Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Larger-than-memory datasets with iris-esmf-regrid and dask #310

Open
dennissergeev opened this issue Oct 9, 2023 · 6 comments
Open

Larger-than-memory datasets with iris-esmf-regrid and dask #310

dennissergeev opened this issue Oct 9, 2023 · 6 comments
Labels
New: Issue Highlight a new community raised "generic" issue

Comments

@dennissergeev
Copy link

📰 Custom Issue

I was wondering if you have any recommendations on what dask settings I should use if I want to regrid a larger-than-memory dataset using iris-esmf-regrid.

The dataset is from an LFRic C24 run, containing about ten 2D or 3D variables with 1000 time slices loaded from 100 files (i.e. 10 time slices per file). The data are chunked accordingly: 100 chunks for every variable. The total size amounts to about 16G on disk.

I can obviously process this in a file-by-file loop but I hope to load the whole dataset and apply regridding in one go. Currently, my script halts because the regridding step consumes all available RAM. I understand this might be asking for too much specialised help but any advice would be highly appreciated!

Machine specs
                 OS : Linux
             CPU(s) : 8
            Machine : x86_64
       Architecture : 64bit
                RAM : 31.2 GiB
        Environment : Jupyter
        File system : ext4
         GPU Vendor : Intel
       GPU Renderer : Mesa Intel(R) UHD Graphics 620 (KBL GT2)
        GPU Version : 4.6 (Core Profile) Mesa 23.0.4-0ubuntu1~22.04.1

  Python 3.11.5 | packaged by conda-forge | (main, Aug 27 2023, 03:34:09) [GCC 12.3.0]
@dennissergeev dennissergeev added the New: Issue Highlight a new community raised "generic" issue label Oct 9, 2023
@scitools-ci scitools-ci bot removed this from 🚴 Peloton Dec 15, 2023
Copy link
Contributor

github-actions bot commented Apr 7, 2024

@SciTools-incubator/esmf-regrid-devs This issue is stale due to a lack of activity in the last 180 days. Remove stale label or comment, otherwise this issue will close automatically in 14 days time.

@github-actions github-actions bot added the Stale: Closure warning This stale issue or pull-request has been marked for closure label Apr 7, 2024
Copy link
Contributor

@SciTools-incubator/esmf-regrid-devs This stale issue has been automatically closed due to no community activity

@github-actions github-actions bot added the Stale: Closed This stale issue or pull-request has been closed due to no activity label Apr 21, 2024
@github-actions github-actions bot closed this as not planned Won't fix, can't repro, duplicate, stale Apr 21, 2024
@dennissergeev
Copy link
Author

This is still relevant, so I would like this issue to be reopened. Thanks.

@trexfeathers trexfeathers reopened this Apr 23, 2024
@trexfeathers trexfeathers removed Stale: Closure warning This stale issue or pull-request has been marked for closure Stale: Closed This stale issue or pull-request has been closed due to no activity labels Apr 23, 2024
@trexfeathers
Copy link
Contributor

@stephenworsley @pp-mo @HGWright any thoughts?

@stephenworsley
Copy link
Contributor

I would have expected that if it's possible to do regridding file by file, dask should be able to handle the same data as a single dask array (with each file being a chunk) so I'm not entirely sure what could be causing problems. I wonder if dask is trying to run too many tasks in parallel, does this still blow memory if you are using a single threaded dask scheduler? For what it's worth, I've recently fixed a bug with the old way we were invoking dask #338, though I suspect this may be a seperate issue, it may be worth checking if the latest (unreleased) version of iris-esmf-regrid works any better. Otherwise, I'd be interested to see a sample of code which blows memory compared to a sample of code for which doing regridding file by file does not blow memory.

Copy link
Contributor

@SciTools/esmf-regrid-devs This issue is stale due to a lack of activity in the last 180 days. Remove stale label or comment, otherwise this issue will close automatically in 14 days time.

@github-actions github-actions bot added the Stale: Closure warning This stale issue or pull-request has been marked for closure label Oct 21, 2024
@ESadek-MO ESadek-MO removed the Stale: Closure warning This stale issue or pull-request has been marked for closure label Oct 23, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
New: Issue Highlight a new community raised "generic" issue
Projects
Status: Done
Development

No branches or pull requests

4 participants