned
by `SQuAD.__getitem__`. Merge examples of different length by padding
all examples to the maximum length in the batch.
Args:
examples (list): List of tuples of the form (context_idxs, context_char_idxs,
question_idxs, question_char_idxs, y1s, y2s, ids).
Returns:
examples (tuple): Tuple of tensors (context_idxs, context_char_idxs, question_idxs,
question_char_idxs, y1s, y2s, ids). All of shape (batch_size, ...), where
the remaining dimensions are the maximum length of examples in the input.
Adapted from:
https://github.com/yunjey/seq2seq-dataloader
"""
def merge_0d(scalars, dtype=torch.int64):
return torch.tensor(scalars, dtype=dtype)
def merge_1d(arrays, dtype=torch.int64, pad_value=0):
lengths = [(a != pad_value).sum() for a in arrays]
padded = torch.zeros(len(arrays), max(lengths), dtype=dtype)
for i, seq in enumerate(arrays):
end = lengths[i]
padded[i, :end] = seq[:end]
return padded
def merge_2d(matrices, dtype=torch.int64, pad_value=0):
heights = [(m.sum(1) != (m.shape[1] * pad_value)).sum() for m in matrices]
widths = [(m.sum(0) != (m.shape[0] * pad_value)).sum() for m in matrices]
padded = torch.zeros(len(matrices), max(heights), max(widths), dtype=dtype)
for i, seq in enumerate(matrices):
height, width = heights[i], widths[i]
padded[i, :height, :width] = seq[:height, :width]
return padded
# Group by tensor type
context_idxs, context_char_idxs, \
question_idxs, question_char_idxs, \
context_pos_tags, context_ner_tags, context_freqs, context_ques_features, \
y1s, y2s, ids = zip(*examples)
# Merge into batch tensors
context_idxs = merge_1d(context_idxs)
context_char_idxs = merge_2d(context_char_idxs)
question_idxs = merge_1d(question_idxs)
question_char_idxs = merge_2d(question_char_idxs)
context_pos_tags = merge_1d(context_pos_tags)
context_ner_tags = merge_1d(context_ner_tags, pad_value=-1)
context_freqs = merge_1d(context_freqs, dtype=torch.float32)
context_ques_features = merge_2d(context_ques_features, dtype=torch.float32, pad_value=-1)
y1s = merge_0d(y1s)
y2s = merge_0d(y2s)
ids = merge_0d(ids)
return (context_idxs, context_char_idxs,
question_idxs, question_char_idxs,
context_pos_tags, context_ner_tags, context_freqs, context_ques_features,
y1s, y2s, ids)
class AverageMeter:
"""Keep track of average values over time.
Adapted from:
> https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self):
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
"""Reset meter."""
self.__init__()
def update(self, val, num_samples=1):
"""Update meter with new value `val`, the average of `num` samples.
Args:
val (float): Average value to update the meter with.
num_samples (int): Number of samples that were averaged to
produce `val`.
"""
self.count += num_samples
self.sum += val * num_samples
self.avg = self.sum / self.count
class EMA:
"""Exponential moving average of model parameters.
Args:
model (torch.nn.Module): Model with parameters whose EMA will be kept.
decay (float): Decay rate for exponential moving average.
"""
def __init__(self, model, decay):
self.decay = decay
self.shadow = {}
self.original = {}
# Register model parameters
for name, param in model.named_parameters():
if param.requires_grad:
self.shadow[name] = param.data.clone()
def __call__(self, model, num_updates):
decay = min(self.decay, (1.0 + num_updates) / (10.0 + num_updates))
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
new_average = \
(1.0 - decay) * param.data + decay * self.shadow[name]
self.shadow[name] = new_average.clone()
def assign(self, model):
"""Assign exponential moving average of parameter values to the
respective parameters.
Args:
model (torch.nn.Module): Model to assign parameter values.
