diff --git a/Examples/.ipynb_checkpoints/Simple Pendulum- Forward and Back integration-checkpoint.ipynb b/Examples/.ipynb_checkpoints/Simple Pendulum- Forward and Back integration-checkpoint.ipynb
new file mode 100644
index 0000000..416ed33
--- /dev/null
+++ b/Examples/.ipynb_checkpoints/Simple Pendulum- Forward and Back integration-checkpoint.ipynb
@@ -0,0 +1,1319 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "c5b2c9a2",
+ "metadata": {},
+ "source": [
+ "# Simple Pendulum example: forward and backward integrations"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "b343f609",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "using OrdinaryDiffEq \n",
+ "using IRKGaussLegendre\n",
+ "using Plots"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb9278c5",
+ "metadata": {},
+ "source": [
+ "## ODE definition "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "df7272c0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "simplependulum (generic function with 1 method)"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Constants\n",
+ "const g = 9.81\n",
+ "L = 1.0\n",
+ "\n",
+ "#Initial Conditions\n",
+ "u₀ = [0, π / 2]\n",
+ "\n",
+ "#Define the problem\n",
+ "function simplependulum(du, u, p, t)\n",
+ " θ = u[1]\n",
+ " dθ = u[2]\n",
+ " du[1] = dθ\n",
+ " du[2] = -(g / L) * sin(θ)\n",
+ "end"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "20c50ccf",
+ "metadata": {},
+ "source": [
+ "# Forward Integrations "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c9b43ebd",
+ "metadata": {},
+ "source": [
+ "### Case 1 (adaptive)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "028c6101",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2AU1dbAz52yLb1XUgktlIRQBIFQVVQUFfQTFXjwnuhTVHwPFX3vCSiKAvaKiopYEDuIIjU0gZBAAoQA6b3XzbZp3x+TLGsaSbbMbPb+/kpuZmfOZubOufdUJAgCYDAYDAbjqhBSC4DBYDAYjJRgRYixDTU1NampqX/++WdeXp7RaGz316NHjy5dunT37t2OFOnSpUtLly79/PPPHXlRe7Ns2bL//Oc/vf1URUXF0qVL33zzTXuIJDe2bt26bNmyS5cudX+Y+Ez++uuvjpEKI2ewIsRYS0pKynXXXRcQEDBu3LiJEyfGxsZ6enpOmTLlu+++Mx9z6dKlLVu2nD171pGClZWVbdmy5ciRI9afqrGxEVmgUCgCAwOnT5++ZcsWnuetP3/P2bx58zfffNPbTzU0NGzZsuWPP/6wh0i94vPPP7f8T7q5uUVERPzf//3fiRMnbHWJlJSUzZs3l5aWdn/Y5cuXHf9MYuQJJbUAGOdm9+7dt99+O8uyU6ZMmTp1qo+PT2FhYUZGRkpKSnx8/Lx588TDQkNDp06dGhkZKa20VoIQmjFjhvhzUVHRwYMHDx48+Pvvv2/fvh0hJK1szkVgYODIkSMBwGQyZWdnb9++/bvvvtuyZcvChQulFg3jimBFiLGKFStWsCy7adOmJ5980nK8pKQkPz/f/Ovs2bNnz57tcOlsDEEQe/fuNf/6888/33XXXTt27Ljvvvtuv/12CQVzOiZPnmw2GBiNxieffPK9995bvnz53LlzPT09pZUN44JgRYjpO5WVlZcvX1YoFI888ki7P4WHh4eHh5t/ra2tLSgoCAsLCw4OFkdyc3MbGhqGDRumVCr379+flZXl6el58803BwUFiQdcvnz58OHDWq1WtLhanry8vLysrCwyMtLf3//UqVOnTp0SBGHSpEmJiYk9EZvn+dTU1LS0NL1eHxUVNWvWrL69fG+//fa7777766+//vXXXy0VYWZm5okTJxobG8PCwmbNmhUQEGD5KfGLDx06VK1WHz58+OzZszRNT5kyZfjw4R0vUVNTs3v37urq6qioqNmzZ2s0mnYHiP+KqKgoPz8/y/Hz588bjcakpKSuhC8qKqquro6Li2v33c+ePYsQGjVqlPhrQ0NDbm5uUFBQeHh4Tk7OwYMH9Xr9+PHjx48fLx7Q0tKye/fuoqKiAQMG3HLLLW5ubtf+x/0VpVL5+uuvf/XVVw0NDUePHr355pvFpyU0NDQkJOTKlSspKSkNDQ0LFiwIDQ0FAJ7njx8/fvbsWYZhoqOjZ86c6e7u3umZeZ5PSUk5d+4cTdMzZswYNGhQT+RhWfbIkSMXLlxgGCYuLm7mzJkqlcrygIyMDEEQEhISWlpafvvtt+Li4vDw8FtvvVWtVosHHD9+PD09nSCIWbNmxcXF9fYfgpEAAYPpK7W1tQBAkqRWq+3+yI8//hgA1q1bZx657bbbAGDPnj1jx441P40ajea3337jOG7FihUEcdWBvXTpUsuzrVmzBgDefffdOXPmWD7M999/v8lkMh924MCBjp89f/58O33p4+Pz7bffdi9/Q0OD+E3bjYuSzJ07V/y1pKRk6tSplifXaDRvvfWW5UfuvPNOANi7d29ycrL5MITQ008/3e7k33zzjYeHh/mY0NDQU6dOAUBsbGw7AT777LN2nxXfvxzHib9evHgRAG6++WbzAf/85z8B4Pfff2/3QQ8Pj8DAQPOvP/zwAwA8+eSTzz33nKX5d8mSJRzH7d+/39/f3zwYExNTWFjY/X/ys88+A4C77rqr3fjo0aMB4NNPPxUEYcuWLQDw/PPPL1++3Hzy/fv3C4KQk5PT7vb5+/t/9913lqdasmQJAGzfvv26664zH0YQxNNPP83zvPmwTz75BABefPFFy8+mpKTExsZanj8sLOzQoUOWx/j6+np6ev75558hISHmwyIjI3Nzc+vr62+44QbzIEVRH330Uff/EIwcwMEymL7j6+sbFRXFcdzixYuLi4v7cIYHH3zQzc1t165dqamp//3vfw0Gw8KFC9esWfPll19++OGHp0+f3r59e0hIyCeffPLzzz+3++y6desuXrz466+/FhUVHThwICEhYdu2bf/+97+7uVxhYWFycvL58+dXrFhx7NixrKysjz76iCCIe++9t28xNaL519fXFwAaGhqSk5NTUlIWL1588ODB7Ozsr7/+2t/f/7HHHvv66687fnGDwfDDDz+kp6d/+OGHnp6er7zyyv79+80HnDx58v777+d5/t133y0oKDhz5sy0adPuuOOOPghpPd9///0HH3zw/vvvnz59eseOHeHh4Vu2bHnllVfuuOOOe++999ChQ0eOHJkzZ05eXt7jjz/eh/NzHFdUVAQAlvvaTz/9dPv27Zs2bUpJSdm1a1d0dHRDQ8OMGTPOnDmzaNGi06dPZ2dnb9y4UavV3n333eKix5IVK1ZwHHfo0KGioqJffvklMjLylVdeeeONN7oR4/Tp0zfeeGN5efnatWtPnTqVkZGxcePG+vr6W2+99cqVK5ZHGo3GO+6449Zbbz148ODRo0fnz59fWFi4bNmyxYsXV1dXf//992lpaZs2bSIIYvny5dcM28FIj9SaGOPcfPvttzRNi8/SsGHDlixZsnXr1pqamnaHdbUjTEpKYlnWPDh37lwAoCjqwoUL5kFRi9x///3mEXEbRFHUlStXzINVVVXu7u4kSRYVFYkjHXeE8+fPB4B33nnHUrYjR44ghCZPntzN1+x0R3js2DGlUgkAX3/9tSAIog5euXKl5TE5OTkqlUpcLogj4o5wxIgRlpvXd999FwAefvhh88jMmTMBwHI/wfO8uIl0/I6QIIi0tDTz4E8//STe8VWrVpkHW1pafH19KYrS6/Wd/Afb6Lgj5Djuf//7HwCo1era2lqhbUeIEDp58qTlZ1evXg0At956q+XgBx98AACjR482j4g7Qm9v77q6OvPg+fPnCYLw9vZuaWkRRzruCMeNG4cQ2rVrl+X5t23bBgALFy40j4jrnkcffdQ8YjQaRbNtZGSkTqczj4sugw8++KCbfwhGDuAdIcYq5s+fn5aWdscdd7i5uWVlZYmBf0FBQQsXLmxqarrmxx9//HGSJM2/ii/6G2+8cdiwYebBKVOmQNvey5Lbbrtt4MCB5l8DAgIWLlzIcVzHvaOIVqv96aef/Pz8RB1gZtKkSSNHjjx27FhjY2P30vI8v2zZsmXLli1ZsmTKlCmTJ082Go3Tpk0T9eu2bdsIgnj22WctPxIbG3vDDTcUFBSIqsjME088YV5AAMCsWbMsv2NTU9OBAwfEb2Q+BiHULiLJYUydOlU0XYqIdwQAVqxYYR7UaDRjx45lWbYntoH09HTxP7lgwYL4+Pi1a9cCwLp160QdIzJt2rRx48ZZfkrUys8884zl4N/+9regoKD09PR2T8iSJUt8fHzMv8bHx990000NDQ0d944ily5dOnXqVGJi4i233GI5vmDBAm9v799++63d8Zb3QqFQTJgwAQCWLVtm9hRC148uRm7gYBmMtYwYMeKHH34wGAwnTpw4efLkb7/9lpKS8sUXXxQUFKSkpHSfV9AufkGMK+l0sLKyst1nzQEdZhISEgAgKyur02udP3+eYRiNRrNq1ap2f9LpdDzPFxcXe3l5dSOtIAibN28WfyYIYujQoffff/+KFStIkiwrK6uoqPD09Fy/fn27T4mWsYKCgvj4ePPg4MGDLY8RQ4QqKirEX7Ozs3meHzJkiEKh6PgFHU+7O+Lj40PTtJubW7s4IPOdumaESH5+vvk/qdFopk2btmLFinYeX8vFEAAIgnDx4kWEUDsfoUKhGDly5N69e7OysqKjo83jHR+PxMTE3bt3Z2Vl3XrrrR1FSk9PBwCTydRO0YqXqKqqamlpMYcCKRSKdrlA4ndvd1sDAwOhs0cXIzewIsTYBpVKNXXq1KlTpz799NM//vjjvHnzjhw5sn//ftHE1xWWy2cAELVmu9hIMWpG6FAUt91bGNreO83NzZ1eSzRvVlZWml/Blvj4+JhMpm5EBQCSJKurq8Wfvb29LXW8uJvU6XRdnZxlWcuR7r+jVqs1fx1LOo44ho7RqgihjoPit+hJhYE5c+aIFX8oirIMCLLEMgwHAIxGI8MwHh4eHa8rLiPa3feOj4c40v3jkZOT09Ud1Ov1ZkWoUqksg7mg7bt3+jx3fHQxcgMrQoztueOOO5KTkw8ePJiWlta9IrSGqqqqdiPi0rurXAjxhTt+/PjDhw/3+aKW1raOJw8NDS0sLOzzyc2I+QAddxIdR7rSPS0tLd1fQnxHt/sgy7IGg6Hd29weKBSKrv6TXaFSqWiabm5u1ul07XShuJNud9+7ejy60rvi+Pz587du3dorwTD9AOwjxNgFMYrE0v9nc86cOdNuRLRuWVogLRkxYgRFUenp6Xq93ubChIWFBQYGFhUVlZSUWH+2oUOHkiR58eJFg8FgOS5+QUvEvMx2CrK+vr68vLz7S3T6wZycHIZh+iy2vRFTLdPS0iwHjUZjZmam+a9muno8Os3XBADR4vrnn3/iDZwLghUhpu9otdpvvvmm43bk0qVLR48eBYBuErqtZ9euXdnZ2eZfKyoqtm3bRlFUV0VePD0977zzzpaWlhdffLHjX0VrZJ9BCC1atAjaAimtPLmHh8esWbNqa2vFGEsRnudfe+21dkfGxMQAQLtQjpdffvmab/OuPtgrOR2MWLFv/fr1lt/u448/rqqqGj9+fEREhOXBn376qZjnKpKZmfnHH3/4+vpOnz6905PHx8ePGzcuJydHjCZth5WPB0bmYNMopu8YDIZ77733qaeemjdv3oQJEwICAhobG0+dOrV582atVjtt2rR22eW2JSwsbPbs2Rs2bBg1atSlS5eeeeaZlpaWlStXhoWFdfWR11577ciRIy+99NKVK1fuueeeuLg4sXLKTz/9VF9fb43JFAD++9//7t69e9u2bWKrh8GDB+t0uvz8/N9+++3kyZM5OTm9Otu6desOHDjw5JNPtrS03HzzzQ0NDRs3bhST7SyZNGlSWFjY4cOHly5det999+n1+h07duzatcvPz89SDXRk9uzZXl5eO3bsCAsLmzt3bl1d3datW9PS0sStvDxZvnz5li1bdu/evWDBgkceecTT03Pnzp1r166lKGrjxo3tDvb29p4xY8ZLL70UFxeXlpYmprW88MIL7crEWPLRRx9df/31y5YtS01NveWWW6Kjo6urq69cubJ9+/bQ0FAxjwLTL8GKENN33Nzc7rvvvj179rz++uuvv/66eVyhUCxduvS1116zaynqVatW7d+/X0xdEHnwwQe739OEhYWdOHFi2bJlO3bs2LFjh3ncy8vroYceslIeDw+Pw4cPP/roo9u3b9+3b595XK1Wm4uP95zRo0fv2LFj8eLF//73v8UMxYiIiF9++aVd4KhCodi+ffvcuXO3bNkipt+Fhobu3Llz0aJF3StCHx+fL7/8csGCBeZ7N3DgwN27d4tpAPLEw8PjwIEDCxYs+Oabb8wtOEJDQzdv3jxp0qR2B7/22mtvvfWWOReCoqjVq1e3y5xph5hF8+CDD27evNkyZCYgIADXku3fIGwQx1gJz/OZmZlFRUXl5eUEQURGRo4dO7ZdKERTU1NlZaW/v795vKKiQqfThYeHW2YIaLXaqqoqb29vy3wyAMjLy6NpesCAAeKva9euff755z/55JMlS5ZkZGSIvp8JEyYMGTLE8lN6vb6kpMTLy6tjsGV+fv7JkycbGhq8vb0jIiLGjBnTLlGh43csKCiANoti95SXlx8/fry6utrd3X3AgAFjx461DO6orKxsaWkJCwuz3HuJ51coFJYFWgGgsbFx7969tbW1kZGR06ZNUyqV7f4VIk1NTXv37q2pqQkNDZ01a5ZKpSouLmYYxiwtwzAFBQVubm5i3reZ2travXv3NjY2RkVFTZ8+nabpgoIChJA5N6ClpaWystLLy6tdLdP8/HzxXlsOVlVVabXa0NDQbnZdzc3N1dXVbm5u5qKyXR3j4+PTaUCNIAhnz57NyMgwGo2xsbGTJk1qd7nq6urm5uaQkBCVSnXixIkLFy4olcrk5OR2ttOOz6SZrKys9PR0rVYbEBAQERExevRoS2+3+CRERUVZfqSmpqapqSk4ONjyXhsMhrKyMg8Pj44hrBhZgRUhxvmwVIRSy4LBYJweHCyDwWAwGJcGK0IMBoPBuDQ4WAbjfMyYMUOpVI4ZM0ZqQTAYTH8A+wgxGAwG49Jg0ygGg8FgXBqsCDEYDAbj0mBFiMFgMBiXBitCDAaDwbg0WBFiMBgMxqXBihCDwWAwLo1zK8La2tq3335baimkoSd9wPsl+Iu7GoIguGaWl8t+cXD40+7cirCgoMCyYZtLcc0W5P0Vl/3iOp1OahGkwWg0siwrtRQSwHGc0WiUWgppcPDT7tyKEIPBYDAYK8GKEIPBYDAuDVaEGAwGg3FpsCLEYDAYjEuDFSEGg8FgXBqsCDEYDAbj0mBFiMFgMBiXxukV4RODParefFJ7+Gder5VaFgwGg8E4H06vCN1IwpSf1fDD+1Ubl7M1ZVKLg8FgMBgnw+kV4ZuXm3wXraLDB7K15VVvPGkqviK1RBh7wTVU8wYXLSuDwWDsByXJVY1GY2ZmZmNj4/Tp0wmiE2WckpLCMIz4c1BQ0IgRI7o6lZYVNInJ6vjxtZ+uM1xMrX7nKf+lzysHJdhLdIxEcA01FeuWEhoP9d0rIH6M1OJgHErzj+8bL5z0ufdJ1ZAkqWXBOBSurqryteWqQQnedz9OqDR2uooEijAjI2PcuHFBQUHFxcUGg0GpVHY85q677ho8eLBGowGA5OTkbhShCFKo/P7+fP03r+tS99d89L+gZzZTfsF2kR4jEbrT+wXGxDXWtmxZTd35kPv1t0otEcZBCLpm/ck/BI6t+fA/HjPu9rp5IRCk1EJhHETLyd95baMuPcVUnOO35L90SJQ9riKBIoyLi6uqqqqtrY2Nje3msM8++ywuLq7np0Uk5bvg3wLL6M8cbt7zpc+Cf1ktKUZG6E7vBwDVkCRDdlrDjneYosve8x5FtEJquTB2x5B5VOBY0juAa6pr3rfdmHveb9EzpHeA1HJh7I8g6E4fBADSO4CtLq16/XGfeY9qxs2y+XUk8BFqNBovL69rHnbkyJGdO3eWlJT04tQIec1Zikiq5fR+tqo3H8TIG1PxZaaiiHD39n9wrXr+40ihajn5R9WbK9i6SqlFw9gd45kUAPCa87fAJ16j/IJN+RcqNzxiuHBSarkwdsdUkMXWlpNefsHPfuw+5XbBZKz7alPdlxsEk42bckjjI7wmISEhu3btMhgMhw8ffvnll5cvX97pYXq9vrKy8qWXXjKP3HTTTZFjZuhP7mn4bZtXv94UMgxjdqP2e7Qn9wKAavRUhuPR0PG+AwY2fL6OKcmt2rTc676VijiXcAm71B03w9VXsUWXkEJFDR6DlGqf5Zuavn3TmHWq5uPVmutvdb91CSJl+hKzHpZlWZYlSVe0A4tPu/bUfgBQjZ7KIsJtzt/J0JimH97Tpe43leV7P7CK7Jn/iyTJTiNRLJHpM5SZmYkQAoAjR47MmDFj3rx5ISEhHQ/jeZ5l2fr6evNIS0uLZvp8Q9oBw9kU9dQ7qeBIxwntWHied5VOrTxnOHsEAJQJyeK3JoIivB97XfvtG8YLJ+s/ft7txvs1yXcCQlILal9c6I5boEvdB4JAx48XaKXA86B291z4rP7Yrpbdn+mO7mQKsj0W/LuHL0Sng29DakEkgOd5jjHpM44AgGLUFPGfoEic6h0U2bTtFbY0r+6Nx93nLVeOmHjNU11TC4JsFSFqe6lNnjzZx8cnOzu7U0Xo5uYWFha2YcOG9uPX3aQ9utNwcIff4ufsLqtEmEymTuOM+h+GCyd4bQMdHOEWMxTMX1ypVP99dfOBHY27Pm35batQUehz7wqkUEktrB1hGMZF7rgl9RlHAECTNN3yuytnzNMMGln32ctMyZWGt1Z43/O4JjFZOhntBUmSJEm64E0HAIZhhNxMQddMh8W4RQ02jyujh2ieeq/u69f0Z480ffmq++TbvG7/h/VWARnlEdbU1DQ1NbUbzM3Nra2tjYzs3cbO44Z7kUKpzzjKlObaTkCMNLSk7gcAzdgOHnKEPGbc7f/31YTaXXcmpXLTcrayWAL5MHbDVHSJrSoh3L2VcaPa/UkxYFDgynfViVN4g67u85frvtwgMCZJhMTYCV3aAQDQJE1vN46Uar9Fz3rf8RAiSO3hn2veW8U11lp5LQkUodFoXLZs2XPPPQcAjzzyyIoVK8TxxYsXv/rqqwCwZ8+e2bNn/+9//1u5cuWkSZMeeuihmJiYXl2C9PR1m3gLCELTb1/YXH6MI+ENLYYLJwEhTdK0Tg9QxY8PfPJNOjiSrSyuev1x/bnjDpYQYz90pw8AgDJhSqf5EoRK47foWZ+7H0MUrUvdX/Xmk7i2VL9BMOpbJ/7oqZ38GSH35Ln+j7xCevkZc89Vbvin8fIZay5Hrl692prP9w2TyTR06ND58+cPHDgwNjZ2yJAhABAaGpqUlBQcHBwYGOjm5tbQ0ODt7b1ixYqHH364q/OUl5fv3Llz2bJlHf+kGBCnPbaLKS9QDR1Devvb8ctIhIuYRnWn9unPHVcNHu0+eY440vGLE26ebmNnstWlTGmu/uxhgTGpBiX0P5ehyWRSKFwpXYTn6r9+XTAZPOYuI738uooZUQyIUw8bZ7x8lq0obDn5B+UXbKdUM8cjOggpSqYOLLvSkrqfuXBCOSjBffJtXR1D+QS6jZ3JlOUzZfm6tIMgCMrYEX2b+BL8iymKmj9/fsfxqVOnij94enr+3//9n5VXIdw83SfNad7/bdPv2/yXvWjl2TBSIaYPasbM6P4wpFT7LX6u+cCOxl8/a97/LVNe4PvAU4Ta3SEyYuyCITuda66ngiLI0GsYhOjwgUEr363f/qYu/VDd1vWGi6k+8x9Div6/TOzHmM6mQGd20XYQ7l7+D77Q9MdXTXu+bPp9m6n4iu99KwlNrye+jHyENsdj+jxCpTFcPG3MPSe1LJi+wNZVGvOzkEKlHnnt2LBWl+E/1hIaD0PWqarXHmcqCu0vI8ZeiC4itzHXeBWKIKXad+Ezvvf9GymUutT9Va8tZ8oL7Coexn5wjbVsQRaiFepR11/7aILwvOl+/3+sITQehgsnKzf801R0qbdX7M+KkHDzdE+eCwBNv38ptSyYviCGzqtHTUJKdQ8/oho6Jmjlu4oBg9jq0qrXnxDDrzFOh2Ay6M+fAITUnbqIukAzdmbgk2/TwZFMRVHVa4+1nPjdbgJi7EjrxB8+gVC59fAjqmHjgp56TxE1hKuvqn7r39qUn3p1xf6sCAHAfeqdhMbdeOWs8UqG1LJgeokgiLESbmOvYRdtB+kTGLD8Vc3oqYJRX/vZS02/fm4f+TB2RJ9xTDDqldHxvS0aTAdHBK54QzNmusCY6r95Q9xWYpwLXdpBANCM6Tw+ritI74CARze4X3+rwDINP35Q99Um6HEKZj9XhITa3X3aXQDQfGCH1LJgeoepMJutLiW9/JS9LxyDFCrfhc94z30QENG092tj3nl7SIixH62h8z2zi7YDKdW+9z/lefMiABArVWKcCKY0jykvQBoP5ZBeN5lBFO09/1HfB55CCpXu1F7d2cM9/GA/V4QA4D7xFkDImJOJ04ycC52YPjhmep/jP92n3ukx5XYAMFw8bUvJMHaGa6ozXD6DKFqdMKXPJ3GbcBMgZMw9J3CsDWXD2BtxDaQYMbHPafKapOlec5YAgC7tUA8/0v8VIeHmqQiPExgT3hY4EQLHiqu5a8aLdo9y8GgAMF4+axuxMA5Bl34IeF41bFwfwv/MkB4+dEiUYDKY8i/aUDaMfREEXfohAFAkWFUqSJOYDARpzD7Nt7Qv0tIp/V8RAoBycCIAWJlxiXEkhvMn+JYmOnyglTlhytgRiKJNxZd5ndZGomHsjugb7ptd1BLVoEQAMF5Kt4FMGIdgvHKWa6ih/EPI8F704OsI4e6lGpQgcGwPK2y4hCJUDU4EAAOeD86DmD7Y2zCZjiCFUhE1FHjemJNpC7kwdoepLGJKcgiNu2rYOCtPJdoDDHgF7Dy0rYFmWF8QQ4w37qF11CUUoSI6HimUTGker22UWhbMteFbmgxZqUCQvQqd74o2ewBeBjkH4qtQPWoyomgrT4XtAc6FwJj0mccAoKt6ir1CPXIiohXG3Eyuuf6aB7uEIkQUrYwZDoKA14ZOge5MisCxqiFJpIeP9WdTxYn2AHzrnQFB0LeGzltrFwXRHhA9DHjemIOzp5wA/bnjvEGniBpCBYRZfzZC5aYaOgZ4nm+qu/bB1l/PKVAOwm5Cp6E1XtRqu6iIImIQoXFnq0txO3v5Y8w9z9ZVkj6BypjhNjmh6CbEbhGnoDV98Fpl1XqOZnRPd5auoghb3YRYEcoetqrEVJhNqNzUwyfY5owEoRw4EgCMV3DsqNxp67wzzVY101vDhrEilD28ttGYnYZIyoatJVXx43tYlMpVFCEdGkO4e3N1VWx1qdSyYLpDDJNRJ0xCtM06LSgHiW9DvAySNQLLiCXxrMyZsUQxII7QeLA15Wxtha3OibEHokNEOXg04e5lq3MiWuF188Ke9Ot2FUUICKkGjQLsK5I5gtBqHhk704ZnVQ1KAADD5bMgCDY8Lca2GC6c5HVaOnwgHRxhs5MiJFYmwm4RmWOrnJl2uCff0ROPo8sowqu51dhIIl+MuefY2grS12YuIhEqMJz0DeS1DbgjgZyxpqxaN+DsKfnD1pSZii4hpdpmDpFe4kKKUDU4CQCMVzJ7XokV42DEMBm3sTNt3lZXFZcA+G0oY3id1qL0VLoAACAASURBVJCVCgjZ0EUkohwiTvwMbA+QLbrTB0AQNKMmSdVF0oUUIentTwWE8Xqtqfiy1LJgOsEii8jGewK4GjaM42Vkiv7sYYFlVINHk15+tj0z5RtE+YXwLU2mkiu2PTPGVuhslzPTN1xIEQKASqw0gd2EskR/7jiv1yqihlCB4TY/uWpwIiBkzM0UWMbmJ8dYT6uLyBaZ1B1pLaqAJ74sMRVcbO0zM3CUVDK4liLERUbkjBgvqhljyzAZM4S7Nx0SJZiMpoJse5wfYw1cXZUx/wJSKNUje9CRvPfgFbCcuboGIiTTRy6mCOMSgCBN+RcFo15qWTB/gdc2GLLTEUlpEvveead7WkswX8FvQ9nRkrYfBEE9YmIPs756i3JQAhCEKe+8YDLY4/yYvsNzurNHwG7GgB7iWoqQUGkUEXECxxpzcUsmeaE7fQB4ThU/jnDztNMllDh6UK7o0w6BfXzDIoTaXRE+UOBYY94FO10C0zcMF1N5bQMdHEGHxUoohmspQjAbSXBSkcxosaddVEQZOxJRtKkIl2CWF6biK0xFIeHuLa5U7ERb9hSe+PJCd9r2ecN9wOUUoRK3KJMfTEUhU5JLaDxUw8ba7ypIoVREDQGeN+bilkwyoq3C5NQ+dyTvCW1uQjzxZQRv0OkvnACE1LbOmektLqcIFVFDkVLNVBRyPShJjnEMulN7AUAzOtn6zjvdo4zDSRQyg+f16TYutdwpiuhhSKlmyvK5pms35cE4Bn3GUcFkVA4cSfkGSSuJyylCRFLK2BEgCPhtKBcEQZd+COxsFxXBtdflhuHyGa6pngoIU0QMsuuFEEmJvdhw7XX50FZjXbL0QTMupwgBvw1lhuHyGa6hhvIPVUQOtve1FBGDCbU7W1nMNVTb+1qYntBWVs1mVba7oS2bEFtHZQHXWGvMyUS0Qj3KLjkzvcIVFeFVNyEuuSQDWtMH7VBWrRMIQjlwBOCUMnkgmIz6zOMAoBntCBcRdhPKCl3aQeB5Vfx4Qu0utSwuqQjp4EjS05drrGUqi6WWxdURTAZ95nFASDPGQVlEuNaafNCfOyYY9YroeJt0JL8m5onP4okvA1pXwDKwi4JrKkJAqK3EDN4WSIw+46hg1CtjhlN+IY65Ymta/eUz2B4gOa2h845aAwFCykG49rosYCoKmbJ8QuOhGjpGalkAXFQRtr0NsX1MclpSRbuoI1xEIlTQANI7gGuuZyoKHXZRTEd4bYPhUjoiKU2CvWoJdQRPfJmgS90HAJpEuweK9xAXVYTKQYmAkDEnQ+BYqWVxXbjGWmNOBqIV6lGTHHldsU8vDpqQFl3aIeA51bCx9qsl1BHl4NF44kuPIOjEWkIOMwZcCxdVhKSXHx0UIRj1psJLUsviuuhO7weeVw+f4GBvuRKHDcsASULnSS8/OmgAnvjSYszJ4BqqSd9ARdQwqWVpxUUVIVztRIHfhpLRWnXegXZRkTZ7wDnckkkq2OpSU9FlQqVRxY938KVxrTXJEX3D9ui/3WdcVxG2eQuwfUwamJIcpryAcPcWX0yOhPTwoYMjBZPBVIhbMkmD6CJSJ0xGtMLBl8YTX1qu9t8eLRe7KLiyIlQOHIlIylR4iTe0SC2LK9IaJpM0za4VJruibVuAkyikwOwikiJ0Xhk3Ck98CTGcP8HrtYqIQVTQAKlluYrrKkKkVCsihwDPGa/gEswSoD+TAgCaMdJkEeFtgYSYCrLY2nLS2185cKTjr44UKkXUUDzxpUI+ZdUscV1FCNhbIB1cfRXXVEe4eykGxEkigDJ2OCIpU9FlvC1wPG3tJqZJ5SLCLWikgtc1Gy6eBoJUO6SWUM9xaUWIi45KhakkBwAU4QOlEgAp1XhbIBXGnEwAcHDOjCW4KalUmAqyBY5VxgwjPXykluUvyFcR1tfXZ2dns6wd030UEYMIlRsuwex4mOIrAEBLtB0UEYuM4F4EDkYwGZmqEkRSdGiMVDIoIgYRGne2qoStq5RKBtfEVHwZABQRdi+v31skUIS7du1KSkpSKBQTJ07s6phXX301Njb2nnvuGThwYEZGhr1EIUhl3EgAMOCgCcdiKpZ4Rwi4yIhEMKU5wPNUSJSUJUUIQhk7EvAyyOEwJbkAQEs68TtFAkUYHh6+YcOGV199tasD8vLyXnjhhVOnTmVkZCxbtuyJJ56wnzBt3gL8NnQoTGkOSL0jVEQOJlRubGUR11AjoRiuhhzWQGCOD8AT37GYiq+ADO5+RyRQhAkJCdOnT/fy8urqgO3bt0+fPn3gwIEA8OCDDx4+fLisrMxOwqjM8TK4BLOj4BpruaZ6QuNO+QRKKQdBii2ZcLSUI2FKZbEnaI0PwL3YHAjf0sQ1VCOl2jHNRnqFHH2EBQUFohYEAD8/P29v76Kiok6PFARBr9enWdDY2Nira1GB4a0lmMsLrJMa01PEVSEdHid5XQnRHoCDJhyJTPYEVEAY5RfMtzQxZXnSSuI6XL31Uk/8jkiQy3xNWlpa/Pz8zL9qNJrm5uZOj6yrqyssLPzHP/5hHnnsscfmzZvXq8uRMcO59IONmX+qPAP6JrAktLS0IPk9Tz3BkJcFABAUqdVq+/BxG35xbsBgADBkp2ubm2U4OdvR0uL0mR4CY2Iri4EgjJ4Bph7ffYPBQJIkTdvYp0hExUNtRdO5k0qvINue2VawbUgtiG0w9mbi2/BpV6lUFHUNTSdHRRgUFFRfX2/+tb6+Piio8yfVz89vyJAhaWlp1lyOiB9Xl34QCrPcb1pgzXkcjCAI7u7Sd3buA4bKIgBwjxmm7pP8tvzi7kN03v5cQ41SW0uHRNnmnPbESe+4GVPRJYFj6ZAoD1+/ax/dBkVRdlGEw8fVpe0X8s/LduKLWlClUkktiG0wVhYBgFv0UE3PHmNHPu1yNI0mJCScOHFC/DkzM5MkSbOl1B6oBicCQsZcXILZQTAlYu6ELBzmykG49rrjYIqlD5IyoxJrr+edFxiT1LK4BEyJePdlMfHbIYEiLC4u3rx5c0pKSmVl5ebNm//44w9xfNSoUceOHQOAefPmVVVVrVmz5vjx48uXL1+6dKlGo7GfPIS7Nx0aLZiMpoKL9rsKRoRrrucaawmVm8Na0nePKk5sWY4VoSNoLaQQFiu1IAAAhJsnHRYrMCZTfpbUsvR/eL2WratACiUdGC61LJ0ggSJsbGxMS0tTKpUzZ85MS0vLzc0VxydNmuTj4wMAarX6wIEDOTk5//nPf2bOnLl+/Xp7i6TCSRSOoi2VXi4O89ZOrbnncKdWB9C2J5DFjhDMJWZwrTX7w5TkgCDQoTFAkFLL0gkS+AiHDx/+4Ycfdhx/9913zT8PHjz4iy++cJhIysGjmw9+b7iU7nnLIodd1DWRSRqZGdLThw6OZMoLTIXZypjhUovTnxE4likvAIQUYZLVlGmHanBi8/5vDZfSveYskVqWfo7cJn475OgjdDzKmOGIok0lV3hd5+GpGFvRuieQ03xocxPiIiP2hS0vFFiGCgxHSrXUsrSiiI5HtIIpzeW1vUu7wvQWOTsIAStCEaRQKqKHAc8br9itnBsGAMy5RLIxjgGAahB2EzoCySutdwTRCmXMcBAEPPHtjQzvviVYEbaiwrnV9keepSXaWjRn8wad1LL0Z1qjhWX2KlRiN6H9EYx6troUUTQVHCm1LJ2DFWEruPagA2jdDobFyiRSRgQp1YrIwcBzplzcksmOyHNP0LYCxorQjpjESJmQaETKMXMdsCI0owgfSGjc2ZoyrrFWaln6LbL1E7RtC/AyyG7wPFOWDwjR8sidMEOHxRDu3lxdFVtdKrUs/Za2phPyuvWWYEXYBkHQYQOh7WWNsQeyjRzDbkJ7w1QVCyYj5RtMaGRWHAch1aBR0NYuGGMP5GkMsAQrwquIUd2mUlyE117IMGRURBE5BClUbGURDhu2E601ZeR36wGAHjAI2tpiYOyBbE1BZrAivAodFgMADFaE9oHXtZWWCBogtSwdIEg6NArw3bcbphIxWliOr0K8ArYrgsnIVBYjkqJDoqWWpUuwIryK6L3AC0M7wZRcAUGgw2LlWVqCDhWXQfju2wVZ7wjFiV+Wj3sT2gOmLA94jgqORLRCalm6BCvCq9DBEYhWsLXlOIzeHsjWQSgi2gNMZflSC9IfEQRTaS7I9e4Tbp6kl59g1LM19moA7srI30EIWBH+BYKkgiJAEBj8NrQDsnUQiiha7QHYPmZ72KoSwagnfQIJdy+pZemctk0hvvu2p80YIN+QUcCKsB2KcGwdtRcyrCljCR0aDQixFYW4+rbNad0TyNJBKIKXQfaj7e7LdOKLYEX4F9ocRXg+2BjeoGNryxGtoGQYKQMAAEihovxDBY5lK4qklqW/Ia4sxfQkeULjeBn7IHAsW1EIBEGHyjdSBrAibAcdjheGdoGRfWkJuBo2jO0BNqbNGCB3RYhvvc1hyvIEjqUDByCFSmpZugMrwr9Ah8YAQkx5PraP2RaZ20VFcLyMXRCE1h2hXN3DAED5hyKlmmuo4VuapJalX9HqIJTxGkgEK8K/QKg0lF+wwDJsVYnUsvQr5J9RC9hRZB/Y2gpepyW9/EhPX6ll6RqE6JAowHff1jhFyChgRdgRGr8N7UDbfJD3jhCnEtoBmUcLmxGXQSYcOGpTnOXuY0XYHvw2tDmCUc9WlSCSokJk2oRFhPT2J9w8eV0z11AttSz9B2fZE+DCUraH55jyAkBI/N/KGawI26MIF+PHsCK0GabSXBAEOlTWkTIiOGjC5jjLngDfepvDlBcKjInyDyVUblLLcg2wImwPNo3anDaHuaztoiKt9rFSHC9jM+SfRChCh0QDQTAVRQLLSC1LP6GtwKwTTHysCNtDegcQbp5iL3WpZeknOItxDHAiqa3h6qt4bSPh5kl6B0gtyzVACiUVEAY8hxNJbUVbG0InmPhYEXYCNpLYFqb4CjjJfMC33rY4RVURM4pQ7BaxJa1JU84w8bEi7IRW+1gJ3hbYAMFkZKpKEEmJ4ekyhw6OQBSNC6/bCmdxEIq0LoNw4KhN4HmmLB8QknmVURGsCDuh1T6G54MtcIomLFchSCo4AgSBLcduQhvQ2nJE9g5CERw4akOYqmLBZKB8gwmNh9SyXBusCDuBxqW3bYcTmUdEcLyMDXGyHaHZQ4wbE1qNnDtQdgQrwk6ggwYgWsHWVvCGFqllcXqcoqaMJdgeYCu45nquqY5Qu1O+wVLL0iNILz/Sw4fXa7l6HChnLW0hck5gFwWsCDuHIOngSNyY0CY4RU0ZS1rtYyXYHmAtV4OkEJJalp4iNknA8TLW07YCdo6JjxVh5+C3oU0QGBNbUST/JiyW0GGthdeB56WWxbmRf9OJjuCwYdsgCKKr1Vl8IlgRdg62j9kEsY8HHRSBFEqpZekphNqd9AkQGBNTjQuvW4UTpZGZwYGjNoGtKeMNLaR3AOHuJbUsPQIrws4RZy+OH7MSJ6opYwluQ2ETnKiQgpm2wlLYJ2IVTmcMwIqwcxSt9rEC3JjQGpzxVQhX7QH4bdh3+JYmrr4KKdVUQJjUsvQCOnAAohVsHQ6UswrnihYGrAi7AinVlF8IbkxoJSbnqSljCXYUWU/rniAs1okiZQAACIIOjsKBclbidCtgrAi7pNVIguNl+orAsWxFISCkkH0TlnbgxGrrca6gQUvosGjAE98aBMHp3MNYEXYJdptbCVteILAMFTgAKdVSy9I7KN9gQuXGNdVxzfVSy+KsOFcamSU4UM5K2LpKXtdMeviQXn5Sy9JTsCLsEnEfgzOK+ozT1ZS5CkJivgfeFPYZ5yosYklbYSl86/sIU3IFnKqGBmBF2A24MaGVmJytpowl2DpqDbxey9ZVIIWSDhogtSy9hg7FgXJWYSrJBedpOSKCFWGXkN7+uDGhNYh7AieqKWMJNoxbA1OSA4JAh8YAQUotS68hVBrKNxgHyvWZVvdwmDOtgLEi7A66tR8Tto72Hp5jysUmLE4WKSOCd4TW0Np0wgntoiJ4GWQNYqSMc919rAi7Q4HbUPQVprxQYEyUfyihcpNalr5AB0cBQTJVxYLJKLUszofTpZG1Ay+D+gzXUM011xNunqRvoNSy9AJpFOHu3btHjx4dGhq6ZMkSrVbb8YAZM2aMaWPVqlWOl1DkalsWTC8xlThZaYl2IFpBB4YDzzOVhVLL4ny0NaZ31ruPJ36faetA6WQOEcrxlywrK7vnnnu++uqr66677m9/+9uqVavefvvtdsdkZGR8/PHHAwYMAAAfHx/HCymCF4Z9pi1o0MnmgyV0WAxTUciU5ikGDJJaFmdCMOrZ6lJEUlRwpNSy9JG2npTYFNRrnNQYIMGOcOvWrcnJyXPmzAkICFi7du3WrVuNxk6sT/Hx8UlJSUlJSTExkjmZWhsTdl1vSc9CM+NgoZwDpyst0RG8LegbptJcMVIGkRKss20C6RtIaNx5bSPXWCu1LE6Gk058CRThxYsXExMTxZ9HjRql1WpLSjqJzlqwYMHYsWMfffTRyspKxwpoAUG21lvq8DY08fDmeT7yG2bA18y7WTyPO1pbwvNMmRgp43z51GauaQ8wcvDpZX7CL+x9B7kGkwMlkzdtldad7FXYjmsugy43Cg8f40Z8z36Xj9t1XcVJd4QSLNlqa2vj4+PFn0mSdHd3r6mpiY39yxtz48aNCQkJBoNh/fr1N91006lTp2ia7niqmpqazMxMS9vpCy+8sGjRIluKGzgAii9r8y6aAqPEAV6Ab4vIF89RRS2tRRQfPc59ms28MYYZ5eM4fdipb1UmcJVFgslA+AS1cADNzbY9ucO+uOAdBACm0tzmpqZ2BTNrjeiTHPKjHLLSgADgRJVwrIL7bCKT5GvHd2JLS4sgOMGCS5d/EQB4//BmG916g8FAkmSnbwD7IQQMgJxMbf5FZsCQdn/6s5p4+xK1u4wQl7/z93P/iDOtG8WobJ0qwrIsy7IM4zRGJ17bwDXWIqVGr3CzcuLb8GlXqVTXfHgkUIQ+Pj7mdxnP81qt1s+vfSWexYsXiz988803vr6+mZmZSUlJHU/l7+8fHx9/8OBB8VeEkLe3t22lRVGDTWn7iZpSDw8PAPi1WFiVyp2rEwBguA96aSzB8vDYn3xaHTFtn3L5MGJNEunhqAkriiRDdNnlAKCMGGQnCR30xT08Wjx9uaY6NdNC+YWIY5cbhdfP81uv8DoWACDBDz00lPjkEp9aDTfuV6wfRz4xnLBTkWmEkLu7u33ObUt0lYUA4DFwuMJGt4mmaccrQiJ6iOnPX80THwA4AX4s4Ded409UCQCgIuGBOGKgJ3o+jfvoCnm6jvpmOjnIy5Y3X1SEKpXKhue0K4bi7GYARUSch6enlady8NMugSIcOHDguXPnxJ+zs7OVSmVYWJeNWpRKpUKh6NSJKEKSpF2jaeg2t/nJKuGZVO5QuQAAA9zQfxKJpYMJEgEA3BhOrD3DbTrHv36e354nvDyWWBjn0nkpzh40aIYOi+Ga6pjSPMov5GiF8NYF/ocCnhMAAK4PQk+PIm6NIBDA0kHEi2e5F87wT57gDpYJnyaTfk7Th9jGCIyJqSwGgqRDoqSWxSoUoVcrLBo52J7Hv3SWv9QoAICXAhbFEU+PIkI1CABmhaF7DnBnaoUxP7HvX0/eN9B1577zVlWU4J498MADe/bsOX36NMuy69evv/vuu9VqNQC88847P//8MwDk5+enpqayLKvT6VatWuXu7p6QkOB4OUXExoSG0oIpPxsOlQt+Slg/lrx8N/XgkFYtCAAaCtaPJU/Ppa4LRGU6YVEKN+cPtqDZCaxYdoJxzu5LHRGXQReycif8wk7exe7I5ykCHhhInL+LOjqHmhPRuvmjCFg9mvxpFumrhJ1FfOIP7LFKF737TGke8BwdEolohdSyWAUVEolIiq0uXXdSG/YVsyiFu9QoxHigN64jyxbQb04gRS0IAIl+KG0udd9AopmB+w9xCw9xLa5amo0pdUoHIUiiCGNiYt555505c+b4+vpWV1dv2LBBHM/IyMjLywOAurq6Bx54wM3NLSgo6NSpU7t27dJoNI6XEwBKWoSHUhUFdDApsMPZkqdHEbn30E+PIjp1BozyRcdvoz5PJv2UsKtIiP+eXZ3OmVzQjy4IptI8cM6FoSXNDOzjogAgMyv3RJUQoIKnRxF591Bbp5LxPp1YwOZEEGfvpK4PQsUtwtRf2dXpnAuGULXmjzr5rQeA3BayyiMcBOGHkwW1RkjyR58nk5fvph4fTmg62NE8aNg2lfw8mXSj4IscfuxPrOg9cTWcNGQUJDGNAsCiRYs6hrR89NFH4g9JSUnZ2dkOF+ov1Bnh1UzurQu8noUx6pgoU/nOkYWhY6+RFYcAFsYRN4QTT53kvsjh16TzPxQIH1xPTgxyqt6k1sFWlQhGPekTSLh7SS1LHyloFj7I5j+8yPs3Rx4EGGnKf+M68h9DOnkDtmOAGzp0CyWaSdek80crhG3TqGAna0JlFU4aNGiJ2Qa+EWLmQcE9moK35sRf34MpvDCOGBuA7jnAnasTxv/CvjyGfHy4C5lJ+ZYmrq4KKdVUYLjUsvQaF7pPPUTHwisZfOx25pUM3sDC/Ghi5thYAHCr7mk+WbAatk4lD9xCDfFG5+qESTvZhYe4GoM9hZYTTl1TJq1GWHiIi9vBvpLBN5ggZEA4TyuDjdXLY3TX1IIiopl0z01UsBr2lwkJPzD7Sl1oc+C8ewJegJ1FvKUNXD0gBgAe9CroiRYUGeqNTt5GPRZP6Fl44gS38BCndZqQT2tpdRCGxbQLsXYKsCK8CsPD+xf5gd8yz6RyDSa4MRyl3UF9O4MMiRkIAKZeJlZPC0Hpc6nnEgiagC9y+OHfM1/muISd1ElryuwpEa7fyY75if0ihycAFsYRZ+6gDt+mUIVEgSD0tv7yzDB0ei41ORhV6mH2HnbdWZfINBU4li0vBIIQUzCdBT0Lb5znY79lb/uDO1ElBKphTRJZci+9eIo48XtXX0ZNwZsTyM/MZtKfXcVM2moMcLbiaiJYEbZi5CB5F/vPY1y5DsYFoAO3UL/fRCX6IbjamDAHepnXoqbgxTHk2TupKcGoUg/3H+Jm7mYvN/bzWeGMe4KTVcKcP9jjlYKvEp4ZReT/H/V5Mpkg3v2+tmkNc0MHbqaeSyB4Af5zmrvpd7ZSb3vJZQVTli9wLB0YjhROE/EvANxzgFtxgitoFgZ7oQ8nkYX/R/8vkfBXmVvV5/d24gPAojgidS41whdlNwjjf2E3Z/f/RbC4YhCr0zkdWBG28uxp7s8qIdwNfTeDPHE7NS3k6u6e9PIj3L15nbZvjQmHeqNDt1KfTiH9VbC/TBj1A7smnTdythNdVrRV4XEiL1ETA/cd4hgelg0hiu6lXx57NSAQzBVG+tSRhyLgxTHk7zdRQWrYWyok/sgcKOvPyyBnjBZ+L4vfWcT7KOHnWWTWPOrBIVdD4Qg3T9I7QDAZ2JqyPpxZNJP+YwihZ2HZUe7eg1xTvzaTtt59vCN0XvaUCK+f42kCvptB3hXdSUK0IkxMKupj2UkEsHgQcXEe/bdBhJGD1elcwo9sRX/cH7A1ZbxeS3r5kZ6SlUrvLf88xuU2CUn+6K2JpFsHR6AiLBqsq788KwyduYOeHorKdXDDb+zqdI7rp9qwdU/gPIrwfL3w75McAGyeRN4WSXSc+a1l9vrakVRNweZJ5FfTSA8avsnlx/zEptf0z3vPG1rY2gpEK+igAVLL0hewIoQqPSxOYQWANUnk+MDO3bxtZSetqkbvr4ItU8hDt1JDvFF2g/Do8X64KzSVOJmDcOsV/ssc3p2Gr6eRis5mAx0aAwix5YUC1/fssBAN/DGbWj2aBIA16fys3Wy5rs8nky/O5R42cHDvAc7Awd8HE/OiO38Ttq6ArevQe28skTaXSvRDVxqFiTvZd7L6oZmUKc4BQaDDYoCwdaE5h+DqilAA+NthtkIPU0PQ0yO7/G/YsB/TlGD0x2zSk4bv8/nv+125XsapasrkNLUuR96ZSMZ1URwLKdWUX4jAsWxlsTXXIhE8P5rYezMVooGD5ULCj0xaP9sc8BxTLlZad45ImZUnufP1wmAv9MaELt/dtpr4cV7oz9uoR4YRRg6WH+cWHOxvRgFnjAywxNUV4dsX+N3Fgp8SvphKdlMjsi1exjb9yQa4ofXjSABY/idX37/6n7eGUDuDImR4WHCQa2bg3lhiUbcl8druvg2WQdNC0Nk76FlhqEoPCw/1q3oLTHmhwJgo/1BC5Sa1LNdmZxH/bhavIOCraZ3Yw83YcOIrSXhnIvndDNJLAV/n8h/3r/AZZ88fdWlFmFknPH2KA4CPJpPhbt3lvtCBA5BCydZV8jrbtD5YNoSYHIzKdSC6KPoJgiB6U5zCOPbcaS61Woj2QO9ffw1jTuu2wDr7mJlANey8gRrshbIahFcz+s/b0IkKzJbrYOlhTgB4aSw52r+7iU/5hRAqDddYy2sbbHLpu6KJzZNIAHg6letPUcRtO0InmPid4rqK0MDB/Yc4AwcPDSXuiLrW/4Eg6OBIEASmLN8mVycQfDyZVFPw6WX+j/6ScM3WVfK6ZtLDh/Rq305EbhwqFzad4ykCvpxGel2rKKb18TLtUJKweTKJAF48y2U39JO7L26b6DC5K0JegEUpbLUBZoWhFdes/IIQFRINYhKFjbg7hpgTQdQb4ckT/WQRLBj1bFUJIikqJFJqWfqI6yrCFSe4c3XCUG+0aXyPvLu2tY4CwCAv9N9EUgBYdrSflJ9gSsT4abm/CqsNsOAgywuwZjQ5oYvwKEtsaBo1MyUYLR5EGDl46Fg/cRc5i1V80zl+b6kQoILPk6medMxqXQb1NXC0U96ZSLjT8FUu/2txf7j5ptI8EAQ6NBqR0tTstB4XVYQ/FfIfXOSVJHw1jexh6Szb2sdEa4uc/QAAIABJREFUVo4gkvxRQbPwfHp/WBuaikXjmKzNIwLA0sNcuQ6mBKOnR/Xo+Se9Awg3T76liWuosaEkG8eTgWpIKRe29YOSQ6KxBCFa3vnU6TXCf05zCOCTKWRIzyr5W5NI2hUR7uh/iSQAPHKsP7SqcHYHIbimIixtEf5+mAOAV8a2Vg/pCW2phLZcGFIEfDKFpAl44zx/3Pkb9zjFfHjzfGsC9RdTSbLHNRHt8Tb0VcKGcSQArPiTq3byUrRMZbFg1FO+QYSbtR1Z7UcLCwsOciYelscTcyJ6+urrc2mh7lkxnEj0Q4Va4cUzTr8IdvaQUXBBRcgLsCiFqzXCjeHosd7UhrdJPllHRvmiJ0cQvAAPHXP6GEL5z4fz9cKqVA4APp1CRrj3ojQwbYdlEAAsjCNmhqFaI4hBW86LU6yBHjvOXWoU4n3Q+rG9yHWjQ6KBIJjKYoEx2VAYioAPJ5Ekgo3n+LO1zr0IbqspI+u73z0upwhfyeT3lwmBavgsmepVjXSkVFP+oQLHshVFthVpzWhyqDc6Vyesd+YYQq6+itc2Em6epE+g1LJ0jo6Fu/dzBg4eGUbcHtm7J18RGg122BYAwHsTSRUJn13mnbr6WlshBfnaRb/P57dc5lUkfDWNVPfGk4VoBRUQDjzHVtp44o8NQA8PJVgelh114taVAmNiq0qAIOmQaKll6TuupQhPVQvPp3EI4PPkvnSJs0l9mY4oSXj/ehIBvHSWy3LaGMK26Hn5Oggf/5O72CCM8EWiQbJX2CNeRiTOCz2XQAoA/zzGOW8FWqa1H69M736RVvjHUQ4ANo0nR/r2ukmQzcOGzawbS4a5oVPVwodOm1bIlOYJHEsHRyD6WuHXUsAL0JNotM4V4cqVK3Nz29/1vLy8ZcuWWS+ZVDQzcN9BjuHhieHETeF96ZjVah+zXSC1meQQ9OAQwsjB3w8769pQ5saxHfn8x5d4NQVf93JDIEIFRyCSYmvKBKPtk7+eGkUM80aXGoWXM5xTEwoCUyJWWpfjjpAT4P5DXL0RboskHh7Wl6V/q4fYDssgTxremkAAwKpUzkmr7sl8BXz73h61wer8sfjiiy8qKyvbDVZWVm7evNkGoknEo8e5nCYhwQ+93BsPgSUKW2dQWPLKODLMDf1ZJThpKUI5R88XaoVlbRuCeJ++rIEQSVFiIml5gW1lAwAFAR9MIhHA+gzeGdMK2Zoy3tBCevuTHnKstL7uLH+kQgjVoE8m9zw66i/Yzx4AAHdGEXMiiEYTPP6nUy6DWlfAsowW/jKH31XUownVi/VRVVWVj48cH/Se8FUuv/UKr6Hg62mksq9VYVvnQ0luH/qTXRMvBbw3kQCA505zBc3O9zZk5Fpum+VbNwRzI4mHh/bdF2CneBmRycHo70OcNa1QzkFSxyuFF85wBIKtU0n/vjZJbJ34fWpM2BPEtMId+U6ZVmgqkekKuMEE/zrJAUBPlj9/MRLt27dvx44dANDU1PTqq68GBQWZ/2QwGPbt2zdmzBgbC+sQiltaayu/cR05xLtvi0IAANLLj/Tw4Zrrufpq0tf2ISG3RRL3xAjb8/ilR7h9N/culkdauMZarqme0LhTvkHXPtqxvHCGO1ohhLmhj6dYVRdfERqts9u2AAA2jCN3FfEp5cJnl/m/DXIm571sreKNJrj/EMfy8PQoYkaoFRPf00ec+GxdJeUXbEMJRSLc0ZrR5L9Ocv88xl24i3KnbX4FeyFwLFteCAiJ1mNZsSqVq9TDpGA0vAde4b8owqKion379gGAyWRKTU1Vqa6uoNRqdXJy8gsvvGBzce0Ny8M9+7l6I9wVTfxjiLXvFzoshstOM5Xmqu2gCAHgrQnkvlL+QJmw9QrffSVoWdFaUyZ8ICB5qe8jFcK6szyJ4MuppJ/SqlO1bQvspQi9FLBxPHnfQW7lSe7WCCLAaXq8mwspyE4RPnyMy28WxvijtUnW9gYSJz5TlmcPRQgAjw8nvszl02uENenchp7VupIDTFl+a6SMsvfBh/bkRJWwOZtXEPDhpB7Zw//yql2yZElubm5ubm5sbOyPP/6Ya8H58+e/+uqr2Fg5GoK758Ns/s8qYYAbEmvdWomdAkfNBKrh9QkkAPzrhDPV5JVnTRmGh78f4TgBViUQySHWamg6PBYQYsrygbeXE3dBLHFDGKo1wr+cqgpla5VRmVnFt+fxX+fy7jR81UWnyV5hw0ZsnUIi2DyJJBG8ccGZ0grlaQwQAJYf53gB/jWCGNYzE2DnD8ilS5fGjRtnU9mkod4Iq9M5AHhrIuFr3YZAxB4VRtrxwEDipnBUa4THnMd5Ls/58MFF/nKjMMQbPZ9ogzUQoXYnvQMEk5GtKbP+bF3x/iRSTcG2HH6fk5RiZ+sq+ZYmwt1bVpXWDRw8fYoHgNfGd9lpslfYL3DUTJI/Wh7fmlboLI5ikywn/te5/OkaIcwN/afHE7+7lVJFRcXZs2fT/oot5HQca85wNQaYHorm9jKBuivsGj9m5sNJpAcN3+bxPxY4RwRpa8ionOZDMwMvnuUA4NVxBGUjG7P4NrRTvIxIjEdrKfaHj3F6Z6hCybRGC8trO/jmeb5QK4zyRUsH23bi2/HWA8CLY8goD3SqWnj/onNMfKZYdt2XDBw8m8oDwItJRA/rSENXivDcuXMTJ04MCQlJTEwc81dsJa4DyG4Q3sviSQSvX2czmzsdGG7bxoSdEuGO1o0hAeCR407QuZfXNnCNtYRKQ/mHSi3LVdad5ar0kByCel5V8poowu2+LQCAlSOIUb4op0l4yRnSCsUOlLJyENYb4dVMDgA2jO+u23avaJ349VV2nfhuFLw7kQSAZ1O5khbZ7wp5jinPB4TocBlFyrx1gS/UCiN90cLexFh0rjHvvffeurq6t99+e9CgQQThNCEb7fjXSY7h4aGhRB9qSXQJQdDBUaaiS0xZvnLgCJudtgOPDCO+zeePVgjPpHIf2sK7aT/E7aCsImVKWoS3L/AIYKNN4w4cYBiHtiqUE3eyr2bw98b21MkhFTI0jq1O5+qMMHsAmhVm24kfaSq6bO+Jf/MAdEcU8WMB//if/Pap9ruODWAqigTGRAWEESo3qWVppd4Ir2T0ZQ3UiSJsbGzMysr68ccfb7/9dlvJ53j2lQq7iwVPGlaPtrEWocNiTEWXmNJcu84HsXNvwg/sR9n8/Ghipg2ntK2R4atwVSqvY+G+gcSYbvuP9xZ7R0yYGR+IHhxCfHCRX3qYOzanR23zpIIplVc+dV6z8MFFnkTwSl/rZnQFHRZrKrrMlOXZdeIDwLsTyQNl/A8F/C9FcLOMjCztYeRXYFZcA90Ujm7o5Quzk90eQggAQkNlfAeuBcvDihMcADw/mgyydVivY7wFADDYCz2bQAoADx6VddOyVuOYbF6FZ2uFr3J5BQFrk2xszKD8QpBSzTXW8tpG2565I2KloRNVwieX5Osuassf9ZBP/uhTp3gTD4sHESNsaAcCAAcug0I0IOZ7PHESNcu4ZbfcCinkNQsfZvMEgpd6vwbq5E3h6el5yy23/PLLL7aQTRrev8ifrxdiPdEjfSot2D1tjQntPh8AYNUoItEP5TcLa2TcuVd8NchnYbjyFMcL8PhwIsbD1juptsRhu8bLiHjSsGk8AQArT3FlOpm6i9ryR2NlYhU/WSX8kM+rKXh+tO0nvsNuPQA8OoyYEIiKW4QXMmTxj+0UucWKP32KN3Lwt0FEYo+7zJq5ahotKyvLysoSf77vvvueeOKJurq6G2+8UaP5SyPnmTNnWimuvak3gqg2Xr+O6HM1tW6gQ6MBIbaiUOBYRPa+fnNvEDv3jvuZfe0cf3eMjQ19NkEw6tnackTRVGC41LIAAOwqEvaVCj5KeGaUXRyrirAYU/4FpjRPNXi0Pc5vyT0xxJc5ws4ifuVJ/stpcvQTm0ryQE57gn+d5ASAlSOIAW62nymKsBiHTXwCwQeTyDE/se9dIhYNEZLkN/FBEMTNgEzu/skq4Xsr1kBXb+eePXuWLFli+bf33nvvvffea/cBwT7V9mzI8+lcrRGmh9oyXNASsTEhW13KVhQ6wDWS6Icejyc2neOXHuZOz6VomYUumUrzQBCo4Eh7vxp6AifAM6kcADyfSNokbbQjrfYxO8fLmHlnInGwnP8ql18wkEiWX6HfNgehLIIGv8vnj1UKgWr410i7LBqQUk35BbM15WxVCR0SZY9LWDLSFz06FF6/AOLEt1UKkK0QO7GQ3v6Em6fUsgBYvQa6+vK68cYb9+7dazvBpCG7odVV/obtUiY6QofHstWlptI8x8QIrE0ify4UMuuEDZn8swnymhCiSpCJg/DjS/yFeiHGAz1kRXHt7nGYo0gkwh39L5F86hT3yDHu1Gzk7pir9himNB/kESnD8PDsaR4A1iaRnnar1UmHxbI15UxJrgMUIQCsTkQ/FgoZdcI7WfwTw2U28UWHiAxuPdhiDXRVEYaGhjp1gIyImDLx8FDbu8otUYTG6M8cdtjbUEPBh5PImbvZF89y9w9EEe4yspO0zQfp9wRaBlancQCwfpxdTOIidEg0ECRTWSwwJsd0Il0xnPgyh8+oE145T2y63gEX7Cm8QcfWVSCKpmVgFf/gIn+lURjqjZbas145HRqjzzjKlOUBzLDfVcxoKHhtLH/nQeK/adydUXKc+AoZ1No2r4HWjO77GkheqwwrOVAm7C4WvBSwxuoau93jsMBRM9ND0b2xhJ6F/6bJK4awtc6kDBThxnNchR4mBKJ50XZ8qhGtoALCgOeYikL7XcUSioDNk0kCwduXqPP1MnJMMGV5IAjiykBaSRpNsPYMBwDrx9qsilCniBUVHBMoJzI7TJgfTWgZeOxPeU18k2wm/vtta6C/W1FFqHO/zg033FBXV9dx3M/PLyoq6s4777zxxhv7fEk7IQA8dYoDgKdHkfau3H/VPiYIDouXWzeG+L6A35bDrxhOJPQ+LMou8DxTUQgI0SHR0gpSphM2ZvIAsGF8H5uv9hxFWAxbWcSU5Tmsrti4APTwUOLdLP5fJ7g9s6X3xYqIaTNyeBW+nMHVGCA5BN1mo0qKXdFWcdRxK2AAeHMCuaeE/7mQ319mVTMp2yL6RCS/+40meOEM9//snXdgFVXWwM+019J774USWiAh9CYirlgoUizrqosIusLqqlhXv0UURVaKDdRFxbYoa1eUKj0kAZJAKOm919en3O+PeQkhBAjJtJc3v78ew2Pueczce+49FQDW9K2SYvf/NCoqqqioKDc3V6vVhoWFEQRx4sSJ2tpakiR/+eWXmTNnvvTSS70fUxy+KOAy61GYG7Y8SfRjLt+YkLMYmaZascfqINoD+9tgnEPwuGJaE9C15chuI30CcYPM3qsXMzkTA/Ni8PFBoq8UErsJef41ivDRoN8q0G+KKcatkKVQpCpC3UL4BOJunpyplW1pEHusDkIM8MwIR0caThkPnzO1ss31mEYne1XF1Scde6A+hkZ2/49jYmLi4uIKCwsPHTr03XffHTt2LC8vj6Kou+++u7CwcMWKFatXr66sFLEG//Vi5+DFTA4A/nU9hVb7gtj9mLrluWTCTwt7q9Cv5YqYEO1LocwO87xm9PEFjsJhdYoUpn4JGhFcjo8WnhjMAcCTx5TSmkAh7mG+itBdQlcRuhJUaAxIPvFXDMEj3bFTjeizAkUYSC8+elnzR8tNaNMZYfZA3Swcdrv9tddeW7duXefYmcTExJdeemnVqlUkSb722msEQRw9erSPYwvIO2e4glY0yBu7N14ir6csxwJvDTw7ggCAx4+yjAJmhEKWQv5/Y9lgXJCGO9eELzBNVxSAtKlESxOZOE8suxF9ckEBz573kmIYrxjkQrwqQldCmv4zXdAR8K9ROLRrfdnhHYQauSf+SuH2QN28PfX19W1tbd7e3l2ue3t7FxYWAoBWq42IiDAaRazCfl202OEVR8MdQrJsG1nmAwA8MhiP8cDymtEXJfJnWCshUmZXBfq1HHlp4PkREv2H4O7ehIcPZzUzjTXSjMjTsdy/kCn/asjHzZK+wfIWXP7HMZZD8FiSCFWEroAmNAYA7FIlknZwTzye7IdVmNCG0/JvgxymIFlDRrPq0RcFnI6AVULsgbq5hb+/v4eHx+bNmztf5Dhuy5YtsbGxAIAQqqmpCQgI6PWohw4devDBBx988MGDBw92+4Wqqqonn3zyrrvu2rx5M3ethuCvZzvMxLMipTuny2IaBQAt4TAAvpJLyb8aVsg8HzgET6azAPDMcMJf5AipzkicVt/Bojg8xR+rMKF/58q8GirBQfhzGdpdiXy1DjOJNDh2wOVST3wcgzfSCAB47RRbb5V48K4oIU6K3wP9LQmPFmIP1I0i1Gg0zz777MaNGydPnrx27dqtW7e++uqro0aN+vHHH1988UUA2LNnT1tbW697E2ZmZt58880pKSmjR4++5ZZbMjIyunyBpukpU6YYjca5c+du2rRp1apVV7kbbfBfn8thAK8KXWz+6lABUvQn65YFcfjYQKzSDPKuhpyxmW1rwnUGGQsuf3KBO9mAwt2wv4kfIdUZWQzjANDhDnntFFttkXjwS5DdKs4ieDqdBYAXkgkfcaoIdQsZHIkRJF9XRbpRAQDghlDs5gisI1dELhBDM7XlgOMyxor/WIr2VglZSbH75WPlypWbN2/mj2X333//888/jxDasWPHwoULAWD8+PGNjY29PhFu2LDh4YcfXrp06ZIlSx555JH169d3+cL333+P4/g777wzd+7czZs3b9y40Wa7Ynfa6pF/NjEwJwYfGyit25Z/DxCS/ljQofXXnGJr5VsN7WXt/Xdkcph3ZFW+mipRhFQHssTL8PABckYa/k/WOuyyFxb56ByX24RiPbBlIhTWvwoYQZLBUYAQXVUs5bg8r48mCMxRPUD60Xn4aqtkQBimkXAD0lkAzrEHelG4SopXfIcWL158/vx5s9lcVFRkNptPnjx5xx138H+l0+ku9yD2nKNHj06ePJn/PGnSpMuDbo4ePTpx4kS+G1RaWprJZMrPz7/S3eweoaRU4YJdkMs6CgCTQ7A/hXFtNLws395QduPYv3O5chMa5Y/dFSf105e+okJn+JSpLee4s82yrYZ2WQuLmBj4ZxYLAK+m4hrJpz4VJl0bii4M8cHuT8RpDp7JkM0a5Hj08k38j85zZ5pRnKeQe6BrbKT1en10dLRQg/FUV1f7+fnxnwMCAqqqqi7/Qni4o2gThmG+vr5VVVVJSUmX36qpqclksgad/+nh2Rv4K8uWLZs5c6awAl8Jzj8MAMzF52CUDHFDKxMsv1V5bznL/TXGmuAhw4JoKTkPAJx/mMRhUyaTCcOwOiv22kkKAPu/YXazSXKficGbN4y31dVgeomiRUwmE/8hgoQ/x5AfFRD/OGL/cqIMDeu41kbO2Izp3CyUHsR/+larlSAIirpYPuvVXLLKTKT4cTcH2qQP2kN+ocBP/OFTRB2IaafzxacGwuf5mh1F3K5i2xh/GdShpeQcACD/cFEnfsfb3vU6g72YQQFg/xxqt5ut9h7cSqfTkeQ1NN3Fvz537tyePXvGjBmTnJz88ccfm83mbv/B0qVLezD0NcSy2x3yW63WLm2eAECv13d84Urf4fH09PRqyvn3wpHeNzzDX0lKSrrSlwWHjB5oAUC1ZZKN2JlhAeyDidj7Z9HLOdod02U4EBtrSgHAEDVAI+3PZ1nWYDCsPcW1MeiWCJgZLWGQTCfMwVH20vNkc7XWT9x+5R1wHNfxpq0aDdtL2Z8q8IxW/aRgqU3TtpIzAECFxRrcpNgE4DjeWRFWmWHDORYA3kwj3QyiFdi+MmTMIAsA1Ik+8XktqNNd8obHGeCJody/TqIXszUHZuHSuyUstaUAYIgeoBXz53d+2zvzehZXY0VjA7G7Buh6+Ntx/NrL40VFePjw4WXLlq1evTo5Ofmpp56qre2+ZkrfFWFERERJiaNOY2lpacfhr4Pw8PCcnBz+c1tbW3Nz8+Xf4SEIIipn251b/95HkXqHNjyO70+GIU76JkQ4jv/fKPKLAvq7UnSoFpso7WqIaDtTVwE4oQ2NwXrwngkIjuMX2rAt5xCBwZrRJC7DUgAAQIXG2kvPs1XFeMJwaUbEcbxjSoe4wZPD4MVM9qnj6NjtoleV6wJTVQQAmvC4niwxfQdvh//jyydZIw1zovFJofJkEGnC4wCArizGAUDM/4EuP7yDp4bjH5ynj9SiHSVwp5iVdbsBIbqyCAA0YeI+/W5/eKUZrctFwPtKBZ34F0e65557WlpannjiCQAoKChouQJ9H3Lu3Lnbtm1DCCGEPv3007lz5/LXt2/fXl1dzX/h999/5z9/9tlnI0eOjIyM7Pu4goNpdGRgOGIZRqr6y13oaDvyj2NSFxuhq4qBY6nAcGk6MHTh6XSO5mDxQDzJR7bCFlS4PImkHfxjKB7hhh2vQ19JXm1ExrSZvGb0n/McicMqOcICeHCDB+ETiOxWpl6e6lruFLw0koD2nuxSwjbVcWYj7u5NePlJOjAAdKqkOEHoff/Fl4miKE9PT41GAwDu7u6eV6DvQy5durS+vj41NTUtLa26uvqRRx7hr99///38QTApKemBBx5ISUmZOXPmiy+++Oabb/Z9UJHg+/DZJU8q6uDJoXi4G5Zeh74uknQ1dKTSh8sQNHioDv+uhHOn4J8j5Swp4AgclTxmuIOOZtzPZEi9GjoKi8jx9P9xjGU4eHggPshbzuJeGvniZXgeHIAn+WBFbei9PEknvr0iH2R69KJWUrziHVmW/f3339etW7d69WqHHHl5ZWVlfR/S29s7PT397bff3rhx4/HjxzsCUM+ePTtx4kT+87p16/bu3bty5coLFy50XFQg8kYPQqfVUOK9oVxnAgTwz1MkADw1jAjWSzz4JWjCYgHD6KpixMpW1+D+RDzZDytuQ5vOSLcaIruVqavACJIMktpOs68K/VyGPCh4PlnmskpyJZJ2QGDwWioBAC+fYBuvmFwmPDLmj/KVFJcOEqWSYveKsLq6OjU1dcaMGStXrnznnXf4i5s3b160aJEgoxIEkZaWlpaWRhAXX+jw8PDObuGEhIQpU6Z4eXkJMqJIOOxj5VfM7pCA+xPxIZLvDe0yzYcvC7j0BjzUgD0+VOZWmphWT/oFO5KLZQLHYHUqAQCrTrANUq2GdGUxIEQGR2KkpIEqHIJ/HGMB4NkRRJCseyCQNZG0g1mR2PQwrMkGa05JtwWWq7ga32nAWwMviLMH6n41Wbx4cUtLy5EjR3bu3NlxccGCBUeOHBHETdhv0ITHA68VpK2/3BkCgzWjpd0bIuQIl5BWEdo5Rwb9v1JwNwV05VPCajgzHLsxDGu2w+qTEq2GDqu45EvhZ+191h6TtopQtzhMQfIZxnneGE3gGLyVyxW2SbT+yHIi7NgDPTNCrEqK3bxSJpPpl19+eeutt8aMGdM5bicxMZHjuPJy2fa/CgR38yS8/ZHNIpfbnOdPEZLuDZmGKs5qJrz8cPfe11XoBRtOcwWtKMkb3Zcg/1II8lUc7cIbaQSOwabTXH6rFKuhXY5CClYWXsjgAGB1itRVhLqF9AvGdQa2pYFta5JRjBF+2KI4vKMJndjwheYxSkMFdh/GLxKfXOCy6lG4G/aoaFWEurlvS0sLy7Lx8fFdrrMsCwBXqXbmmlBhfFMemVfD11IJHIMNp7lSo+iroSy7wnqr49Dzr+GM1OkCV0CuDiRdGO6L3RuPdxyXxYaWowXPpjwoMaIRftg9UvVZuwbt/af4XAIZeSUF1xGOtuRij8W3HqOCowGXzkdrYRxqXtRKit13nzAYDMePH+9yfffu3QRBxMXJ3IVVafABVHZZ3YQAMMofWxSHW1l4XvzaS7L4CZ5MZ5tscFM4Nj1YzhqbnZE9dLCDf6XgehK+KuDS60ReDRGiq0pA2qdfboZXswEAXh8tbPJYn1DINijKHXssCecQPHlM9Hkhyw541Um2zIRGilxJsfvuE4sWLVq5cuXevXv5gp8IoZ07d/7973+fM2eOwqNXpKc9n0z+1fC1VFxPOlwpog5kL5d6PvxRjT4+z2kJWD9W/i6MHRA+gbibJ2dsYVsa5JUkwg1bkYQjgBVHxM0oZeoqkM1CeAfgbgJkUvWQx48TbTTMi8FvDFOMGlRA4GgHvOdsbxX6sVTciS+9IjzdhNZmczgGG8eKuwfqXseuW7cuLi5u2rRpN998c21trZ+f38yZMwMCAjZt2iSiLM6JJiwe2lsxyAtvQ+9wLIsHfyLUSNV5wM7BwwdZBPBCMjFAkh70PYcKiQbFrIZBejhSi74rEdEkIH3Tif8Vcz+UgScFb41RhlG0nfZQKfl3wN7tXamfTGcZMe1B7XX2JXr6HIIlB1k7Bw8PwscFiTvxu3+3PD099+3bt3379kWLFs2cOXPWrFkffPDB8ePHAwMDRZXGGSF8A3GDB2dsZlsb5ZYFnh1B+GlhXxX6pUysvSFnNrLNdZhGS/qHijREF149yeU1owFe2D/kTpm4HIVEDwKAB+WILOfL7oiE3bEHkqgRXRsNjx3hAGDVSAhzU94eCCfo2nJE96Tys7gsG4wneGFnm9FH50V79hxLV5cAhlGh0WINcSlbznGHalCwHl5JEd0OdMWVhSCIefPmffDBB99///0nn3zy4IMParXydJ9SPnI1rb4cb40j1/iJY2LtDR0O89AYUassdnChBb12isUA3p1AaBVkFnWgHPsYACwZiA/yxs63oC1nxVoNHbkTUhnHnstgy01olB9aPECaAa8DjNJQgWHAsXR1sdyyAIXDKyk4ALyQybaJ04+ErilDtJ30C8Z1UlRar7VizxxnAWDjOMJb/DKOittiOyOOeJkK+a2jALBsMB7vifHliMS4v8SRMssOs1YWHhiATw1R1oGARzlQAUt0AAAgAElEQVTxMgBAtq+GL2WxrSKthpVFINXTz6hH75zhSBzeHoMUEifchfZ4GZkDR3nujMHHB2G1FngzRxTPSPvEl8gY8FQW2WSDmyOweZJUFb8kHPWOO+64vDtgF44dOyamPE5Je30ZRayGGhxWpeAL97AvZnIL44RPPJeypsyn+dyuCuSndVSTUiBkcBRGUnwICaaVu94JwOxofGIwd6AavX6KXSW0QYkztbLN9ZhWL4FVnOFgyUGWRfD0MHy4j1LihLtAhcVB5l66PB/gJrllAQBYm0aM+555PZv76wA8XGhLspTu4Z3l6JtS3EDC2+MkmviXKFuLxWLuRHp6elVVlflSpBHLuVCOaZRnfiw+LgirNKN1OcIfCukKiSJlGm2OqJ9/jxWrnETfwQiSCokGhOzKsI4CwNo0AgNYlyt8RimfI0SFxgIm+gHtrdNcVj2KcsdEKqklCJqIeACwl1+QWxAHYwKx2dG4hYGXs8Sa+BIoQjMDyw6xAPB/o4gYD4lMAZcowp07d+a0c+rUKQB4/fXXcy5FGrGcCyowAtNomcZqzixDq/rLwdpXw9ez2WqLkHd29JzCMD5aUlSeSmdrLTA5RDE51FeACo8HALpMKavh6ADszljcwsA/hV4N2/dAohsDSo3o5SwWADaNI5RQS+9KUBEJgGF0RSFwSjmzvpGGa3D4z3kut0nobZBUT//lLLawDQ3xRlLW0lP0EuM04DgVHN3RslIJjA3EbovCjTT8X5aQU5SpLkUsQ/qHim0GPFiNPjrHaQl4b7wy3UMXaa83qxR7AAC8loprCUdhKgFvS0tVXO3Rw5yRhoVx+KxIRT98XOdG+gUj2k7XCNCWRxBiPbAlg3AWwdPpQk58tqWBMzbjenfCO0DA215OTiP6dy6HY7AhlaEk1E6qIhSG9rR6RcTL8LyWipM4bDnHnW0WbDWUJmjQzsGSgywCeGY4MVDWtnM9gYpQ1okQAGI8sGWDcA4BH3cnFNLkU28v4n4o5bw18O8xyjWKduCwB8hdWKozLyYTXhr4uQztrhRw4hcCv8qJaRXnECw+yNIcPDoYT/WTtM+iqgiFwXEsUIybEAAGemOLB+AMB4sPskKVG7HzQYMiL4Vrs7kzzWiAF7ZyuBO8n1RIDEaQdE0psiuoDO/zyYSPFn6rQDvLhXn2joZTvPFDNFrssPwICwCvjZa532QPaZ/4ClKE/jpYOZwAgCePsZxAE1+aliPv5nHHalG4GyZ4nNc1cYKFxilQTqG1zvwrhQhzww5Wo9UnhdleSRApU9CKVp1kMYD3FJk4eDkYpSGDI4HjlGMYBwBfLTw7ggCAvx1hjUKkUvAtiMmAcEwjYj7xsxlslRnGB2GLBzjH0tTuIVaQIgSA5Ul4pDt2ogFtPC3MxJeg5UilGT2XwQLAhrG4h6SdLgG6pE/89NNPJpOJ/4wQAoCjR4/il+ZNz58/XzLhnAgqJAZwgq4uRbQdo8TP/+wZflr4eDIx4xfm/06wN4ZhYwL7ataQoMbSskOshYH7EvApikwc7BZNeDxdUWgvz9dED5Rblov8bTD+WT53sgH97Qj7n0l93VNIEClztBa9l8dpcHh/goKKa18dTUQC8B5ihCQIpu0hehI2jsVv/519+jg7JRQb7tvniS/+019+hGuxw+1R+OxoGfZAlyjCZcuWlZaWdr6yfv369evXd76iKsJu4Xt00dUldHUJPzcUwg2h2BND8Teyubv3sifmkJ592GqxzXWcqRV38yS8/IQT8BI+L+B+q0B+WngjzRkOg+20588oyE0IAFoCPp9KpHzLbD3PzQjDFvWteL/YkTIMB0sPsRyCJ4fjST5K0SjXBHfzJHwC2aZapq6ClLZL39W5LQpfOgi9m8fdtYc9fgfZlwZGyG5l6iowgiSDo4QT8BJ+KUNfF3FupGwVZS/579m2bZvFImi4vStBhcfR1SV0RYGiFCEAvJJC7K9C6XXoscPs1sm9VzBiR8q02OHJYxwArE0jApSaONgtjmOBkhxFPIO8sTfTiKWH2KWH2LGBWHQfsrLETiNbm8OdbEDxnthzI5xpDwQAmvB4S1OtvTxfUYoQANaNIQ7VoOxG9MQx9t3xfZj4lcWAEBkciRGi5LKYGXjkMAsAr6QQfXlF+8IlP2zixImyCNE/oMLjIWOPouLHeCgcPptKJP+P+fgCd1N4708G9ooiENNB+HQ6W2lGk4Kx+xKdwz/UARUWBzjOVJUghsZIyf0bV+XhQfjeKvTfQu6efez+WWQvk1HaU4NECpcoMaJVJ1gAeGc8oVdw4mC3UOHxlpzDdHk+jJwityyXoCPg86lE6nfMe3nc1BBsfmwvp5XYkTIvZLJFbSjFH3tUwsTBLjjZiqNkeA2hqMDRDuI9sbVpBAAsO8SW9LbgiONMIM58OFaLtpzjNDi8N0HpiYOXg2m0VGA4Yhm6qlhuWbrhvfFEpDt2qAatOtHL0AmmsYazGHF3b8LTR1jZeB45xJoYuCdeWR0He4ijvozC4mV4knwwvjzhw4fYXlcaEjVSJrsRbTzNERi8P4GQcearilAw+CQburIQOEkzYHrIkoH4nTF4sx3u2dfLbArHxjBc+BMhX1iSQ7ByOD5I8YmD3aLAfLIOfLTw6RSCwOD/TrD7q3rz7B2xEiI8egD4ooD7qQz5auFNp3IMd0BFJAD/6JG4fXF7x9+S8Fsj8SYb3Nu3iS9GpAzfcZDmYPkQfKS/nBNfVYSCgevdSZ9AZLcxdRVyy9I9708gItywg9VozanrVtXIZmEaqjCCFMMRsjaHO9WI4j2xZ5zNP9SBAvPJOjMpGHtqGM4huHcf23T96Y7iRQu32OEfxzgAeCONCHSGxMHLITx8CE9fzmJkGqvllqUbMIAPJxEhBvijGr2Rff17dIToqhIQxxS08TR3tBZFumMvj5R54quKUEgoRz8mJVpHof1kgGPwzyz2aO31bQ7pykJAiAyJEtxh3uEfenc8oXNWPQhUeAIoL5+sM/83ihgTiJWZ0EMHr7vcjHhxUk+ms5VmNDEYu9/ZHMOdUWY2YQcBOtg6mcQAXsi87onPd1YhvANwN09hpao0o39msQCwcSzuLrdj3YlfPgXSHkav0PkAAJNDsL8PwRkO7t57fQ087aKl0j96mDUxcG88Pt0J/UMdOAzjVUWIZeSWpXtIHD6bSnhS8HURd729KkUqrnasFn3otI7hzig2bLiDGWHY34fiDAf37Lu+XpXiRQs/cohrscPcGPy2KPnVkPwS9CccHXoVGS/TwSspRLIfVtiG+FpWPUSkSJn/FnI/liJfLax1Tv9QB7jOQPqHItrOVJde+9syEeuBbRhHAMAjh9jzLT09GXAWI9NUi1EaKiBMQGHsHDx4gOUQPDMCH+ycjuEO2juSKlcRAsDqFCLZDytoRY8dvo6Jz0fKaMIE7sf7Uxn6toTzpGC9TImDXVCEEP0GKiwelFdorQtaAj6bShhI+M957suCnp4MxNgYttLw+DEOANaMdlb/UGfau9MpejW8LwG/Kw43MXDXXtbes4dPVxQBQnztJAElef0Ud7oJJXhhfGFMp8bhIVZS4fXL0RLw3xsIDwo+vsB9fh0TX3ireBsNDx9kAWB1KhEmdAPh3qEqQiEhvP1xd2/O1Mo218kty9Xg86wBYGkPsyk4jq4uBgyjQoXcGD5znK0woQnB2INOUljy6jjFNggA3hlPxHhgmfXopcwenQzEWArzW9HqUyzm5I7hDgifQNzdizO1sk21cstyNeI9HRN/2SG2qK1HJgExdsDPZ7DlJpQagD08SCkTXyly9Bv4IGOFW0cB4OFB+O1ReLO9R0HVdF05stsInwDc4C6UAMfr0Pt5HInDpnHO7R/qoD2fTNHHAgDw0sCX0wgKhzXZXE869YhRXG0pX1E2Eb8htH88fKWHDXeweCC+IBZvscPCPSx9rWMhZ2plWxowrZ70CxFKgIx69PYZjsRlThzsgqoIBUaZbSi65YOJRIgBDlSj168VVC1404lzLYhPZ3xqGN73isAKgQrn+5UXKDORtDOjA7DnkwkOwX372YZrZVPYhU4j23KW21WB/HXwxmjnPwy2055I6gQT/93xRIQbll7niNa+Crxep0Jjhaon3kbDQwdYFsHfh+DJfgqa+KoiFJj2wFEnmA/+7UHV/8xkj9dd7WQgrHnkv4Vc6rfM+RY03Bd73mkTBy8HN7iTvkHIbqNry+WW5do8NwKfEIxVmNDiA1ddDTmWqSkDDCNDBLCK2zl4/Ci75CALAG+mEf5OVVH26jiFm5Cno8DCKye5A9XXnvhC7YFONqCUb5kTDSjWA3tJ7sTBLqiKUGAc80FJreqvAh9UTXNw976rda1zGMf6HDJq52D5EXbBHraNhrvi8IO3kk5XWPLqKLm+TBcIDLZNIbw18L9i7v2zVzzC8p3FSL8QXGfo44hFbWjiD8y/czkShzfTiD8n9KvFh4rgUwmdQBECwOQQbOVwnEVwz1ULLAhoFX83jxv7vWP7++tMoi/dMMSgX72LSoAMCMO0eraxljO1yi1Lj1idQozwwy60oBVHr3gyaA+X6NOZoNyEpvzIbDjNaQl4awzx2VRC9ixawXFUVHAGRQgAUe7YBxMJAFhxhM1p7P5kIJQx4NsSbtS3THodinTH9t1CPj60v608pG8wbvBg25rY1ka5ZekRL40kxgZipUa0+MoFFgTJH22lYdFedtkh1srCvfH44dvIBC8FGUV5+tvrKD/toZX8Zkr58NkUehI+PMd9XdTNyYAzNrOtTbjOQPoG93qUX8rQiB3MkVoU7YEdvJVcPqR/vngavr6MwhoTXoW5Mfj9ibiVhXv3sbbu1sO+nwlsLDx6mJ39O9tkgznR+Kk55Lggxa2DAoBhyq+n0RkSh21TCU8KviniPjrfzcRHDM3UlgOOU8HRvR4lox4l72C+LOA8KfhqGvHJFMWdBXn653okL0puQ9Etg72xtaMJALj/D/bpdLbMdMnhgP8hvXaYswheyGRn/cY02GBWJJZ1B5kia3VdUdFEJgLvIVZk/eVu2TCWSPDCTjWi0d8xn+ZzXSIJ2yNlemkMuNCCxn7PvH2G0xKwcRzxzXTCW9N3kRWKkttQdEusB/bOeEc2xUMH2bPNl7y0dFUxYhkyIBzTaHtxcwSwPpcb/z1T2IZG+WNZs8le94GSAOVK5rw4UfxYB0sH439OwI00vJ7NxX7FLNxzsSahwzzSq84DtRa46Rdm1QkOx+DVVOL7GaRPb+aU04C7eRLe/pzVzNRXyi1LT3Gn4KtpRLgblt2I/ryPjf2KeSOba7E7/rYvptEvCrhR3zInGlC8J3b4VvLRwf18tXEiD3EHd8fjjw/FaQ62nOWSvmFu+439oz18hq7sfaRMkw1m/86uOMrSHDyWhB+6lYzzVPT2t5+/mrLA25FoJ4mX4cEAPp5MZM0mHxqIkxh8VciN/Z5J+Zb55AJn621xtQPVKPl/zO5KFKCDX24iVw7HFT0VBMKJogc7SPbDChaQH08mhvpi5Sb0VDob/gW9/AhbWlHHmVpxgwfhHXBdN7SysPwIe9deto2GOdH48TtIeZvsSIOzpBJ24c004sJ88rEkXEfAD6Xc5B+Zkf9jPrnA2cp7aRU/XodSvmW+K+E8KfhyGrF+LKFVVohoN6iKUHio0BiMIOnacmS//oY3spLsh70/gShaSP1zJO6vg8x6dN9+Ni8vHwDMAddhHOOtIjf8zPAd50/NoZy6oPZ14TgWOEMiaWc0OPw5Ac+eQx6YRc6KxEw0bDjN/XX7eQCwBFzfcfBcC0r7jtlwmtMR8NaYfm4O7YwjUK6pljO2yC3L9RHrga0fS5QspF5LJUIN2IkGdN9+9sipAgCwB13H0+cn/oQfmMI2lOKPnZijaHNoZ+SRkqbp77777sMPP8zP7373tH///l3t5OTkSCxeH8EIkgyKAI6jq4rklqU3BOvhpZFE+SLq48nESC86wlLJYnjivrA/72PPNF/b9dVKw/zd7IqjLMPBY0n4rj+RIX0NvHcmnM5R1IUJwdgPM8gTc8h74/EkaxEAfGKMnvAD80Mp1xO35ycXuJRvmexGNMALO3p7v42K6h4Ma48PcMqn76+Dp4fjhQvIjycTg70gxlQMAKOPRiw/wpabrv3w661w607mojn0NjLWw2m2vzJE8HAcd/PNN5tMpuTk5KeeeuqLL76YMWNGl+/MnTt3wIABBoMBACZPnjx06FDp5ewLVHg8XVlElxdoogbKLUsv0RLw5wR8oba89hBb5RbZgjSf5nPb8rkbwrDHkvBZkd3bOU80oDt3swWtyEsDH00i5kS70joIAB2NCcsvAEJC1eOQnuG+2CdTiIqCElQNJR4xh2rQbb+xCV7cI4PwJYPwbquDWhhYcZTdfJYDgHvj8XfG98P0mGtCRcTbCnPp8nzdwFFyy9JLHBPfp7b2kLFV410IPhtOc+/lcQti8aeG40N8un+lj9WihXvZ4jbEl+m4JcLJ3nwZFOFvv/1WWFh45swZnU43cuTIF1544XJFCABbt25NSEiQXjxB0ITFmeF3e0WBm9yS9BHeYR43IP7cbeSmM9wH57hdFWhXBZvoxS0bhC8eiHcOhv7kArf0EGtmYKQ/tv0Gwon2gwJCePkRnj5saxPTWEP69T7hRAkQ1YUMwFuzE5LbiDdzOD7Z9NVT7MOD8MeSCN9OcU95zWj+bja3CelJeDWFcK2DYCec1E14OWxlIQAExsZl3kG+lct9Uch9ms99ms+ND8KeHn7JPhgBbMjlnkxnaQ7SArEvpxLRTjjxZXhff/rpp5tvvlmn0wHAnDlz0tPT6+q66dVw+PDhX375paqqSnIBBaC9P5mTOYoupyOjNsELWz+WqLyLemsMEeGGnW9BK46y0V/SK4+z5SZkYeCvB9j79rNmBh4aiB++1ZmsIoLjjNGDl4PsVqa+EiNIr/DI5UPwggXkf28gUgOwGgu8nMVFfUkvOcheaEHQbg7NbUKDvLFjt7mYOfRS+sejh4v5o3Ej/bFPphDn7yQfS8LdSOBtA8k7mE8ucDQHdVb4069Mhx/kwCzSGbUgyHIirKioGDXKYTfw9fXV6/WVlZUBAZeEpQUGBn7zzTc2m+3QoUOvv/76smXLur2V1WqtqalZvXo1/0cMw2655ZZBgwaJKn+PCIzk+5XTNquwXdw6oGmapq+n1XSv4Pe2WGAEP5YBg2UDYHECfF0MG85AZgOsOcW9lcsF6qDMBO4UvDcW5sdwwHVNRxMQaX54XyBDY+HMcVvpBXJwmoC3lfiH0yXnASEiKJLhEHA0ANwRDreHw65K+Pdp2FUJm89yH53nhvrAiQYAgAcTYV0q0pOM4DLSNM0pvo65A98QTKNlGqptLY24waOPN2MYhmEYgpAh5tJWlg8AeHAU/8qF62BtCjwzFDafg3fOwqlGdN9+9vkMluag2gJBevjPBJgeygHL0dfR9PdqCPi2EwSB49fYnImiCM+ePTtnzpzLr2/btm3kyJEIIayT7wTDMJbt+p+Xm5vLi75///4ZM2bMmTMnOLgbKxP/ojQ2Xqxp1NjYePndZIDSEr5BbEO1rbqUDIoUYwSWZUX/pQgxVSUAgAdHdR4LB5gfBfOj4HAttvEs9kMZVmaCwd7w+UR2gBeILZQUP7xv4CExAGAvv6ATVE6Jf7itvAAAyJDoLoNOC4JpQZDdBOvP4NtLsBMN4EHBpjRufjQCEOXp8wJccy1TCERwFFN63l6eT8UN6+Ot2HYEEey6YCoLAQALiuw8ujcJTyXB8oHweRG2IQ8/2wIAMCUY/Wc8CtYjYcUU8If35M0RRRHGxMR8++23l1+PjIwEgJCQkNpaR/vKtrY2s9kcGhra5Zsdok+ePNnb2zsvL69bReju7h4WFrZ27VohpRcITXiCpaEaryvXRSWKcX+apnnzsngw9VWc1UR4+hr8u/d1TYuEaZFQ3Ib+qEZzY3A3UoroCAl+eB+hYga3AjDl+cLKyTCMlD/cUlcGALrIhG4HHR0Cn4XAGhP6pgjNisTETpcmCIKinCP2Rhc5wFh6HmpKdUmj+3grfqMv/dvOWYxscx1GadzDYy83aOkAlg6Bh4fAz2WozoLuTcDFaCso8Q8XRRFqtdrExCuu/lOnTn3ppZc4jsNx/Ndffx08eDCv5JqamiiKcne/pPVrYWFhQ0NDVFSUGHKKiiY8znLqAF2eDynT5Jall3T4Ca7+tWgPzEkdAyJB+Abibp6cqZVtrie8/eUWp5f0pKZMuBu2fIj66C/BSRNJO0NXFAFCVEjMVdw6GMAtERhAP3n6Mlgb7rjjDoqi5s2b9+qrr/7tb397/vnn+ev33nvva6+9BgC//fbbrbfe+vLLL69cuXLChAmLFy+OjRWyO7Y0OBoROPd8EL41uYvg9NGD7VmwfAV5lZ7jjKWFutDebcaFJr4MwTIURR04cGDbtm3V1dU7duwYN24cf/3xxx/39fUFgLS0tLq6uvz8fB8fn88//3zKlCnSC9l3LlYcddp8Msd8UJfC64cKj7eey6LL8/VDxsgtS29g6iqQ3Ub4BvY94sPVIEOiMErD1FUgmwXT6uUWpzcI2IbQWZCnJYaHh8fSpUu7XJw2zWFC9PLyuvvuuyUXSmAIDx9HPllTLekbJLc4vcHuqLorTGN6l6L9WOCsJ0JH04k+t2J2QTCCpIKj7WXn7RUF2tghcovTG+yCNqZ3CpwjEMtJocKcrw1FB5zFyDbVYZSGDAiTWxbnw9Gv3HkaE3aBriwCIfrxuibt3eqdcxvEsUxNKWAYGeJCpiBVEYqIM7ah6ICuKASEqNBYcJKwdUVB+oXgene2pYFtbZJblt7ggl4iAXHqiqN0TRmi7aRfCK5zoRrB6honIu0RE055IlSXwj6BYY5tkJOuhmqcVB+gIvh6s8756MtdceKrilBE2gutOed86G0bQhUeTUQCOOexgDM2s62NuM5A+jp3rVS5cDRiqyl1ukZs0BEp42ITX1WEIkL6heA6N7algW1zPvuYvQ/9qVXAmbdBvA2DCo110mhn2cFIigyOBI7jXa3OhSNOKty1Jr6qCMUEw/jcA/505UQglmGqeYd5tNyyOCuUwzDufPEyql207zhvImlPCin0P1RFKC6OY4GzKUKmpgwxNOkf6lIOc2GhAiMwrZ5trOVMrXLLcn24YBqZ4LSnETvZNohtrudMrbjBg/AOuPa3+xGqIhSX9npLTrYxbE+lV5fCPoBhvGHZ6Y4FapxU33HSE2EPqyr2P1RFKC7tgdROFjiqGscEwRm70yHaTtdWAI5TwdFyy+LEUGFxgONMVQmi7XLLch3YXXUPpCpCcSGDIzvqLckty3WgRsoIgjMeC+iqYuBYKjACozRyy+LEYBotFRiOWIauLpFbluuA3wFrXK+qoqoIxQUjSDIoEhByrvgx13SYC44jn8ypKoy4rHFMcBz2AKeqvu2yE19VhKKjcbY2FA6HuZun87YQUghUUCSm0TINVZzFKLcsPUW1iguFwx7gPBMf2a1MfSVGkGSwKL3ElYyqCEXH6RxFaqSMYOA4FRIDCDlR2LDackQoqHAnswfQlUWAEBkchRHyNGOQEVURio7Txcu4YO158XCy7nTtNnz1RNh3qPA4wDC6qgixjNyy9AhHKr1LPnpVEYoOFRYLGMZUFTvLfFCNYwLS3obCObZBTEM1ZzUTnr6Eh4/csjg9uM5A+oci2s5Ul8otS49w5YmvKkLRwTQ60j/UUavFGVDDJQTEuQJH2zMI1UcvDJoI53r6rlhllEdVhFLgRG7ziw7zoAi5ZekPkCHRGEkxtWVOkT+j1pQRFkdHUmeY+IAQn+nhmu5hVRFKgRPVX+bbELqmw1wMMIIkg6MAIbszxMu4snFMDBwnQmfwEDO15chmIXwCcTdPuWWRAVURSgFva3KK0EE1UkZwNM7Tna796aumUWGgwhMAw+iKAuA4uWW5Bi5eQ0NVhFLgWAorCgAhuWW5BqpxTHB4e4DyHUWcxcg212EaLekfKrcs/QTc4E76BiG7ja4tl1uWa+CyqfQ8qiKUAtzNk/Dy46xmpqFablmugYvPBzFwbIMUbx+jywsAISo0BnB1WRAMZ0kjdnGruPrGS4RztKFAiK4qBld1mIsEFeIc/crVQgpi4Cz2ABd/+qoilAhHoTVl55MxteXIbiV8AnGDh9yy9B8wSkMGRQDH0VWKrjdrV1PpRUDD15dRdmNCztjCtjbiOgPpFyy3LPKgKkKJcARSK1sRunJpCVFximxCWo2UEQFNZCK0m53lluWK8G8mFRoDGCa3LPKgKkKJcIoMivbyWupSKDDtjQiU+/QRyzDVJYBhVEi03LL0K/ji9ZzVzNRXyi3LFVEnvqoIJYL0CcQNHmxbE9vaJLcsV8TFHebiofwKI0x1KWIZ0j8U0+rllqW/oXx7gDrxVUUoFRjGv2dKjpdxcYe5eLT3Ky9GDC23LN3jePThrnsmEA/lB46qE19VhNLBe18U6yZUHebigWl0ZEC4w/yoSPhIGY0LL4Xi0V5fRqGKEDE0XVsOOE4FR8kti2yoilA6KGX3Y1Id5qKi8H5M7eW2VUUoPFRH4Kgi42XoqiLgWCowHNNo5ZZFNlRFKB2OeBmlmkZVh7moKLwfk/r0xYPw8iM8fTizkWmqlVuWblBraICqCKWECorENFqmoZqzmuSWpRtUh7moKPlEyDbVcqZWvv6R3LL0TxzZU4p8+q7cfakDVRFKCG+FR0iZ1bf5o6qLzwfx6OhXDhwrtyxdUbvSi40mXLn2APXpg6oIJYZS6nxgW5vomjJMo3Px+SAeuM6N71dOK68/s63oDABoIgfILUi/hXLkzyjuRIhou730HGAYn/jvsqiKUFIcgaPKa9RpO5cFCGnjh6ltCMVDsflktnNZAKBNGC63IP0WKlyhgaP2ojOItlNhcS5eVW2EhZcAACAASURBVFFVhJLiqMCrPEVoPZ8FALoBI+UWpD+jzOpCnKnVXp6PURpt7BC5Zem3kL5BuJsnZ2xmm+vlluUSrOf4iZ8styAyoypCSaFCYwEnmOpSRNvllqUTCNnOnQAA7UBVEYoI349JaccC2/mTgJAmJgmjNHLL0p9Rpj3Adv4EqDtgVRFKDEZpqMAwxDJMjYIcRXRlEdvaSHj5UUGRcsvSn1Fmv3KruhRKggLry3QYAzQxSXLLIjOqIpQaPpBaUWn1DvPIwBS5Benn4AZ30icQ2a10nYL6lbefCVzdOCY2DreIkuwBvDFAGztENQYoVxE2Nzfn5+ezrOJizfuIAh1F/FKoVZdC8VHasYCpr2QaqnE3TxfPp5YA3jCuqMaE/A5Ym6hOfDkU4U8//TR69GidTjdu3LgrfWft2rWxsbG33357fHx8Tk6OlOKJjUZh8TKIttsKcgDDdIkj5Jal/+OoL6OYY4HDGJCYrNbVExvSLwTXu7MtDcrpP2O7cBJUqzgAyKIIQ0NDV61atXr16it9oaio6OWXXz569Ojp06f/+te/rlixQkrxxIYKiwcMoysKFVJ40FaYi2i7Jjwed/eWW5b+j9IiJhxBUupSKAEK6z/TyRigpg7LoQiTk5NnzJjh4+NzpS989dVXU6dOTUxMBICHH354//79VVVVEgooLrjBnfAJQHYrU1chtywAHTlk6lIoCRcrKihhG8RxtvxTwJ8IVcRHUdsg1RjQGSVmTxcXF8fHx/Of/fz8vLy8SkpKQkJCLv8mQshisWRmZnZcSUhI8PT0lEjQ3qKNGmRurLWezXQPDJdbFjWRSFIIDx/Cy49taWDqK8mAMHmFsZed58xGMiCM8A2UVxIXQVGGcdUY0BlRFOG+ffu2b9/e5SJBEBs2bOjJPzcajb6+vh1/NBgMbW1t3X6zsbGxpKRk8eLFHVcee+yxefPmXb/I0pKQDCf2GzP3wsgben0Pk8mE9Xkrxxmb6coiTKO1B0TRRmMf7yYNgvxwGcFDYtiWhtb8XI3e67r+ockkcK12a84xACBihxiV/eitVitBEBRFyS1IX2F9QwHAVnq+h//hTDvCi8Jx1gsnAYANT1Tm0xfwbdfpdCR5DU0niiL09/cfNmxYl4s43lMzbGBgYHNzc8cfm5qagoKCuv2mn5/fwIEDO58InQKUMsXy7btM6Tk9a+t1vX+EkLu7ex8lMZ9N5yureXhf0VKtNAT54TLCRQ+kz2YQ9RW9+BXC/nBLUS4AuA9J0yv7/5Mkyf6hCMFtgFGr55rrDBiHu13bcMVrQZ1OJ7gg9uKzyGIiA8I8w2MEv7lQSDnNRVGEQ4YMGTKk9+WaRowY8dZbb/Gfc3JycBzvsJT2DzCNTjdwlCX7sOXUQfdJt8soSbtdVDWPSAeljH5MyG61l5wFHNfGdd2zqogFhlGhsfai03RFgbxJC2oVhS7IECxTVVW1ffv2jIyMhoaG7du3Hz58mL8+atQo/vOdd95ZXV39yiuvpKenP/bYYw888IDBYJBeTlHRj5gEAJaTB+QUAqH2SJlRcorhYlzMJ5M1XsaWn4MYWhM5ADco+jjYz9BEKGIb1D7x1cgABzIowoaGhl27djEMM2XKlF27dp06dYq/npqa6uXlBQB6vX737t2nT59+4oknJk2atGbNGumFFBt9UhpGaWxFp9mWBrlkoKtL2iurRcglgwuikH7lqjFAFpTQiE01BlyODFGjQ4YMef/99y+//t5773V8HjRo0Oeffy6hUFKDafW6QSnyWketZzMBQDdwlBo/LTFUWDzbepwuzyd9u3d+S4B6JpAFJWRQ2PKzEUNrogepxoAOlFtird/jsI6eOiiXADa1wJJMaCITAMBeeFouAdjWRrqmFNPqNVED5ZLBNaGCIzGNjqmvZFsb5ZLBek6tLtsVVRHKhsM6Wpgry5RAtN1WmAsYps4H6dENSgUA84n9crkJbedOqH2Y5QEndANHAULmrH1yidBeW1i1il9EVYSygWn1uoEpgJAsh0J70Wlkt1FhcWplNenRRA8iA8LYlgbbhVOyCKD2YZYRQ8o0ADBn7JFldLa1ia4uUY0BXVAVoZzoR0wEmWJH21svqfGi8mAYOQUAzJlyrIYdfZhVq7gc6JLScDdPujyfriqWfnTbuUzVGHA5qiKUE/2QMQ7rqOSxo9azamU1OTGk3gAYZjl1ENltEg+tRgvLC0aQ+uETAEAW66iaQdgtqiKUE0yr5x0GlpzDUo7LtjXRlYWYRqt2ppYL0j9UE5HIWc2W00clHvpimXU1WlgmDKOmAm8dldhJ3GEMUHfAl6IqQplpt47+IeWgtvMnACFt3DCMdP6yVU5Lu69or8TjWtWW9HKjjR1C+gWzTbW2wlwpx+1kDIiUclzlo5qJZUY/ZCxGaWwFuWxLQ6/rjl4vavy0EjCMnNLy3RZr3nHO2CxZyBJiGVtBLmCYNkHtwywfGKYfOaXt9y/NGXu0cUMlG7YyfV9Fi0UXHWUpLJRs0N5hNpsvLyim0+lCQ0PFGE5VhDKDafW6ASMtuUctOUfcJ8ySZlA1floJ4O5e2gEjrWfSzScPuE+4VZpB7UV5yGahQmMIT99rf1tFNAwp09p+/9Jy4g/vOUsxSiPNoBMf+geGk8TeEmzjV9KM2GsQQpc3mamsrDx48OCoUcKH+KmKUH70IyZZco9aTv4hjSKkq4rZ5nrC04cKjpJgOJWrYEiZZj2Tbs7YI5kitHW0Y1WRFSookgqPp8vzrWfS+dgZsUEsY7PTp/Jyg4ODJRhODMaPH2+ziRJcpvoI5Uc/lLeO5kiTWd+eOJGixkrIjn7oOFznZi/OY+oqpBnRqhoDFIPDSSxVCo29KE+agZwRVRHKD28dBYQs2VLEjl4MGlSRG4zS6IaNAwBzphQhM5zFaC87jxGkNq73XdJUhMIwairghPV0OmdqlWA4fuKrdIuqCBVBe1cm0WNHEUOrsRKKoj2SfrcEkfS2C6eA4zSxSZhG+F6vKtcL4eGjSxyBWEaa2lK8MUClW1RFqAgks47aC08ju5UKiyU8naYlff9Gl5hMePkx9VX2knNij2VVHYQKwzBKonJrvDFA7FGcF1URKgJMq9cmjpQgs17tQqc4MEyycmuqVVxp6IePx7R6W9FppqFa1IF4YwCGqwt+96j/L0rBIEndUeu5TFAVocJwHAtO7EcsI94obGMtU1+FG9z5lngqSgDT6PRDxgJC5ixxncT8DhhwQtRRrpfMzMx58+bNmDHjiy++kFcSVREqBR1vHc3PFs86ypla6YpCjNKoldUUBRUeR4VEc8YW29lM8Ubh90DahGRQjwVKwpDSXm5NTHhjAKYkRVhbW3vLLbcsXLjwlVdeeeGFF3744QcZhVGnhFLAdQZtYjIgZM05ItIQ1rPtheelSuBV6SGOkBkxraPtVnHVQagsdANGEp4+TE2ZveyCSEN0GAMUtQf68MMPb7nllnnz5qWmpr788svr1q2TURgF/b+o8NZRs2jWUdVFpFgMo6YChllyjnBWkygDIMT3PlSrLSsOnNAnTwYxD4UXjQFK4tChQ2PGjOE/p6amHj58GMnUpxrUyjKKQjdkDEZStoJskYpPqh1YFAvhE6iNG2rLz7ZkH3YbfaPg97eXX+BMraRvEOkXIvjNVfqIYdQ04/5vzZl7vW//qxhuvKsYA1rswEmifTQEuF2qbaqrq9esWfP+++8DAMuydru9sbHRz0+iestdUBWhgsD17trEZOuZdEv2YbdxfxL25nR1iVpZTckYUqbZ8rPNGXvEUISO5jtqH2ZFoolMJIMimJoy67kTukEpAt/9ysaAd85wjxxmBR7uClA4HL2NHOl/sZqVTqdbvHjx9OnTAaCtrW3q1Kk6nWzpraoiVBaGEROtZ9LNJ/8QXBHygRhatbKaUtGPmNT8zTu2CyfZ5nrC21/Ym7f3G1GNAQrFMHJq6y+fmDP3CK4Ir2IMCHODEANYJVGFgTrMW3vJlfDwcI1Gw1fQzsnJ8fHxcXNzk0KU7lAVobLQDR2LkZQtX3jrqNp6SeHgOoNucJrl1AFz1j6PafMEvDOi7fbiM4Dj2oThAt5WRUDcUqe3/vqpJfswslkwrV7AO1/FGHB7FH57lGxhInPmzHnvvfdWrFiBYdh33303Z84cuSQBNVhGafDWUeA4YeuOIpaxFeSoldUUjiOSXujYUVtBDqLtmvAE3OAh7J1VhILwDdRED0Z2q0XooHHF7oBnz55ts9kWLlz49NNPv/vuu08//bSMwqiKUHG0x44KWXfUXpiL7FYqNFbtQqdkdINH426edEUhXVUs4G3bo4UVtxSqdEaMbVAnY4DidsAURe3evXvOnDmxsbGZmZkJCQkyCqMqQsWhGzoWI0jeOirUPRW7K1TpDEaQen4bJGgkvRot7BQYkidjJGU9l8W2Ngl1z3ZjQLwyjQE6nW7BggVLliyRvUWiqggVB6531w4Q2Dpq5SNl1KVQ8bRXYd4NHCfIDTljM11ZhGm0muhBgtxQRSRwg4duUApwnOXEPqHuaVPbT/YMVREqEb4rk1CZ9Zypla4owCiNNlbtQqd0tDGDSb8QtqXBVpAjyA2t504AQtq4YRhJCXJDFfFwtOrNEKzuqLMU2WcYpqioCAA4jjtx4kRentQ9hFVFqET0DuvoKUGso9ZzWYCQNm6oWlnNCcAww6gpIJyvSHUQOhG6wWm43t1edp6uLun73ZzIGFBdXT106FCTyTRx4sS///3vixYtWrBgActKlOMIqiJUJhdjR4UIIVMrqzkXhtTpAGA5eQDR9r7fzXr+JDjDmUAFADBKox8+AQAsWfv6frd2Y8BQZzEGbNq0KTIyct++fcePHy8qKvr2228lG1pVhApFL1xXJjWZ2rkgA8I0EYmc1Ww9fayPt6JrStnmOsJDLSfkNPDWUVPGbuhz4U3lOwi3b99+8803z5s379SpUwCwbdu2v/zlLwBAUdSiRYu2bdsmmSRqQr1C0Q8b1/zfDdYLpzhjC+7u1ev70NWlbHMd4elDhUQLJ52KuBhSptnLzpsz9/D7oV7jSKYekKyWE3IWtHFDSd8gprHGVnSGiBzQl1spfAe8c+fOFStWfPrppx4eHsuXLweAoqKiqqqqXbt2AYDRaOS9htKgKkKFguvdtYkjrHkZltwjbmNm9vo+tnPt8aLqUug8GEZNaf5ui/XMcc7Uirt59vo+Cl8KVboBw/Qjp7Tt+sqcsdujD4qQqSm7pjGAaag2Hfml70fPnoBpdB7T5nUOU3j//feffPLJadOmAcBzzz23YMECs9n80UcfabVaAGhqampuFix/7JqoilC56EdMtOZlWE4e6IsidISNJapLoTOBu3vrBoy05h03n/zDffys3t0EsYy9IBsAtIlqpIwzYUiZ1rbrK8vJA+63LQbo5f6VTx7VJl7NGGA6+mvbrq96KeX1o4lM7FxJtbS0NDExkf88YMAAAPD19X333XeTkpIA4H//+9+aNWskk01VhMpFP3Rc8383Ws+f7PWxALGMLT8HMEzJfgKVbjGkTLPmHTdn7OmdIkS0vfmbtzmrmQqOJLzkaW2j0juo4CgqPI4uL7DlZZCDUntxB1vhaV7DXb2GhseUOYS7N2IEiMm6JvzervMVf3//mpoa/nN1dTUADB06NCcnh1eE2dnZQ4cOlUAwHlURKhfc4OGwjuYc7t2h0JpzBNmtVGgM4ekjuHgqoqIfOhbT6u3FeUx9Fel/fU0E6ZrSxq2r6apijNJ43nyvSBKqiIdh1LSW8gJr1l7361WECLXt+qrll0+BY7WxSXwM6pXA3TzdJ9/RJ0H7wNy5czdt2jR79myDwbB27VoAePjhh994440//elPLS0tH3744TfffCOZMKoiVDS9to6yLQ0tP3xoztwLALrBo8WRTkVEMI1OP2yc+fhuc+Yez5vu7vk/NKX/3vz128huJYMi/P7ynBok5YwYRk5p+eFDW95xN4sJetyljzM2N257w3o2EzDMY/oCrz/9WYw2v0LxwAMP5OXlJSYmenp6Pvroo/n5+QsWLMjLyxs8eDBFUS+++GJqam9Ow71DTZ9QNPqh4zCCtF04xZlae/hPEG1v/f2L6lceNGfswUjKc8ai61pGVZRDe7m1nmbWI5ul8bO1TZ+/iexWQ+r0oCc2qlrQSSG8/HQJIxBD23IO9fCf2C6cqnl9mfVsJu7u7b9kldes+5WsBQGAIIh169bV1tbm5+evWLEiNzcXAF566aXy8vKioqK//vWvUgqjnggVDW7w0CYMt57NtOQccRtz0zW/bz19tHnH+0xDFQDoktK85zx8eTdOFWdBN2Ak4eXH1FXYS89prhVASFeXNn7sMId6zXpARpOXiiAYRk21nsuyndwPk267xlcRatuzveWnrcBx2vihvveuVL3C14sMirC+vv69997Lyspqa2v7+eefKaqbqgdz585tbXWcgSZPnvz8889LK6OC0I+YZD2baTn5x9UVIVNT1vzt+9a8DAAggyK8Zz+s664Vp4ozgWH65MnGfTvMGXuurgjNx3c1bd+I7DYyKNLvL8+qB8F+gH7EROzrt+miM0xjDekbdKWvXWIOvWG+1y1/AVy18103MijCpqammpqa1NTUZ599lrtCif39+/d/8MEHERERAODj49KBHvph45u3b+Sto93GjnLmttZftxkP/ggcixs8PG+6233irQq3iqj0EMOoqcZ9O8xZ+7xuX9ztF5DN0vTVenPWPgAwpN7gc+djmEYrqYgq4oBpdLqkNMuJ/ZasfR7TF3T7HduFU42frmFbG3F3b997nlT3vr1GBkWYkJCwcePGwsLCZ5999ipfS0pKkrdVo0LADe4O62juEbe0Sw+FHGs6urPl5485YwvghNu4P3nd8pe+5F+rKA1NRAIVHEVXl9jOnYDIrqWT6fL8hq2rmfpKTKv3mf+YYdRUWYRUEQndyCmWE/tNx3d3owg5rvW3z1t3fgYIaROG+977tNpzuy8o10d4zz33kCSZmpr63HPPBQQEyC2OnOhHTLSezbScPNBZETKFOTW/fsK3MtcmjPCe87BqEOuXGEZNbflpqzlzj+ZSRWg6/HPzjncRQ1Ph8X73PUMGhMkloYpIaAeMxN29mZpSuryACo/ruM62NTV++rrt/AnAcc+b7vaccZdqDu0joijClpaW33///fLrU6dO9fPrkRd3zZo1w4cPt1qta9asmTlz5rFjx0iyG1Hr6+uzs7M7205XrVp133339VpyZYJihwNO2M6fbKurxvTuXGON5bdtdO4RAMB9g/Uz7qaGjLUB2IxGuSWVApPJhLlSuTg0KA1+/tiSc5iestBxxWYxf/sunXMYADTJk/W3LbFSGui/T99qtRIE0W0wQf+GYRhs0Gg4/lvLkV91NzuWNaYgx/z1eq6tGXf31s/7Gx4/3Gg29/CGSJJqauKBELJYLMbrfNV1Ol236qMzoijC5ubmr7/++vLrQ4cO7aEifPDBB/kPo0aN8vPzy87OHjmym9oo/v7+SUlJe/de7GPp6elJEP3OPebubkscYT2bieUdY1sbjft2IIYGjc7rprvcJ892lh4rQoEQcnd3l1sKCXF3t8UOsRXkUMU57hGz7MVnGz5ZzTbW4gZ3n4WP64eNk1s+0SFJ0mUVIZl2Y/Px3+icQ/5zlwKglp+2Gvd8DQjpBqX63v2P6y3H7+w7SAzD9Hq9GNNfFEUYFRX15ZdfCnIrnU6n1WqtVuuVvkAQhCtE0+iHT7CezWze8S4AAIa5jb4Rn3KnR2ik3HKpSIEhZZqtIMd+8o822tr601bEMprogb5/fuYqwYQq/QMyPIEMCGPqKkzpv5mO/WYvOgM44TXrPo9pd/aujP4rr7zi5uYmuJzSUFIiQL/ibpHBR4gQKioqKisrA4CioiKdThcdHQ0A77zzTkRExK233lpcXNzY2Dh8+HC73b5q1SqDwTB8+HDp5VQU+mHjm79+m18Bvecs1UQOaGtrk1soFYnQD5/Y/M07TEF2S0E2YJjHtHmet/wFI5Tr4FcREEPKtNZfPm368i0AIHwC/f68UhMzuHe3euONNyoqKgSVTizsdrtGo+lycfny5SIVIJVhLlmt1htvvBEAYmNjb7nlFi8vr6ysLADIyMgwm8233nprfX39okWLSkpKKIpKSUn54YcfnHcLIxS4m6ffg/9EtE0/bLzaUMnVwA3uusGjLdmHcDdP37v/odbMcykMo6a1/roNENIljfG9+wnc4NHrW91zzz0CCiYqRqNRSg8Iplj3KcuyOI5f3aidmZn50EMPZWZmSiaVcmhra/Pw6P2UcF5c84cz9ZXNh372mXwH4e0vtyxS48rBMgzD6HQ60+GfAcPcxsx0nU2wxIpQudaVfhjzoqLSW0j/UN0NCwmXihJSacdt3J/kFqGfo2afqKioqKi4NM6tCG02m8vGjPz6669yiyAPv//+O8uyckshA4cPH25paZFbChnIzc0tLS2VWwoZKCsry87OllsKGWhtbT10qKdtNwTBuRVhYWGhswRBCYvJZPrLX/4itxTysHz58srKSrmlkIE1a9akp6fLLYUMbN269YcffpBbChn4+eefP/roI7mlkIGMjIxXX31VyhGdWxGqqKi4AoqN6RMV1/zVsqAqQhUVFRUVl0ZVhCoqKioqLo1y8wh7wubNm5ctWzZ1qst1n+E4bv/+/S74wwHg4MGDqampWq3Ldd3LysqKjo729XW5bjvnzp0zGAx8d1KXory83Gg0Dhw4UG5BpKapqamwsHDUKGHaK86ePXvZsmVX/45zK0Kj0bh+/fq0tDS5BZGBoqKimJgYuaWQgeLi4qioKGcvH9wLysvLg4KCXDCvvL6+XqvVumAVBaPRaLFYXLAJHU3T1dXVQm19YmJi4uLirv4d51aEKioqKioqfUT1EaqoqKiouDSqIlRRUVFRcWlURaiioqKi4tKoilBFRUVFxaVRbveJa8Jx3O7duysqKiZOnHjNoKD+BMdxFy5cKCsrmzBhgk6nk1sc6TAajQcPHqytrR04cODo0S7Uk6+ysjIzM7O+vj4iImLq1Kku2Jjl5MmTFotl7NixcgsiETU1NTk5OR1/TElJ8fb2llEeiSkoKDh06JBer58wYUJISIgEIzpx1OjcuXMLCgpGjx69Y8eOrVu3zpo1S26JpKCqqmrgwIEajaa+vp5PJJBbIoloaWmJiIgYPXp0RETE7t27J02a9Omnn7pIEsWNN97o5uYWEBCQnp5OkuT+/fulbNUmO+fPn09JSQkLC8vLy5NbFon48ssvH3300eTkZP6P69atE6kzuwL597//vXr16htuuAEh5Ovr++6770oxKnJODh06FBQU1NraihD69NNPhw0bJrdEEmGz2UpLS81mMwAUFxfLLY508D+c/1xdXa3T6TIyMuQVSXrsdntsbOxXX30ltyDSwbLs5MmTn3jiiYEDB8oti3R88cUXM2bMkFsKGcjKynJ3d79w4YLE4zqrj/DHH3+86aab+Bzb2bNn5+bmlpSUyC2UFGg0GhcssQGX/nA/Pz+Koux2u7wiSQ/DMHa73d/fhZrUb9q0adiwYePGjZNbEKlpa2vbuXNnRkYGwzByyyId//3vf+fMmePu7r5r1y4pOws5qyKsqKgIDw/nP7u5uXl7e7tmPybX5K233oqNjU1JSZFbEOnYtGnTjTfemJCQ8Mgjj0ybNk1ucSSiuLj4nXfe+de//iW3IDJgMpnefvvthQsXJicnl5WVyS2ORBQUFOTn58+YMWPLli3Dhw/fvHmzNOM6a7AMy7Kd/UMkSbrUvsmV+e6779auXbt7926XKjZ24403xsfHp6enr1+/fvbs2QMGDJBbItFBCC1ZsuT111/38vKSWxapufPOOxcuXAgALMsuWLDgmWee2bZtm9xCSYHVai0vLz979qxerz9w4MBNN9101113SeARd9YTYUhISG1tLf+ZpunGxsbQ0FB5RVKRgF9//fWhhx768ccfk5KS5JZFUgYMGDBz5swXX3xx+vTpW7ZskVscKcjKyjp27NhPP/20ZMmS9957r7q6esmSJUajUW65pKAjMJggiPnz5588eVJeeSQjJCRk9OjRer0eACZMmMAwTEFBgQTjOqsinDJlyu7du/lT4O7du8PCwlyzArVLsWvXrnvvvffrr792KaNoF+rr6z09PeWWQgqio6O3bNkyffr06dOnDx8+3M3Nbfr06S5lBuDJzMx0nbCAG264IT8/n/9cVFTEsmxYWJgE4zpr+gTLsmlpaeHh4ZMmTXrrrbeee+65JUuWyC2URCxfvtxoNH700Ue80WDTpk2usDrU1tbGxMQkJSV1xJQ/8MADrtB4pKGh4Y477rjhhhsMBsPBgwczMzPT09OlWR2Uw44dO5577jnXSZ9YsmSJwWAICwvLzs7+3//+t3PnThcJF6JpOjU1dejQoWPHjt2yZcvEiRM3bNggwbjOqggBwGg0/uc//6murp4yZcqNN94otzjSsXXr1s4Bkw8++KArZFi3tbV98cUXna9MnTo1ISFBLnkkg2XZ3377LSMjw2azxcTEzJ8/3wUbEhUVFR0/fnz+/PlyCyIRWVlZe/bsqa+vDw0NnTNnTkdgoCvQ1vb/7d09SCNBGMbxiYWIiMSvZCJRCEKKiIiFaQS7oI2NlSAETadFGsGIhRGEgCAIIghaSBobBRu12kYkKIiksdDGQhGyKCkMfkWjVyws4nEcnKe7m/n/qmQyy75TPWR3eKeQTqd1XQ+HwwMDAz9zUwcHIQAAX+fUd4QAAPwXBCEAQGkEIQBAaQQhAEBpBCEAQGkEIQBAaQQh4Dy6rqfT6dvbW6sLAcqBU5tuA2Vsf39/dHT0T792d3ePjY2NjIwcHR0pdSQT8E0IQsB2/H5/LBYzPj8+PqZSqZ6env7+fmOktbU1EAjMzc2p04ISOupRowAAAiBJREFU+FZ0lgFsLZ/PNzQ0TExMLCws/HXy6+urMd/sulcsFu/v7+vq6n6f/Pb2dnNzU1VVpeA5R8BHvCMEnOfw8NDn82WzWeNrX1/f8PDwysqK1+v1er1Syq2trWKxGI/Ha2tr6+vrOzo6Pnasfn9/n5+fb25ullK63e5wOHxycmLRUgDrEYSA8zw/P+dyObP3eqFQ0DRtfX19Y2Mjk8m0t7dHo9FYLJbP5zVN293dvbu7M5+1CiESicTMzEw8Hs9mswcHBzU1NZFI5Pr62qLVABbjHSFQDh4eHnZ2djwejxBiaWmps7Pz7Ozs+PjY5XIJIaampsbHx3O5nJTy6upqcXExmUxOT08b125vbwcCgbW1tdnZWQuXAFiFIATKQVdXl5GCQohgMCiEiEQiRgqaI5eXl1JK40Rrj8ejaZp5eUtLy+np6Y9XDdgCQQiUg4/bYSorK4UQbrf704jxKFXXdSFEIpEwY9Lg8/l+plTAbghCQC3GHtFMJhMKhayuBbAFNssAaunt7XW5XJubm1YXAtgF/wgBtYRCoWg0mkqlqqurh4aGGhsbLy4u9vb22traBgcHra4OsABBCChndXW1qakpmUxOTk4aI8FgcHl52dqqAKvQWQawu1KpVFFR8WlvS6lUMtvH/Junp6fz8/OXlxe/3y+l/FqNgIMRhAAApbFZBgCgNIIQAKA0ghAAoDSCEACgNIIQAKA0ghAAoLRfKjHXop8k8BgAAAAASUVORK5CYII=",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (0.0, 6.3)\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "#sol = solve(prob, Tsit5())\n",
+ "sol = solve(prob, IRKGL16(), reltol=1e-14, abstol=1e-14)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "4ffb595f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, 0.0, 6.3)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "36-element Vector{Float64}:\n",
+ " 0.0\n",
+ " 0.01\n",
+ " 0.03\n",
+ " 0.07\n",
+ " 0.15\n",
+ " 0.31\n",
+ " 0.514181125280798\n",
+ " 0.7330761872358589\n",
+ " 0.9463065906690233\n",
+ " 1.1575428055787818\n",
+ " 1.3328706604956533\n",
+ " 1.564884826131938\n",
+ " 1.776797626468188\n",
+ " ⋮\n",
+ " 4.223525717220678\n",
+ " 4.390227172003325\n",
+ " 4.618935373466419\n",
+ " 4.831187955871726\n",
+ " 5.034628174841646\n",
+ " 5.242958339993569\n",
+ " 5.409629638633526\n",
+ " 5.638312467582614\n",
+ " 5.850565456658035\n",
+ " 6.0540058685209095\n",
+ " 6.264918449748646\n",
+ " 6.3"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bed51f6d",
+ "metadata": {},
+ "source": [
+ "### Case 2 (adaptive)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "3c6f59bb",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2AU1dbAz5QtaZveE9IILZTQewelKgiIIg998J74HqLiJ0+xIioiqNgQBUVFBBEVRYpIM3QCCUlIQgIhvfeym21Tvj8mWZZN353dmeze31/ZyezM2b0799xz7ikYy7KAQCAQCISjggstAAKBQCAQQoIUIYIfKisrr169eunSpezsbK1Wa/Lf8+fPr1ix4ujRo7YUKTMzc8WKFd99950tb2ptVq5c+eqrr3b1XaWlpStWrPj444+tIZLY2L1798qVKzMzM9s/jftNHjlyxDZSIcQMUoQIS4mLixs1apSvr++IESPGjBkTFRWlUCgmTJjw888/G87JzMzctWtXUlKSLQUrLi7etWvXuXPnLL9UXV0dZoRUKvXz85syZcquXbsYhrH8+p1nx44dP/74Y1ffVVtbu2vXrr/++ssaInWJ7777zvibdHFx6dGjxyOPPHL58mW+bhEXF7djx46ioqL2T7t165btf5MIcUIKLQCie3P06NEHH3yQoqgJEyZMmjTJ09MzLy8vOTk5Li4uJiZm4cKF3GlBQUGTJk0KCwsTVloLwTBs6tSp3N/5+flnzpw5c+bMn3/+uX//fgzDhJWte+Hn5zdw4EAA0Ol0GRkZ+/fv//nnn3ft2rVs2TKhRUM4IkgRIixizZo1FEV98MEHzz//vPHxwsLCnJwcw8uZM2fOnDnT5tLxDI7jJ06cMLz8/fffFyxYcODAgccee+zBBx8UULBux/jx4w0OA61W+/zzz3/++eerV6+eN2+eQqEQVjaEA4IUIcJ8ysrKbt26JZVKV61aZfKvkJCQkJAQw8uqqqrc3Nzg4OCAgADuyJ07d2pra/v16yeTyU6dOpWenq5QKGbNmuXv78+dcOvWrbNnzyqVSs7janzxkpKS4uLisLAwHx+f+Pj4+Ph4lmXHjRs3ePDgzojNMMzVq1cTEhLUanV4ePj06dPNm3wffPDBhx9+eN++fUeOHDFWhCkpKZcvX66rqwsODp4+fbqvr6/xu7gP3rdvXycnp7NnzyYlJUkkkgkTJvTv37/lLSorK48ePVpRUREeHj5z5kxnZ2eTE7ivIjw83Nvb2/h4amqqVqsdOnRoW8Ln5+dXVFRER0ebfPakpCQMwwYNGsS9rK2tvXPnjr+/f0hISFZW1pkzZ9Rq9ciRI0eOHMmdoFKpjh49mp+fHxoaOnv2bBcXl46/uHuRyWRbt27du3dvbW3t+fPnZ82axf1agoKCAgMDb9++HRcXV1tbu2TJkqCgIABgGObixYtJSUl6vT4iImLatGmurq6tXplhmLi4uBs3bkgkkqlTp/bq1asz8lAUde7cubS0NL1eHx0dPW3aNLlcbnxCcnIyy7KxsbEqlerYsWMFBQUhISFz5sxxcnLiTrh48WJiYiKO49OnT4+Oju7qF4IQABaBMJeqqioAIAhCqVS2f+ZXX30FAO+8847hyAMPPAAAx48fHz58uOHX6OzsfOzYMZqm16xZg+N3N7BXrFhhfLU333wTALZt2zZ37lzjH/PSpUt1Op3htNOnT7d8b2pqqom+9PT0/Omnn9qXv7a2lvukJsc5SebNm8e9LCwsnDRpkvHFnZ2dP/nkE+O3PPTQQwBw4sSJiRMnGk7DMOzFF180ufiPP/7o5uZmOCcoKCg+Ph4AoqKiTAT49ttvTd7Lzb80TXMvb968CQCzZs0ynPDf//4XAP7880+TN7q5ufn5+Rle/vrrrwDw/PPPv/LKK8bu3+XLl9M0ferUKR8fH8PByMjIvLy89r/Jb7/9FgAWLFhgcnzIkCEA8M0337Asu2vXLgB44403Vq9ebbj4qVOnWJbNysoyGT4fH5+ff/7Z+FLLly8HgP37948aNcpwGo7jL774IsMwhtO+/vprAHj77beN3xsXFxcVFWV8/eDg4L///tv4HC8vL4VCcenSpcDAQMNpYWFhd+7cqampue+++wwHSZLcuXNn+18IQgygYBmE+Xh5eYWHh9M0/cQTTxQUFJhxhSeffNLFxeXw4cNXr1597bXXNBrNsmXL3nzzzR9++OHLL7+8du3a/v37AwMDv/76699//93kve+8887NmzePHDmSn59/+vTp2NjYPXv2vPDCC+3cLi8vb+LEiampqWvWrLlw4UJ6evrOnTtxHH/00UfNi6nh3L9eXl4AUFtbO3HixLi4uCeeeOLMmTMZGRn79u3z8fF55pln9u3b1/KDazSaX3/9NTEx8csvv1QoFO+9996pU6cMJ1y5cmXp0qUMw2zbti03N/f69euTJ0+eP3++GUJazi+//PLFF19s37792rVrBw4cCAkJ2bVr13vvvTd//vxHH33077//Pnfu3Ny5c7Ozs5999lkzrk/TdH5+PgAY27XffPPN/v37P/jgg7i4uMOHD0dERNTW1k6dOvX69euPP/74tWvXMjIy3n//faVS+fDDD3OLHmPWrFlD0/Tff/+dn59/6NChsLCw995776OPPmpHjGvXrt1///0lJSUbNmyIj49PTk5+//33a2pq5syZc/v2beMztVrt/Pnz58yZc+bMmfPnzy9atCgvL2/lypVPPPFERUXFL7/8kpCQ8MEHH+A4vnr16g7DdhDCI7QmRnRvfvrpJ4lEwv2W+vXrt3z58t27d1dWVpqc1pZFOHToUIqiDAfnzZsHACRJpqWlGQ5yWmTp0qWGI5wZRJLk7du3DQfLy8tdXV0JgsjPz+eOtLQIFy1aBACfffaZsWznzp3DMGz8+PHtfMxWLcILFy7IZDIA2LdvH8uynA5eu3at8TlZWVlyuZxbLnBHOItwwIABxsbrtm3bAOA///mP4ci0adMAwNieYBiGMyJtbxHiOJ6QkGA4+Ntvv3Ejvm7dOsNBlUrl5eVFkqRarW7lG2ympUVI0/Trr78OAE5OTlVVVWyzRYhh2JUrV4zfu379egCYM2eO8cEvvvgCAIYMGWI4wlmEHh4e1dXVhoOpqak4jnt4eKhUKu5IS4twxIgRGIYdPnzY+Pp79uwBgGXLlhmOcOuep59+2nBEq9VybtuwsLDGxkbDcW7L4IsvvmjnC0GIAWQRIixi0aJFCQkJ8+fPd3FxSU9P5wL//P39ly1bVl9f3+Hbn332WYIgDC+5if7+++/v16+f4eCECROg2fYy5oEHHujZs6fhpa+v77Jly2iabmk7ciiVyt9++83b25vTAQbGjRs3cODACxcu1NXVtS8twzArV65cuXLl8uXLJ0yYMH78eK1WO3nyZE6/7tmzB8fxl19+2fgtUVFR9913X25uLqeKDDz33HOGBQQATJ8+3fgz1tfXnz59mvtEhnMwDDOJSLIZkyZN4lyXHNyIAMCaNWsMB52dnYcPH05RVGd8A4mJidw3uWTJkpiYmA0bNgDAO++8w+kYjsmTJ48YMcL4XZxWfumll4wP/vOf//T3909MTDT5hSxfvtzT09PwMiYmZsaMGbW1tS1tR47MzMz4+PjBgwfPnj3b+PiSJUs8PDyOHTtmcr7xWEil0tGjRwPAypUrDTuF0PZPFyE2ULAMwlIGDBjw66+/ajSay5cvX7ly5dixY3Fxcd9//31ubm5cXFz7eQUm8QtcXEmrB8vKykzeawjoMBAbGwsA6enprd4rNTVVr9c7OzuvW7fO5F+NjY0MwxQUFLi7u7cjLcuyO3bs4P7Gcbxv375Lly5ds2YNQRDFxcWlpaUKhWLTpk0m7+I8Y7m5uTExMYaDvXv3Nj6HCxEqLS3lXmZkZDAM06dPH6lU2vID2h6TEfH09JRIJC4uLiZxQIaR6jBCJCcnx/BNOjs7T548ec2aNSY7vsaLIQBgWfbmzZsYhpnsEUql0oEDB544cSI9PT0iIsJwvOXPY/DgwUePHk1PT58zZ05LkRITEwFAp9OZKFruFuXl5SqVyhAKJJVKTXKBuM9uMqx+fn7Q2k8XITaQIkTwg1wunzRp0qRJk1588cWDBw8uXLjw3Llzp06d4lx8bWG8fAYATmuaxEZyUTNsi6K4JrMwNM87DQ0Nrd6Lc2+WlZUZpmBjPD09dTpdO6ICAEEQFRUV3N8eHh7GOp6zJhsbG9u6OEVRxkfa/4xKpdLwcYxpecQ2tIxWxTCs5UHuU3SmwsDcuXO5ij8kSRoHBBljHIYDAFqtVq/Xu7m5tbwvt4wwGfeWPw/uSPs/j6ysrLZGUK1WGxShXC43DuaC5s/e6u+55U8XITaQIkTwz/z58ydOnHjmzJmEhIT2FaEllJeXmxzhlt5t5UJwE+7IkSPPnj1r9k2NvW0tLx4UFJSXl2f2xQ1w+QAtLYmWR9rSPSqVqv1bcHO0yRspitJoNCazuTWQSqVtfZNtIZfLJRJJQ0NDY2OjiS7kLGmTcW/r59GW3uWOL1q0aPfu3V0SDGEHoD1ChFXgokiM9/945/r16yZHOO+WsQfSmAEDBpAkmZiYqFareRcmODjYz88vPz+/sLDQ8qv17duXIIibN29qNBrj49wHNIbLyzRRkDU1NSUlJe3fotU3ZmVl6fV6s8W2NlyqZUJCgvFBrVabkpJi+K+Btn4ereZrAgDncb106RIy4BwQpAgR5qNUKn/88ceW5khmZub58+cBoJ2Ebss5fPhwRkaG4WVpaemePXtIkmyryItCoXjooYdUKtXbb7/d8r+cN9JsMAx7/PHHoTmQ0sKLu7m5TZ8+vaqqioux5GAY5sMPPzQ5MzIyEgBMQjnefffdDmfztt7YJTltDFexb9OmTcaf7quvviovLx85cmSPHj2MT/7mm2+4PFeOlJSUv/76y8vLa8qUKa1ePCYmZsSIEVlZWVw0qQkW/jwQIge5RhHmo9FoHn300f/9738LFy4cPXq0r69vXV1dfHz8jh07lErl5MmTTbLL+SU4OHjmzJlbtmwZNGhQZmbmSy+9pFKp1q5dGxwc3NZbPvzww3Pnzm3cuPH27duLFy+Ojo7mKqf89ttvNTU1lrhMAeC11147evTonj17uFYPvXv3bmxszMnJOXbs2JUrV7Kysrp0tXfeeef06dPPP/+8SqWaNWtWbW3t+++/zyXbGTNu3Ljg4OCzZ8+uWLHiscceU6vVBw4cOHz4sLe3t7EaaMnMmTPd3d0PHDgQHBw8b9686urq3bt3JyQkcKa8OFm9evWuXbuOHj26ZMmSVatWKRSKP/74Y8OGDSRJvv/++yYne3h4TJ06dePGjdHR0QkJCVxay1tvvWVSJsaYnTt3jh07duXKlVevXp09e3ZERERFRcXt27f3798fFBTE5VEg7BKkCBHm4+Li8thjjx0/fnzr1q1bt241HJdKpStWrPjwww+tWop63bp1p06d4lIXOJ588sn2bZrg4ODLly+vXLnywIEDBw4cMBx3d3d/6qmnLJTHzc3t7NmzTz/99P79+0+ePGk47uTkZCg+3nmGDBly4MCBJ5544oUXXuAyFHv06HHo0CGTwFGpVLp///558+bt2rWLS78LCgr6448/Hn/88fYVoaen5w8//LBkyRLD2PXs2fPo0aNcGoA4cXNzO3369JIlS3788UdDC46goKAdO3aMGzfO5OQPP/zwk08+MeRCkCS5fv16k8wZE7gsmieffHLHjh3GITO+vr6olqx9gyGHOMJCGIZJSUnJz88vKSnBcTwsLGz48OEmoRD19fVlZWU+Pj6G46WlpY2NjSEhIcYZAkqlsry83MPDwzifDACys7MlEkloaCj3csOGDW+88cbXX3+9fPny5ORkbu9n9OjRffr0MX6XWq0uLCx0d3dvGWyZk5Nz5cqV2tpaDw+PHj16DBs2zCRRoeVnzM3NhWaPYvuUlJRcvHixoqLC1dU1NDR0+PDhxsEdZWVlKpUqODjY2Pbiri+VSo0LtAJAXV3diRMnqqqqwsLCJk+eLJPJTL4Kjvr6+hMnTlRWVgYFBU2fPl0ulxcUFOj1eoO0er0+NzfXxcWFy/s2UFVVdeLEibq6uvDw8ClTpkgkktzcXAzDDLkBKpWqrKzM3d3dpJZpTk4ON9bGB8vLy5VKZVBQUDtWV0NDQ0VFhYuLi6GobFvneHp6thpQw7JsUlJScnKyVquNiooaN26cye0qKioaGhoCAwPlcvnly5fT0tJkMtnEiRNNfKctf5MG0tPTExMTlUqlr69vjx49hgwZYrzbzf0SwsPDjd9SWVlZX18fEBBgPNYajaa4uNjNza1lCCtCVCBFiOh+GCtCoWVBIBDdHhQsg0AgEAiHBilCBAKBQDg0KFgG0f2YOnWqTCYbNmyY0IIgEAh7AO0RIhAIBMKhQa5RBAKBQDg0SBEiEAgEwqFBihCBQCAQDg1ShAgEAoFwaJAiRCAQCIRDgxQhAoFAIBya7q0Iq6qqPvvsM6Gl4B+WZVFaSzeiMz3ZEeIBPVzdCNs8XN1bEebm5ho3bLMbKIrSarVCS4HoLB22g0eIB5qmrdGZGWElbPNwdW9FiEAgEAiEhSBFiEAgEAiHBilCBAKBQDg0SBEiEAgEwqFBihCBQCAQDg1ShAgEAoFwaJAiRCAQCIRD0+0V4XO93Sq3v6xOuQgoSRaBQCAQXafbd6h3xjFNZqImM9FlzCzPRasBw4SWCIFAIBDdiW6vCLdlKe/718t1h3epLh7FZU7uD/5baIkQrcDSFF1dRvoGCy0IAuG4LF68+M6dO0JL0TUYhsHxJs8ljuM//fRTeHg473cRRhFqtdqUlJS6uropU6YYPqQxcXFxer2e+9vf33/AgAFtXapOz7hOnEf6hVR9tb7hzC+YzEkxY6m15EaYS+3P21SXjilmLEWj041QJ52r+XGrYs5y13FzhJYF0Vno+pry9/8rixro+ejzmFRm/K+zZ89+99133t7eQslmIcuXLy8uLrYTRZicnDxixAh/f/+CggKNRiOTyVqes2DBgt69ezs7OwPAxIkT21GEHPK+w7weX1f17cb6P/dIw/rI+w6ziugIs2BpSp10DgDq/9zDKOs8FvwXebC7BcrzhxhNY+3Pn1GVxR4P/huNWrdAnXSWrq9pvB5HVZV6/3s94eZp/N+BAwcGBAQIJZuFuLq6WunKAijC6Ojo8vLyqqqqqKiodk779ttvo6OjO39Zp4Fj3Wctqzv8TcPpn5EiFBXa28mMWkkovBi1Unn+D6ax3vOxtRjR7d3y9g2jqtdmp3PDpPz7V7q61GvpiyYWBkKEqG9cAgBMKtflZ1Zsfc77ybckAT2EFkrsCBA16uzs7O7u3uFp586d++OPPwoLCzt/ZdfxD+ByF+3tJH1RN/OD2zfqlAsA4DJmls/Kd3C5S2NiXOUXr7Ja1AFA1KjTrgBDy6IH+T69GXd1V6dcLP94DV1bKbRciPZgGhu0d25gBOn/v+2yyP5UdVn51mc1N68KLZfYEemqPDAw8PDhwxqN5uzZs+++++7q1atbPU2tVpeWlm7cuNFwZGFErPPNC/VnflUsfs5WwvKPXq+naZogCKEF4QOW1aReBgBJ3xF4UITnqvdqdr6uvZ1U/tn/PFasx10UQsvHA3q93rClbTc0Jl8AAEm/EVhItNfTW2q+Wq8vyi778BnPFW+QQZFCS2c+NE3b5XhxaFIuAUNLew9h3X3c/72hfv9HmqSzlTvXK+Y/5TRqhtDS8QBFUV0dO4IgWo1EMUakijAlJQXDMAA4d+7c1KlTFy5cGBgY2PI0hmFomq6pqTEcqRo60TnzsibprPOMf+D3Ose7EUwzQgvCA1ReBl1fTXj64QFhDMPgfqEe/9lU99Ub+oLb1Z+/5PGv9bi7j9AyWordDJYBVq/T3U4CDJP2Gc4wDObp77lqc913G/W56dWfv6R4bK2091ChZTQTe3q4WqJJa1p0MgwDOOH2yPOEb7DqxL76X7bpS/OElo4HWJbt6th1qAVBtIoQa96WHz9+vKenZ0ZGRquK0MXFJTg4eMuWLcYHq4qT1Mnn9Vf/UsxcZgtZrQCO4zRNtxpG1O3QZFwFAOdB4+5+nMAesmc/rPzyFX1Rdu32db7/2Uj6hQgposXodDr7GCwD6tvXWZ1G2qOXk19Q0yGZTPb0ezX7PmxMOFP37TueC/7rMna2oDKaCU3TAGBn48XBUnrdreuAYW6x44jmDyib/bjUO6D2wKfqC4dZvbjafavV6oMHD9bV1c2bN6/VGb4lEonEGmMnosoylZWV9fX1Jgfv3LlTVVUVFhbW+eu4TZoPAMoLR1i9jk/5EGbBbd3LB441PkgoPH2f3iyLjKFryss/WqPLzRBIOkTraLhRGzDa+CBGSryW/k8xYykwdM2BT2t/3Y7KOYkKbWYiq1VLQ6MJj3u8LC6j7vd+cgMud2FpWijZWqLT6SZPnnzkyJGCgoIhQ4bcunVLQGEEUIRarXblypWvvPIKAKxatWrNmjXc8SeeeGLz5s0AcPz48ZkzZ77++utr164dN27cU089FRnZhT0JaUSMNKwPo6xrTDhtDfkRnUdfkktVFOGuHrLwvib/wp1cfZ7aKO83nGlsqPj8JU1GgiASIlqBZTXp8QDg1H+06b8wTDFjqeejazCCVJ79verbjWi5KR7UrS1fOOS9h/g++wEmpgSYX3/91dnZ+Ycffti4ceOqVas2bdokoDACuEYJgpg2bRoAPPTQQwAglUq54y+88IKnpycAjB49uqam5vbt2wqF4qeffho/fnxXb+E6cV717k3Kvw+6jLwfJT8JiDrlIgA49R8FrbnpManM51/ra/Z/orpyvGrnG15L/+c0eILNZUSYos1JpxtqSJ9ASWB4qye4jLyf9PSr2vW2OvlcRV2Fz7/W464etpUR0QKW1aRfgVaXLwAAIAkMx6Ry28rUHgcPHpw7dy7396xZs6ZNm7Zr1y6hhBFAEZIkuWjRopbHJ02axP2hUCgeeeQRS27hHDu+7tDX+tI8TWaivE933dW3A9Q3LgCA071+0XvACc9HnsNd3BpO/1z1/SZPtdJlzCzbyYdoDU3qJQBwGjCmnXNkvQb7PvtB5c7XdbkZ5VvX+Dy5gfQPtZWAiFbQ5d6k69tbvgCAqKyCoqKia9euvffeewCgUqlqamqUSqX1UubbR6TBMpaCE67j59b9sUsZdxApQqGgq8v1RdmYzEkWPai98zDM/YF/4S6KusPf1Pz0CVVV6j53ua1kRLRCOx42YySB4X7PfVS1c72u4Fb5x897L39d1rODClAI66HuxPLFhPOl7EtXaY1N9g39nGDXBDLA6e4RjUajVqu5mH+dTgcAWq0WKUKecRk9q/6vfZqMBH1xjiQoQmhxHBH1jYvAsk79RmASaYcnu019GHfzrPnxo4ZTP7E6jcdD/xHV6tVx0JfmURVFuIui5bZuSwiFl+/qzdW7N6lTL1d+8bLnI2uch02xgZCIlnRy+WLMuTL2Qpntwp1u17EBTncf6qCgoBkzZjz55JMAkJ2dvX37di8vL5sJY4LdKkLc2dVl+DTl+T+U5w55Ln5WaHEcEfWNi9CVJ9NlxHRcJq/+frPy3CFGrfR6bC3ShbaHq37gFDMS8E7Vc8Ckcu/lr9f+9qXy7O/VP2wh3L07cAAgrABVVkCVF+IuCll4v86/638D8RkhGGMTVehCQh+Pex7nsWPHXrlyhVOEly9fHjNmjICxPHarCAHAdeI85YXDjddOecx7EpM5dfwGBH8wqnptdipGkPJ+Izr/LqdB432c3Cq/frPx2mmn2AlO/UdZT0JEq5hhWACOezz0HwBQnv1dfeMiUoS2p8kvGjOy1ai0tiAwGOwtmO5Zvnz5wIED9+3bFx4e/tprr33yySdCSQKiyiPkHdI3WBrai9XrdHmZQsvicKhTLwPDyHrF4nLnLr1R1ivWbfICANBlpVhHNESb0HVVuvxMTCKVd71wjNPAcQCgzU6zglyIDjBn+SI0vr6+x44d++233zZs2PDuu+/Oni1kfQZ7tggBQBoZo8vP1OakyXrFCi2LY8EV2m4vXrRtZJH9AUCbk86zTIiO0KReBpaV9xlqRpcJaVhvjCD1xdmsVo0cMLaEbqjR5WVgEqm89xChZekasbGx+/fvF1oKAPu2CAFAFtEPAHRoSrUtrFatvXUdMEweY45vUxreB3BCX5jF6sRVEcru4Txs8jYS0doHk0glIT2BYXR5qE6QTdHcuNS8fBFRmmD3ws4VoTQyBgB0uTfBTmvsihNNxjVWr5NF9CMU5tQ9x6RySVAES1O6AiGrLjkarFatvZ0MOO4UM9K8K8giYwB5R21Ok1/UrOULgsPOFSHh5kn6BDKaRn1JjtCyOBBcQRl5V1KaTECmvO1Rp8ezlF4W3g937bhdaKtII2IAjZptYbVqbZZFyxcxUFpa2r9/fwDYsmVLdHR0v3799u7da0sB7FwRQvPDiTacbAZLU1wj0C7l9pogjegHaNRsS6uFtruELLIfAGhzbwIjouLO9o3mJud9iTF7+SIGKIrKzc09ePDgnj17Ll26dPDgwRdeeCEpKclmAti/ImyyLZC7xlZobyczjUpJUATp06m+Kq0iixoAALqcNNTfwDawNKXJuAZcYVhzwV09SN9gVqvWF+fyJhmiXbpjvKiB4uLinTt3/vDDDxqNBgC2bdu2du1aHx+f3r17//Of//ziiy9sJon9K0JumxDZFjaDy6M3L17UAOHuTXj4Mo1KfXkBT3Ih2kOblcI0KiWB4aRvsCXX4dad2uxUnuRCtAdLU5qb8cBlEHY3cnJyhg0blpycnJaWtnTpUgBISkoaPHgw99/Y2FhbWoR2nj4BABL/HrizG11TTtdWEB6+Qotj77As52GzxC/KIYvs15gYp8tJl/j34EMyRHs0jZrFARfSyBhV/AldTjpMeJAPuRDtobuTatHyhaG1OelAU3zL1Qq4q4dJqcvNmzcvXrx469atALB9+/a1a9dWV1ePHTuWayhPUZQtK67ZvyIEDJOG99Wkx2tz0p0HTxRaGjtHl5dB11eTXv6S4C60kGwVaXi/xh35780AACAASURBVMQ4XXaay6gZvMiGaBOWVadeBj48bFJkEdqQ5kLbZo5a/amf6o98x6tE7eG7egu35cGRlJT00ksvcX9zrYecnJxOnz4dEREBAKdOndqwYYPNZHMARQggi4zRpMfrkCK0PlwevdwyvyiHDPm0bYWuMIuurSDcvaWh0RZeSuIXiru603VVdHU54eXHi3iIttBYtnyRR8fq+qSyNkktw2VOknsbdZEkSVFNxqherweA8PDw6urqIUOGAEB5eTmnEW2DQyjC5lUqipexOtzWvdNAS/2iACAJisRkTlRlMaOsRX1frUpTA8L+o3moco5h0rC+mrTL2pw0Z6QIrYm+MIuqLiPcvaUhZi5fpOF9fZ56h1+pOs/o0aMPHTq0YMECADh06BAALFmy5Icffpg2bRpN03v37n366adtJoz9B8sAgLTH3eJPQstiz+hLcqmKItzVo0sl8NsEx6VhvYFltTk3ebgaom34jTzkkih0OWjdaV2aFp0D+Fi+CMELL7xw9erVmTNnLl68+MKFCwCwevXqlJSUmTNnjh8/3tPTc+HChTYTxiEsQq74ky4vQ5eXIes1WGhx7JamJ7P/qC6VwG8HWUSM9laSLifN7F0QRIdQ1WX64hxc7sxX1whUX8Y2WFIPTwz4+fldu3bt0qVLTk5OQ4cOTU9PVygUV65cuXLlikwmGzp0qC27MjmEIgQAWUQ/XV6GNjsNKULr0Vxomwe/KAdKq7cBGm5bt99wjOBnNpCE9sIkUn1JLqNR4XIXXq6JMIGuLtcXZeNyl27d9MrZ2Xnq1Knc31ziBEmSY8fyEGHQVRzCNQqGoqNoSrUadHW5vugOJnOSRfPW6EMa3hdwXF9wm9Xr+LomwgTeDQuMlEhCooFldcinbTXUN7jlyzC+li8OjsMowghU/Mm6qG9cBJaV9xuOSaR8XROXO0sCw1lKry+8zdc1EcYwqnptdjpGkPK+w3i8LNomtDao0Da/OIoiJNw8SZ8gVPzJejQVlLE4j94ELu5Gm41MeaugSbsCDC2LHoQ7ufJ4WVTg16owjQ3a7DTely+OjKMoQrhbaw2tUvmHUdVb6cmUcrZFLppSrYKVAi5kEf0Aw3R5GaxNqpY4GlZavjgyDqQImzv7IEXIP+rUy8DQsl6DeX8ym2yLbFR9m39YvU6TkQgY5tSf50qVuIuC9AthdVp9UTa/V0ZANy+0LU4cSBE2Tal3UPEn/uEaEFojyYH08ic8fBhVPVVZzPvFHRztrURWp5GGRFujBi9ad1oJltJrMhMBw5xizO8TgjDBgSKOJP6huLMbXVeFqm/zC6tVa28lAobJLejg0w7S8L7qpHPa7DQLGyMgTLCqYSGNiFFdPq7NTnedON8a13dYtJmJrFYt7dGL8PAx4+0pKSlFRUW8S2UblEqlla7sQIoQMEwa0U+TdkWbneY8ZJLQ0tgPmoxrrF4njYghFFapFi+L6KdOOqfLSXMZeZ81ru+gsKwmPR6sY8dDc1q9DlXf5htLli+TJ09++eWX2z+HrilnKYrw9MFI3sK/LYFhGLy5QIerq2twsFVWw46kCAFkEf00aVd0OelIEfKIOoW3+qKtgkIQrYE2J52uryG9/CWB4da4PukbTCg86foaqqqE9Da/RTPiHlhWk34FzA3P3rt3b4fn1Pz0ieriUfcH/+02eYEZt+CdhoYGNzc3a9/FgfYIwRA4ioo/8cfd1qDW8YsCgDQkCpM5UeWFjKreSrdwQJoKbfPRJ6QtpOF9AUCHHjf+0OWm0/U1pE+gJCDMSrdwzM1dB1OEob0wgtSX5DAaldCy2Ana28m8dDZvD5yQhkYDy+pyUaUS3rBB5CEy5XlHzVPX63ZojtN2rFFzLEWISaSS0J7AMLq8TKFlsROa8uitaVgAgAxNqbyiL82nKopwFwW3/LcS3Kghi5BH+Oqf3A6kTyCh8GKUtVRFd42pMQPHUoRgeDjRlMoLLKtJuwLW3CDkaEqrR1MqTzT5RWNGAk5Y7y6S0J6YVKYvy2caG6x3F8dBX5ZPlRfiLgp+2py1jQMWu3c4RXg3QRthMbq8TLq2kvTylwRFWvVG0vC+gGG6gluoUgkv2CYjGyNIaWgv5NPmCw3fbc7aommb0JEmSYdThLKo/lzxJ1R923KaSuAPHGvt1qC4k6skIIzV6/QFWVa9kSNA11Xp8jMxiVTee4i174XC03jEZoW2pZH9AVmE9g3uomiuvp0jtCzdnrs9sq1Ps7sGTamWokm7Aiwr7z0Ek8qtfS+0TcgXdEON7ZYvTXHaBYyyztr3EgkOpwih2fBHq1QLoSqKqPJC3NWdm+ysTXNUtwOtUq2ELTubI582X2huXAKWlfcZikllVr8ZTkh79AKW1TqMT9sRFSFq0ssLXD1lWXhfa+9YcEhRlBMfsFq19lYS4DjvhbZbBXc2+LRRR0mLaIoXtVUDQkfLJnRIRYicbHygL80DANI6dUlaQvoEEgpPuqGGqiyxzR3tEl1RNkvppcFRuKuHbe4oRQ4YPtDlZQCAvM9Q29zO0bIJxasIa2pqMjIyKIp/j4rELxR3UdC1lXRNOe8Xdxz0JbkAYL0KFy2RhjvWKtUaUCW5ACAJirDZHVHCkuXQ9TWMqh53diXcvW1zR2lEP8BxfcEtVq+zzR2FRQBFePjw4aFDh0ql0jFj2kw+27x5c1RU1OLFi3v27JmcnMyzBBjGTakOFRbFO02K0FYWIThkehPvNNnxtly+RHIWYSrqKGk2VGkeAEgCwm12R1zuLAkIYym9vtAhfNoCKMKQkJAtW7Zs3ry5rROys7Pfeuut+Pj45OTklStXPvfcc7zLIEMJ2pbBUnqqsgRwgvQLsdlNUQii5eibplTbKULSO5Bw90YdJS2BW3SSgbYbNTCUc3IM76gAijA2NnbKlCnu7u5tnbB///4pU6b07NkTAJ588smzZ88WF/P8CDVXQURTqplQZQXA0KRvMEZKbHZTVKnEcvQleWBbOx6afdpom9BsbL98AUM5J8eYJMW4R5ibm8tpQQDw9vb28PDIz89v9UyWZRsbGxOMqKvrVOKLtEcvjJToi1H1bTPRl+aCzZ9MjCClIdHAslzgAKKrMKp6RlmLy11sttXEIXOkKdUaCKIIZRHNafUO4NMWYz9ClUrl7X33QXV2dm5oaN0CqK6uzsvL+/e//2048swzzyxcuLAzd8EDI+iCW3U3r0uiYy0UmHf0ej1N09YIFOILdd5tAGC9A63XM7p1QqIhO1WZkUSF9rXpfdtFpVJhVq6twwtUzk0AwPxClCqbrv+ogAgAUGfdkNj419IaNE1rtVqGYYQWpAtwdrxO4au35RcodcbdfZi6yrrcTMLXdjsgJlj+cMnlcpLsQNOJURH6+/vX1NQYXtbU1Pj7+7d6pre3d9++fa9du2bGXejogQ0Ft4jSHNfB48wU1GpwilAut3rhD7PRVJUAgEtYtJOrqy3vS/aO1Z49yBbddrXtfduHZVlRydMWytoyAJAHR9pa2ugBKpkTU1XiDDTu2uaeiG2gaVoikTg7OwsrRuehaytrNSrcReHmH2TjW+siYxqvx5FluS4RfWx8awO2ebjE6BqNjY29fPky93dKSgpBEAZPKY+gbEJLsH0YG4c0IoYrFYsqlZiBIB42AK5SSW9gWRTxawZNo2bDjBcDUoepvi2AIiwoKNixY0dcXFxZWdmOHTv++usv7vigQYMuXLgAAAsXLiwvL3/zzTcvXry4evXqFStWWGP5JovsDximy0XVt7sMq9NS1aUYKSF9bb1ExZ1dSb9QVq/j6togugQlRKQMB9omNBvbJ+wakEU6Sh9QARRhXV1dQkKCTCabNm1aQkLCnTt3uOPjxo3z9PQEACcnp9OnT2dlZb366qvTpk3btGmTNcRoqr6t0+jQlNpF9KV5wLKkX4hVu9m1hSyiL6Ap1Sxsn0RoAHWrNxtKKDseQBIUicudqYoiur6m47O7MwLsEfbv3//LL79seXzbtm2Gv3v37v39999bWxJZZAxVUaTLSZeGRlv7XvaE7VPpjZFGxKguH9fmpLtOnC+IAN0Uur6aaWzAnd0Ihaft7y4N7ws4ri+4zep1mERqewG6L1ykjM1qGd4Djkt69Nbeuq7LvWnt5tvCIsY9QpuBsgnNQ8AlKjS7a1DJrq4i7PIFlztLAsNZSq9D1be7BMvqy/IBQBLQQ5D7Nz9udj5JOrQidMBGzLxg43LbJpA+QbirB11XRVWXCSJAN6Vp+WLb6iTGNBcdRY9bF6BqylmtmnD3xp3dBBFA5hitlR1aEZJ+IbirO11XRVej6ttdQMDdewAADEPbhGbQ5GGzeaCvgeZu9ciU7wJNRdKFetYApGF9ACf0hVmsTiuUDDbAoRUhYJgsvC8AaHNShRal28BoVHRdFSaVkd4BQsnQ1IYCTaldQbDciWaaW9yh6ttdQMD4Jg5M5iQJimBpSpd/SygZbIBjK0JuDx9Al5cptCDdBqokD1hW4t8DhKulwsXia3ORIuw0LEuV5oOgrlHC04/w8GUalfqyAqFk6HbohXZog2NsEzq6IuTSVPWlrdcyRbRE2A1CDkloL4yU6EtyUanYTkLXVTIaFeHmibsoBBSjyShEpWI7TVORdOEsQrhrLdjzqDm6IiT9QwGAKkOKsLMIvEEIAAAYKZEERwHD6AtRDminaN4gFHLUAIAMCgf0uHUelqXK8gHDhB04R7AWHF4RegVgUhldV4Vsi07S3MdH4CmViyZHU2onac6dEHrU/EIBALlGOwlVVcLqdYSHLy4XsjIq6RsMOEFVl9pxt3pHV4SAYaRvCHAN9hCdoDkKP1xYMUj/HgCgR4qwcwib+mmAGzW0fOkkYvC+AABGkKR3ADCMHbdWdnhF2Gxb2LfhzxeMqp5uqMHlzoS7j7CSSJp82mj50ilEYseTvkEYQVJV9mxb8IgYImU4mhww9jtJIkWIVqldgFuikgFhAoaMciCLsAs0VyfhvjQBwQiS8AkElqXKC4WVpFtAiSBShsPuHzekCJtsC7Rv0RmELdNlDOkdgEmkdF0Vo2kUWhaxQ1WXsjqNgNVJjGl+3Ox2SuWR5ght4RWh3Y8aUoRA2rvVzyOCJ2XfBcNI32BkW3QGkWzrcjQ7YNC6syMYmiovBAyTCG3HgwNMkkgRAukThBEkVV1q3zWEeEHAhnYtkSCfducQQy6aAYm9O9n4Ql9RxFJ60isAk8qFlgUkfqGAYVRFkb12b0WKkNu3CAKWpSqQbdEBghd8MoZEPu3O0dzHR0SjhizCDqHE9KxhMifC3Yel9PZa6R4pQgCDB9x+DX9eoOuqmMYG3EUhSEO7ljRZhKV5QgsidkTk0OaeNQyjygvt1bbgC5EE+hqw78xdpAgB7H2M+UIkSdkGuH0LZBF2AMNQ5QWAYSJRhJhUTnj4sjRFVZUKLYuoEU/uBEeTA6bUPh83pAgB7gYH2+cY80VzUna40II0QfqFAE5QVSUspRdaFvHSVJ3E0xeTOQktSxMoc7cziGpnF+x9Sx4pQgDDBj56MttFPMHcHHcLXlQUCS2LeGmeT8OFFuQuKHO3Q1iaoiuLAcdJv1ChZWnCvrfkkSIE4MYYw+jKYpamhJZFvIhtiQqovkwnEJtDG1DmbiegygtZmiK9AzGJVGhZmuAefKos3y7bSSJFCACASaSkVwBLU3ZcTM9SuEL4IlOEdl/wwnJEUmXUGGQRdoh4KlcYwF0UuIuC0TTS9dVCy8I/SBE20RTVjbyjbUDVlDOaRkLhJWxDOxMkqItWR+jFlE3PcdcitEfbghcokUXKcNjxNiFShE1IUAhiu4iqOokBFDjaPixNcdVJSL8QoWW5C+6iwF3dWa2arqsSWhaRIpL+kSaQ9hvlhBRhE8hd0z53y22LCdLPkJTGCC2LGKEqipu2mkRQncQYVF+mfUSV+mnAjrfkkSJsAj2Z7SO2rCYOXO5MKLxYvY6qsc+CFxZCleSC+EYN0E5Eu7B6HVVVghGkqOx4sOsteaQImyADegCGUWUFyLZoFRFG4XOgIs7tIKqSeMagdWc7cLMQ17tRaFnuAVmE9g+yLdqDYaiyfMAwMkAsWU0GUHZ2O4jTwwaGbgb2OKVaTnPCbrjQgphCePhiMie6oYZR1QstC88gRXgXZFu0haE6CS53EVoWU0gUONo2IgwZ5UAWYTuIdvkCGCbxCwUAqtzeJkmkCO+CbIu2EGEqvQE0pbYFS+mpimLACbFtNQEA4e6Ny50ZZZ392RaW05REKMrHjfMJ2V+cNlKEd7HjLBkLEa1hAXcLpqMWWqZwHR5I3yCMlAgtSwuaMzrsb0q1HHGmKnE0t3yxt0kSKcK72HFMlIVQpbkg1iUq7uqBuygYtdIuC15YgpgNC0AJS23A6jRUdRlGSkifQKFlaQV7rTiKFOFdmmyLUvsspmcJ4kzvNcAVJkZTqglituMBVRxtA31pPrAs6R8KOCG0LK1gr24zpAjvgru623ExPbMxVCfhZi4RgqbUVhFhlVFjSNRXuTXEbsf7BGKkhKopZ3UaoWXhE6QI78Fe1zuWQFUUibM6iQEywD73LSxEnMWADKCihq0i8uUL4ATpEwgsS5XbVe8zpAjvwY6L6ZkNVSJqDxsgi7A1WL2Oqi7DCJL0DRJaltYhvQMxUkLXVrBatdCyiAjR1kAw0BxLYVemPFKE99A8pSJFeBfxZjU1g8IuWqIvzQOGIf1CxFad5C44TvoGA8vqy1HE71303WTdSZXa1boTKcJ7QFNqS5o8bOKrV2mA9PTDpHK6vpppVAoti1gQu4cNAO4WQ7CrKdUSGE0jXVeJSWWkd4DQsrSJXUbXI0V4DyinviUi7BFqCoaRfsHAZc4hAKA7eNgAFUNoAVWaBywr8e8BGCa0LG1il5u7SBHeA+HugwpeGMMVwgecIH2DhZalPST2uG9hCeL3sAEqj9cCkcc3cXC9z+jKYpamhJaFN4RRhEePHh0yZEhQUNDy5cuVylbcWVOnTh3WzLp162wnGYZxSWlolcpBlRcAw0j8gsVYncQIVCfWBD1XA0HEDm24u3xBo9aE+PfjAQCTSEkvf5am6MoSoWXhDQE20ouLixcvXrx3795Ro0b985//XLdu3aeffmpyTnJy8ldffRUaGgoAnp6ethSPDOihy8+kSvNlkf1teV9xIvJUegNNUU7Ipw0AAKxWTddUYBIp6S3G6iQGSL8QwHGqopil9CJfadmGbmHHAwDpH0pVlerLCkix5hZ3FQEswt27d0+cOHHu3Lm+vr4bNmzYvXu3VqtteVpMTMzQoUOHDh0aGRlpS/HaCRylGKhuRVJ7plssUQG19bkXfWkesCzpFwq4qPc+ONsCGJqyI9vCErpFiBPYY761AM/JzZs3Bw8ezP09aNAgpVJZWNhKjMOSJUuGDx/+9NNPl5XZtEGgpI0p9XQx2/8XKniv/pM0xnEqsHWbJapPEEaQVHUpq2tlqVKrg9cS6JifqR/vOETX5ebiamKfT6HdOG2GhT1ZzJCD1LOXaMoBxo1pVNL11ZjMifD0FVqWDmg/cDShkp1znJpyhCpQdZuZUgDXaFVVVUxMDPc3QRCurq6VlZVRUVHG57z//vuxsbEajWbTpk0zZsyIj4+XSFrxnFRWViYnJxv7Tt96663HH3/cEvEYV28A0JXkNjQ0cEcqNNgrSeT+PIIb1Wcv0UdyddtHUL5yaw2zXq+naVqv11vp+p1HV5wNADo3H6r52xAtmJc/W1FUl3uLMFLbKgrbfov4JJOo1WEAsOQMfbNS+0I/njf5W93nFhBN3m0AYDwDGkQ/aqynPwAo87OoyEHGx48U4W/dkKTXYQBwvYpNrdR/P45yI3l44mia1ul0NE1bfil+oXLTAQD3DWkQ2c+pJbSbNwBoinJMfmC36rG3UyW/F+DcOI38jfppvHaQp0WjZvnDJZfLW1UfxgigCD09PQ2fjWEYpVLp7e1tcs4TTzzB/fHjjz96eXmlpKQMHTq05aV8fHz69+9/+vRp7iWGYR4eHpbK5+qqlEiZ+moXCYHJnb/KYF66SldrwYmEV2KJ3u7w1Hn6rxJizF/EtxPJGSFWiXLmFKFcLnBJM1anqautwEiJe3i0OEsAG6MLDFNXFEmVVc5uAwBAQ8MXN5l3k+lyNQDA1CBslB+2KZnZcIMs1Eq/GEdIePWGuLm58Xk5y9BWlwCAa3gvuZikahU8tKcWgKgtM3yBp4vZl6/RV8pZAAhzxf7TF9+aSp8uI2acIY/cT4S6WPrE0TSt1WqdnZ0tFZ1vlPUVACAPjhTVb6lVmMg+SgC2qtjN1ZXL9MhTsm8mMrtvMzQLTiSs6osnVLJnStiZZ2T7JpNzelg0ajb4QgRQhD179rxx4wb3d0ZGhkwmCw5uMzRfJpNJpdJWNxE5CILgOZoGw0i/EH1RdmZW/r9yel4sYwFgciC2fRzR2x0DgPEB+BNx1J+F7Kw/qdUx+OYRhEzsOsJMmraaxFoI3wTSvwfARaqsQM/AvjvM+kQmp4EFgFF+2NvDiKlBGACMC8AfPkXtusXkKdmfp5EeUqGFtg7dIgqfwziVML6Cfes6fTifBQAfObwwgHi2Py4nYHEkNvs4faOaHfk7deg+cpiPeHPsLIGrZSjmyhUGcCdXQuFJ19fQNRU1zn7v36A/TmU0NEhwWNEbf2MIHuSMUQw8fZH+MoOZd4L6cBTxTIyot6sFEO4f//jH8ePHr127RlHUpk2bHn74YScnJwD47LPPfv/9dwDIycm5evUqRVGNjY3r1q1zdXWNjY21pYS4XygAvHU892IZG+AE300kTs8mOS0IAP5OcHQG+dEoQoLDJ2nM0N+oG9XdxhXeJZob04cLLUin4KbUnOy8mF+ox+PonAa2vyf201Ti4gMkpwUBYEYIdm4uGeKCnSpmx/1B5SntcOAYjYqur8akMtJLvNVJDHBRTrqywsWnqFG/U4fzWTcJvDgIv7NY8uIgXE4AAIS7YZcfJGeGYiWNMOkw9XuefW4YdpfANA5um3Dvpbyo/fr3khkdA4si8LQF5JfjiCBnDABIHL4YR3w0imABnr1EP3uJpkX8tAmgCCMjIz/77LO5c+d6eXlVVFRs2bKFO56cnJydnQ0A1dXV//jHP1xcXPz9/ePj4w8fPmxLP8aRAvbzyhAAiNAU/qMnnrZQsiza9FvCAJ7tj194gOzljqXVsCN+pz5OtcOHk+o+MRcswEU2GAAqCwpu17F9PLDvJhLJD5GLInAT82GQF3b5ASLWG0urYUf9Tl2tEPHTaRZUSS6wrMQ/TMzVSQwUUk5KuRem117KLHUi4cVBeN4jkk3DCcW9ezpuEjg0nVzZB1dRsOAk/UmaHT5uIu8faUwjBTclIQBw7kZuvR6mBWMJ88ifphLR7qY/uWf74z9OIeQEfJLGzDlONQgf9tA6wpirjz/+eElJSX19/bFjx3x9m0Kkdu7cuWbNGgAYOnRoRkaGVqttaGg4ffq0zczBkkZY9jc95zh1FQsFgCfcC3dPIrxkbZ4/zAdLmk8+E4NraHjuMj3/BF1lX8kV3cXDdrKIHf4b9eD1IBbDorRFO8fCjYfIZdG4qQ5sJtgFOzuHnBmKlaph8hF7szCaA33FPmoVGnjpKt3rAJVEhgLAat+irIclm4YTnm08cSYWxsrzdhVKyihrGWUdLnchFF5Cy9IeegZ2ZDDRP1Hf1IQAwFi8MG4OeWImGevd5qprUQR+ahbpK4c/C9nxf1CFogwlFbXf1mYwLOzIYPoc0H+fxTiTMGdoGAC41XacJeNEwsejiZ+nEl4y+C2PiflZ/2ehGIfZPJqrjIp3Sr1Qxk46Qk0/RiVUsl5uTmoXX5KlnvApJzv6XXMWxlN9cRUF80/Q6xNFF0NoNuKvMlqthfWJNOdS0zMAvj0A4CmfwsBO+H04C8OJhB0ZzNy/xGthdJXm0vbhorXjGRYO5DD9fqZWnqeLG1nCvwcAzJIXTgjoWOAx/tilB8je7lhyNTvqEJ1UJbpJEilCuFrBDvuNWnmertfDQ+F45iJy5bhQjCCpqhJWr+vMFRZE4InzyXEBWJkaZh+n1l2l9d1/rSryrabUGnbaUWrcH1RcCevnBFtHEbcfJr1CulBfhsRh+1ji7WEEALyZyDwj7j2MziNmi1BNwdvXmcj9+jcTGaUeFkTgqQtIbt3Z+ezsRRH48Rmktwz+LGQnH6FKGq0psa0Q86gBwO95zIBfqIdP0Vn1bIwn9us04ov54dCV8nhRCuz8XHKMP1akYicdoU4Wiethc3RF+GsuM+oQdb2KDXfD/riP/GUaEeKCYQRJeAcAy3a+m0GYK/b3bHL9EALHYFMyM+4PKqteXCPdVZq2mgLEuNVUr4f7j9GnillPGbwzjLjzsOS5/ricaDKDulTw4pVY/IfJhIyAT9OY+SdoVfcvI0yJeKtpWRz9WgJdp4P7grH4eeTPU4m+HpgZfZXHB2AXHyB7KrCESnbUIXuIVhNzpMy+O8y8E3R6LRvhhn03kUh5iJwfjpPu3riTK6OqZ5S1nbyOjxxOzSIfjsTrdDDrOPV1pojMBYdWhLU6WHWBZlh4JgZPW3BPsktzq5EuTKkEBm8MweNmk+FuWHwFO+Qg9d1tEY10V2kOGRXjk/nyVbq4kR3th2Uvlrwci7s2B1aY16r+0Sj85EzSWwZ/5DMTD3dvC4NR1dMNNbjcmXD3EVoWUw7nsz/nMG4SOD2bPD7zbhZEU3GZLtaJ7eWOXXqAHOuP5SvZcX9Qf4nMwugqog1Mq9HCmss0ALw5lMhYdM/WO+kfAgD6rnTolRPw4xTipUG4noF/naNfvioWL4xDK8J1V+lSNUwIwD4aTTjfm1FpdjeDMf5Y0nzy0Si8QQ9PxNH/vdBdN59Eu9UUX8Fuv8lIcPhyHGGSCGh2X+VxAdglIwsjtUYkj2eXuVskXWR2vIqCpy/SALBhKDE5DUA90wAAIABJREFU8B7ZCIUn7uzKqJV0Q02Xrukjh5OzyEei8Ho9zD5OfSUmC6OrcP58ET5uL12ly9QwKRB7bTAuvVddmFdxFAN4dzixczwhweHdZObR07RGBHOk4yrCy+XsjgxGisMX44iWc0ZTnq9Z3QzcpbB3MvHdRMKZhO03mb9LuuWsKs5+vBQDK8/TDAv/NwAf4GU6bnctQrbL33n0vRbGie5pYTR1XxLffPpmIp2nZIf4YKtbS6zmep911SgEADkBeycTL8fiFAP/PkevE42F0SXouiqmsQF3URBuNu200yEXy9ivMhkZAdvHtjJJWtKq/l+98SP3k+5S2J/NTDtKVWosltUyHFQRGubTtQPxvh6trJ2bS2+bX159WTS+bhABAP93he6OVbrFWW77ozQmqYqNdMNeG9xKsRvcRYG7urNaNV1XZcbFOQtjcSRep4PZx6mfsrufhUGJMuYipZr9KJUhMPhiLNHKhGpZY0IM4J1hxNcTCAkOm5KZZX+LwL7oIuIMz9Yz8NQFmmHhxYF4n1Ynyaa+yma2fJkejJ2fS/ZwxS6UsaMPUWVqi6S1EAdVhB+lMSnVbJQCeyW29eJhXBdmqqLIki7Mzw/AQ1ywxEp2T1Y3m1K5PXBc7kK4m5aBFZA8Jbs+gQaAbWNNXdkGJBasUgFATsC+5j2MVRfpuk5FDYsIETq0GRaeOk/rGfhPX3y4b+sOW8tb1S/vhR+9n1RIYE8Wc6Sgmy08m7svhQstyD1sTWVuVLPR7ti6tiZJy541AOjviV1+gBzig2XVs69eE3IF44iKMF/JvplIA8AnowmnNuZTTCojPf0s7MLsTMI7w3AAePka09itwhH1xTnAlT0U01bT6ouMioJHo/B2ap2Tlq1SoXkPY0oQVqmBzSndzLwQYXWSnZnMpXI2wAneGtZmxVrOl2vJlAoA04KxN4cSAPBSfDfLhGlavojJIsxXshsSaQD4fAwhb2PcSO8ATCKl66oYjfkBZoHOcGAqIcXhm1tMmnB7846oCFdfYpR6eDQKnxXa3ixPBpjvrjGwtCc+zAcrUrFbu1UNNhFuEB7IYf7IZ9yl8P7I9n60FlqEBjYNJzCAralMN+qpRtfXMKp63NlVPNVJytSw7ioNAJ+MMY1sMsby5QvHf/vhUQostYb9vlsFbIswQvvpi4yKgsd64tOC254kMYz0DQaWpcotGrhIN+xffXCahVeuCTZqDqcIf81lDuUxCkkH8yncnVLzLLkdjsH7IwkA2JRMd6O4fLFlNdXrYc1lBgDeG9FU0rctLHeycQz3xRZG4GoK3rrebaZUEXrYnr9M12jh/hBsUUR7jxvp5Y9JZXRdFaO2qPmcFIc3h+AA8GpC9/HBsCz3cxXP4/Zz86Jzy4gO2s5IzEp9acn6IYSbBH7PY86XCrPudCxF2KCHZy91aj6Fu+lNlq5SJwZic3vgSj10ozpeYstqevkqXaRiR/ph/+7d0fKFs+MtHjUA2DQCl+KwK1NIj02XaC7TJZZR+7uE3XeHcSLh87EdtfHCMNI3BAA6X8KiLZb0xIf6YEUqdlt691jB0DUVjKaRUHjiLgqhZQEAaNDDc5cZANg8guiw6B1pVuZuS3zl8PwAHABeiBfGq+1YivC1BLpQxQ73xZ7s0/EHNyOnvi22jMQlOHydyXSXBDVRZTVdrWC/uMmQOHw5jmirjrYBwt0HkzkxylpGVW/hfQ0em1eF89h0CVHZ8VoanjpPswCvDyYi3TreaTavGEJLMICNwwkA2JhEV3eHIvjN8U3hQgvSxCvX6CIVO8IX+1dHi05o/rFZ7oABgBcGEAFOcKWcFaQIvgMpwpRqdlt6Z+dTMDjZys1JSjOhtzv2ZB+cZuF/8d3AKBRVVhOX6EKzsHYAPqhF4mArYJjEj58pFQDeGEy4SeA34Tw2XUJUkTLvJNGZdWyMJ/Z/Azo1yZhdDKEl9wVj04OxWh1sSu4Gj5uocicSKtnPuz5J8vKsuUrg1cFcrBNj+74ijqIIGRa4vi3PxeCD2+4YYgzu5EoovFidlqopt1yA9UMIdykcK2DFXwtKVJEyH6Ux16vYMFfsldYSB1uFtDgH1ICfk8Aemy7BbdWIwSK8XcduSWEwgM/GEJLOzTGSgC4UTO+QLSMJHINP05h80fdeFo8dz7Cw6iJNs/B8f7ydtkrGkH4hgBNUVQlL8dAH5Mk+eLQ7llnHfnPL1prQURThtnTmcjnbwxV7Y0hn51MwTKl8PJw+cuDy69deEXtst3ieTEOiy7axhEsbiS4t4cvJxmHw2BwSd9tCuraSUSu5kgJCywL/uUBraFjRG58U2Nn0Gx4tQgAY5IUtjsQ1NLyRKOpRg7shTsI/bp+mMVfK2R6urVeraBWMIEnvAGAYqqLIcgEkOLw9FAeA9YmMjcvft64I165de+fOHZOD2dnZK1eutL5I/FOqhtcTaAD4dPTdAs2dga9YfI41A/AoBZZSzX5r8/VOl+Cqk4gh5oJLdHkkCp/dbqKLCfxOqa4S4IzRF4Xw2HSeJjs+KEJgOQB232ZOFbPeMnh3eFcWnb7BGEFSVaWd7H3WIRuH4TICdt9mRNj97i4sy63YuDW3gJQ0whuJNAB8NqarkyQ/qS8ciyLxUX5YcSP7sW3zzVpXhN9//31ZWZnJwbKysh07dlhfJP5ZfZGu1cH8cPyBsK5ZwPxOqVIc3hqKA8Ar12gxNxQViWv055ymRJcPOkp0MYHHKCeOlc0em29FnJ0mEju+Wgtr42kA2Dqa8JF34Y13e5/xYVsAQLgbtrIPzrAgbMmS9qGqSlmdhvDwwZ1chZVk9SW6TgcLIvC5PcyZJPl63DCATcOb8s3KbVh0rQufuby83NNT+OiJrvJnYVPzl09Gd9kP3ByLz9uU+kgUPsYfK1PDBzfE+nCyrF4EWU31zTHcnUl0MYH0DsBICV1TwWr5eZIkzSuYN0ScnSYSD9v/4ulyNUwIwJb27PrjxuuUCgCvDSYUEjhSwJ4uFqlRKJL4pj8L2V9yGDcJfDTKjFHjJ3PXwMRAbGYo1qC3aazTPRsvJ0+ePHDgAADU19dv3rzZ39/f8C+NRnPy5Mlhw4bZTDJeUFOw6kJT85cQly5XC+Or4IUBDOD9kcTYQ9TmFGZFbzy06yJZG6qmnNWqCXdv3NlNQDFeudoUw92ZRBdTcIL0CdKX5lEVRZKQnrzI83Ak/lEqc7mc/TiNWTdIjDvrTQ2YBJ1Sz5eyuzLb7OjSIaR/KNzg83HzkcPagcRrCfS6q/TlB0nRPWxc+2uhly+NzZPk28PMmiT5thYA4L3hxPFCals6s6of7meTYbvnkc7Pzz958uTJkyd1Ot3Vq1dPGpGQkDBx4sTt27fbQij+2HCdzm5gB3u33vylQwg3T9xFwaiVdH01XyKN9sPmh+NqCt5IEKOfTQxPZnwF+/lNRoLDV+M7FcPdEn7dNdDc4gAA3kumq0SYnXbXjhdsq4lrVsACvDSo9Y4uHcK7RQgAawbggc4QX8H+kiPGx00MRdLfTKSzG9ihPtiqfuZMkhL/Hlx/AmB4+4YHeGGPReE6BtbbKtbpnk++fPnyO3fu3LlzJyoq6uDBg3eMSE1N3bt3b1RUlG3E4oVCFbs1lcEx+HJc681fOkOT4c/vemcELsXhu9tMcrXoPDbN1UnCBZSBa1z1fGsdBzsJF4tveVUgY6YEYTNCsDodvHNddG5tqrpMcDv+kzQmraa9ZgUdQgbw/6y5kMAFir9yjdGLTxXqhS7hdLOW3cp1yDJ3ksRkToS7N6vXUdWmYSWW8NYwXE7A3jtMSo0tTMLWlwCZmZkjRoywwe2tyqZkRkvDw5FtNn/pDLzbFgDQU4H9tx/OsPDCFdFNqYLHXJwtZc+Xst4yeNXc+RSsM2oAsGkEgWPw+U0mt0FcKxjBNwjVFGxJoQHg41FtNivoEAnX+6y8EBg+n4sVvfDe7titOlZ0LewZhiovBAzjTGFBeDeJ0TPw7z74MB/zJ0nzWtW3T5hr0yT5RkqnE6csoD1buLS0NCkpKeFebCATL5Q0wq5bDI7By5bt6PC+Fczx+mDCWwYni9ijIuudJvgSdWMSDQDP9Ce6FMNtAr+phAYGeWGPReFaGl4TmVu7uY9PuFACfJXJlKlhuC82syuJLiZgMifCw5elKaqqlEfZSBw2Duey08QVrU1VFrN6Henlj8mcBBEgp4Hdl81IcHhxoEWTJI/1ZYx5NZbwksGpUuKk9YuQtP75b9y4MWbMmMDAwMGDBw+7F2sLxBebkmk1BQsjzHevcTTZFry6awDAUwYvxzb1rxdRdhrDUGUFgGGkQEvUpCr2r0LWhQTztisMkH6hgON0ZbElfZVb5a1huIyAvXeYxEoRrWCEteP1DHxwgwGAl2MtDSOy0grmoXB8jD9WrgZRdUNr2oYQzo7fksJQDDzWEw/vRDHYdrCGRQgAnjJYO5AAgBeu0IyVn7bWf7iPPvpobm7up59+evz48RP3Yl1xeKJUDTszGQzgFcufzKZ6XTw/mQDwdAwe7Y5l1IrIY0NVlbB6HeHpi8s7KjtvHd5OYliAVf1wb5lF18EkUq6vMlVZzJNoTYS5Yqv64QwLL4spO60p9VOgKfWHLCZPyfb1wB7oYgpaS/jN3DWGy07bkkKX2TA7rX2EXb6UqeHb2wyOwQudKwbbDlbaiQCA5/rjIc6QXM3+lG3dSbIV92tdXV16evrBgwcffPBBq97bemxOptUULIjAB1pmDgIA4eGLyZzohhpGVc9vnxQpDhuH4YtO0a8n0I9G4e5tty21GcI2CM2oZQ/mMjICnu3PQ34C6d+Dqiqlygp434B5NZb49hZzvJA9WcS217bUZhjseCFCRhkW3m82B80L8TWmySLk2wEDAOMDsLk98D/ymXdT2Pdieb+8OQhbG/aDG00+sxhPS4fNGrFpHHICXorRP31V8vI1Zn44LjM/bKADWplxMAwDgKCgIGvd08pUaprMQX7yvTDMSu4aAFgYgY8LwCo0sDlFFOaFsEvUTckMw8KK3nhXM+hbhff6MgYMHpu18Vb32HQGqrqU1esID2Hs+F9zmbQaNsINeySSj+ULfwXTW7J5BE7i8GUGe6fBGpfvMgL2najWwhc3GQB4kY9JEnf1wF0UjEZF11VZfjUTHougYzyxnAZ2R4YVjcJWvgWFQjF79uxDhw5Z765W5b1kWqmHB8PwoRbEQRljPXcNAHwwksAAPrzB5ImgTD7nAea2vm1MgYrdd4chcR4cNRxNxRCssEoF+H/2zjtAiiJ7/K+quydszjkvadklRxXFiHhm4Qynfr0zIZjAiJ5ZRPAUxYDhuDu9Q+9OTn+KGURFBclpYZe4Oec0uxO6q35/9MywbJzd6bRQn7/WcabrMTVVr169BAtzcHIg2luv+o2NL+h7L7p8HwGAR8ZiXol586QSKtD7rDujwtD/DcMuAs/nahGI2DdUEsXacsBYF3/8m3mk1QWzk5A/waKdUSmoEAA4BEsnYwB4bo/Uolqs04kfREVFRV5envz3jTfeuHDhwoaGhosvvjgg4KRj5oUXXqiWLEpQ74B3Dinjt/eieKG1zkyNRtdl4v8cJ0/sJP86VzXL3zfcSdl6rMzl+4iTwP8Nx+n++e29qJGd7cXCwdMT8e2/SPKNjRpD+I7nhk2HWfu2jO6so7FWuGW4Ml+C3D2DtDVLzfVcWJQiz+zMc5PwfwrI/4rQ1ho6XZuaJb0g1lZQSeSj4pGgtVPEJsKbByUAGHTGZ3f42BRHwUFXdal5xASlnunlilR8Xjz5sZK+vF96bpIqm+QJRfjdd9/deuutnf/fqlWrVq1a1eUDVIWTmoK8vF9qc8FlKcif3MEu8DFqHXZkXpyMPysiHx4j92X7lfLoL5SKNWXg+fdqSXUH/P0IQQAP+xfG3ZmT+ioj5b/VP47Arx4gBxvpe4fIH3XtHCAf0XQxLF7cKwHAg2M4q3ImlhCb4mjLdVWXqKEIEwPRPaPRS/vp4h3ST5fqaRfK+4kus/ZuPqm1w/QYdE6cYutCPYtQZtlUbvrn4opcMj+Li1fBA3Dip3DxxRcPlaDQ3qh3wFt5BAB876flCx5vkyqXbACQFozuzcZ/2U8e2iZtuky3xSk21lCnnQuJwAFaF8J/9YDUIcI1aTjHb7+9F2wN4kLCpZZGqbGWi4hR6rFe5BubKzdIz++R5iQgHQuzeux4rY8vW2voz1U0wgx3ZSlpE/OxyY7juWJ1KYycqOBjvTwyBq0+RDZVwndl9OIk3c6d8vFF+1lzEVh5kAC428ErBR+r7iY5NRpdlYb/XxF5bo/09lnKG4Untt2EhIShGyAj82qu1OqCS5LRVEXtKj4yHgkmqamWOjpUSn19fDz3jyPk5yqq4+LU64ja6IC38wgAPKbcbbYMH5sitTS6qkvUUIQAcEUqnhFHfq2irx/ilp2hxgg+4OlbpP3EPb9HAoB7RuNgP0ofdEfVO20ACDPBQzn08d1o8Q7pokTe/0jXwaHXcnv/CClpo+Mi0O/8KH3QHZVSCTuzdDL+ooSsPkwW5eARoQpPmxHr6A+OFpcq5iAAAMZ8VAJQ6qpR67wTZoJHxnIA8KKGnUe6IJ/mtD+ivpVHWlwwK1Exv70Xta9rAGD5FA4A3jzMVemUnSZ3m+JCwjW24/fW029KaZAA9+UovNx49Wdt3nApJQjtracfHdct1sm93LT17EoUXtrvPnQqu9i48GhktkotjaS9TdEHn2BUGLp1BBYJ/Hmn8rPWsyKcNWvW5J64+OKL582b99133ykuh/+8k0+anHBuPDpDBR+4HJKnbDngLtyVhcPNsKmSbqnWxwsr/+s0zkWzibBSab+9F7WvawDgzFh0VSq2iWiFTg0mXToZFi/uIxTgzlH+lj7ojic2TcVZs3Dw7EQMAEv2EH0SYCgVa2V/fJKWw35cQI610OGhaG660iYQQnx0Iqh8gnl6Ig7g4ZNCcqBR4Wnr+etITU0tLCw8cOCA2WxOTEzkOG7Pnj01NTU8z3/zzTezZ89+5plnlJXDTxwSrDxAAGDxOHViilRLJfQSLMA9ozHoZxTq4mp6N5/U2WF6DDo3XoXji/rXNQDw9ESMAFblEV3aM4l6zNrxFvpJITFz8IASpQ+6wIVGIbOVtDURW4viD/dy83A8LAQdbqafFulgFIoN1dTp4EIjtWxMTwH+sp8AwKNj8aC78fSB2rEUAJAQgG4biaknaUdBev4dp6enZ2ZmFhQUbN68+fPPP9+2bVt+fr4gCDfeeGNBQcHChQuXLl1aUaFw8Sp/eP8oqWin4yLQLHUcbNpsqffncEECfFVC9yrW/XAAuENGNbQtVPLbe9Hg+AIA4yPR+XGSTXTfzGuMy536qalFuHQvkSj8cThOVKOzNEJCjOoTxyF4YAwGgBf26mAT6pKw+0Ux2VNPkwLRzQrlunRBm03y4bHYhOHfx8mxFiXnrYdvxOl0Llu2bMWKFZ1jZ0aMGPHMM88sWbKE5/lly5ZxHLd161YF5fAHibpr/ip+8e1FjS7M3Yk0w+0jMQV45YCq4/SAu4acNYgLidBs0H+o47f3Ip+4ia2FtDWp8XwvD2ZJALDygNSmeXMDUfPUzzIbXXOMcAgeVKj0QXfcjQlV3lJvHYETAtDeevpdmdaqUJeE3eX7CQA8NAab1Jk39SqOdiY5EN04DHv3fKXo4Supq6trbW0NCwvr8npYWFhBQQEAmM3m5OTktja1nKID5X+F5GgzHRaiwsW3Bz4mCTAn16RWaQiZB8dgE4b/FYHGVaC0P6JK1H1Ro97xBQD42CRQ2eEEADNiyFmxqMEBqlaB6hGX5hP3ci5xErguAw9XOnLPi6C+cxcAzBwsGoPBkw2pJdqHjP5YSbdU02gL3D5KrU3SE5um7qwBwKPjMEbwjyOkol2xE0wPX0pUVFRwcPB7773X+UVCyF//+teMjAwAoJRWV1dHR0cPetTNmzffdtttt91226+//trjGyorKx9++OE//OEP7733HiH9bC5yHNTD6lx8yyCO5yPjgBDFuxl0Qb64kCi8mqdpQK/2R1QV/fad0Oa6BsDdVGvFAeLQcFOVHWnYEsCFRmozYq0d/nqIIIDFihTy7QVVixp2Zt4oHGF294JWe6zOaB+hLSv7+7K5QNUSlbmoeMTxsvtTrTEAAGBkKJqThh0SrFDOKOzh12wymR5//PE33nhj5syZL7/88vvvv//iiy9OmjTpyy+/fOqppwDghx9+aG1tHXRvwl27dl1yySWTJ0+eOnXqpZdeunPnzi5vcLlc5557bltb25w5c958880lS5b08bSW5Gm762isFf5PnYtvL3LgqFyWWlUeG4c5BGsKULlNu8WpsUVIAV7cp6Lf3os21zUA8LtkNDEKldvoP49qZxTKlq6Wgb4rD0jtIlye6m+bz75Rr2B6F4IFuDdbhwg1jS3CPfX0+3IaIvjb5rNvEMdzUQnegFhV+fMEjADeySd1dmUe2PP3snjx4vfee082y/70pz898cQTlNJPP/30+uuvB4CzzjqroaFh0Bbh66+/ftddd82fP3/evHl33333ypUru7xh3bp1GONVq1bNmTPnvffee+ONNxyOXo8YdSMvA4CFOZxF5TqdvFaGf2YIujoVHBKs0LCJqEvbepVflpDcBhX99l40u64BgEfGYgBYvp9IWh1gNHYQelN1lenr0jt8ZBziBTlFUtWBAODebC5IgG9K6d56jaZNTraTKx9pM+LzewgFmD8ahyud69IF9Rr1dGFcBJqdjGwivJmnzAmm1x/0HXfcceTIkfb29sLCwvb29r1791511VXy/7JYLN09iL6zdevWmTNnyn+fc8453YNutm7devbZZ8vdoKZNm2az2Y4dO9bb0whvCRFgvqJFnnpE7YIXnXl0DCCA9w5pF5HvOaJqZBEu3auu396LZhYhAMxNxyNC0fEW7VpSaJxEuCqPNDnh/ASkerlqzPFu26Jc3YEAIs1w5yjsvaLQAPda0+rQmddEPy8mVh4WKV36oDuaeSIA4PFxHAC8cZAoEqHWz4Wx1WpNS0tTYJxOVFVVRUa6XRrR0dGVlZXd35CU5M4zRQhFRERUVlZmZ2d3f1RjY6PNZk/Yv/bqD1bLryxYsGD27NnKCiwjhkQCgLOiSIMooUyT6/xY88Zq4ZU9HY/nqH5pQx0dUksDEkx2IRDU/9f9XIO31ghRZnpDUrvqo5mDkGCSmutb62tVKo8HADabTT633T+Su3s7/8Ie8bJYpwaluxwVRQAghUZr8JvsEOHVXBMAWjjC2dam0IVUH0QmQFVxa/ERU1icsg+WJMnhcHSOPLgrA97KM39SSPZW2ocFq24XOkqOAQBExGkTb7hkp0AovjldCpQcag8ohkUDQEdZAVZuJO/i6sL4IDgzWthSi1fu67h/VF+bpMVi4fl+NN2J/3348OEffvhh+vTpEyZM+OCDD9rb23v8wPz5830Qvi8sFovT6Y69tNvtXdo8AYDVavW+obf3yISEhIQ25r58/cSw2Y/Jr2RnZ/f2Zj+hqSPaECJ1FQEWM2B1z1Yul2vxGLKxGt49yi+eYA5StJZjd5x1pUApH5MUEKRFeu+KQxIA3J/DRYVo0UjWFp3oqigUWutN4SNUGkKSJPlXd+toWHaQHGyCH+utl6mTE9KZ1rpyAAhIHsar85vvzD/yaY2dTI1Gl2ZY1B4LAKTENNfB37jGGsWXsyRJHMd1fmxmAPzfMPLXw/T1I+bVZ6t+t+RqrAIAS2KGSjtVZ4pa6doSImBYPEEICFC935OQPLwdAOorFPyneRdXd56YCL/7TnrrCL9onLkP1xjG/c/pCUW4ZcuWBQsWLF26dMKECY888khNTU2PH/BfESYnJxcXu0NOSkpKvMafl6SkpNzcXPnv1tbWpqam7u+R4Tgu7cCHv5+9yE+RfMISwIVHSw01pKFa7cJIGOMZcXRGHPq1iq4+4s78VQ9SUwYAQmyyL78YP9lRSzdWQIgA92Rz6o8GACDEpbgqCklNKU4bpdIQGGP5q7NgeGAMLNoqLd1Hr0hV97REHR1Scz0STKaoeFD5q3QReCVXBIDHxmMNfiTgLWpYU6L4cJRS73x5WTwe/eOouOY4fXoSSg1S9wQjV64wxaVo8E2+fEASCfxxBE4P0aLXqSkuBRASaysQJYhTJj61+2R5uSQZJkWRXXX0X8dhnn9pISc+fNNNNzU3Nz/44IMAcPz48eZe8GcwmTlz5qxZs4ZSSin917/+NWfOHPn1tWvXVlVVyW/YsGGD/PeHH344ceLElBRdG755EGLlwFEtbsAB4LFxHAD8Zb9kV/lyVMvqJC/sJQBwTzYO06odqQYVRztz5ygcbYFtNfTHSnUv2eQ27nx0otpaEADWHCPFbTQrDF2RolFWjzaphF4ygtG16dhF4FX1I9Q088dXd8D7RwlG8JDKJ2kvyGTmI2KpJEp1XR1eKvHoOAwAL+0jon/zduILEgQhJCTEZDIBQFBQUEgv+Cc2AMD8+fPr6uqmTJkybdq0qqqqu+++W379T3/6k2wIZmdn33rrrZMnT549e/ZTTz31yiuv+D+oIniiulXPoJCRI/KrOkDtiHzNgg/zm+gXJcTCwb3ZWpxPZeR6XaJqnUO6EMDDfdkcqJ+mLVYVgyaBvoTCy/sJADw+HmvWtIiPSQKMpbpKKonajPjnCRgj+OshUqNmpCqxt8v+eD5CYd9nd1bkutt8ZivX5rNf5Lbe6jXq6cKcNDw6DBW00v/6F6HW60lBkqQNGzasWLFi6dKl8iv5+fmlpQr888LCwrZv3/7WW2+98cYbO3bs8AagHjp06Oyzz5b/XrFixY8//rh48eKjR496X9Qdd56vymVKOuOOyPf7vNM3mlUneWEvIRTuHIXj1Apb6QFtyuN15t5sHGaCDeX0txoVjULN7PhPikheE00PRtdnaFegCaUPAAAgAElEQVTkAQkmPjyWSqLaJSy8jA5Dl6XgdhFeP6jiCUasKgFK+Zhk6CkAREGanfDuIQIem0kztExYAgCM4KGx7pqx/hSN7fk7qqqqmjJlyqxZsxYvXrxq1Sr5xffee++GG24Y/FCd4Dhu2rRp06ZN47gTlkFSUpLFcsIPP3z48HPPPTc0NFSRERXBnVOvlUUInoj8gla6tlAtTUhFl1hfBRjLXVTUQz61CVh1l2cX+OhEd3k8UaNKoKEmd9N2uYacSmhmx8uV/h8Zi3ltu5dqlrnr5c/jMQC8mUeaVCuk6C7hpL4dv/IgaXbCxUnKt/nsG16rYghebhqGU4OQfNs06If0/NO+4447mpubf/vtt86tB6+77rrffvtNETfhEIWXXcHVpdBf1Tel4BA8PBYDwLJ9atXIF2vLgUh8ZDzi1Q1Ole/xbx6G1Q5G6ALiBXd5PPWT0rwsyuGsPHxWpHzjNC/a2PHfltFddTTOCreoXPqgO5rVl/EyNRqdn4CanfBOvloLXJuaMjYR3pTbfKrTlq4P3Bahhtdm3rO1nJ08OHr4cdtstm+++ea1116bPn1653CdESNGEELKylQvn2NY5KKO1OUUG6o0G/SW4TglCO1voF+VqLKliprUlKnqgA+OEozgEW0vamQ0vq4BgBgr3DYCU9WMQiqJ2tjxsqfzwbGcVbUalb3Ba76lgkdzvHpA6lDHNalNldF380mtHabHoJkqtPnsG16OKKwuAapdhUjZ27K9lm6sGOSgPexKzc3NkiQNGzasy+uSJAFAH9XOTgc8FUe1O6UKGBblqFgOUZvqJHLs65w0PFK1lgV9oGV9GS8PjcUCho+Ok8JW5XcEsaZMAzv+1yr6cxWNMPsbmz44tKzl5OXCRDQ1GtV0wN+OqHKC0cAi9FZnVKnNZ9/ggCAuOJw67VJTrWaDWji4L4cDgKWDjVDruftEQEDAjh07ury+ceNGjuMyMzMHN9KpgSdeRjs3IQDcMQpHWWBLNd2kQkS+qP4RtdRGV+URjODPE3TYT+GERajplpoahG4chkWiilGojR3/5C4JAO7NxsEql3ToEbdFWFOqpW0BAI+Nd/t3XUrPG3U5xYZqwBwfFa/wozvx7iFSblOxzWe/aNMQuwsLsnCoCX6ooNsGFaHWc/eJG264YfHixT/++KNc24ZS+t133y1atOiaa64xVPSK9nj8FprOcSDvzjdQwyjUwCJ8ahexS3BDJh6nZsuCPuD1mDUAeHQsxgj+rmjjNBkNZu3rUvpTJQ03w/0a5rp0Rm4TTZ0OsbHn4h4qcWUqzglHJW30w2MKa0KxthwI4aNUtONbXfDCXgkAXpiialuXvtCy4qiXUJO7t8bgasb2fEJfsWJFZmbm+eeff8kll9TU1ERGRs6ePTs6OvrNN9/0S9ihj6wINbYIAeD+bBxqgu/K6M46RbdUua4xQurVyjnURNccIyYMz07UxxwEObcJIbGmTLMoJ5lRYejqNOyQYKXSadpq2/GEwp93SgDw5ARO7ZYFfaBZY8LOIHB7spft8ysivztyEzdVA32X75NqOuDsOHSpTuYg6GQRAsADY7hAHtYVk9yGAU9bz3tTSEjITz/9tHbt2htuuGH27NmXXXbZ6tWrd+zYERMT47e0Qxs+TgdXMACEmuDOUe6cQgUfK9ZXUZeTC43EFrXKHj6ynYgE5o/GmSG6rUxsCeBCIqjLKTZWazz0E+MxAngrT+FGImpbhP86RvbW07RgtED9vi59oFlbny78IRMPC0GHm+mnRYouN5UDfSvb4bUDBACWTdHHiJfxWAuaHl8AINIMt43EFGD5wJ0Rvf7KOY6bO3fu6tWr161b989//vO2224zm/U7GRqGE9c1DVpvqQ+O4aw8fFpE8poU08Fq56L9WkW/KCFBgg5h3F3w2BZab6njI9GsJGQT3Z38lEFlO94uwVO7CAA8PwmbdZ03XqctlUPuiPwX9ippE7pUXm7P7JZsIsxNx2fG6nboBJ1i02QeHotNGP5znBxtHti86XncG6LIRqHG1zUAEGuFW4Zjb70rRVA7F23xDgkAHh7LxWpYSqZHBM3ry3iRDwErD0iKNE4D9e34N/NISRsdG4H+kKnz/qBxxdHO3DoCJwSgvfV0fZmC585SAODjVFluh5vp348QHsNzk3SeNS40ElsCia2FtGmddJ4UiG4ahiUKr+QObJM8KTnoqquu6t4dsAvbtm0bsHSnFkJciuPIHldViWX0VI2HfmQsXn2YrDlGnp6oTFq6qhbhZ8VkczWNsbrTP/TF3c1Ac+cuAMyMR3IjkfcOEUWq6qg6a01OWLZXAoCXpnKaVRbtDV4nlzwAmDlYmIMf2S69uE+6OEmJJEq5pANCcvFbxXlsBxEJzM/CWWF6TxsAH5fiLMp3VZWYh43ReOjHx+MPjpL3j5InJ+DEQF+/ipOWZUdHR3sntm/fXllZ2X4yKkg+xBD0yKCQSQ9G12VgF4EVAzzv9IZ6riaJwhM7CQA8PYHTJfi+C27nrh6zBgCLFW0kItu1KtnxL+6V6h1wbjy6OEn//ZQLDsdBoaSjTWqu1370BaNxpBk2VdJfqxQwCuUif1xYtBoNorfV0M+KSCAPT+qRO9gdT751kfZDZ4agOenYIQ2skchJivC7777L9bBv3z4AeOmll3JPRmGphyDaF3HuzJ/HY4xg9WFlauTLrdEEFe5q3j9CDjbS9GB0ux652N0R4j2VELSNcpK51NNI5F9KNBJRzyIst9E38wgCeHmaIfZT8N5pVxZpP3Qg747IX6ZE2pKqNWUW75AowINjcLwWva77R15uYqU+587Hx2ME8E4+qbP7+hFDbFJDC0GnwFGZLOVq5EvN9aS9DQcE46AwRWTzYpfg2d0EAF6cgk3G+IlhaxAXGkmddu2jnGQe8dSM9b+RiNuzq0I2/ZO7SLsI12XiSdpWau4DIS4NdLqAAYD7c7ggAb4qpbv9TltSr6bMumLyUyWNtsCDYw1zfIlPA/0uYMZFoEuSkU2EN/N83SSNsUsNKXBgCA4Ko44OLWsIdUaukf/GQX9r5Iuq9fFZeYCU2uj4SPT7dAP9wOTFqdeWqmAjEU8SocITd6iJ/usYETA8r3e0RWf4eD3vtCPM7rSll/yOUFPJIpQoPL6TAMCTE7gQA/ggZNyeiMoivQSQr4jfOEhafYtQM9Avfghx4p5ND+Qa+S0uf1u/qtQRptEBy/dLAPAXA0RbdEbfxckht1H4on+NRKTmemK34cAQHKRwjSc543PeKDxMv4zP7rgvYHS6ZAOAB8dgMwf/KyRHBhiR3wX5BKa4Hf/BUXKwkWYEo3m6Znx2gQuJwIEhpL1VamnURYDpMeicONTgcDdl7BcDfXdDCHdUt06nVABYNoXjELx6wK8uPx5Xk8JH1GX7pEYHXJSILkw00H4KJxz4us3azcNxciDKbfCrdpdKNWV+qaJflJBgwSjRFl5OXLLp4YkAgIQAdMtw7A3+GiSUuv3xitrxHSI8vYsAwJLJRvFBePEEFRbpJcBj4zkAeGW/1O5DI5GTwoK/+uorm80m/00pBYCtW7d27sQEANdee61Sgg5d3FHdemSMykyJRndl4bfyyILN0qbL+MEpHDVanJfZ6Bt5BOld26JHBF0v2QDAhOG5SfhPP0sPbpMuTcaDK12mRqAvBXh0uwQAD43lYvTO+OwCDgjmQsKllkapsZaL0Key1RMT8EfHydpC8k0pvmRQpcuk5npib8dBoTgwREHBXj9Iymx0UhS6Xu+Mz+7w8amOggOuymLziAm6CDA7CU2NRttr6ZFmOj6yn1k7SREuWLCgpOSkzX3lypUrV67s/ApThHDCItRNEQLAC5O5TwrJL1X0H0fIrSMGswzUCD58ZjfpEOH6TDzRMNEWXoS41BN9lbE+G8ctI/D7R8mmSrp4h/TujMGcFdSw4/9fEfmthsZZ4QEDZHx2h49Lk1oaXVXFeinC5ED03CTuga3S3VukA3P4gIFnFapRU6bB4Q5nXaZffe0+0P0CBgBemMxd9I1PjSVPmtI1a9Z0dCgRlX+q4w4Olq9rkD4/wlATrJjO/eFH6dHt0pWpOHKA5gXpaJNaGpHJzIVHKyVSXhN9/wgxYVhipGgLL8hs5cKjpYYasb5S7X62vcoA8PZZ3PhPxdWHyS3DB1MKy5NEqNiWKhJ4fAcBgKcmckGGibbojBCf6jiyx1VZZBk9RS8Z7h2N/3WU7Kmnz++RXhz4bYcaVUaX7pWanDDLeD4IGX0DR2UuTPS1F9VJivDss89WR55TDRwUhgNDiK1FamngQiP1EuOGTPz3I+T7cvrINulv5wxscbpXZkyygor88R1EojA/S8/62n0jxKVKDTWuymK9FCEAZIWhR8bhJXvIXZulXVfxwgDPDG4foXIxF387Qg430xGh6PaRRjy+gDFsCx7DOzO4M9aJr+SSm4bh7PCB/cIVtwhL2uhbeQQjWDbVcD4IGXeQdmWRjtYCAKyb5ZP9btCfvvER9I4Plnn7LM7CwT+OkJ8G2LNX8ZW5rYauKyZBgj59sX3ECKdUAHhiPDcyFOU20AEVvwDZjm9tRCYLF6aMHd8hwpI9BACWTsYDVcmaoWN5vM5MjUZ3ZWEXgbs2SwON2/EkESpmET6xk9gl+EMmntCf90sv5DQzYm/XpSqQFw6BLxfHRv3tGx7d42VkhoWgR8dhCnDPFmlADbUVr/8r17Z4aIz+9bX7wLOlFukrhpmD18/kAODZ3VJh6wA2VXdj+ljF7PiXc0mZjU6NRtcYKeOzC3x8GiCkVwmLzrw4hUsMRL9W0b8fHtgJxlWlpB2f20A/PE5MGJ41pA/Cizs8rbJIZzl8wNDfo5HRsS5+Fx4bx40MRQcbB2ZeuKqUtAi9tS0WKVFUWj14vZPSvMxKRNdn4nYR7t4ygGRQZbuF1Nnh5f0SALxoyGgLL9gSwIVGUqdDrK/SV5IQAV6ZhgHgke2S7zUOia2FtDUhs5ULjVJEjEe2S4TC3aNxRrCR580oFzC+YOhty8jonufrxczBGwM3LxT03ntrWzw10UC1LXpEiE2RW9VTyadYMlV5bToXZoJvSgfQ/VXZQN/n90gtLrgsBZ2fYOj9FIy0pV6XgS9NRg0OeHi7ryeYEzVllLDjN1XSb8tosOCu5G5kDHKn7QtMEQ4SHRvEdOeiAZoXcq92xPF8VIL/o8u1LdKD0Z3GqK/dB8hk5iPjqCSKtRV6ywKxVnhhMgcA92yRmn2rlqdgEmFhK333EMEInp9k9P0UvFtqZZHOcgAAwFtncYE8/PMo2Vjh07lTwSqj1NPj87Hxhsv47I7uhdZ8x+g7l2HhQiJwQDDpaJNaGvSWBQDgVY958Xlx/+aFWFMGhHBR8Yjzt9Gat772UuPVtugRQ51S78rCZ8SgynZ4erdPJxgFy8r8eSdxSHDLcNxvrrER0LeLVhdSg9Dj4zkAmL/Zp75aClYZ/biAbK2hCQHo/uwhsNg84b76O3f7ZQh8m4aFd9cQ0jleRibOCs9P5gDg3i2k307oLuWSst84SEra6LgIdG3G0Pgt8Ya5ZAMAjODdGZyA4c2DZFd//Q2o0yE2VCOO56Li/Rx3XwP9bwGxcPDMxKExa8a5GpV5ZCweG4GONlNfinErZRG6CDy5iwDAs5PwIJL6tQcH6NzyxXeGxjIwJu5OaYZZnAuy8LQYVGqjz+/p55iq1MpscsLyfRIA/GWasepr94FxnLsyYyLQvdlYojDvV6nvqHyxpgwo5aMT/LfjH9omEQr3ZeOUoKExbUJciqcqkBKtjf2Gx/DWmRwCWLpXOtTUzwlGqer27x4iR5vpyFD0x+FDZt821AVMHwyZL9SAuBWh3hkUXjCCt87kOAQrDpB9DX0tTncwt9+KcNk+dzfziwxZ26JHdOyd3RvPT+LSgtGuOvp2fl/mhVIOwvXl9PtyGmaCRw0fbeEFmSx8RCwVXWJdpd6yuJkRh/40AjukftIKqdMhNdYijucj4/wZrs0FL+yRAGD5VMwPnW3bUBcwfTB0vlHjYairUZlJUWh+FhYJ3N3n4hSVOKL+UkVfP0gQwF8M083cF/jYZMCcWFtBRd86lalPAA+vTccA8OcdUkV7r/OmSJVRhwSLt7ujLSIGVfVbLwwYefHSNC7aApsq+2onIqc/8tGJgP1aJi/uk6o64MxYdGXqUNq0jVAVyBeG0ndqNIw5x0smc/EBsLm695xfIol1FYCQP2XG/ldIZn0jdohw+yg82Xj1tfsA8QIfFQ9EktviGIQrU/GVqbjFBQt/62NL9bdbSIMDLv5W3FNPU4LQvaOH2No34HKLNMPL0zgAeHCb1Ojo+T3+t7+mAE/ukpbuJQjgJaMWVOsNg1Tg6pchthgMBRcWhS2Bcras3rKcINQEr07nAODR7VKdvYc3iPVVVHRx4dHIPMj465UHyHU/SHYJFozGb581xFYmGC/yQub1M3CQAGsLydelPRuFfiYRHm+hZ64TN1XSpED0xSzOOhSiLTpjQEUIADcPx+fFo5oOd1ZDd/x0EDokuOlHackewmN4dwZ31sCrtOuLEN+p5YuBYYrQL+QSZfr2Y+rOdRn4d8mo3uFuMtcFf2rKUIBndksLt0qUwtMTseySHHJ4ktKMtaWmBKFnJnIAsGCzZOue7k8ksa4SEOJjBmPHb62hZ34hHm6mYyLQliu4sRFDb9o8RZyNNWsI4J0ZnIWD1YfJ5uoeTjD+VBmVLfiPjpMgAT67iL/D8Hm63UFmKxcWTV1Osd4ozt0eGXrfrKEw5ikVAFae4S7G/WO3YtyDDhl1ErjxR+nZ3cSE4V/ncvKuPRQxYLyMzP3ZeEIkKm6jS7rF/cpOTT48BpksA33sJ4Xk/K/Fmg6YlYh+vZxPDhx6WhDczl0s1pYboSpQZ0aEoofHYkLhrl97qPfrSSIc8HLzWvAJAejny/hLB9UQ2Ajo3hDbF5gi9AsDxsvIDAtBj43nKMBNP0r/OELETutzcOm9TU6Y9Y347+MkRICvZ/M3DhvCvxw+3lgZFF54DG+fxWEEL+eSe7ZIVZ2qWbodhAO/YXtxH/n9RqlDhAWj8dezeYPXwOsDJJj4yHgqiWJtud6ydOXx8dzwUHSgkV78jbit5sTRk0qiJNvxA/THb66m09eJh5vpxCi04yrOsC0mfMFoCUs9MoS3MyNgtAyKzjw6Fk+LQRXt9Nafpaz/if86RuRA0kFYhKU2OuMLcVMlTQxEv1zOX2D40pR9w0cnIo4X6yupsycnqq5Mi0FPT+QohbfySOZ/XY/tcEdhDMJB6CJw+y/S4zskhGDFdG6I3mN3xrCRFxYO/n42F26GHyvpGevEqzdIBxopAIh1FVQS+Yg4ZBpAhO5/jpMLvxbr7HBZCtp0KZ8QMLSnzSAtX/qGKUK/8MyxERWhmYMtl/MfX8CNDEXHWuj//SQN/1h8L98dLem7RXigkZ61TjrYSEeHoS2XD0n3UhcQx/MxSUCpoQJHvTw1AefO4X+fjjtEWLaPpP7HtXiH1F45sONLqwuu3CD+7TCxcPDRedyinFNhpcuXbMbMzp4Rh4qvF5ZN4YIF+KyYjPtUvHajVFY4YAfhygPkxp8kuwR3jsL/70I+aMha8F4MewHTmVNheegIFxaNzFaptZHYWvSWpQcwgt+n47y5/McXcCNCUWErfeanWmJvd1pDISDElyf8UEFnfCGW2ugZMejny/mhUoikXwx+XZMVhj6+gNt2JX9ZCmp1wfJ9ZP/hEgCg0T5tqeU2es6X4jelNM4KP1/GXzdEqt/1i3G6aPVIsACPjsPHrxMeHYdNGNYWkjd+KgIAR6RPxxeRwPzN0sKtEgJYNoV7dwY3hBLn+0CITTVOy5fe0Oebdrlcn3/++d/+9rdjx471+IZNmzZ97yE3N1dj8QYAQu7GhIY8pcrI6jB/Lv/xBdw5XCkA7MHJ4z4V1xaSvmtD/a+QXPqd2OyEa9Lwxt/xkUMq/7pvDFXEuTemRKMvZvG/Xs7PjIWUjnIAOPO3uPcOneTx7c6+Bjp9nbS3nmaHo61X8lOiT5GzCxg176ULURZYNoU7ci1/5yicaS8FgMeKE+7/rZ/+ha0uuGKD+E4+CeThkwu5R8edEjoQAOSWLxFxVBLFOv1bvvSGDl83IeSSSy5ZtmzZrl27pk2btn79+u7vmTNnztNPP718+fLly5d//vnn2gvpO0KcQeNluiCrw3dHVgBAdVDSgUZ67UZpfO/q0JsseF82XnvB0Es765sh1Dv7rFi0cUZjIOloMoXn2oPn/SqN6X3WPismZ64Ty2z0ggT06+V86qliwcvwMUmI48W6CuryrW2VfiQHondncJdZywAgn09+/SDJ/Ni1eIfU0lM5o84W/E+X8UOrdowvGPlOW0aH7W39+vUFBQV5eXkWi2XixIlPPvnkrFmzur/t/fffHz58uPbiDRQ+1rjxMt0hNSUAcOMZaXwc99wesr+BXrtRmh5DHh+PL09xLz+Jwv2/SW/lEQSwfCr3yNhTbVmCNynNwCuzM3LqZ0xK8scXcI/vIIea6LUbpSnR5MkJJ2YNAFYeIA9skwiFP43AclOLUwzE8VxUglhdItaUComZeovTH5Ty9eUU4B9z0p47hNcWkuX7yN8Ok4fGcPfnYIsn+WhHLb1ivVjVAdnh6KuLuVPs7CLDx6XCga2uymLruLP1lqVndFgrX3311SWXXGKxWADgmmuu2b59e21tbfe3bdmy5ZtvvqmsNHQaJpzIkhkailC2XM1xyXeOwgXX8e/O4OIDYGsNvWK9dNYX4sYK6pDgDz9Kb+URMwcfnXdqakEA4CPjkWASG2uoo88bK2Mgh4ya4lJkj++7M7iEALSjll6xXprxhfhzFZUo3PfbiUIHfz/nFNSCMobN3O2O2FhDnXYuJCInMfjjC7jNl/Mz41GdHRbvkEZ8LMpX3J8Vk3O/Eqs64MJEtPmUs+C9CIaPl9HBIiwvL580aZL8d0REhNVqraioiI6O7vyemJiYTz75xOFwbN68+aWXXlqwYEGPj7Lb7VVVVUuXLpX/EyF06aWXZmVlqSp/VyITAECsKna5FCvi7HK5JEniOOUz1mXLFUUluFwuBPCnTLg2Fd4+BCsOwpZqeuHXYrQFau0QboZPzoMZsZLLZYiuN2rARSeJFQUd5QVC8gg/H+VyuRSc/e44KosBAEUlyqP8KROuS4W38uGVg7C5ms78UkwPgsI2sHDwtxnw+zTi6p7XfarAxSYDgKO8UBg7yC9ckiS150vGUV4AAFxMsjzWlAjYMAu+KoOndkNuI533q7R0r1RqA0Lh1uHwxnQqIA2E0gcUlQQAzsqiQfwL/Z8sjuMw7udgqIoiPHTo0DXXXNP99TVr1kycOJFSitCJgw9CSJK67rYHDhyQRd+0adOsWbOuueaauLgempiIoihJUkPDiR7xDQ0N3Z+mLiGRyGSRWhrEtmZkDVLkkZIHRZ7mhba3krZmZLbSwDDvwy0IFmXB7cNg1WH8Wh7U2lFKIHx2vpQVChp/kRrDxSSLFQXOikKc4O8lmxqT1RnZIsRRid5RzAgeGA23DoPX8tBbh3FhG0Sa6f/OpdOj6ak9azgmCQDEquJBf+EqLa7uyDUQuOjEzmPNjodZv4O1xej5ffh4KyCA5ybQh7MJ0FN6uUXGA+akugrRYUf8wDJC/J+sfrUgqKQI09PTP/vss+6vp6SkAEB8fHxNTY38Smtra3t7e0JCQpd3ekWfOXNmWFhYfn5+j4owKCgoMTHx5ZdfVlL6gSPEJjtLj3JN1abwKEUeyHGcJEny7bGCOCqOA4AQm2yxdi23bbHA05Nh4VhYV0JmJeJY69BPX+oPV1KGY+8mVFfh//fscrkUn6zONNSWA0BAciZ38ihxFlg2HRaNg/8WkMtTUHrwqXmx1hkueVgLgFRdOugvXJIkhJCq8yXTUVcBAObE9O5j3TIK/jACPi4g0VY0a+j08vQDCx8VL9aU8a31snved9ReXDKqKEKz2TxiRK/XTeedd94zzzxDCMEYf/vtt6NHj5aVXGNjoyAIQUEnGVUFBQX19fWpqalqyKkUfFyKs/Soq6rElJ6ttyx90W9NmVAT3DyUa6cNiCGRQQEApK2Z2FqwJYALiejxDbFWuC/7dJk1IToR8YLYUEWd9kGUXdWSvmsZChiGdJ3CgSLEpYo1Za7KooEqQm3QYSauuuoqQRDmzp374osv3nvvvU888YT8+s0337xs2TIAWL9+/eWXX/7ss88uXrx4xowZd9xxR0ZGhvZy+o4nldDo8TKDqzJ6qjIkagFD58b06HQwHfoDc3x0IlBq/DhtscbfToSnEu4MCqPGy+gQLCMIwi+//LJmzZqqqqpPP/30zDPPlF9/4IEHIiIiAGDatGm1tbXHjh0LDw//6KOPzj33XO2FHBCybSEaf2UOtu/EKQkfEYdMFqmpjrS34QBlnLtqIFYp0Jj+VEKIT3NVFomVxSa/o5zUQ642ha1BvdnxpxsGv4DRJ006ODh4/vz5XV48//zz5T9CQ0NvvPFGzYUaPO7S20adYy9+9gg91UBIiE1xlh4Rq4uNfKftYseXk+GHginvaUzPji9uDF4V6DS6pFYPOSlNaqojdpvesvQKdTqkxlrE8XxkD2FHpydDohywvKUKcWxLdTMkUgldA+8Wcmrjbvli1KpATBEqAUJ8TDIAiFWleovSK2JNKVDKRycCHqoNdRVnCG2pfKyh48W0xOAF02WYRdgFxPGyc1f+ZowGU4TK4F6c1cZdnOyGrTvGj5ehjg6puR4JJj4iVm9ZjAIflYAEk9RUa+QLGDl0jrkhOsMbuMAvU4TKwMfJFqFx42Vka5XdsHXG3U7SwLaFq9prx7Ol6gEhPjYZKDX0BUz1gDsRnvIY+QKGrS5lEGKNXnGUWYTd4cKisSXQsO0kYVCN6U8HDB55QeztUksDEkx8OAR9cFsAACAASURBVLPjT2DkWWOKUBncgaOGvhplSYTdQEg25Q3rcHIxV1NPGNm2APn4Qikfk8Ts+M64L2AMOWtsnpSBj4pHvCA11hqzmwGVRKmuAhDio5P0lsVYCHFpYPAtlVmE3fDcaRfpLEcveA6dbNZOQnbuig3VBtwkmSJUCMzxMUlAqcuQMVFiXQWVRD4iDplOoTbzSuBpGVqktyA9I1+28yzm4mQMnp3NKlf0DMaeTdJwLiSmCBXDyGn1LJi7N3gDx+JTSRTrqwBjPqprVfrTHD4iFpmtUnM9aW/VW5YecLHAtF4wbOoLU4SKIR8AjVlojdWU6Q0je5vEmjIgklyuQW9ZDAZCRi7wyyzC3jCsm5ApQsXwWISGXJlVzCLsGS40EgcEE1uL1NKotyxdEVl8U+94ijgX6SxHN6joEhuqAHPMju8Ob9TAUaYIFYM36mEHWMGnPpFPMAacOJbx0geGdROKteVACB8ZN9AOtKcDnqvRIp3l6AZThIrBRyUgjhcbqqnTrrcsJ0OpWFsOAHIdOEYXDHtK9YSMslnrAcPeacsiMTdEj/CRnpYvHW16y3ISTBEqhreYntECR+WkDi4k3MjNhnTEuFuqHOLEttSecGdnVxTqLUhXPIFpbNZ6AiH5YGe0IlxMESoJ775kM9Ycsxu2vjHodQ2lYk0ZAPAxLPWzB7iwKGwNIrYW0tastywn4WJ2fJ8Y8wKGKUIl8ZTeNpYiZDdsfSMkpINccZRSvWU5gVhfRV1OLiwKWwL1lsWg8IZMWBJZ6mefGPMChilCJZGjUYwWduFidzV9ggNDcFAosduk5nq9ZTkBqynTL0Y05QkR6yoAIYH543vBmKmETBEqCW/IDAq2pfaLAcsBsyqj/WJA20JsqKIuJxcahcxWvWUxKJ5UwiK9BTkJpgiVhI9JAsyJ9ZWG6sLMttR+MaBtwY4v/eJJJTSSImSVK/qDC4/GlgCpxVgtX5giVBLE8Xx0AlAq1hglcJS0NRFbC7YEcCERestiXAxY8IKFOPUL7y6YXqSzHJ1wscoV/YIQH2s45y5ThApjtMpPnpWZAgjpLYtx8fTONtDKlENGWb3KPuBCwnFgCGlvk1oa9JbFDbPjfUE25ZkiPJXxdDMwiiJkdzW+4G7GVF1ikMBRqbmetLfhgGAcFKa3LIbGaHfa7m4hzCLsE08XLaYIT13cVr9hOvSyGzZfwAFBXGgkdXSIjTV6ywLAkrJ9xmh32m47nk1cn3jK4xXpLcgJmCJUGKNdjbLCzT5iqF6vrFuIjxjqTltqrid2m5yNo7cshsYdpG2MWZNhilBh+NhkwJxYV0lFl96yADCL0GcMVcSZ1UDwEfedtrFmja21fjjR8qXVKC1fmCJUGMQLfGQcEEmuc60v1NEhNdcjwcRHxOoti9ExlAOf1UDwEY9L3hBVgVyspozPGK3lC1OEymMcB76ruhQo5aMTAbOJ7ge3bWGM6xpmW/gIDgzhgsOJvV1qrtNbFuaGGAC8werLsP1Redyltw3Qg4Ltp74jxKcCQmJ1CRCirySko01qaUQmMxcera8kQwLeQOdO5obwFaNVBWKKUHmMEy/Dasr4DjJbubBo6nKKDVX6SuIOGY1JZqmfviAYJl6GWYS+Y5xZk2GKUHnc8YcGyKBgFuGAMMidtnyEYrPmIwbJoCDtbVJrIzJZuDBmx/ePHDgqVhYZwbkLTBGqAR+bDBiLtRVUEvWVhHnvB4RB4mXk4wvPasr4hmFmrRjk4wuz430AB4W5W74YoyoQU4TKI0dpUknUN3CUupxifRVgjo9K0FGMIYRBUgld7hs2dnzxCU/ei85VgVzVZQDAx7Iuyr5ikAsYGaYIVYGP1b/QmrP0KBBJiE9FgklHMYYQBsnOdpUdAwAhIUNfMYYK2BrEhUVRp11f566r9CgACImZOsowtDBU7zOmCFVBMEDvbGfBAQAwp2frKMPQQohNBYTEmjIgkl4yiHWVUksDDgrlI+P0kmHIYQQ3ocO93EbrKMPQwh1dr/e5U4YpQlUQDJBB4Sg4CACmDKYIfQWZzHxEHJVEl3532s7CgwBgzshmribf0b3pOeloc1UVI14QkobpJcOQg1mEpz687hYhpc6ifJC3VIbP8HrbFo7CPAAwMTt+IPB6x8s4C/OBUlPKSMQLeskw5DhRHs8AgaNMEaqC7pdsrqpi0t7KR8SyYO4BoXt6k/tCmx1fBoLuFqGjkN2+DBgcEMSFRFBHh9RYq7csTBGqAzKZ+fAYKolibYUuAjiOHwC2MgeOvrH4pL3NVV2KBBO7YRsQQpx87izVqyqQ+0KbOQgHiHH6MRlXETY1NR07dkySdAtb8BP37Wi1PoGjnpXJFOHA0Ne2cBYeBEpNqSMRx+siwBAFma1ceDR1OcX6Su1Hp5LoLDkCCJmYIhwgul/AeNFBEX711VdTp061WCxnnnlmb+95+eWXMzIyrrzyymHDhuXm5mopnlII3vQmPWCRMoODj00BzIm15bp00WIOwkGjY810V9kx6nQIsck4IFj70Yc0xqk4qoMiTEhIWLJkydKlS3t7Q2Fh4bPPPrt169aDBw/efvvtCxcu1FI8pZBr7+oSdiE11UmNNTggSP6dMXxH3y5azgJmxw8SHe+0PYfOHO2HHuq4C62dnopwwoQJs2bNCg8P7+0N//3vf88777wRI0YAwF133bVp06bKSh1uPPxEz5V5PBdkw4KF4A8cT/vsIo3HpZLoLD0CCJnSsjQe+hRAx6pAzsI8ADCzWRs4fFwqIOSq1rkqEAAY0RVRVFQ0bJg7WCAyMjI0NLS4uDg+Pr77Oyml7e3tu3bt8r4yfPjwkJAQjQTtEyEuDXG8q6qEtLfhgCAth2aue38Q4lM79m/WPs/XVXqMupxCfJrGv5ZTAx2T0mRFyNwQgwBbArjQKKmpVqyv1LcSpCqK8Kefflq7dm2XFzmOe/311335eFtbW0REhPc/AwICWltbe3xnQ0NDcXHxHXfc4X3lvvvumzt37sBFVgUudZRYcKB53xZhTK/e0B5xuVySJIniIGt2dxzdDwAkIbOtrW1wTzidEcNiAaCj7Dj2+duz2WzIb+PbcWg3AKDkEWzWBgENjACMxZqy1uamvkONJElyOBxEofhSUl8ptTbioDC7JQTYxA0cHJMkNdW2Fh4WLD0bMP4vLovFwvP9aDpVFGFUVNTYsWO7vIh9bpIeExPT1NTk/c/GxsbY2Nge3xkZGZmVlbVz587Byak2NGd6c8EBKMwNOmPWgD4oK0KLxTKIQUlHW1NNKeKFkOFjWZXRQeBKG9kOQOvKg4J8tcwopb6/uTcc5UcBIGjE+AC/H3V6YouIFesqLR0tQp/tViRJEgQhICBAmUHzigDAnJnj/w/g9ERKynQd2cM3Vff2BSqyuPpFFUWYk5OTkzN41/H48eNfe+01+e/c3FyMsfemdGhhyZrcvG61/dBOoFQzd52zMM9d5IJpwUHBxyQhjhfrK6nLqd13SKmjMB8AWAj+oBHi08S6SrGquG9FqCye+CY2a4OEN0bgqA7BMpWVlWvXrt25c2d9ff3atWu3bNkivz5p0iT579///vdVVVUvvPDC9u3b77vvvltvvVWp45vGCPFpXESM1NLoKj+u2aDuGLZMFsM2SBDH89GJQIiWpWLF2nLS1sSFhLNa24NGly3VU1OGLbdBYpAMCh0UYX19/ffffy+K4rnnnvv999/v27dPfn3KlCmhoaEAYLVaN27cePDgwQcffPCcc85Zvny59kIqhWXUZADoyN+h2Yis6YT/aF+7ku2n/qN9fztiaxFrypBgEhJZz6xBIsSlAEJidamOLV9Al6jRnJycd999t/vr77zzjvfvrKysjz76SEOh1MKSNcW25Wt73s6Qi27QYDgqupylRwEhU9ooDYY7VRHiUju0VYTOgjxgxxf/0N62cMhuiLQsVglo0CCThY+IFeurxNoKPjZZLzGMW2Lt1MAyYjziBWdxPmnvOfBVWVylRzwh+KzIxeAREtLB02pVGxxFcgg+czUNHj42GXG8WFtB7DZtRvRkELJZ8wt5uTk1XG7dYYpQXZDZasrIBkLsh3b1/26/kWtts94FfmLOyAHMOY7nEnu7BsORtmaxpgyZLCbW39wPEC+YMnKASPY8jTwRTveFNlOEfmEePh4AOg5u1VEGpghVx5I1BQDs+VrkeLiLVTJXk3/gwBBzxmgquuyaOHcdcq3ttFGAOQ2GO4WxjjkDAOy5v2kw1gk3BAsZ9Q/rmDMAIXveDupy6iUDU4Sq41GEO1QvI0Sp+66GWYR+Y83Rbkt1zxpzEPqNNecMQKgjb7sGNdNPuCEsgWqPdWrDhccIiRnU0eE4tl8vGZgiVB0hLoWPjCdtzc4ydS/B5Wa8XEQMa8brP5axZwGAPW8HlQZZ38d33BkvzLDwGy4iRkjQaEuVZ40dOhVBPnd2HNDi3NkjTBFqgWXUJACw56l7O+pwJ06we1EF4CNihYR0YrepvaVS0eUqOwYYs0BfRdDsdtRRwHpmKcaJWdOp+jZThFpgGT0Z5NtRNZFD8JnrXim02VKdJYep6BLi09kNmyLIs9ZxQOUtlVJncT6wC22FEBIz+cg4qaXBWXpEFwGYItQC8/DxSDA5Sw4TW4t6ozgK5ZBRZhEqg0W+rsndouqW6mQ3bIri3lKb61XdUl01paStmQuN5CJi1BvltMKSMx0AOjTxyneHKUItQCaLOSNH1SQKqalOamDNeJXElDSMC4uWmutVde4yB6HiWLKngcpbqicqjR06FcMTnrZFl9GZItQIS5a6t6OsGa/yIKT67SilzqJ8YBahomhwp+1kxxelMWeOwYEhrqoSsbZc+9GZItSIE9mE6tyzsWa8auB2OKm2pbqqS0h7KxfOAn2VxLOlFqu3pTqYRag4GFtGTwGdbkeZItQIPjaZj4onthaVXBfuGza2MhXFlDkGBwS5KotU2lJZEx9VwJx8AaPSlkramsTacmS2Cglpajz/tMV9O6pHEgVThNohd6JQo/4TsdtcVcWIF0zJwxV/+OkM4ni3KX9wmxrP91QCYveiCuO+HVVnS3VnEKZlsUpAymLJmowEk6MwT2pp1Hhopgi1Qzb81VCEzoI8IIQ141UDVVN9PRYhU4QKYxml4pbKHIQqgUwW84gJQKk9b7vGQzNFqB3uJIrSI6StSdkny6n0zLBQA8voKUgwOQoOKp76IrU2ivWV2BIgxKcp+2QGMlvNw8cDpfZ85bdUBytkqBpqe+V7gylC7UCCyZw5Bii1H9qt7JNZLpp6ILPVPGwcENKh9O2o3ELZlJYFmC1D5VEpdpS6nO5KQKmsEpDyWHOmA0KOI7up067luGwFasqJAtzKQUWXs/QIIGRKy1LwsQwvKm2prEaXqlhypgNC9sMKb6nO4sNUEoWEDGS2KvhYhgwOCjOlZVGXU3FroZ9xtRyM4XYT5u8EQpR6prsKflwqa8arEha5TczhXdTpUPCx7owXVhJPHbjgcFPqKOpy2g8ruaV6Zo0dX9RClwLcTBFqCh+dyEclkPZWZ4liSRTuGLZMljihFlxwuCllJHU67Ef2KPVM6nS4ygsAc6aUkUo9k9EFNUx5RyGLb1IX69gzAcB+YCsQSbNBmSLUGo9RqNjtqKdGF1uZKqL4luosPkQl0ZSYyW7Y1MM69iwA6Di4TbEtlVJn0SFgIaNqwkcn8rHJpL1V3tm0gSlCrXHXWlMqiYI149UEi7engUJ32p4CCGzWVMS9pdpaZHes/8gtP/mIWC4sSpEHMnrEOuZM0DZ2lClCrTEPG4dMZmfZUalVgQwndzPesCgunFXBVxEhNoWPSSK2FkeRMlsqcxBqg7IOJye7fdEE7QtwM0WoNUgwmTPHAqUOJTpRuBMnMsf4/yhG31hzpoNSt6PeG7Y0pgjVxX2nvX+zIk+THYSs5afamFJHciERYkO1q6JQmxGZItQBBTtRsBs2zfCk+ipwSnVVFBK7jY+M50Ij/X8aow9MqaPcW2plkf9Pc7shmEWoNghp3J6QKUIdkPul2Q/t8t+Hz5rxaoYpbTQXEi7WVbqqiv18lKfEKDMs1Me7pe739wQjNdeL9VXYEsBafmqAxgW4mSLUAT4yjo9OJO1tzuLD/jxHaq6XGmqwlTXj1QSELKOnghJGoZOF4GuIUluqbA6a0rNZJSANMI8Yj8xWZ9kx0lynwXBsRvVBkSQKTzPe0awZrzYolUTBLrS1xLulSk21/jyHOQi1BPGCJWsyUCoe2qnBcEwR6oNca63DvyQKVmJUY8wjJyGz1Vl6VGoa/ClVaq6XGmtwQJAQm6KgbIzeQLxgGTUZKO04sNWf57BWIRojnztdihak7A2mCPXBPGwsMltd5cel5vpBP8TTdII5CDUC8YJl5ESgtOPg4LdUtx2fxux47fDflKdOu7O8AHE8qwSkGZbRUxHHS0V5pL1N7bGYItQHxAvmYWOB0kEXQiR2m6uyiDXj1Rj/t1RnUT6wrvTaIm+pjmP7Sccgt1Rn8SEgkpCYgUxmZWVj9Aa2Bpkyc6gk+uNCEusqfGmgxhShbrg7UQy2BaWzMA8oFZJHsGa8WmIZPRUw5zi6j9jbB/cEVhJPe3BAkCkjh0rioCs6sVYhuuB/PYT6vz3ni2+YKULdkLMJHYf3DC6JgtXa1gUcGGLOyKaSOLgTDHV0uCoKEcebUkYoLhujD6xj/NpSWdMJXbDKjV/ydlCXcxAfF2vLfcwfZYpQN/jIOD42mXS0OYoODeLjLFJGL9y3o4PaUh1F+UAkIXkYu2HTmBNbquga8IcJYbW2dYELj8FxqdTR4Ti2bxAf79j3q4/vZIpQTwZ9O0pFl7PkMGvGqwsWOS8tbyeVxIF+lpUm0QsuPEZIzKCODuex/QP9rKuykNhtfFQ8FxKhhmyMPhCy5OTdwZw7PVUU+o9KY4pQT6zePr0DxFV6lDXj1Qs+Mk5IzCB2m+PowE6prqoS29bvgLmadMKdWT/AiF/q6Gj+6n1gs6YTwqgpAGA/uA0oHcDHKG3+4u/OksPIZOFjkvp9O1OEemLKyEFmq6uiYKBJFHIYFcvI1otBFCtxHNlbu/IBqanWlJZlGTVJNdEYvSLfaTsGsqVKzfU1bzxsz9uBA0OCz71aTekYPcPFp/ERsVJzvbPE1zpc1OVs+Oey1o0fI44Pv/Y+X8IJmSLUE8QLluHjgFLfjULS0dbw0Sst6/8NAJbh49WUjtErnsiLrT5uqbZt6+vefYJ0tFnHnR1993LmINQFITFT3lLF8mO+vN9VWVTz6kJX2TE+OjFm0WtCYqbaEjJ6xN0N1LfbUWJrqXv7sfY9m7AlMGre8wGTz/flU0wR6ozbTehboow9f0f1snnt2zcgwRR21Z3WcTNUlo7RM0JiJhceIzXVOcuO9vNWSlu++qDx3yuoJAZf8PvIPz7O0l10RC7A7Ty4rd932g/tki14c0Z2zMJX+agE9aVj9IzvFzBiXWXNa4scBQe58Jjo+18xj5jg4xBMEeqMJXsqADgO7+478oLY2xs/fr3uvaek5npT2qjYh94KOvcaVppENxDyJbOeiq6GNX9p2fBvwDhs7j2hl9/Gpkxf5Nbnrvx+wtNs276r/+vTxN5uHXd21PwXcWCIJtIxesacOQYHhriqSsTa8j7e5iw+VPPaIrG2XEhIj7n/FSE+zfcheH9lHDh1dXXvvPPO7t27W1tbv/76a0EQur9nzpw5LS3ucgAzZ8584okntJVRO7iwaCEuxVVV4izK762/rv3w7sb/vCY11iDBFDL7puDz5rL697pjzTmj7efPO3J/C/ndLT2+gbS31v/tOcfxXGS2Rt7ymNy5gqEv8pYq1ZSJteV8dGIP76C05bsPW75dAwBB51wZdvVd7OyiPxhbRk9t3/F9R+5vwefP7fEtHfu3NKxZTp0Oy6hJEX/8M7YEDGgEHRRhY2NjdXX1lClTHn/8cUJIj+/ZtGnT6tWrk5OTASA8PFxbAbXGkjXFVVViz9/ZXRFSp6P5y7+3/bIOKDWljAy/8UFWqdkgmDJzcECQq7JIrC0HS1eLQayrrHvvSbGmjAuNjLrjOSGJuZeMAcbmrMkdO3/ocUuloqvx3yvad/0ImAufsyDwrEt1kZHRHeuYM/pQhG2bPmv67F2gNHD6xWG/vxdxA9ZrOhgWw4cPf+ONN6677rq+35adnT1p0qRJkyZlZGRoI5he9JZN6Cg4WP3S/LafP0eYC77g2uj7X2Fa0DggjrfIGU7dHE7Oovya1xaKNWVCYkbMopVMCxoKS/Z06MnhRGwtdasea9/1IzJbo+54hmlBQ2EZNRmZzM6iPKml8aT/QUjTp283/b93ACBk9k3h1y8ahBYEI/sIb7rpprPOOmvhwoW1tX51ETM+pkw5iaJQaqyRX6FOh+2bf9a+8ZBYVyEkpMc8sDL08lsHN8EM9ejRTdix95fatx4lbc2WrMkx973ChUXpJB2jZ8yjJiHB5Cg8aUv1BFkc4EIjY+57WT6bMowDMpnNw8cDpZ0NBuq01//9ubafP0e8EHHTIyGzbxr081XZW5ubmzds2ND99fPOOy8yMtKXJyxfvnzcuHF2u3358uWzZ8/etm0bz/cgal1d3b59+zrfnS5ZsuSWW3r22RgZPmOMK3978/7fTJMukEoO2T55i9RXIo43nXmZ5cLrHRzvaFO9EQljwKRkIcHkKDwo1VYhhADAseWrjm/eB0rNZ/zOcskfbS4JXGzijIUkSSh1ND22t3nPL6ZJ5wOAVHK47cPl1NbCxacF3vSYIzSSLTfjYLPZ5MWFR0yEg9ta9/xCc84CANLa1L5mmVh+DFmDAm98hKSNbutl1iwWS4/qozOqKMKmpqb//e9/3V8fM2aMj4rwtttuk/+YNGlSZGTk/v37J06c2P1tUVFROTk5P/zwg/eVkJAQjuMGJbWeoDHTG/O3k0M7xfoK2SPIxadH3fyIkJCut2iMPgiyDx9nz9shlOYHpqY3/ndlx/YNgHHY1XcFnXOl3rIxekaSJDL2TNuxveTI7qCZV7Tv+qH5369S0WUdc0bEzY8ik0VvARknQSkNCgoCAGniOe2fvSMV7A808WJjTf1fnxQbqvmo+Kh5S3qOexoIqijC1NTU//znP4o8ymKxmM1mu93e2xs4jjsFomksoz3ZhPmAOD7wgmvNM68RAoP0lovRD9acM+x5O1z7f6k7sNlxdB8yWyP/b7Ele5recjH6Qhg1GRByHNnd8vUHLRv+A5QGzbwq7Mo7WTC2keGCw01po52FB1u+/qdt+3rS3mZKy4q6/RkcFOr/w3WYeEppQUFBaWkpABQWFhYVFcmvr1q16osvvgCAoqKi3bt3S5LU0dHxxBNPBAQEjBs3Tns5tYQLi5azXoSE9JhFKwMvuoF5BIcElpzpgJB4PNdxdB8XGhlz78tMCxofHBRmSsuiLmfL+n8DQmHXzA+7+i6mBY2P7JVv/elT0t5mHTcj+u7limhB0CV9wm63X3TRRQCQkZFx6aWXhoaG7t69GwB27tzZ3t5++eWX19XV3XDDDcXFxYIgTJ48+YsvvggMDNReTo2JuOlhZ8mRgKkXIY53uQbeKYahB1xIhCl1pLPokJCQHnXnc1xYtN4SMXzCmnOGszAPmSyRtyyW40gZxsc65ozmdasBIPjca0KvvEPBFE9EB1TSW0MkScIYoz7/qbt27Zo3b97OnQPu3mBwXC6XJEkWC3NXDAGcpUea92yOuvh6ZLbqLQujfyRJcjgcFkRaN/wnYNJ5rIKowWltbQ0OPtFjp+3nz7E1KGDKBcqOYtz7t6EY88I4DTElj7CExTMtOLTA1qDQK27XWwrGgFEpDI1dizMYDAbjtIYpQiNSUlJy4MABvaVg+Mr69et7KxbIMBqVlZV79uzRWwqGr/zwww9Op1PtUZgiNCLr1q374IMP9JaC4Sv33HNPdXW13lIwfOL7779/++239ZaC4SuPPvro8ePH1R6FKUIjYtgIJgZjqMMWF6M7TBEyGAwG47SGKUIGg8FgnNYYN33CF5qbm48dOyan559KlJSUdHR0HDp0SG9BGD7R2Nh4/fXXm0wmvQVh9E9lZWVDQ8Opt2mcqpSVld1+++0BAQNrtNuZq6++esGCBX2/x7gJ9b5gt9v//e9/y/17TyVaW1sdDkdUFOvgMzQoLCxMT2fl0YcG7e3tra2tsbGxegvC8ImioqLU1NS+K6v0TXp6emZmP2UThrYiZDAYDAbDT5iPkMFgMBinNUwRMhgMBuO0hilCBoPBYJzWMEXIYDAYjNOaoZ0+cUpis9m+/fZbp9N58cUXR0RE6C0Ooy9aW1t//fXX2tra0aNHT548WW9xGD5RUFBQUFBw3nnnsRY3Bqejo+P777+vr6/PysqaOnWqP7GjfcOiRo1FY2Pj9OnTMzMzQ0NDf/rppy1btrC4fMNSX1+fnp4+bdq0pKSkDRs2XHDBBe+//756a5WhCDabbcKECUePHm1razsdOn4PXY4fP37hhRempKRkZmbu27fv22+/jY5Wq/E1U4TG4qWXXtq4ceO3336LELrrrrswxqtWrdJbKEbPOByO2trapKQkAKisrExLS9uxY8fYsWP1lovRF/fdd19AQMDy5cuZIjQ4Z5999syZM5csWaLBWMxHaCy+/PLLuXPnylbF3Llzv/zyS70lYvSK2WyWtSAAREVFCYKgQb8Yhj/89ttvu3btmjdvnt6CMPqhtLR0y5Yt999//+bNm3fu3Kl2mzPmIzQW5eXliYmJ8t+JiYmVlZWSJDFPhvF55ZVXRo0aNWHCBL0FYfSKw+FYsGDBhx9+iDEzAIzO8ePHQ0JCrrjiiqSkpKNHjwYHB69fv95qtao0HPtBGAtJkryrlOM4Qgi7uzY+n3766cqVK9esWcOOLEbmySefvPrqq0ePHq23IIz+sdvtTU1NixYtWrt27c6dO202/yvKxAAABF9JREFU2+rVq9UbjilCYxEfH19TUyP/XV1dHRMTw/PMajc0X3755YIFC77++utRo0bpLQujV0RRfO211woLC+fNm/f/27ufkFS2OA7gx4j+EWlpOopGFigpUhK1kcogKVq2CgKpqEUu3AQZLTIIgiAyIopqES1sUyBEBYkJEVYQYlCUUQQlgVK4KPpnWm8xIJdL993He887U/P9rGbOzDC/WX2ZM2fOGRgYIIRYrdaTkxOm64LPyWQyQkhdXR0hJD09vaam5vj4OHW3QxCyi9Fo3NzcpLfdbrfRaGS0HPgNt9vd1dW1urqKTlGWS0tLczqdzc3NDQ0NBoOBEFJfX4/fk1irrKxMJpNdXFzQu+fn5yldXAGjRtklFArp9Xqz2czn88fHx71eb2VlJdNFwefC4XBJSYlOp6uoqKBburu78Tch+11dXRUXF2PUKMtNT087HA6r1RoMBl0u1+HhoVgsTtG90O3GLgqFwu/3O53OWCy2u7ur1WqZrgh+KTs7e2Ji4seW/Px8poqBf04oFM7OzmZmZjJdCPwdi8WiVqu9Xq9arT46OhIKham7F94IAQCA0/CNEAAAOA1BCAAAnIYgBAAATkMQAgAApyEIAQCA0xCEAADAaQhCgK8nEoksLi7e3d0xXQjAd4Af6gFYZ3t7u6Oj41dHq6qqenp62tvb9/f3RSLRnywM4FtCEAKwjlwu7+zspLefn59HRkYMBkNTUxPdUlRUpFQqh4eHUzr7IgB3YGYZAFaLRqNCobC3t3dsbOy3J8fjcfr85IJQsVjs8fHx07nf3t/fb29vs7Ky+Hz+/1w0wJeCb4QAX8/e3p5UKg0EAvRuY2NjW1vbzMyMRCKRSCQURa2srMRiMavVmpeXV1BQoNPpTk9Pk5d/fHyMjo7KZDKKogQCQXV1td/vZ+hRAJiHIAT4el5fX8PhcCwWo3cfHh48Hs/CwsLS0pLP59NqtWazubOzMxqNejye9fX1+/v7ZF8rIcRmsw0ODlqt1kAgsLOzk5ubazKZbm5uGHoaAIbhGyHAd/D09LS2tkavUzM5OVleXh4MBg8ODng8HiGkv7/fYrGEw2GKokKhkMPhsNvt9Pq0hBCXy6VUKufn54eGhhh8BACmIAgBvgO9Xp9crU2lUhFCTCYTnYLJluvra4qitra24vG4WCz2eDzJyxUKRUpXAAdgMwQhwHfw43CYjIwMQohAIPiphe5KjUQihBCbzZaMSZpUKv0zpQKwDYIQgFvoMaI+n0+j0TBdCwArYLAMALfU1tbyeLzl5WWmCwFgC7wRAnCLRqMxm80jIyM5OTmtra0ikejy8nJjY6O0tLSlpYXp6gAYgCAE4Jy5ubnCwkK73d7X10e3qFSqqakpZqsCYApmlgFgu0QikZaW9tPYlkQikZw+5t95eXk5Ozt7e3uTy+UURf23GgG+MAQhAABwGgbLAAAApyEIAQCA0xCEAADAaQhCAADgNAQhAABwGoIQAAA47S/vKt09vrsH8gAAAABJRU5ErkJggg==",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (-1., 6.3)\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "#sol = solve(prob, Tsit5())\n",
