-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.py
262 lines (241 loc) · 12 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# -*- coding: utf8 -*-
# This file is part of PyBossa.
#
# Copyright (C) 2017 Scifabric LTD.
#
# PyBossa is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyBossa is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with PyBossa. If not, see <http://www.gnu.org/licenses/>.
import enki
import json
import pbclient
try: # pragma: no cover
import settings
except ImportError: # pragma: no cover
import settings_testing as settings
import requests
import time
import pandas as pd
import numpy as np
# STATUS = ['Extinct', 'Extinct in the wild', 'Critically Endangered', 'Endangered',
# 'Vulnerable', 'Near Threatened', 'Least Concern']
# NORMAL = [ 'Data deficient', 'Not evaluated']
RARE_FINDS = ['Endangered', 'Critically Endangered']
REST = ['Extinct', 'Extinct in the wild', 'Vulnerable', 'Near Threatened',
'Least Concern', 'Data deficient', 'Not evaluated']
enki.pbclient.set('api_key', settings.api_key)
enki.pbclient.set('endpoint', settings.endpoint)
def get_task(project_id, task_id):
"""Return task."""
task = enki.pbclient.find_tasks(project_id, id=task_id, all=1)
print task
if len(task) > 0:
return task[0]
else:
return []
def create_result(t, value, result):
tmp = dict(
speciesCommonName=value,
speciesScientificName=value,
iucn_red_list_status=value,
imageURL=t.info.get('image', None),
deploymentID=t.info.get('deploymentID', None),
deploymentLocationID=t.info.get('deploymentLocationID', None),
Create_time=t.info.get('Create_time')
)
result.info = tmp
return enki.pbclient.update_result(result)
def give_badges(e, t, answers, result):
topSpeciesScientific = [x['speciesScientificName'] for x in answers]
for tr in e.task_runs[t.id]:
if tr.user_id:
if (len(tr.info['answer']) == 1 and
tr.info['answer'][0]['animalCount'] == -1):
user_answer = []
else:
user_answer = list(filter(lambda x: x['speciesScientificName']
in topSpeciesScientific,
tr.info['answer']))
url = settings.endpoint + '/api/user/%s?api_key=%s' % (tr.user_id, settings.api_key)
res = requests.get(url)
contributor = res.json()
if len(user_answer) > 0:
print "User %s chose the good answer" % tr.user_id
#print contributor.get('info').get('extra')
new_badges = []
for ua in user_answer:
iucn_red_list_status = filter(lambda a:
a['speciesScientificName'] ==
ua['speciesScientificName'],
answers)[0]['iucn_red_list_status']
badge= dict(iucn_red_list_status=iucn_red_list_status,
number=1,
result_id=result.id)
new_badges.append(badge)
if contributor.get('info').get('badges'):
current_badges = contributor.get('info').get('badges')
if (len(filter(lambda b: b['result_id'] ==
result.id, current_badges)) == 0):
contributor['info']['badges'].append(badge)
else:
print("Badge already in place")
else:
contributor['info']['badges'] = [badge]
badges = contributor['info']['badges']
iucn_number = len(filter(lambda b: b['iucn_red_list_status'] in
RARE_FINDS, badges))
species_number = len(filter(lambda b: b['iucn_red_list_status'] in
REST, badges))
#contributor['info']['iucn_number'] = len(contributor['info']['extra']['badges'])
contributor['info']['iucn_number'] = iucn_number
contributor['info']['species_number'] = species_number + iucn_number
if contributor['info'].get('karma'):
contributor['info']['karma'] += 1
else:
contributor['info']['karma'] = 1
else:
print "User %s chose the wrong answer" % tr.user_id
if contributor['info'].get('iucn_number') is None:
contributor['info']['iucn_number'] = 0
if contributor['info'].get('species_number') is None:
contributor['info']['species_number'] = 0
if contributor['info'].get('karma'):
contributor['info']['karma'] -= 1
if contributor['info']['karma'] < 0:
contributor['info']['karma'] = 0
else:
contributor['info']['karma'] = 0
if contributor['info'].get('badges') is None:
contributor['info']['badges'] = []
# Update contributor
contributor.pop('n_answers', None)
contributor.pop('rank', None)
contributor.pop('score', None)
contributor.pop('registered_ago', None)
res = requests.put(url, headers={'content-type':
'application/json'},
data=json.dumps(contributor))