"""
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
self.original[name] = param.data.clone()
param.data = self.shadow[name]
def resume(self, model):
"""Restore original parameters to a model. That is, put back
the values that were in each parameter at the last call to `assign`.
Args:
model (torch.nn.Module): Model to assign parameter values.
"""
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
param.data = self.original[name]
class CheckpointSaver:
"""Class to save and load model checkpoints.
Save the best checkpoints as measured by a metric value passed into the
`save` method. Overwrite checkpoints with better checkpoints once
`max_checkpoints` have been saved.
Args:
save_dir (str): Directory to save checkpoints.
max_checkpoints (int): Maximum number of checkpoints to keep before
overwriting old ones.
metric_name (str): Name of metric used to determine best model.
maximize_metric (bool): If true, best checkpoint is that which maximizes
the metric value passed in via `save`. Otherwise, best checkpoint
minimizes the metric.
log (logging.Logger): Optional logger for printing information.
"""
def __init__(self, save_dir, max_checkpoints, metric_name,
maximize_metric=False, log=None):
super(CheckpointSaver, self).__init__()
self.save_dir = save_dir
self.max_checkpoints = max_checkpoints
self.metric_name = metric_name
self.maximize_metric = maximize_metric
self.best_val = None
self.ckpt_paths = queue.PriorityQueue()
self.log = log
self._print(f"Saver will {'max' if maximize_metric else 'min'}imize {metric_name}...")
def is_best(self, metric_val):
"""Check whether `metric_val` is the best seen so far.
Args:
metric_val (float): Metric value to compare to prior checkpoints.
"""
if metric_val is None:
# No metric reported
return False
if self.best_val is None:
# No checkpoint saved yet
return True
return ((self.maximize_metric and self.best_val < metric_val)
or (not self.maximize_metric and self.best_val > metric_val))
def _print(self, message):
"""Print a message if logging is enabled."""
if self.log is not None:
self.log.info(message)
def save(self, step, model, metric_val, device):
"""Save model parameters to disk.
Args:
step (int): Total number of examples seen during training so far.
model (torch.nn.DataParallel): Model to save.
metric_val (float): Determines whether checkpoint is best so far.
device (torch.device): Device where model resides.
"""
ckpt_dict = {
'model_name': model.__class__.__name__,
'model_state': model.cpu().state_dict(),
'step': step
}
model.to(device)
checkpoint_path = os.path.join(self.save_dir,
f'step_{step}.pth.tar')
torch.save(ckpt_dict, checkpoint_path)
self._print(f'Saved checkpoint: {checkpoint_path}')
if self.is_best(metric_val):
# Save the best model
self.best_val = metric_val
best_path = os.path.join(self.save_dir, 'best.pth.tar')
shutil.copy(checkpoint_path, best_path)
self._print(f'New best checkpoint at step {step}...')
# Add checkpoint path to priority queue (lowest priority removed first)
if self.maximize_metric:
priority_order = metric_val
else:
priority_order = -metric_val
self.ckpt_paths.put((priority_order, checkpoint_path))
# Remove a checkpoint if more than max_checkpoints have been saved
if self.ckpt_paths.qsize() > self.max_checkpoints:
_, worst_ckpt = self.ckpt_paths.get()
try:
os.remove(worst_ckpt)
self._print(f'Removed checkpoint: {worst_ckpt}')
except OSError:
# Avoid crashing if checkpoint has been removed or protected
pass
def load_model(model, checkpoint_path, gpu_ids, return_step=True):
"""Load model parameters from disk.
Args:
model (torch.nn.DataParallel): Load parameters into this model.
checkpoint_path (str): Path to checkpoint to load.
gpu_ids (list): GPU IDs for DataParallel.
return_step (bool): Also return the step at which checkpoint was saved.
Returns:
model (torch.nn.DataParallel): Model loaded from checkpoint.
step (int): Step at which checkpoint was saved. Only if `return_step`.