+ "sol = solve(prob, IRKGL16(), reltol=1e-14, abstol=1e-14)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "507ae9bf",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, -1.0, 6.3)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "41-element Vector{Float64}:\n",
+ " -1.0\n",
+ " -0.99\n",
+ " -0.97\n",
+ " -0.93\n",
+ " -0.85\n",
+ " -0.69\n",
+ " -0.485818874719202\n",
+ " -0.26692381276414107\n",
+ " -0.05369340933097668\n",
+ " 0.15754280557878175\n",
+ " 0.3328706604956533\n",
+ " 0.5648848261319378\n",
+ " 0.776797626468188\n",
+ " ⋮\n",
+ " 4.242958339993569\n",
+ " 4.409629638633526\n",
+ " 4.638312467582614\n",
+ " 4.850565456658035\n",
+ " 5.0540058685209095\n",
+ " 5.262334710087114\n",
+ " 5.4290081278892215\n",
+ " 5.6576957059353505\n",
+ " 5.869948843132042\n",
+ " 6.073390204248931\n",
+ " 6.282394606551372\n",
+ " 6.3"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "33e6acfa",
+ "metadata": {},
+ "source": [
+ "### Case 3 (constant step size)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "596eb99e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd3wUZfrAn3fKlpRN753QQw+9R0BEQcV6IqcIKt4hP8UTFT1PjxNFRTk9KyqeCEjxQJGi9FCEAIEAISQkISG9191sm/L7Y3aXdVNINrs7k933++GP7DDl2X1n5nmf+iKe5wGDwWAwGE+FEFsADAaDwWDEBCtCjGOoqak5e/bsqVOnrl+/rtfrbf73xIkTixYt2rt3rytFysnJWbRo0XfffefKizqbxYsX//3vf+/qURUVFYsWLfroo4+cIZLU2LBhw+LFi3NycjreTbgn9+zZ4xqpMFIGK0JMd0lNTR07dmxISMjo0aPHjx+fmJioUqkmT578448/WvbJyclZv359RkaGKwUrKytbv3798ePHu3+qxsZGZIVMJgsNDb3tttvWr1/PcVz3z9951q1bt2XLlq4e1dDQsH79+v379ztDpC7x3XffWf+S3t7esbGxf/rTn06fPu2oS6Smpq5bt660tLTj3a5du+b6exIjTSixBcD0bPbu3XvPPfcwDDN58uSpU6cGBATcuHHj4sWLqampSUlJDzzwgLBbZGTk1KlT4+LixJW2myCEpk2bJvxdVFR05MiRI0eO/Prrr1u3bkUIiStbzyI0NHTIkCEAYDAYsrOzt27d+uOPP65fv/6xxx4TWzSMJ4IVIaZbLFu2jGGYDz744IUXXrDeXlJSUlBQYPk4a9asWbNmuVw6B0MQxIEDBywff/755/vvv3/79u2PPvroPffcI6JgPY5JkyZZHAZ6vf6FF1747LPPli5deu+996pUKnFlw3ggWBFi7KeysvLatWsymWzJkiU2/xUdHR0dHW35WFtbW1hYGBUVFR4eLmzJz89vaGgYOHCgXC4/dOhQVlaWSqW68847w8LChB2uXbt27NgxtVoteFytT15eXl5WVhYXFxccHHzmzJkzZ87wPD9x4sThw4d3RmyO486ePZuenq7VauPj42fMmGHfy/eee+556KGHfvjhhz179lgrwkuXLp0+fbqxsTEqKmrGjBkhISHWRwlffMCAAUql8tixYxkZGTRNT548edCgQa0vUVNTs3fv3urq6vj4+FmzZnl5ednsIPwU8fHxQUFB1tszMzP1en1ycnJ7whcVFVVXV/fp08fmu2dkZCCEhg4dKnxsaGjIz88PCwuLjo7Oy8s7cuSIVqsdM2bMmDFjhB00Gs3evXuLiopiYmLuuusub2/vW/9wf0Qul69du3bz5s0NDQ0nTpy48847hbslMjIyIiIiNzc3NTW1oaFh3rx5kZGRAMBx3O+//56RkWE0GhMSEqZPn+7j49PmmTmOS01NvXz5Mk3T06ZN69u3b2fkYRjm+PHjV65cMRqNffr0mT59ukKhsN7h4sWLPM8PGzZMo9Hs27evuLg4Ojp69uzZSqVS2OH3338/f/48QRAzZszo06dPV38QjAjwGIy91NbWAgBJkmq1uuM9v/76awBYtWqVZcvdd98NAL/99tuoUaMsd6OXl9e+fftYll22bBlB3AxgL1q0yPps//znPwHg008/nTNnjvXNPH/+fIPBYNnt8OHDrY/NzMy00ZcBAQHbtm3rWP6Ghgbhm9psFyS59957hY8lJSVTp061PrmXl9fHH39sfch9990HAAcOHJgyZYplN4TQyy+/bHPyLVu2+Pr6WvaJjIw8c+YMACQmJtoI8N///tfmWOH9y7Ks8PHq1asAcOedd1p2+Otf/woAv/76q82Bvr6+oaGhlo87duwAgBdeeOG1116zdv8uXLiQZdlDhw4FBwdbNvbq1evGjRsd/5L//e9/AeD++++32T5ixAgA+Pbbb3meX79+PQC88cYbS5cutZz80KFDPM/n5eXZDF9wcPCPP/5ofaqFCxcCwNatW8eOHWvZjSCIl19+meM4y27ffPMNALz11lvWx6ampiYmJlqfPyoq6ujRo9b7BAYGqlSqU6dORUREWHaLi4vLz8+vr6+//fbbLRspivrqq686/kEwUgAny2DsJzAwMD4+nmXZBQsWFBcX23GGp59+2tvbe/fu3WfPnn399dd1Ot1jjz32z3/+c9OmTV9++eW5c+e2bt0aERHxzTff/PzzzzbHrlq16urVq3v27CkqKjp8+PCwYcM2btz44osvdnC5GzduTJkyJTMzc9myZSdPnszKyvrqq68IgnjkkUfsy6kR3L+BgYEA0NDQMGXKlNTU1AULFhw5ciQ7O/uHH34IDg7+v//7vx9++KH1F9fpdDt27Dh//vyXX36pUqnefffdQ4cOWXZIS0ubP38+x3GffvppYWHhhQsXUlJS5s6da4eQ3ed///vfF1988fnnn587d2779u3R0dHr169/9913586d+8gjjxw9evT48eNz5sy5fv36c889Z8f5WZYtKioCAGu79ttvv926desHH3yQmpq6e/fuhISEhoaGadOmXbhw4fHHHz937lx2dvaaNWvUavVDDz0kTHqsWbZsGcuyR48eLSoq2rVrV1xc3Lvvvvvvf/+7AzHOnTs3c+bM8vLylStXnjlz5uLFi2vWrKmvr589e3Zubq71nnq9fu7cubNnzz5y5MiJEycefPDBGzduLF68eMGCBdXV1f/73//S09M/+OADgiCWLl16y7QdjPiIrYkxPZtt27bRNC3cSwMHDly4cOGGDRtqampsdmvPIkxOTmYYxrLx3nvvBQCKoq5cuWLZKGiR+fPnW7YIZhBFUbm5uZaNVVVVPj4+JEkWFRUJW1pbhA8++CAAfPLJJ9ayHT9+HCE0adKkDr5mmxbhyZMn5XI5APzwww88zws6ePny5db75OXlKRQKYbogbBEswsGDB1sbr59++ikA/OUvf7FsmT59OgBY2xMcxwlGpOstQoIg0tPTLRt/+uknYcRXrFhh2ajRaAIDAymK0mq1bfyCZlpbhCzL/uMf/wAApVJZW1vLmy1ChFBaWpr1sW+++SYAzJ4923rjF198AQAjRoywbBEsQn9//7q6OsvGzMxMgiD8/f01Go2wpbVFOHr0aITQ7t27rc+/ceNGAHjssccsW4R5z7PPPmvZotfrBbdtXFxcS0uLZbsQMvjiiy86+EEwUgBbhJhu8eCDD6anp8+dO9fb2zsrK0tI/AsLC3vssceamppuefhzzz1HkqTlo/Cinzlz5sCBAy0bJ0+eDGbby5q77767d+/elo8hISGPPfYYy7KtbUcBtVr9008/BQUFCTrAwsSJE4cMGXLy5MnGxsaOpeU4bvHixYsXL164cOHkyZMnTZqk1+tTUlIE/bpx40aCIF599VXrQxITE2+//fbCwkJBFVl4/vnnLRMIAJgxY4b1d2xqajp8+LDwjSz7IIRsMpJcxtSpUwXXpYAwIgCwbNkyy0YvL69Ro0YxDNMZ38D58+eFX3LevHlJSUkrV64EgFWrVgk6RiAlJWX06NHWRwla+ZVXXrHe+MQTT4SFhZ0/f97mDlm4cGFAQIDlY1JS0h133NHQ0NDadhTIyck5c+bM8OHD77rrLuvt8+bN8/f337dvn83+1mMhk8nGjRsHAIsXL7ZECqH9WxcjNXCyDKa7DB48eMeOHTqd7vTp02lpafv27UtNTf3+++8LCwtTU1M7riuwyV8Q8kra3FhZWWlzrCWhw8KwYcMAICsrq81rZWZmGo1GLy+vFStW2PxXS0sLx3HFxcV+fn4dSMvz/Lp164S/CYIYMGDA/Pnzly1bRpJkWVlZRUWFSqVavXq1zVGCZ6ywsDApKcmysV+/ftb7CClCFRUVwsfs7GyO4/r37y+TyVp/QddjMyIBAQE0TXt7e9vkAVlG6pYZIgUFBZZf0svLKyUlZdmyZTYRX+vJEADwPH/16lWEkE2MUCaTDRky5MCBA1lZWQkJCZbtrW+P4cOH7927Nysra/bs2a1FOn/+PAAYDAYbRStcoqqqSqPRWFKBZDKZTS2Q8N1thjU0NBTaunUxUgMrQoxjUCgUU6dOnTp16ssvv7xz584HHnjg+PHjhw4dElx87WE9fQYAQWva5EYKWTN8q6a4Nm9hML93mpub27yW4N6srKy0vIKtCQgIMBgMHYgKACRJVldXC3/7+/tb63jBmmxpaWnv5AzDWG/p+Duq1WrL17Gm9RbX0DpbFSHUeqPwLTrTYWDOnDlCxx+KoqwTgqyxTsMBAL1ebzQafX19W19XmEbYjHvr20PY0vHtkZeX194IarVaiyJUKBTWyVxg/u5t3s+tb12M1MCKEON45s6dO2XKlCNHjqSnp3esCLtDVVWVzRZh6t1eLYTwwh0zZsyxY8fsvqi1t631ySMjI2/cuGH3yS0I9QCtLYnWW9rTPRqNpuNLCO9omwMZhtHpdDZvc2cgk8na+yXbQ6FQ0DTd3Nzc0tJiowsFS9pm3Nu7PdrTu8L2Bx98cMOGDV0SDOMG4BghxikIWSTW8T+Hc+HCBZstgnfL2gNpzeDBgymKOn/+vFardbgwUVFRoaGhRUVFJSUl3T/bgAEDSJK8evWqTqez3i58QWuEukwbBVlfX19eXt7xJdo8MC8vz2g02i22sxFKLdPT06036vX6S5cuWf7XQnu3R5v1mgAgeFxPnTqFDTgPBCtCjP2o1eotW7a0NkdycnJOnDgBAB0UdHef3bt3Z2dnWz5WVFRs3LiRoqj2mryoVKr77rtPo9G89dZbrf9X8EbaDULo8ccfB3MiZTdP7uvrO2PGjNraWiHHUoDjuA8//NBmz169egGATSrHO++8c8u3eXsHdklOFyN07Fu9erX1t/v666+rqqrGjBkTGxtrvfO3334r1LkKXLp0af/+/YGBgbfddlubJ09KSho9enReXp6QTWpDN28PjMTBrlGM/eh0ukceeeSll1564IEHxo0bFxIS0tjYeObMmXXr1qnV6pSUFJvqcscSFRU1a9as999/f+jQoTk5Oa+88opGo1m+fHlUVFR7h3z44YfHjx9/++23c3NzH3744T59+gidU3766af6+vruuEwB4PXXX9+7d+/GjRuFpR769evX0tJSUFCwb9++tLS0vLy8Lp1t1apVhw8ffuGFFzQazZ133tnQ0LBmzRqh2M6aiRMnRkVFHTt2bNGiRY8++qhWq92+ffvu3buDgoKs1UBrZs2a5efnt3379qioqHvvvbeurm7Dhg3p6emCKS9Nli5dun79+r17986bN2/JkiUqleqXX35ZuXIlRVFr1qyx2dnf33/atGlvv/12nz590tPThbKWf/3rXzZtYqz56quvJkyYsHjx4rNnz951110JCQnV1dW5ublbt26NjIwU6igwbglWhBj78fb2fvTRR3/77be1a9euXbvWsl0mky1atOjDDz90aivqFStWHDp0SChdEHj66ac7tmmioqJOnz69ePHi7du3b9++3bLdz8/vmWee6aY8vr6+x44de/bZZ7du3Xrw4EHLdqVSaWk+3nlGjBixffv2BQsWvPjii0KFYmxs7K5du2wSR2Uy2datW++9997169cL5XeRkZG//PLL448/3rEiDAgI2LRp07x58yxj17t377179wplANLE19f38OHD8+bN27Jli2UJjsjIyHXr1k2cONFm5w8//PDjjz+21EJQFPXmm2/aVM7YIFTRPP300+vWrbNOmQkJCcG9ZN0bhB3imG7CcdylS5eKiorKy8sJgoiLixs1apRNKkRTU1NlZWVwcLBle0VFRUtLS3R0tHWFgFqtrqqq8vf3t64nA4Dr16/TNB0TEyN8XLly5RtvvPHNN98sXLjw4sWLQuxn3Lhx/fv3tz5Kq9WWlJT4+fm1TrYsKChIS0traGjw9/ePjY0dOXKkTaFC6+9YWFgIZo9ix5SXl//+++/V1dU+Pj4xMTGjRo2yTu6orKzUaDRRUVHWtpdwfplMZt2gFQAaGxsPHDhQW1sbFxeXkpIil8ttfgqBpqamAwcO1NTUREZGzpgxQ6FQFBcXG41Gi7RGo7GwsNDb21uo+7ZQW1t74MCBxsbG+Pj42267jabpwsJChJClNkCj0VRWVvr5+dn0Mi0oKBDG2npjVVWVWq2OjIzswOpqbm6urq729va2NJVtb5+AgIA2E2p4ns/IyLh48aJer09MTJw4caLN5aqrq5ubmyMiIhQKxenTp69cuSKXy6dMmWLjO219T1rIyso6f/68Wq0OCQmJjY0dMWKEdbRbuBPi4+OtD6mpqWlqagoPD7cea51OV1ZW5uvr2zqFFSMpsCLE9DysFaHYsmAwmB4PTpbBYDAYjEeDFSEGg8FgPBqcLIPpeUybNk0ul48cOVJsQTAYjDuAY4QYDAaD8WiwaxSDwWAwHg1WhBgMBoPxaLAixGAwGIxHgxUhBoPBYDwarAgxGAwG49FgRYjBYDAYj6ZnK8La2tpPPvlEbCkcD8/zuKylB9GZNdkx0gE/XD0I1zxcPVsRFhYWWi/Y5jYwDKPX68WWAtNZbrkcPEY6sCzrjJWZMU7CNQ9Xz1aEGAwGg8F0E6wIMRgMBuPRYEWIwWAwGI8GK0IMBoPBeDRYEWIwGAzGo8GKEIPBYDAeDVaEGAwGg/FoerwifCbRx1B8TWwpMBiPgKkpa/p1I9tQLbYgmE7RfHBr/fb/cC1qsQWROj1+hfpAGVHz+WshS96lo3qJLQumI3ijoW7DakBI3itJ1itJFt0bCFJsoTCdhdO1NO/frE79iWcZXc750KVrgOjx02j3puVCauPubwFAdyUtcN6L8r7DxJZIuvR4RVijZ7mW5urPXw1Z+h4dFiu2OJh2Uafu1F7+HQC0l04CAJIpZHH95b2SZAkD5b0GIZlcbAEx7cDzmtO/Nu3dwDbXA0KEwstQkNWcutM35X6xJcO0C1Nb0bD1YwCggiKY2vLqz1f4Tpn79OYD+dcLxBata3AcR5inXARBbNu2LT4+3uFXEUcR1tbWpqenNzY23n///URb88qff/7ZYDAIf8fExIwdO7a9U60vbLlv2mTd1bM1n60IWfo+FRzpLKEx3YBTNzYf3AoAqll/Zuur9QVZTFWxPjdDn5sBAFRQeNiKrxBFiy0mxhZ93qWGnV8aS/MBQN5rkP99z7BN9TXrXm/a+50yaQwVGi22gJg24Fmm7vvVnE6jHDIhaMGrTQe2Nu/f3Hx0R+rBtA1btgYFBYktoJ0sXLiwrKzMTRRhenr6hAkTevfufeXKFZ1OJ5e3YQosWrRo9OjRPj4+ADBu3LgOFCHD8UELX69Z9w99bkb1p6+ELl1DBoY6UXqMXTTt38zpWhRJY1QzHxW2cJom/fUrhoIrLelHmNqKlvQj3mNuF1dIjDVsc33Dj59qL54AACowzO/uJ5XDJgEADeA95nZN2v66zR+E/t8H2EEqQZr2fW8ozCYDQgP+tAwIUjVznmLAyLrv3+V5bsiQIeHh4WILaCeCRnAGItzEgwcPbm5u3rVrV8e7ffTRR9u2bdu2bduyZcs63hPRsuCn3pQlJLH1VdWfvcw21jpOWIwDYKpLNSf3AEH4zVlo2Uh4q5SDx/nd/aTf7IUAoE7dKZ6AmDZo2P4f7cUTSK5U3fV42IqvBC0o4Dd3MekfbCi82nx0h4gSYtpEf+1C86FtQJBBj71MeJk0hyy2b9jyzxDZ42NhTkIERSiTyWj61k6wPXv2fP/991evXu3MOZFMEbz4X7LYvkxNefVnr3Dqhm6LiXEYjbv/y7OM95iZdHhc6/9VjphCqgKNZQX6axmulw3TJmxTvTYzDZFU2Eufq2Y8gmiZ9f8SCu+Ah58HhJr2bWAqi8USEtMaTt1Qt/E94HnVHfNlCUnW/4VkcptxxFiQ6AShX79+ly5d0uv1S5Ysefnll1977bU2d9NoNKWlpcuXLxc+KoB6wj8MKourPn3F7+lVltlQj8NoNLIsixASWxAHwBTlaC+dQDKFYtrD7a0tJR83q+W3TY2Hf/SLG+Bi8RyCXq+XydzqFdNyah9wrGzQWNYngG1r1FCvwYqR03RnD9ZsfD/gr+/2IAcpy7J6vZ4k3TFjmecbv3+Pbaqnew2ST7rXLZdyMxqNXf1eFEXdcrglqghPnjwp/HHhwoVRo0Y9/vjj0dFthOUJgiBJMiAgwLKlYfI9kcc3MuWFuuM/+cx6zEXiOhqCIHiebzONqMeh3vNf4HnvKXMpv3ZD9N7j7tQe+dGQk87XlpMhUa4UzyEQBOEeg2WC53VnDwKAcvTtHXwv37ufNFzLYIqvaY//7N1zMkiFJ8utxsuMJnWnIec84a3yf3Q5QUn03d5NEEJdHbvOWBRS/7GGDx8eFBSUm5vbpiJUKpXh4eGvvvqq9UZ9eGD1J8v1l04E3L3IVWI6HoIgOuNAljjaS78bC7NI3wC/6Q+hDr6Of5DXyGma3/fqTu72f/BZFwroGGiadoPBsqDPv8zWlJF+QT6DxnZk6tH+gY8sq/ny75oDm72HjKfDe0bxEkEQHMe503gJGIqvafZtAIQC570gDwoTW5xOodVqd+7c2djYeO+990ZERHTmEIqinDF2EpoWFRYWVlZWAgDHcZaNmZmZtbW1iYmJnT+PPHEQqQpkasoNxbmOlxLTaXiWafzlGwBQ3TEfyZUd7+wz5V5ASHP2ANfS7BLpMO2iOf0rAHiPvv2WDk9F/2TvsXfwRkP95g+AY10iHaYNeJap2/AuzzI+k+5WJLWbYy8pDAZDSkrKnj17iouLR4wYce2amA3CRFCEer3+oYceWrp0KQA8+uijTzzxhLD92Wef/c9//gMAv/7669ixY5cuXfrkk09OmjTplVdeiY3tymQTIeXQiQCgzTjueOkxnUZz6lemupQKi/Eed8ctd6bDYhX9R/IGveb3vS6QDdMenE6jvXgCEPIa26lqFr97niIDQg1FOc1Hcd6vaOhzLzLVpVRIlN/dT4otS2fZsWOHl5fXpk2b3n777SVLlqxevVpEYURwjVIU9fTTTwOAUBdhsXPffPNNlUoFACkpKSRJ5ubmKpXK5557bvDgwV29hHLYJPXxXdqM49b5+hhXwuu1Tb9uBAC/2Qs72UrNZ+pc3dWz6uO7fFLux3neYtGSfoQ36OV9h1FBnXJVEQqvgAeW1Hz1hubUPt/bHnC2eJg20WWeBgCv4ZN7UFeKnTt3zpkzR/j7zjvvnD59+vr168USRoTXDUmS06dPb7195MiRwh9KpXLmzJkzZ860+xLyXoNIvyCmttxQfE0W09fu82DspvngNk7dIO81SDl4XCcPUfQbQUcmGMsKtBnHvJJvc6p4mPZoOf0bAHiPvbURb0ExYBThrWKqS5mqEtxrRhS0WWkAoOj0syYFSktLz5079+677wKARqOpr69Xq9XOK5nvGDeddyOkHDpRfexnbcZxrAhdD9tY25y6AxDyu6drjhqfyffWb1mrProTK0JRMJbmG4pzCS9f5eDxXTiMIBQDRracO6zNOuOLFaHLMZbks3VVpF+QLLpPlw48UcG/cpbVuSS2G6qE9ZOpcKtUAZ1Op9Vq6+vrAUBoqKnX67EidDDKYZMEReg3eyG4RUFeD6LlQipv0CuHjJfF9e/SgV7JKY27vzUU5+rzL8sTu+wSx3QTzenfAMBr5G1drbxWDBzdcu6w7soZ36n3OUc0TLtor5wGAEXSmK6+6I5X8icreecI1Qa5jXy48qaEkZGRd9xxhxAmu379+ueffx4YGOgyYWxwW0UoT0gi/YKY2gpDca4sFhuFLkWfcx4AlEMn3XJPGxAt85k4u+nXjeqjO7EidDG80dCSfhgA7Gj6qhg4CpGU4Xomp1UTyp7ayKKHor18CgCUg7rsF31pCHFHNOJcogq9Kejv/wc9PWHChLS0NEERnj59evz48SK2EHFbRWjlHT2GFaEr4RmjPj8TEFL0G27H4T4TZzcf2qbNPMXUlFPBncrXwDgE7aUTXItaFtOXjupCtZIAofCWJQzQ513W51yw7kqKcTZsY62xNB/JFPI+Q7t6LIlgeJBoumfhwoVDhgz54Ycf4uPjX3/99Y8//lgsSUBSdYQORzlsMghFFLzrzH+M4Xomb9DRUb0IH387Did8/L1GTAWeVx/7yeGyYTpAY0qTsTNJTTFwDABos844UibMrdBePgU8r+if3OP6iIaEhOzbt++nn35auXLlO++8c9ddd4kojDsrQnnCQNIviKmrNBSLWarpaehyzgOAot8Iu8/gM/U+QEiTtp/TtThOLkxHMDXl+rxLSCZXJk+17wyKgaMBQJd1Fs87XYnuShoAKAb1jCJ6G4YNG7Z169Z9+/Y99NBD4krizooQEBK8NLiy3pXosgVFmGz3GeiIeHnCQF6v1ededJxcmI5oSdsPPK8cOolQeNt3Bjo8lgoK59QNhhs5jpUN0x68XqvPzQCCUA4cLbYsPRu3VoQAXsMmAUDL+VQ8S3UNbHO9sew6ksllvZJuvXf7yPsOBwB9/mUHyYXpEI7TnD0IAJ3pAdQBiqQxAKDLSnOMVJhbocs+xzNGefwAwsdPbFl6Nm6uCGXxA8mAULah2lCEZ6muQH/tAvC8PHFINztcyHsPAQB9HrYIXYHu6lm2oZoKiZIndGv6InhHcZjQZWgz0wCgpzQX7YCKiopBgwYBwPvvv9+nT5+BAwdu3rzZlQK4uSIEhJRDJgD2jroKXc4FALAvX9QaWVx/RMuMpde5FrUj5MJ0hCZtPwjdZLqXvy7vPQTJFMbS62xDjYNEw7QPx+myzgCAsmcGCK1hGKawsHDnzp0bN248derUzp07X3zxxYwM163U7e6K0OIdvYhzR50PzwsVhPJuZMoIIFomi+sHPK+/nukIyTDtw/P6axkA4JWc0s0zIYpW9BsBPK/DRqHz0RdmcZomKiSKCosRWxY7KSsr++qrrzZt2qTT6QDg008/Xb58eXBwcL9+/Z544okvvvjCZZK4vyKUxQ8g/UPYuirsHXU2xoobbGMt6RdEh8d1/2zyxCEAYMi71P1TYTrAWFbA6TRUUATpH9z9s4lzT60AACAASURBVCmShNxRrAidjtBou+eagwUFBSNHjrx48eKVK1fmz58PABkZGcOHm5xJw4YNc6VF6L4F9RYQUg6bpD66Q5txvKsdvzBdQpedDkLhhCM6RMh7D4bfcL6M0xFsblniIIecTTFwNCCkyznPGw09rrKtZyE0lOlWo22O1RdkAcs4TKb2IXz86cgE6y3vvffeww8/vHbtWgD4/PPPly9fXldXN2HCBGEBeoZhXNlxzQMUIYDXsEnqoztaLhzzu/tJ3HfUeTjKLyogix+IaJmhNB937XIqhoIrACBPGOiQs5GqQDoq0ViSp8+7qBgwyiHnxLSGqSxmqksJb5U8foDdJ2k6tK1pz3cOlKpjQpa+b903MSMj45VXXhH+njp1KgAolcrDhw8nJCQAwKFDh1auXOky2TxCEcri+pOBoWxdleFGjiweG4VOgTca9Nft76zWGkTLZDF99dczDdevCHn5GGegv54FAN0sd7FGmTTGWJKnu3IGK0Lnoc00N9ru3GKfbaLoM8zQP5PnOMfJ1S6EXEn/MZZJURTDmIxRo9EIAPHx8XV1dSNGjACAqqoqQSO6Bo9QhICQ15CJzUd3aC8ex4rQSRgKrvAGPR2daF9ntTaR9xmiv56pz7+MFaGTYOur2IZqwsuXDnVYwoUiaXTTb5t0WWcAljjqnBgbdFdOA4AyqVt19LL4AcHPrHKQRF1m3Lhxu3btuv/++wFg165dADBv3rxNmzZNnz6dZdnNmzc/++yzLhPGMxQhgCJpTPPRHTjg5DzMndXsbyjTGnniEIDN+lycL+Ms9NevAIAsIcmBIQNZTF/SN4CpqzSWF9IR8Y46LcYCp2nSF15FFK3oP1JsWeznxRdfnDp16qxZs1QqVVNTEwAsXbo0JSVl1qxZjY2NQUFBDzzwgMuE8RRFKIvrBwRpLL2OY/hOwtRZrb9jAoQCsvgBiKINpXmcTmN36y9MBxiuXwEAueP8ogAACCkGjtKk7ddlncGK0BloM08Dx8n7JSO58tZ7S5XQ0NBz586dOnVKqVQmJydnZWWpVKq0tLS0tDS5XJ6cnOzKVZncv3xCAMkUdEQczzLGkjyxZXFDbnZW615rEhuQTE7H9AWOM1zPcuBpMRaElFEHK0JLA+4ruIjCKQh+UcWgHh8v8PLymjZt2vjx4+VyuVA4QVHUhAkTRo4c6eK1CT1FEQKAUDuhv5EttiBuiD7HMZ3VWqMQeq3lY++o4+G0amPFDUTRdEwfx55Z0T8ZUbRQ8e3YM2N4xqjLuQAIKXt+ZzXp4HGK0IAVoRMwBwgdky9qjaz3YADAYUJnYCi8Cjwvi+3r8OkLkitlvZKA44TSUowD0edf5vVaOirRIQ0QMAJYEWK6jaWzWn9HZsoIyBOSEEkZSvLw2oQOx5Qp08sxpfQ2KAfiFjNOwVCYDeau9BhH4UGKkA6LIRTebF0V21QntixuhbHiBttU56jOajYgmZyO7QscK9R9YxyIY0vpbTAtyZRzwRkn92SMJbkAIHO0N9vD8SBFCAjJ4voBNgodjamzmhPMQQGhG4U+H3ffdiQ8yxiKrgFCMucoQiokivDx49QNbF2VM87vsQjrHguvMoyj8CRFCCBU0+MVtB2LYzurtQavTegMjEXXeIOeDo8jvHyddAnBajEUX3PS+T0QtqGGbaojvHyooAixZXErPKWOUMAUJiy8KrYg7sPNzmp9hznpEvKEgYikDEW5vF7bowunJIU5QOjgwglrZLF9dVfPGYpzlUMnOu8qHoWh6BoAyGL62t0A4dKlS6WlpQ4VynWo1c5andTzFCFChqJrwLHd6dGHsaC/nskb9HR0bwd2VrMByZV0TG9DYba+IMt5DlhPwxwgdKIipKP7gPndjXEIwlpydGxf+w5PSUl59dVXO96HZ4xsfTUiSTIwzL6rOBaO44T1KADAx8cnKirKGVfxLEVIeKuooAimpsxYfoOO6iW2OO6APu8SCEsvORN576GGwmx93iWsCB0Dz+sLrwKAkwKEArLYviAkd/A8XvXFIRiLhUwZOxXh5s2bb70Tx5WuuJ/XayNW/kCqAuy7kANpbm729XWW996CZ8UIARdROBrTk9mNtWA6gzlfBreKdQzGqmJO3Uj6BVFB4c67CukXRKoCuRY1U1vuvKt4EDxvEB43p2bKEIQ5hORB7Zw8UBHixFFHYijJAwBZTG+nXkXeKwmRlLHoGm/QOfVCHoKpxaiDFuPtADqmL2DvqINgasq4lmZSFUj6BTn1QkJFjaEAK0L3RbBdsCJ0CGx9FaduJLxVpH+IUy+E5Eo6KpFnGb0nPZzOQ/gZHdsYtk1ksX3A7DbAdBNTpozzCycEh7nekyp3PU4R0lG9EC0zVhZzWmclIHkOZnPQFbW98j5DAMCQh72jDsDgnF7brRGiWbiCwiEIitDuTJnOI4sfAARhLM7jjQZnX0sieJwiRCRFR/cGnsfumu4jLOVBRzvXLyogTxwCALo83HS0u7DN9UxNOaHwoiOcvgK4kC9jKM4Dnnf2tdyem7UTToZQeNHhcTzLGDzGlPc4RQg3qwmxd7S7GIpdESAUkCcOAoI0FuXgMGE3EcxBYdbv7GsRPn5kQCiv1xqrip19LTeH44yl+YCQixwwCUlgrrHxBDxTEeJ8GcdgLM0HADrKFYoQyZWy6ESeZXA/hG6iL3B64YQ1wovbWOQptoWTMFbc4A06KjCc8Fa54HIyD8uX8URFKI8z58tgd003YJvq2cZaQunj1BR8a0wPJ/Zpdw+XBQgFzN5RPGrdwuQXdX6AUMCcL5PlIS9JT1SEZGAo6RfEaZpweVN3ELrg09G9XVYrTUclAoCx9LprLueW8AadoSQfkZQszrmlnxZoU8dRbBF2C1NPGVf12qaCwk0vyeqe2o+tS3iiIgQAWSz2jnYXVwYIBWSRvQDAUJrvsiu6H4bCbOBYOioRyeSuuaLQGNNYmg8c65oruiWCInSZRQjmSjMPKVgSQRFWVVVt27bt9ddf/+yzz9rbp6io6Nlnn507d+5HH33Eso5/fsxhQrwMhf0YS/PAbKW5BioiDpEUU13K67Uuu6iboXetXxQACC8fKiicN+iNFUUuu6ibwRsNTPkNIAiZCx83c1m9R+TLiKAId+7c+fXXX6elpW3cuLHNHQwGw9SpU2mafuqpp77//vs33njD4TLgZSi6j8kidEnthAAiKSosBnjeWH7DZRd1M4T0B6cuOtEaHCbsJsbS6zzL0GGxrlx9xRwm9IiXpAiKcPHixfv373/kkUfa22Hnzp1eXl5r16698847v/jii88++0ync3DGvCy2LxCEsfS651SMOhZO08TWVyG5kgqNduV1TWHCMhwmtAuX9NpujbAMBU4ctRthDuFKvygA0NG9ES1jqoo5TZMrrysKUowRnj17dsKECcLfycnJOp0uLy/PsZdAcqVQMSqUhGO6iqn5b1Sii1cVENYMwWFC+2Bqyni9lvQPIX1duqoAtgi7STdXX7IPRFKy2H7A857gOZPiMkyVlZUxMTHC3wihoKCgioqKQYPaaBBcV1d37dq12267zbLlqaeemjNnTmeugqJ6Q1lB87WL8pBYh4jtQIxGI8uyDMOILUi7mBwmYbHOWyqzTdjACADQFeW6+Lodo9FoUE9YZsh4/SoAEGExLv71+IAIQMhYVtDc2IBIkd85LMvq9XqO48QVo0voCnMAgAmKdvVtH9Ub8i8352QwcS71pVvT/YdLoVBQ1C3uOikqQi8vL71eb/mo1Wq9vb3b3NPf3z8iIsJ6qckhQ4b4+Ph05iqo9yDD2QOoorCT+7sSQREqFAqxBWkXQ1UxAHglDPB27a/HJSapAbjKIh9vb+ksccfzvATvotY01ZUDgCKmj6ul9fHRhEYzlcXypmrXNEbpAJZlaZr28vISV4zOw+laGmpKEUX79U5CFO3KS5O9B+uP7UTVJSLe3q55uKSoCGNiYi5cuCD83djY2NDQYDEQbSAIwtfXd/r06XZcRaij0t9wf6vfGZhcoy5/qQkrXbAN1UxNGRXilLWq3RghtkpHOr3FaGtksX2ZymJjca7oirDHYSzOBZ6nI3u5WAuC+VbxhJC8hGKE3333XVlZGQA88MADBw8eLCkpETaOHj06OtrxGRl0WAyh9GHrqtjGWoef3L3hdC1MbTmiZS7OlBEw5cuU4DBhlzGWFYA5zupiZNF9AHcFsgsX95SxhgoKJxRebGOt2+fLiKAIDxw4EBgYuHTp0rNnzwYGBs6fP1/YvmTJkitXrgBA//79n3322eTk5ClTprzzzjsffvihU+RAyNTzoghXE3YNY0meaYoqRrxHFpUAAAYPmKU6Fk7XwtRVIoqmxbCkhYUJcX8ZOxBREQJCVHgsABjLC0W4ugsR4UU2derU/Pyb03maNtn7N27cUKlM/WRXrVr1zDPPlJWVDR482HnefHl8f/21C4YbOcrB4510CbfE5Bd1YQWhNYJBY8SJo13EWFYAPE9HxANBuv7qdFRvIEhjeSFvNCBa5noBei6GYiFl1EXN1WygI3sZCrONZQXy3kNEEcA1iKAIaZoOCGgjezsoKMj6Y0xMTHuhQUdhKqvHjda6iGnRiWjXNbmwBncctQ9jeQEA0BHxolwdyeR0WIyxvNBYel0W318UGXoinLqRratCciUtRhgCzDeM4FR3YyQUI3Q9dExfwLZF13HlerytoYIikFzJNtZy6kZRBOihmAKEYmTKCOBqQjsw+UWje7tg8cg2MefLYEXovpCqAMLHj2tR43yZzsMbdMaqEkRSYtkWgBCNu293HcGGFiVTRkCYd+IwYZcw9dp21aITraEjEwAhY0Whe6/H5NGKEADo8DjwgPmOAzGW5gPHURHxrk/mtiAzhQmxd7TT8DxTcQMA6AgRLUKh0Rq2CLuASRHGiJEpAwAAhNKH9AvmDXqmpkwsGVyAxytCwfAvLxRZjp6D63ttt8aUL4MTRzsNU1vB6VpIvyDCx08sGYQ0Y2NlEV48pPMYinLB5c3VbPAE76jHK0LBIqzAqxl0FnOmjLiKEOfLdA1zgFA0vygAIIqmIuKB57FPu5OwdVWcuoHw8qUCw0QUwxOsBY9XhJ6RE+VAxK2dEBBqAIyVxXjxkE4iYk8Za4R8Gewd7SRC4YQsrr+43QTNL0l3nnd6uiKkIuIBIaayCHpUE16x4I0GprIYCELcVyqiZXRoFHAsNuU7iTCdpyPjxRVD6K+G82U6ieDzkMWIOemEm67RQnHFcCqerggJhRcZEMIbDUxtudiy9ACM5QWmBUJlcnElEbx82DvaSUwpo6K6RsGc9IEbrXUSYQFqSqz0bDN0WAyiaKa23I2Du56uCMGcR4e9o51B6PApVim9NXiF3s7DG3RMbTkiKVF6w1pDRcQhWsbUlHG6FnEl6REYTYm+8SLLQZBUWAzwvBs7YLAiNHvAywvFFaNHYCgRUkbFX0DAlDiKW293AmNZIfA8FR4n+lqAiKSEVypTUSSuJNJHcFMhkpLCKitunziKFSHQEXFg9kJgOsZYnAcAtNhBCwCQRZstQreu83UIEsmUETDNO93XtnAUQuICFRot+vQFLG6z8kKR5XAaWBFaxthtJzuOgmcZY0UhICSLEt81Svj4k6oATtfC1FWILYvUEb25mjW4YKmTmPKbwuNElgMAPGBhQqwIgQqLQSTF1JThXPyOYSpu8EYDFRKF5EqxZQHA1YSdRloWYXgcADBYEd4KYa5ASUsRuq21gBUhIJKiQiKB45hKHLfoCCn0lLEGK8JOwfOC218iilB4s7uxk81RmEZN9EwZAAAgVYGmtswNNWLL4hSwIgTwAA+4QxB30YnWuL27xiEw9VWcVk34+JG+bax95nqowDDT4iEtzWLLImmMFYVgzmCQAu6dXY8VIYC5Ugcrwo4xhZrEW77ABkES3K+rY5hy8Zur/QGE6LAYADDixNH24fVatr4a0TIqKEJsWUwI3RjcNZcCK0KAm4mjhSLLIW2MlUUgmeg9ANAh0UgmZ+uquBa12LJIF0NpAZiTbCUCDhPeEmPFDeB5KixGrGUIW+PeYUKp/Mrigl2jt4Rtquc0TYTSh/QLElsWMwRhdtdg72i7mDJlpBFqEqBw4uitMAUIJTPpBOwa9QSooHAkU7ANNThu0R5MpZDDFiu2IH/AVFaPvaPtI4V1J2wwOWCwImwfU08ZaSnCeCAIY2UxzxjFlsXxYEUIAAAI0eGxgB/O9pHgFBVwx9FbwRsNTE2ZqUWWZMCu0VvCSKS5mhWIllHBkcCxTGWx2LI4HqwITWDvaMcIdz8tpfcpmJeqN2BF2A7G8kLgOKFpstiy3IT0DyEU3oKzXWxZJIrwIpJIEaEFN35JYkVoQnDXMOWFIsshVSRV3muBjuoFCDEVN3iWEVsWKWIupZeQXxQAACHKlDiKjcI24FrUbGMtkinEXY+3NW6cOIoVoQlPWHOrO0gwaAEASKaggiN5lsFNnNtEUs3VrMGN1jrg5rMm6nq8rXHjxFGsCE1Q4fEgWP24iXMrOHUDp2kiFF4SShk1Y8qXwYmjbSFZRUiZHDBYEbaB4JeSTim9BawI3R9SFUD4+HFaNdtYK7YskkOofabCY6U2RYWbitANH87uY16YXnKKEFuEHSAU7EotDAEAVGC4qSuQ2wV3sSK8CV6YsD2k6RcVoMPiwPzuwFjDNlRzmibCWyVFOx4/a+1jmr5IKWXUBEKmgXO7eSdWhDfBD2d7CBE4KkxaRYQCQiIrjhG2RoIVhBZIvyDCy4fTNHHqBrFlkRySWoDJBnf1jmJFeBMa98VvBylbhFRIJKJopr6KN+jElkVaSK03rA3CvAoviG0Dp2ni1I2EwluCdjxYFKHbJY5iRXgT8xgXiiyH9BBihLTE2sqYIEgqOBJ4nqkqEVsUaSHB5mrW4DBhmwjTFyoiXoLxeMAWoSdAR8QDQkxlEXCc2LJICMF/heRK0j9EbFnaxmRb4DDhH5FsyqgAVoRtYg4QStH7AuaXpNCoQWxZHAlWhDdBciUZEGLqSoUxY/KLhkkxZVSADhfChG7Y+clueMZorCoFgpCmQxvMpiquoLBBymEIACCUPqR/CG80MLXlYsviSLAi/AN0RC9wRw94d2Ck7BcFgJsWIX6l3oSpLAKOpUKiEC0TW5a2wWtQtAkjbUUIlqRC9/KOYkX4B8wLE+KH8yaSrWqyQJsUIbYIb2I09YaV7vSFVAUQ3iqupZltqhNbFglhqtmVqmsU3DRMiBXhH8AVFK0x+2qk+0qlQqOBIJjqMtxx1AIjeUUIeBmKVrCNtVxLM+GtIn0DxJalXdwycRQrwj/gllZ/N5FyEaEAomVUYDhwLFNdKrYsUsFkx0tstRAbzAVLWBGakHimjIDZWnCrUcOK8A9QYTGIpJjact5oEFsWScC1qNmmOiSTS60Rvg3CG5/BiaNmpB/ZBfM6zzhMaMHsfYkXW5COoEKigCCZ2gp3WqEXK8I/gEiKCokCjsOvVAFzyqjkGuHbYF5XGYcJAQCAY5maMkCICokSW5SOMNkWWBGaEXJopRwgBABE0VRgmOkecxewIrQFe0etEeI3En8ywey5xdMXAWG2TgaEILlSbFk64mYFBV7yBQAs806p9kCwYH7c3GfeKY4i3Lt374gRIyIjIxcuXKhWq1vvMG3atJFmVqxY4UrZKDxLtUIINUltYfrWCBLixFEB6aeMChDeKsLHj9Np8JIvAAA8f7NmV9rQYdHgXo8b5fpLlpeX/+lPf9q0adPYsWOfeOKJFStW/Oc//7HZ5+LFi19//XVMTAwABAS4NIEKJ45aI4TEpVzVJECFxQJCTFUxcBwQnu7nECxjKlTq0xcAoMPj9HmXjBU3SP9gsWURGaa+itdrSVUg4a0SW5ZbgC1CB7Bhw4bJkyfPmTMnJCRk5cqVGzZs0Ov1rXdLSkpKTk5OTk7u1culXYPbc42yPLR4XnK+6ZUq7ZwLACAUXqQqkDcamLpKsWURH7NF2DMUIbTvgNF60hPH9BC/KNx0wLhPJEIEizArK2v48OHC30OHDlWr1SUlJYmJiTa7zZs3DyE0ZsyY119/PTQ01GXiUUHhSKZgG2s5rZpQ+gDAtUZ+/TVuQy5XpYXhQei2SHRbJDExHHmL8OO5FGGZYiSTU4HhYstya+jwOLaxlqm8QQVH1OhgbSZbowMfGmiryR4CSIkkbo+SdOJP9xGm6hKvnRCwabTG8XClnj9WwR+v4I9X8OUt/LQotLg/cU8cQbu7nS94X6TcucKCKUm7qgR4HhAycrApj1tzmWswQF8V9PNH/f1Qf3/Uzw/ifKWdZWdGhHd5bW1tUlKS8DdJkj4+PjU1NTaKcM2aNcOGDdNqtatXr545c+aZM2domm59qpqamosXL1r7Tv/1r389/vjj3ZQQBYXz5YWVebk/8f2+LyBPVZseQRLBuRr+XA3/3iVORsDIIG5KGDc9nBsV5OD+s0ajkWVZo1Hk7GS2KAcAUFBkc1txXKnBBYQBQHNR/nfckNcyqFp92w/g6ovcfbHce8ONoQqHJWi0GecWEaE7id4nyNDcLLYst4DxCwGA5uLrn57VnqxGp2uIBsPNgUMAB0v5g6VsmIKZn8AuSGTjvLs7aizLGgwGlmW7eR6H01KcCwBsQFiz5EcNAAhff665ofpG4eaGsLVXqRsa06iVauBI+c0xUlIwNoj9eBRj98B1/+FSKBRtqg9rRFCEAQEBlu/GcZxarQ4Ksl15a8GCBcIfW7ZsCQoKunTpUnJycutTBQcHDxo06PDhw8JHhJC/v3/3JawKjJeXF750sHKj7yAA8KXhoV7Ewr7EsCB0spI/XMYdLuPTa/jfq4nfq4l3MmFpErF2LEk6buYjKEKFQuGwM9qFpqkaABTRvXx9fcWVpDMQMb0Np+Hg5fJnSmkAmB6FHkwg1EYwWs1SGgz8J1ncjiLiaKX8w7Hk430cZmVI5ydiG2sb9S2Et0oVFim2LLeG6zVQA6CrLPlHBskjBABxPmhSuOlfhBfalMd9mc1droMPrlJrs6nbo9DiAcTdsQRh7+PGsqxer/fy8nLk13AELTWlAOAb318mmXupA1rC4rjmhr/uq/qRjgaAAf7o1WHEhDB0rRGyG/jsRj6ngc9u5Mtb4EglOeUAuXEqNSvGzjFzwcMlgiLs3bv35cuXhb+zs7PlcnlUVLvVTgqFQiaTtRlEFCBJ0rHZNHuK+aO1kc8BxGhKJvVBC/sSD/YiLF7QGVFoRhQJAI0GSC3nDpXx67K5/1zhSjSwaSqpdC9naU9JPgQAPQubmqPvBPCpLw6Ngg/GkPN7t63knhlAPHOC/bWEX5DKbs7jvpxIxvv2COdNZ2FMib49YNQAYEelV286INhY/2BgzZyh4ZPDUazPH4ZjyUBiyUDi90r+y2xuewH3awn/awk7N57fehvpVs5SjmMqiwEhKlzqDm0e4KNMDpqiHoCL/k3FQ/skvzacuD/eNDVJ8IWZ0TdHsFoHi46xvxRxs/czb4wg/z7M/hmMUxHhVvrzn//822+/paenMwyzevXqhx56SKlUAsAnn3zy888/A0BBQcG5c+cYhmlpaVmxYoWPj8/QoUNdI9vuIv7+g0wOHQMAzwSXHptNLehLtBkL9JPB3XHER+PI/bOoQDnsLOSm7WVq3GuNdFMRoeSDFqnl/LCdzKuFUQAwkCm+ej/VnhYEgDgftO8OasNUMkgO+0v5Qf9jPsrkODcqYxOmL9LPbwKA9y5xDx9ms+WxALC+f+n83oSNFrQwPgx9N4UsfYT+91hSeNz+dJg1utGKeEI3K9I/hFB4iy3LLXjhNLvsNHuJjAaAJSGlF+6jHkxoV72FKODn28l/JZMI4I109u79TH27Ro2YiKAIe/Xq9cknn9x1112BgYFVVVXvv/++sD0jIyM/Px8A6urq5s+f7+3tHRoaeubMmd27d3t7u+Lm2HWDu/8go2dhXFIsAMjqOpUcPCkcnZhDxfuiU1X8+F+Y/Cb3eadKv902AHxxlUvZw2Q38KHB/qxSJTe2+OlvvZrBn3sTWQ/Qf0okNAw8f5pN2cO4TUqwySIMjRZbkI5gOFh8gn35DAsAoXFxAMB1YhWtADk8N4g4MIsKkMOOQm7eEZZxF11oqlOSfOeKVRncvzM5OQmPjo8HgChNyS0NPATw9+HEnplUkBz2FPOjfmYu1knuJSmOc+Hxxx+vqKhobGz89ddfQ0JM655//fXXL7zwAgAkJydnZ2frdDq1Wn348OFhw4a5QKSfb3APHmINHPxtMPHKtBggCKamvJOrGQzwR6fuppKDUW4jP/4X5ky15IbZDjhdC9tYa+pnLVUOl/H/d4oFgH8MJzLuo7wiutBfJlQJP6SQu24no7zRsQr+iWOsOwybxSKUsGu0yQiz9zPrsjkvCrZPI8ckxUNXWliMCEYHZlH+MvixgHv0qJvoQomvxyvwxVXu7+dYEsHmFHLqYGHts85WUMyMRulzqeRglN/Ej9/FfJ8nrWET08uOOkys7fh/HcvOQu6hQ6yBg+VDiDVjSETLTM30qjvbTC9cCUfvombFoCotpOxhdt2Q1jDbAVNRBDxPhcZItj49r4l/8BBj5GDFMOKfyaSMsDRx7kJ505xY4uAs0k8G265zb2f0+FEDyddOFGv4ib8wv5XwYUo4fCd1Xzxhx1L1ycFo/yxKGLU/p7JuMIWR/nq82wu4Z39nEcAXE8n74gnSL4hQeHHqRk7T1MkzxPmgE3OohX2JFgYeO8pulJIulOg7zpXsKOQePswaOHhpCPHeaFLYKHTlYKq60DrBh4ZdM6gn+xEtDNx3kN1eIKFhtgOJT1EbDXD3frZOD/fEEf9KNo2aeYXertX59vdHm1MoEsE/0tmePoPhtObVQgJcV3rbeRoNMGU3e7mOH+iPTt1NjQlFIHSyRchY2bWOo6NC0G93UH4y2JLPPd7zdaFRU3+UFAAAIABJREFU2tOXA6X8/CMsy8M7o8gn+xEAAAhRoV1utKYg4ZvJ5IdjSQD4y0k2p1Eqw+bpivB/Baao+ytDiXfNWhDMrRO62kOIIuCrSeQbIwiWh6ePs0VqqQyzHZh7ykjxyWR5eOQIc7WBHxKINk4lLYF6uxdjujMGvT2K5HiYf5S9Ut+jR60YhGmcJOuY/3qSLWjmk4PRybupBHOyLqHwJlWBvEHf1a5AY0LRvjsoFQ2b8rgnerQu5HmmugSEJaalR1oVf99BxsDBi4OJl4feVBmmRmtdsRYElg0i5vcm1EZ46BArkeZBHq0Iz9XwjxxhjRy8Oox4ZxRp/V/CGBu7PsYA8OYI8r54osEAj6WyPTcdUXAw0mFStAhfOsPuK+ZDFPDzDNLHqlLW3K/Lns5PLw0hHu1NNBvhngNsnSQT2zqDlJurbcrjNudzPjT8kEL6y/7wXybvaNc73Y8LRfvuoHxp+D6Pe/6U5GrkOwlbX80b9KQqUGhlJSmyGvi7fmPURniiL/HemD+8JE3Wgl2P2+cTyH5+6FId//xpSYya5ypCAwdPpLJGDp4dSKwaSdr8rzA1s7ur7JcTyQgvSC3n37/UU11t5hVhJKcIv73GfXiZkxGwYzplUwJoR9zCmq8mkiODUX4T//BhpoemYJjseOllyhQ280t+ZwHg32PJPn621qodTjYL48PQ3pmUgoRPs7hDZT1y4mk0jZrkpi+lGn7mPrZWD/fEEesm2rYMEQS2z1rwoWHbNFJBwrpsbku++A+b5yrCty6wmfV8Xz/03mhbLQjWy/rYtVJasAK+nUwhgH+ksxdqe97Dyeu1bEM1omgqSFopoycr+b+cZAHg84nkxPBW3r+bcQt7ZqlKCnbOIMOVcLCU/1uaJCaqXUWaFiHLw59T2UYD3J9ALOrXxjvHHJIvse/8E8PRGyNIHuCp46xGGq62LiF4F2nprRbyzEm2RMNPiUBbbiOpVuMmCGy3tTAkEP17HAkAi0+wuWIHCz1UEV6o5Vdf5AgE30xqux0M4a0ivFW8Xss23boorU1mRqOlSYSBg/lHpOIH7zzGSiFlNBqINmYJYnFDzd93kNGzsGwQsbBv27euUP5vn7sGAKK90Y4ZlJyEj69w66+JP1HtKtK0CN/O4E5U8FHe6MuJbd9Owvp2dkSbLLw4mBgRjAqa+VfP9rwZjLFKigHC7QXc7iLeXwY/pFCKtsaNDI5AJMXUVfIGO2MJi/sTD/cimozw8GFWL+q4eaIiNHKw8JjJKdqGVWGG7vaaW6tHkQP9UVYD/3JPezhNAUKJpYwuSGWrtHBHNHp/TLvqufsr9I4LRZ9PIAHgryfZy9Kr/O0A0ypUBEkFR4gty03SqviVF1gCwXdTyCB52/sIFmF3Ro0iYP1kkibgkyzuZGVPGjWQZMVLowGeO8UCwOrRZEQ7bVkRSZHBkZZMH/tYN4nsrUIXakX2wXiiInznIpdRyyeq0NujOjJ3qG6vuaWkYFMKKSPgkyvcryU96eE0NVeTkmGxJZ87Ws6HKGBTCtVBf3PzkqHdWintib7EMwMIPQtLe1T+BVNdChxHBUcg6ha99l1GsxHmH2UZDl4YREyLbHfYTMFdTZN9wV2BoYHolaEEx8OiY6yuJ42bFF2jr5xly1tgQhh6qi1XtoXuzztVNGy9jZST8GkW96N4JWcepwgv1/GrLrAI4OtJZMcLCt5cc6sbDAtC/xpJ8gALj/WkTqQmi1AymTJqIyw/wwHAO6PIwHasCgG66zX1bfLOKDJUCanlvBQi+Z3EKL1228+dYvOa+OFBaFWHk06wpKd1wzsKAH8fTiYFoJxG/s3zPUYTclo121SPZHIyIERsWUz8Xsmvy+ZkBKybRHbcI5uyq8zMhhHB6IMxJAA8eZwtaBbHYPAsRchw8MQx1sDBXwYSUyNuUWjlqFWYXxxMTI1A5S3w9Ike83AyEktjeyuDLdHwo0PQE+2EBi1QgeGIlrGNNbxe250r+stAqKhZfobrKfkXUvOwbS/gvr3GeZn9Ih1Dddu2AAAZAesnkySCDy5z52p6hg9GmGpTIdESKf00cPD0CZbj4aWhxED/W74k7Wlh0ZolA4n7E4hGAzx/Wpx5p2cpwvcvc+k1fLwvWn2r+Sl0u4LCghAd8ZfBzkLu256Qf8EbDUx9FSIpKlgSC9rlNPJrL3MEgk/G32J+CgBAEFRIFPB8N1+pALCgDzE6BJVo+FUXesYMhpFSymi1Dp45wQLAmjHkgFu9T+GmRdgtBwwAjA5BywYRDAeLjrGGHvC0SS7R9/1L3JV6vq8fem1YJ16SYY55SQLAZ+NJFQ27bnCHxaiB8SBFmNXA//M8iwC+mkj6diKGQgWGI5mcbazldC3dvHSsD/p0AgkAL59hm0Redv7WCKEmISVMbFkAAJ47xRo4WNSPGBXSqSmzKcup69XZNhAI/jOeJBB8mMnl9YRFRYxSShn91wW2Tg+3R6FnBnTqJUOb8mW6qwgBYGUy2ccPXarjV1/sAZqQkVLKaG4j/9YFU0PRNjNFbaBDYwAhproUuO5OFkOVsGIYCQB/SxOhD4mnKEKOh6ePs3oWnupPTI/qnAsCISokChwxSwWAeYlESgSq1sF7F6VuXpgMC2mE7ncUcr+V8AFyaN30oD0c4mQTGB2CFvQh9Cwsk0b/i47geaa61FJJKS7Xm/kvr3Ikgg/GdpDY9AfMIXkHjJqSgv9OJgkEqy70gLxfSTm0//o7q2NhQV8i5VaRIwEkV5J+wTxj7Gp7vDZ5fhAR74syavnvcl09g/EURfh1Dneyko/x7ijzvjXdrBi14e1RJAJYm8mVtUj64RRaRUjhydQy8Lc0DgDeSiZDFJ09Sqj66GbiqIV3RpH+MthdxO8plvSoMbUVvNEgpF+KLQu8coYzcPB4H2JQQGfjXlRIFBAkU1vOMw7wmYwPQ88MIAwcPHVC6i1IjZJJGf0ulztYyocooGsvyfDulplZUJDw9kgCAP5+ztWBeY9QhFoGVl7gAGDtWELVlcTy7vQQas3YUHR/AtHCwJvnJe2xkY6vZvVFtrCZHx6EFnfOvSbgQIsQAEKV8OYIEgCWnRa55rdjGMmkjJ6u4n8s4LwoWJnchVFDJEUFhQPHMTWdXfusY1aPIqO8UVoVL2JS/i3hWYatKbc4n0SkRgcvprEA8OHYdss926Q77fFa86dEYmwoKmvhXew58whF+EkWV6rhR4Wg+xK69n0dlS9j4e2RBE3A+hwuq0G681SjNFyj15v59y5xCOCT8WRn/WsAIIyaYFsYDQ6RZMlAYlAAym3kP8yU7itVOuv4vHSG5QGeH0REeXctDZJyqAPGl4bXhxMA8I90TrJWIVtTzrMMFRiGZF1RPk7g7+fYGh3MiELze3ftJUk7onLXAgL4YAyJANZc5ko1rhu2tr/z8uXL8/PzbTZev3598eLFzhfJwTQa4N2LLAC8NbJLr1MAR5SL2tDHDz3dn2B5WHFWqq9UIdQEQIWKPEV9/hSnY+HPfYjxYV0bN4fbFhQBH48nAeDtDLbEhQ9nlzCnjIpsEf58gztewYco4OWhXW7OJzRac5QDBgAW9iV6q1B2gwgxp05iCkNIYNK5/hpHIvjP+C6PmmMdMAAwPgw92ItoYeC1c64btbYV4ffff19ZaRv8rKysXLdunfNFcjBrLrO1epgcjm7vZI6MFcK6bmxNGc86zGP9xghTlvCRcim+UoUKPNI3gPDyFVGM/aX8L0WciobOFLq0xrweU3cTRy2kRKAHEwi1EV46I9VXqgRKP1keXj3LAcA/RpBdikEIdLP1dmtoAt4cQQDAP89z0nRrSyRTZuV5zsjBY32Ifq0WBrklDqmpt2H1KEJBwvd5risG7YIVXFVVFRAQ4DxRnEGVFv6dyQHAu20tMXFLEC2jAkJ5lmFrKxwlUogC/jaEBIBXz0rRYWP2sIkZIGR5U5/Dfya32+ewY5zxcH4wlvCiYEs+d7xCguNmyrcU95X6dQ6X1cD3VqHF/e2JuTg8EgEAjyQSgwNRkZr/MluKMxhB69OixuOzG/iNeRxNmDzJXYX0DSC8VUJ/HEeJlOCLliYRHA/LXdWA9A+FYgcPHty+fTsANDU1vffee2FhYZb/0ul0Bw8eHDlypGvEchRvX2TVRrgnjhgbamfXBioslqmrNFYWOzB55G+DiS+usqer+P8VcA90MWzpbG72uRCPLflcdgOfqEJLBtr54zjcIgSAGG/08lDyjXT29XT26F2SqLC0wDbVcy1qwsuH9BVtqqo2wpvpLAC8PYqg7Ro32tLUkOcd1WaFQPBWMnHPAfbtDHZRP6Ljroqux7zuhJjTlzfPcywPT/YjEnztfUmGxhgKrjCVRaTKYbffa8PI/17jjpbzu0uJR/o76qzt8ocbtqio6ODBgwcPHjQYDGfPnj1oRXp6+pQpUz7//HOnS+Q4itT8F1c5AsE/u5K9ZoPZtnBMKFjAm4I3Rgj19ZzUml+YFKF4hgXLw1sZHAC8NszO9ylYGl44zskm8MIgIlgBqeV8qsTc2lJYfWnNZbZCC6NDkN1zO8JbRfj4cboWu9c+a5O744hxoahSCx9JL9fJbMeLNu/MrOe3F3AKEl6zyxwUMAV3HWrK+8lM2dqvZdAucGv/4csvXLgwPz8/Pz8/MTFx586d+VZkZmZu3rw5MTHR6RI5DiEw8GgiMTTQ/tkl7aDOTzYs6kv090fXm/mvJeaxET1l1GIO/rmL2WvWWDW8cOTP60PD84NIAJBaT2fR23RVaOGDyxwArBnT5ZQ0a2hHtN5ujdDy+/1LbL2dC+c5BZMdrxTTjn/9HMfxsHgAEdPFFF9rzMFdB4/a0/2JAf6oQI2+uOr0l2Tb75qcnJzRo0c7+9pORUgVkxHwZjfMQXB0KeHN0xLwzigCAFZeYJul1HRN3CmqtTnYekXszoPkSlIVKDRNdZhwAACwNIkIlMNRiRmFoluEb6abYhCT2l/gszNQjmu0Zk1KBJoehRoM8N4lCc1gRA/rnqvhf77BeVHwStdTfK1xYE29NRQB740mAWD1Raevbd7Ry6aioiIjIyP9jzhXHMfxejrH8vBkf6KXvY5vAVPcwtFPJgDcG0dMCEOVWlgjmYeTN+jYxlpE0VRA2K33dgIOMQcFnDRLVdHw/+ydd2AVVfbHz70z80p67w1CQgmhiqCoCCJg+alrW+taWbtiR9auq6hYQEUX67rquuuurK4uYkEsoHQDISGUJKSXl15emZl7f3/MvBCSl+TlvWnB+fwVHvNm7nvz5p577jnne+6cyADAY0ZyCnldaydK2uhb+wmLYfmM4O+aKh4hAPz5OAYBvLyX1AXVlURJdBdJf3iHSAFunYCT7EGdx7t8UTJ+JHF2BpoaTeqc8GaJuk6h7x/unj17TjzxxOTk5KlTpx53NKqORim2O+i/y0gICw/6IaA+ODgsypsTpWTcQkJa77xYSJqNsWPD11cCpWx8KmAdUniUcgclOHXChABwWx6OtsJ3tfQHw6SPej1Cffz4p38lAoFrcvE4P7pMDA6nRBNQnxwfj87Lwl0CPF1glLvG6yrhtKmerqukERzcF5w7CABsrNT7TIH+BP25L08AgGd3q1sA43u+ufTSS8vLy19++eX169d/fTQqjkU5pMqE2/NwYMn3fVAjq1vixES0MA118LBqryHcC333ahR0B6FnlarClBppkSOFBnEKpewSxFl08eMrOumHhwiH4YHJStw1pauze/PEdMwgeKOElnWqcfphI+iaMvrQdhEAlkzEwxJU840kEUepGiuYM1PJ5BhU1aWuKoKP325bW1tRUdFrr7126623LliwYP7RqDcUpdhYS7+uplEWuG9SsCsdCU6dMKGE1PTr5b3ECJFCHaualHUHQc3lCwDckYejrbChhhqhplBoqARK2YQ0Xfz4pwsIT+DS7MCT73sj91VubQyyr7JP8qLRZdnYQ+DpPcrMDEEirTt12RrdUEO/q6XRVrgzX6lJUpUwIQAgkDNalxcQXjVT6OPJQQgBQEqKIZqyBsDjO0UAuHcSE62Qep+yEoh9ODkJnZKEmt3wmvqZUUOiY1WTsu4gHNlkU+WuGcop1DHUVN1F39lPMFLGHQQAwJiNS+nR+VOcR6djC4aPyvH+Np1XMJT3CM31iGGZ2CTtr/7QDhEA7slnoizKnNDryisfJgSAC7Lw+ChU1kE/OKjWJOnj5xsREXHWWWd99tlnKl1SVX5poN/V0igL3Jqn2OpYvWiTxJ+mMgDwwh7VM6OGRNBJVkZxdxAAmKh4ZLWL7S3EqcpG2B15OMoC39bQn/R2CmUxID2WL8/vIW4RLshSIDrYg7LdDPowOhxdlYNECs/u1nndKekGMHEp2re/XldJN9fTeBvcrtwkqWA7yf5gBMumYAB4ukAt/fQj96CmpqaoqEj6+/LLL1+yZElzc/PChQtDQo6Ksxl8d/SpXwkA3DJheO2WBkfKSlfpyQSABaloRjza1kjfLCG3KffTHDY9nV01l5VR3B0EkOIWKXzVIaGhypKpvDSF5BQ+ulN8dKe49mTFTz8M5Miu5hvajS5Ys4/07FwpBZeQ7lRz3XnPRHh7P/ztAHl0Gk4LonguSOQ2hHrkNz22SwSA+yczYcpNklyCisFdALg0Gz+2k+xvo/8oJZdlKz9JHjGE69evv/baa3v/3+rVq1evXt3nDZTqHxQZiD3N9PMKEsLCHROVjAGwMUmI5aS4BbIGl2g8AMum4N99LT63m9wwHlt0MoVCc70unV3VcAcluIQ0vuqQUF+phiEEgDsm4pcKxW9r6M+NeIF+EuVyZFfzrdGXCsUuAc7OQMEIVvRHpcrdHrIj0AWZ5J/l6Pk95MVZugULBZ38+A01dEsDTbDDzcPp8TkkUoha6iqlho/LIHhgCr7uB/GpX8klozFWegFzZMQLFy4cKUmhA/F0AaEAfxyH/e9m7hcYs/GpfG0531BlSc9R9NQy52bi/Biyp5n+7QC5bqw+llCvlFFV3EEA6EkcVSfaBABRFrhjIn5sJ1m+l1kwWqWLDAURBbmzq6a+RZsHVhcRAHgg6OT7PrDqaDn15u4J4sfl7Jp9ZNkURuG5wm/0Skx7ukBKFmXsilorqT+B0FQnOmpVmkOuHIOf2EX2ttC15eQCpSWaj3wZKSkpIzdBBgAOtdN/lhILhrvyVXCcE9L52nKhoVIlQ4gAHpiML/tOXF5Ars7VyRDqIa5GVHMHQeXEUYklE5mXCsl39cymejp7mH0TFUFoqqMCz8QkaNzZ9eW9pNUDp6Wg4XaLHBIuMR0QEhqqgBCV8mAnRtGzMtDnFXTVXvGJ6fo4hbwe687tDvpNNY3gFHYHJdiEdKGpjm+oUulDcRjun4Rv2iQ++Ss5f5TCPqGxWh8Ew7O7iUjhypygRPMGgktSq863h4tH45xIdLCd/qNUnzC+LuW9n5STfa10dLjy7iConDgqEWWBO/IwADy5S5/0UTkFX9vlSycPLxWKAPDgVOWtiHryeL1ZNoUBgFeLSLsuZUuUCg1S+2tNH7flBQQAbp6AIxVKFu2NqvkyEtfk4tRQ9GsT/bxC4UnSt3u8YMGC5mYfQiqxsbFZWVnnn3/+woULlR1HkNQ54b0DhEFw3yRVTLucyVan4j1mENw/CV//o/jnXeQCPUpsddkafaaAAMA9k5R3B0FqJoWQ0FgDRASs1sL/jonM83vEL6tgp4NOi9PaKZRkOTW+a6/vI01umJWATk1W5fOyieliW5PQUMmqVlpwQgKak4y+r6WvFxOVJo1BEFsaqcfFRMRge5hmFy1po2vLiY2B2/NUeRZU6k/QGysD9+bjJb+Ij+0kZ2co6RT6/gVkZmaWlZUVFhZardbU1FSGYXbt2tXQ0MCy7Lp16xYtWvToo48qNwYFeG636BLhwlE4d/gdlv1BJeHKPvwhB2eGoaJW+rmKv6UBkfRUtQxafFVNtztooh2uzlFlJkIWKxMdT0VBUK6vcn9irHD1aBEAntujgyuvfcqoS4QX9xAAeFgFd1CCU7NytwcpuqlL2ZIu+6LLCwihcO1YZfS2+sOqnDgqccN4nBwCOxz062ol0zZ9T0CjRo3Kzs4uLS3dtGnTp59+umXLluLiYo7jLr/88tLS0iVLljz11FM1NTUKjiMYmtxyGvdSpap6+9ErbqHiDhiH4Z5JUrmMehfxDXF2ih0tyGJjouI1u+gzBSIA3KF03L438pSq5ioVAG4dK1gwfFxKDrZrnVPNy8sX7abUt0tITTedFocWpavl/sobMCrftYVp6Lg4VO+Ed9XU7vKJ9vH4yi76wUHCYrhHhRQKCQ1C8gBgY2TV+ycUDUb4+FI8Hs/y5ctfeOGF3rkzubm5jz766JNPPsmy7PLlyxmG+eWXX4K5sMPhcDgcgxzgdDorKyuJH/3kVhWKnTyckY6mxKr1ZEoWQm3fAgCuy8WJdtjRBF/XaLrJ5pU9TFWqM/iQbG2kG2popEWVuH0PqlZn95AaAleMwSKFFZqXaWvsEfJELkX/0xTFM9iP4O2Gre5dA+/S+bndRND2vgmax+NX7CY8gUtGK6OE5xMmIhqHhElLapUuIXHTeBxjhZ/qlNSy8DEHORyOjo6OqKioPq9HRUWVlpYCgNVqTU9P7+wMULDD4/FccMEFEyZMyMvLu+CCC9xuH50XXnnllZSUlLlz544bN664uHiQs4lcyCtFBLzRb/VQTxe/N3YW7spnAOCZQk0Nofb9eKW4/U3jVYnb98Bq4hECwH2TMUbw1wOkVnn9/QEhXe2kqx3bQpiIGG2u+P5BcriTTohC52WquHzR5lkDgN9l4XFRqKyD/l3bDDWNt0YbXfBmCUEA96u2ZyahQekLAIRxcOsESX1UMafQx/cSFxcXHh6+Zs2a3i8SQt54443Ro0cDAKW0vr4+Pj7APbQ333yzoqKisrKysrKyurr6jTfe6HNARUXF0qVLN23adPDgwcsuu+yOO+4Y5GyOvN81