time.sleep(0)
def get_red_list_status(topSpeciesScientific, project_id):
hp_url = settings.endpoint + '/api/helpingmaterial?all=1&project_id=' + str(project_id) + '&info=scientific_name::' + topSpeciesScientific.replace(" ", '%26') + '&fulltextsearch=1'
res = requests.get(hp_url)
iucn_red_list_status = None
if res.status_code == 200:
data = res.json()
print data
if len(data) > 0:
iucn_red_list_status = data[0]['info']['iucn_red_list_status']
species = data[0]['info']['species']
return iucn_red_list_status, species
def get_count_nan(df):
vc = None
if 'speciesID' in df.columns and 'speciesScientificName' in df.columns:
df['speciesID'] = df['speciesID'].astype(str)
# df['speciesScientificName'] = df['speciesScientificName'].astype(str)
vc = df['speciesScientificName'].value_counts(dropna=False)
# df = e.task_runs_df[t.id]
analysis = dict(df['speciesID'].value_counts())
# If everyone answered no animal
else:
vc = df['animalCount'].value_counts(dropna=False)
return vc
def get_consensus(df, th=10):
consensus = df.groupby('speciesScientificName').filter(lambda x: len(x) >= th)
answer = []
for sp, val in consensus.groupby('speciesScientificName').size().iteritems():
animalCountDescribe = consensus.loc[consensus['speciesScientificName'] == sp,
'animalCount'].describe()
answer.append(dict(speciesScientificName=sp,
animalCount=animalCountDescribe['mean'],
animalCountStd=animalCountDescribe['std'],
animalCountMin=animalCountDescribe['min'],
animalCountMax=animalCountDescribe['max']))
return answer
def basic(**kwargs):
"""A basic analyzer."""
e = enki.Enki(endpoint=settings.endpoint,
api_key=settings.api_key,
project_short_name=kwargs['project_short_name'],
all=1)
if kwargs['task_id'] != 95049:
e.get_tasks(task_id=kwargs['task_id'])
e.get_task_runs()
labels = ['task_run_id', 'speciesID', 'speciesScientificName',
'speciesCommonName', 'animalCount']
for t in e.tasks:
data = []
project_id = t.project_id
for tr in e.task_runs[t.id]:
for datum in tr.info['answer']:
data.append(datum)
df = pd.DataFrame(data)
# If 5 first answers is nan (nothing here) mark task
# as completed
vc = get_count_nan(df)
print vc.index[0]
print vc.values[0]
if len(e.task_runs[t.id]) == 5:
msg = "The five taskruns reported no animal"
if type(vc) == pd.Series and ((str(vc.index[0]) == 'nan' or
vc.index[0] == -1) and vc.values[0] == 5):
result = enki.pbclient.find_results(project_id=kwargs['project_id'],
id=kwargs['result_id'],all=1)
if len(result) > 0:
return create_result(t, settings.no_animal, result[0])
else:
task = get_task(t.project_id, t.id)
task.n_answers += 1
task.state = 'ongoing'
return enki.pbclient.update_task(task)
else:
if (str(vc.index[0]) == 'nan' or vc.index[0] == -1) and vc.values[0] >= 10:
msg = "10 taskruns reported no animal"
result = enki.pbclient.find_results(project_id=kwargs['project_id'],
id=kwargs['result_id'],all=1)
if len(result) > 0:
return create_result(t, settings.no_animal, result[0])
else:
answers = get_consensus(df, th=10)
if len(answers) == 0:
if len(e.task_runs[t.id]) < 25:
msg = "No consensus. Asking for one more answer."
task = get_task(t.project_id, t.id)
task.n_answers += 1
task.state = 'ongoing'
return enki.pbclient.update_task(task)
else:
result = enki.pbclient.find_results(project_id=kwargs['project_id'],
id=kwargs['result_id'],all=1)
if len(result) > 0:
return create_result(t, settings.no_consensus,
result[0])
else:
for a in answers:
iucn_red_list_status, species = get_red_list_status(a['speciesScientificName'], project_id)
a['speciesCommonName'] = species
a['iucn_red_list_status'] = iucn_red_list_status
a['imageURL'] = t.info.get('image', None)
a['deploymentID'] = t.info.get('deploymentID', None)
a['deploymentLocationID'] = t.info.get('deploymentLocationID', None)
a['Create_time'] = t.info.get('Create_time')
result = enki.pbclient.find_results(project_id=kwargs['project_id'],
id=kwargs['result_id'],all=1)
if len(result) > 0:
result = result[0]
if len(answers) == 1:
result.info = answers[0]
if len(answers) >= 2:
result.info = dict(answers=answers)
give_badges(e, t, answers, result)
result = enki.pbclient.update_result(result)
return 'OK'
return "OK"