"""
device = f"cuda:{gpu_ids[0]}" if gpu_ids else 'cpu'
ckpt_dict = torch.load(checkpoint_path, map_location=device)
# Build model, load parameters
model.load_state_dict(ckpt_dict['model_state'])
if return_step:
step = ckpt_dict['step']
return model, step
return model
def get_available_devices():
"""Get IDs of all available GPUs.
Returns:
device (torch.device): Main device (GPU 0 or CPU).
gpu_ids (list): List of IDs of all GPUs that are available.
"""
gpu_ids = []
if torch.cuda.is_available():
gpu_ids += [gpu_id for gpu_id in range(torch.cuda.device_count())]
device = torch.device(f'cuda:{gpu_ids[0]}')
torch.cuda.set_device(device)
else:
device = torch.device('cpu')
return device, gpu_ids
def masked_softmax(logits, mask, dim=-1, log_softmax=False):
"""Take the softmax of `logits` over given dimension, and set
entries to 0 wherever `mask` is 0.
Args:
logits (torch.Tensor): Inputs to the softmax function.
mask (torch.Tensor): Same shape as `logits`, with 0 indicating
positions that should be assigned 0 probability in the output.
dim (int): Dimension over which to take softmax.
log_softmax (bool): Take log-softmax rather than regular softmax.
E.g., some PyTorch functions such as `F.nll_loss` expect log-softmax.
Returns:
probs (torch.Tensor): Result of taking masked softmax over the logits.
"""
mask = mask.type(torch.float32)
masked_logits = mask * logits + (1 - mask) * -1e30
softmax_fn = F.log_softmax if log_softmax else F.softmax
probs = softmax_fn(masked_logits, dim)
return probs
def visualize(tbx, pred_dict, eval_path, step, split, num_visuals):
"""Visualize text examples to TensorBoard.
Args:
tbx (tensorboardX.SummaryWriter): Summary writer.
pred_dict (dict): dict of predictions of the form id -> pred.
eval_path (str): Path to eval JSON file.
step (int): Number of examples seen so far during training.
split (str): Name of data split being visualized.
num_visuals (int): Number of visuals to select at random from preds.
"""
if num_visuals <= 0:
return
if num_visuals > len(pred_dict):
num_visuals = len(pred_dict)
visual_ids = np.random.choice(list(pred_dict), size=num_visuals, replace=False)
with open(eval_path, 'r') as eval_file:
eval_dict = json.load(eval_file)
for i, id_ in enumerate(visual_ids):
pred = pred_dict[id_] or 'N/A'
example = eval_dict[str(id_)]
question = example['question']
context = example['context']
answers = example['answers']
gold = answers[0] if answers else 'N/A'
tbl_fmt = (f'- **Question:** {question}\n'
+ f'- **Context:** {context}\n'
+ f'- **Answer:** {gold}\n'
+ f'- **Prediction:** {pred}')
tbx.add_text(tag=f'{split}/{i+1}_of_{num_visuals}',
text_string=tbl_fmt,
global_step=step)
def save_preds(preds, save_dir, file_name='predictions.csv'):
"""Save predictions `preds` to a CSV file named `file_name` in `save_dir`.
Args:
preds (list): List of predictions each of the form (id, start, end),
where id is an example ID, and start/end are indices in the context.
save_dir (str): Directory in which to save the predictions file.
file_name (str): File name for the CSV file.
Returns:
save_path (str): Path where CSV file was saved.
"""
# Validate format
if (not isinstance(preds, list)
or any(not isinstance(p, tuple) or len(p) != 3 for p in preds)):
raise ValueError('preds must be a list of tuples (id, start, end)')
# Make sure predictions are sorted by ID
preds = sorted(preds, key=lambda p: p[0])
# Save to a CSV file
save_path = os.path.join(save_dir, file_name)
np.savetxt(save_path, np.array(preds), delimiter=',', fmt='%d')
return save_path
def get_save_dir(base_dir, name, training, id_max=100):
"""Get a unique save directory by appending the smallest positive integer
`id < id_max` that is not already taken (i.e., no dir exists with that id).