u+GUJKR28ro2vgV41zubGtCmeu322TReoha30k8PExujsPRBf7zyeKrftbGR6HdZ2CXK6ZTa4BVXS9PGjydUTm56YIryFc29YSLjkNUudrSQbnX7RGAkO4XPFBCi4a62xlujq/aK3QL8XyaeGK3u70Sb4C4A3JbHhLLwv0q6u1mZ2+bDEFoslmXLlr388stz5sxZsWLFu++++/TTT0+fPv3zzz9/+OGHAWDDhg0dHR0B9yb84IMPFi9ebLVaLRbLH//4xw8++KDPAX//+99PPfXUCRMmAMAtt9yyYcOGuroBNyQ7kqaA+u4gaOhbhHNwy3gARdc7Q6JxyuizuwmhcE1usB1Bh0S9Zkz9uX8SBoDXikmrR4OrAfQsX7S6a2vLSUkbHRWOLhmtcpql1NZHk8ftsmycGYb2ttDPlM7IHwji6hLbm6VMLg0u18HDq0UEvL9PVdHGIwSAOBtcPw5Tb9p58Pj+apYuXbpmzZra2tp77733mmuuefDBBymln3zyySWXXAIAs2fPbm5uDtgjLCsry83Nlf7OyckpLy/vc0B5eXnPAfHx8REREYcPHx7obJTSvHBPjqestLS0tLS0u1utnSnNfAsAuHkchHHwRYVi650h0TLn4kjcXv0nU1KMI51tpKtd7WvNiEfzU1HPvKMBGgcIpd3se/JVqXXpg6q9z466UE+G2q9a3TVt/fjXi0mLG05NVl76oD9arjvvzscchn+WkdIOBSbJAdP1Fi9evHjxYqfTWV9fn5ycbLUe0a2w2Ww2W+DCRB0dHXa77AiEhoa2tbX1PyAm5kjMIywsrP8xEg6Ho7PT3fjuXact/Up65aGHHrrooosCHtsgkJBoAPDUVXR0dKhx/t5YeP6KDMvrh6xPbHe/fYL6Fb9EFB01gJDLHulS/9M9vYvlCXtRhhgPGlwNUEwy1BxqL9/PZIxV6RI98fLbc/A31ZaVhcLiTLd6qbA9OKvLAUAIj9PgN/ldPbPdwSXY6IXJXRrcNTEyHgC6q0rJeIUvJoqix+MRxSPbLRcnw+M269ZG+OxA19wk1c0hf/gAAEB0kgZ3zSXCC3usAGjJWE9Hh/ItHvsghkmT5GEFP9pAyShRABdnch+UMU/vcL8wfbBJ0mazcdwQ+uJDPKx2uz0rK2vwY4ZLQkJCa2ur9HdLS0tiYt+22r0PAIDm5ub+x0jExcWNL15e+NXHyo7QN+HhXbZQ0t0RiikOjVD1UjzP3zNZfLsM1lYyy2dZsyPUXcoJjdVtosDGJIbHxKp6IQBwuOC9Uh4B/Ok4a3i4FjqPfEpmd80hrrMpNFxFYezw8HAA+L9wmLFX2NYIH9eG3jJBdb+pq7kWAMKzcjk1P5rEyh8FALokn02IVjO7yQubPsYNgFvqw5X+aKIout3u3k11wgHuzCfLtokrD1jPyVF9/dLW7gAAe+ooxT9afz7cR+qc4rQ4dO4YLZT0aUhOF8OSloYwmxVxiv1OBvqi/jSd/r1ceL+MeXKmLTG4IMuRu15SUrJhw4ZZs2ZNnTr1r3/960B7jDfddFNQFwSYPHny1q1bJW2aLVu2TJ48uc8BkyZNevXVV6W/9+7dixDKzs4e6Gy25rIgx+M/bEKap6KEr6+0js5T+1qpIXBlDn6rhDy3m7x+kroRUDnnQpNQ0ytFYpcAZ6Ur3LJgEDQL7kosnYwv+EZcsYfcME7dLUS5mAdjNjZZxcsAAMCWBi1qXXqjdg+KPtw8Hj9bIG6oob800FkJKq87tYrHCwSe2y0Jo2t01xDDMjGJQmO14KjhkrPUvtz4KHRuJl5bTl4qFJ+eEdQkecQQbt68+eabb37qqaemTp163333NTT4FvoL3hDefPPNl1566QknnIAxXrly5fvvvy+9fsIJJ7z44ouzZs26+OKL77///ueff37+/Pn33nvvVVddFRamnRDRILCJ6Z6KEqFBC0MIAPfq9/VsAAAgAElEQVRNwu/sJ389QB6ZxqgkBiGhWcpoJw8v7yUAcL/SLQsGQQ7uqp/JJnFeJh4XRfa10o9KyRUqCKj2IDhqgIhsXLKCS++B0KbWpTdsfKqqbX36EGmBWybgP/9Kni4gn56u9rpTo3j8R6XkUDvNjUTnZ2mnIcclpguN1UJ9pQaGEACWTsZry8lrxWTpZCaYH+eRL+iKK65oa2u7++67AeDQoUNtAxD80OfPn//SSy89+eSTjz322PPPP3/66adLr48dOzY0NBQAQkJCvvnmm02bNv3xj3+cOnXqc889F/xFFUEDMb3eSL9gDTLyNUvmXrOPNLthVgI6OUm7KkktA/gAgBHcOwkDwFO/qpuRL+dcJGaoeA0AANjXSj+rUFGj0ieIs7DRiVQUREetNle8M58J4+C/h8keNTPUqChI8XgpLVbFC3kzKh+YrG6tSx+8rrxGj9vx8WhuMmrzwGvFQQV3jyy1OI7riSiq7YFdfvnll19+eZ8X33333Z6/8/PzP/nkE1XHEADyPdbKtwCABybjf5WR14rJA1OYKNUW47wmyYceAi8WSqIkmja+kXwLQSvfAgCuGIMf3UGKW+kXleT/MtRajGvW0E5tjcqBYBPThKZavqFSm037WCtcNxavLCTLC8gHc9X6iUo+LhubpHbbrLXlpLCFZoahy9XcluiPt4JCw0lyCvNdrfBSobhkIrYFet8G/I5EUfz6669feOGFp556SnqluLi4slK7j2dAWK3KRXuYFocWpqmeka9NOdpf95OqLpofg87K0FQ0B7EcG5MIRBQcGqnjWjDcma96Rr42bbMOd9IPD6mrUTkQmlVn93B3PrZg+EcpOaSaZqz3rqlu2p/6lQDAvZMwp+1989417foGnJ6Kpseheie8sz/wx833l1RXVzdjxowFCxYsXbp09erV0otr1qy59NJLA77SMQAbnwKYEZrrKK9VyTTA0skMAKwsFLvV0ciXauzUlukSiBxnelBNjcqB0KzOt4c/jsPxNvi5gX6jqEZ+bwRNUpye30N4Ar9XU6NyILSR3u5Neii6MgeLVNZTVQOhvgK8VZLq8WUV3eGgSXa4bqzWy5cjWU5UO6keSR5oRRCasb6/psWLF7e1tf3888/r16/vefH3v//9zz//rEiYcISCGJaNTQJCNPMtAORK2EYXvFWiysPp3RdV98l8/yAp7aDjotCFo3ToBa29bxHKwpKJDAA8ulOt+K53a1TFG9fkhrdL1O3rMgiaSW/35oHJmEHw1wOkukuVeVwbP/6pX0UAuHsSE/BWYcDgkHAcFkndTrHdR0dblTg/C+dGotIO+s+yACdJH7/vrq6udevWvfTSS7NmzcL4yAG5ubmEkKoqPXrlGQZtGhP2QdJGWrGH8CqYQg32RUUKTxfILQt08Af18AgB4NY8HGOFTfX0+1rlp1SxvYU4O6VJR/GT9/DiHrFLgLMzVNeo9AmXmAFeF0ozsiPQhaOwW4QXClVZd2rgx/9QR3+sozFWuGGcDssX0GPdib0t2Z8pCDBBzcc31dbWJorimDFj+rwuaTH4bBbx20HKxec13AEHkNVyKzrph4eUfzg1yLn4RynZ30bHRKivUTkAGieOSkRwsqS4so3TJDSoReuJTOviDgIADovEoRHE1a2lbwEAD0zBCOAvxaRJhalOftzUzPX98y4RAG7PY8KHUFNRC41rQCWuzMFpoWh3M11bHsgk6bv7REhIyLZt2/q8/u233zIMM0ht+28BXTzCnv4pamjkq11NTyj8eZfcskADjUqfsNqWEvZwex6OtMC3NXSz0o1ENKh4kdTD52iiUTkQ3vQ0TZ3CyTHozHTUJcAqpcuWxPZmtf347Q76VTUN5+C2PJ0eNp02YCxYXrE9vjOQOdJ394lLL7106dKl3333HUIIACil69evv/POO88///zISBW3YoyPtzpb6/1hqaNmcSv9V6Cb4APhlQBWa0r9pJwUtdKscHSltmncvWHC5ZahpLN16KOVI8oiz0eKO4Vqh5o6eXh+jwgAD2gofdAfXTZgAOCBKQwAvFxEOhQV+tWg9FNadEqt3PRC43rrHq4fi9NCUUFATqHvuemFF17Izs6eN2/eGWec0dDQEBsbu2jRovj4+FdeeSXo0Y5spB+xxjlRAMBi2Sl8aAcRlbsyFXihuR4wZuNUkemiXlGSpZO1TuPug2btJPtw50QmnIMvq+i2RiV/MGqLAb1cRBqccGIiWpimmzsI3sdN4w0YAJidiOYkoxZ3sGXafZB2C9ULQxR7pQ+WqNzmc3DkSbJOUz8eAKyMLCb38I5h75z5npwiIiI2btz48ccfX3rppYsWLTr77LPffPPNbdu2JSQkBD/cEY0uOVES1+bi0eFofxv9SLlIodBYDURkY5MRq0o84bPDZIeDpoWiq3N0NYN6BPAlYqxw8wQMAE8qWlMo2QaVsvA7eXhxjwgAT0zXcz6Fnlb1mt818LrCL+wRncqVLamdKfPkLkIoLB6ntfRBH9iYRMRZxDYHdave76IP14+Tu0sO1ykccHpiGObCCy988803P/vss/fee++6667r3Ynpt4xeUyqH4aGpGAAe3Rl4uUwfVJ1PAeDJXQQA7puErTrPqPrELSTumsiEsvDfw+TXJmWcQsp7hJYGxLBMbJIiJ+zDi4Wk0QVzktG8FD3dQejJctLDEC5Mk8u03wqiTLsP3kwZVR63g+30H6XEoof0QV8kIXhKhcZqja9s8e6cPbZreE6h3l/ZCESXnCiJK8bg3Eh0sJ2+d1CZh5OvUzFosa6SbnfQJDtcr3lVb390SRyVSLDDDeMxBXhilzJ3TWisBkKYuGQ1FONaPfDCHhEAHtfbHQQANjZJ8i2IS62G24MgrTv/vEvsUsgpVDUx7ZkCIlK4YgzOCNN5+QKaK4725tpcnBGG9jTTT4bjFB71IJ133nm1tUNI3G7ZsiWQ0R1D6OhbsBgemYYv/058Yhe5Ygy2BG1fpHw8lZ7MJ38VAeCeSYwGLWqHRE4c1WP5AgD35DOvFZP/HCaFLQrU5KmaMvrCHrHVA/NT0SkaCqMPCEJsXApfWy40VlnSczW++DmZeFYC+aWBriwky6YE+7BRj0tsbUQMy8b47q4aDOUd9L0DhEG61br0gUtId+o0SUqRwps2iY/tJOdn+Vu4fNS35nQ6u3uxdevW2tra7qNRZewjCh3jFgBwyWicF43KO+jbSgjNSEtUNfZqpJqBeBvcqFUHu8Fh41IQwwpNmsrj9ZAcAtePxYTKe8VBwqtWRNjkhpWFBIzhDkqwSVJZvQ5TKgJ4agYDAM/tFpuDrink6yuBUjYhDbDy3+1DO4iHwGXZOCfSAMuXHm9Bp0ny2rE4IwwVttB/++0UHjVJrV+/fo+XgoICAHj22Wf3HI3yox5p6Bi3AACM4NFpUkY+CTaMT6nQqFbyoVQwcFc+E2oAdxC8LUOBUi3l8XojBUr/VUb2tQYbKVQvZfS53WI7D2emoxNUbk7rP3qF5CXmJqMFqajVA88UBFsAI6imZbi7mX54iFgwPDrdEItO0DV+BAAWLKePPrbT30ihUb64EURP3EL7nCiJC0bhKbGoppuu2ReUeyG0NFCPm4mMxXaFu25trKXf19KehEmDILvyOj2caaHomlwsUrktQDDIfrzShrDBCa/sJQjgMcO4g6D3lAoAT81gEMDLRaSmO6gVjJwpk6S8Ibxvq0go3JqHR2sujD4QbEIaICQ0VGlcZtbDtWPl9FE/C68NNE+NGBBi41KAUl1CwQCAAB6fjgFgeUFQLSnkAKHSS1RC4Z4tsjsYoZPIk0+072bQh6WTsQXDh4dIQTCtX73JeIp7hM/sFrsEOCcTHxdnlPkUjniEWhel9TA9Dl04CjsFeHxnUCsYOTFN6bv2bQ1dX0WjLLBM2zafgyN1s5HSm3UZgAWDFNZ93L/0UdMQBgKrq28BAGdn4OPjUZ0zqD6FKgUI/3aQ7HDQ9FB050Rj/bq88ni6GcLMMHTLBCxSuOuXwPfZpK0IJjwah4QrOLbabnitmCCQN96Ng+xbNNYAUauPx5A8cRxmMby9nxxoC3wFo8bWKAW4f6sIAPdPZmINVt2mfffWPlydKzuFe1uGvmvG+tGPFLybbLpNqT37V8/uFgNWgZLLe5OUrJ3oFuCh7QQAnp6BQ4wRHeyB00lxtDcPT2PibLChhv7ncIArGJUChE8XiE5B3nVX9sxBgixWJjqeioLQVKfXGMZGomtyMU/g4YCdQql3G0LKbmh/dIjscNCUEHS7fsqiA8HpmqcNvZxCf6S4jpqrvvjii66uLulvSikA/PLLL707MQHAxRdfrNRARy5yvkydnlPqojQ0OxFtqqer9pI/BZTbLfcIVXSJ+kyBWNlFj49Hl+mnLDoQR7KcKAWkz3QfZYFHpzG3bhbv20rOTA+kAEYNldGqLvrGPtKTh2U0uMQMsbmBr6tg41P1GsPDU/HfDpB/lpL7JuGpw18rSN28mah4ZLUrNSQPgYd2SCm+hlt0gq6Vuz1ck4slicchOer7u/nmmysqjtqLX7ly5cqVK3u/YhpCOFJKqKchBIAnjmPmfSE8v0e8ZQKOsgz77YqX91Z10RV7CAJ4YRZjLLcCAABwaAQOiyKdrWKbg4mK12sYN4zDq4tIUSt9eS+5e/giIGrIdD2xi7hEuDQb5+nRd3BI2IR0KN4uNFQCnKDXGNJC0a0T8Io95E/bxf8tHLbZkUs/Fd19+UsxOdROJ0Shq3ONuHzRsd66Bw7DukVMnG3oX/VRd/T99993OvXJhBxZcInpgJAk8AFYt1/h3GQ0LwVtqKFP7BKfnzm8UDnpbCNd7VJMW6nxLNtGugW4eDSerV/jnsHhktLdB1v5ugodDSGL4YVZzKIvhSd3iX/IwfG24b2dV7qafruDvlVCJK0Gpc6pLLpHIiSWTmHeKCHrKukPdXS4agPyolM5P76dlyuUnp6Bjbjq1LvupYex/hVWHmUITz75ZHUGc6yBLDYmMk5sbRSa61Xq2+Anzx3PzPxMWLWXXDFmeDs2vKwpk6HUJuG2RvrBIWJjYPkMg86nAMAlZroP7hHqK2DcdB2HsTANnZmO/ldJH9khrp49vBWMN+dCmSlVpHDjT6JI4d587OeUoT3ePW3dEkclYq1wdz7z8A7xgW3ipv8bnlOoeKbMit1iowtOTkLnZBr0cWOi45HFJrdgVLpAS3EM+iUaH32L0nqYFodum4AFAjf8JA6rPZOgdMroXVtEQuGOiXiUYYqZ+iMXpem9SgWAFTMZDsMbJaTQj5S2HqjHJbY1IZZTSqbr1SKyw0Ezw9Aj0wyUfN8HqfZOF3GZPtw5ESfaYXM9/WyYuU5SS0WlHrfabnhhD0EAzxxv3LsGCEkxXd1deX8wDWGA6NXfrj+PT2cywtC2Rrp6OKUUygYI/1VGfqqjCXZjFTP1RwrSCHWH9R4IjI9CN47HAhleKYUs0xWfqsiGfHUXfWi7CACrTsAGEQDyCQ6LwqERxNkptrfoO5IwDv40hQGAJb+QzuFkawuKquI9vkvsEuC8LGwcASCfeBNHTUN47GKEULBEGAcvn4AB4MHtYnWXv+6F0LM1GjRuEe7fKgtUGqqCvj9yy1ADLF8A4NFpTIwVvq6mn1f4fdfklFFl5tMlv5B2Hs7LxIbdXuvBIOlpAHDjeDwtDpV10KXb/F3BKBuPL2yhb5YQFsNTxxn/rumfOOonRv8qDQsn9c42xpR6Tib+XRZu5+H2n/11CnnlOhGu3EtKO2h+DDJCu6XBkfTkSFe72KGzbwEAMVaQNiTv2SLy/t03QbkW5/+rpP8qI2EcrDrR6HcNvD9U3cOEAMBhePcUxoJhdRH5rtavFYxXJF2BRaeHwB82igKBG8bhcVGGdgehR3jEAHdtSEbAM2BMvHpdhjCEAPDqiUykBT4pJ/5EL6jHLbY0IoZlg+7s2uiCp34VAWDFTMaY2Wt9YA1QVt/DzeNxXjQqafN3W5uvqwAANmi9SqcAt22Wmw6mh46A26a7TElv8mPQQ1MZCnDtD37JWQh1ijU7e2SHuKuJjg5HT88wdAxCgjPMttmQmIYwQJjIWGwLkTY99B4LAEByiNw657afh45eCA2KdYS5ZZPY5oGz0tGC1BEwnwIAl5gJxvAtAIDFcr7DY7v82taWDKH0EYLh8V1iaQedEotuM5Iq+iAYLdq0dDKeFofK/dsgleW2g/bjN9XT53YTBsHfTmXCjR2DkGDj9ZfH85OR8RgYEYTYeKPELSRumYCPi0MVnfSRnUP87HiF5LZfKSIfl5FIC6w6cQSsTyXk/nZ1hjCEAHBWOjorHbW44fcbhtggpaIgOmoAoSB9i70t9Pk9BCN4fTbDjpAJQA7uGuausd4N0tf82CBVpH9kBw9/2CiKFJZOxicatU63D8hiZaMTqCgIjiH6vevOCHkODIm0yWacUDCD4K1TGBbDykKy0zHYwynUSToXQT2Z2x1U6jLx1smMcfq/DIlxok09vHcqmxmGNtXTZYO6F0JjNRUFNjYZccOXEfJCAW7dLPIEbhyPZxo757A3bIzOvc/64/8GqaCEBsKSn8XSDjotDj1s4EKX/hhtBTMQpiEMHN27GfRnUgy6bQIW6RBlhcFH71s98PtvRbcIt+fhC0aNpF8Ra6QsJ4kYK/xjHmPB8Pwe8snAPbWF2sMQtEzX2yVkYy1NtMOTRmo6ODQY69v7zCdLJ+PjhtoglVoRIYZlglDe+PQweXs/sTHw1zlMAPq0OiL9XPl6/QuWBmdEfakGwwjdDPojpT9sd9AVuweeUoOT25ZWwaUddEY8em6Y0m66w8YkIotNbGsi3Z16j+UIMxPQ8uMZCnDdD+Khdt9LGHlDOynwAOHeFtmJf3EWE22wrj1D4l13GuhxYzG8PdQGqdBQBYQwccmICbBUs94Ji38UAeDZ45mJhhSDHQSjRSIGwjSEgXOkm4GRCOPg9ZMYBLBsu/jhIV+2kIiCoxYQYhMC1PJfWUjWlpNorx8zwvB+cENNqQCwZCI+Pwu3euDiDaLLl4MhGcKAK16quugZX4qtHrhoFL40e8Tdth59GWPdtZ4N0ut+EH0mqQVfp3T9j0KjC05PRbcar9fSkHBJmWBujR7bSFmXQlMdFQJtCagOZ6aj52YyhMI134tfVfddqAqOWirwbHQCsgxT7xkAALY00Pu3igjgnVMYI6upDYKhEkd7QABvn8KMiUA7HfSOn31YQjkLPyCPsNUDZ3wpVnbRk5LQX+eMMCdewqvlZKCtUQkpg7Ssg97+s49whNwtJNDdlzf2kc8raIwV3jllRFQn9UVSMxYaKoEE3kJcA0xDGDiIYdmYRNnBMhh35+N7J2EPgQu+EbY1HvV48kFoyjS74fcbRA+BO/PxuYaXIxkI1pC+BQBEWuDj0xg7C2v2kb8dPHriIKLQWA0IBeBbuEU472uhsIVOiEKfns7aDaymNgiyhIXB/HjwZpDaWXhnP7l5U19bGIwGQnErvWuLCACrZzOpI6Hcsz/YFsJExlHeIzQZbpLszUidywwCawzpbZ88czzzhxzcycNZ64X9bUcez4Ab2lGAq78XD3fSExLQ8pFQzzsQskdoAMXR/kyJRatOYADgpp/Evb30uIXGmsD8eELhyo3i97U0NRStW8TEjLTQYA9sQpq395nhitLyY9Da+aydhdeLyeIfRdLLGEoubACP29ZGOudzoZOHK8bg348ewRM1l2zcx62HEfz9GgE5J8qQO+AI4M2TmTPTUaMLFn4p1nTLTycfUN8JQmHpVvG/FSTWCh/NY7iR/MORO4cYzyOUuH4svioHdwlw4beiwyW/KM0jAeyL3vmLKNV6rlvIZISNSK9CAllsTFQ8FXihqU7vsfhgYRr6fAEbysJbJeTq770525QKjZI87PA8wv9V0nlfCI0uODsD/eWkEbzohB5X3pCTZA8jeT4zAFIoWKgr13sgvuEw/PM0dlYCKu+QEyUgILlthwvOXC88K6tasCN6PgUANj4FsZzQXE89rqGP1oPVs5lJMWhfK52yVvixjkKPpswwayee3U1W7SVWBv5zOpsfM7LvGhim99lAzEtB/1vEhnPwt4Pkio2iQEBoaaAet6Rw6/953t1Pzv1a6BLg2ly8dj4bMjK3sntgR0K+jD6GkFL6448/rl27tq7O9+KuoKBgh5fS0lKNh+c/8j2uNa7XH8rC5wvZ8VFodzM99yvBJVBZ8Mlvj/DnBjptrbC+iibY4ctF7BnpI34+BcywcclAqaFqQHsTwsK6RczJSai6i877n/DnX0kAtRPvHyRLt4oYwXtzmFOTR/5dO9JO0qB3DQBOSULrz2AjLfDRIXLJd6KrbtgSTk8XkGt/EAUCD07Fb54yYqR/BmFElBLq8DVTSi+88MIbb7zxo48+mjhx4k8//dT/mNNOO+3qq6++4YYbbrjhhjfeeEP7QfoJJ+dEVVFR0HssAxJrhS8XMWmh6Ic6+rtP6omrG4dF4tAIf967spDM+VyQsg13nsfOHyGCokPCGjJxtDcpIWjDmeyyKZhQeHC7uP9AOfjtEZZ20Cs3ild9L1KAF2YyF4/kCFNvOCNJbw/ECQno6zPYaCv8u4y89dNh8BYcDwmhcNtmcdk2ESNYPZt5YvqITBPtD5uUCQgJ9YZOHNXB6964ceOWLVuKi4vDw8NXrVq1bNmyH374of9hn3zySU5OjvbDGxbIYmVjkwRHrdBYE6Tkh6pkhKEvFzEL1oldtZUAsJdNL66hp6UM9qC183DdD+K/yggCuDsfL59xLCxOe+CS0p0FstScYWEx/Pk4Zk4yvvo7T0JXDUXoZ5I2Z9C31HTTJ3eRN0sIT8CC4ZHpzB0Tj53bxhpPHs8nM+LRt2eyC9YJztIqANiN02YIMHiybicP1/wg/quM2Bj4YC5zftaxc9ewLYSJjBVbHUJzHRuXovdwfKPD1/3pp5+eddZZ4eHhAHDJJZf8+OOPzc3N/Q8rKirasmVLe7shejsMgjdMaGjHHwDyotH+i9m7E6sBYCdOm/8/Yc7nwsZ+chhuEfa10rXl5Lj/CP8qI1EW+OR0ZsXMY8oKwpEOvUa/awCwIBXtOMVhJZ4aNu60by2P7hT3tVJnvw2IJjfct1Uc80/htWJCKFydi/dfzC6bckzdNkM1YxqcqbHo2zPZCXwVADxYkZL0AX/tD+LGWkqOfuD2NNMVe8jp64S49/l/lZFoK3x1BnssWUEJ45fV6+ARVlVVTZkyRfo7ISHBarVWVVXFxBzVuzk0NPS5555zu9379+9fvXr15Zdf7vNUHo/H4XC8/vrr0j8RQvPmzRs9erSq4+8Dk5QJhb94asst+ScqdU7Ri1InlLAhOIWp7AIYm50WS+CHOjr3C+HUJDg1GZV3QmkHLetAVV2051GdEgP/mIuyI6jiI9EdJj4NAPi6CkU+mho3qzcRLeUtADQ+HQAe20ke20kAIM4GqSGQHooyw4DD8M4B2uYBBHBBFnp0KoyPAgByrN230AgcEka6Oz0tDiYiOrBzqPRw9ScvEmJpNQUIT0lvb4d39pN39pOMMHTZaMiLhg018FUN9PTewghOTIDXZuO8qGPurgEwiRmwb4enpswyfsZw3xv8zcIYIzTENrMqhvDgwYNXX311/9dfe+21/Px8nucZ5khCMMuyHo+nz5ElJSU2mw0APvvss0suuWTBggXx8fH9T+hyubq6urZt29bzSkZGRmpqgMphARKbAgDu6lLO7VbqlDzPi6I45M0LAHftYQCYm5dcNFpYXYJXFaONdWhjXY/toxyG9FAYFUqOj6P35BEbA8p9LANBI+IAY8FR6+ruClgEsgePx+NW82ty15QBwJjRaf+dLq7Yiyq6cVUXOFzgcEFB8xEXY34yeXQymRpDAY7NuwYAOC6VVJS4aspYa0hgZxBF0e12956CVIJ2d9DOFrDYPj4r4kCn8FEZ+ns5c7iTLt995JgkO52fTOcnkdNSIMZy7N642GQAcNeUBTBJBv9wWSwWlh3iGVfFEKakpKxYsaL/61lZWQCQnJzscDikV7q7u7u6ulJS+m4cS1YQAM4555ywsLC9e/eeeuqp/U8YERGRmZn51ltvKTf2YcNl5HQCkMaqkJAAn8z+SIaw50tQkDZHNQCEZeRERtgfnQF3Toa/7CNNLjo6AmWHo9ERkBGKjrFd0AEI6YhJEhw1lq4WLggZawlRFBW8+/1xNdUAgD0t+4xRtjNGyS/WO6Gqi1Z20YpOqHfSRWn45KRjI7tiMNzJmUJFCdPaEBIybN9CQhRFhmFUvV8S7pqDAGBJGRUSGjo5FCYnwlOz4Kc6+v5BUtNNT07CC9PQpBgVVrvGg00f0wVAHTUBfO1qP1wSqhjCkJCQWbNmDfS/J5100vPPP08pRQh9++23Y8aMSU5OBgBBEBBCfVZq1dXVLS0t0gHGhE1MB8xIwh+INXTfaOLsFNtbkMXGRMvudaQF7pv0m7B7/WETMwRHjVBXEbwhVBtvY/qjsvAT7ZBoR9PjfgsT6RFkpXujlhL2hq8tBwAuOavnFQRwchI6OWlkF8gHAJucCVIFM6VgSNOvwyR40UUXdXZ2XnfddX/5y19uueWW+++/X9oDPO+88x555BEA+O6776666qpVq1Y999xzc+fOvfDCC8eOHav9OP0EsRwblwxENGxRWg9e/d80Y/4WNcZb3mTcAL4MpULQ/SOPGWS9LgNX7vbQ3xD+ZsG2UCYylvIeY6oCgS6G0Gq1bt68OTs7u7Cw8LXXXrv++uul1xcvXnzmmWcCQH5+/vTp0w8dOuRwOJYvX/7hhx9qP8hh4c2JMvrD6e3jY86nAEeE1oxuCIWmOlmdJGQY6iTHKpJdEWrL9R2GP0jWWrLcJnJ2vVHztPVR74mPj//Tn/7U58Vzzz1X+iMuLu7222/XfFCBwyVnOXdvEgy/SpU9wsXQQBcAACAASURBVKTAW6MdS7CyR2j0TTZp7jD+/q02MFHx2B4mdrSQzlYcFqX3cAaGUqmkyvQIJdikTCjZydcetuUNGDXTkd9ofEhZRo5HKHWEMQ0hQC9VICMLXoA3QMgaWK5BUxDy6hqW6zySQRFbG4mzkwmPNrS11hCDRyJMQ6gAbPIIeDIhILntYxhktcud0poNGreQ8GbKmHdNRg4T1pTrPZDBkPZFWXNf1ItkCA3bg8I0hArAxqcihhWaainftyDSOFDeIzTXy3rTJgDQ83AadZUqEUxj+mMSLmUUGH7daWbK9EH246XEUeNhGkIFQAzLJqQBpUaeUgVHDRDCxiUbvMZDS2ShNaOuUgEAKJVKBYysZKsxknUxuiGsKwfTEPYC28OYyFjqcRtzA8Y0hMrAGb4fE19TBmbOxdFIiaNGNoRiSyN1O5mIaBwSrvdYjIJsCOsOG9O3kJA9wqQsfYdhKIwsy2waQmWQUxANeY8lZEOYMmrII387sPLWqHETR+XG9Inm8uUIOCSciYylbqcxfQsAAEKE+kpAyExx6o13kjTi42YaQmU4sko1Kl5DqKkiucHhEr2ZbEb1Lfg6sxbNB97dUYM+bkJjNeU9bEwitqmuDTaCOPK4GQ/TECqD7PXXlus8joHha0rB9AiPBodG4LAo6naKbQ69x+Ibb6KvWfFyFN58mTK9B+IbKUDImvuiR8PKk6QRly+mIVQGNi4FcRahpYG6nXqPxQeku0Nsa0IWGxubpPdYjAWXZOgwobd2wvQIj0Jedxq1gsLUlPGJnEhRb8TgrmkIFQJjKXHUmI4/X+11B02V0aORbIxB030pleKXZspoHwxeQWHWTvgEh4QxEdHU4xZaGvQeS19MQ6gYRk4cNTNlBkLadTSm0JrY5iCuLhwagcMi9R6LsWATMwBjvqGKCrzeY/GBaQgHgjVq4qhpCBXDyMnBUjTFNIT9MbLghbwvau6w9QNxFjYuxZgtXyjvERw1gBk2IU3vsRgOrxql4R430xAqBmvgxFHTIxwI1sCZbHLKqFn66Qsu2aD5MkJ9BRDCJaSZyhX9kRJHDegtmIZQMTjDagFT6p1Ss/QeiuFgImOxPYx0tYvtLXqPpS+yuJqpMuoLwyqOSjOAqTLqE1mW2TSExzBsbBKy2MRWB3F26j2WoxAaq6nHzcQkmA3tfMKljgIAvvqQ3gPpi9w/0syU8YVh82W8AUJz98UH3lLCSqMljpqGUDkQknu9GmwHXN4XTTZL6X3DpWaDIQ2ht4jQ9C18YFjFUbN2YhBwaAQTHk3dTrGlUe+xHIVpCJWENWRjQimOYjEDhAMgqe1IggPGQWxrIt2dUsa53mMxImxcCrJYpbZ/eo/lKMyU0cEx5iRpGkIlMWaHXskjZFOy9B6IQbGkZgOAp9pYhlCQ90Wz9B6IUUGIS8zoaQRvEIirS2xzIIuVjTWbnfmGM6Qss2kIlcSYEohmyujgsMmZiGGFhipDqQLJnV3NAOHAGPBx42vKgVIuKdNUrhgI1pBNQE1DqCQGLCWkbqfQXI9YjotP1XssBgUxLJuUAZQaa0qtNxvTDwEr5cvUGKiCQlIbNvdFB8GYwiOmIVQSJjoeWe1iezPpatd7LDJ8TRlQyiZlAmb0HotxkcOERsqXMUNNQ2LAfBm5bZZZ+jkwnCFb1ZuGUFEQOnKbjYGnphQALKlmyuhgSN+PxziGkBC+uhQQ4tKy9R6KcfEaQgN5hLKEk7l8GZgjLV9aDZQ4ahpChZHrfGvLdR6HF2mvhjWfzEHxVlAYJV+Gb6yiHhcbnWA2ph8EJiIGh0aQ7k6xrUnvsch4ayey9B6IofFOkgbaHTUNocIYreeWp1qqnTA9wsHg0rIBIb6mFAjReywAAHzlQQDg0nP0HojRMdTuqBQTwSHhTGSs3mMxNJycp31Q74EcwTSECmOsCgpKBVluO0vvoRgabA9jouMp7+EbDSHizFcdBMk8mwwKZ6R8GW96dpbeAzE6lrQx4F3tGQTTECqMoZaoQnM9cXUzETE4LErvsRgdi5F2R6VopSV1jN4DMTqGWneair5+wqWPAe9qzyCYhlBhmMhYHBJOutpJZ6veYzErCIeBgcKElEr5q1yaaQiHwFAeoVk74SdcQjqy2oXmeuNk15uGUHnkzj4GCBOahtB/jFNBITTVke5OJjLWFFcbEi45CxCSOh/pPZaevhNZ+g5jBICQ9Lh5DOMUmoZQeYyTOOpN5jYN4dBwUgVFlf6GkK8+CF4P1WRwkNXORifIvXD1hVK5kbIpBuQHFoPtjpqGUHnkMKEBfAu5KNuM3vsBG5OI7WGks1Vsb9Z3JJIxtpiZMv7BJhtid1RoqqMeFxMVZ1a8+IOUL+OpPKD3QGRMQ6g8lvRcAPBU7Nd3GJT3CI3VgBmzs6tfIGSQxoTelFGzdsIvOGP0ejV3X4aFVBpkeoTHMlzqaMSwfH0F9bh0HAZfWw6EcInpiOV0HMYIwiD5MrzsEZqZMn5hkHwZsw3hsOASM5DFKoXD9R4LgGkI1QBxFjYpEwjRN+DkzZQxS+n9xZsvo6chFNuaxI4WHBLGRMfrOIwRhEEKlsyU0eGBMZcyqidBWndMQ6gKloxcAOAr9dwd5c1S+mHibUyo6/Kl6gBI+6JmHx//YBPSEMMKjhr9N2BMQzgcDBUmNA2hKljSc0DvMKFZOzFc5MaEjdU6Nib0VB4Eb06diT8ghmUT0oBSHZXuqSgIjdWAsRmP9x8pCm6QMKFpCFXBkjEWDGIIzei93/RqTFiu1xikjVmzdmJYeMOE5XoNQKiroKLAxiYjzqLXGEYc0mrPIKWEpiFUBTY5E3EWwVFDnPqEgsW2Jln/NypOlwGMUDi9d0elnSKLKbc9HOSG2LXleg3Ac3gfeJe/Jn7CJmUiziI0VhNXl95jMQ2hOiCG5VJHA6V6CcuaFYSBITUm1CtfhnS1i62NyGpn41J0GcAIRfqde/RLHPUcLgEAS6ZpCIcBYlguKQso1T1PG3QxhIIgFBQUvPfee59++ulAx3R2dq5cufKBBx5Yt26dlmNTELmaUKd8GTNlNDD0raCQtoksqaPNTJlhIUebKg/o1fRc9ghNQzhMjKO+rYMhfPHFF88999wVK1Y888wzPg8ghMybN2/Dhg2JiYk33XTTq6++qvEIFUHffBk51GQawmHCpY7WsTEhX3kAzDaEw4eJjGWi4omzk2+o1P7q1O3k6ysQy5mR3eEiJ47+Ng3hXXfdVV5efueddw50wFdffdXQ0PDvf/97yZIlb7311vLlywVB0HKEisBJ+TK6eYSSITQzZYYHtodJ2pW6NCb0dl8y59NhY8kaBwCe8mLtL+05XAKUcmnZpnLFcJE9QgNUUOhgCBmGGfyAjRs3zps3j2VZAJgzZ05jY+PBg/ovGYYLl5iObSFic4P2/ZioKAgNVYCQqf8bADrujkqaMmb3pQCwZI0Hb6xOY7z7ouO0v/RIh0uRRLgqdSxYkmD1vbxPamtrk5OTpb9Zlo2Nja2pqRk3zsfvrL29vaKi4vrrr5f+iTG+5JJLTjzxRO3GOihMyihSurfz4F7LuOnDeiPP86IoBnxdoaaMigITl+ImAC49q4xHIigxA/Zsdh7ejyfM8vMtLpeL44L1BoirW3DUIM4iRMaL5l0bJih5NAC4y4pcQ311oii63W6MFfMBXGVFAIBSsoe8tEl/cGK6WFPWVb6PzRzv84DgHy6O44b0vlQxhK+88spdd93V90os293d7c/bWZYlvSI0PM8P9EXYbDa73X7cccf1vJKUlBT8lKQU1oyxfOleUnOIy/d3Su0BYxzwBxEc1QDApYw2zlcxgrCmj+kGIHXl/n97HMcF/1V7KiuBUjYp02KzB3mq3yBs5ljEsEJ9BUsEZB3sC8QYE0IUfDSEqgMAYMsaz5qP2/Cxpud015SR2nJuzCSfBwT/cPmz6FHFEN56660333xznxeR34lwKSkppaXyxpTT6WxpaUlJ8Z1NbrFY4uPjb7zxxoCHqipSFplQfWjI9UgfpHXAcN/Vg1BRAgDWzNyAz/BbxpqeAwBCTZn/3x7DMMF/1WJNGQBY0nPMuxYIjJ1LzfZUlIjVB605U4Y4Von7JSE2N4jtLTg0wpqQaub6BoAlPbd7y1diTelAd0TBmzUIasUIcT+GNISbN29ubW0FgLPPPvvrr79ub28HgE8//TQ3Nzc7e0SmD0gVFLzmiaPusr0AYB2dp/F1jw3Y6AQcEiZ2tGjcmFCunTADhIHizZfZp+VF3YeLQQoQmlYwIGR9Gb3zZXRIltm6devpp5++YsWKoqKi008//ZFHHpFeX7BgwbZt2wBg5syZc+fOPfnkkxcvXnzbbbc99dRT2g9SEdjYJBwaIXa0iK2Nml2UuLr52nLEcmZDuwBByNuGQlN9GW8bQtMQBoiUL+PW1hB6S+nNTJkA8ebLVFCPW8dh6JAsM3bs2OXLl/f8MyoqSvrjm2++GT9ejpd+9NFHGzdurKysXLp06Qh1BwEAELKk57j27fBUHLBHadRVx1NeDIRwmeNM2cOA4VKz3Qd381WHbONnaHNFynv4+krAjNm+IGAka+Q5rGkFhZwymmUawgBBnIVNSONry/naMh3XEzoYwsjIyOnTfWRRzpp1JKMEITR37lwNB6UWlvRc174dnooS+ySNclk90r7oqAnaXO6YhEsdDQCeGu0qKPiaUiAilzLKXL4EDBubxEREi+0tgqOWjUvW4IpUFPiqg4CQFAQxCQxLeg5fW+6pPKijITS1RtWFy/CKP2mFu7QIACyjzABh4MiKoxr2VTYDhIqgsVPI15RR3sMmpOGQMG2ueEwihQOkTpx6YRpCdTmiOKqNCiIRPRUlgJDpEQYDm5Qp93rVqs7XLKVXBK8h1Kis3gwQKoIR+jGZhlBdmKg4JiKGdHcKTbUaXM5TXUrdTjYuBYdFanC5YxXEsGxyJlDKa7U76jWEIzYcbgxkfZkyjTxCT0UJmN2XgoZLzQaMhdrDVOD1GoNpCFWHk5xCTYooPGVFYBZOKIFVSkE8VKjBtago8LVlgJCpMhoklvQcwJivKaW8R4PLmU0nFAFZbFxCmvwU6IRpCFXHIoUJNTGE7tJCALCYhjBorNmTAMB9cLcG1xLqDlOBZ+NTB5dEMRkSZLVzyVlUFDSoSyPOTqGhCnEWU9o+eOQwoU7dW8E0hBpgyZDChFqEgiX1fauZKRM01pxJgJC7tJCKqnc+MTNlFETeHVW/DYW36UQOYoyo2Dyy0L0fk2kIVUcKIXiqDqrd4k5oqhNbHTg0go1PVfVCvwVwWBSXmE49bg1ceTNTRkE0y5eR9kWtZgWhEkg9OE2P8FgGh0awMYnU7VS7a6invAikCkJT7UkJrGMmgya7o56qQwBgMTNllMCqVQWFZGu5DLOCUAG41GxAiK8t02ADxiemIdQCThPRUY9ZQago1hwtwoTU4+arDgBCZmN6RZCq+sRWh9jqUPVCcsqoWTuhBNgWwsalUIEX6g7rMwBdrvpbQw4TqmwIvVrbZgWhMlizJwFC7rIiVVep7tJCynss6TnYbhZlKwFCGpTVC45a0tnGhEezMYnqXeU3hSU9BwA8Ou2OmoZQC6TEUVXzZYirS9baNtWeFAKHRXJJmdTj4itUDDi59+8CAOvYaepd4reGbAjVVN/2uoNm4YRiyJrph7TI0+6PaQi1gEvPAYT46kPq+RaesiKg1JKRi1izO6hiWMdMAgCXmrujrn07AMBmGkLl0KANhZSVKl3IRBGsuVMBwL1vp0YiXEdjGkItwLZQNj6VCrxQW67SJcwAoRpIhtB9QC1DKHa08LXlyGI1p1QFsWSOBYT4qgMqrjsPmx6hwnBJGUx0gtjRwtfoUFZvGkKNsKisL2MGCNXAOmYSIOQpL1JJ/Mm9fxdQas2eZPrxCoLtYWxCOuU9fLUqCnlU4PnqQ4CQGYZQFtvYqeDdI9EY0xBqhKr5MlQUPBX7ASFLlmkIlQSHRnBJmdTj9qgTJnSXSAHCqWqc/LeMVe5Wr0q+DF9TSgWeS8zAthA1zv+bxTbuODAN4bGNZfQEAHAf+FWNk/PVpdTjYhPScGiEGuf/LWPNmQyq7Y669u8CM0CoAt7EUVXChFIajlk4oTjW3CmAsadsL/W4NL60aQg1wpKWw0REC011vAqFMp7SQjCV1dRBDhOqkMzG11WIrQ4mPJpLylT85L9xvEJr6hhCsyu9OuCQcEt6LhV4bTR+j7q0xtf77YKQbfzxAOAq/EXxc7vLisDU2lYHOUxYpnyY0F2yE6R9UVMJSGm45CxsCxGaasWOFsVP7m06YRpC5bGNmw567I6ahlA7bHkzAcC5d4viZ5a7L5nNeFUAh4RzyVmU9ygeJjT3RVXEm8miuOgo6WoXmuqQxcYlZSh7ZhMwDeFvAdvYqYizeA7vI51tCp5WaKoV25txWBQbl6LgaU168IYJCxQ8JxUF98HdgJBUPmWiOFJtg+L5Mp7yYqDUkpEDmFH2zCYAYMkci+1hQkOV0Fyv5XVNQ6gdyGq3jpkEhLiKtip4WqmC0NTaVg85TKho3MJzeB91O7nEDCYyVsHTmvQghwmV9gide34GAGuOuXxRB8xYc6cAgFtbp9A0hJpiy5sFAM69ShpCqYLQYu6LqoY1Ox8Q8pQXK9j33BsgNPdF1cKaNR4Q8hzep2S3eiI692wGAPvk2Yqd0+RodNkdNQ2hptgnzgSEXPu2K5h54SmVSuknKnVCkz7gkHAuZTTlPQq6F66SnWAGCNUEh0VaMsZSj0vBDRj3wd2kq51NSDMTfdXDNnY6ALj379KyJZNpCDWFiYrnUkZRt9N9aI8iJyTOTr6+AnEWLt1s66oi3t1RZcKExNnpqTiAGNaabS5fVCRk6ikA0L3re6VO2F3wEwCETJ2j1AlN+sPEJLAJacTVrarYfR9MQ6g19gkzAcClUO6oV2t7LGJYRU5o4hPrmHxQLkzoPrAbiGgZNR5Z7Yqc0MQn9qlzACFX0VbqdipwOkpde34GAPvkkxQ4m8nAaL87ahpCrbFNVNIQug8VghkgVB+pN6FSASf3/p0AYM0190XVhYmMtY7Kox63IjVL7kOFYnszG5/KpYwK/mwmgyBrrRWbhvDYxZIxlglXSGKG0u5dG8H7uzFRDxwSxqVKYUIFxEpcJVIFoZl5qDr2aXMAwKnE7qiz4Ecw3UFNsI7JRyznqTpAutq1uaJpCDUHIdsEZSRmXPt3ic0NbGySGWrSAOuYyaDE7qjY3CA0VmN7mMXsXaA+IVNOAcy4iraR7s6gTkSpc/cmAAiZcrIyIzMZGGSxWUbnASHu/aqIM/fHNIQ6oJTETPfWrwEg5PgFZgWhBiiVL+OS9kVzJgM2nz7VwWGR1jH5VBRchT8Hcx53WZHY1sTGJnNpZlaaFijViYKKgj/Zp+ajqAOKSMwQZ6dz9yZAKPT4+QqOzWQgrNkTAWNPebBhQrNwQmOkJM/uXT8EcxJnwU9glg9qiPSAuPZtD/I8TW89JvgRhDINoQ4ckZgp3hbwSZw7v6e8x5Y7lYlOUHBsJgOB7WGW1Gwq8J7yosDPQqm022OW0muGfdJsxLDu/bsCDzhRKhtCc19UK7iUUUxEjNjWJNZXBHwSvqbMVeTXHGsaQn2QJWYKA98d7dryFQCEzFyg2JhMhkLSBe3e9m3AZ/BUHSRd7WxsEhuXrNy4TAYDh0ZYc6dSUZCCfAHgOVwitjYy0QlmWFc7ELKOmw4AQhAd0Dp/+NTPI01DqA/2vOMBwF2yIzD1BL7usKeiBNvD7PknKj00kwEJPfEMwLh7x3diW1NgZzCV1XQhyMr6I/miZjBeQ6TdUSHQZuakq717xwZAyJ925aYh1AcmOoFLGUVc3YFlIXZL7uD0UxFnUXpoJgPCxibbJ59ERaHzx88CO4NZOKELtkmzEWdxHygIbAXj3L0ZzHxRzbGNmw4IiYcD1Pjt+nkd5T22CcczUfFDHmwaQt2w582CgCrrqSh0b98AUr6oibaEz70AALo2fRGAWAnpbPOU7QWMrTlTVBiayYBgW4ht7DSgVJLMHhaeyv1CUy0TGWt24tUYHBphSRtDeU8ggpRE7PzpcwAIO/kcv6417AuYKETAEjOuom1iRwuXnGXJMCMWWmPJGGvNzifOzq5fvhzue9u//ogKvG388TgkXI2xmQyCfeocAHDuHPbuqPNXKV/U3BfVASlMGIBsunP3ZrG1kU3M8DM92zSEuhGwxEz3VjNNRk/C510AAB3frwUi+v8usbmha9PngFDkWVepNjSTAbFPnIUsVnfZXrHVMaw3moIyOhIy+SRAqOvndWJLw7De2PnDfwAg7JRz/Fy+mIZQPwKSmCGdra6ibYCZkGlzVRuZyWDYJszkkjLE5obuX3/0/11tX/6NCnzIcfNMpUpdQFa7bfzxQKmrYBh3ja86KDhqmYho66g89cZmMhBc2hhu4omU97T9923/38VXHXKX7sX2sNDjTvPzLToYws7Ozr///e/33nvvDTfcIAi+cybvuuuuG7ysWbNG4xFqhiwxU7AJKPXzLV3bvqWiYM87nomIVnNoJgODUNip5wNA53f/9vMdfN3h7u3fIoaNWHSlmiMzGYyQaacAgHM4yxdnwSYAsE+abcoA6YV94RWIs3Tv+t5TXuznWyR3MHTmAv+7u+hwd8vKyt57773Ozs41a9aIou/Npffeey8vL2/+/Pnz58+fNGmSxiPUDNu4aTgs0lO53/8sRFlWbeZCNcdlMgQh0+cx4dGeygPuA34prrV/8VcgJPTEM9nYJLXHZjIQtgkzkdXOV+4Xm+v9fEu3vC9q5ovqBoqMC597AVDauvYv/jgMpLO1e9f3gHGof2kyEjoYwvz8/HXr1t17772DH3bGGWdcdNFFF1100axZs7QZmPYgiy3690sAoO2/b/G15UMe76ko4WvLmfBo23iz3YSeIM4iPWYd3/1ryIM9FSXOwp+RxRZ++qXqD81kQBBnsU+cBZTyhX7ljvI1ZUJDFQ6LNEXt9SV8/iVMVLzn8L7und8NeXDnpv9R3mPPmzWsRadx/f1ly5ZdeeWVL7/8stvt1nssKmLPPyF05gLKe5o/WDFkcX33lq8BIOS4eWYbXt0Jm30WsthcxduHzHVq++wtoDT81N+Zu9m6I+WOunf/NPShhLSv+xvI+6KM2gMzGQRksUac+QcAaPvvO9QzmDmgotC1+QuQ0mSGgyrzqdPpLCkp6f96Tk5OaGioP2e48cYb8/PzXS7XqlWrvvjii3Xr1iFfyT9NTU3FxcXTph1JkL399tsvvPDCgEeuC9zCP+D9BXzVQcdnb9tPvwwAeJ4XRbFPAJXynq4d3wEA5J/U2RlcTxkTBcCWaXPdv6xr+eojsuAqn79PAOD373If3I1CwtHMM8y7pjs0bSyyhYo1ZY4vP7SdNNhc2f3ZGs+ezcgeypg3Tle6uroQQjB+FpuaLVQfalr/oW3uRQMd7Nn9k9jWxCRm8MljeO9ds9lsLDuEpVPFEFZWVi5evLj/62+++ebkyZP9OcOTTz4p/XH22WcnJyfv3bt34kQfuxMxMTGZmZlvvPFGzytjxowJCwsLaNQ6Emb5w30NL9/r/vE/kVNmW0blSYbQZrP1Pqh750bq6rJkjI0cPV6vgZr0xnb6xXVb1/O7fwqbf6nvXx2l9Rs+AoCI0y8JjzW10Y3BeX9s+8dLri/fszI4/PRLfB7S/uX7nq1fIc4S/8fHLZk5Gg/QpDeUUunh4s6/sfHle90/fhp9yjlMZKzPgxu2fgkAEaf+LnSYVkAVQ5ibm7ttW+B9FXoTGxsbERHR3Nzs838RQiEhIdOnT1fkWjpiGZUXftrFHV9/1Pz+isT7VgPue1+cuze1/WcNAISa5YOGgY1NtufPdhb86PllHZx/Q/8Dund9z1cdYqLiw076P+2HZ+KTkBnzRUHo/OTVti/epaIQseiKPgd0bvq8/cv3ATOxVy+zmFUThsGanW+ffLKz4Me2z9+Jufye/gd4KvZ7yvfhkPCQ6fOGe3IDxQjXrl27adMmAGhoaHA45KLXt99+m+f5YzhxtIeIRVdwaWOEptrWT17r/brY1tT01uNNbz8htjdbR+eFHDfse2yiHlJxvWfbV/0V16goSEGmiEVXmJKwhsIybW7M5fcCZtq/fL/t83d6/5ez4MfWf68GhKJ/f4fUIsbEOESecy1iue7t33oq9/f5L9LZ2vHVhwAQesIiZLEO98w65Fx0d3enpaURQgAgOTk5KiqqtLQUAN56660pU6bMnj27uLj47LPPTklJcblchJAPP/wwKipK+3FqDGLYmCvva1hxa9eWr7hxM9jxM4DSzs1ftP/3beLqxraQiLOvDZt9lqnzZCgsmeOsoye6SwsbXrrTkjmWTcrkkjK55CwmMrb7l/VCYzWbmG52TjYgIdPnIpZtfu+Zjm/+QQU+6tzFgJD7wK/Nf3sWCIk8+xpz68WAsLHJYXPO6/j247a1f4m/bQUgxFcfchZtdRVu8VSUAKWAmcB2XxD1u5RbbURRRAhhjAHA7XYfPnzYZrOlpaXhgUtZd+zYccMNN2zfHmwXY+PQ+cOnrZ+8hkMjwi+7x/nNPzxlewHAnn9C1IW3DrQtbqIvrpKdTWse7pPxi+1hlIjU7Yy95kFTnctQiKLodrtDQkIAwFn4S/O7f6YCH3bS/4XOWtj4yn3E1R0253dRv/Ox0W2iCx0dHeHhR7R5iau77slrSWerPf8ET+VBsbVReh1xFmvOlNATFgXWmc5AhjAAjj1DCJQ6/vKga98O6V9MREzUBTebM6nBaW+os3Y0CnUVfG0ZX1/J15RJzdAtmeMSlrxoOvGGorchBABX8bamt5+gvAcxLBWFkOlzY664z7xlxqGPIQSArs3/a/nnKulvJjLWljfTnne8NWdqADuiPZjlaAYDoehL76r///buOByb0wAACBlJREFUPqSpto8D+Nk051vO3JxTp7kGvkysRmU9iKmkj93BExj+4fMEUmJYo3sRQUZQ9lDIY1RahNILlJD1h5EgS2xNKUoNVCySMnwrl8xlajXn3HJ2/3Fg3NxP6rhzXtd2vp+/zo5nXL8xt+/OOdfL+UPzM+agf/wm/FcRP8DjOsFyDi8gSCCRChQpzj3z01++mwyrIuPwlUo5/6Qt4gP//XzzzA+7zT9x05r/HMNbRrmgbTsdXycYvk9AcuqqaMWyvF8IQur4CEVhv190WKeD5Bgm4an4waGCYO+/se0dBPGqcPX/rL0vQv75b0xV4QH4/JDflnnOXrzrNPIRSZkFZmEFgGXnF5fkF4ffndxF0fAJAACAlYcgpNHIyEhvby/pKsBVOp2OHQ4E9DMajT09PaSrAFe1trba7XZ3t4IgpFFjY2NtbS3pKsBVhw8fNplcXdkHyNLr9TU1NUsfB3QoLS0dHBx0dysIQhp59JgWAJrhwwX/D0EIAACchiAEAABO8+zhE1+/fh0YGMjJySFdyDIbGRmxWq19fX2kCwGXTE1NFRQU+PlhZm0PYDQaJycnve9Lw1t9/PixuLjYORPQ35CXl6dWqxc/xrOnWJudnb13715MTAzpQpaZ2Wy22WxisZh0IeCS4eFhuVxOugpwyczMjNlsjoiIIF0IuOT9+/dr165daOFrV8jlcoVCsfgxnh2EAAAAvwj3CAEAgNMQhAAAwGkIQgAA4DQEIQAAcJpnD5/wShaLpbm52W635+bmhoWFkS4HFmM2m58/fz4+Pq5UKjdv3ky6HHDJ0NDQ0NBQVlaWj48P6VpgMVarVa/XT0xMJCUlpaam/krf0cWh1yhdpqamtm3bplAohELhkydP2tvb0S+fWhMTE3K5fOvWrTKZ7PHjxzt27Lh9+7b7PquwLCwWi0ql6u/vn56eDgoKIl0OLGhwcDA7Ozs2NlahULx69aq5uTk8PNxNbSEI6XL+/PmWlpbm5mYej3fw4EE+n19dXU26KPg5m802Pj4uk8kYhjEajXFxcZ2dnevXryddFyxGo9EEBgZWVFQgCCmXnp6ekZFx7ty5FWgL9wjpotVq8/Pz2bOK/Px8rVZLuiJYkEAgYFOQYRixWLxq1aoVWC8GfkVHR0d3d3dJSQnpQmAJBoOhvb39yJEjbW1tXV1d7l7mDPcI6TI6OhodHc1uR0dHG41Gh8OBOxn0u3jxYmJiokqlIl0ILMhms6nV6rq6Oj4fJwC0GxwcDAkJ2b17t0wm6+/vX716tU6nCwgIcFNz+Iegi8PhcH5KfXx85ufnce2afg8ePLh8+fKdO3fwk4Vmp06dysvLUyqVpAuBpc3Ozn758uXo0aP19fVdXV0Wi+XmzZvuaw5BSJfIyMhPnz6x2yaTSSKR+PrirJ1qWq1WrVY3NTUlJiaSrgUWNDc3V1VVNTw8XFJScvLkSYZhNBrNmzdvSNcFPxcVFcUwTEZGBsMwvr6+6enpvb297msOQUiXzMzMR48esds6nS4zM5NoObAEnU5XXFzc2NiIi6KU4/P5dXV1u3btys7OTktLYxgmKysLw5OolZSUFBUVNTAwwD7s7+936+IK6DVKF4PBoFKpCgsLhULhpUuXWltbN23aRLoo+LmxsbF169alpKRs3LiR3XPgwAGMJqTfhw8f4uLi0GuUctXV1ZWVlRqNpq+vr6Gh4eXLlxKJxE1t4bIbXWJiYrq7u+vq6ux2e3t7e3JyMumKYEEBAQFVVVV/3rNmzRpSxYDrRCLRtWvXBAIB6UJgMWq1OiEhobW1NSEh4fXr1yKRyH1t4YwQAAA4DfcIAQCA0xCEAADAaQhCAADgNAQhAABwGoIQAAA4DUEIAACchiAE8Dwmk6m2tvbz58+kCwHwBhhQD0Cdp0+f7t+/f6G/btmy5dChQ/v27Xvx4oVYLF7JwgC8EoIQgDoymayoqIjdtlqt5eXlaWlpO3fuZPfExsbK5fKzZ8+6dfZFAO7AzDIAVJucnBSJRMeOHbtw4cKSB8/NzbHHOxeEstvtFovlp3O/zc/Pj4+P+/v7C4XCZS4awKPgHiGA5+no6IiMjOzp6WEf5ubm7t27t6amJiIiIiIiQiqV3r9/3263azSakJCQsLCwlJSUt2/fOp/+48ePioqKqKgoqVQaGhqampra3d1N6KUAkIcgBPA8NpttbGzMbrezD81ms16vv3Xr1t27d9va2pKTkwsLC4uKiiYnJ/V6/cOHD799++a81sowTGlp6enTpzUaTU9Pz7Nnz4KDg3NyckZHRwm9GgDCcI8QwBvMzMxotVp2nZorV65s2LChr6+vs7OTx+MxDHPixAm1Wj02NiaVSg0GQ2VlZVlZGbs+LcMwDQ0Ncrn8xo0bZ86cIfgSAEhBEAJ4A5VK5VytLT4+nmGYnJwcNgWde0ZGRqRSaUtLy9zcnEQi0ev1zqfHxMS4dQVwAJohCAG8wZ+7w/j5+TEMExoa+pc97KVUk8nEMExpaakzJlmRkZErUyoAbRCEANzC9hFta2tTKpWkawGgAjrLAHDL9u3beTxefX096UIAaIEzQgBuUSqVhYWF5eXlgYGBBQUFYrF4aGioqalJoVDs2bOHdHUABCAIATjn+vXr4eHhZWVlx48fZ/fEx8dfvXqVbFUApGBmGQDaORwOPp//l74tDofDOX3M3zM7O/vu3bvv37/LZDKpVPprNQJ4MAQhAABwGjrLAAAApyEIAQCA0xCEAADAaQhCAADgNAQhAABwGoIQAAA47Q+FWyyOqWribgAAAABJRU5ErkJggg==",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (-1., 6.3)\n",
+ "\n",
+ "dt0=0.1\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "#sol = solve(prob, Tsit5())\n",
+ "sol = solve(prob, IRKGL16(), dt=dt0, adaptive=false)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "688c60a3",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, -1.0, 6.3)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "74-element Vector{Float64}:\n",
+ " -1.0\n",
+ " -0.9\n",
+ " -0.8\n",
+ " -0.7\n",
+ " -0.6\n",
+ " -0.5\n",
+ " -0.39999999999999997\n",
+ " -0.29999999999999993\n",
+ " -0.19999999999999996\n",
+ " -0.09999999999999995\n",
+ " 5.551115123125783e-17\n",
+ " 0.10000000000000006\n",
+ " 0.20000000000000007\n",
+ " ⋮\n",
+ " 5.2\n",
+ " 5.300000000000001\n",
+ " 5.4\n",
+ " 5.5\n",
+ " 5.6000000000000005\n",
+ " 5.7\n",
+ " 5.800000000000001\n",
+ " 5.9\n",
+ " 6.0\n",
+ " 6.1000000000000005\n",
+ " 6.2\n",
+ " 6.3"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cf87f1ca",
+ "metadata": {},
+ "source": [
+ "# Backward Integrations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb08bb81",
+ "metadata": {},
+ "source": [
+ "### Case 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "bc2a51d9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd0AU19YA8DNlOx0BpStSLEhT7BVR7CWaokaNvsT3kmdezJdikvdSTDOJaS/lJcYYY0yiMbFEFLsiVhQERXoHpfftO+X7Y2DdAFKXnWX3/v6CYXbm7O4wZ+bOvediLMsCgiAIglgrnO8AEARBEIRPKBEixlFdXX39+vUrV67k5+drNJpWf7148eL69euPHTtmypCysrLWr1//448/mnKnfW3Dhg3//ve/u/uq8vLy9evXf/75530RkrnZvXv3hg0bsrKyOl6NOyaPHj1qmqgQc4YSIdJb8fHx48aNc3FxiYyMnDBhgp+fn52d3ZQpU37//Xf9OllZWTt37kxJSTFlYPfu3du5c2dCQkLvN9XQ0IAZEAqFrq6uM2bM2LlzJ8Mwvd9+123fvn3v3r3dfVV9ff3OnTtPnjzZFyF1y48//mj4ScpkMm9v70cfffTq1avG2kV8fPz27dvv3r3b8WrZ2dmmPyYR80TyHQDSvx07dmzRokUURU2ZMmXatGmOjo5FRUWpqanx8fEjRoxYtmwZt5q7u/u0adN8fHz4jbaXMAyLiorifi4uLj537ty5c+eOHz++b98+DMP4ja1/cXV1HTVqFABotdrMzMx9+/b9/vvvO3fuXL16Nd+hIdYIJUKkVzZt2kRR1Mcff/z8888bLi8tLS0oKND/OmfOnDlz5pg8OiPDcfzUqVP6Xw8fPvzQQw/t379/5cqVixYt4jGwfmfy5Mn6BgONRvP8889//fXXGzduXLx4sZ2dHb+xIVYIJUKk5yoqKrKzs4VC4TPPPNPqT56enp6envpfa2pqCgsLPTw8Bg4cyC3Jy8urr68fPny4SCQ6c+ZMenq6nZ3d3Llz3dzcuBWys7MvXLggl8u5FlfDjZeVld27d8/Hx2fAgAGJiYmJiYksy06aNCksLKwrYTMMc/369aSkJJVK5evrGx0d3bOT76JFix5++OFff/316NGjhonw1q1bV69ebWho8PDwiI6OdnFxMXwV98aHDRsmkUguXLiQkpIiEAimTJkycuTItruorq4+duxYVVWVr6/vnDlzpFJpqxW4j8LX19fZ2dlweVpamkajiYiIeFDwxcXFVVVV/v7+rd57SkoKhmEhISHcr/X19Xl5eW5ubp6enrm5uefOnVOpVGPHjh07diy3gkKhOHbsWHFxsZeX17x582QyWecf3F+JRKJPP/30l19+qa+vv3jx4ty5c7mjxd3dfdCgQTk5OfHx8fX19StWrHB3dwcAhmEuX76ckpKi0+kGDx48c+ZMGxubdrfMMEx8fPzt27cFAkFUVFRAQEBX4qEoKiEh4c6dOzqdzt/ff+bMmWKx2HCF1NRUlmVDQ0MVCkVcXFxJSYmnp+f8+fMlEgm3wuXLl5OTk3Ecj46O9vf37+4HgvCARZCeqqmpAQCCIORyecdr7tixAwDeffdd/ZKFCxcCwIkTJ8aMGaM/GqVSaVxcHE3TmzZtwvH7D7DXr19vuLW33noLAL766qsFCxYYHsyrVq3SarX61c6ePdv2tWlpaa3ypaOj42+//dZx/PX19dw7bbWci2Tx4sXcr6WlpdOmTTPcuFQq/e9//2v4kqVLlwLAqVOnpk6dql8Nw7CXX3651cb37t1ra2urX8fd3T0xMREA/Pz8WgWwa9euVq/lzr80TXO/ZmRkAMDcuXP1Kzz99NMAcPz48VYvtLW1dXV11f964MABAHj++edfe+01w+bfdevW0TR95syZAQMG6BcOGTKkqKio409y165dAPDQQw+1Wh4eHg4AP/zwA8uyO3fuBIA33nhj48aN+o2fOXOGZdnc3NxWX9+AAQN+//13w02tW7cOAPbt2zdu3Dj9ajiOv/zyywzD6Ff7/vvvAeCdd94xfG18fLyfn5/h9j08PM6fP2+4jpOTk52d3ZUrVwYNGqRfzcfHJy8vr66ubtasWfqFJEl+9913HX8giDlAnWWQnnNycvL19aVpeu3atSUlJT3YwlNPPSWTyWJjY69fv/6f//xHrVavXr36rbfe+vnnn7/99tsbN27s27dv0KBB33///eHDh1u99t13383IyDh69GhxcfHZs2dDQ0P37NnzwgsvdLC7oqKiqVOnpqWlbdq06dKlS+np6d999x2O44899ljP+tRwzb9OTk4AUF9fP3Xq1Pj4+LVr1547dy4zM/PXX38dMGDAs88+++uvv7Z942q1+sCBA8nJyd9++62dnd0HH3xw5swZ/QrXrl1btWoVwzBfffVVYWHhzZs3p0+fvmTJkh4E2Xt//PHHN99887///e/GjRv79+/39PTcuXPnBx98sGTJkscee+z8+fMJCQkLFizIz8//17/+1YPt0zRdXFwMAIb3tT/88MO+ffs+/vjj+Pj42NjYwYMH19fXR0VF3bx5c82aNTdu3MjMzNy2bZtcLn/44Ye5ix5DmzZtomn6/PnzxcXFf/75p4+PzwcffPDZZ591EMaNGzdmz55dVla2ZcuWxMTE1NTUbdu21dXVzZ8/Pycnx3BNjUazZMmS+fPnnzt37uLFi8uXLy8qKtqwYcPatWurqqr++OOPpKSkjz/+GMfxjRs3dtptB+Ef35kY6d9+++03gUDAHUvDhw9ft27d7t27q6urW632oDvCiIgIiqL0CxcvXgwAJEneuXNHv5DLIqtWrdIv4W6DSJLMycnRL6ysrLSxsSEIori4mFvS9o5w+fLlAPDll18axpaQkIBh2OTJkzt4m+3eEV66dEkkEgHAr7/+yrIsl4NffPFFw3Vyc3PFYjF3ucAt4e4Ig4ODDW9ev/rqKwD4xz/+oV8yc+ZMADC8n2AYhruJNP0dIY7jSUlJ+oWHDh3ivvFXXnlFv1ChUDg5OZEkqVKp2vkEW7S9I6Rp+vXXXwcAiURSU1PDttwRYhh27do1w9e++eabADB//nzDhd988w0AhIeH65dwd4QODg61tbX6hWlpaTiOOzg4KBQKbknbO8LIyEgMw2JjYw23v2fPHgBYvXq1fgl33fPPf/5Tv0Sj0XDNtj4+PkqlUr+ce2TwzTffdPCBIOYA3REivbJ8+fKkpKQlS5bIZLL09HSu45+bm9vq1asbGxs7ffm//vUvgiD0v3In+tmzZw8fPly/cMqUKdBy72Vo4cKFQ4cO1f/q4uKyevVqmqbb3jty5HL5oUOHnJ2duRygN2nSpFGjRl26dKmhoaHjaBmG2bBhw4YNG9atWzdlypTJkydrNJrp06dz+XXPnj04jr/66quGL/Hz85s1a1ZhYSGXivSee+45/QUEAERHRxu+x8bGxrNnz3LvSL8OhmGteiSZzLRp07imSw73jQDApk2b9AulUumYMWMoiupK20BycjL3Sa5YsWLEiBFbtmwBgHfffZfLMZzp06dHRkYavorLyps3bzZc+MQTT7i5uSUnJ7c6QtatW+fo6Kj/dcSIETExMfX19W3vHTlZWVmJiYlhYWHz5s0zXL5ixQoHB4e4uLhW6xt+F0KhcPz48QCwYcMG/ZNCePChi5gb1FkG6a3g4OADBw6o1eqrV69eu3YtLi4uPj7+p59+KiwsjI+P73hcQav+C1y/knYXVlRUtHqtvkOHXmhoKACkp6e3u6+0tDSdTieVSl955ZVWf1IqlQzDlJSU2NvbdxAty7Lbt2/nfsZxfNiwYatWrdq0aRNBEPfu3SsvL7ezs9u6dWurV3EtY4WFhSNGjNAvDAwMNFyH6yJUXl7O/ZqZmckwTFBQkFAobPsGTa/VN+Lo6CgQCGQyWat+QPpvqtMeIgUFBfpPUiqVTp8+fdOmTa2e+BpeDAEAy7IZGRkYhrV6RigUCkeNGnXq1Kn09PTBgwfrl7c9PMLCwo4dO5aenj5//vy2ISUnJwOAVqttlWi5XVRWVioUCn1XIKFQ2GosEPfeW32trq6u0N6hi5gblAgR4xCLxdOmTZs2bdrLL7988ODBZcuWJSQknDlzhmviexDDy2cA4LJmq76RXK8Ztk1R3FZnYWg57zQ1NbW7L655s6KiQn8KNuTo6KjVajsIFQAIgqiqquJ+dnBwMMzx3N2kUql80MYpijJc0vF7lMvl+rdjqO0S02jbWxXDsLYLuXfRlQoDCxYs4Cr+kCRp2CHIkGE3HADQaDQ6nc7W1rbtfrnLiFbfe9vDg1vS8eGRm5v7oG9QpVLpE6FYLDbszAUt773d47ntoYuYG5QIEeNbsmTJ1KlTz507l5SU1HEi7I3KyspWS7hL7weNheBOuGPHjr1w4UKPd2rY2tZ24+7u7kVFRT3euB43HqDtnUTbJQ/KPQqFouNdcOfoVi+kKEqtVrc6m/cFoVD4oE/yQcRisUAgaGpqUiqVrXIhdyfd6nt/0OHxoLzLLV++fPnu3bu7FRhiAdAzQqRPcL1IDJ//Gd3NmzdbLeFatwxbIA0FBweTJJmcnKxSqYwejIeHh6ura3FxcWlpae+3NmzYMIIgMjIy1Gq14XLuDRrixmW2SpB1dXVlZWUd76LdF+bm5up0uh6H3de4oZZJSUmGCzUaza1bt/R/1XvQ4dHueE0A4Fpcr1y5gm7grBBKhEjPyeXyvXv3tr0dycrKunjxIgB0MKC792JjYzMzM/W/lpeX79mzhyTJBxV5sbOzW7p0qUKheOedd9r+lWuN7DEMw9asWQMtHSl7uXFbW9vo6OiamhqujyWHYZhPPvmk1ZpDhgwBgFZdOd5///1Oz+YPemG34jQxrmLf1q1bDd/djh07Kisrx44d6+3tbbjyDz/8wI1z5dy6devkyZNOTk4zZsxod+MjRoyIjIzMzc3lepO20svDAzFzqGkU6Tm1Wv3YY4+99NJLy5YtGz9+vIuLS0NDQ2Ji4vbt2+Vy+fTp01uNLjcuDw+POXPmfPTRRyEhIVlZWZs3b1YoFC+++KKHh8eDXvLJJ58kJCS89957OTk5jzzyiL+/P1c55dChQ3V1db1pMgWA//znP8eOHduzZw831UNgYKBSqSwoKIiLi7t27Vpubm63tvbuu++ePXv2+eefVygUc+fOra+v37ZtGzfYztCkSZM8PDwuXLiwfv36lStXqlSq/fv3x8bGOjs7G6aBtubMmWNvb79//34PD4/FixfX1tbu3r07KSmJu5U3Txs3bty5c+exY8dWrFjxzDPP2NnZHTlyZMuWLSRJbtu2rdXKDg4OUVFR7733nr+/f1JSEjes5e23325VJsbQd999N3HixA0bNly/fn3evHmDBw+uqqrKycnZt2+fu7s7N44CsUgoESI9J5PJVq5ceeLEiU8//fTTTz/VLxcKhevXr//kk0/6tBT1K6+8cubMGW7oAuepp57q+J7Gw8Pj6tWrGzZs2L9///79+/XL7e3t//73v/cyHltb2wsXLvzzn//ct2/f6dOn9cslEom++HjXhYeH79+/f+3atS+88AI3QtHb2/vPP/9s1XFUKBTu27dv8eLFO3fu5Ibfubu7HzlyZM2aNR0nQkdHx59//nnFihX6727o0KHHjh3jhgGYJ1tb27Nnz65YsWLv3r36KTjc3d23b98+adKkVit/8skn//3vf/VjIUiSfPPNN1uNnGmFG0Xz1FNPbd++3bDLjIuLC6ola9kw1CCO9BLDMLdu3SouLi4rK8Nx3MfHZ8yYMa26QjQ2NlZUVAwYMEC/vLy8XKlUenp6Go4QkMvllZWVDg4OhuPJACA/P18gEHh5eXG/btmy5Y033vj+++/XrVuXmprKPfsZP358UFCQ4atUKlVpaam9vX3bzpYFBQXXrl2rr693cHDw9vYePXp0q4EKbd9jYWEhtLQodqysrOzy5ctVVVU2NjZeXl5jxowx7NxRUVGhUCg8PDwM77247QuFQsMCrQDQ0NBw6tSpmpoaHx+f6dOni0SiVh8Fp7Gx8dSpU9XV1e7u7tHR0WKxuKSkRKfT6aPV6XSFhYUymYwb961XU1Nz6tSphoYGX1/fGTNmCASCwsJCDMP0YwMUCkVFRYW9vX2rWqYFBQXcd224sLKyUi6Xu7u7d3DX1dTUVFVVJZPJ9EVlH7SOo6Njux1qWJZNSUlJTU3VaDR+fn6TJk1qtbuqqqqmpqZBgwaJxeKrV6/euXNHJBJNnTq1Vdtp22NSLz09PTk5WS6Xu7i4eHt7h4eHGz7t5o4EX19fw5dUV1c3NjYOHDjQ8LtWq9X37t2ztbVt24UVMSsoESL9j2Ei5DsWBEH6PdRZBkEQBLFqKBEiCIIgVg11lkH6n6ioKJFINHr0aL4DQRDEEqBnhAiCIIhVQ02jCIIgiFVDiRBBEASxaigRIgiCIFYNJUIEQRDEqqFEiCAIglg1lAgRBEEQq9a/E2FNTc2XX35pst2hoSam1JWJzhFjQZ+2KaFP25S6ct7u34mwsLDQcMK2vqZSqWiaNtnurFync6wjRoQ+bVNCn7bJMAxDUVSnq/XvRIggCIIgvYQSIYIgCGLVUCJEEARBrBpKhAiCIIhVQ4kQQRAEsWooESIIgiBWDSVCBEEQxKr1+4l5NwXYlr/3N6FXgGhosHh4JGHvzHdECIIgSH/S7xOhhMCoylKqslSZdBYTCO1mrbCZsQwj+v37QhAEQUyj3zeNfprd5PbS/xyW/VM8Yhyr0zYc3VX50dOa/DS+40KQHmFoXXkR30EgiHXh585Jo9HcunWroaFhxowZON5OMo6Pj9fpdNzPbm5uwcHBD9qUimYF7oMF7oNtJs3XZKfU7f9CV15c9cWLsshZ9gvX4zK7vnoPCNIH6g9+K0/4Uzh4hMPC9cLBw/kOB0H6hCr1Yu0vH8vGRNnFrMJtHPgOh49EmJqaGhkZ6ebmVlJSolarRSJR23UeeuihwMBAqVQKAFOnTu0gERoSBYS6vfS/pjO/NZ3ep7h2QluU6fr855hQbOQ3gCB9g6q6q7h8DAC0BXcqP39eEjzBbv5agZs333EhiDGxlK7h8HesRiW/GKu8cdY26mGbaUsxgZDHkHhIhP7+/pWVlTU1NX5+fh2stmvXLn9//+5uHBMI7WJWSSOmV+94S1deVLf/S6eVL/QiWAQxnYZjP7I0JR09g3Qe1HT+gOr2ZdWda7Kxs+xiVqFeYIjFUFw+RtVWCAZ6E86D1HeuNRzdJb8Uaz93jXTMTMAwXkLi4RmhVCq1t7fvdLWEhIQjR46Ulpb2YBeki8eAv72BiSTK66cV1072YAsIYmLakmxVSgImENrPf8JuzuODXv/RNuphDMcVV+LK313XcGQno5LzHSOC9BarVTed2gsAdvPXDXjyLdfnPhX6DqPrq2t/+bjigw3q9EReosL4mmMvPz/fz8/vQU2jwcHB/v7+arX6woUL77///saNG9vdyMWLFx999NGnn35avyQmJkbfjqpOudDw80eYQOj0z22k++Dex6xUKkUiEUEQvd8U0qmmpiZbW1u+ozCduu3/0eakyKYvs5m7Rr+QqatqOvGTOvk8sCwutZVOWyqdtLAvGpGs7dPmlzV/2vLT+xQn9gi8Apw2bmu+/2NZze3LTUd/oGsrAEDoH2q7YD05yNcou+Omfmw3yxgy02EGt27dwjAMABISEqKiopYtWzZo0KC2qzEMQ9N0XV2dfolCodBPeikcNUmcmaROOlv/01bHZz/BRJJeRsUwDMMwGE8379aG+7T5jsJEtNk3tTkpuMRGPGXxX961vbPtw8+Jx89TxP2oy7stP/aj8tJRWdTD4jHR0F4vsx6zqk+bd1b7aTMquSrhEADI5jzOsCy03IYJRo53HDZGfSVOeXqvNiel5tNnRWFTbeauxW0de7vHrp2xzTQR6kOfPHmyo6NjZmZmu4lQJpN5eHh89NFHD9qO8NHnKssLdXfzlYe+cVq9uZdR0TSN7ghNRqvVdnodZyFYtuHkzwBgO/MRieOAtn8XDR1ps/EjTfbN+sM7dHfzmg58rb581C5mlSR0srFCsKJP2wxY7afdcHIPo5SLgyJsho9p80eROGqZ3fjZTWf2y+MPapLPa9Ou2ExeZBv9KC6W9niP3M1Sp6uZ0TjC6urqxsbGVgvz8vJqamp8fHx6tk1MIHRe+xomkiiTz6OHhYh5Ut6M15bkEPbONpMXdrCaKCDM7YUvnde+RjoP1JUX1ex6t+rrzdqSHJPFiSC9QTfWyhP+BAyzm/P4g9bBpbb2C9a5vfyNJHQyq9M2nfmt/O218vhD0Mc30DzcEWo0mmeffZbLec8884ytre2nn34KAGvXrg0NDX3nnXdOnDjx2WefjRkzRqVS7dmz5+9///uQIUN6vDvSxcPxkX/V7t5a//uXQs+hAo+ebwpBjI6lqcZjuwHAbs7jmLCzuwQMk4ROFgePV1472XBstyY7pfKTZyUhk+znP0EOcDdFuAjSU40nfma1GknIZKFPUMdrki4ezmtf0xZlNhz+TpN/p/7gN/LLx+znPG7EJpDWe+yj7XaAIIiZM2cCwNKlSwFAKGx+8v/CCy84OjoCwPjx4+vq6nJycuzs7H777bfJk3v75qXh0zSZSYrEUzW73nV74cvePyxEEGNRXDlOVd8jXT1lkdFdfAlGkLIJc6UR05vO/dF05jdVSoL69hXp2Fl2MY8Tdr19poIgfYGqKVdePQE4bjf3gbeDrQh9glye/Vh952r9wW+piuKaXe+KAkIdFj4p8Oxo3F3P8NZr1CiSkpI2bNhw48aNTtdkddrKz57T3c2Xhk/r8cNC1GvUlKyhZx2rVZe/8wTdWOe87nXJqAk92ALdUNN44mfF1ePAMJhQbDN5Yc+eqVjDp20+rPDTrv3pA2XSOdnYWY6PPd/d17I0pbx2suHYj4y8ATBMEjLJfuHfSCe3rryWe0YoEAg6Xs2MnhH2KfSwEDFDTecO0I11Qu9ASfD4nm2BsHd2fPjZ5mcqWjX3TKXpzG8sTRk3VATpMV1ZoTL5PEaQtrNW9ODlXBPIwFe/t416GCMFqpSEiq1PNRzZyagVxorQWhIhtDwsBID637/U3c3nOxzE2jGKRvm53wHAfsETvSyoIXDzdl77mutzn4mGjGQUjQ1HdlZs3aBKSYD+3N6DWIyG2F3AsrJJ80nngT3eCC61sV+wbuCrO6Rjolr60Twhjz8ETOedQjvfeO830Y9Iw6fJxs5iddqa3VtZrZrvcBCr1nhqL6NWioeNFvmHGmWDQt8gl40fOT/xb9LVk6q6W7Pr3crPNunu5hll4wjSM9rCDPWdq5hIYhf9aO+3Rji6Oq180fVfnwoHj2AUjfUHvyn/4B/qO1d7uVnrSoQA4PDQM4KBPlRFceOJX/iOBbFedG2l4uIRwDD7+U8Yc7sYJgmZNHDzt44PP0vYOWmLMqt3vNXXXc8RpAMNsT8AgO20JUacZULoG+T6r4+d1/2HdPGgKoqrv3uz6suXdBXFPd6g1SVCTChyfHQTACiunUDPURC+NBz/iaV00vDpAg/jd4EDnJBNmDvw3ztJV0+6rlKd2XlvMgTpC+rMJE3uLVxqazP9IaNvXDJqotvmbx2W/gOX2Wlyb9V892aPr/msLhECgNA3SOAxhJE3qG9f4TsWxBrpygqVN85gBNn1ruQ9gAnFsnExAKC4crzv9oIgD8SyjUd3AYBt1MO4WNYXe8AI0mbKooH/3kkOcKeq76lSL/ZsO9aYCAFANnY2ACiuohMEwoOG2B+AYWQT55HO7RQONCLpmCiMIFV3rtGNtX26IwRpS5V6UVuSQ9g5dVwyqfdwiY3t9IcAoOns7z3cglHj6TekY6IwoUidlUzVVvAdC2JdNPl31HeuYSKJrTH6DnSMsHUUjxgLDK28fqav94Ugf8EwDXE/AYBdzKrOSyb1mjQymrBz1JZka3JSe/ByK02EuMRGMmoisKwSjSlETKvhyE4AsJ3+ENHryvpd0dw6evU4GkqBmJLi+imqoph0HigdO8sEu8MEQtnEBdDTm0IrTYQAIBs3BwAU106gPnWIyahuX9EW3MFt7G2mLTXNHsXDRhOOrlTVXU1+mmn2iCAsTTWd/BUA7OatxQgTFfK0mbwAE0nUGdd7MGTIehOhaGgw6eZF11erM5P4jgWxDgzD9R2wm7WiNzPLdA+GcVVMFVdPmGiPiNVTXDxC1ZQLBvlKw6aabKe41FY2dhYANJ0/0O3X9kE8/YYschYAKK7G8R0IYhUU10/ryotIJzfZhLmm3K907CzAMFXKBUYpN+V+EevEalRNp38DAPv5vS2Z1F0205YCTqiS4+m6ym690KoToTRyJkaQqrRrdEMN37EgFo7VaRuP7wGusYjspASwcZFObuKAMFanVSafN+V+EevUdP4A3VQn9A4UD4808a5JJzdp6GSWpuTxh7r1QqtOhAZ96k7zHQti4eQJf9J1lQL3wdLwaabfu3TcbABQXD5q+l0jVoVRyuXnDwKA/YJ1Jr4d5NhGPQwYJr8Sx6i60f5h1YkQAGTjW0Ycoz51SJ9h1IqmM78BgP2C9bycHSSjJuI29rp7BbrSXNPvHbEeTaf3Miq5eNhokX8ILwEIPIaI/ENZjUpxqRuXfdaeCMVBowknV6qmTJN7i+9YEIvVdPo3RtEo8gsWDxvNSwAYQUpHRwEqIoH0JbqhRs5V0J23lscwbGcsAwB5/CFWp+3iS6w9EQKGtXSZQScIpE/QjbXyC4eBayzij834OQCgvHGO1Wp4DAOxYI0nfma1GknoZIHnUB7DEAdFCDz96KY6ZdLZLr7E6hMhN+IYx1WpFxlFI9+xIBao8fgeVquWhEwS+g7jMQzSzUvoO4xRK3pcjxFBOkBV3VVeOwk4bheziu9Y4H7Fta4980KJEAiHAeLAcJbSKZPO8R0LYmnunx3mruY7lpYqM9dQ4wdifI1xu1makkVGC9y8+Y4FpGFTCSdXqrJUfedaV9ZHiRBAf4K4ggYUIkbWELuLpSnZ2NlmcXYIn4qLpZrc21RFCd+xIBZFV1aovHkBEwjtZq/kOxYAAMAJ26lLAbjgffMAACAASURBVEB+7o8urd7H4fQP4pHjCFtHXVmhtjCT71gQy6EtyVbduogJhObQWAQAmFAsCZsKAIpEVGIXMaaG2B+AZWUT5xOOrnzH0kw2bjYutdUW3KGr73W6MkqEAFyfusiZgLrMIEbVcGQnsKzNlMWEvTPfsTTjJiBTJp5Gs1IjxqItaJ5QxW7mw3zHch8mkthMnA8ArFbd6cooETaTjYsBDFPejGc1Kr5jQSyBOitZk52CS21so8zo7CD0DRIM8qWb6tR3EvmOBbEQDbG7AMB2+kO4jQPfsfyFbMpCTCDsypooETYjXTxEfiNZjQqVoUKMgGWbp1uKegSX2vAdzV+0TMyEnogjRqDOuK7Ju43L7Ew2oUrXEbaOdvOewITiTtdEifC+5omZUJF+pNeUN+N1pbmEvXNfz83dA9LRMzCBUJ1xo7uFiRGkNZZtOPojANjOfMR0E6p0h2zKImKAe6eroUR4nyRkEi610RZl9mA6KwTRY2mq8dhuALCbs9oEc3N3Fy6zkwSPB5ZVJKISu0ivKFMuNF/wTZzPdyy9ghLhfZhAKI2YAQAKNG090guKK3FU9T3S1VMWOZPvWNrHtY4qr51AJXaRnmOYxuM/A4BdzCozvODrFpQI/0LGlaG6fgaVoUJ6htWqm07+AgD289cBTvAdTvtE/qHkgEFUbYUmJ4XvWJD+SpF4kqooJl08pJHRfMfSWygR/oXAfbDQO4BRyVW3L/EdC9IvNZ07QDfWCb0DJcHj+Y7lwTBMikrsIr3A6rTNt4NzV2MEyXc4vYUSYWstVWbQCQLpNkbRKD/3O/A3GVvXycbOAhxXpV5i5A18x4L0P/JLsXR9lWCQrzR0Ct+xGAFKhK1JI6ZjIokm7zZVdZfvWJB+pvHkr4xaKR4+hq/J2LqOsHcWB41maarrFfoRhMNqVE2n+Zxf0+hQImwNE0mkoVOAZVGXGaRb6NpKxaVYwDD7uWv5jqVLWgYUovFCSPc0nfuDkdcLB48QDx/DdyzGgRJhO7hp65XXTqIyVEjXNcT9yFI6acR0gacf37F0iWTkWMLOCZXYRbqFUTTKzx8AAPt5a/iOxWhQImyH0HeYwGMIKkOFdJ2urFB54yxGkHYxj/MdS5fhhHQMKrGLdE/Tqb3N7f9DR/Edi9GgRNg+WWQ0oDJUSJdx9bVlk+aTAwbxHUs3yMbP4UrsQhcKEyMI3VAj71ft/12EEmH7pKOjMIFQnZlE11fxHQti7nR389XpiZhIYhf9KN+xdA85YBBXYleLxgshXdB4fA+r00rDpvSX9v8uQomwfbjMThI8ARgGdSVAOqW6cw0ApBHTza36fldwJXa1SWf4DgQxd1R1meLaScAJuzmr+Y7FyFAifCCuy4wi8SQqQ4V0TJ2eCADi4ZF8B9ITkpBJuMSGLsnRlRXyHQti1lSpCcDQ0vCppIsH37EYmfkmwrq6uszMTIrird+maGgIOcCdrq1UZyXzFQNi/hhlk7Y4CyMFYrMfO9guTCCURkwHVGIX6Yw64zoASIIn8B2I8fGQCGNjYyMiIoRC4YQJD/xAP/zwQz8/v0ceeWTo0KGpqammDO8+DJONnQWoygzSIXXGdWAY0dBRmEjCdyw9JJswFwCU10+zlI7vWBAzxaiV2oIMwAlRQCjfsRgfD4nQ09Pzww8//OCDDx60Qn5+/ttvv52YmJiamrphw4bnnnvOlOEZko6djRGkOu0K3VjHVwyImVOn3wAA8bDRfAfScwL3wfigwYyiUXX7Mt+xIGZKk5XE0pRoyHBcYl4TTRsFD4kwNDQ0KirKweGB3Qr27ds3Y8aMoUOHAsBTTz114cKFsrIyEwZ4H2HnKB4+hqUp5Q3UlQBpD8OoM29Av31AqCeMiAIAJeoahjxAywWfhZSSacUcnxEWFhZyWRAAnJ2dHRwcioqK2l2TZVmlUplkoKHByBWEW2pwx6EuM0hb2uIsRtFIOg/q790HhKGTMaFInX2TqubnohMxayxrGRd8D2KO02coFApnZ2f9r1KptKmpqd01a2tri4qKnnzySf2SZ599dtmyZcaMxmsYbj+Aqrpbn35D6+Kj0+kIwkwnmbMwCoUCM/t6vurUSwBABITJ5XK+Y+kVJcUKRozX3jxff+moOKqfjYbsd/rFsW2IvldAN9Tg9s4aG2dNvzrUGYYRCAQCgaDj1cwxEbq5udXV3X8mV1dX5+bm1u6azs7Ow4YNu3HjRp/Gw4yNbjz5K5MSb7PkaZFIhBKhabAsa2Nj7k8jlLmpAGA7aoLY7EPtGMuywknzqm6e1yWfG7BgHeDm2FZkMfrFsW2osSgNACQjxtrY2vIdS/cwDEPTdKermePhHhoaevXqVe7nW7duEQShbynlhXRcDGCYKuUCq1LwGAZibujGOm1pLiYQWkbRRZFfMOnmTTfUqDOT+I4FMS8W0COsYzwkwpKSku3bt8fHx1dUVGzfvv3kyebRS6GhoZcuXQKAZcuWVVZWbtmy5cqVKxs3bly/fr1UKjV9nHqkk5s4IIzVaTWpF3gMAzE36ozrwLKigDBMIOQ7FuNoKbGLxgsh9zFKubYoEyNIcUAY37H0FR4SYUNDQ1JSkkgkmjlzZlJSUl5eHrd84sSJjo6OACCRSM6ePZudnf3qq69GRUVt3brV9EG2wnWZ0SSiEcfIfdz4YkvqRyeNnIkRpCrtKt1Yy3csiLlQZ94Ahhb6jey/I2U7xcMzwpEjR3777bdtl3/11Vf6nwMDA/fs2WPCoDohHjUBt7Gny4t0pTmETxDf4SBmgKE1WTcBQDwsgu9QjIawdRSPiFTduqy8fsY2ajnf4SBmQZ1hyQMnOOb4jNAMYQQpG40GWiH3afLTGZVcMNCbdO5P8y51qmXa+uNovBACAMCymswkQIkQ4cgmzAUMUyWfZzUqvmNB+NfcLmpxw6rEw8YQjq5U1V1NfhrfsSD805bm0E11hKOrYKA337H0IZQIu4p09SS9g1iNSpmSwHcsCP+aZ5ywvH50GCaL5KatR40fCKjTrwOAxOIu+FpBibAbRGO4EwTqU2ft6PpqXXkRJpIIh4zkOxbjk46dzY0XYpT9aeg00hdaWj4s7oLvr1Ai7AbhyAm4WKotSKdqK/iOBeGTOj0RWFYcGI4R5liSopf044WUyef5jgXhE6No1BZnY6RA5G+BM04YQomwGzChSBgQBgAaNOLYurVcJlts94H7XWYQK6bOTAKGEfkFY0Ix37H0LZQIu0cUEAYAaKpea8ZSOnV2CmCYBfejEwePx6U2utJcqqac71gQ3nAPCC34gk8PJcLuEQaGA4AmOwWYzuvXIRZJk3uL1agE7kMIe+fO1+6fMFIg8g8DAA265rNaLMtd8Vte1+i2UCLsHtLJjXTxYFRybXE237Eg/GgeX2zpl8niQNT4YdW0RVmMvJ50HtjfpxjrCpQIu00cFAFc6zlilbiBExKLT4RBo6G58YPhOxaEB5Y6UrZdKBF2mygwHNCVsrWiasqoqru41EZo6ZX2CCdX1PhhzSyvlG4HUCLsNnFAKEYKtEWZaJSVFVLfSQTubgm3/Gkpxc3XfKjxw+ow8gZtSY7FTDHWKZQIuw0TioW+QcAwmtxUvmNBTM2qLpO5xg/UX8YKNU8xNjQEE4r4jsUUUCLsCXEgekxojVidVpN7CzDMkmac6IA4IBQjSE1hJqNGU1Jbl5YLPgsvKKOHEmFPiILCAQ2rtz6a7JusTiv0DsRtHPiOxRQwkUToEwgMrcm5xXcsiAkxjJqbYszSe4TpoUTYE0JPf9zGnqqtoKru8h0LYjrWdpkMqHXUKmmLMhhFI+niQQ5w5zsWE0GJsEcwTBwQCqh11MqoM5LAajqUc5qfAqBEaE3U6dxIWSs6zlEi7CFR82NCdIKwFrryYqqmDLexF3r58x2L6Qi9A3CpLVV1F9Vasx6qDAudYuzBUCLsIXFQBGCYJieFpXR8x4KYQvMEhMMjAcP4jsWEcFzkHwKoddRq0I11urv5mFAs8gvmOxbTQYmwhwh7Z8FAH1ar1hZm8h0LYgrNldWs6TKZ0zKa8CbfgSCm0Dxwwj8UEwj5jsV0UCLsOTTc2HqwGpW24A7gOPelWxVRUAQAaHJuolpr1sBKZuJtBSXCnms+QaDHhFZAnZXMUjqR73Bcast3LKZGOrmRA9wZpVxbgmqtWTqG1nADJ4KsYqSsHkqEPSfyC8YEQm1pDiOv5zsWpG9Zz8Rs7RIHhQPqGmYFNAXpjEpOunmTzoP4jsWkUCLsOUwgFA0ZCSyrzk7hOxakL7GsVVVWawuNJrQS3INwi59ZpS2UCHsFnSCsge5ePt1QQ9g5CdwH8x0LP8QBYRhBagozGLWS71iQPtTcNdr6LvhQIuyV+3MTsizfsSB9pblddMRY6xo4YQATSQTegcDQmlxUa81i0Q01urJCTCgWDhnBdyymhhJhrwgG+RL2znRDja68iO9YkL5i5e2iHG7CetT4YcHU6YnAsuLAcIwU8B2LqaFE2DsYhubptWyMUq4pzMQIUhQQwncsfLrf+IFYKCsspauHEmFvNV8poxOEhVJn3gCGFvqNxMUyvmPhk9A7ENVas2AsTWmyUwElQqRnxEGjAcM0ebdZnZbvWBDjaykoY9XtogAAOM5NVq7JRiVmLJA2P41RKwSDfAlHV75j4QFKhL2Fy+wEHn6sTqvJT+M7FsTYWJa717faEYSGxOgpgOVqvuCz1uMcJUIj4B6foH4Elkdbkk031ZHOAwVu3nzHwj/RsNHA3RGiWmsWp7lrtLW2fKBEaATNV8roMaHFsfKzQyv3a62V5vAdC2JMdH2VrrwIF0uFg4fzHQs/UCI0AuGQEZhIoisrpBtq+I4FMSYrr6zWVss1H2r8sCjqO4kAIAoMxwiS71j4gRKhEWAEKfILBpZFraOWhJE3aEuyMYFQNNSqB04YQqWULBIaKYsSoXE0j7JCJwgL0jwx29AQTCjiOxZzIQoIxQhSU5COaq1ZDJam1DmpgGHWOXCCgxKhcaBaa5bHmscXPwgulnK11rR5qNaahdDk3mI1KoH7EMLeme9YeIMSoXGQrp6k80BG0ai7m8d3LIgxMAw3Jzt6QNgKV0ECTVhvMax84AQHJUKjEQWEAeo7aik0hRmMopF09SQHuPMdi3lBfaQtjNXOOGGIn0R47Nix8PBwd3f3devWyeXytitERUWNbvHKK6+YPsIeaJ68FD0mtAjN7aLDI/kOxOwIfYJwqQ1VWUrVVvAdC9JbVE05VVmKS21EvkF8x8InHjrLlpWVPfroo3v27Bk3bty6deteeeWVL774otU6qampO3bs8PLyAgBHR0fTB9kDooAwwHFt/h1Wo8JEEr7DQXqlZQQhekDYBo6Lhoaobl3SZN8kx8XwHQ3SK80XfIERgBN8x8InHu4Id+/ePWXKlIULF7q6um7ZsmX37t0ajabtaiNGjIiIiIiIiBgyZIjpg+wBXGIj9A5gaQrN2dbf0Y21unv5mFAs8gvmOxZzhGqtWQx0wcfhIRGmp6eHhYVxP4eEhMjl8tLS0rarrVixIjIycuPGjZWVlaYNsOfEQaMBnSDMXl4j+1kaMzuOeuwcnV7fTi/flonZwqxwYrauEOlrCqJaa+aKYeFKJbv5Oh16gHroNH2rtp3jnNVpNbmpgGHcF2rNeGgarampGTGieQZkgiBsbGyqq6v9/PwM1/noo49CQ0PVavXWrVtnz56dmJgoELRzSqqurk5NTTVsO3377bfXrFnTR5GrVCqtVksQD2xDYLwCAUCZfp2IXtVHMViPdh8e9xjNwrVq/Pg9PO4ekdWon2ie3Z/PPOxDvzKS8pXdP1Mob10BABgc3NTUZMQYzFn3Pm2hDHdyY2or6rNvER5+na+P/JVxj21DahriK4mjd/G4u3iFuvk4T61lDxYyi7yYV0bohtnfP86pnBRWqyHchygxAVjooc4wjEAgaDd9GOIhETo6OuqPA4Zh5HK5k5NTq3WeeOIJ7oe9e/c6Ozvfvn07PDy87aYGDBgwcuTIs2fPcr9iGObg4NBngQNBECKRqINECMMilFIbpvqeRKsgnQf2XSRWwtbWtpdbaNDCiVLmSDEbV8LUtDTAO4ogxhOf54VdrWS3ZzK/FhK/FxN/C8T/HYa7SzGWppry0wDAIXQS0esA+pFufdr0sDHyS7F4SYZtUGjfhWTBen9sG6rVwNES5nARe6KUkeuaF/raYot8sBhP/GQp800mc6gE/7NU9PAQ/I0wPMgBA4D6wjQAkAWPM24wZoVhGJqmO12Nh0Q4dOjQ27dvcz9nZmaKRCJPT88HrSwWi4VCoVqtftAKBEGYUW8aw34E4+fwHY31KmhiT91ljxQzJ0tZbUvr3RBbbL43tsAbnzIIE+IAACuHwksh+Ds3mZ3ZzP8ymO+zmLUB+FsOLROzOVnjxGxdJAoMl1+K1WQlQ/RjfMdivYrk7IlS9kgxc6KU1bUc58MdsAU+2HwvfOJAjLsljPEkXgklPr5N//cOszeP+S2fecgXf3s0bo9qyrfgIRE+/vjjISEhSUlJISEhH3zwwfLlyyUSCQB8+eWXXl5eixYtKigoqKmpCQ0N1Wq1b7/9to2NTUhIvyn2KA4MV926pM5MlqFEaFo0Cyk17JFiJraYTapubv8hMJjohi3wxhf4YMMdsLav8pJh304iNo3E30thfs5jtmcyHlWJ6wCwQDRwoiNcrTVtQQajVuJiKd/hWJc7dWxsMXukmLlc0VzISn+cL/XF/O3bOc5dxLB1DPH8SOKTNPrzNGZ/AXM9+15C9T1WYiv0DjRx/GaIh0Q4ZMiQL774Yt68eUqlcsKECT/99BO3PCUlRavVAkBNTc3KlSsLCwsFAkFkZGRsbKxMJjN9nD3zlznbcFSvoM8pKDh7j4ktZv8sYspVzQsdRTDTHefu/xy7UCg0yAHbPY14KQTfksxMzr0OAI/fCxufTP9fMGGLusu0BxdLBd4B2oJ0bd5t8YixfIdj+WgWrlSwsSXMgUI2p6H5Ok9Kwgx3bPlgfKEP7iDsfCOuEtg6hnhmOL7tFqNJSASAI6LwqxfY18PZoXbtpE/rwc+kG2vXrl27di3Lshh2/9PfsWMH98Po0aOzsrJa/bW/IJ3cSBcPququtjhbaN1jVPtUFxs/u2WkI/ZreE3ZkRI1KT0rCDqZzHydzvxfMPGvkbjYqgdZtU8cGK4tSFdnJaNE2HeUFJy5x+zPZ48UM/Xa5oUuYojxxJcPwWZ54KLuH5leMuzz8URJcjIAnLcdvT+X2ZvPPDoEfzMCH2Lb/065RsHn7FMd57n+mAU54sBwedVddeYNlAiNq2eNn92iupMIAI4jI87FiF+9QSeUs5uv019nMK+F4usCcBLd4RsQB4Y3Ht+DBgv1hSo1xJUw+wuYU3dZTUtXD+46b/ng+w//eozVafHC2yyGfbRytGMuvjOb+SmX2ZfPrA3AXw/DPWT99dzbY1Y6DWOfEgVFyC8eUWfdtItBgyiMgAU4XMT8UdBOz88F3liMZ5caP7tIPzHbpIFY/HzycBHznxtMWh274SL9WRrzVgS+bDBudSeJB2iutVZRQtdVEo6oY5ER5Dexe/PYQ0XMjar7D/8mD8QW+eCLfTA/47VearJvsjqt0CfIdaDjtwPh+WB8SzKzN5/ZnsnszmE2DMM3hxADrak6FkqExif2D8EIUluUwSjluNSG73D6N4aFZy7T32Q0t34G2GMLvLH53vgkN8zo92esTqvJSQEM4ybVwgAW++ALvfFf85g3k5mMevbhM3SYM/POaGKuF8qGXB/pUapbl9VZN2XjZvMdTb93vJR96DSlpAAApCTM8sAX+mALvPEBYuPvq9UUY4H22M/TidfC8LeSmd8LmM/TmO8ymX8Mw18aRbhaRzpEbT3Gh4kkQt9hwDCa3FS+Y+nfaBaeuEB/k8FISNg6hshaTmYtJ7eNJaYNMn4WBG5iNq1G6DnUcGI2HIOVQ/H0ZeS3kwhPGXazhp13gpp0hIovQxNPognrjeZAIbPoJKWkYLEPfiiaqF4lOBhNPBHQJ1kQWiYPaTX10nAHbN8MImUJudQXV1Hw8W1myD7d5ut09QMHr1kOlAj7hCgITVXTW1oGHj1L785hZCT8GU2+HIIHtNcv3IhaZpxoZ1iVAIengvC8R8hvJxEDJXCpgp12lIqOo65XWXU6bC46mn0TzUfdG7/kMY+cpbUMPDMcPxBNLPLBJX3ZVEdVlFDVZbiNvdAroO1fg52wP2YStx4ilw/GlRR8kMr47tVtvk7XtlMQ2nKgRNgnuLY1DUqEPaWhYe1l4e8FjIMQTs0lZ3qYoilS3dn4YiEOTwXhuY8Ito4hHIRw+i4beZiKjqNSaqw0DZAD3EnnQYyiUVuaw3cs/dW3mczj52mKgZdD8C8nECY40FX6dtEH97kZ6Yj9FkWkLL2fDn326jZfp+ssNB2iRNgnhJ7+uI09VVtBVd3lO5b+R0HBvBNU7F3cRQxn55HjXU2RBamqu1T1PVza+fhiGQkvh+B5jwg2h+AyEk7fZSMOUY+fp4vl1pgOucYPTSZqHe2Jj24x/7hIsyxsG0tsHWOiMTqdXvDpjXLCfosiriwkZ3tich18kMr4/ab7OdcCK62jRNg3MEwcEApoJorua9DC7DjqzD12oIQ9P58MczZRt5T783R3rQyCkwjeH0PkPiLYOAIX4LAnl5l4hC6yvlyIpmTqsdeT6JcSaQyD/00i/i/YRKdiVqvW5qcBjnNfXFeMdcWOx5AXF5BR7lidBtbE0wcKLS0XokTYV0SBqHW022o0MPMYdamC9bHBjs/Q9n5cYNepM24AgHh49yZmGyiB/44nspaTkwdipQp2dpxV9CwwJPIPAZzQFqSzGlXnayMAAMACbLpKv32TIXH4cSqxIch052F11k2W0gl9gnCZXbdeONENOz2X3BJB0CysOEefs6zOYigR9hVxUARgmDonlaUpvmPpHypUMOModaOaHWyLnZ1HDLEx3X8aq1Vr8m4DhnX9MtmQjw0WO5sMc8ayGtg5xyl9+X9rcH8+6rzbfMfSP9AsPHtd8FkaI8Rh73Ri1VCTnoT1I2V79vL/hOGbRuIaGhadpPRFLSwASoR9hbB3Frh5sxqVtiCD71j6gTIlzDhK3aplgxywhPmEiUs9qbNTuPHFuE0Pp/GyE8CJOWSAPXajml10itJ0PvGL5eC6hqHW0a6gWVh3gf4xn5CS8Ocs8qHBpj4DqzNvAICkva7RXfTxOGJtAN6kg5jjVGZ781r3RygR9iGxfiJvpEOFTezkWCq9ng1zxi7MJ01f4amXl8kcFzHExRADJXD2HvvYOZq2kFNE58SBYQCgRv1lOqNlYPkZbkQQe2QWOdvT1Me5rqyQrq0k7BwFvZhOGQPYPomY64VVqyE6zkL6iKFE2Ie44cZoNGHHshrYybF0XiM7xgU7PZd06ZsRxB3rYARhtwyxxU7OIR1FcLCQ2XjZWu4KhT5BuFhGVRTTdZV8x2K+lBQsOEEdLGQcRXBkmm6GOw/FiZofhA8b08HAia4Q4PB7FDlpIFaqYOeesIQhhigR9iHR0FGYQKgtzWHkDXzHYqbu1LHTj1KlCnbKQOzMXNLJeFVDu05/mSz0HNr7rQU7YQdnkmIC/pfBbLlpaZ3r2ocTIv8Q4EbWI+1p0MKsOOrkXdZNAufnkaOd+TkwjNLywZGQEDuLDHXG7tRZwnNxlAj7ECYQioaMBJZFJ4h2JVWzU2OpMiXM8cKOx5B8zfx3f1iVkSY8mToI2zeDIHF4I4n+7x2ryIWo1loHajUwK466VMF622AJ88lRTvwUqmXUSm3+HcBxUUCoUTZoL4Sjs4nBtlhiFbu4nz8XR4mwb6ETxIMklLMzjlI1GljgjR+YSfZpTamOGfEyWW+hD/79ZAID2HSV3l9g+blQzNUUzEK11lorV8G0o1RiFRtgj11cQLQ7fbxpaLJvsjQl8h2OS22NtU13KXZqDjFQAmfusWsv0Ey//fLbT4QvvvhiXl5eq4X5+fkbNmzo+5AsSnOHuswkdIIwdK6MnXuCatTBo374HzMJHqe9ZdRKbUE64IQoMMy4W17tj789mmBYWHWOPnnXwr99VGutXUVydvIR6nYtO9wBOzeP8OJ1nr/mlo9ePwhvxc8OOzGHdBDC3jzmn/32uXj7ifCnn36qqKhotbCiomL79u19H5JFEQzyJeyc6IYaXUUx37GYi6Ml7NzjlFwHTwbhP08jBLy2SmiykliaEg0ZjkuMP2HWa6H488G4loFlpy1q0FW7uCsJTRZ6CtAsq4GddITObWQjBmDx80l3Ka9Td7FsX7R8cEY5YQej+/dz8W6chCorKx0dHfsuFMuEYajvqKF9+cySU5SahqeH499OInif5Vad3tKPrm9sG0us8W8edJXVYMm5ENVaM2TYC+zsPLKPZlPqOt29ArqhhrBzErgP7ovtTzN4Lv55Wv/LhX95MnP69On9+/cDQGNj44cffujm5qb/k1qtPn369OjR3StAhQCAOChcef20JivZdtpSvmPh2Z5c5okLzYX2TVZiuCMsy40vFg+P7KM9YADfTSYq1WxcCRt9jL60kOf2sb4jCggFHNfm32E1KkxkHdO5PsCNajYmjqrRwBwv7I8oPp9/67UMEIo0Vo+wthb64DunwJrz9PPX6IFSeGRIf+qA8pevqLi4+PTp0wCg1WqvX78uFt+/jJFIJFOnTn377bdNHWD/Jw4aDRimyb3F6rSYQMh3OLz5JoN55jLNsPBmOPFGuFn8k+ju5tENNYTDAMFAn77bCzfoius3OPc4fWE+6cjHKJG+xtVa0xZmavJu992FhfmLL2MXnKSadLDQB983g8/n34b66AFhK48Pxe8pYPN1+vHztJ0Am+PVb675/nI+WrduXV5eXl5enp+f38GDB/MMpKWl/fLLL35+Pa9HYLVwmZ3Abv1z8gAAIABJREFUYwir02ry0/iOhTcf3mL+cYlmWfhsnLlkQQBQpff5ZTJHSsLhWeQwByytjl10ilJZaPVZcaC111pLKGdjjlNNOljtjx/gtReYIUat0BZlYgRprIETHXg5BP+/YFzHwMNnqWuV/eZZQPunpKysrMhI672mMzpx0Giw4kEUH95iXk6kcQy+nUT8a6S5ZEHom4ETD+IsghNzCC8ZllDOPnqOpvrfY5TOWflgoRIFu/wMpaZhQxD+wxTCFHPsdo0mI4mlKeGQEbhYZoLdfTSWWOOPy3Uw7wSV0U+KkXZ0ViovL09JSUn6K5NFZknEVtxfJraYfeU6jWOweyrxpAmnm+kUo2ziLpPFfX+ZzPGSYSfmEM4i+LOIeeqiBdYiFfkG4WKZrryYrq/iOxZTU1Gw5BRdoYJZHthXE/nvBWbIlBd8AIAB7JhMLPDGazQwq58UI23/Me7t27c3bNhw5cqVtn9i0Xi47hMOGYGJJLqyQrqxlrBz4jsc08lqYB8/TzEsvD+GWGna6WY6pc64AQwjCgw1Zc+OYQ7YsRgy6hj1QzbjKgGz6DFkRDgh8h+lun1FnZUsGzub72hM6pnLdFI1O9gW+3k6aT73ggAALMs1VouHma6rI4nDvhlEzHH2QjkbdYy+uIB0M+/uU+0nwscee6y2tvaLL74ICAjAuzZhN9IBjCBFfsHq9ERNVrJ0zEy+wzGRJh0sPUXXa2GpL/5yiNkdRS2XyabuCB3pgh2KJuedoD5IZQaIsRdMNTW5aYgCw1W3r2isLBFuu838kM3YCODPWQTvIyVaaekR5iIY5GvK/UpIODKbnH6USq5m55+gzs7jrYZiV7STCBsaGtLT0w8ePLho0SLTB2SpxEER6vREdWaSlSRChoUV56j0enaUE7Z7mnldIgNw44v7duBEB6LcsR+mEKvO0y9do51EsC7AcnJhy2jCm8Cyfd0FyUycvsu+cp3GAHZOIUY6mt1bVhlpZpUesBPA8Rhy8hHqRjW76CQVF0OKzLUFpJ3/QAzDAMDd3d3kwViylslLraUY4+tJdGwx6ySCAzMJmRmMo2pFW5rDKBpJ50GkqycvATzmh38xnmABnkqgDxZaTs8Z0sWDdB7IKBq1pbl8x2IKhU3sY+coioHXw/HlJp9ltyvu15Tng4sYjsUQg6Rwrox99Kz59hFr55uzs7ObN2/en3/+afpoLBjp6kk4uTLyet3d1kVcLc+hIua9FIbA4OfppJ+d2V0jA4AmMxlaqoLx5enh+KuhOM3CyvP0xXLLuTyynr6jch0sOElXq2GRD/56mDne7DT3CCMFJusR1pZ+ks5DRcwz5lqM9P61+r1799LT07mfV65c+dxzz9XW1s6ePVsqlRq+YOZMq2jZ6wviwAjFlTh1ZpLAGPPema2MenbNeZoF2DaWiDH5HNxd1Nx9ICiC3zDeGU1UqeG7TGb+SSp+PhnC0wQ9xiUODFdcPqbOSrad+QjfsfQhFmDdBTqtjg1ywH6cal7dRPU02SnAMMKho/it9TPSETs2m5x5jNqeybiI4Z3RZnfRcD8RnjhxYt26dYZ/+/rrr7/++utWL0C9RntMHBiuuBJn2SeIOg0sPEk36mDVUPw5cxoyaIjVqrWFGYDjoqEh/EaCAfxvIlGngd8LmLnH6UsLCF9bszyhdoeV1FrbkszsL2AcRfBnNGFvrgWjuCFb3INbfo1zxfbOIJecpt5NYZxE2PNm1kfsfiKcPXv2qVOneAzF4okCwiz7BMGwsPI8ldvIhjlj304yu4s+PU1OKkvphL7DcKnxZ5zoLgKDn6cTDVr21F02Oq4fdDTvFC6xEXoFaIsyNXlpvPTRMIE/i5gtN2kcgz3TSB6nGOyUJvsmtFT84d18b2zXFGJ1PP3CNdpRBE+YUx+x+4nQ3d0ddZDpU7jUwosxvpRIx5WwbhI4PIuQml8HGT0zaRfVE+Lw+8x+09G8K8RB4dqiTHVWskUmwqwGdnU8zbDwYSQx14zLaVKVpVRtBVfike9Ymq0citdpYeNlesNF2lWCzTObT8+McrI1aC7GaIklZn7JYz6+zQhw2B9FmvkEC82JkNeeMq3YCeDobNLPDrtRzT50mtKaa+e6LmrpL2OBx3m9FhacpBu08Jgf/sIosz5/NreLBo02q3Es/xyOvxKC6xh4+Ax11WyKkbZ/3T5r1qza2tq2y52dnX19fZcuXTp7thWNljUicVB444mfLa8q8c0a9m8JNAB8Pp6YPNCM/uvaouurqYoSXCwVeAfyHctfDJTAiRhi0hHq1F32mUv0d5PNt225UyLfYfpaa4SDC9/hGA3NwopzVE4DG+aM7ZhsfqNj/0qdxbWLmtEFH+fdMUSVGnZkMUtPU9cXkR5mcN3c/hWNj49PQUFBWlqaSCTy8PAgCOLmzZuVlZUkScbFxcXExLz55pumjdNCCH2CcLGMqiihasr5jsVoqtSw5BStouBvgfg/hpn1NTK0XCaL/EMxwuxab/3ssKOzSSkJO7KYr9L7810hToiGBkPLudhivHaDjithXcRwMNqsG/8BgKUpbd4t4LommBmuj9gMd6xMCUtP02ozGFLR/mlr8ODBfn5++fn5ly5dOnz48LVr1zIyMgQCwcqVK/Pz85977rn33nvv3r17Jo7VEuCEKCAEWh5iWwCKgYfPUEVydrwr9uWEfnATw41vE5lBP7p2hQ/Adk8lMIDnrtLnysyl4agHLG804R8FzIepjACH36JIHxv+b2I6pi3IYNRKwSBfwmEA37G0g8RhfxTpZ4clVrFPJfCfCdtJhFqtduvWrZ988olh35mAgIA333zznXfeIUly69atBEFcvXrVhHFaDgubs23TVfp8GTtICvujCLOtn3Qfy6pzUgBAHGSmiRAAHhqMvzgKpxhYfprKb+qvubCllFKyZZRSSq1l18TTLMBn44hpg8w9C0LLJYg5DJx4ECcRHJlF2Angp1zmszSe2z/aSYTV1dVNTU0ODg6tljs4OOTn5wOASCTy8vKSy+WmCNDiiIaNBu6OkOnPbV8AALA7h/kynRERcHCmWTT0d0pbmsPIG0gnN3KAWXeQfn8MMc8Lq9HA0lO0on/O4quvtWYBpZT0X8Qaf/zp4ebe+M9RZyWBGbd8cIY5YLumEhjAC9fouBI+L5ja+VIHDBhga2u7fft2w4UMw3z33XdDhgwBAJZlKyoqXFx6/gz88uXLTz755JNPPnnp0qV2VygvL9+8efPKlSt37NjB9P+EYYg7CzNKubY4m+9YeuVqJfvURRoAvpxAjHXtB1kQ9JXVzGbgxIPgGPwygxzugOlvRPoj7ulUf+8jrb81H+dq1qNjDTFKubY0FyMFIr+RfMfSiSW++GthOM3CqvNUbiNvR3o7iVAoFL766qtffPHF1KlTt23btmvXrvfffz8iIiI2Nvb1118HgLNnzzY1NY0e3cP5a5KTk2NiYsLCwiIiIubOndt2sl+KoqZNm1ZXV7d48eLPP//83Xff7dmOzFZLq1E/PkGUq2D5GVpDw7Mj8L8F9o9rZLg/cMKsL5M5dgI4EE3YC5sfTfEdTk/cn4miP+Me1g6UwO/9ovEfALh2UYYRDhmBCc1sUqj2bIkglg3Ga1uKUvGi/Z5PmzdvdnZ2/uijj1588UUAwHE8ODj4wIEDixcvBoCJEyfW1ta2bTvtos8//3zDhg1PP/00ABQVFX322Wc//fST4QqHDx8GgG+++QbDMC8vrwULFrz00ksikahnuzNDoqAI+cUj6sxku9kr+Y6lJ7gxQKUKdtJA7KOx/eTcYFhZzZ/nympdFGiP7Z1Bzj9BvXqDHulkRqOPu6illFIaq1X3izNyW7tzmK/SGREBh6L7R+M/px9d8AEAN4NVRj17p45dc54+EM3DuJQHXss/+eST2dnZSqWyoKBAqVSmpKRwWRAAxGJxj7MgAFy9enXatGncz1OnTm3b6ebq1atTpkzhZoOKjIyUy+W5uQ+c0oUS2/c4Er6I/UMwgtQWZTJqBd+x9MQzl+mEctbHBjswkxT2m7tB0OTeYimd0DsQl9ryHUtXxXhib4QTDAurzlHZDf2siRSX2gi9Alia0uTd5juWntA3/v9vYr9p/OeYVWW1rrAVwMGZhIMQDhUxb9/kof2jk7EwEonE19fXuLssLy93dnbmfnZxcSkrK2u7gqdn8yxxOI47OzuXlZWNGDGi7abq6urSIzeNffoDj/Jr3JKVK1f23WB/pVKp0+kIwgj3QIRXAFWY3nDrmqC/1VrbkUt8l0lKSNgzQSOh1H3XZUqhUGBGrYihSrsGAPjgkf2rn9dz/pBUKThcgi88oTs3S2dL9kk6NPqnzcEHj4CizKa0RMprmNE33qfKVLD0lEhDw9//v707D6iqTBsA/pzl7pcLsigomwiICCKyiLuiIChaaW5lZvVlWU02UzPjtEw1TTZtUzZ9zdT0TVOZWlruIoqKKwQiIrLKrmwi273c/Zzzfn9c3Lcr3HvPXd7fX9fT4b4Ph9N5znnP+z5vOLtoqN6yp4yVjrYJ197EdLYRUje9+2ALx21NfhT8ZwK56Kjg7dPsSKlu7jDLpEOO4wQCgUBwj6KF1xJhZWXloUOHkpKSYmNjv/32W41Gc9sfWL169QAjE4vFBoPB9Fmn0920zBMASCQSo/FaV/Ft9zFRKBRCITo7+sXF0pwASgUASUlJd9rZIkQikUUSIRsZr6ovQ/XnpPHTB/5tNnOsFf3hNAcA/55MTvS3bnFolmUt+6fsrSkBANnoRJE1zxBr+G46TN7DlXTCM/miX2aS1ljxx+JH24QanajL+ZmrOWvV/ystTs/CikNcixZN94X1E4U0aeHVJax0tE3UjeUAII6Il8pkVmrCSh4YAes06I8F3NN5gpPzyEgPC5zoHMeZs2LStUR48uTJ5557bt26dbGxsX/4wx8uXbp02x8YeCIMCAhobGw0fW5sbBw2bNhNOwwbNuzcuXOmzyqVqru7++oD4k0oipJp2y4h+is6Jf8B2tqLoZBXDPyrJKPiVXu/M1Setsi32cYFNVpymDVy8Eo0+Wio1V8NWupQm7Ddl5m2RlIsFQ8fRTjOMTdRiGB7CpG4ndnViN4+g96Js/zBt+zRvkocMpoQSYytDUjVRbl7Wfz7reSF42zeJRTsRmyZRQutUEHGSkfbRF91BgAkEeMc6Npy1R9ioLgTNtZwD2Wj/AeoQZYYGcKy956wf+1ILV++vKen5+WXXwaAmpqanjsYeFgLFizYsGEDQgghtGHDhoULF5q2b926ta2tDQAWLlx44MAB0+eNGzeOGzcuMDDwTt82LO+LOG+iqgctz2E4x3mHIvQPI2UKpqOVaW/iOxaz6FhYmM22aWHWMOJviQ4zQOYq0/ABUViMHVZWM0eIG/HjTJom4d0i7qdahxlESlC0OCwGHKqCxD9Kuf9UcRIats6kvB1tiA9iGX11MRCEnc8gvIv/m0ol+BDVSrT4EMPY6ky/lggFAoFCoRAKhQAgl8sVdzDwJp977rlLly6NHz8+KSmpubn5+eefN21fuXLl2bNnASAqKmrlypXx8fFz5sx54403Pvroo7v9Aqxhy0zKUwS7G9FfzzjMBQIIom9wefkpvkMxy6pjbEE7GqEgfkym7b3Y8O3oHWF+8d3NHEp8kEghgKeOsSWdDnPTZ5pN6Ci11nJa0Mu/sgTAN1OpOG/HO9ENdeVIrxX4BjnQ8/dNxBRsnUkNlkB2E/pTgY2qr93x7phl2UOHDpWUlOh0uldffRUAysvL5XJ5QEDAAJv08PAoKCjIz88HgISEBJrui6GsrGzw4MGmz59++unq1aubm5tjY2PvOUJ1uBuxcQY9J4t5+zQb5+0wo8zFEXGa0zm6ilPyqQ/wHcs9fHKO+76akwtgewrl6YjTWBDSVZ0BxxlQfie/jSLPdKDvznMPHmDzH6S9HOFv0TdrtqIQELKr9YBu1dCLFh9kjBysjSGXhDhevyI4QmU1cwTKia0z6Zl7mY9KuLFexKOhVv9b3L6B1tbWhISE1NTUtWvXfvHFF6aNX3311bJlyyzSKkVREyZMmDBhwtUsCACBgYFi8bWeiJEjR86YMcPMeRqz/Ym/xveNMj/vIKPMRRHxQBD688XIaOA7lrs52Iz+kM8SAP+dSkUNsusL2Z0YLlb3VVbzufmFtMP5cjKV4EPUqtBSG3YcDQQ92P9KrbVavmO5Gw0DDx1g23WQHkC8G+94nf8mDlFZzRxTfInPJlAA8PRx9tRlq1/Sb58In3766Z6entzc3KysrKsblyxZkpuba5HXhNawNoZcHEJ2G2D+Ad7KE9wXSjFIMDQEGQ362nN8x3JHDb19F9zXY8mFwx3yHhmurjhh95XVzCGmYEcKPUxGZDeh3+fzX7bfHKKwsWDfpZRMHc5FHSjcndg4g7bGuFwbcKDKauZ4dhT5TASpZWD+fqZZY91ceJtLm1qtzszM/PTTT5OSkq4fdxQeHs5x3MWLF60aUL8RAP83hYoaRFR0oxU5jlGeUWwqwG2vxRi1DCzIZi/rYLY/8eY4R71HBrtckn4grq718ek57v8qHeCp8EqtNft9Tfh+Mbe5hnMTwC+zKA8rDz63niuV1aIctI7Prf4xkZrmR7Ro+go6Ws9tEmFPTw/LsqGhoTdtNw1C1ev1VgxnYORXzuMdDdzfHKE847XXJ/YHAaw8yp6+jCI8HHWAjAky6A11ZUCSpucS5zBhMPGPCRQAvHCSzW+397s+0chxQJKGmnPIoOM7ltvYewG9foolCdgwnRrtmJ3/Jo5VWc0cAhJ+TKYDZMTJNvRirhUz4e1Xn5BKpQUFBTdtP3jwIEVRI0aMsF40AxfmTmyYQZMEvH6K3XfR3i8QwuGRpFhqbKlnu24/a5NH7xdzP9Vy7kLYnkJZe4KmVV2prBbuQJXVzPF0BPlcJKljYUE226rlO5q7IqVyoX8YYhl9jd29BchvR0sOMSyCt8ZR84MctfPf5EplNedJhAAwRALbUigJDV9VcP8st9bjze1Xn1i2bNnatWsPHz5sqgOEEMrKyvrtb3+7YMECd3d7r+05N4B4axzFIVh2iKnotutcSFC0qG+WlX1V6N9Wz73Wd49Mj3R34HtkcMbb5Ks+TaKm+hJNarQwmzHYdw+I2C4XrC/vRnP2Mb1GeDyMfD3WsbMg03aB6WwjZQrBsBC+Y7GwOG/i6ykUAKzJZY+2WuWSfvu//d///vcRI0YkJyenp6dfunTJy8srLS3Nx8fn888/t0YQFvd6LLloONltgHn72Q777coFuDKCQ1dhR7MJ9zehZYdZDsE7cVRGoGNnQXCKGYR3IiBhy0w6UE6cbEPPn7DrgTMi+3tNeEGNZmeyHXqYF0h+PcVx+/779N3wRcTb+RyV/nlkBPn7MaSRg0UHmcZey+fC2ydChUKRk5OzZcuWZcuWpaWlZWRkfP311wUFBVfn+dk5AuDbaVSiD1GtRA8dsOubZXFEPADoK4uAs4sLWe4ltDCb0bPwm9Hkq2Md+x4ZANieDmNrIyGSCIMi+I7FKgZLYEcKJaPh60ruizL7PdGFw0f1vQXovsx3LAAAl3UwO5O9oEYTBhObkina4c90ZxsRdqu/JVBzAohLWnjgAKthLPzld/z7UxT18MMPf/311zt37vzuu++eeuopx1oRUELD9hTaX0Yca0XPHreLHHNbtJcv7TOM0/YaGir5jgWKO9HcrL6eovUTHHiY6FWmgUhih62sZo6xXsS30ygC4KU8NqfFTt8FEBQtHDEGrrzH4peGgQcOMOXdKNqT2DObljn+qYFYxlBTAlfq+Dgl05uaMHfiTAdaccTC8wIc/0bozvyksDOVktHwTRX3yTn7vVk2TaLgvXe0qgfNzmS69LAg2Bl6ikz6ZhA6Y7/o9RYO7+s4ejibqVXZaS40Pazw3jtq4GBBNnOyDYW4EVlptEXKOvPOUF/O6TQCv2DKw5vvWKxokAh2pVLuQvi5jvvAovMCbrgXevDBB29dHfAmv/76qwWbt7ZYL+K76dSig+wrv7KhCpgXaI+JXxwR13t0h668UJG+gq8YapRoxh62TQupw4iNM5yhpwjguspqTjGV/u7eS6BKu9CeC2jBAfbEfHt8yum74Ss/BRwHPC2MwCF4LIfNuogGSyAzjfJzpLWh7kZf4bQjwm4y0p34bhr1UDb76ik2ytNiBTVvOB21Wq3mOvn5+S0tLZobWaRVW1oQTL49juIQPHqYPWuXpYpFoTGEQGi4UMX18lO1p0mNUjLZZg2a4UfsSKVFztAnCgBgbKrherspz8FOUFntnkgCNibTozyI4k70uKU7jiyC9hlGew/lNCpDYxVfMfw2j/2pllMIYF8aHe7gw6Gv5zSV1cwxP4g0zQt45BBTZqF5ATckwqysrJIriouLAeCDDz4ouZFFWrWx12LJ5aGkygjz97Nt9jfjihCKhMNHA0I6Pl6ftOsgNZOtU6Hxg4kdqbTYWbIgXH1BONL5HwdNFALYltLXcfThWXt8FyCOTAAAXfnNc5Rt4/VT7GelnISGXbPpWC/nyYJOVlnNHK/HkotDSKURFhxgeyxRqtk5usDugQD49xRqwmCioRctyGasWqqnf/gqMdNjgPR9TFk3ivYk9s6m3QQ2bt+6TLMzXaG/6CpTxxFJwJ8K2D0X7O6xsK93tIyHRPhFGffuGY4iYMN0aqqv82RBcMbKavdkKqg5xpOo7OmrhzBALpEIAUBMwc5UOsSNONlmjx1HV4qOngJku9A0DMzbzxReRmHuxP502iHXV7ozZNAb6kqBJEXhzlNZzRzW6DiyFFFoDCEUGS6eZ1Vdtmx3Yw33m1yWAPhqCrUg2Nkuek5cMuIu5ALYmUr5iCHrInqzcKAPN852TtyFtxh2zabchfBjrd1VIhX4BVMePqyyy9hso6VqDBwszGaOtaIAGXEgnfKV2KZZ29HXnEWMURjgbJXVzGHxjiNLIQRCUegYQEhvw/Wos5vQE0dYDsEH46knw53witdXWS3CtRIhAATJiU3JNE3CujPcj7UDuqQ74WlxF5EexPfTKVMl0k019pULTeexbRasN3Kw6CC77yLyk8KhuVSQ3Kl6ikyu9Is67bSquzB1HEVf6TjSWnr28UCIR5leE9ooEeZeQg8cYAwc/DGGfCXaCS931yqrDXW2ymrmmDmU+CiRQgBPHWWLBzAW8oZB1nv27FGr1abPCCEAyMvLI28c6Lx48eJ+N2YP5gWSHyTCK7+yj+WwWhbs5w5RHBGvzsvSVRS6zVpi1YY4BI8fYXc2cF4iOJBOhyqcMAvClcWtXGQc3a3kAtieQiXtYLIuojlZzM5Ue3kBLI5MhJ+/0FUWAscCad2hWee6UEYWo2HgqZHkewlONAzsOs5dWc0ca6LIM53ov1VcRhZ7LIMKduvPcbghET733HONjY3Xb1m/fv369euv3+LoiRAAXo4mdSy8for9n6OsygBrouwiF4pGxgJJGerKOJ2GFFtrfhMCePYEu6mGUwhgXzrt0IvO3AXb02FsayREEmHwKL5j4U2IG3Ekg07JZHNa0Ky9TGaaXbwGpr186cH+zKWL+voKUcho6zVUr0Jp+9hOPTwUTH452UkKRNzK6SurmeOfk6g6FTrSgmZlskczqKHS+/5r35AIN2zYoNXa3/QCK3htLOkpghdOsi/lsS1a9Dc7uFskJXJh0EhDXZn+fLEkeoKVWvljPvvvCk5Cw85UOt7bWS8OoKs8DQg5d2U1c4zyIE7Mo2btZfPb0ZRdzP50apiM/z+6ODKx99JFXXmB9RJhuw7S9rFNajTdj9g4g3LWNOgKldXMYRoLOWsvU9COkvewRzLoIfc56OGGy8SUKVMsGZ19Wz2KdBPAE0fZ94s5hOBvifz/zyKOiDPUlekrCq2UCN86zX54lhOSsHUmPc2P91/Xilykspo5guTEsXl0aiZT0omm7GYPpFMj+O4MF4+K7835RVdW4D53pTW+X2mE9H1MZQ8a40lsS3GqqbE3MdS5RGU1cygEsD+dTt7DFHWg2ZnM4bn3VzzPLnoF+bI8lNw6kxJR8MFZbvVxluN7qLlVi45+Vsq9fZqjCPh+OjXHQnWJ7BRCLjiD8C58JXBkLj1+MFGnQlN2M+e6eD7RRSOiCZHE2FzL9nRY/MsNHDyczRReRiMURFY67eHIa0rfk94lJ07ciYcQ9qXRER7E1cUDzOfSiRAAHggif5lFS2j4soJ7LIdleB1JKgwIJ+XuTEcr095k2W/+bxX3Ui5LAHw5mVoc4uR/dGNTbV9ltcH+fMdiLwaJIDudnjmUaNHAzL3MmQ4+cyFBC8RhMYCQxe/5WASPHmYPNKGhUuecFHQTl6qsZo7BEjiQTgW7EbmX0EPZjM7s6YVOfk00x5wAYl8arRDAxhpuQTZr/rGzPIIQh8eCpQeX/1zH/c8xFgF8nEQ9NdL5/+Kmq4M4HF8dbiAXwM5UOj2AuKSFGXuYE2185sK+SRRlljzPEcCzx9mtdZy7EPbMpob3a/SgA+mrrCYQikZE8x2LHfGXEQfSKT8pZDehpYfMfbZx/suiOab6Egfn0l4i2NXIzdl3f8/UlmXxWms7G7hlh1kWwXsJ1G/tY3ystblmoQ1zSGnYnkIvGk52GyA1k9nfxFsuFI9OBAB9ZSFiLTbJ8U8F7NeVnISG3an0WCcqJXonuspC4Djh8NGE0A5GA9uTUAWRlUZ7iWBHA/fkMc6cd14ucWU0R7w3cXAuPUQCh1vQ3CxGyVMuFEXEA0Hoq4uR0QIVQQ42oyWHWCMHr44l18a4xN8aGQ2GujIgCFerrGYmIQmbkqknwkkNA/P3M9sb+HkZQHn4CHyDOJ3GUFdukS/8ewn3fjEnIGHrTHqyc5USvRP8gvAuoj2JvWm0mwB+qEHnuu+9v0tcHM0U40kcyaADZMTRVjRrL9Oh5yEGSjFIMDSkr06ySFnlAAAgAElEQVTmwJxsQw/sZ3Qs/GY0+W68846cu5G++iwyGoQB4aRMwXcsdooi4P+mUmuiSD0Liw6yG6r5yYUWXIniu/PcK7+yJAHfTHX2gWDX6RsR5nqV1cyU6EPsSqUltFn1m3EivMFId+JoBhWqIAra0fTdTAsfyy9eGTs6oN7Rog40N4tRM7AynFw/wVWyIODbZPMQAJ8mUW/EkgwHjx9hvyjjIRdeWYkif4Dfs6uRe+oYiwD+Pp56NNRVLmhM2wW26xIp93DNympmmuZH7J9NDjZjzJSrnDfmC3Yjjs+jx3gS57rQpF1MrcrW71H6XhMOYLzM+R40Zx/TbYCHgsl/O29NjdvS4RmEZvtLHPWPiRRC8PxJ9r1ztq48IAyJIsUyY0s923Wp31+SdwktO8QyHLwRS9pJiSjbuPYi3FUrq5lp4hDCDyfC/hkigZwr865m7GGremyaC4XDI0mxtN8XiMZelJLJtmohZRixaQZFu9JfmFV2GVsbCKFYGBzBdyyO4YVI8r/TKJqE90rptQU2HTBNULQoPAYGcM9X0onmZDFqBp6JIP8S50LdHoArq1maK10m78cgEWSl0ZN9icZeNHU3c3YAdc3vF0HRorAYuPIO4L40a9CMPWxDL5rmR+xIoUWudXHoW9BRFDaWoO2jwrQjWBFGfj+NEpDwfjH3/EmblpUYyEoUx1rR7H1Mlx4eHk7+7yTXOtERy+irzwJB4J4PS8GJ8I7chZCVRqcOI9q0MGMPk99uuyuEqG8Sxf1dIC7rIGUvW6tCV98SuxpXXnppIJaOIH+YZBRT8EUZt/KI7cpKiCMTgSB0lacRcx+jtHMvodRMZupupkUDM4cSG6Y7bSnROzHUlSO9VuAbRLl78R2Lk8CJ8G6kNOxMpR8MIjv1MGsvc+ySjQ6XOCIeAPSVRcCZ21tV1o1m72PKulG0J5GZZi9r7tgUQvrzuLJaP6UNZU3Dzb+v5hYfYvU26SWl3L0EfsHIoDPUmjVGuqAdzcliJu5kDjQhDyG8HUftSnW5bg+4OiIsIo7vQJwHToT3IKJgy0xqeSipMsJDOVTmRVs0Snv50j7DOG2voaHy7nuyCLbVczP3MlFbmdOXUZg7sT/dLlbbsT1jcy2r7KI8vOkhAXzH4pBm+BEH0mlPEWyr5+btZ9Q2Wc5XHJkIZkyiKOpA8/ez43cwmReQmwDeiCVrlwj+HEu6YLcH4MpqVoAT4b3RJHw7jXp2FKllYOFBbkO1WaUKBuiekygu6+BvxVzIj8yCbPZQM5IJYPUo8shc2unrK96JrgLfJg/U+MFEzlzaVwIHmtDsTKbbAkUd7sF0nmvL7pgISzrRwmw2bhuzq5GTCWBtDFm3VPCXOOq+1hZwJpxaabhwnhAIRSFRfMfiPHAiNAtJwBeTqJdGsQYOHsthh//IvHaKLe+2Yj68yySKwsvoiaNswCbjnwrYxl4U7k58mkRdXCb4YhLlZ60FfR0AnjhhEdGexNEMOkhOnGhDsduYP+azJ9oQa7UzXTQ8kpTImbZGpqPlpv9U1o2WHGLHbmN+qeckNLwSTdYuEbyXQHm5ago00VUVAUK4sppluWTPQr8QAO/GciPc6b+XQp0KrTuD1p3hEnyIx0LJpSNIH7GFmxOFxhACoeFCFdfbQ8rdAcDAwdY67h+lXN4lBAAkARmBxAuRVKo/nklkqqxWCgQhDsOV1QYqzJ04No9Ky2TLutEHZ9EHZzkfMWQEkvMCiVR/UmbZawZJiUbGas8c05UXyidnmLZV9aC/FHGbajgOgZiCZ0aRa2OcfykJM+GSEdaAE+H9WT2KeD6KOtGKvqvmttRyBe2ooJ19+Vc2zZ98LIyYF0haahVQQigSDh+tryrSVRV1R0z7Vzn3VQXXpgUAGCSCJ8PJ5yLJEGevr28+fU0JMhqEgeGmmwZsgAJkxNmF9LFWtKuR29GAapTomyrumyoQU+zMocT8IDIjkBgqtczpJx6VoD1zTFdeIJ+cUaNE7xRxG6o5FoGIgv8ZSf4phhwmw+f5NbiymjXgRHjfCIDJvsRkX+ofE6j9Tdz359GOBm5XI7erEdyF7PxAckUYOXOYBZ7SxBFx+qqi7JxTD5+ZZOQAACI8iGcjyP+JsPRduePDS9JbHEXAdD9iuh/18XioVaFdDWj3BS6nBe25gPZcYAEg0oNYFELMCyTHeQ/obBePSgCC0FUVv3xc+7/naT0LAhIeGUG+FYdv9W5mqqxGuQ3CldUsi58LKsMw+/btu3Tp0vTp00NCbvMXPXLkiNHYN7VoyJAh0dH2uOCWiIJ5geS8QOjSU1vquO/Ocyfb0PfV3PfVXICMeCSUeDKcDHfvz//JehZ+rOV+bor9X4CAlkKkQBmB5JrRlEXyq1MyjSrC/UVWEuJGrIki1kSRl3Ww9wK3uxHtu8iVdaO3T6O3T3NBcmK2P5ERSMz2J4X3P+qgmfK45BEypKvmVMFZo2LcouHkugQyVIHP9NvoexEeHosrq1kWD4mQ47j09HSVSjV27Njf//73mzdvTklJuWmfhQsXjhw5UiqVAsC0adPsMxFeNUgEqyLIVRFkRTfaXMt9fx7VqtD7xej9Yi7Om3gslHwk1NyXiLUq9FUF93UF16EHgMA3hN6+hsu10xoDwkKt+zs4susqq43iOxYn5y2GFWHkijDQsdTxVrSrkfu5HjX0oq8q0FcVIKPZGUOJRcPJ+UGkh/De33ZJC38/x64/x71Ix/8GalZRRf9+OLF/944uAldWsxIeEuH+/furq6vLy8vFYnFcXNwbb7xxayIEgP/+979hYWG2D28gIjyIt8ZRf44F06Ph5hqu8DIqvMz+IZ9N9ScWDScXDb/9zCcEcLAJfVXB/VLPmUboxXkTqyLIYGmcLj/Lo6EQcCK8M31lISAkCovBldVsRkzBrGHErGHU+glQ2oW21HG7G1HhZbS7Ee1uZCmCTRpMzAskHwwmRt4usbXr4OMS9rNSTssASQCEx0P7jzNVBb7uz9r+d3EUuLKa9fCQCPfs2TNnzhyxWAwACxYsWLVqVXt7u4+Pz0275eXl1dbWxsTE+Pr62j7IgSCJvpeI6ydQB5q478+j7Q2c6QKxJpedd+NLRJURNtVwn5VypV0IAEQULAgkX4oiJw4hAECri9flZ+kqCt1mLeH1d7JreEl6fo0eRIweRL01DupVaH8T2tXI7b+ITrShE23s2gIIcSMyAolFw8mJQwiSgA49/KOU/XsJpzICAZARSLwTR40dNLr5jIJpb2IuN9PeQ/n+hexUX2U1v2BcWc3ieEiEzc3N48b1XbO8vLwkEklzc/NNidDHx+enn37S6XS5ubkfffTRs8/e/j5Rp9O1tbWtW7fu6paMjIxRo6zVP2Y0GkmS5DhzSzFSAGl+kOYHrVr4sQ421EBxJ5heIoYq4JEQaNPCD7XQawQACJDBMyPhyTDwFnMAnOkNKRkSBSRlqCvTq3pIsWtNEjQajVffE98NQvqqMwBAjYg2a3/sdsw92nc1TAxPjIAnRkCnHrKaYNcF2N8EtSr0WSn6rJTzk8DEwZDVDL1GIAAeCIQ/j4XoQQiAMbIgDIvRnTmmLsmTTp5nkd/InvXvaGvLTwGAMDwWn+fmM/NybZVEWFlZuXDhwlu3f//997GxsRzHkeS1V+oEQbDszZUNS0tLTfvk5OTMnj37wQcfvO1zIcMwDMN0dnZe3dLZ2Xnrt1kKy7L9+3IfIbwwEl4YCaXd8EMt8WM9Wa2Ev5wBACAApvui1SPRXH9kqh18QwtCCR0QxjRU6KrOiEaPt8Qv4TDMPNpMcx2r7CTdvQivodb70zu9fp/bt+VOw+IgWBwEBg6OthF7LhJ7LhIX1PBzAwDAXH94fQw31hPBdWe7IHyc7swxfUWhaMIcS4Vht/p3tE2V1agRY/B5br6b0s2dWCURBgcHb9269dbtQUFBAODr69vW1mbaolKpNBqNn5/fTXteDX369OkeHh7l5eW3TYRyuXzYsGEfffSRJaO/M47jRCIRRfV/qmCcL8T5wocT4FAz2ljDyWh4LpKM9Ljb6ABpZIKyoQLVlojjpvW7XUdkNBpN/ed3p6ovBQDJqHhzdsbuxMyjfb/EABnDIWM4AEBRB8ppQVN8iXjv25zwwjETVVs+M9aWiEjC6Wum9ONoc2ol01RDCIRuEeOc/vhYEMdx5tw3WCURikSiiIg7royanJz81ltvmRJ1VlZWZGSkKRF2d3cLBAKZTHb9znV1dR0dHYGBgdaIky8UASnDiJRhZiVU8ah4Zeb397skk+vAMwgdRawXEet1x3s+Uu4uDAgzNFbpq8+KIxNsGZhDwJXVrIqHWqMPPvggRVGLFi16//33X3jhhddee820ffny5e+99x4A7N+/f/78+W+//farr746ZcqUp556asSIEbaP004IA8JJuTvT0cq0N/Edi91BRoO+9hyurOYczFyJwjXhympWxUMiFAgEx48fT05OVqvVW7dufeSRR0zbX3rppQULFgBAYmLiokWLOI5zc3P77rvvvvzyS9sHaUcIQhweC/1dyNu59VVW8w/DldWcQN+KK2X5fAdij3BlNavip7KMQqF4/vnnb9o4a9Ys0wcPD4/HHnvM5kHZL3FEnOZ0jq6iUD71Ab5jsS/6qiIAEOH5xU5BGDiSlHswHa3MpYv0YH++w7EjuLKateFlmByAKCIeCEJfXYyM1l8gzqHgympOhSBMTzz4ofAmV5YYw5XVrAUnQgdAKQYJhoYgg95QV8p3LHaEVXUZW+oJoVg4PJLvWDDLEI9KAPwW4Ba4ZIS14UToGPrW6b3zgvUuSF9xGhAShY7BldWchnhUPJCkvqYE6bV8x2IvrlVWC8evAKwFJ0LHcJcF612WrgrfJjsbUuomDByJGKPufDHfsdgLQ10Z0msFvkG4spr14EToGIQho0mx1NhSz3a38x2LfUBIX2kaKYMToVO50juKJ1H06esXjYjjOxBnhhOhYyAoWhQ6BgB0Faf5jsUuGFvqWWUn5e4l8HWqYguYODIeAHSleLxMH1wywgZwInQYooh4AMAlZkz6xotGxPMdCGZhQv8wSuHJdrcbWxv5joV/nFppuHCeEAhFIVF8x+LMcCJ0GKbpxvrKIuBwyV08g9B5EYTI9EYcT6LAldVsBSdCh0F7+dI+wzhtr6Ghku9YeIaMBn1NCRCEOBxXVnNCfSVm8NAwXFnNVnAidCR9FwiXn0Shrz2HjAahfygp9+A7FszyxCPjgKQMtec4nZrvWHiGK6vZBk6EjgRPojDBwwecGymVi4IjEMvoq1x6EgWurGYzOBE6ElFoDEELDBequN4evmPhEy604fTwJArAldVsCCdCR0IIRcKQKEBIV1XEdyy8YVVdxuY6QijCldWcmGlJQl3pr4AQ37HwBt/w2QxOhA4G11rTVxbhympOTzA0hHL3YpWdxpZ6vmPhx7XKajgRWh9OhA6mbxJFxSmXvVPGt8kugSBcfHnCa5XVFJ58x+L8cCJ0MAK/YMrDh1V2GZtr+Y6FDwjhkTIuwsVXosCV1WwJJ0LH07dmm0v2jhpbG/oqqw3BldWcnGjkOIKi9XVlnLaX71h4oK/AN3y2gxOh4xFHuO5swiuV1eLwODqnR4qlwuGRwLGm6uouhVMrDRdxZTXbwYnQ8YhGxgJJGWpLOZ2G71hsDfeLuhSXnURhqqwmConCldVsAydCx0NK5MKgkX2DylwJMhr0tedwZTXX0TeJorzA1YaG4Rs+G8OJ0CGZXqHrXWwlCkNdKTLoBcNG4MpqLkLgF0x5DmaVXcamGr5jsam+ymq4pryt4ETokFyzKjEeR+eCTG/Eta7UO2psa8SV1WwMJ0KHJAwIJ+XuTEcr097Edyy2Y1qUGN8mu5Qrswld6J7PNDgIV1azJZwIHRNBiMNjwZUeCllVl7G5lhCKhMNH8x0LZjvikeMIWmBoKOfUSr5jsRFcMsL2cCJ0VK5Wa01vGkc3AldWcy2EUCwMGQ0cZ0oPTg9XVuMFToSOShQRDwShry5GRgPfsdgCHj7gslyqxAyurMYLnAgdFaUYJBgaggx6Q10p37HYgr7K9OIE3ya7HJeaRIFHhPECJ0IH5jq9o8aWerb7MuXuJfAN4jsWzNYEQwJpLz+ut8dw4TzfsVgdrqzGC5wIHZjrLFh/bfgAHkfnksSj4sAFVqLAldX4ghOhAxOGjCbFUmNLPdvdzncs1oULbbg4F3lNiCur8QUnQgdGULQodAxcmWDnrBBj1NecA4IQheHKai5KFB5LCISGxkqut5vvWKwI3/DxBSdCxyZygRIz+uqzyKATDA2hFIP4jgXjByEQikZEA0LOfc+HS0bwBSdCx9ZXdPR8EXAs37FYi/rXLACQjJnEdyAYn8SRieDUK1Hoa0vZ7nbK3QtXVrM9nAgdG+3lR/sM4zS9hoZKvmOxCk6t1JXkAknJkmbzHQvGp2v1dTmO71isQp2bCQCyxFQ8Isz2cCJ0eH0XCCedRKHO24cYo2R0IuXuxXcsGJ9on2G091BOozI0OuE9H6dTa4uPAUFIx6fyHYsrwonQ4TnzJAqE1HlZACCbkM53KBj/rs2sdzqaU4eRQS8KG0t7+/EdiyvCidDhiUJjCFpguFDF9fbwHYuF6c8XM+1NlIe3aS0ezMU58UoU6rxMAJDjGz6e4ETo8AihSBgSBQjpqor4jsXC+t6aTEgHEp+oGIhCYwihyHDxPKvs5DsWSzJcqDJerCFlCnH0BL5jcVH2e31RKpV1dXUs67SDIS3IKWutIY1KW3ISSFKWmMJ3LJhdIARCUegYQEjvXKe6OncfAMgSU/DKKnzhIRHu3bs3KSlJIpFMnDjxTvt88sknQUFBc+bMCQsLKy11iaLSA2HqMtJXnHKmqsSGwkOIMUoiE6lBg/mOBbMXzldiBhl02tM5ACAdj8dF84aHROjr6/vmm2++8847d9qhvr7+jTfeyMvLKy8vf/LJJ1988UVbhueIBH7BlIcPq+wyNtfyHYuFIGQoPAh4mAx2o77ZhJWFTjNxVnP6CKfTiEKiBL6BfMfiunhIhOPGjUtPT/fyuuNo+M2bN8+YMWPkyJEA8Oyzzx45cqS1tdWGATokccQ4cKI7ZX31Wa6jhfLwMT0BYJgJ7eVLDwngNL36+gq+Y7EMdd4+AJBNSOM7EJdmj+8I6+vrw8LCTJ+9vb3d3d3r6+tvuydCSKvVFl5RVFSkVqttF6g9EUdNAAB1biZiGb5jsQB17l4AkCXNxsNksJv09Y46xUoUxpZ6Q305KZFLYqbwHYtLo63xpUeOHNm6detNGymK+vTTT8358d7eXk/Pa6szS6VSlUp12z07Ozvr6+uffvrpq1t+85vfLFq06P5DNotGozEajRRFWen7ByRoNDUkkGlr7Dq5Txg7ne9oBgRpVNqzJ4EkYfSk3t5evsNxCWq1mnCQgiYoeDTAL5rSfGq6tf5Pt7arR1t7dCcACMZMVhuMYDDyHZcT4jhOIBAIBPcYhWSVROjp6RkZGXnTRtLsW/vBgwd3d1+rMd/V1TVkyJDb7unl5TVq1KhTp2zUH0iSpEgkstNECECmLO3c8IHhyC+ek9KBtNMgzaHK34cYIz0yXhEwnO9YXAVCSC6X8x2FWVD0eI1IwrbWS1i9g9YbMh1txBiVZ48DgMeUeQIHOfgOh+M4c6YeWCURRkdHR0dH9/vHx44du379etPnkpISkiRHjBhhodCcmXTcdGXWD0x7k+bMMem46XyH03/qX/cDgChhJt+BYPaIoGhxWIz2XJ6u/JRDV6DVFh/j1EphYLjAH1/feMbDC5iWlpYtW7acOnWqo6Njy5YtJ0+eNG1PSEjIzc0FgEWLFjU3N7/33nunTp1as2bNE088IZPJbB+n4yFJt5mLAUCZtdFx51HozxczbY2Uhzcdhldlw27vyiQKx6611jd9MAkPk+EfD4mwo6MjOzubYZjp06dnZ2cXFxebtsfGxioUCgCQSCQHDx4sLi5es2bNpEmTPvjgA9sH6aCkCTNpzyFMW6O25CTfsfRTXzWZpDQ8TAa7E/HoRADQV5523KFhzOUWfU0JIRRLHLnzxmlYpWv07qKior788stbt3/11VdXP0dGRm7evNmGQTkJgqLlMxd1b/lcmbVREj3R4dZz4dRKbclJIAhZYqqG72Awu0V5+Ah8g4ytDYa6MlHoGL7D6Q917l5ASDpuGimW8h0LZpfTJ7CBkI2fTbl7GZtqHHF8ubogGxkN4lEJlCeuJoPdjWklCk3hYb4D6Q/EMpr8bACQJeF6EXYBJ0JnQ9ACt+RFAKDcv4nvWO4TQn39ohPn8B0KZu9kE9KBpDT5B5jLzXzHct+YykJW1SXwCxYGR/AdCwaAE6FTkk2cQyk8DQ0VusrTfMdyH/Q1JUzbBUrhKYnE1WSwe6B9hskSUxDLKDO/5zuW+2Y4lQ24fKA9wYnQCRECoXzagwCg3LeB71juw3WLLjnwJEjMZhTpjxECoeZ0jrGphu9Y7gPb3c7UnCUEQml8Mt+xYH1wInRO8inzSZnCUFemrynhOxazcGql9uwJIAgZrsGPmYdy95JPygCEevZ+x3cs90Gduw84TjJmMil14zsWrA9OhM6JEIrlUx8E05xCR3BlmEw8HiaDmc8tZSkplupKf9VXO8YNHyCkzj8AuF/UzuBE6LTk0x4gJXJ9VZGhzgEWdNT01eDHw2Sw+0DKFPLpCwBAufe/fMdiFl15Adt1ifQcIhoRxXcs2DU8zCPknVKpvHz5cj9+UKvVCoVC3muN0jTt7+9/z9qtpFgmnzxPeWCT8sCP3qv+YpvY+kdfXWJsbaQUnmI8TAa7T24zFvYe362vLdWVnzKtUG3PTC/ChfEpDjfH17m5YiJctmxZUVGRRCK53x9ECNlDhf729vbPP/98xYoV99xTPv0h1dHturJ8w4UqYUC4DWLrnyvDZNIIyhVPSGwgCJHEbdbinu1f9ez6P3FEnD0nGFbZpSsrAJISjJ3KdyzYDVzxumMwGL777rtZs2bxHUg/rVq1Sq/Xm7MnKVPIJ81VHdqqOvCj15NvWDuw/uHUSu3Z40AQUjxMBusX+aSM3pxtxuY6bfFxyVj7XdhPk78fsYwkZjLpNojvWLAb4HeETk4+YyEhFGlLThpb6vmO5fY0pmEyEfG05+0X28KwuyMEQkXaowDQs+e/wN17zR1+IKTOywI8TMYu4UTo5Ci3QbKkNEBIdcBOC830XR0m4qsD1n+yxFR6SCDT3qTOz+Y7ltvTny9mLjdTHj7i8Fi+Y8FuhhOh83ObtYQQCDVnjjGXLvIdy830teeMrQ2UYpA4MpHvWDBHRpLuacsBQJn5HTIa+I7mNq6rF4GvunYH/0mcH6XwlCbMAo5TZv/Idyw3U5/cCwCyJDxMBhsoydgpAv9QtqdDfWI337Hc7LplVRx1aIJzw4nQJShSlhIUrTl1kGlv4juWazhtr6majBSvTYoNHEG4z30cAJQHNnM6+1rFS1OQjRijeFQCNQjXi7BHOBHyr7Gx8fHHH09OTv744485jrNGE9SgwdL4ZOA41eGfrfH9/aPJP4AMenFEHB4mg1mEeFSCKHQMp1b25vzCdyw3wMNk7BxOhDxjWXb27NkxMTGfffbZzp07P/zwQys15JayDEhK8+t+tvOSlZq4X+pcUzUZfHXALMb0UKg6/DPX2813LH0MdaVXXoTjehF2CidCnu3Zs8fd3f13v/tdVFTU+vXrP/vsM4ZhrNEQ7e0njZ2KWEZ1eKs1vv9+6WuvXB1Gj+c7Fsx5CIePFkcmIr1Wlf0T37H06c3dBwDS8bPxi3C7hRMhz06cOJGUlGT6PGbMmM7Ozrq6Oiu15Za6DAhCnbeP7emwUhPmU+fuBQDZeDxMBrMw93lPAkH0ntjNdrfzHQtwOrX2zFEgCNn4VL5jwe4IX4MAAHqNYLTKu7mbUSQoBDdsaW1tzc7OPn78uOmfHMe1tLSEhYVZo3XBkEDJmEna4uO9Ob+4P/C0NZowE6ft1RabqsngqwNmYQK/YGnsNM3pHGXWxkFL1vAbjObUYWTQi8Jjae+h/EaC3QVOhHCoGaVmMiyyRVsEwA8zqGUjrj2Ii8XiuXPnPvPMM6Z/pqeni8Vi6wWgSH1Ee/ZE74k9bjMXkXIP6zV0d5r87L5hMt5+fMWAOTHF3JXa4uPqX7Pcpi+ghwTwGIm6b1kVPC7aruFECN5iCJQT3QZbZEI3AeErvaEosL+/f0NDQ1xcHAAYDIauri5/f3/rBSAYFiKOHK8rzVMd2e4+d6X1Grq7K1cHPEwGswray1c6PlV9cq9y3wbPx//EVxiGC+eNF6tJmUISPZGvGDBz4EQIYzyJ2iW8HYeHHnpozpw5Op1OLBbv2bMnPj5+6FDrdqEo0h7Vlf2qPrbTbcbDpFRu1bZuy1BXamypp9wGiaOSbN865iIUacs1pw5qzhx1m7lI4B/KSwx91WQSZhG04J47YzzCg2V4FhUVlZycnJ6e/tZbb/3mN7/561//au0WhQFh4pHjOJ2m9+h2a7d1W1cG0aXiYTKY9VAKT/nkeYBQz55veQkAGXTa0zkAgOtF2D+cCPn3zTffvPzyyz4+PocPH545c6YNWlSkLQeA3pxtnE5tg+aux2l7+wbRJeFFlzDrcpu1lJTKdeUF+uqztm9dU3SE02lEIaMFvoG2bx27LzgR8o8giIyMjOeff95Kg0VvJQweJQqN5nRq9XFbV2XUFBxEBr145Dg8iA6zNlIql09bAAC8PBT21YvAj4OOACdCF6VIfRQAVId/RnqtLdtV/2qqNYWvDpgtuE1/iHIbZKgr1ZXl27JdY1ujob6cFMskeDF6R4AToX2pr683VZaprKw8ffq0lUqPAoAofKxw+GhOrezNzbRSE7cy1JUZm2opt0HiqAk2axRzZYRI4jZrCQD07PoPIJvMkQKAK8uqSL0sNfYAABHrSURBVONnEEKRzRrF+g0nQvsyduzYxsbG5cuXL1my5He/+92ECROUSqWV2lKkLAWA3kNbbLZ+m2kQHR4mg9mSbHIG7eVrbKnXFB2xTYuIMWpOHQIAWRKeIOQYcCK0Ozk5OeXl5QUFBTk5OeHh4Z9++qmVGhJHJggDw1lll6m70to4nVqDa01hNkdQtFvqIwCgzPwesVYp5HsTbfFxTq0UBoQL/EfYoDls4HAi5N+JEyceeuih9PT0rKwsANi2bdsjjzwiEAgA4LHHHtuwYYP1mnabtRQAVNk/2eAC0TdMJjyW9hlm7bYw7HqyhFkC30CmvUnz634bNIeryTgcnAh5Vltbm5GRsXTp0g8//PBf//qXRqO5cOFCb29vdnZ2dnZ2W1tbfX299d4USqInCIYOZ7vbNQXZVmriKrwkG8YbklSkrwAAZdYPyKC3alNMR4u++iwhFEvGTbdqQ5gF4Vc1wOnUvYd/QYzRBm0RJCWbMo9SeF7d8s033zz88MNLliwBgE8++WT79u0qlWrnzp2mMtxGo9FoNGo0GrncOiVgCMItZWnnt++pDvwoS0wBkrJKKwCG+nJjUw0pU+BqMhgvJGMmCYMiDA0Vvcd3uSU/bL2G1CczASFp7DRSLLVeK5hl4UQIutJ8ZdYPNmuOkMrdZiy8+s+Ghobo6GjT5+DgYJFI5O3t/fLLLy9evBgAqqqq4uLirJUFAQBAOnaqct8Gpu2CpvCwNGGWlVrpqzWVNBvXmsL4QRCKOSsu//NV1cGfZBPTSbHMGo0gltEUHADcL+pocCIESczkQXotp+21QVuESCKNv6F2jI+PT1tbm+lzV1eXXq+PiIg4d+6cKRGWlJRcTZNWi4lQzFrS+cNHygObpXHJQFq+t5zTqTVFR4AgcL8oxiPxyHGisBj9+eLewz+bekotS1eWr8zcwCq7BH7BwuBRFv9+zHpwIgSCFsgmzuGr9QULFjz88MMvvPBCUFDQu+++SxDEsmXLnn766aeeesrT0/PDDz987rnnrB2DNG6GMusH5tJFTfExaew0y345p1MrMzcgg14UPhZXk8H45T73iUufvqTK2SafMt+Cy5DpKgqVmd8bGioAgHL34nexT6wfcCLk2aRJk9auXTtp0iSKop599tkxY8ZERUW98847ycnJOp3uiSeeeOyxx6weBEm5zVrStflT1f5N0rFTgSDu/SNmMNSVqXMzNWeOmoYnyCfNtcjXYli/CYMjJNETtCW5ygObPR56duBfqK8605P5naGuDAAot0FusxbLJs4lBMKBfzNmSzgR8m/NmjVr1vSto/3qq68CwMqVK1euXGnLGKQJs5RZG40t9dqSXMmYAa2dxmlUmoKD6ty9xtZGAACCEIXHyifNlcRMtkysGDYAijmPa8/lqU/scZu2gPIc3O/v0VefVWZ+r68pAQBS7u6WvEg+eR6uI+OgcCLEAEyTjmcu6t76v8r9P0iiJ/TvodBw4bw6N1Nz6qDpEZBSDJImpMgmpONl6DH7IfALlsbN0Jw6pMz6YdCy3/bjGwx1ZcrsH3WlvwIAKVPIp8yXT1+Ax4g6NB4SYUdHx5dffnn69Omenp69e/eaZo7fZOHChVdLi02bNu3111+3bYyuSJaUpjqw2XixRld+ShyZYP4Pcppe7Zmjvcd2GlvqAa48Ak6cI46egEupYXZIMedxbdFRdcEBefJCwZD7WCPJUF+hPLDJlAIJkUQ+eZ5byhIrDUDFbImfRHjx4sVx48a99tprd5oqfuTIkY8//njYsGEAMGTIENsG6KIIWiCfsbBn+1fK/T+YlQgR0p8/03tyr64k11SYhnL3ksbPlE2cQ3v5Wj1cDOsv2nOIbEJa7/Hdyr3fez3xmjk/YmyqVR7YpD1zDK6mwFmLSYkV5zVhtsRDIgwPD//iiy9qa2tfe+1up+DEiRNttj4fZiKfOFeV/ZOhvkJfdUYUPvZOu7HKTk1BtvpkJtPRAnDtEVAyZqL1puRjmAW5pT6izs/Wnj1uaKgQBkXcZU9jS70y6wdt8XFAqC8FzlxMSnEKdCr223P12GOP0TSdmJj46quvent78x2OSyCEIrfpD/Xs/ka5f6PPrYnw1kdAD29pXLJ8cgY1qP+DDjDM9iiFp3zqA6rsH5WZ33s/++5t97khBQrFsqTZbilLKbdBNg4VswGrJMKenp5Dhw7dun3atGmenp63br/VunXrYmJi9Hr9+++/n5aWlpeXR9O3CfXy5cvFxcWDBl07Nd99990VK+4xVdZ6pTttRq/X9/ZapwJAbDJxcIu++mx3aQEd1DcpmFN2GouP6n/N4rrbAYCgaHpknCh2uiByPJCkFgCsEIxarSYsNJEDuycXPNpk0hzixB5dRWH32Vw65IayFeyli/pj2wxnjgJCIBCJ4meKpi4g3Twsdaq74NHmC8dxAoHgtiNRrmeVRNjd3b1p06Zbt0dGRpqZCFetWmX6EB8f7+3tffbs2XHjxt26m7e3d1RU1PVJV6FQUNQ9eudIKxRPsTGRSGStumtyOZr2oHLfBubYdo9Rcfrq4t6Te7VnTwLHAgDtM0yWNFs2PtWCk5HvBCFk1dpy2PVc8WjL5ZD8cM+e/xqyN3v8Nsk0UtrY1qjK/lFTeBg4jqAF0sQURdry64sDW4QrHm2ecBzHsuw9d7NKIgwKCvrpp58s8lUSiUQkEmm12jvtQFHU9U+EZvr666+zs62+3oKV5OfnJyTcx6jO+yWf+mBvzi+6isLmPz/C9XYDACEQSmKnyiaki0ZEW2q6PYbxTj7twd5jOwyNldpzeYIhAcqsjZrThwEhQiCUTU53m7XE4ikQs088vCNECHV3d/f09ABAV1eXWCz28PAAgH/961/+/v4ZGRn19fXd3d0xMTEGg+Hdd9+VSCRjx95x4EY/vPLKK2fOnOnHDxqNRoqieH+gXLZsWWqqFde2JaVy2ZT5qgObud5ugW+QbEK6NGEmKXWzXosYxgtCKHZLWdb98xddmz/htL2mp0BZUppbylLK3Yvv6DDb4SER6nS6+Ph4AAgJCZk0aZK7u/vp06cBIC8vb/To0RkZGe3t7YsXL25ubqZpOjY2dufOnTKZJWfqzJ49e/bs2f34QY1GIxKJ7tn16gQUKUspubswcKRweCTfsWCYFckmzunN+YXpaCUoWjoxTZG6jPLw4TsozNYIhBDfMdye0WgkSfLuWaewsPCZZ545deqUbUJynURoD1QqlZsbfgy1EVc+2oaGCm1JrmziHNrTRlOWXflo25jpHSE/g2Us4p6hYxiGDZwwKOLuUwkxp+fw4ycxDMMwbCBwIrwPhYWFVxfRxazt8OHDOp2O7yhcxb59+/gOwVUYjcaDBw/yHYWr6OjoyMvLu+duOBHeh88///zw4cN8R+Eq3njjjYqKCr6jcBWPPvqo0WjkOwqXUF9f/8orr/Adhas4ceLERx99dM/dcCK8P3Y7tgjDMAy7iZlXbJwIMQzDMJeGEyGGYRjm0ux3+oQ5enp6qqurU1JSbNPcuXPnysrKvv32W9s05+Jqa2tXr16NSzLaBsuy6enpuBK0DWi12paWFptdtVxce3u7ObvZ74R6c+h0uk2bNgUEBNimudbWVnd3d4lEYpvmXFxDQ0NAQADvBe1cRF1d3fDhw/mOwiUghBoaGoKDg/kOxCXo9XqpVDpjxoy77+bYiRDDMAzDBgjfbmMYhmEuDSdCDMMwzKXhRIhhGIa5NJwIMQzDMJfm2NMnbInjuCNHjtTV1QUHB0+aNEkkEvEdkdMqLCzs6uoyfZbJZBMmTOA3Hleg1+uPHTsWHh4eGBjIdyxOi2GYkpKS8vJyAEhISAgLC+M7IidXVVV1+vRpgUAwefLkIUPutsYW9dZbb9kqKgemUqlSUlJ27NjBMMyOHTuCg4NDQkL4DsppLV++fPv27WfOnDlx4kR1dfUDDzzAd0TO789//vNzzz0XEBCQlJTEdyxOKy8vb9WqVSqVqrKy8ve//71IJMI3edbz8ccfr169WqPRFBUVvfzyy/Hx8Xe5aOPpE2Z58cUX6+vrt23bhlfltYHk5OTnn39+4cKFfAfiKs6cObNq1Sq5XD5//vyXXnqJ73Bcwq5du5588kkzp3tj/dDY2Ojn52da1/avf/1rZmbmiRMn7rQzfkdolk2bNv3ud78rKSk5fvy4VqvlOxznV1VVlZWV1dDQwHcgzo9hmGeeeebLL7/ES2Hbklqt9vb25jsKZxYYGHj1lPbz89Pr9XfZGb8jvLeenp7Lly//5S9/kUgkWq22oaHh4MGDuDCE9Ugkkuzs7CNHjpw8eXLVqlXmrKKC9du77747c+bM2NhYvgNxFampqRqN5tKlSz///DPfsbgEtVr98ccfv/jii3fZB3eN3ltbW5uvr+/atWvfe+89AHj88ccpivrPf/7Dd1xOi2VZUxd0dXX1uHHjdu/ePXXqVL6Dck7l5eWLFy/Oz8+XSCSzZ89OT0/HXaPWlp2drVQqP//888GDB2/evJnvcJyc0Wh8+OGHxWLxpk2b7lKvET8R3puPj49AIJg2bZrpnzNmzPjiiy/4Dcm5XX0RGxoampiYWFRUhBOhlXz88cdubm6m5FdWVqZSqaRS6apVq/iOy5nNmjULAJKTkz09PdetW4eH3VkPwzCPPvooQmjDhg13r1qME+G9kSQ5ffr06upq0z/Pnz/v7+/Pb0guQqPRVFRUPP/883wH4rSeeeaZ+vp60+e8vLyRI0dGR0fzGpGr6OjoQAgpFAq+A3FaLMs+8cQTPT09O3bsuOf7b5wIzfL6668vWrRIrVZrtdp//etfe/fu5Tsip9XU1LRixYqpU6cKBIItW7YEBQVlZGTwHZTTSkhISEhIMH3++uuvY2Ji8IB+61m/fn1xcXFERIRSqdywYcPq1avxeBnr+fDDDzdu3Lh8+fI1a9YAgFQq/eSTT+60M35HaK6zZ8/+8ssvEolk4cKFoaGhfIfjtAwGw/bt20tLSwFg9OjRCxYsoGl8u2YLe/fuDQgIwE+E1tPS0rJnz566ujpTmYh7rg2EDURubm5JScnVf4pEoscff/xOO+NEiGEYhrk0PI8QwzAMc2k4EWIYhmEuDSdCDMMwzKXhRIhhGIa5NJwIMQzDMJeGEyGGYRjm0nAixDDH09bW9u23316+fJnvQDDMGeCpyhhmd44cOfLEE0/c6b8mJCSsXr165cqVeXl5uDQJhg0cToQYZnf8/f2ffPJJ02etVrtu3bpJkyalpaWZtgQGBg4fPvydd94JCAjgL0YMcx64sgyG2bXOzk4vL6+XX37ZnHUZGYYx7X91BQ+DwaBWqwcNGnTrzhzHtbe3i8Vid3d3CweNYQ4FvyPEMMeTm5vr5+dXVFRk+ufs2bMfffTRf/7zn0OGDBkyZIivr+/WrVsNBsOLL76oUCg8PT2jo6PLy8uv/jhC6P333x86dKivr6+Hh0diYmJhYSFPvwqG8Q8nQgxzPHq9vrW11WAwmP6pUqmys7O/+eabjRs3njhxYvTo0StWrHjyySc7Ozuzs7P37NmjVCqv9rUCwB//+Mc///nPL774YlFR0bFjx+RyeUpKSlNTE0+/DYbxDL8jxDBnoNFodu/ePXjwYAD47LPPYmJiKioqCgoKCIIAgLVr1z733HOtra2+vr4XLlz45JNP3nzzzVdffdX0s9u2bRs+fPi///3vt956i8dfAcP4ghMhhjmD2NhYUxYEgPDwcABISUkxZcGrWxobG319fQ8ePMgwzODBg7Ozs6/+eEBAwLlz52weNYbZBZwIMcwZXD8cRigUAoCHh8dNW0xdqW1tbQDwxz/+8WqaNPHz87NNqBhmb3AixDDXYhojeuLEicjISL5jwTC7gAfLYJhrmTp1KkEQW7Zs4TsQDLMX+IkQw1xLZGTkihUr1q1bJ5VKly5d6u3tXVtbu3fv3hEjRixYsIDv6DCMBzgRYpjL+eqrr3x8fN58880//OEPpi3h4eGff/45v1FhGF9wZRkMs3csy5IkedPYFpZlr5aP6R+dTldZWWk0Gv39/X19fQcWI4Y5MJwIMQzDMJeGB8tgGIZhLg0nQgzDMMyl4USIYRiGuTScCDEMwzCXhhMhhmEY5tJwIsQwDMNc2v8DbGr5JhXjQaEAAAAASUVORK5CYII=",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (6.3, 2.)\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "sol = solve(prob, IRKGL16(), reltol=1e-14, abstol=1e-14)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "id": "05c59aae",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, 6.3, 2.0)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "26-element Vector{Float64}:\n",