Args:
base_dir (str): Base directory in which to make save directories.
name (str): Name to identify this training run. Need not be unique.
training (bool): Save dir. is for training (determines subdirectory).
id_max (int): Maximum ID number before raising an exception.
Returns:
save_dir (str): Path to a new directory with a unique name.
"""
for uid in range(1, id_max):
subdir = 'train' if training else 'test'
save_dir = os.path.join(base_dir, subdir, f'{name}-{uid:02d}')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
return save_dir
raise RuntimeError('Too many save directories created with the same name. \
Delete old save directories or use another name.')
def get_logger(log_dir, name):
"""Get a `logging.Logger` instance that prints to the console
and an auxiliary file.
Args:
log_dir (str): Directory in which to create the log file.
name (str): Name to identify the logs.
Returns:
logger (logging.Logger): Logger instance for logging events.
"""
class StreamHandlerWithTQDM(logging.Handler):
"""Let `logging` print without breaking `tqdm` progress bars.
See Also:
> https://stackoverflow.com/questions/38543506
"""
def emit(self, record):
try:
msg = self.format(record)
tqdm.tqdm.write(msg)
self.flush()
except (KeyboardInterrupt, SystemExit):
raise
except:
self.handleError(record)
# Create logger
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
# Log everything (i.e., DEBUG level and above) to a file
log_path = os.path.join(log_dir, 'log.txt')
file_handler = logging.FileHandler(log_path)
file_handler.setLevel(logging.DEBUG)
# Log everything except DEBUG level (i.e., INFO level and above) to console
console_handler = StreamHandlerWithTQDM()
console_handler.setLevel(logging.INFO)
# Create format for the logs
file_formatter = logging.Formatter('[%(asctime)s] %(message)s',
datefmt='%m.%d.%y %H:%M:%S')
file_handler.setFormatter(file_formatter)
console_formatter = logging.Formatter('[%(asctime)s] %(message)s',
datefmt='%m.%d.%y %H:%M:%S')
console_handler.setFormatter(console_formatter)
# add the handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
def torch_from_json(path, dtype=torch.float32):
"""Load a PyTorch Tensor from a JSON file.
Args:
path (str): Path to the JSON file to load.
dtype (torch.dtype): Data type of loaded array.
Returns:
tensor (torch.Tensor): Tensor loaded from JSON file.
"""
with open(path, 'r') as fh:
array = np.array(json.load(fh))
tensor = torch.from_numpy(array).type(dtype)
return tensor
def discretize(p_start, p_end, max_len=15, no_answer=False):
"""Discretize soft predictions to get start and end indices.
Choose the pair `(i, j)` of indices that maximizes `p1[i] * p2[j]`
subject to `i <= j` and `j - i + 1 <= max_len`.
Args:
p_start (torch.Tensor): Soft predictions for start index.
Shape (batch_size, context_len).
p_end (torch.Tensor): Soft predictions for end index.
Shape (batch_size, context_len).
max_len (int): Maximum length of the discretized prediction.
I.e., enforce that `preds[i, 1] - preds[i, 0] + 1 <= max_len`.
no_answer (bool): Treat 0-index as the no-answer prediction. Consider
a prediction no-answer if `preds[0, 0] * preds[0, 1]` is greater
than the probability assigned to the max-probability span.
Returns:
start_idxs (torch.Tensor): Hard predictions for start index.
Shape (batch_size,)
end_idxs (torch.Tensor): Hard predictions for end index.
Shape (batch_size,)
"""
if p_start.min() < 0 or p_start.max() > 1 \
or p_end.min() < 0 or p_end.max() > 1:
raise ValueError('Expected p_start and p_end to have values in [0, 1]')
# Compute pairwise probabilities
p_start = p_start.unsqueeze(dim=2)
p_end = p_end.unsqueeze(dim=1)
p_joint = torch.matmul(p_start, p_end) # (batch_size, c_len, c_len)
# Restrict to pairs (i, j) such that i <= j <= i + max_len - 1
c_len, device = p_start.size(1), p_start.device
is_legal_pair = torch.triu(torch.ones((c_len, c_len), device=device))
is_legal_pair -= torch.triu(torch.ones((c_len, c_len), device=device),
diagonal=max_len)
if no_answer:
# Index 0 is no-answer
p_no_answer = p_joint[:, 0, 0].clone()
is_legal_pair[0, :] = 0
is_legal_pair[:, 0] = 0
else:
p_no_answer = None
p_joint *= is_legal_pair
# Take pair (i, j) that maximizes p_joint
max_in_row, _ = torch.max(p_joint, dim=2)
max_in_col, _ = torch.max(p_joint, dim=1)
start_idxs = torch.argmax(max_in_row, dim=-1)
end_idxs = torch.argmax(max_in_col, dim=-1)
if no_answer:
# Predict no-answer whenever p_no_answer > max_prob
max_prob, _ = torch.max(max_in_col, dim=-1)
start_idxs[p_no_answer > max_prob] = 0
end_idxs[p_no_answer > max_prob] = 0
return start_idxs, end_idxs
def convert_tokens(eval_dict, qa_id, y_start_list, y_end_list, no_answer):
"""Convert predictions to tokens from the context.
Args:
eval_dict (dict): Dictionary with eval info for the dataset. This is
used to perform the mapping from IDs and indices to actual text.
qa_id (int): List of QA example IDs.
y_start_list (list): List of start predictions.
y_end_list (list): List of end predictions.
no_answer (bool): Questions can have no answer. E.g., SQuAD 2.0.
Returns:
pred_dict (dict): Dictionary index IDs -> predicted answer text.
sub_dict (dict): Dictionary UUIDs -> predicted answer text (submission).
"""
pred_dict = {}
sub_dict = {}
for qid, y_start, y_end in zip(qa_id, y_start_list, y_end_list):
context = eval_dict[str(qid)]["context"]
spans = eval_dict[str(qid)]["spans"]
uuid = eval_dict[str(qid)]["uuid"]
if no_answer and (y_start == 0 or y_end == 0):
pred_dict[str(qid)] = ''
sub_dict[uuid] = ''
else:
if no_answer:
y_start, y_end = y_start - 1, y_end - 1
start_idx = spans[y_start][0]
end_idx = spans[y_end][1]
pred_dict[str(qid)] = context[start_idx: end_idx]
sub_dict[uuid] = context[start_idx: end_idx]
return pred_dict, sub_dict
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
if not ground_truths:
return metric_fn(prediction, '')
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def eval_dicts(gold_dict, pred_dict, no_answer):
avna = f1 = em = total = 0
for key, value in pred_dict.items():
total += 1
ground_truths = gold_dict[key]['answers']
prediction = value
em += metric_max_over_ground_truths(compute_em, prediction, ground_truths)
f1 += metric_max_over_ground_truths(compute_f1, prediction, ground_truths)
if no_answer:
avna += compute_avna(prediction, ground_truths)
if total == 0:
eval_dict = {'EM': "NA",
'F1': "NA"}
if no_answer:
eval_dict['AvNA'] = "NA"
else:
eval_dict = {'EM': 100. * em / total,
'F1': 100. * f1 / total}
if no_answer:
eval_dict['AvNA'] = 100. * avna / total
return eval_dict
def compute_avna(prediction, ground_truths):
"""Compute answer vs. no-answer accuracy."""
return float(bool(prediction) == bool(ground_truths))
# All methods below this line are from the official SQuAD 2.0 eval script
# https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
def normalize_answer(s):
"""Convert to lowercase and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s:
return []
return normalize_answer(s).split()
def compute_em(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = Counter(gold_toks) & Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1