+ " 6.3\n",
+ " 6.29\n",
+ " 6.27\n",
+ " 6.2299999999999995\n",
+ " 6.1499999999999995\n",
+ " 5.99\n",
+ " 5.785818874719202\n",
+ " 5.5669238127641405\n",
+ " 5.353693409330977\n",
+ " 5.142457194421218\n",
+ " 4.967129339504346\n",
+ " 4.735115173868062\n",
+ " 4.523202373531812\n",
+ " 4.321091832579163\n",
+ " 4.11223242974666\n",
+ " 3.946599083738542\n",
+ " 3.7196236204049478\n",
+ " 3.5074094438338523\n",
+ " 3.3042521072743756\n",
+ " 3.0959404164266253\n",
+ " 2.9293329838127105\n",
+ " 2.700549581704843\n",
+ " 2.4882865335512796\n",
+ " 2.2847957361112066\n",
+ " 2.068807183359053\n",
+ " 2.0"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c5a72290",
+ "metadata": {},
+ "source": [
+ "**Note**\n",
+ "\n",
+ "-When tf=0, the integrator not return exactly zero\n",
+ "\n",
+ "-If tf=1., the integrator return exactly one"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a17c971e",
+ "metadata": {},
+ "source": [
+ "### Case 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "e050fa3d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2AU1dbAz7Rt6b33hBZK6NK7iMADFCygiPCe0aeo8InKs/eCYsWCiooIInYRVKSEJgQCJISQQHrvdTdbpn1/zO6ybnq2zGxyf39lb6ac3Zl7z73nnHsOxvM8IBAIBALRX8HFFgCBQCAQCDFBihBhH2pra8+cOfP333/n5+fr9Xqr/x4/fnzNmjX79u1zpkg5OTlr1qz58ssvnXlTR5OcnPzkk0/29KzKyso1a9a88847jhBJamzfvj05OTknJ6fzw4R38rfffnOOVAgpgxQhwlZSUlKuu+66gICAcePGTZw4MS4uztPTc+rUqd999535mJycnG3btl24cMGZgpWXl2/btu3YsWO2X6qpqQmzQCaTBQYGzpw5c9u2bRzH2X797rN169Zvvvmmp2c1NjZu27btzz//dIRIPeLLL7+0/CXd3NwiIyNvu+22U6dO2esWKSkpW7duLSsr6/ywK1euOP+dREgTUmwBEK7Nvn37Fi1axDDM1KlTp0+f7uPjU1RUlJ6enpKSkpiYuHTpUuGw0NDQ6dOnR0VFiSutjWAYNmvWLOHv4uLiw4cPHz58+Pfff9+9ezeGYeLK5loEBgYOHz4cAAwGQ3Z29u7du7/77rtt27atXLlSbNEQ/RGkCBE2sW7dOoZh3nzzzfXr11u2l5aWFhQUmD/Omzdv3rx5TpfOzuA4fuDAAfPHn3/++eabb96zZ8+KFSsWLVokomAux5QpU8wGA71ev379+g8++GDt2rWLFy/29PQUVzZEPwQpQkTvqaqqunLlikwmu//++63+FR4eHh4ebv5YV1dXWFgYFhYWHBwstOTl5TU2Ng4ZMkQulx88eDArK8vT0/PGG28MCgoSDrhy5crRo0fVarVgcbW8eEVFRXl5eVRUlL+/f2pqampqKs/zkydPHjlyZHfE5jjuzJkzaWlpWq02Ojp6zpw5vRt8Fy1adMstt+zateu3336zVIQZGRmnTp1qamoKCwubM2dOQECA5VnCFx88eLBSqTx69OiFCxcoipo6derQoUPb3qK2tnbfvn01NTXR0dHz5s1TqVRWBwg/RXR0tJ+fn2V7ZmamXq8fPXp0R8IXFxfX1NQkJCRYffcLFy5gGDZixAjhY2NjY15eXlBQUHh4eG5u7uHDh7Va7fjx48ePHy8coNFo9u3bV1xcHBERMX/+fDc3t65/uH8il8vfeuutnTt3NjY2Hj9+/MYbbxTeltDQ0JCQkKtXr6akpDQ2Ni5fvjw0NBQAOI47efLkhQsXaJqOiYmZPXu2u7t7u1fmOC4lJeXixYsURc2aNWvAgAHdkYdhmGPHjl26dImm6YSEhNmzZysUCssD0tPTeZ5PSkrSaDT79+8vKSkJDw9fsGCBUqkUDjh58uS5c+dwHJ8zZ05CQkJPfxCECPAIRG+pq6sDAIIg1Gp150d++umnAPDSSy+ZW/71r38BwB9//DF27Fjz26hSqfbv38+y7Lp163D8mgN7zZo1lld77rnnAGDLli0LFy60fJnvuOMOg8FgPuzQoUNtz83MzLTSlz4+Pt9++23n8jc2Ngrf1KpdkGTx4sXCx9LS0unTp1teXKVSvfvuu5an3HTTTQBw4MCBadOmmQ/DMOyxxx6zuvg333zj4eFhPiY0NDQ1NRUA4uLirAT44osvrM4Vxl+WZYWPly9fBoAbb7zRfMB///tfAPj999+tTvTw8AgMDDR//OGHHwBg/fr1TzzxhKX5d/Xq1SzLHjx40N/f39wYGxtbVFTU+S/5xRdfAMDNN99s1T5q1CgA+Pzzz3me37ZtGwA888wza9euNV/84MGDPM/n5uZaPT5/f//vvvvO8lKrV68GgN27d1933XXmw3Acf+yxxziOMx/22WefAcCLL75oeW5KSkpcXJzl9cPCwo4cOWJ5jK+vr6en599//x0SEmI+LCoqKi8vr6Gh4frrrzc3kiT5ySefdP6DIKQACpZB9B5fX9/o6GiWZVetWlVSUtKLK9xzzz1ubm579+49c+bMU089pdPpVq5c+dxzz3399dcff/zx2bNnd+/eHRIS8tlnn/38889W57700kuXL1/+7bffiouLDx06lJSUtGPHjkceeaST2xUVFU2bNi0zM3PdunUnTpzIysr65JNPcBy//fbbexdTI5h/fX19AaCxsXHatGkpKSmrVq06fPhwdnb2rl27/P39H3zwwV27drX94jqd7ocffjh37tzHH3/s6en52muvHTx40HzA6dOn77jjDo7jtmzZUlhYeP78+RkzZixZsqQXQtrO999//9FHH3344Ydnz57ds2dPeHj4tm3bXnvttSVLltx+++1Hjhw5duzYwoUL8/PzH3rooV5cn2XZ4uJiALBc137++ee7d+9+8803U1JS9u7dGxMT09jYOGvWrPPnz991111nz57Nzs5+44031Gr1LbfcIkx6LFm3bh3LskeOHCkuLv7ll1+ioqJee+21t99+uxMxzp49O3fu3IqKiueffz41NTU9Pf2NN95oaGhYsGDB1atXLY/U6/VLlixZsGDB4cOHjx8/vmzZsqKiouTk5FWrVtXU1Hz//fdpaWlvvvkmjuNr167tMmwHIT5ia2KEa/Ptt99SFCW8S0OGDFm9evX27dtra2utDutoRTh69GiGYcyNixcvBgCSJC9dumRuFLTIHXfcYW4RlkEkSV69etXcWF1d7e7uThBEcXGx0NJ2Rbhs2TIAeP/99y1lO3bsGIZhU6ZM6eRrtrsiPHHihFwuB4Bdu3bxPC/o4A0bNlgek5ubq1AohOmC0CKsCIcNG2a5eN2yZQsA3HfffeaW2bNnA4DleoLjOGER6fwVIY7jaWlp5saffvpJeOIbN240N2o0Gl9fX5IktVptO7+gibYrQpZln376aQBQKpV1dXW8aUWIYdjp06ctz3322WcBYMGCBZaNH330EQCMGjXK3CKsCL29vevr682NmZmZOI57e3trNBqhpe2KcNy4cRiG7d271/L6O3bsAICVK1eaW4R5zwMPPGBu0ev1gtk2KiqqtbXV3C64DD766KNOfhCEFEArQoRNLFu2LC0tbcmSJW5ubllZWULgX1BQ0MqVK5ubm7s8/aGHHiIIwvxRGOjnzp07ZMgQc+PUqVPBtPay5F//+ld8fLz5Y0BAwMqVK1mWbbt2FFCr1T/99JOfn5+gA8xMnjx5+PDhJ06caGpq6lxajuOSk5OTk5NXr149derUKVOm6PX6GTNmCPp1x44dOI7/73//szwlLi7u+uuvLywsFFSRmYcfftg8gQCAOXPmWH7H5ubmQ4cOCd/IfAyGYVYRSU5j+vTpgulSQHgiALBu3Tpzo0qlGjt2LMMw3bENnDt3Tvglly9fnpiY+PzzzwPASy+9JOgYgRkzZowbN87yLEErP/7445aNd999d1BQ0Llz56zekNWrV/v4+Jg/JiYm3nDDDY2NjW3XjgI5OTmpqakjR46cP3++Zfvy5cu9vb33799vdbzls5DJZBMmTACA5ORks6cQOn51EVIDBcsgbGXYsGE//PCDTqc7derU6dOn9+/fn5KS8tVXXxUWFqakpHS+r8AqfkGIK2m3saqqyupcc0CHmaSkJADIyspq916ZmZk0TatUqo0bN1r9q7W1leO4kpISLy+vTqTleX7r1q3C3ziODx48+I477li3bh1BEOXl5ZWVlZ6enq+++qrVWYJlrLCwMDEx0dw4cOBAy2OEEKHKykrhY3Z2NsdxgwYNkslkbb+g87F6Ij4+PhRFubm5WcUBmZ9UlxEiBQUF5l9SpVLNmDFj3bp1Vh5fy8kQAPA8f/nyZQzDrHyEMpls+PDhBw4cyMrKiomJMbe3fT1Gjhy5b9++rKysBQsWtBXp3LlzAGAwGKwUrXCL6upqjUZjDgWSyWRWe4GE7271WAMDA6G9VxchNZAiRNgHhUIxffr06dOnP/bYYz/++OPSpUuPHTt28OBBwcTXEZbTZwAQtKZVbKQQNcO3SYprNQqDadxpaWlp916CebOqqso8BFvi4+NjMBg6ERUACIKoqakR/vb29rbU8cJqsrW1taOLMwxj2dL5d1Sr1eavY0nbFufQNloVw7C2jcK36E6GgYULFwoZf0iStAwIssQyDAcA9Ho9TdMeHh5t7ytMI6yee9vXQ2jp/PXIzc3t6AlqtVqzIlQoFJbBXGD67u2+z21fXYTUQIoQYX+WLFkybdq0w4cPp6Wlda4IbaG6utqqRZh6d7QXQhhwx48ff/To0V7f1NLa1vbioaGhRUVFvb64GWE/QNuVRNuWjnSPRqPp/BbCGG11IsMwOp3OajR3BDKZrKNfsiMUCgVFUS0tLa2trVa6UFhJWz33jl6PjvSu0L5s2bLt27f3SDBEHwD5CBEOQYgisfT/2Z3z589btQjWLUsLpCXDhg0jSfLcuXNardbuwoSFhQUGBhYXF5eWltp+tcGDBxMEcfnyZZ1OZ9kufEFLhH2ZVgqyoaGhoqKi81u0e2Jubi5N070W29EIWy3T0tIsG/V6fUZGhvm/Zjp6PdrdrwkAgsX177//Rgu4fghShIjeo1arv/nmm7bLkZycnOPHjwNAJxu6bWfv3r3Z2dnmj5WVlTt27CBJsqMkL56enjfddJNGo3nxxRfb/lewRvYaDMPuuusuMAVS2nhxDw+POXPm1NXVCTGWAhzHbd682erI2NhYALAK5XjllVe6HM07OrFHcjoZIWPfq6++avntPv300+rq6vHjx0dGRloe/Pnnnwv7XAUyMjL+/PNPX1/fmTNntnvxxMTEcePG5ebmCtGkVtj4eiAkDjKNInqPTqe7/fbbH3300aVLl06YMCEgIKCpqSk1NXXr1q1qtXrGjBlWu8vtS1hY2Lx58zZt2jRixIicnJzHH39co9Fs2LAhLCyso1M2b9587Nixl19++erVq7feemtCQoKQOeWnn35qaGiwxWQKAE899dS+fft27NghlHoYOHBga2trQUHB/v37T58+nZub26OrvfTSS4cOHVq/fr1Go7nxxhsbGxvfeOMNYbOdJZMnTw4LCzt69OiaNWtWrFih1Wr37Nmzd+9ePz8/SzXQlnnz5nl5ee3ZsycsLGzx4sX19fXbt29PS0sTlvLSZO3atdu2bdu3b9/y5cvvv/9+T0/PX3/99fnnnydJ8o033rA62Nvbe9asWS+//HJCQkJaWpqwreWFF16wShNjySeffDJp0qTk5OQzZ87Mnz8/Jiampqbm6tWru3fvDg0NFfZRIPokSBEieo+bm9uKFSv++OOPt95666233jK3y2SyNWvWbN682aGpqDdu3Hjw4EFh64LAPffc0/maJiws7NSpU8nJyXv27NmzZ4+53cvL695777VRHg8Pj6NHjz7wwAO7d+/+66+/zO1KpdKcfLz7jBo1as+ePatWrXrkkUeEHYqRkZG//PKLVeCoTCbbvXv34sWLt23bJmy/Cw0N/fXXX++6667OFaGPj8/XX3+9fPly87OLj4/ft2+fsA1Amnh4eBw6dGj58uXffPONuQRHaGjo1q1bJ0+ebHXw5s2b3333XfNeCJIkn332WaudM1YIu2juueeerVu3WobMBAQEoFyyfRsMGcQRNsJxXEZGRnFxcUVFBY7jUVFRY8eOtQqFaG5urqqq8vf3N7dXVla2traGh4db7hBQq9XV1dXe3t6W+8kAID8/n6KoiIgI4ePzzz//zDPPfPbZZ6tXr05PTxd8PxMmTBg0aJDlWVqttrS01MvLq22wZUFBwenTpxsbG729vSMjI8eMGWO1UaHtdywsLASTRbFzKioqTp48WVNT4+7uHhERMXbsWMvgjqqqKo1GExYWZrn2Eq4vk8ksE7QCQFNT04EDB+rq6qKiombMmCGXy61+CoHm5uYDBw7U1taGhobOmTNHoVCUlJTQNG2WlqbpwsJCNzc3Yd+3mbq6ugMHDjQ1NUVHR8+cOZOiqMLCQgzDzHsDNBpNVVWVl5eXVS7TgoIC4VlbNlZXV6vV6tDQ0E5WXS0tLTU1NW5ubuaksh0d4+Pj025ADc/zFy5cSE9P1+v1cXFxkydPtrpdTU1NS0tLSEiIQqE4derUpUuX5HL5tGnTrGynbd9JM1lZWefOnVOr1QEBAZGRkaNGjbL0dgtvQnR0tOUptbW1zc3NwcHBls9ap9OVl5d7eHi0DWFFSAqkCBGuh6UiFFsWBALh8qBgGQQCgUD0a5AiRCAQCES/BgXLIFyPWbNmyeXyMWPGiC0IAoHoCyAfIQKBQCD6Ncg0ikAgEIh+DVKECAQCgejXIEWIQCAQiH4NUoQIBAKB6NcgRYhAIBCIfg1ShAgEAoHo17i2Iqyrq3vvvffElkIculMHvE+Cvnh/g+f5/rnLq99+cXD62+7airCwsNCyYFu/ossS5H2VfvvFW1tbxRZBHPR6PcMwYkshAizL6vV6saUQBye/7a6tCBEIBAKBsBGkCBEIBALRr0GKEIFAIBD9GqQIEQgEAtGvQYoQgUAgEP0apAgRCAQC0a9BihCBQCAQ/RqXV4QPD/Sofme9+ujPnFYttiwIBAKBcD1cXhG6EbihIKvxhw+r31jL1JaLLQ4CgUAgXAyXV4TvXGn2vWsjFR7P1FVUv73eUHJVbIkQjoJtrOF0/TStDAKBcBykKHfV6/UZGRlNTU0zZ87E8XaUcUpKCk3Twt9BQUHDhg3r6FJqhleNnKZMHF/3+Uu6y2dq3n/Uf80z8gFJjhIdIRJsY23lS2twlYfylnWQOEZscRBOpeXHD/WXTvvcvl4xaLTYsiCcCltfXbV5rWJAkvctD+EKlYPuIoIiTE9PHzduXFBQUElJiU6nk8vlbY+5+eabBw4cqFKpAGDatGmdKEIBTKbw+/czDd+81XrmYO0nTwc9vpX0C3aI9AiRaD17kKcNbFOdZtuz5E33uk9aILZECCfBt7ZoT//Js0ztx096zLrF68aVgBNiC4VwEprTv3PqptZzKYaSXL/VT1Eh0Y64iwiKMCEhobq6uq6uLi4urpPDvvjii4SEhO5fFiNI3+WP8AytPX+05Y+vfZb/n82SIiRE69mDAKAYNFqXnda45326+Ir30gcwSia2XAiHo8s4zrMM4R3ANte3/LVbn5fpd9fjhHeA2HIhHA/Pt549DACEdwBTU1b91kM+Sx9QjZtj9/uI4CNUqVReXl5dHnbs2LFff/21tLS0B5fGMK+FazCC1Jw9yFT35ESEtDGUXKEri3F3b/97nlcuewiTKTSn/6x+Zx1TXyW2aAiHoz+fAgBeC+8OfHgz6RdsKLhUtel+3aXTYsuFcDiGwiymroLw8gv+36fuUxfxBn39zjfrv97EG+xclEMcH2GXhISE7N27V6fTHT169JVXXlm7dm27h2m12qqqqpdfftnccsMNN0SNmaU9/Ufj/h1efXpRSNO02Y3a51GfPgAAilHTaZbDBo/3jYhv/PIlujSv+s21Xis2yBL6hUu4Xz1xM2xDNVOcg8kU5MAxmFzps/bN5m/f0Wel1n76rGrSAvcFqzFCooOY7TAMwzAMQfRHO7DwtqtTDwKAYtR0BsPdFv6bCI1t/uGD1jMHDeUF3nduJLrn/yIIot1IFEsk+g5lZGRgGAYAx44dmzVr1tKlS0NCQtoexnEcwzANDQ3mFo1Go5q5TJd2SHchRTn9JjI4ynlCOxeO4/pLpVaO1V04BgDypGnCt8aDIr0ffEv97dv6S6cbPn3Gbe4dqmk3AYaJLahj6UdP3ILWM38Bz1OJ43lKznMcKN09V/5Pe2KvZt8Xrcd/pQuzPZY/0s0B0eXgTIgtiAhwHMfSBm36MQCQjZgq/AiykdO9g6Kad7zGlOXXv/2Q+9K18mETu7xUl1oQJKsIMdOgNmXKFB8fn+zs7HYVoZubW1hY2KZNm6zbr7tBffxX3eE9fquecLisImEwGNqNM+p76C6d4tSNVHCkW+xgMH9xuVz572dbDu1p2vu5Zv92vrLI5/Z1mEwhtrAOhKbpfvLELWlIPwYAqtEzLb+7fNZS1YDh9V+8QpdebXx3nfetD6lGThNPRkdBEARBEP3woQMATdN8Xgbf2kKFxbpFDzS3y2MGqR79oH7XZu2FY81fv+4+5V9ei/5ju1VAQvsIa2trm5ubrRrz8vLq6uqionq2sPO4/nZMJtemH6fL8uwnIEIcNGcOAoBqbBsPOYZ5zLrF/9/P4kr31vMpVW+uZapKRJAP4TAMxTlMdSnu7i1PGGH1L1nEgMANW5Qjp3K61vovX6n/ehNPG0QREuEgWtMOAYBq9Eyrdkyu9Lvrf95L7sVwQn3059oPNrJNdTbeSwRFqNfrk5OTn3jiCQC4//77161bJ7SvWrXq9ddfB4A//vhj3rx5Tz/99IYNGyZPnnzvvffGxsb26BaEp6/bxPnA8837v7K7/Ahnwuk0ukunAcNUo2e0e4AicXzg+neo4CimqqT6rYe0F086WUKE42g9ewgA5ElT290vgStUfnf9z+eWBzGSaj1zsPqd9Si3VJ+B12uNHX/U9Hb+jWHu0xb73/8a4eWnz7tYtem/+ivnbbkd8eyzz9pyfu8wGAyDBw9etmxZfHx8XFzcoEGDACA0NHT06NHBwcGBgYFubm6NjY3e3t7r1q277777OrpORUXFr7/+mpyc3PZfsogE9Ym9dEWhYvAYwtvfgV9GJPqJabQ19S/txZOKgaPcpywUWtp+cdzN023sbKamjC7L0144ytMGxYCkvucyNBgMMll/2i7CsQ273uINOo/FyYSXX0cxI7KIBOWQcforF5jKIs3pP0m/YAdtNXM+goOQJCXqwHIomjMH6Uun5AOS3Kf8q6NjSJ9At7Gz6fICurygNe0w8Lw8bljvOr4IPzFJksuWLWvbPn36dOEPT0/P2267zca74G6e7pMXthz8tvn3Hf7JL9p4NYRYCNsHVWNmdX4YJlf6rXqi5dCept++aDn4LV1R6Hvno7jS3SkyIhyCLvsc29JABkUSoV0YhKjw+KANWxp2v9N67kj99ld1l8/4LHsQk/X9aWIfxnAhBdqzi1qBu3v53/NC8587m//4uvn3HYaSq74rNuCqHnd8CfkI7Y7HzKW4QqW7fFafd1FsWRC9gamv0hdkYTKFcnjXsWFGl+F/nsdVHrqs1OrND9GVRY6XEeEoBBeR25guhkIBTK70Xfm474pHMJm89czB6s1r6YpCh4qHcBxsUx1TmIVRMuWISV0fjeOeN9zh/5/ncJWH7tLpqk3/NRTn9PSOfVkR4m6e7tMWA0Dz71+LLQuiNwih88oRkzG5spunKAaPCdqwRRYxgKkpq37rYSH8GuFy8AadNvMUYJiyXRdRB6jGzg5c/x4VHEVXFldvflBz6neHCYhwIMaOP3QCrnDr5imKIeOCHv1AFj2IbaiuefcRdcpPPbpjX1aEAOA+/SZc5a6/ekF/NV1sWRA9hOeFWAm3sV3YRa0gfAID1r6uGjWd12vrvni5+bcvHSMfwoFo00/weq08JrGnSYOp4MjAdW+rxszkaUPDN28Ly0qEa9GadhgAVGPaj4/rCMI7IOCBTe6TFvAM3fjjR/U734Rub8Hs44oQV7q7z7gZAFoO7RFbFkTPMBRlMzVlhJefvOeJYzCZwnfl496L7wEMbz6wS5+f6QgJEY7DGDrfPbuoFZhc6XvHo5433gUAQqZKhAtBl+XTFYWYykM+qMdFZjCS8l72gO+dj2IyRWvqgdYLR7t5Yh9XhADgPnE+YJg+NwNtM3ItWoXtg2Nm9jr+0336TR5TFwGA7vJZe0qGcDBsc73uynmMpJRJU3t9EbcJNwCG6fMu8ixjR9kQjkaYA8mGTez1NnnV6JleC1cDQGvakW6e0vcVIe7mKQtP4GkDWha4EDzLCLO5LuNFO0c+cBQA6K9csI9YCKfQeu4IcJxiyLhehP+ZITx8qJBo3qAzFFy2o2wIx8LzreeOAIAsyaZUQaqR0wAn9NlnOY11kpZ26fuKEADkA0cCgI07LhHORJd5itM0U+HxNu4Jk8cNw0jKUHKFa1XbSTSEwxF8w72zi1qiGDASAPQ55+wgE8Ip6K9eYBtrSf8QIrwHNfjagrt7KQYk8SzTzQwb/UIRKgaOBAAd6g+ug7B9sKdhMm3BZHJZ9GDgOH1uhj3kQjgcuqqYLs3FVe6KIeNsvJRgD9ChGbDrYJoDzbI9IYYQb9xN62i/UISymERMJqfL8jl1k9iyILqG0zTrss4ATvQodL4jTPYANA1yDYShUDliCkZSNl4K2QNcC542aDNOAEBH+RR7hHL4RIyS6fMy2JaGLg/uF4oQIyl57FDgeTQ3dAlaz6fwLKMYNJrw8LH9aooEwR6AHr0rwPNaY+i8rXZREOwBMUOA4/S5aPeUC6C9eJLTtcqiB5EBYbZfDVe4KQaPAY7jmuu7Ptj2+7kE8gHITegyGONFbbaLCsgiB+Aqd6amDJWzlz76vEymvorwCZTHDrXLBQU3IXKLuATG7YNdpVXrPqpR3V1Z9hdFaHQTIkUoeZjqUkNRNq5wUw6dYJ8r4rg8fjgA6K+i2FGpY6q8M8NeOdONYcNIEUoeTt2kz07DCNKOpSUVieO7mZSqvyhCKjQWd/dm66uZmjKxZUF0hhAmo0yajFF2q7QgHyCMhmgaJGl4hhZS4tm4Z8YSWUQCrvJgaiuYukp7XRPhCASHiHzgKNzdy17XxCiZ140ru1Ovu78oQsAwxYARgHxFEofnjeaRsbPteFXFgCQA0F25ADxvx8si7Ivu0mmuVU2Fx1PBkXa7KIYJmYmQW0Ti2GvPjBXu05Z0x+PYbxThtb3VyEgiXfR5F5m6SsLXbi4iATIwnPAN5NSNqCKBlLElrVonoN1T0oepLTcU52Bypd0cIj2kHylCxcDRAKC/mtH9TKwIJyOEybiNnW33srqKhCRAo6GE4VrVuqwzgGF2dBEJyAcJHcw+PkAAACAASURBVD8d2QMkS+vZQ8DzqhGTxaoi2Y8UIeHtTwaEcVq1oeSK2LIg2sFiF5Gd1wRwLWwYxctIFO2FozxDKwaOIrz87Htl0jeI9AvhNM2G0qv2vTLCXrTab89M7+hHihAAFEKmCeQmlCTaiyc5rVoWPYgMDLf7xRUDRwKG6fMyeIa2+8URtmN0EdljJ3VbjEkVUMeXJIbCy8Y6M/EjxJKhfylClGREygjxoqox9gyTMYO7e1Mh0bxBbyjMdsT1EbbA1lfrCy5hMrlyeDcqkvccNAOWMtfmQLho+qifKcKEJMAJQ8FlXq8VWxbEP+DUjbrscxhBqkb2vvJO5xhTMF9Fo6Hk0KQdBJ5XDpvYzV1fPUU+IAlw3JCfyRt0jrg+ovdwbOuFY+AwY0A36V+KEFeoZJEJPMvo81BJJmnRevYQcKwicRzu5umgW8hR9KBU0aYdAcf4hgVwpbssPJ5nGX3+JQfdAtE7dJfPcOpGKjiSCosTUYz+pQjBbCRBm4okhsaRdlEBedxwjKQMxSgFs7QwlFylK4twd29hpuIgTLunUMeXFq1n7b9vuBf0O0UoRyXKpAddWUSX5uEqD8WQsY67CyaTy6IHAcfp81BJJglhyjA5vdcVybuDyU2IOr6E4HSt2kunAMOU9t4z01P6nSKURQ/G5Eq6sojtRkpyhHNoTT0AAKpR02yvvNM58gS0iUJicJz2nJ1TLbeLLGYIJlfS5QVsc9dFeRDOQZt+nDfo5fHDSd8gcSXpd4oQI0h53DDgeTQaSgWebz13BBxsFxVAudelhu7Keba5gQwIk0UOcOiNMIIUarGh3OvSwZRjXbTtg2b6nSIENBpKDN2V82xjLekfKosa6Oh7ySIH4kp3pqqEbaxx9L0Q3cGUVs1uWbY7wbSbEFlHJQHbVKfPzcAomXKEQ/bM9Ij+qAivuQlRyiUJYNw+6IC0au2A4/L4YYC2lEkD3qDXZpwEANUoZ7iIkJtQUrSmHQaOUySOx5XuYsvSLxUhFRxFePqyTXV0VYnYsvR3eINOm3ESMEw1xkm7iFCuNemgvXiC12tlMYl2qUjeJeaOz6COLwGMM2AJ2EWhfypCwDBTihm0LBAZbfpxXq+Vxw4l/UKcc0fjtvor55E9QHSMofPOmgMBhskHoNzrkoCuLKLLC3CVh2LwGLFlAeinitA0GiL7mOhozgh2UWe4iATIoAjCO4BtaaAri5x2U0RbOHWjLuccRpCqJEflEmoL6vgSofXMXwCgGunwQPFu0k8VoXzASMAwfW46zzJiy9J/YZvq9LnpGCVTjpjszPsKdXpR0IS4tKYdAY5VDBnruFxCbZEPHIU6vvjwfKuQS8hpxoCu6KeKkPDyo4Iieb3WUJQjtiz9l9azB4HjlEMnONlbLkdhwxJAlNB5wsuPCopAHV9c9LnpbGMN4Rsoix4itixG+qkihGuVKNBoKBrGrPNOtIsKmOwBF1FJJrFgasoMxVdwhUqRON7Jt0a51kRH8A07ov52r+m/itDkLUD2MXGgS3PpikLc3VsYmJwJ4eFDBUfxBp2hCJVkEgfBRaRMmoJRMiffGnV8cblWf3uUVOyi0J8VoTx+OEaQhqIcTqcRW5b+iDFMZvQMh2aY7AjTsgBtohADs4tIjNB5ecII1PFFRJd5itOqZZEDyKAIsWW5Rv9VhJhcKYsaBByrv4pSMIuA9nwKAKjGiLOLCC0LRMRQmMXUVRDe/vL44c6/OyZTyKIHo44vFtJJq2ZJ/1WEgLwF4sE2VLPN9bi7lywiQRQB5HFDMYI0FF9BywLnYyo3MUMsFxEqQSMWXGuL7vJZwAmlU3IJdZ9+rQhR0lGxMJTmAoAsPF4sATC5Ei0LxEKfmwEATt4zYwkqSioWhsJsnmXksUMIDx+xZfkH0lWEDQ0N2dnZDOPA7T6yyAG4wg2lYHY+dMlVAKBEWg4KCElGUC0CJ8Mb9HR1KUaQVGisWDLIIgfgKnemupSprxJLhv6JoeQKAMgiHZ5ev6eIoAj37t07evRomUw2ceLEjo55/fXX4+Libr311vj4+PT0dEeJghPyhOEAoENBE87FUCLyihBQkhGRoMtygePIkGgxU4rguDxuOKBpkNOhS/MAgBK147eLCIowPDx806ZNr7/+ekcH5Ofnv/DCC6mpqenp6cnJyQ8//LDjhDF5C9Bo6FToslwQe0UoixqIK9yYqmK2sVZEMfobUpgDgTk+AHV852IouQoSePptEUERJiUlzZw508vLq6MDdu/ePXPmzPj4eAC45557jh49Wl5e7iBhFOZ4GZSC2VmwTXVscwOucid9AsWUAyeEkkwoWsqZ0GWSWBMY4wNQLTYnwmma2cYaTK50TrGRHiFFH2FhYaGgBQHAz8/P29u7uLi43SN5ntdqtWkWNDU19eheZGC4MQVzRaFtUiO6izArpMITRM8rIdgDUNCEM5HImoAMCCP9gjlNM12eL64k/Ydrj17sjt8WEfYyd4lGo/Hz8zN/VKlULS0t7R5ZX19fVFT0n//8x9zy4IMPLl26tEe3I2KHsucON2X8rfAM6J3AoqDRaDDpvU/dQZefBQAQFKVWq3txuh2/OBsxEAB02efULS0S7JxWaDQuv9ODpw1MVQnguN4zwNDtp6/T6QiCoCg7+xTx6ESoq2y+eFruFWTfK9sLxoTYgtgHfU86vh3fdoVCQZJdaDopKsKgoKCGhgbzx4aGhqCg9t9UPz+/QYMGpaWl2XI7PHFc/bnDUJTlfsNyW67jZHied3cXv7JzL9BVFQOAe+wQZa/kt+cXdx/U6u3PNtbK1XVUSLR9rulIXPSJmzEU5/AsQ4VEe/j6dX20CZIkHaIIh46rTzvIF2RKtuMLWlChUIgtiH3QVxUDgFvMYFX3XmNnvu1SNI0mJSWdOnVK+DsjI4MgCLOl1BEoBo4EDNPnoRTMToIuFfZOSMJhLh+Acq87D7pE/CApMwoh93p+Jk8bxJalX0CXCk9fEh3fChEUYUlJydatW1NSUqqqqrZu3frnn38K7SNGjDhx4gQALF26tLq6+rnnnjt58uTatWvXrFmjUqkcJw/u7k2FxvAGvaHwsuPughBgWxrYpjpc4ea0kvSdo0gQSpYjRegMjIkUwuLEFgQAAHfzpMLieNpgKMgSW5a+D6dVM/WVmExOBYaLLUs7iKAIm5qa0tLS5HL57Nmz09LS8vLyhPbJkyf7+PgAgFKpPHToUG5u7pNPPjl79uxXX33V0SIp0CYKZ2HaSi8Vh7mxUmveRVSp1QmY1gSSWBGCOcUMyrXmeOjSXOB5KjQWcEJsWdpBBB/h0KFDP/7447btW7ZsMf89cODAr776ymkiyQeOajn8vS7nnOf8u5x20/6JRLaRmSE8fajgKLqi0FCULY8dKrY4fRmeZeiKQsAwWZhoOWWsUAwc2XLwW13OOa+Fq8WWpY8jtY5vhRR9hM5HHjsUIylD6VWutf3wVIS9MK4JpNQfTG5ClGTEsTAVRTxDk4HhmFwptixGZDGJGCWjy/I4dc+2XSF6ipQdhIAUoQAmk8tihgDH6a86LJ0bAgDMe4kkYxwDAMUA5CZ0BqJnWm8LRsnksUOB51HHdzQSfPqWIEVoRIH2VjseaaaWMJVozuZ0rWLL0pcxRgtLbCiUIzeh4+H1WqamDCMpMjhKbFnaBylCIyj3oBMwLgfD4iQSKSOAyZWyqIHAsYY8VJLJgUhzTWCaASNF6EAMQqRMSAxGSHHnOiBFaEYWHo+r3JnacrapTmxZ+iyS9ROYlgVoGuQwOI4uLwAMo6Sxd8IMFRaLu3uz9dVMTZnYsvRZTEUnpPXoLUGK0ASOU2HxYBqsEY5AspFjyE3oaOjqEt6gJ32DcZXEkuNgmGLACDCVC0Y4AmkaAyxBivAaQlS3oQwl4XUUEgwZFZBFDcJkCqaqGIUNOwhjThnpPXoAoCIGgKksBsIRSNYUZAYpwmtQYbEAQCNF6Bi4VlNqiaAIsWVpA05QodGAnr7DMJQK0cJSHArRDNih8AY9XVWCESQVEiO2LB2CFOE1BO8Fmhg6CLr0KvA8FRYnzdQSVKgwDUJP3yFIekUodPzyAlSb0BHQ5fnAsWRwFEbJxJalQ5AivAYVHIlRMqauAoXROwLJOggFBHuAobxAbEH6IjxvKMsDqT593M2T8PLj9Vqm1lEFwPsz0ncQAlKE/wAnyKBI4HkajYYOQLIOQgGZ0R6A7GP2h6ku5fVawicQd/cSW5b2MS0K0dO3PyZjgHRDRgEpQitk4cg66igkmFPGEio0BjCMqSxC2bftjnFNIEkHoQCaBjkO09OXaMcXQIrwH5gcRag/2BlO18rUVWCUjJRgpAwAAGAyBekfyrMMU1kstix9DWFmKWxPkiYUipdxDDzLMJVFgONUqHQjZQApQiuocDQxdAi05FNLwLWwYWQPsDMmY4DUFSF69HaHLs/nWYYKjMBkCrFl6QykCP8BFRoLGEZXFCD7mH2RuF1UAMXLOASeN64IpeoeBgDSPxSTK9nGWk7TLLYsfQqjg1DCcyABpAj/Aa5QkX7BPEMz1aViy9KnkP6OWkCOIsfA1FVyrWrCy4/w9BVblo7BMCokGtDTtzcuETIKSBG2hUKjoQMw9QdprwjRVkIHIPFoYTPCNMiAAkftiqs8faQIrUGjod3h9VqmuhQjSDJEokVYBAhvf9zNk2ttYRtrxJal7+AqawKUWMr+cCxdUQgYJvy2UgYpQmtk4UL8GFKEdsNQlgc8T4VKOlJGAAVN2B1XWROgR2936IoinjaQ/qG4wk1sWboAKUJrkGnU7pgc5pK2iwoY7WNlKF7Gbkh/E6EAFRIDOE5XFvMMLbYsfQRTglkX6PhIEVpDeAfgbp5CLXWxZekjuIpxDNBGUnvDNlRz6ibczZPwDhBbli7AZHIyIAw4Fm0ktRemMoQu0PGRImwHZCSxL3TJVXCR/oAevX1xiawiZmShyC1iT4ybplyh4yNF2A5G+1gpWhbYAd6gp6tLMYIUwtMlDhUciZEUSrxuL1zFQShgnAahwFG7wHF0eQFgmMSzjAogRdgORvsY6g/2wCWKsFwDJ8jgSOB5pgK5Ce2AseSI5B2EAihw1I7Q1SW8QUf6BuMqD7Fl6RqkCNuBQqm37YcLmUcEULyMHXGxFaHZQ4wKE9qMlCtQtgUpwnaggiIwSsbUVXI6jdiyuDwukVPGEmQPsBdsSwPbXI8r3UnfYLFl6RaElx/h4cNp1WwDCpSzFVOInAvYRQEpwvbBCSo4ChUmtAsukVPGEqN9rBTZA2zlWpAUhoktS3cRiiSgeBnbMc2AXaPjI0XYPmg0tAs8bWAqi6VfhMUSKsyYeB04TmxZXBvpF51oCwobtg88L7haXcUnghRh+yD7mF0Q6nhQQZGYTC62LN0FV7oTPgE8baBrUOJ1m3ChbWRmUOCoXWBqyzmdhvAOwN29xJalWyBF2D5C70XxYzbiQjllLEFlKOyCCyVSMGNKLIV8IjbhcsYApAjbR2a0jxWiwoS24IpDIVyzB6DRsPdwmma2oRqTK8mAMLFl6QFUYARGyZh6FChnE64VLQxIEXYEJleSfiGoMKGNGFwnp4wlyFFkO8Y1QVicC0XKAADgOBUcjQLlbMTlZsBIEXaI0UiC4mV6C88yTGURYJhM8kVYrEAbq23HtYIGLaHCYgB1fFvgeZdzDyNF2CHIbW4jTEUhz9BkYAQmV4otS88gfYNxhRvbXM+2NIgti6viWtvILEGBcjbC1FdxrS2Ehw/h5Se2LN0FKcIOEdYxaEdRr3G5nDLXwDBhvwdaFPYa10osYokpsRR69L2ELr0KLpVDA5Ai7ARUmNBGDK6WU8YSZB21BU6rZuorMZmcCooQW5YeQ4WiQDmbMJTmgeuUHBFAirBDCG9/VJjQFoQ1gQvllLEEGcZtgS7NBZ6nQmMBJ8SWpcfgChXpG4wC5XqN0T0c5kozYKQIO4My1mNC1tGew7F0hVCExcUiZQTQitAWjEUnXNAuKoCmQbYgRMq41tNHirAzZKgMRW+hK4p42kD6h+IKN7Fl6Q1UcDTgBF1dwhv0YsvierjcNjIr0DSo17CNNWxLA+7mSfgGii1LDxBHEe7bt2/UqFGhoaGrV69Wq9VtD5g1a9YYExs3bnS+hALXyrIgeoih1MVSS1iBUTIqMBw4jq4qElsW18NUmN5Vnz7q+L3GVIHSxRwipPNvWV5efuutt+7cufO66667++67N27c+N5771kdk56e/umnn0ZERACAj4+P84UUQBPDXmMKGnSx/mAJFRZLVxbRZfmyiAFiy+JK8HotU1OGESQZHCW2LL3EVJMSmYJ6jIsaA0RYEW7fvn3atGkLFy4MCAh4/vnnt2/frte3Y31KTEwcPXr06NGjY2NFczIZCxOifEs9x+VSS7QFLQt6h6EsT4iUwQgR5tl2gfANxFXunLqJbaoTWxYXw0U7vgiK8PLlyyNHjhT+HjFihFqtLi1tJzpr+fLlY8eOfeCBB6qqqpwroAU4Ycy3hEbDDqhohSfPslP2Mr+XWhT15ji6XIiUcb391GaQPaBzanXwwnlu2PfMi+c51uLhmzKtu9hQaAWaBnVOSgW/5AA78RcmvZ63bHfRFaEIU7a6urrExEThb4Ig3N3da2tr4+L+MWK+8cYbSUlJOp3u1VdfveGGG1JTUymKanup2trajIwMS9vpCy+8cNddd9lT3MAIKLmizr9sCIy252Vtpl3fqjO50IBvySF+LCEMHADA/D+YR4YwGxMZAgO2qpg36HCfIA0L0NJi3/s67Yvz3kEAYCjLa2lulkLCTI1Gw/N818c5nnw1tuUKuSMf17IYAGSmsX+V0p+Mp4OVPAC0FlwGAM4/vMVOj16n0xEE0e4I4Dj4gAjIzVAXXKYjBjnzvpYwDMMwDE3TYgnQFoaDn0vx93LIc/XGRdR1PzMvJ9H/jmcBgFM3sk11mFyllbnZ2PHt+LYrFIouXx4RFKGPj495LOM4Tq1W+/lZZ+JZtWqV8Mc333zj6+ubkZExevTotpfy9/dPTEw8fPiw8BHDMG9vb/tKi0UPNKQdxGvLPDw87Htl2xFFJJaHn4u4dzK5o5U8AJA4LIvBE7zg9Qzu9UtkWgO1cwbp3lABAPLIAQ6S0Elf3MND4+nLNtcraQ3pF+KMO3YKhmHu7u7iyvB3Nf/mRe7HQo7jAQOYH4H9Kwp/Jo1NqcKnHJB/NZ2cE4a1VhUBgEf8UJmdHhNFUc5XhHjMIMPfv4nb8QVFqFAoxBLAEjUNn+Vwb1/iClt4AAhUwn8HE5Va/qPL3Po06u96+SdTCHlJdguALDLBw9PTxts5+W0XQRHGx8dfvHhR+Ds7O1sul4eFdVioRS6Xy2Sydp2IAgRBODSahkJucxMtNOzK4zZf5HKaeADwpGDVAHz9MDzKHQOAueH4bYeYg+X8sB/ov/hcH1cOGjRDhcWyzfV0Wb4UFKGIcDz8VsK9e4n7q4wHABkOt8bhj43AE30wAFgSja88wvxeys/dz6wbxKyrKgGcoEKiRRbaNmShKMOikSotfHiZfe8SV68HAIjzxNYOwf8zCFeRAADXh2FrjrF7CrjUGv432RUvF3QQgiiK8M477xwxYsTZs2eTkpJeffXVW265RalUAsD7778fERGxaNGigoKC2trakSNHGgyG559/3t3dPSkpyflyCgiFCZmKQp5lXNf5byMFLfzH2dzWbK7B1BP+MxBPHox7y64dMzUYS7+JWnGYOVDG5xVcGQNAulRqiXahwuJ0l8/SZfnK4ZPElkUc9CzszudeTecuN16b/Tw6HA9zu2YrDlDAvhvIdzO5DanskXN56ziWD4nFKFnHV3UByJAojCCZmjJer3W5rPH24moT/34WtzWb07EAAKP9sQcT8RXxOGHhKFgSjY/yx247xJ6q5k+VXJ0LQCJF2B1iY2Pff//9hQsXajSaSZMmbd++XWhPT08XrOH19fV33nlnQUGBTCYbO3bs3r17VSqV8+UUEAoTMrXlTFWJkIi5X5FWy7+Tye3K5xgOAGBSEPbQUPym6H/0BDMBCth/A/niOWZQVgEA/Dsv5v1Y8JE7V2K7Yky93S8zjNToYFsO984ltqIVACDGA3soEf/3INytvTEDA3hoKH5dIPbtN3kA8CsdG1XCz48Q37HaazCCJIMi6PICuqJIFi2am1Asjlfyr2WwvxXzPACOwYJIbOMIYmJQ+w80yh07uoB8Ko1NvJIHAOuLY14ZCr4u1fHFWeLcddddbUNaPvnkE+GP0aNHZ2dnO12oDqHC4pjacrosr/8oQgMHPxdxmy9yp6qNprBlMfgjw/FxAV0MbQQGT4RXVHLaClnAzkqP4z8ye2YRXZ4lWah+WYEkr5l/9xL3aQ7XygAAjPLHHkrEl8fhZFcx5uMDsUi/fDYfzlBxD/zBrE3EN40nZC6bvYoKi6PLC+jy/P6jCAUb+IvnudQaHgDcSFgRj68fhg/06qILUzi8PERTbqhpJZSf1oXu/4HZNZOY1IHilCD91NbXI6jwWG36MbosH8aKLYrjaTLAF1e4Ny9yJRqjS/zuAfjaIf8whXWOkFMmJCHhukDsVDU/dS/z2ljioaEuORxSAeGYTM421HCtalwlcqCKExAMADvzOJYHDGB2GPZgIr4wsgfPDq/IZQFmjUnYWQTvXuJOVvG7ZxGxHi4zIFpChcXCmf6yg6KFhm053OZMrlht7Pj3DcbXJhJ+3V7YCWXXVOGxE4LwE1X89N+YJ5Lwp0cSuCs8fKQIu8aUZqKP94fcZv71DG5HLqdlAABG+GIPDcWXx+HyHtYPELaReUYlHJlFrj/NfpDFPXyKTavlP5xMtGtVkzQ4TgVHG4pz6PJ8efxwsaVxFDzAj4XcpgyjAUBBwOoEfP1QfJB3z8YwnmWYiiLA8RVT4uOHkbcdYs/W8mN+YrZNJRZHud5MqJ9UJK1ohc0X2a3ZXDMNAJDog60fhq/oRccvzQUA9+iEw/PJ/51h37zIPXeOO1PDfzmN9JdE3GtnuN7b6XxMhQlzQRq7uBxBjQ6m/Mp8ks3pWVgYiR+8kbxwE3n3gB53BrBILSEnYMtEYucMwp2Cr3K58T8z2Y2u9wP2hzKtr6VzN//Fnqrm/eTw1Ei86DZq62Sip1oQAOjyAp5lqMBwTKa4LhA7v4RcHIU36OGmA+xDf7N61hGyOxBTqfqCPtzxmwww6VfmjYtcMw0zQ7Hf5pIXbyZX967jl+UBgCwsjsJh03ji17mkvwL2lfAjf2SOVUr9B0SKsGsILz/c3ZtrVffVwoQ8wJqjbKUWJgVh2UvJX64nZob21pxhysJjTi1xexyeuohM9MEuNfDjfma+yePsJbZzMI2GfVYRptbwT6exGMCb44ni26nnRxOBvY2RpEuugsWj95HDD3OIt68jZAS8e4mb9CuT1yz1AdES3M2T8A7gDTqmtlxsWRzFfSfYghY+yQ9LW0wevJG8MaL3mSOMT9+Ubnt+BHZ+CTklGCvV8DP3MS9d4DgJP3ykCLuFyUjSN0fDD7O4X4s5bxnsnEEkdOUV7xymtpzTqgkvP8Lz2ubOwd7YmUXkmoF4Cw23H2aTj7MG19GGsrAY6Lv2MQ0Ddx5haQ7WD8PXDzPuDOs1xjWBRfS8EE16ciEZ74ml1fIjf2R2udRMyJhmr49WJP3yKrcrj3MjYfdMYpS/TR2f02mYukqMklFBEebGcDfs8HzymVE4x8OTZ9nZ+xghAlmCIEXYLUxpJ/tgf8hq5DeksgDw0WQi0t1Wv7ahtP2iE0oSPp1CfDmNUJKwNZub+AtT0CLh+aEFVKiwkbSIZxmxZbE/959grzTxw3yxF8fYoZR8RyVHRvlj55aQt8fhLTQsP8yuPMK2ushvaZwB90V7QH4L/+BJFgC2TCIG2Db9BeHR8zwVFgv4P14kAoNnRxEH5pEhKjhcwSf9SP9RKsWOjxRht+ir+Zf1LCw/xLYysGYgfmusHV4GutNCdCsT8GMLyFgPLK2WH/MTs79Eil3CCmEjKc8yTFWJ2LLYmV153JdXOTcSvp1JKGzXgxxLVwiZ1tspF+NBwc4ZxIeTCAUBX+VyE39h6lyh4HFf7fg0B7cfYptpuC0OvyvBDh2/86ITM0OxtMXUzFCsWgs3/sG8kyk5qwBShN3CFC/T11aEG8+w6fV8ghf29nV2WBCAKYS6k+Rqo/2xtCXkv6Lwej0sPsBkNriALjQ9/T41Gha28PedYAHgret6ExfTFrqiiKcNpH8ornDr6Jh7B+OnFpEDvLD0ev6R0y4QPNNXO/4zaWxqDR/tgX00yT4dv8uiEyEq+HMe+ewoAgAeSWWtalaIDlKE3YIKjMBkcqa+imsVueaDHfmzjH87k6Nw+Ho64W6XhMY8L3hTOq/H6y2Dn+YQ/x6IGzi49zgrZRe6gHFZ0IfsYwwHK46wTQa4OQb/zyD7DALdrEo/whfbez2hIODLK9zhCqk/e9IvBFeo2KY6Tt0otix243AF/1oGR+KwYzrhZadEeKYVYWcdn8DgmVH4A0NwhoNkiXV8pAi7B45TwVHA83R5gdii2IdaHaxKYXiA50cTY+2U+YWpr+JaWwgPH8LLupyIFRjAm9cRYW7YiSr+sxzJ2Ums6HvxMi+cZ09W8WFu2MeT7bMgANOyiepGgtkEL+yJJIIHSD7O6iS+LMQwMkRIs9dHOn6DHlalsBwPTybZLfMLr9cy1aUYQZIhUV0e/OIYItwNO13Nf3hZQh0fKcLu0seMJP8+xla0wpRgbMNwu70DdKkQP92tlLueFLx1HQ4Aj51hq7T2EsEh9DHT6PFK/qULHI7B9mk9yBvSJV1axS15dAQ+xBu72sS/mi5xTWiaBvWVwNF7T7DFan5yMPbkSLt1fENZPvA8FRrTnbIEHhS8OwEHgP+dYcs0UlkVIkXYXfqSfezDy9zPRZy3DL6aTrSbPrt3GEoEz//HYQAAIABJREFU41hn5hFLlsXgCyPxBj38n7TdRYR3AO7myWma2cZasWWxlUYD3JnCsjxsHIH3frdoWwRjCYYJk4YukeHw2VQCx+CVC8a6FpKlL20k/egy920+5y2Dr6bZs+P3tCr9kmh8cRTeTMPDp6SyKESKsLv0mXxLlxuNcQofTiKibN4vYUlP+wMAvD8RdyPh61zuQBkaDZ3Bf0+whS382ADsmVF2M4oCAF1Vwuu1pG8Q7tbdiqzXBWJrTH5iKT/7PpNa6HIjL8w4P5hERNs1+2vnIaPtsmUS7iWD7wq4X4okoQuRIuwufWM/mZ6FFYfZVgZWD8Bvi7Pz0+9Ff4h0x54aSQDAf09I2l3UN8pQbLvC7crj3Cn4ejpB2fXh92IOBACbxhGhKuxoJf/5FUmMhu1ChcQAjtNVJTxtEFuW3qNnYbmp499u745vyinTg6cfqsKeG0UAwNq/OTVtX3F6A1KE3QWTK0n/UJ5lmMpisWXpPU+cZc/X8XGe2NsT7LkgAAC2oZpTN+FunoRPYI9O/L9heJIfltvMv3xBuppQJhQmdOVlQV4z//DfRkuAjfmD2mJKpNAtu6gZLxlsGo8DwIbTbLVU/cQYJSMDwoFjmSoX7viPn2EvOKbj87SBqS4FnKBCelalbm0ifl0gVqzmnzknfsdHirAHuHp+mQNl/FuZxrBpD7vsl7DAFD3fXQehGRKHjycTOAavpXNZUnUXuXq8DM3BiiNsCw23xOJ3xNu/1wtxUp1Hz7fL8jh8fgRWrwcpbyt09bDhP0r5d0wbpeze8emyfJ5lqOBIjOrZVgwcg48nExQO72Ry52pF7vjtd4kNGzbk5Vk/9fz8/OTkZMeLJF2M9jHXDKRu0MOaoyzHw3OjiOsC7V8irHfGMYFxAdg9gyTtLiKDIzGCZGrLeb1UVy6d8uRZ9nQ1H+OBfTLFzgsCAGH/qJBpvWcrQoEtkwg3Er6SsJ/Y6CF2zWlQtda4UerFMcR4B3T8Xs+AAWC4L7Y2EWd5SD7Oitvz21eEX331VVVVlVVjVVXV1q1bHS+SdJG58g6K5ONsiYafEow9NsIhZoAeRc+35bVxRKgKOyZVdxFGkKSwkbSiUGxZekxKBf/mRY7E4esZhKe9FwQgZFrXaQhvf8LDp+uj2xDljj1p8hNrJel/d117AA+w5hhTqYVpIdj/DXNIxzfOgLsXLdyWF0YTMR7Y2Vr+/Utidvwe/DTV1dU+Pr150fsMxv5Qmudy9ck+zub2FNh/v4QldAfptruJJwVvSNtd5KLxMg16uPMIy/LwzEhiggMWBNCrICkrHjH5iV+SpJ/Y2PFdsDDh25nc3mLeXwE7Zziq4xtKbZoBq0jYMpEAgKfS2FLxthX+Y//jX3/9tWfPHgBobm5+/fXXg4KCzP/S6XR//fXXmDFjnC2glCC8/AgPH7algW2oIXx7FhIiIrnNxv0SH9h7v4QZtqmObW7AVe6kb1DXR3fA7XH417ncbyX8o6nsF9McYMGzDVloTKsLLgvuPmq0BGxMclRAgC1WcQHBTzzhF+a1DG5ZLD7C1zFjdm8hPH2Ejs/UV5F+wWKL010yG/j/nWEB4NMpRKjKIT8pzzJMRRFgmGA97h3zIrCbY/DvC7h7j7N759pWCay3/OOuxcXFf/31FwAYDIYzZ84oFArzv5RK5bRp01544QVnCygxqLBYNjvNUJandBFFSHOw/DCrpmGVA8Kmr92l1FSRtfd1PQEA3p9IHPme+fIqd2cCPsuO273tgWlZ4EqK8IMsh2ROsMKUSKH3ihAAxgVgyYPwDy9zycfZkwtJXFoP39jx6fJ8V1GEOhaWH2Z1LNw/BF8U5bCOX15gjJSR97aaMwAAvDeBOFjG/VbC/1TELXaYtJ3wj1uuXr06Ly8vLy8vLi7uxx9/zLMgMzNz586dcXG9NAT3GVwucPR/Z9gzNXycJ/auvcOmLelpTpmOiPbAnhhJAMD9J1i9xIxkVHgcYBhdXgCcFL2YbbnaxD+SygLAJ1McZQkQMGYZ7a1V3MwrY4kQFZyu5j+VXvpZl6vH9Ggqe7GeT/TBNo1zYMe33RggEKICoSLm2pNcixjbCtvXvTk5OePGjXOyKC6Ba2UYSangN2dypGPCpi2xV38AgP8bhif6YDlN/CsSy0KJK90J7wDeoGdqy8WWpVs8fobTMrAyAV8a48ApNlNfxWmacXfvLjOtd4mXDN6ZQADA42fYSon5iV0rcDS7kf/wMkfisHMGoXSkrdFgv45/32B8fCBWquGfPCtCx++sh1RWVl64cCHtnzhNMmniQvFjHA/rThnTzDsibNoSY8ioPfqDDIePJhEYwKvpXE6TtGIThNHQJeJlTlTxPxRybiS8Otax3lbaGC1s63JQYFkMPj8Ca9DDulPSmga5Vs79x89wDAf/HogPd7C3lS7puvpSNxG2FZI4bMniztQ4u+O3rwgvXrw4ceLEkJCQkSNHjvknTpZPalCB4a5SmHBHLne+jg93s2d9iXbh1I1sUx2uUJH+oXa54ORgbM1AXM9CssS2FcrCXWNZwAM8lsoCwIbhRIjKsfcSKlDa6CC05INJhDsF3+Rxe4sl9PCNHb+hWvod/2gl/3MR506BfdPJtgPH0hUFgGFUeO8jZSwZ4YutG4qzPPz7GEs71zre/rL59ttvr6+vf++99wYMGIDjKPuMBThOBUcbinPo8gJ5/DCxpekQHQtPp3EA8MpYXOXgOCxhOWh7pIwlr40jfinmUir4r65yKxOk8ga6imF8Tz53oooPVMJ6x2wds8SOxjGBSHfsmVHEhtPsAyfZGaGkmzhRhG3AcSo4ylB8ReIdnwd4PJUFgMeGE8E2xa90DV1ZzNMGMiAMV7jZ65rPjiK+L+Az6vmPrhAbnbjsaucta2pqysrK+vHHHxctWuQ8QVwHKizWUJxDl+VJuT+8k8kVqfkRvthyh0WKmrH7UAgAvnJ4czxx5xF2/Sl2XgQeoOj6FCfgEhETBg6eOMsBwIujHesYFqDLbNpP3S4PJ+I7c7nzdfwL51lHm3a7DxUWZyi+QpfnS7nj78rj/q7mQ1XYOsfPgeheJZjtHBUJWyYR835nXswkbxvIx9i1SkYntPNjYRgGAKGh9jFz9T2k7y1o0MPrGSwAvDGecEIYutE4ZtehEADuiMdnh2F1euMMVwqQfiGYXMk21XHqJrFl6ZAPsrjcZn6wN3b3AIcPhab9ox627B9ti7CtkMDgzYvchTqpGEilPw0ycEY70ItjcCespG1PpNAuN4Rjt8birQzcf9J5Hb+druLp6Tl//vxffvnFaUK4FqbChNLtD8+eY+v1cGMENjvMGfMpYWiw78RQ4MNJhIKAz69wh8qlMRqaNg5LNl6m0QAvnjfOgUjHW5RN+0fj7GgVFxgbgP13CM5w4mehNCPxRw8A717i8pr5Yb6Yc7wJdowVt+LtCYS3jN9fwn9X4CRX4bVpQ3l5eVZWlvD3ihUrHn744fr6+rlz56pU//C2z5492zmSSRYqNAYwjKks4lkGIyTiwbhGfgv/cTZHYA4PFxTg9VqmrgIjKTIw3O4Xj/fENiYRz6Sx951gM24i5RIwksnCYg0Fl+iyfMXAUWLL0g4vnWfr9DA9BLsxwhlzIENpPjhgTSDw0hjix0I+tYb/9Ar23yGOuEPPkIXFSrnjN+jhlQssAGwa58DkCdfgeWEx4IinH6yEZ4ezD58l155kZ4fh3j0ra9Ebrj3OP/74Y/Xq1Zb/++CDDz744AOrE3hXy7Znd4TChExNGVNZZF/XiF14PJXTs7BmID7MKXmqDGX5wPNkcJSDhobHR+C787isRn5TBvfkSPGjZoz2MUnGyxS28O9ncRjAG+OdNGUwOQjtEzRohQcF70zAb/6LffoCvjgaorwccZMegMmVpF8wU1vBVJdSIdEiS9OGF86z9XqYGYrNDXdGxxcqsRDe/ribpyOuf3ccu6eEOlHFP3mWfX+iw9/na4PX3LlzDxw44Oj79Q2o8DimpsxQli81RZhaw39XwClJeGaUk3SGoBLs7iA0I8Pho8nEtL3MixfYZbHYQHtXlO0pUnYUPXGW07FwZzw+2t9JvxJdVgD2jpSx5KZofFEU/3MR93+p8N0cB92kB1BhcUxtBV2aJzVFWNDCf3CZwzFwaB4ZS4wOEYc9emFb4cgfmQ8vc8vj8IlBjn2lrynC0NBQFCDTTWShsdrzRyU4Gv7faZYHeGQYHuHmtKFQ6A8OWRMITAnGVg3AP7/C3XucPTRfZJMUFRIDOEFXlfC0oaeVSB3K+Tr+m3xOQcALY5w0B+J0rUx9JUZSlAOs4mbem4gfKue+L4Jfirh/iZGF0hIqNFabfpwuzweYJa4kVjx+htOzsGoAPsp5c6B8AJDZkGu7SxJ9sEeG4a+kc/eeYNMWk5QjH774tiZXRJqBoz8Vcccr+UAlbBjuPGeaMc+kIxUhAGwaT/gr4EgFvzNX5CyUGCUjA8KAY+nKInElsWL9KZbj4cFE3KFpRS2hy/OB54WZgePuEuGGPT2cA4AH/+Y0YlcrFDIqSC1Q7nQ1vyefU5LwwmjnjecGp3T8p0YScZ7YxXr+rUzHdvz259fXX399fX1923Y/P7/o6Oibbrpp7ty5DhVL4lyzj/G83ePlegfNweOpHAA8M9IZu8eMcBxdWQQYRoXEOPQ+fnJ4YzyxKoV95DQ760bMw6E36wpZWCxTVUyX59srr5jt7C3mj1Tw/grYmOTEOVCpM4ZCALhvEL+rEM7V8Zsvck+J6ic2ZRyV1gx4QyrLA6wbioc7yw4EJp+Io5++koQPJhFz9zMvnWdXJeCBDksR0P5bFRUVVVBQkJmZKZfLw8LCCII4f/58dXU1SZL79++/4YYbnn32WUdJ5AoIhQk5rZppqBZbFiOfZHM5TfxAL+w/g5w3UtDVpbxBT/oE4ip3R99rZQI+IRCr1MI72SIHj0rNTchwxoRqTyYRToivM+OcoRAACAw2jQUA2JTBVomajJvwCcTdPDlNM9tUJ6YcFvxUxB2r5AMU8NgI5/ULTtPMNtZiMoW9sip2wvVh2IJIrJmG5847cFth+4NmTExMXFxcfn7+iRMnfv7559OnT1++fJmiqBUr/p+98w6Mqsoa+HltZjLplfRGQg0ESKMTolIUlCYuYl3Egm0/wZVVVkUQQRHBgoquorLuutgRCx0FpCShhJYQ0kN6n2TKK/f7401iTCFtXpnM/f01PF7uPW/e3HvuPfeUxTk5OX/729/WrVt37Zp95OCXCFXVYzKw8NJpHgA2JJKSWtLb0DwVyuExRABsGksRAFsyaQUrWYP6ChF8mClcrEWRrsQjw2TdLclwPNzCpAFwWxjZwMILaQpnV2ACI0A1A58T4NlTAgC8OIZyk80O1PrVy2IPey2RoknYdlm4WCvVwO9g5FgslvXr12/atKm178ygQYNefPHFtWvX0jS9fv16iqKOHz8ukUx2gaq2BevP8mVGGOdHyOxNIOdUCABj/Yh5EaSRg9XpSp4Uigmm2eKroIJQIgMLq9N5AHg1kdTI+fLFU1KCEBWDDIiLvA8zhQs1ii6D1FR/5v3LwqVaue1A0HxAqJFr4A/xIJYMIlu0vhR08PVVVlY2NDR4eHi0ue7h4ZGTkwMAWq02JCTEYFB7FnZJUc94uNaENp+3Ro/JfFwpj6dMa8Tp/uMsIaNasdmQdPGgXD0FUxNXXaaUDC28eo4vNUKSHzFPyqKD7RH9ZmkvfxsmXL4+4nTPI/iHZLNhd9AERgCARQWBpA0srFHCDgQtpiApXUbb8FIc5cbAd/lSJZnq4Pvz8fFxdXXdtm1b64uCIHzwwQeRkZEAgBAqKyvz9fXtda9Hjx5dsmTJkiVLjhw50uENJSUlTz/99J133rlt2zZBlQXB1WMaXZUqNHKwMFLyUJv2WHeEMo6HSFfirwM5HsEzp5Q0kakkrP5aE9qUIQDAxkTZ10ByHRC2RjQA7ioQ9iuXcs+6Ai5SfuC/ckYZOxDI6CfVgp8TrBhpLdosxbvv4BvUaDTPPvvsW2+9NWXKlI0bN27fvv2VV16Ji4v74Ycfnn/+eQA4cOBAQ0NDr2sTpqWlzZw5Mz4+PjEx8ZZbbklNTW1zA8uyycnJBoNh/vz5b7/99tq1a3vXkaQwvqqoT5ZRjT69ImhIWCtX9FgLgqGWb6ghdXrbJlzukmdjeC8t/FSI9hYrOBuqwjD+fJrQyMGCCHKiv0JrIHkVoa8O/h5LAcCKE7yg0Mun/UMJihbzqigjAQAAFDeiLReUsQMhjuXKi4AkpfYVb4MYHn2qAn1x1fZbo45nz5UrV27btk3clt1///2rVq1CCH399dd/+ctfAGDChAnV1dW93hG++eabDz/88COPPPLQQw89+uijW7ZsaXPD999/T5Lk1q1b58+fv23btrfeestsNveuLwkRfwcIKbstePokzyNYNoyMcpN7KrQUNtffkTeAxEOD/j6SAoCnlZsN1eAvc6kWfXJFYEhYJ/saCKRPLNIZT8WQIc7EmSr03xxlDEUERdP+YYAQW5KniAAiz6UKTRzcIX3KlfaI2VZp3yBCo5Wz35aEWf9IFcy2tgd1OoSWLl2alZXV1NSUm5vb1NR05syZOXPmiP+l0+nanyB2n+PHj0+ZMkX8PHny5PZON8ePH580aZJYDSopKamxsTE7O7uz1jhd7yXpI4pbR/cVo1+KkIcGVo1WIKJAEeOYyJMxZJgLcbYafaZQfL0aMiosP8FzAjw8lIxWIu2cRfrEIh3iRMPqOBKa88kpAhOkcBkK8ZevIeFlJdZA1levxMC/bxA5wosQc+ratuUuElY5OTmFh4fbtsvS0lJvb2/xs6+vb0lJSfsbgoOtSZsIgvDy8iopKRk+fHj7pmpqai4m/m30ncs9S0+LV5YtWzZjxgzbCtwZgk8QADTlZUKcAtbRBkPjiuNaAGL5MF7Lmg2s3AIY87MAQPAJktltqrGx0YUgVsWQS48zz53ib/ZtcpI/7ZreQzSMN1SUEU4yeYs0Nja2fD5YSv5UyLgxaPkgk8Eg975YqK8WDLWEztnIOIH0b99kMlEUxTDW+ID5AfCGhyajFl4/bXpyiALJZpB3IIgDPzZZ0o64Ztpcf+oYIyDywUG8H2GW32fRmJ8JAMgnWNKB3/rX3prVI8h5h5m1p7mFQaynplu/fJ1OR9NdzBF//HdmZuaBAwfGjh07evToTz75pKmpqcM/eOSRR7rT9/XFslgs4meTydSmzBMAODk5tdzQ2T0ibm5uWi0yzFi1ISCNAAQAw4cP7+xmm0OHDzECoPJC2Xpszb9z4GwNEepCPBWr0VEKJL00lBUAgD5ssEbex+d5Xq/X3zcU3ssW0irRtlynf8QqsCVq8g+zFGTRtaVab5nqlQuCIP7SBAQvZAgA6B+xVIinAslXzfkXAYAJitQ7y7EIIEmytSIEgNfGwoyf+Y0XqQeHa7xltc8BANARQ40AUCH5wBe1oE6na31xTzEcKOU9tfBCvEavVWDgG8sLAEAfPlgr5eO3/NrbcNtAuPEKv+8asSlT+3pStzbEJNn1bX+MomPHji1btmzdunWjR4/++9//Xl7ecc6UvivCkJCQ/HxrnsaCgoKWzV8LwcHBGRkZ4ueGhoba2tr294hQFEXTdLbFpSoyZdFAua0E2uCBYn0yAgky1yczcrD2vAYAXo4n9TK7TgMAAGItXEUxkJQ2MILoxu/MhpAiAK8lESm7uVfPCUuHMNLlXuoMJjDSUpDFl+SR0bHy9Nj83LDjinC6CoW6EE/GUPJ+91a4klwA0AQP7M4U03dIsuWdW5keDNODhV+K0Lqz6I2xcp8LaIIHAgB7LY8EACm/gfYPziN45hQHAM+NonyclHj3CLHXcgFAEyTt22/z4K3ZOJYY8w239RJ6PIaIdLXNIviPnu666666urrly5cDwNWrV+s6oe9dzp8/f8eOHQghhNBnn302f/588frOnTtLS0vFG/bu3St+/ve//z1mzJjQ0NDOWvPIPQQAz0pwfNolhEZH+wUjnuNkz7+85YJQ1ESM8ibulF39i7AleSDwjF+wghUYpgbIkXupM5hgZQJJTTz8M00AgJfjSQVswgCgRNhMe15NpCgCtl4UrtTJbRkm9a6Upx+ymLhKubNrbc8SzlWjcFfiMXmzCLXA11QITQbSxYNy91ZEAACI9SLuiSYtNo2v/+PbZBjGzc1No9EAgIuLi1sn9L3LRx55pLKyMiEhISkpqbS09NFHHxWv33///eJGcPjw4X/961/j4+NnzJjx/PPPv/7669dpzSvzxxhPIq8BbbusgN+EWIfPIm9QUaUJ1p/lAWBjEkUqlPHbGkofrHA5xg2JFE1a86zK3LXVcVR2n+HN54UCAxrjo9gaCFoSiyj69kc2z4bPpSoy8BXwl2ni4IV0AQDWxZNahRLuWoqzQelXDwBr4kgnGv6XI5wot83A73Qs8Ty/d+/eTZs2rVu3Trxy6dKlwsLCvnfp4eFx8uTJd95556233jp16lSLA+rly5cnTZokft60adPBgwdXrlx55cqVlosdQiBhXQIJAGtO8/WyO4wo4j245jRfZ4GbAvgbAhUrfKGGPQEADPMglgwiWypvyIkmKBIIgi3JQ7x8/hoVzWugVxMVWwMhi4mrKCYomh7QqZ1GHtbEkXoavswVjttoNuw+igSSbsoQihtRgi/xF+XWQIrEj7Yn2Jn4vxgSAaw4aRtrUMdfaGlpaUJCwrRp01auXLl161bx4rZt2xYtWmSTXimKSkpKSkpKoqg/FjbBwcGtj4Wjo6OTk5Pd3d27bG12KDk1gKgwwWvn5DaRWe1jRZ1Gd9icnAb03iWBImBNrJLF2SzqGA/QnHvpW8lyL3UGoXWivf2twcVysTqdr7PALSGEkmuga3mAEO0fStAypnnuiKDm2fD/jkuSbeQ6yB9IWm60zm/rE+SOoG+N/MnVOuMfsZS/ExwpRd/k2WAR3LEiXLp0aV1d3e+///7LL7+0XLzjjjt+//13mxwT2pz1iRQB8HqGIHNdAk1wFIhaQa78y8+cFCwC3D+IHOauXOphhKzuEipQhH5OsHwkBQD/kCb30nWQeTbMbiC2XRYoAtYnKlmIymoVV8FUCAArYyl/JzhebpvZsPtYTUEyGsafT+PrWbgtjExRbg0EqtkRAoALA/8cTQHA0ycFS59ffgeKsLGx8aefftq8efPYsWNb++0MGjRIEISiIvnWv90n0ddal+Cl07KOB9LZjfLwQWajPMfmJ8rRV7lCS4YFpeCqSgRTE+XuTbools2gNU+PIEOciZPS5F66DjJnHH3+LM0KsGQwGeOp5FRoUS6RQntcGHh+jJhmyAazYfehvf1JnZ6vq+IbamToLrMO/StLoAgQj4GUQkw0TzAaxq9jN36ZeXAIOcyDuFpvAweRDr7Wuro6nuejoqLaXOd5HgDUmO0MAADWxZMMCR9nCZckq1nVIUyQWJRHjtlwxUkeAawYIWsp6vaoZ1Uo0rIykNl5WM4KJEfL0K4i0pmGF8coXJeYlbcET5csHUwO8SByZHaXa64/JcYSSM3fTwqcYJ33ZeiuM8TSY4x/OJAK/whFaNK6Mngpva8OIh1Xn9Dr9adOnWpzff/+/RRFDRyosL9QZwxyJ5YOITlB7iotogOVRfpjwm/yhCOlaIATPD1S6alQNecELYi5l3IlyL10HWRzHeQEeOwYDwArRpIBCiRvaAVCbEk+qOnt0ySsb54N6yxd3m4zZFsG7S5E3+cLrgy8oPwaSF0rYAC4LYyc7E9UmGD9mT4tgTuuPrFo0aKVK1cePHhQTPiJEPrll1/+7//+b968ed3xXlGK50dTLgx8ly8cLpFvU9gcTybtbGjmYeUpAQBeGEO5KuyjAJYi1Y0HioBXEykAePkMXy2XzYLy9COd3QRDHV9XJWlHmy8IZ6pQuLM127iCcBXFyGykPHxJZxtEUtmKP2bDs/IZBORxHG3k4NGjPAC8FEcNkD1rRBtUqAgB4LUkigDYfEEo7IODSMcW502bNg0cODAlJWXmzJnl5eXe3t4zZszw9fV9++23e92TDAxwgpWxFAD87bh8dQk0QVHQXIpBOtae4bPq0DAPYulgJQ8JRMQdoUb2ygPXZ0YwcVMQUWOGtTLG1zMB4SDxbJjXgF5M4wHgjXhOr1AEfQtKFZ3oErEa0Za+zYY9otlVStoV8JqzRL4BxfkQjw9Xy8BX29tP9CXuGEgaOVjVh4jSjr9cNze3Q4cO7dy5c9GiRTNmzJg1a9aHH3546tQpPz+/XvckD8tHkOGuxJkq9FGWTCYyysuP1LsKhlq+vlqiLs5Vow1nBZKA9ydStNLDQWgy8LUVhEZL+wQqLEo7NiZRFAHvXBSy6+WaDaX3Hnzid6GRg0UDyRsDlK9QbbGugWQtRNcdEmwxG/YIJiAcSIotL0KsVAbZjBrYmklSBLw/kVIyZkJE4NnSfCAIJjBcaVHa8ko8qaVgR7aQVtnLgd/ptEpR1IIFCz788MPvv//+008/XbJkiVYre3bbnqOjYEOCWKVFvgMDSYtW8wiW/MqzAjw2TIH6q+2xHpgHRkiaZbF3jPQi7pY324jU9rH/5Qi7CgR3DWzsXn5hqbHGTqjMOCbS99mwRxCMhvELAoFnS/OkaF9AsOwYYgV4YjgZ56OCgV9WiFgL7e1P6mQqt9J9xJxzAoIVJ3ppDVLF6LItCyPJyf5EuRHW9e34tPtY/WWKJbGObsoQUitRmAuxNl4Vnloq9JRpzdo4Uk/DzhzhWJkcs6Gk/jL1LDx1QgCA1xKpQL3yUyE0O0mq8+23zIZP93Y27CnN/jKSOI6+fVE4XgHBelgdp6qBrzpjgMiq0ZS3Fg6VoB8LezPw/3TmMGfOnPbVAdtw4sSJXnQjM5vHUfHfcpvPCw8MlqNsaXN+GdvPhrkNaHU6DwA/VrliAAAgAElEQVTvT1TeR0ZEPTllOkTMNvLyGWHFCf7orbTU7572DyNoRnQhIbQ2dmZ45iRf3IiS/IglKjgYBgChsZ6vrSS0Tiq0iousGk1tzxIOlqCfCtHMEOkHftBASDvIFmUDTLdtyyVN8HwaDwCbEnhXRhUjX7XHwyIeGnhuNPXUcX7FCX5aEN3TI6Q/3W40GptacfLkyZKSkqY/Y0vZJWO0N3FvNGkR4BlZQikkMo0igAeP8I0c3BNNTg9WxYYAmseD2jxlWiNmG/m9HH0rfbYRgqKZgHBAyGJr6+jJCrTtsqAh4V+TFEsr2gYxRogJjARCHQK1w0MDz46iAGD5CZ6TfuhrQqIAwFJ0xeYtP3qMr7PA3DBidojN2+4lKleEAPDoMDLKjbhUi7Zf6fG7/5Mi/OWXXzKaOXv2LAC8+uqrGX/GZlJLzCsJlBsD3+QJe4slN5ExfiGERstVlwpNtizZ/MFlYV8x8tHBxiRV2EYAwFpziiBEb0l1YtvcS13CBEcBAFtoy9mQE+ChI7yA4O+x5HBF88i0pnkNpFJjgMhjw3s/G/YUJiQaCIItzgHBlsbYHwvRN3mCKwObEpVLo9gOi+rfvoaEtfEkAKxK5Rt6GF+vCpOLFAxwgmdixdxLvOQ5KEmS8Q9vKVlpE0qaYOUpHgDeGU/56rq8XSa40gLEc7RPoM3NgLbloaE2y73UJc35Zm1pD3gtQzhThaLciGdj1bIGgj+859U7FUKr2fD5NL5R4rz0pM6Z9vZHrIUts0FZHpFGDh49xgPAugRK2QRSreHrqgRDLenkQnn4Ki3L9VgYSY4fQJQZYVNGzwZ+v1WEALB8BBnlRpytRv/KlH5taA2rt5m/zKPH+Boz3BJCLIxU0TtSs9Nga1qyMq6WPtsIE2LjHWFeA3r5NA8A706glCq92yHqjKdujzgbljTB6z2cDXuB1R5gu8RSz6XyeQ0owZd4ZKiqBn4OiLOcWq3iIkRzROnGDL6kJ+d4KvqubY6Wss6G/0yTfDa0bgtsdEz4vxzhmzzBjYH3JqpoQwAAFtFpUPVTIYA1T3+l9NlGmIAIgqLZsgJksU1Km8eO8Y0c3B1F3hikoknHWnBKNH6om5bZ8LVzPZsNe0HzwLeNIkyrRG9fEGhSHYGDrVBVyZHrM86PmBNOGlh4Ib0HA78/K0IAuD3CGkrxksTZRmyYaK3aDE/+zgPAq0kqso2IqN9TpjVi5bYtF4SrUsbXE4yG9g8FQbCJYfw/V4XdhchbC6+PVdcaSCxBTPsGExo7iCce50fcFkYaWOtQko7mE2IbKEIewYNHeB7B34aTo73VNfBVVXKkS9YnkAwJH2UKGdXdHfh/srzs3r27sbFR/IwQAoDjx4+Tf46bXrhwoS1ElY83xlKJ33GbzwuzQsmpAVL9vJiACCAptrQAsRaC0fSlqeUn+FIjTAkgHhyiumWKOnMsdUaCL3FXFPlZtnDnQf7IbJqR7OvUBEexxTmWomxN+JC+tFNjhv87bl0DqedgWMQuPGVas2kseeCasDNX+FemhPEnmpBoEE+IEeqj2fDNC0J6JQp3JV5UR+Bga+zr7Q9yJx4ZSr55QXj4KP/bLLo7Ttd/UoTLli0rKChofWXLli1btmxpfcXuFOEYH2LVaHJ1unD3If7sPNpbmuWsWKOLLc1nS/PFsdE7DlxDn2QJWgrem6Aq0wgAAF9bITTWk85ulLu30rJ0l7fGU0fK0MkK9EIavy5BqvmlOX6mr8eEz5ziy4ww2Z+4f5Bq10D2MRUCQIQr8cEk6o4D/JO/8xMGEEOkKWBEOrtRnn58TTlXUUz3oUpfgQGJgYNvjiOd1XQwDADIYuIqigmKpv3DlJalu6yJp77KQ8fK0EdZwgPdWAb96SvfsWOH0WiUTDbFWDWK2leMjpahB37lv7lJstkweCBbms8WX+21ImzkYMlvPAJYPYaSaNz2BXvxlGmNuwZ2JFNTdnMbzgk3BJE3SFPd27ot6NtB0ZFS9OFlQUvB+xNVtwYCewgja8/CSPKHAvRZtrD4EP/7rbRGmtWFJjjKWFNuKcruiyJ87JhgYGFhJDk7VIVroDxAiPYPJSiVqejOcWPg9STyLwf4Z07y88JJr672P396sEmTJkkomnLQJPwnhRr1NfdtvvDeJeJhadyxmOAoSD3QF/+xZ0/xeQ0o1ot4aoTqBgMAWIpzwX4OCFsYP4B4fjT1fBq/+CB3dh4jRS0bJmggkCRXko84lqB7kwfEIsBDR3gEsDKWVOEaqCU0yC7cJVqzdQJ1ogKlV6JVqbxYqMvmMMFRxoxjbFE2jEnuXQtf5Qq7CgQ3BjapI6NsG+zIU6Y1d0SSn14RfixEBQbkpe1iTKnxe5eCEGdi6wRryomL0pSwFzVErx1Hj5ejty8KNAnbp1DSnWb1BeuewN7GAwA8O4qcEkCUGWHpb5LElBIaLeMXjHiOLcnrXQuvnhUu1qLB7sQ/1BQ42AJXXSYYDaSLB+XmqbQsPcOFgU+nUAwJr2dIlVvDml+mt/4y9Sw8eVwAgPWJVJDKnONE7MtTpjVbxnU3AEmVM6403BFJ3jeIbOJg0QHeJIErmRhkw17LAaHH0UsWAR74jRcQPD2CHKUyh7EWrAvDYDvbEQIARcCOZMpLC7sKhLcvSBJb1pd4sit16OUzPAHw3kRKq0Y92OwrYYevHgCS/IgXx1ACgnsPcxUm27fPhESD+OpRbxTtc6f44kY0zo94SH3OcSLiwLcXT5nWRLkR2ydTHt1wXlTpVy8Rb4+nBrsT56qRmLTFtpBOLrSnH7KYuYrinv7ty6f5CzVokDvx/BhVToQAyGzkqkoIiu7LQYiCBDsTH04S867xZ7vtVN19+hJPtuwYb+LhvkFksmRezX3EvryF27MylkwJJEqa4N7DnM3fPeXqSbl5CUYDV13a0789VYHevSTQJGydoJaMsm1BiC3JB/s0BQHAwkgy3LXrb9axFKEzDf+eSmlIePO8sKvA9jsDxlqPqWfW0Uu1aMM5gSTgw0mUTqV6ENhrOYAQHRBmRwfmbZgbTj48lDTzcOcBvsnWybeY4GjoVTzZp1eEfcXIWwsbpDnBsgn26CfVGpKAT6dQ3lr4qRC9c1GKgd+baEIxoyyvbjuQWFmF8vAlnd2UlkVCHEsRAkCcD7EmnkIAS361fdaJZjf6HowHAcEDv/FmHh4eSk5SQd3dzrDYVSh9Z7wxlhrpRVysRU8dt7FJwGoYL8lFfA90bLUZnj7JA8CmsaoLHGyNvSRXuw5BzsQHkygAWHHC9iaB3rkNbzovnK5C4a7Ec6PVvAayb2NAN3E4RQgAK0aQNwYRFSa4z9Z2EmuF3p74y2w+LxwrQ4F64mV11N3tDPv1lGmNjoLPp1JONLx/Wfgix5Y7A1Knp30CEWvhSgu6vruZFSf4ciNMCSDujlbvSBSMBq6mnGA0jG+Q0rL0ibnh5INDrCYBo01NAs0VSXugCPMNaM1pHgDeHk+pLXCwNaKnjCZIpfV4bYV6h590kATsSKYHOMGeYvSGTdPyMkFR0JNEa3kNSEyI9+4EsjsnugrSbxaGwz0J0Y3+4SN8vsGWC6Hm6nTdnQ1/LUXb1Zo8oTVscS4gJOZOUlqWvvLGWGqoB3GxFv39pC1NAtYT4p4kXn/sGG9g4c6B5C3SFxDuC/ZuFe8mjqgIAWCAE3w8mSYAnk3lT1fZbDakPHxIFw+hsZ6vrejO/Q8d4Q0sLI4ibw1T94sQBLY0DwiCCewPC8PHhpG3hZG1Frj7kC1LdPVoGWQR4OEjPAJYNUqNyRNa05+mQj0N/7uB0lHwzkXh+3ybLYIpTz/SxV1orOdryrtz/xc5wg8FyF2jolKjndFvVsDXR93zr5TMDCGWDSPNPCzc3+MqjtdBdDLujnX0oyxhTzHy1sIm9Q+GiiJkMVOevqTeRWlZbMPHk6lQF+K3UvTyGZvNhs3xZN3aFqw7w1+qRYPdiadHqn0M2l1ytesT40m8LHoJ/MZfa7LZOqj7bsP1LDx1XACA1xKpAL2t+pcEobGer6sitE60d4DSskiL2gehpLyWSMV4Etn1tnSd6GYZilIjPH2CB4At4yg/Vde4BbC3ohPdwVML26dQJAFrTvNHy2wzGzLBYr3yq10GkqZXovVnBQLgg0kqDRxsjcVuw8g64/9GkDOCiUoT3HuYF2ykCpsDSbsY+AKCJ3/nrzWhif7EA2oNHGxB1OtMYKTKyxD2HbW/CUlxouE/KZSOgg8zhS9zbbMzaHYc7WI8PH6MrzbDzSHE4ig7eAX90jwyNYB4ZiTJCbD4IF9ri3KVpN6F9hqALGa2vOg6t32YKUz8gTPz8MAQVfsJWxF4rqwQCIIO6A9WcRECYPsU2s8J9hUjWxXv7c4xYbkRZv7MiQfD6swo2wb7KjrRF+xgFpaUGE9CNNM/eIQvbLTB4tA6Hq5bqv7f2cKXuYKr+urudobVOGbnLqPtWR1HjfUj8g3owd9sYxK4fn6ZBhYWH+SX/sYbOVgymNyisoqDHSJWFqO9A0iduq14PaTFS2BVKp9WaYOBz4SIoYSdKsKDJWjUN+yeYuTnBLum0cPUfTAs0s+s4tfB0RUhACwbRs4OJWvMcNdBG7hO0L5BhNaJry4XGuvb/2+ZEe4+xN91iAeA9QlUiCpTC7an2V2i/+wJRBgS/j2VcmNgZ67wr0wb7AysGRU6UoRnqlD8t9znVwVXBnYkUx9O6m4WRGXpl8YAkZtDiCdiSIsAdx7kDX32EqC9/Em9K99Qw9dXt/kvHsHqdOGmH7mSJkgOIE7PpW8KspeBjxWhw0AA/GsyFaCHX0vR2tN9ng2bXSvFxVQLAoJtl4WhX7I7sgUnGl5JoB4ZZh9fvmCo5etrSJ2e9vJXWhbbE+lKvDuRAoAnf+cv9zkbu0bML9OuMOG7l4Rx33NZdSjWi0idQ9uFPVykf+8J1idQsV5EVh2yQSF7gugwn0ZJE0z7iXsxnQeA50eT+26mA/X2oQURx3LlRUCSjH+40rJIjt0MSEnx1cGnU2iSgBfT+Wk/cX00lbQvQ3GuGk36gXvoCF9jhpkhxPn59MpYlWYWbI/4IP34wPzOgeS90WQjB7f8wm/PEsx9mBI1oYNAPCFuzr9cZ4GF+/llR3kTDw8PJY/fRg9yt6evsdlTpr8ZA0R0FHyeQjnR8FGWMOsX7mBJ3wZ+uzIUe4vRqG/YA9dQgB72zKRXx1F2cDDYDFuSh3iO9g0mNNJUM1cTWBFauTGIeG8C5aGBvcUo4VvuLwf4K3W9HBWt/ccaOfj7ST7+W05MH/NFCvXjdDqyG0lg1YPVPGKflQe6ydvjqZFeRE4Duv9XPvy/7MtnhCpzb9ohnd0oDx/B1MRVXgOAtEoU9y23M1dwY+CLFOrdCerNJdsZ/dg0KjLMg/hgIuVMw+5ClLKbi/+W+89VgeuVYaj1CTEnwHOp/IyfuXIj3BREnJ7LpEhTFFo62GuO4ikDWBG2ZukQMucO5plYUkfDFznC8K+4h470JtJItCOxxdk/FKCYr7jXzgk8ggeHkJdupxdG2t8X3l89ZVrjwsCpOfT/bqASfYlSI6xK5YM+Z+85xF/qubG0xXtw22Vhwi7uaj0a40OkzbXLV8/XVgqN9aTelfLwVVoWCVkcRRbfyWweSwU5E2mV6M6DfOh/2RfTe+xL3BJKWNSIUn7k1p0RCIAXxpA/z6ClKActNY5zQAhYEbbBUwvrE6grt9MPDiERwLbLQvT/uJWnejYkmMAIoGhzWdHCnxvzGtAob+LYbPr9iZRbb0qXK09/9ZRpg4aE2yPIE7fRv82iZ4USFh4+yxZivuJu+onrUaEScVvw1bHsh47wZh4eHEIem01HudnZbkCk+dX32+1gC+4aeDKGzLmD/mQKNdyTKGmC1elC6H/YJ3/vgTO51VGupvymnVW/laJgZ+LgLfSLY9RaX6kr+r0xoDXKKEKWZb/77rt//etf2dkdO5ofPnx4XzMZGRkyixfkTLw/kTo/n749gjRysOGsMPALdsNZoTuJegUEH1whszTBJBJGc3nrE6jUOXSSn30OBQDEWtjyYgc5MBeZ6E/smkZn3k4/MZzUUbCvGN26hx/zDffpFYHthkIscB8IAHRJtmgOfV+ttXa7g8WRjGMAoCHhnmgyYz69dyY9K5RoYOHNC8LAL7iF+/lTFV2rQw4RJe6RAOBXc/XGICJ1Dm0HcaKdgRB7LRf6uymoBQUUoSAIM2fOXL9+fVpaWlJS0p49e9rfM3/+/BdeeGHDhg0bNmz47rvv5BcSAAa7E/+7gTp+G50SSFSbYeUpftBObtvl650fnK5CY7/nHjrCn9UNBID/Dsl7Jpa0o+Px9rAleSDwjF8Iwag7KbitiXYntoyj8v7CrE+gAvXE6Sp072E+7L/si+l8TSfHhwhgy3nh5nORADDakp0+h7JHc2hrHMo41gIBcGMQsWsanT6XvjuKRAA7c4XE77iJu7hdBZ0moilsRMm7ud38QAD4P++cX+zTHNoCV10mGA2kiwfl5qm0LHKgQCjTnj17cnJyLl68qNPpxowZ889//nPatGntb9u+fXt0dLT84rUh0ZfYfzO9rxg9c4pPr0QPHeHfOC+8FEcuiPiTwaPOAs+n8e9cFHgEQc5E4ogo+HW/S2VOp+3aCfZemryP+OrgmVjybzHkFznCq+eECzVodbrweoZw50By+Qiytf9nnQUe+I3/MlcgKK9GJ08XY40/Vw5g3wEn/aP2Vq8Z7U18mky9FEe+d1l4/5JwtAzduocf6SU8Ooy8J5ps7ff0fb5w/698tRmGewyEKpgk5NipObQFa06Zfu0i1xoFVqy7d++eOXOmTqcDgHnz5p08ebKiooNaDceOHfvpp59KSkpkF7ADREPH/26gotyIy7Vo4X5+3PfcoWZn610FQsxX3JsXBIKAJ4aTlxfQ8bHdSjyofhxzT9AGLfUni1kjK4aEcrP3cGKe0pMVaPQ33Je5grsG/ncD5R1xvfwy9gKymLjKawRF0/6hSsuiJOGuxPoEKn8Rs3ksFexMnKtGDx3hI5ptA5wAK0/xc/by1Wa4NYx8+dbBYP+vHhxvBazAjrC4uDguLk787OXl5eTkdO3aNV/fP7ml+fn5ffXVV2az+ejRo6+++uqyZcs6bMpkMpWVla1bt078J0EQt9xyy9ChQyWSfE4w3BwIH2TCKxlwohxN3c3dHAwcgj3FAADj/eCdcTDcQwAQBL9QsV45azZJVMWNZVmWtV3VjE4Qk6QQfiEy9NVN5HnwDpniB1P84Gw1bL4AO/PghwL0QwE3ygvO1wInwHg/2DEFgvV8Y2AkXDxlLrhCD0uyYe8yPzibnwUIUQNCOQGBoOTbZ1lW6CqPudQ4ASwbDA9Ew39yYPMFuFALq9OFNzKEAD1k1oGGhFfi4LFhAiEEmDVarqrUXFdN6l372CnHcRzHUZQCh8zmwmwAIP3DlBprNvy1UxRFkl1s+SRRhJcvX543b1776zt27BgzZgxCiGgVmk0QBM+3jWE+f/68KPrhw4enTZs2b948f/8OrEziD6W6+o+cRtXV1e1bsyEUwMOD4K4I2HKJ3HKJ+LEIAMBTg9aORvdHIwLA2jmjpbwG8FWl5tICeoAkC2qe5yV9UgAAhLiSfAAg/cMk76vbyPHg1yXGHT4cDy+NgncziQ+vEGeqCQJgxXDhhVhEk8DzQAZEAICl6IrOpnLK/ODmoqsAQAeEK/7qRQG6nMtkgAK4KwIWR8Dea8Tmi8TBUqK+DiJcYMdkYYwXEngAAMo/jCvIshRlMwNH9rE7vhkbiN5DuGs5AEAMCFXq7dvwwbvzy5FEEUZERHz77bftr4eGhgJAQEBAebm1fGVDQ0NTU1NgYGCbO1tEnzJlioeHx6VLlzpUhC4uLkFBQRs3brSl9N1Ap4M1ifDESNhwljfy8MLoDkopaYKjjVWlZEWRLmyQFDKwLCual6WDqywRTI2Um5feR0VnXTI8eHeI1MFr4+CFePgiR4hyI6YE/LG2YyKG1QNwRdm2lZPjODkf3FhRCAC60Gg1fNsURTGMisKPbo2EWyPhdBX6rRTdG026t/Ik04UONhRkQVmBbnhiH3sRF/ryf/+C0cDXVhCMxiU4UiKDVpfI/OCSKEKtVjtoUKez/9SpU1988UVBEEiS/Pnnn4cNGyYquZqaGoZhXFz+VPo1JyenqqoqLCxMCjn7iK/uegWmNcEDjWd/Y4uyIT5FTqlsiKOdE/QCFwaWDG673qS8/EhnN6Gxnq+tpDx8FBGs7zhUGFnvGO1NjPZu6xVjzS/TVUVSNcMW5wJCTECEUlpQfhSwNsyZM4dhmAULFrzyyiuPP/74qlWrxOt33333+vXrAWDPnj2zZ89evXr1ypUrJ06cuHTp0shI+3PWsBYisO/xgD1lekn365WrFEFgS8Qwsn6eSMHmdKcwocppTqTgQANfAWcZhmF+++23HTt2lJaWfv311+PHjxevP/XUU15eXgCQlJRUUVGRnZ3t6en5+eefJycnyy9k3/kj4yhCdpqu2joe8FTYc5jgKFNmOluU7RQzVmlZegNXUYwsZsrLr+8eH44GHRBGMBquohiZjYTWLmMJ+3fJkQ5RpiSaq6vrI4880uZiSorVhOju7r548WLZhbIxlKsn5ebJ19dwNeW01wClxekNzYlFsHGsxzRvC+x1R2gtOuGoEYR9gaBoxj/cUphlKb6qjYxRWpzeYHGYwvQtKO+I1Y9hguw4mlAwGviaCoLR0L5BSstif1jrlbcrTGgvWNNr4TVQr2iuVm+fyyCB58oKgCDoAAcyBWFFKCEtZSiUFqQ3sMU5gBATGAkqcFu3O2jvANLJha+r4utrlJalNzjgKZENaa5Iap8Dv6wQsRbaO4DU6ZWWRT7wHCchzR4TdrkjxFNhnyAI6zLITmdD7CfVB5iQaLDfV1/kiAMfK0IJER1H7XU8OHaeyb6jCYkG+9wWCIZavr6a1OlpLxXFj9oRTGAEQdFsWQGy9Kq+s6I4Qv3R9mBFKCG0dwCpc+brqvgG+7OPOVoJHptjv8sg0YbBBEbaqbez4hA0Q/uHgiCIR632hdVPKtixBj5WhFJCEGLsgbi7siMQz3Gl4oF5uNKy2CuM1TBuf/4y2C7ad+w3kNQxEylgRSgt1m2BvSlCrqwQcSztE+hQB+a2hfELIbROfHW50FivtCw9wwHDyGxOcxixnS2D+NpKobGe1LtSHr5d392PwIpQWprzLdnZwrA5lB5PhX2AIETDst1tC7CfVN+x0x2hw2ZVxIpQWpodqe3McRQbx2xC87bAnmZDxFrY8mIgScY/XGlZ7BgmaCCQJFeSj1iL0rL0AIujroGwIpQW2j+0Jd+S0rL0AOwpYxPscVvAluSBwDN+IQSj6fJmTGcQGi3jF4x4ji3NV1qWHmAtTO94WRWxIpQWgqLpAaGAkH35jznmgbnNscaT2VWGEYc1jtkcqz3ArrJvO+zAx4pQcjT2VobCemDu7Ga/JYRUAjMglNBouaoSwWhQWpbugq3itsJqD7CfgY8sJq7yGkHRtL8ktcTVDFaEkmN3B0XYU8ZmkCQTEAEI2ZHbMC45YiuYYDuzB7DXcgEh2j+MoJQpxqAgWBFKjt35yzhg7nnpsLPqdM02fLwj7DtM8EAgCLYkF/Gc0rJ0C2sovUO+eqwIJYcJigSC4Ery7GU8YOOYDWkuQ2EfyyCuqlQwNVFuXpSrp9Ky2D2kTk/7BCLWwpUWKC1Lt3DkgY8VoeQQGh3tE2jN1WIPYHcJG2JfjqPNEYT41dsGTYh9vX1HzDIqghWhHNjRsfkfB+YDQpSWpT9AB4QTNMOVF9pF/AzOKWNbrBVJ7WHgA0JipIdjHg9jRSgHdpR/WSxD6JgH5lJAUDTtHwYIWezBX8aRjWNSYN0R2sMJMVdehMxGytOPdHZTWhYFwIpQDkRbk124DmJPGZujsZ/qdM1vH5tGbQMTHA0EwRZfBUFQWpYucPAcGlgRyoF1Kiy+CggpLUsXYOOYzRHtAeo/KBKMBr62gtBoaZ9ApWXpJ5B6F9prALKY2fIipWXpAocNpRfBilAOSGc3yt1bMDVxVaVKy9IFDj4epMC6DFK9fYwtugoIMYERQOJpwWbYSxixg1vF8S9eJuyjDAVCbEkeOOqBuUQwAfZRrxwnUpACe7EHOPjbx4pQJqyJ1tQdT8aVFyGLifL0I/WuSsvSfyAYDT0gBASBLVF1vlkLDqWXAI2YX0bdhQkFQx1fX03q9LS3v9KyKANWhDJhdaRWtyJ05NQSkmIX0YQs9pSRAE3oIGg2OystS6eIv0wmMAIIQmlZlAErQpmwiwiK5vRaeCq0Mc2FCNT79hHPcaX5QBBMQLjSsvQrxOT1gqmJq7ymtCydggc+VoQyQXv6kXpXvqGGr69RWpZOcfADc+lQf4YRrrQA8RztE0honZSWpb+hfnsAHvhYEcoFQYi/MzX7yzj4gbl0NNcrz0Mcq7QsHWN99cGOuyeQDvU7juKBjxWhfIinL6o9JsQH5tJBaHS0b7DV/KhKRE8ZjQNPhdLRnF9GpYoQcSxbXgQkyfiHKS2LYmBFKB+Muusx4QNzSVF5PabmdNtYEdoepsVxVJX+MmxJLgg84xdMaLRKy6IYWBHKh9VfRq2mUXxgLikqr8eE3750UO7elJun0GTgasqVlqUDcA4NwIpQTpgBoYRGy1WVCqZGpWXpAHxgLilq3hHyNeVCY72Y/0hpWfon1ugpVb59R66+1AJWhDIiWuERUmf2bXGr6uDjQTpa6pWDwCstS1twVXqp0QSr1x6A3z5gRSgzjFrHA19fw5YVEhqdg48H6SB1zmK9clZ99ZnNuRcBQBM6WGlB+i2MNX5GdTtCxFosBZlAEGLgv8OCFaGsWB1H1Veo05yZDghpo0biMoTSodp4MnNmOgBoo2OVFqTfwgSr1HHUknsRsRkYUCsAACAASURBVBYmaKCDZ1XEilBWrBl41acITVnpAKAbPEZpQfoz6swuJDTWW4qyCUajjYxRWpZ+C+01gHR2Ewy1fG2l0rL8CVOmOPBHKy2IwmBFKCtMYCSQFFdagFiL0rK0AiFz5mkA0A7BilBCxHpMatsWmLPOAEKaiOEEo1Falv6MOu0B5qzTgFfAWBHKDMFoGL8gxHNcmYoOithruXx9NeXuzQwIVVqW/ow665Wb8FQoCyrML9NiDNBEDFdaFoXBilBuREdqVYXVW80jQ+KVFqSfQ+pdaE8/ZDGxFSqqV968J3B045jUWI9F1GQPEI0B2sgYbAxQryKsra3Nzs7medX5mvcRFR4UiVOhFk+F0qO2bQFXeY2rKiWd3Rw8nloGRMO4qgoTiitg7SA88JVQhLt3705MTNTpdOPHj+/sno0bN0ZGRt52221RUVEZGRlyiic1GpX5yyDWYr6aAQShGzRKaVn6P9b8MqrZFliNAYNG47x6UkN7B5BOLnxdlXrqz5ivnAFsFQcARRRhYGDg2rVr161b19kNubm5q1evPn78+IULFx544IG//e1vcoonNUxQFBAEW5yjksSD5pzziLVogqNIFw+lZen/qM1jwuokhadCGVBZ/ZlWxgAcOqyEIhw9evS0adM8PT07u+GLL76YOnXqoEGDAODhhx8+fPhwSUmJjAJKC6l3oTx9kcXEVRQrLQtASwwZngpl4Y+MCmpYBgmCOfssiDtCjPSoahmEjQGtUWP0dF5eXlRUlPjZ29vb3d09Pz8/ICCg/Z0IIaPRmJaW1nIlOjrazc1NJkF7izZsaFN1uelymotfsNKy4EAiWaFcPSl3b76uiqu8RvsGKSuMpTBLaDLQvkGUl5+ykjgIqjKMY2NAayRRhIcOHdq5c2ebixRFvfnmm935c4PB4OXl1fJPvV7f0NDQ4Z3V1dX5+flLly5tufLEE08sWLCg5yLLS/RoOH3YkHYQxtzQ6zYaGxuJPi/lBEMtey2X0GgtvmGswdDH1uTBJg+uIGRABF9XVZ99XuPk3qM/bGy0ca52U8YJAKAiYwzqfvUmk4miKIZhlBakr/BegQBgLsjq5hfONWN7UQTBdOUMAPDBg9T59m34a9fpdDTdhaaTRBH6+PiMHDmyzUWS7K4Z1s/Pr7a2tuWfNTU1AwYM6PBOb2/vIUOGtN4R2gUoPtn47btcQaYTb+51vn+EkIuLSx8labp8Usys5urRqaVabdjkwRVECB/CXk6lKot78RS2fXBj7nkAcIlJclL390nTdP9QhOA82KB1Emor9IRAOndtuBK1oE6ns7kglrzLyNhI+wa5BUfYvHFbIecwl0QRxsTExMT0Pl3TqFGjNm/eLH7OyMggSbLFUto/IDQ63ZA447ljxrNHXCbfpqAkzXZRbB6RD0Yd9ZiQxWTJvwwkqR3Yds2KkQqCYAIjLbkX2OKrygYt4CwKbVDAWaakpGTnzp2pqalVVVU7d+48duyYeD0uLk78fPvtt5eWlr788ssnT5584okn/vrXv+r1evnllBSnUZMBwHjmNyWFQKjZUyZOSTEcjD/iyRT1lzFnZyCO1YQOJvWq3g72MzQhqlgGNQ987BlgRQFFWFVVtW/fPo7jkpOT9+3bd/bsWfF6QkKCu7s7ADg5Oe3fv//ChQvLly+fPHnyhg0b5BdSapyGJxGMxpx7ga+rUkoGtjS/ObNaiFIyOCAqqVeOjQGKoIZCbNgY0B4FvEZjYmLef//99tffe++9ls9Dhw79/PPPZRRKbgitk25ovLLWUdPlNADQDYnD/tMywwRF8fWn2KJs2qvjw28ZwHsCRVBDBIU5+xziWE34UGwMaEG9Kdb6PVbr6NkjSglgxgmWFEITGg0AlpwLSgnA11ezZQWE1kkTNkQpGRwTxj+U0Oi4ymt8fbVSMpgycXbZtmBFqBhW62jOeUWGBGIt5pzzQBB4PMiPbmgCADSdPqzUMaE58zSuw6wMJKUbEgcINaUfUkqE5tzC2Cr+B1gRKgahddINiQeEFNkUWnIvIIuZCRqIM6vJjyZ8KO0bxNdVma+cVUQAXIdZQfTxKQDQlHpAkd75+hq2NB8bA9qAFaGSOI2aBAr5jjaXXsL+osqgH5MMAE1pSsyGLXWYsVVcCXTDk0hnN7Yomy3Jk793c2YaNga0BytCJXGKGWu1jsruO2q6jDOrKYk+4QYgCOPZI8hilrlr7C2sLARFO8VOBABFrKM4grBDsCJUEkLrJB4YGDOOydkv31DDXsshNFpcmVopaJ9ATcggwdRkvHBc5q7/SLOOvYUVQh83FUTrqMyHxC3GALwC/jNYESpMs3X0Vzk7NWedBoS0A0cStP2nrbJbms+KDsrcrwmXpFcabWQM7e3P15Sbc87L2W8rY0ConP2qH0c0E9fX11dWViothRXk7F/exKH0k7Vn0ynXbvmt0DQdHNynshXYf1oN6Mck1333genSKcFQK5vLEuI589XzQBDaaFyHWTkIwmlMcsPe/zalHtAOHCFbt7jmWmc4oiJctGjR6dOnnZyclBbECmItIPBwYG43j68rKirefvvtuXPn9rpH7D+tBkgXd+3gMaaLJ5vO/OYycbY8nVpyLyGzkQmMoNy8ur4bIxn6+JSGvf81nv7VY94jBKORp1NsDOgMR1SEFovl008/vfHGG5UWpJc8+OCDZnPvPSzYkjy+tpJy82T8w2woFaYX6ONTTBdPNqUekE0RmlvKsWIUhRkQygRHsUXZposnRd8ZqcHGgOuAzwgdjubAiXjsK6E4TiPGkzpnS94lrqJYnh5N2BigGqyHxHKF0FiNAQHh2BjQHqwIHQ58TqAeCEajGzkeAJrS5HCZEYwGS2EWQdHagb2vkoaxFfq4qUBSpgsnhcZ6GbrDxoDrgBWhY4E4FptHVEWzJ/1+GTzpzVfOgiBoIocTGtvXesX0FMrVUzdoFOI5eXJLYWPAdcCK0LGw5FxAFhMTFEm52U1J+v6NbtBoyt2bqyyx5GdK3ZcJ7wlUhj5OpnRr2BhwfbAidCxwFTrVQRCypVvDVnG14RQ7gdA6mXMvcFWlknaEjQHXBytC5SkoKLj33ntTUlJef/11QRAk7cuUmQZYEaoM67bg9GHEc9L1wleXc5UlpN5FLImHUQOERucUMw4QakqX9pAYGwOuD1aECsPz/PTp02NjY998883vv//+tddek64vobGeLc4hGA3OrKYqmOCBTEC4YKgzX06TrhdxDaSNHg0kHvUqQh/fnG5NSrAx4PrgIaEwu3fvdnd3f+qpp2JiYrZs2fLmm29ynFTbAtPl5sTzcgXwYrqJ1WVGSutos1Uc7wnUhW7wGMrNkysrtBRekagLbAzoEqwIFebo0aNjx44VP48cObK6ujo3N1eivvCqULXo46YCQRgzfhdMjZJ0gJBY+xBnW1YdJOU0egpIuSnExoAuccTMMu0xsMBKezZnhSLB7c9prktLS/ft23fkiNV/WhCEkpKS6OhoKXrHFVhUC+Xppx04wpx9znjumHPiTTZv31J0RWisp70G0N4BNm8c00f0cSmGw982pR30uO0BICmbt4+NAV2CFSEcuIam/cTxspRDIQD+PZVaNPCPdZlOp7vlllseeugh8Z8zZ87U6SRx62JL83FmNTWjj08xZ59rSj0ghSK0Ft/BdZhViSZ0ED0ghCsrNGWe1g2Nt3Hr2BjQDbAiBB8dhLoQtRY5NKErQ/jr/5TYLDg4OD8/Py4uDgAsFktNTU0fK0t0huiIocWZ1dSK06jJtV9tNV85w9dWUh4+tm28ud4INgaoFP2YqfU/fdqUdsDmihAbA7oDVoQw0ovIuUOx72Hu3Lk333yzyWTS6XS7d++Oj48PDAyUoiNceknlkDq9bliS8exvTemHXFMW2LBlxFoseReBJLXRsTZsFmNDnBNurP/5M+O5Y8hsJLS2LIyDjQHdAZ+dKkxMTExKSsrMmTNffPHFxx9/fO3atVL0gnjOfDUDZ1ZTOVZPelv7jpqvZiDWogmOJvWutm0ZYysoLz9N+DBkMRkzfrdty3gF3B2wIlSejz/+ePny5b6+vgcPHrzhhhuk6MKScx5ZTExgJE48r2Z0wxJJZze2OIctybNhs83ewngqVDVSLINaGQPwCvh6YEWoPARBzJo169FHH5XIWRTwqtBOICjaadQksLUnPfYWtgv0o6cQNGPKTOfra2zVZrMxIAobA64PVoQOgUn0lMFToeppzsK8H2yUbE8w1LLXcgmNVhM+1CYNYiSC1LvqhsaDIBhPH7JVm2ZccaJ7YEWoLvLy8sTMMpmZmenp6TZJPSo01rPFVwlGo43EiefVjjZiGO0dwNdVma9m2KRBU+ZpQEg7cCRBM13fjVEUa6neVJvlHcVJ9rsJVoTqYtSoUQUFBXfdddcdd9zx1FNPjRs3rr6+r0U7TZnpgJB24AicWc0OIAh9XDLY7qwIHxDaEbphSaSTi6Uwiy3N73tr2BjQfbAiVB2HDh26dOnSqVOnDh06NGjQoM2bN/exQZxZzb7QJ9wIAMYzvyHW0vfWTFlnAO8J7ASC0TjFTgQAY/qhvrfWbAwYgY0BXYIVofIcPXp07ty5M2fO/OWXXwDgm2++ufPOOxmGAYC77757x44dfWwfB1PbF7RvkCZkkGBqMl040cem2LICvraCcsXphOwG0TramLofUF9TfOADwu6DA+oVJicnZ9asWe+9997w4cP/+c9/NjU1FRYWGgyGffv2AUBZWVleXp4gCGRvs+WypQV8bQXl5skEhNtSboyU6ONTLIVZTWkHRCfSXmMNph48GqcTshe0A0fQXgO46jJz7kUqdHBfmsIr4O6DFSEIpkbDwa8Rx8rQF0FSzpNmtw7m+/jjjxcsWHDHHXcAwBtvvPHtt982NDR8//33YhpulmVZlm1qanJxceldj+bMZn9RPBXaD/q45NrvPjBdPCU01pPObr1uB0+F9gdBOI1Jbtj3RVPqftc+KEKurBAbA7oPVoRgunCy/pd/y9YdoXdxnTq/5Z/5+fkjRowQP4eHh2u1Wh8fn+XLly9cuBAAsrKy4uLieq0F4Y/K1HgqtCdIFw/d4DGmS6eazvzqMmFW7xpBPGe5eg4AtLguuV2hj09p2PeF8cxvLrcuBejl+lUMHtUOwsaAboEVITjFTvQ0GwWjQYa+CK2TPv5PuWN8fX3LysrEzzU1NWazeciQIefPnxcVYUZGRoua7AWI58zZGUAQ+JzA7tDHp5gunWpKPdA7RYhYS+1X7wimJsY/lHL3trl4GOlg/MOY4IFs0VXzpVR6aEIvWjDnXGjY9wXgHBrdBitCIGjGefzNSvU+b968BQsWPPbYY2FhYS+//DJBEIsWLVq6dOmSJUu8vLxee+21ZcuW9bpxU8bvyGJiAiMoN08byoyRAacR4witkyXvEldZQvv0rG4AW1ZQvX0dW5JHMBq3mXdLJCFGOvRxKXVFV03pB116qggRatj3Rd1Pn4HAayOHiz6omC7BXqMKM2HChJUrV06YMCEsLMzLy2vkyJExMTFr1qxJSUkZMmTIjTfeePfdvZnI+Lqq6h2vVn2yDgB0wxJtLTVGcgiNzmnkeECopwGFjSf3lr/+BFuSRw8I8XvqTafYPrnbYBRBPyYZSNJ86RQyNnb/rwRDbeX7q+p2bwckuN54h+9jr9q2kEU/Bu8IlefJJ5988sknxc/PPvssANx333333Xdf71pDrKXh0FcNe79AFhPBaFynzne9aZGtRMXIiT4upenU/qbUA27TF3fnfmQ21nz5TtOpfQCgT7jR8/bHCI0kRZ4xUkO5e+uiR5ky080ZR50m39qdPzFfOVv92Qa+vpp08fC662kdrrvUE7Ai7FeYLhyv/fp9rqoEAHTDkzzmPYyrcdovusFjKHdvrqLYUpCp6cqBkC0tqP7Eag51n/VXlylz5BESIxH6uKmmzHTzmcPQpSJEqOHAzrrd20EQtFEjvO5eiU+Fe4oCirCysvK9995LT09vaGj48ccfxcjxNsyfP78ltdiUKVNWrVolr4z2B1dWWPvt+6ZLqQBADwjxmPswXhLaPQThNHqK4dDXTakHrq8Im07tq9n5FrKY6QGh3vc9i2NG+wFOoyYRX77D5l7kqstorwGd3SYYaqt3vGa6nAYE4XrDQvdb7oPexhw7MgoowpqamrKysoSEhGeffbazpNKHDx/+8MMPQ0JCAMDTEzt6XA+hqaH+5x2GIz+AwJN6V7fpi10mzQaSUloujA3Qx001HPq6Kf2Q+21LO7wBmY01X2xpSj8EAPqEGzxvf4LQaGUVESMNhEanG55kPH3YmH7I9cY7OrwHm0NthQKKMDo6+q233srJyRHPwzpj+PDh0tXn6ycIfOPxX+p+/EQw1AFJOY+/2f2W+/oSf41RG5qQaMY/jC3NN2eehtC2qZPZouyq7eu4ymuE1slz4RP6uKmKCImRCN2YZOPpw42n9negCAWhfs/n9b/8GxDSRsd63f0MrrndF9R7RnjXXXfRNJ2QkPDcc8/5+voqLY7q4HIyyn7+VCxlro0e5THvYWwQ65fo46bW7d7elHZA82dF2Hjsx9qv30UcywRHed/7D9o3SCkJMRKhHTyGdPHgygrYoqtM8MCW63xDTfVnr5qzTgNJuk1f7DbtTmwO7SOSKMK6urq9e/e2vz516lRv726d4m7YsCE2NtZkMm3YsGHGjBknTpyg6Q5EraysPHfuXGvb6dq1a++9997rN26TIn9KgoT6I7saL3wFAKSXv9O0xUzMODOA2SBHTgDFaWxsJBwpWQYamgQ/fmLMOMYm/8V6xWxs+vZdNuMYAGhGT3G69SETo4H++/ZNJhNFUR06E/RvOI4jhibCqT11v/+sm2md1rirGU1fbhEaakkXD6cFj5NRsYamJmXllILGxh7EjVwfnU7XofpojSSKsLa29ssvv2x/fcSIEd1UhEuWLBE/xMXFeXt7nzt3bsyYDnKj+Pj4DB8+/ODBP+pYurm5UVQXx2O9TmCtEhDL8sU5MCDKffqdLlPmOlqNFYRQX3LO2R8uLubIGPPVDCYvwyVkliXvctWn6/jqclLv4vmXp5xGjldaPsmhadphFSGddFPtqT1sxlGf+Y8AoLrd2w0HvgSEdEMTvBavIF3clZZRQuQc5pIowrCwsP/+9782aUqn02m1WpPJ1NkNFEX1wpvmww8/FMs72A0IAbJuZE+mpsaMG+76t42ugaHKCoWRB318ivlqhuXMrw2sqX73dsRzmvAhXvf84zrOhJj+AR0cTfsGcRXFjSf3NJ7YY8m9CCTlPute15TbcRJRG6LAGSFCKDc3t7CwEAByc3N1Ol14eDgAbN26NSQkZPbs2Xl5edXV1bGxsRaLZe3atXq9PjY21oYCrFix4syZMzZsUAaQxdyw9z9IEChP3ztmz5zz8OOkK3amdRScYifVfrWVu3qu7uo5IAjXlAVut9xHUOo94MfYEH18Sv1Pn9X8dzMAUJ5+3ves1EQMU1qo/oYCY8lkMt10000AEBkZecstt7i7u6enpwNAampqU1PT7NmzKysrFy1alJ+fzzBMfHz8rl27nJ2dbSjA9OnTp0+fbsMG5cE0fyZizU4jJ4grwYaGBqUlwsgEqXfRDUs0njtKOrt5LV6Bc+Y5FPq4lPqfdwBCuuFjvRYvJ/WuSkvUDyFQn+sgSwTP8yRJXt8tIi0t7cEHH0xLS5NNKvXQ0NDg6uqIQ8IxH5yrvFZ79EfPKXMoDx+lZZEbR3aW4ThOp9M1HvsRCMJ57AzHMYcaDAa7PyO0CV36vGAwjgPtE6i74S+UQ3kJYZpRsDyOg2Df/pMYDAaDwfQR+1aEZrPZYY/Kfv75Z6VFUIa9e/fyPK+0FApw7Nixuro6paVQgPPnzxcUFCgthQIUFhaeO3dOaSkUoL6+/ujRo3L2aN+KMCcnp7i4WGkpFKCxsbHXdZrsnSeffPLatWtKS6EAGzZsOHnypNJSKMD27dt37dqltBQK8OOPP3700UdKS6EAqampr7zyipw92rcixGAwjoBqffokxTGfWhGwIsRgMBiMQ4MVIQaDwWAcGvXGEXaHbdu2LVu2bOpUh6s+IwjC4cOHHfDBAeDIkSMJCQlarcNV3UtPTw8PD/fycrhqO5mZmXq9XqxO6lAUFRUZDIYhQ4YoLYjc1NTU5OTkxMXZprzi3Llzly1bdv177FsRGgyGLVu2JCUlKS2IAuTm5kZERCgthQLk5eWFhYU5VAEKkaKiogEDBjhgXHllZaVWq3XALAoGg8FoNDpgETqWZUtLS2219ImIiBg4cOD177FvRYjBYDAYTB/BZ4QYDAaDcWiwIsRgMBiMQ4MVIQaDwWAcGqwIMRgMBuPQqLf6RJcIgrB///7i4uJJkyZ16RTUjxEEISsrq6ioaNKkSQ4VVFBSUnL8+HGj0ZiYmBgVFaW0OPKRlZV17ty5xsbGYcOGJSQkKC2O3LAse/jw4aioKLGgtyNw5cqV/Pz8ln9OnTrVoYrzHD9+/OLFiwEBAZMnT7ZtbdoW7NhrdP78+VevXk1MTPz666+3b98+a9YspSVSgOLi4qFDh2q12srKysLCwuDgYKUlkol9+/YtXLhw8uTJrq6uu3btWr169ZNPPqm0UHJgsViGDBmSmJjo5OS0b9++5OTkzz77TGmhZGXNmjUvvfTSmjVrVq5cqbQsMrFixYqvv/66Zbn/ww8/OMiSl+O4xYsXp6amTp48ubS0dMGCBUuWLJGiI3vdER47duzo0aNXrlxxdXWdPHnyc88955iK0MfH58KFC56eno4WZTVy5Mi8vDw3NzcA+PHHHxcuXPjYY485wjJZo9Hk5OSIn69duxYcHLxmzRrH2RtdunRp165dN910k9KCyM2dd965du1apaWQm3fffffKlSvnzp2TaCPYgr2eEf7www/Tp08XZ/+5c+eeP3++tenAcdBqtQ6YcQMA/Pz8RC0IAAEBARzHOWBtpqamJq1WK2chb2Xhef7+++/fsmWLRqNRWha5uXbt2k8//XTx4kWlBZGV//znP48//nhhYeHBgwclrUFmr4qwuLi4xQzo7Ozs4eHhmPWYMACwZs2ae+65x6Emx8ceeywlJSU5OfmLL77w8fFRWhyZeP3118eNGzdu3DilBZEbiqIuX7787rvvJicnz5o1y2KxKC2RTFy9evWzzz5bunTpG2+8MXjwYOnKkNmraZTn+dZJtmia5jhOQXmko6KiokND0BtvvNHvc41OmzatvLy8zcUHHnjgsccea/nnqlWrcnNzt2/fLqtkEjN79uzCwsI2F++6664VK1aIn++5557y8vKvv/561apVN9xwg9SGI9mYM2dOXl5em4uLFi165plnsrKyPvroo9TUVCXkkpz33nvvvffea3PRy8vrwIEDALBu3TrR7N/Q0JCUlPTuu+/2mxPxbdu2bd26tc1FDw+PQ4cOAYDJZPL29t65cycArF27dsWKFb/++qsUYtirIgwICGiZIlmWra6uDgwMVFYkifD09NyxY0f762FhYfILIzNvvfUWy7JtLvr5+bV8Xrt27TfffHPo0KEWM2n/YNOmTWazuc3F1ju/xMREAJg1a9aQIUN++OGHO+64Q1b5JOO1115r/+De3t4A8NZbb7m7uy9fvhwAzpw5U1JS4uLi0npJZNfMmzdv4sSJbS7StHV+bjn8dnV1veWWW06fPi2rcFIyd+7c8ePHt7nY8uABAQHJycni5+Tk5E2bNkkkhr0qwuTk5CeeeILjOJqm9+/fHxQU1F8zUNM0HRMTo7QUyjB48ODr/O+mTZs+++yzQ4cO9b+sxNHR0d25zWQyNTQ09KdFwHUe/P777588ebL4OT09PSoqatSoUXLJJTl+fn6tV3jXIT09vb3msF98fX2vM35TUlKuXLkifr5y5Yp0XvH2Gj7B83xSUlJwcPDkyZM3b9783HPPPfTQQ0oLpQxPPPGEwWD4+OOPFy9e7OzsvHXrVkdwntyzZ8/06dNnzZrVYgl4+eWXHeG0bN++fVu3bhUr1Hz77bdarfbAgQMOdT4KAHPmzBk7dqzjhE/cdNNNiYmJbm5uBw8ePH/+fGpqqr+/v9JCyUF2dvaECROWLl3q4eGxcePGt9566/bbb5eiI3tVhAAgzv6lpaXJyckO6E7dwkcffdT6fPSBBx4gSXv1geo+2dnZ4vFJC4sWLXKEGBKDwfDDDz9cunSJIIgRI0bcdtttLXYkx+GXX34ZMGBAf9oRXp89e/acPHnSaDSGh4cvWrTIcfyEASAvL+/zzz8XBGHmzJm2qlDYHjtWhBgMBoPB9J3+v3XAYDAYDOY6YEWIwWAwGIcGK0IMBoPBODRYEWIwGAzGocGKEIPBYDAODVaEGAwGg3FosCLEYOyPsrKyTz75pLKyUmlBMJj+gMOF4mIw6ufw4cP3339/Z/+bkJDwyCOP3HfffcePH3eEZDoYjNRgRYjBqI7g4OC//vWv4mej0bhu3boJEybMmDFDvBIaGhoREbFmzRrHLEWJwdgcnFkGg1E11dXV3t7ey5cv37hxY5c3cxwn3t+Sb9ZisTQ2Nnp6era/WRCEiooKnU7n7u5uY6H/v737Bz0njOMAfoySJH+eE4PUDSRZjLbLblLqBqPhRicDJmVSUorBZqEsmM4kGSSLwmIgxWKg5G9+w9X16zv+fvU93Ps1PvXU55ne3fN8ug/AR8EbIcDnGY1GNE3L43jC4XAsFqtUKjabzWazEUJardbtduN53mAwmEwmn883n8/l7a/Xq1Ao2O12QojRaAwGg5PJRKGjACgPQQjwea7X6263kyeVn04nURTr9Xqj0RgOh16vl+O4eDx+OBxEUex2u8fjUb5rpShKEIRMJsPz/HQ6HQwGer2eZdntdqvQaQAUhjdCgG9wPp87nY40065UKvn9/sViMR6PNRoNRVGpVCqRSOx2O0LIeVfNCAAAASdJREFUZrMpFovZbDadTkt72+22y+Wq1Wq5XE7BIwAoBUEI8A0CgYA82ZVhGIqiWJaVUlBeWa/XhJB+v/94PKxWqyiK8nan0zmbzX69aoC3gCAE+AZ/t8NIc3qNRuOPFekqdb/fUxQlCIIckxKapn+nVIB3gyAEUBepR3Q4HHo8HqVrAXgLaJYBUJdQKKTRaJrNptKFALwLfBECqIvH4+E4Lp/P63S6aDRqNptXq1Wv13O73ZFIROnqABSAIARQnWq1arFYstlsMpmUVhiGKZfLylYFoBT8WQbg3T2fT61W+6O35fl8yr+P+TeXy2W5XN7vd4fDQQj5vxoBPhiCEAAAVA3NMgAAoGoIQgAAUDUEIQAAqBqCEAAAVA1BCAAAqoYgBAAAVfsDsF4+nNUA8cwAAAAASUVORK5CYII=",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (0.0, -6.3)\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "sol = solve(prob, IRKGL16(), reltol=1e-14, abstol=1e-14)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "cf5ae474",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, 0.0, -6.3)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "36-element Vector{Float64}:\n",
+ " 0.0\n",
+ " -0.01\n",
+ " -0.03\n",
+ " -0.07\n",
+ " -0.15\n",
+ " -0.31\n",
+ " -0.514181125280798\n",
+ " -0.7330761872358589\n",
+ " -0.9463065906690233\n",
+ " -1.1575428055787818\n",
+ " -1.3328706604956533\n",
+ " -1.564884826131938\n",
+ " -1.776797626468188\n",
+ " ⋮\n",
+ " -4.223525717220678\n",
+ " -4.390227172003325\n",
+ " -4.618935373466419\n",
+ " -4.831187955871726\n",
+ " -5.034628174841646\n",
+ " -5.242958339993569\n",
+ " -5.409629638633526\n",
+ " -5.638312467582614\n",
+ " -5.850565456658035\n",
+ " -6.0540058685209095\n",
+ " -6.264918449748646\n",
+ " -6.3"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bf0b8d02",
+ "metadata": {},
+ "source": [
+ "### Case 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "id": "840c2638",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd2AUdfow8GfK9k1vpAdCCoQAoQQCofeONBU4VDjBxinecdjurNxP71VU7vQUBRVBRUCKEEoIEGoCJCSQ3hMgvWc326a8f0yyrGmk7O5sdr+fvzbD7Myzu8M88+0Yy7KAIAiCILYK5zsABEEQBOETSoSIcVRXV9+8efP69esFBQUajabNv165cmXDhg0xMTHmDCk7O3vDhg0//PCDOU9qaps2bXrrrbd6+q7y8vINGzZ8/vnnpgjJ0uzdu3fTpk3Z2dld78ZdkydPnjRPVIglQ4kQ6av4+Pjx48e7ublFRkZOmDAhMDDQ3t5+8uTJhw4d0u+TnZ29Z8+elJQUcwZWWlq6Z8+ey5cv9/1QDQ0NmAGhUOju7j59+vQ9e/YwDNP343ffrl27fvnll56+q76+fs+ePWfPnjVFSD3yww8/GH6TMpnMz8/viSeeSEhIMNYp4uPjd+3a9eDBg653y8nJMf81iVgmku8AkP4tJiZmyZIlFEVNnjx56tSpTk5OxcXFqamp8fHxYWFhK1as4Hbz8vKaOnWqv78/v9H2EYZhM2bM4F6XlJRcuHDhwoULp0+fPnDgAIZh/MbWv7i7uw8fPhwAtFptVlbWgQMHDh06tGfPnnXr1vEdGmKLUCJE+mTLli0URX3yySevvvqq4fb79+8XFhbq/5w3b968efPMHp2R4TgeGxur//PYsWPLly8/ePDgmjVrlixZwmNg/c6kSZP0FQYajebVV1/98ssvN2/evHTpUnt7e35jQ2wQSoRI71VUVOTk5AiFwhdffLHNP/n4+Pj4+Oj/rKmpKSoq8vb2HjBgALclPz+/vr5+6NChIpEoLi4uIyPD3t5+/vz5Hh4e3A45OTmXLl1SKBRcjavhwcvKykpLS/39/V1dXW/cuHHjxg2WZaOjoyMiIroTNsMwN2/eTEpKUqlUAQEBs2bN6t3Nd8mSJatWrfr5559PnjxpmAjv3LmTkJDQ0NDg7e09a9YsNzc3w3dxH3zIkCESieTSpUspKSkCgWDy5MnDhg1rf4rq6uqYmJiqqqqAgIB58+ZJpdI2O3BfRUBAgIuLi+H2tLQ0jUYzevTozoIvKSmpqqoKCgpq89lTUlIwDBsxYgT3Z319fX5+voeHh4+PT15e3oULF1Qq1bhx48aNG8ftoFQqY2JiSkpKfH19FyxYIJPJHv3F/ZFIJPr0009/+umn+vr6K1euzJ8/n7tavLy8PD09c3Nz4+Pj6+vrV69e7eXlBQAMw1y7di0lJUWn0w0cOHDmzJlyubzDIzMMEx8ff/fuXYFAMGPGjODg4O7EQ1HU5cuX09PTdTpdUFDQzJkzxWKx4Q6pqaksy44cOVKpVJ46derevXs+Pj4LFy6USCTcDteuXUtOTsZxfNasWUFBQT39QhAesAjSWzU1NQBAEIRCoeh6z2+//RYAtm/frt+yePFiADhz5szYsWP1V6NUKj116hRN01u2bMHxhw3YGzZsMDzau+++CwBffPHFokWLDC/mtWvXarVa/W7nz59v/960tLQ2+dLJyenXX3/tOv76+nruk7bZzkWydOlS7s/79+9PnTrV8OBSqXTnzp2Gb1m2bBkAxMbGTpkyRb8bhmHbtm1rc/BffvnFzs5Ov4+Xl9eNGzcAIDAwsE0A33//fZv3cvdfmqa5PzMzMwFg/vz5+h1eeOEFADh9+nSbN9rZ2bm7u+v//O233wDg1VdfffPNNw2rf9evX0/TdFxcnKurq37joEGDiouLu/4mv//+ewBYvnx5m+2jRo0CgO+++45l2T179gDA22+/vXnzZv3B4+LiWJbNy8tr8/O5uroeOnTI8FDr168HgAMHDowfP16/G47j27ZtYxhGv9vu3bsB4IMPPjB8b3x8fGBgoOHxvb29L168aLiPs7Ozvb399evXPT099bv5+/vn5+fX1dXNnj1bv5EkyW+++abrLwSxBKizDNJ7zs7OAQEBNE0//fTT9+7d68URNm7cKJPJTpw4cfPmzX/84x9qtXrdunXvvvvu/v37v/7661u3bh04cMDT03P37t3Hjh1r897t27dnZmaePHmypKTk/PnzI0eO3Ldv39/+9rcuTldcXDxlypS0tLQtW7ZcvXo1IyPjm2++wXH8ySef7F2fGq7619nZGQDq6+unTJkSHx//9NNPX7hwISsr6+eff3Z1df3LX/7y888/t//garX6t99+S05O/vrrr+3t7T/66KO4uDj9DomJiWvXrmUY5osvvigqKrp9+/a0adMee+yxXgTZd4cPH/7qq6/+97//3bp16+DBgz4+Pnv27Pnoo48ee+yxJ5988uLFi5cvX160aFFBQcHLL7/ci+PTNF1SUgIAhuXa77777sCBA5988kl8fPyJEycGDhxYX18/Y8aM27dvP/XUU7du3crKyvr4448VCsWqVau4hx5DW7ZsoWn64sWLJSUlx48f9/f3/+ijjz777LMuwrh169acOXPKysree++9GzdupKamfvzxx3V1dQsXLszNzTXcU6PRPPbYYwsXLrxw4cKVK1dWrlxZXFy8adOmp59+uqqq6vDhw0lJSZ988gmO45s3b35ktx2Ef3xnYqR/+/XXXwUCAXctDR06dP369Xv37q2urm6zW2clwtGjR1MUpd+4dOlSACBJMj09Xb+RyyJr167Vb+GKQSRJ5ubm6jdWVlbK5XKCIEpKSrgt7UuEK1euBID//ve/hrFdvnwZw7BJkyZ18TE7LBFevXpVJBIBwM8//8yyLJeDt27darhPXl6eWCzmHhe4LVyJMDw83LDw+sUXXwDA888/r98yc+ZMADAsTzAMwxUizV8ixHE8KSlJv/Ho0aPcL/7666/rNyqVSmdnZ5IkVSpVB99gq/YlQpqm//nPfwKARCKpqalhW0uEGIYlJiYavvedd94BgIULFxpu/OqrrwBg1KhR+i1cidDR0bG2tla/MS0tDcdxR0dHpVLJbWlfIoyMjMQw7MSJE4bH37dvHwCsW7dOv4V77nnppZf0WzQaDVdt6+/v39zcrN/ONRl89dVXXXwhiCVAJUKkT1auXJmUlPTYY4/JZLKMjAyu45+Hh8e6desaGxsf+faXX36ZIAj9n9yNfs6cOUOHDtVvnDx5MrSWvQwtXrx48ODB+j/d3NzWrVtH03T7siNHoVAcPXrUxcWFywF60dHRw4cPv3r1akNDQ9fRMgyzadOmTZs2rV+/fvLkyZMmTdJoNNOmTePy6759+3Acf+ONNwzfEhgYOHv27KKiIi4V6b3yyiv6BwgAmDVrluFnbGxsPH/+PPeJ9PtgGNamR5LZTJ06lau65HC/CABs2bJFv1EqlY4dO5aiqO7UDSQnJ3Pf5OrVq8PCwt577z0A2L59O5djONOmTYuMjDR8F5eVX3vtNcONzzzzjIeHR3JycpsrZP369U5OTvo/w8LC5s6dW19f377syMnOzr5x40ZERMSCBQsMt69evdrR0fHUqVNt9jf8LYRCYVRUFABs2rRJ31IInV+6iKVBnWWQvgoPD//tt9/UanVCQkJiYuKpU6fi4+N//PHHoqKi+Pj4rscVtOm/wPUr6XBjRUVFm/fqO3TojRw5EgAyMjI6PFdaWppOp5NKpa+//nqbf2pubmYY5t69ew4ODl1Ey7Lsrl27uNc4jg8ZMmTt2rVbtmwhCKK0tLS8vNze3v7DDz9s8y6uZqyoqCgsLEy/MSQkxHAfrotQeXk592dWVhbDMKGhoUKhsP0HNL82v4iTk5NAIJDJZG36Ael/qUf2ECksLNR/k1KpdNq0aVu2bGnT4mv4MAQALMtmZmZiGNamjVAoFA4fPjw2NjYjI2PgwIH67e0vj4iIiJiYmIyMjIULF7YPKTk5GQC0Wm2bRMudorKyUqlU6rsCCYXCNmOBuM/e5md1d3eHji5dxNKgRIgYh1gsnjp16tSpU7dt23bkyJEVK1Zcvnw5Li6Oq+LrjOHjMwBwWbNN30iu1wzbblLcNndhaL3vNDU1dXgurnqzoqJCfws25OTkpNVquwgVAAiCqKqq4l47Ojoa5niuNNnc3NzZwSmKMtzS9WdUKBT6j2Oo/RbzaN9bFcOw9hu5T9GdGQYWLVrEzfhDkqRhhyBDht1wAECj0eh0Ojs7u/bn5R4j2vzu7S8PbkvXl0deXl5nv6BKpdInQrFYbNiZC1o/e4fXc/tLF7E0KBEixvfYY49NmTLlwoULSUlJXSfCvqisrGyzhXv07mwsBHfDHTdu3KVLl3p9UsPatvYH9/LyKi4u7vXB9bjxAO1LEu23dJZ7lEpl16fg7tFt3khRlFqtbnM3NwWhUNjZN9kZsVgsEAiampqam5vb5EKuJN3md+/s8ugs73LbV65cuXfv3h4FhlgB1EaImATXi8Sw/c/obt++3WYLV7tlWANpKDw8nCTJ5ORklUpl9GC8vb3d3d1LSkru37/f96MNGTKEIIjMzEy1Wm24nfuAhrhxmW0SZF1dXVlZWden6PCNeXl5Op2u12GbGjfUMikpyXCjRqO5c+eO/l/1Ors8OhyvCQBcjev169dRAc4GoUSI9J5Cofjll1/aF0eys7OvXLkCAF0M6O67EydOZGVl6f8sLy/ft28fSZKdTfJib2+/bNkypVL5wQcftP9Xrjay1zAMe+qpp6C1I2UfD25nZzdr1qyamhqujyWHYZgdO3a02XPQoEEA0KYrx//93/898m7e2Rt7FKeZcTP2ffjhh4af7ttvv62srBw3bpyfn5/hzt999x03zpVz586ds2fPOjs7T58+vcODh4WFRUZG5uXlcb1J2+jj5YFYOFQ1ivSeWq1+8skn//73v69YsSIqKsrNza2hoeHGjRu7du1SKBTTpk1rM7rcuLy9vefNm/f//t//GzFiRHZ29muvvaZUKrdu3ert7d3ZW3bs2HH58uV//etfubm5jz/+eFBQEDdzytGjR+vq6vpSZQoA//jHP2JiYvbt28ct9RASEtLc3FxYWHjq1KnExMS8vLweHW379u3nz59/9dVXlUrl/Pnz6+vrP/74Y26wnaHo6Ghvb+9Lly5t2LBhzZo1KpXq4MGDJ06ccHFxMUwD7c2bN8/BweHgwYPe3t5Lly6tra3du3dvUlISV5S3TJs3b96zZ09MTMzq1atffPFFe3v733///b333iNJ8uOPP26zs6Oj44wZM/71r38FBQUlJSVxw1ref//9NtPEGPrmm28mTpy4adOmmzdvLliwYODAgVVVVbm5uQcOHPDy8uLGUSBWCSVCpPdkMtmaNWvOnDnz6aeffvrpp/rtQqFww4YNO3bsMOlU1K+//npcXBw3dIGzcePGrss03t7eCQkJmzZtOnjw4MGDB/XbHRwcnnvuuT7GY2dnd+nSpZdeeunAgQPnzp3Tb5dIJPrJx7tv1KhRBw8efPrpp//2t79xIxT9/PyOHz/epuOoUCg8cODA0qVL9+zZww2/8/Ly+v3335966qmuE6GTk9P+/ftXr16t/+0GDx4cExPDDQOwTHZ2dufPn1+9evUvv/yiX4LDy8tr165d0dHRbXbesWPHzp079WMhSJJ855132oycaYMbRbNx48Zdu3YZdplxc3NDc8laNwxViCN9xDDMnTt3SkpKysrKcBz39/cfO3Zsm64QjY2NFRUVrq6u+u3l5eXNzc0+Pj6GIwQUCkVlZaWjo6PheDIAKCgoEAgEvr6+3J/vvffe22+/vXv37vXr16empnJtP1FRUaGhoYbvUqlU9+/fd3BwaN/ZsrCwMDExsb6+3tHR0c/Pb8yYMW0GKrT/jEVFRdBao9i1srKya9euVVVVyeVyX1/fsWPHGnbuqKioUCqV3t7ehmUv7vhCodBwglYAaGhoiI2Nramp8ff3nzZtmkgkavNVcBobG2NjY6urq728vGbNmiUWi+/du6fT6fTR6nS6oqIimUzGjfvWq6mpiY2NbWhoCAgImD59ukAgKCoqwjBMPzZAqVRWVFQ4ODi0mcu0sLCQ+60NN1ZWVioUCi8vry5KXU1NTVVVVTKZTD+pbGf7ODk5ddihhmXZlJSU1NRUjUYTGBgYHR3d5nRVVVVNTU2enp5isTghISE9PV0kEk2ZMqVN3Wn7a1IvIyMjOTlZoVC4ubn5+fmNGjXKsLWbuxICAgIM31JdXd3Y2DhgwADD31qtVpeWltrZ2bXvwopYFJQIkf7HMBHyHQuCIP0e6iyDIAiC2DSUCBEEQRCbhjrLIP3PjBkzRCLRmDFj+A4EQRBrgNoIEQRBEJuGqkYRBEEQm4YSIYIgCGLTUCJEEARBbBpKhAiCIIhNQ4kQQRAEsWkoESIIgiA2rX8nwpqamv/+979mOx0aamJO3VnoHDEW9G2bE/q2zak79+3+nQiLiooMF2wzNZVKRdO02U5n4x65xjpiROjbNif0bZsNwzAURT1yt/6dCBEEQRCkj1AiRBAEQWwaSoQIgiCITUOJEEEQBLFpKBEiCIIgNg0lQgRBEMSmoUSIIAiC2LR+nwifC5Qrb8QCGuqOIAhiFXTlJU3nDmhyU8x2xn6/Qr2zEK/76ZPmhDOOK18SeAbwHQ6CGAFLU/UH/0PVlJMunqSrJ+nqRbp6Ea6euFjKd2gIYipU5f3m25dUKZd0ZUUAADjutPxF2cQFZjh1v0+EcZXqqIEemoK0yo9fkk9Zaj93LSYU8x0UgvQBw9Tu/UiVehkANLmphv+Cyx1IV0/SxYt08yJdPEk3L3KAP8qOSL9GVZeqbl9qTrmke1DAbcGldsKAUHXmrbqD/6HqKh0WPA0YZtIY+EmEdXV1SUlJdXV1y5cvx/EOqmePHTum1Wq5176+vuPHj+/sUIk1Wo/Xv2mM2au4eqLp/KHm5HjHZc9Lhk8wVegIYlIsW/fr56rUy7hU7rjiJUaloKtKqZoyqrqMqi5lFA1aRYO2KEu/Oy6Wur3ymWCAH48hI0gvUDXlqpRLzbcv6e7ncVtwiVwSHiWJmCwKjsAIUnkjtv7A503nDtD1VU5PvooRJsxWPCTC5OTkqKiooKCg9PR0tVotEona77Nhw4bIyEi5XA4AUVFRXSRCAMAlcsflL0gjZ9Uf/I+2JKdmz3vioZGOy58nXTxN9RkQxDQaft+tTDiDCcWuG98XBgxp8690Qw1VXcolRbq6TPsgn6q8X/v9dvdXd2LCDv4fIYilYWlKefl4c3K8tiSb24KLpeLwKOnIyaLQ0YbZThY5i7B3rvnug+Zb5+mGWpcN/8DFMhNFhZl/RQWNRoNh2P379wMDAztLhK6urtevXw8KCur6UElJSZs2bbp161bL3yyruHay8cT3jEqBCYR2s560m74CIwXGiry5uVkkEhEEYawDIl1oamqys7PjOwqzajp3oOHEdxhBujz7rjh09CP3Z7Xqyh1/0ZWXyCJnOa3+a59ObXvfNo9s+dtuOPFd07kDAICJJJKwcZKIKeLQ0ZhA2Nn+ugf51bv+STfUCDwDXDd9QDi69uh0DMPQNC0QPCIL8NBrVCQSCYWdfmy9mJiYffv2ZWVlPXLPhzBMPnGhxxvfSMfOYCldY8wPFf9+XpNjvq5HCNJryqsnG058BzjuvG5bd7IgAGBCsfPTb2JCkfJGbPONWFNHiCB9pL2X23T+EGCY8+q/en1wwHnda5LwqC6yIAAIvAPdX/5UMMBPV1ZU+dkrLf1ojI2HEiGnoKCgixJhVFRUSEiIVqs9ceLEa6+99sYbb3R4kEuXLj3++ONr167l/sRxfMmSJaNHjwYAXUGa4uhXVMU9ABCPnCx77Lm+F6tRidCcbOqpWZ1yqemXHQBgt/xF8dhZPXvvrbimgzsxodjxpY9JD9/eBWBT3zbvbPPbZmmq/j9/pcqKJJOWyBeu79F7mWZF44//0hWk42KZ/Z9eEwwe3t03MgyGYWLxI3pQWmiv0evXr3MvkpKSxo8fv27dOh8fn/a74ThOEISTk5N+i1Ao5HrfiAYPF27Z2Rx/RBl3QJ1yCUiBw+Ov9DEqvFUfj4N0h+181ZrMW4pfPweWlS94RjpuTk/fLo2cpStIUyedb9r/b+e/7OhdY6HtfNuWwDa/bWXcYaqsiHDxtJv7J6yHHx+X2zs9+37jgU/VKZcb9rxrv+pl8aipRozNQhOh3ujRo52dnXNzcztMhBKJZMCAAZ2VF0EgEM5ZLRsZXfn/XlQnnbefskToG9yXYAQCgUAgQCVC8+C+bb6jMDlNQVrDvg9ZmrKb+bjDrMd7dxCXx/9S+SBPV16iPPZ17xoLbeTbthA2+G3rSguVcb8ChjmvflUok/fmEAKB61NvNDjvbjp/qOGXHdBYYzfriUe+iWsjfORuFvRUUlJSUllZCQAMw+g3pqen19TUBAYG9vqwAg8/+ZSlwLL1h/+HJqBBLIqutLDm23dYrUY2cYHDwmd6fRzUWIhYNIau+/lTlqbk0YtEgeG9Pw6GOSz+s9MTrwCGN5z8vu7nT4F5dJLrDh4SoUajWbVq1ebNmwFgzZo1zzzT8v//hRde2LlzJwCcPn16woQJL7/88saNGydNmrRt2zY/vz4Nk7Kb9SQud9QWZaruXOl7/AhiFFTVg6ovX2eaFdJRU5xWvNTHowkG+DsufxEA6g59oSsvMUaACGIcTXEHtfdySGePvjzt6cnGz3V55k1MIFQmnqn54f/6fkDgpWqUJMmNGzcCwJYtWwBAX0Xw9ttv29vbA8DUqVMxDMvLy5NIJC+99NLw4d1tF+0MLpY6zF9X9+vOhuO7xWHjjTigAkF6h66vqvrydUZRLx461mnNVqNMnCEbN1uTd6f55rna77e7v/o5mmIJsQS68pLGM/sBw5ye2IKJJEY5piR8gtuLH1Xv+ocq9Yo685Z4yJg+HpCHREgQxMyZM9tvHzt2LPdCKpXOmzfPuCeVjZ+ruPK7rrRQEX/EbsYq4x4cQXqEUTZW/e9Nuq5SGDDE5ek3jThlhtPKl3T3cnTlxfWHv3R68lVjHRZBeoll6w58zlI62YT5ouCRRjywMGCI3cwnGo5/2xizVxw6uo+PkhbURmhaOO64dCMANMX+QjfV8R0NYrtYnbb6qzepihKBT6Drcx8Yt9z2sLEw8SxqLER413ThsLYwnXB0c1j8Z6MfXB69EJc7au/lqLNuPXrvLtlMIgQQBUeIw8Yz6ubGUz/yHQtiu5SJZ7T3cklXL7fntptiyijUWIhYCKrqQeOpvQDg9PhfTDE1PCYU281YCQCNp/f38VA2lAgBwPGxTRhBKq+f0k/ziiBmxTCKi78BgMOSP+NyRxOdRDZutjRyFqtV136/ndVqTHQWBOkKy9b9/Cmr08rGzRYPGWuik8gnLiTsnLTFWerMm305jm0lQtLVUxa9EFi2/tg3fMeC2KLm2/FUdRnp7iMZFmXSEzmteFEwwE9XXlx/+AuTnghBOqS4dExTkEbYOzss2Wi6s2BCkXzacgBojNnbl9FxtpUIAcB+zlpcZq/JTVWlJfAdC2Jzmi4cBgC76StNvb4aaixEeETVlDfE/AAAjitewqW9Gj7fbfJJiwl7Z+293L60FNpcIsSlcvs5awCg4dg3LE3xHQ5iQ9RZSbr7eYS9s3TMdDOczrCxkKouNcMZEQQAgGXrfvmU1aiko6eZYWlYTCCUT18BAI2n9vX6IDaXCAFANnEB6eFLVT1QXvmd71gQG9J0/iAAyKcsNdtIVtm42dJRU1mtWnHxiHnOiCDKazGa3FRc7ui47HnznFE+YQFh56QtyVZn9LKl0BYTIUaQjkueBYDGM/sZZSPf4SA2QfcgX5OTgoulsgnzzXleu9mrAcOUN88xaqU5z4vYJrq2sv74twDgtPJFXGZvnpNiQlFrobCXLYW2mAgBQDw0Uhw6mmlWNJ7pa79bBOmOxthfAEA2cQEuMW2TSRuCAX6iwcNZjar5Zpw5z4vYIpat+/VzVqOSjJwkGTHJnGeWRy8iHFy093LVmb1pKbTRRAgADkueBZxQXDmhq0BjrRDToqrLVHeuYgQpn7zU/GeXRy8CAMWV39Gk84hJNSddUGcl4TJ7pxUvmvnUmEDY0n30dG+GidtuIhR4Bsii5gJDN6ChFIiJKS4cBoaRjplBOLiY/+yS8CjC0Y2quKfJTTH/2RHboYg/AgAOizeYboxsF+QTFhD2TtqSHHXGjZ6+13YTIQA4zFuHS+TqjJu9K00jSHcwinrljbOAYdwTKw9wQjZxPgAoLqPeYYip6B4UaO/l4jJ76ahpvASACUXy6SsBoPHUjz2t/LDpRIjLHbilHeuP7jLWulYI0oYi/hir00qGRQkG9Gk1sb6QR83HBEJVegJVU85XDIh1U1w9AQCysTMxgZCvGOQTF7a2FPas+6hNJ0IAkE9ZSrp5UxUliuun+I4FsUKsVq24dhIA7Kav4DEMXO4gGRENDKNE1zliAqxWrUq+CADS8XN5DONhS2EPC4W2nggxgnRYtB4AGk/+wDQ38R0OYm2U12IYZaNo0DDhwKH8RiKPXgwAyuunWJ2W30gQ69OcHM+om0WDhvFY7cF5WCjsSUuhrSdCAJAMnygaHM40NzWdP8R3LIhVYWmqKf4oANjN4LM4yBEGhAp9gxllo+p2PN+xINaGq2mQRfFZHORgAiFX+9J4en/3C4UoEQIAOCzcAADNiWdRSyFiRKrkeLquUjDAXzx0HN+xAADIJrWOo0AQ49GVFmqLs3CpXDJyMt+xAADIJiwg7J2193rQfRQlQgAAYUCowDOAbqpTZyXzHQtiLVi26SI3xfYKU0+x3U3SUVNxuaO2JEdbnMV3LIj14IqD0jEzeOwmY0hfKGzodkshSoQtpKOnAUDzzXN8B4JYCXXmTd2DAsLRVTKan97k7WGkQDZuNqBCIWI8rE7bnHQeALhLy0LIJi4kHFx09/M0md0qFKJE2EI6dibguCrtOqNS8B0LYg2a4g4CgHzqMowg+Y7lIXn0QsBx1e1LdGjQJisAACAASURBVFMd37Eg1kB1O55pVggDQgXegXzH8lBPWwpRImxBOLiIg0ayOq3q9iW+Y0H6PW1xlib/Li6Ry6Pm8R3LHxBO7pKhkSyla044w3csiDVQJpwGAJmFXefQ2lKou59HVd575M4oET4kHTMDAJpvobmJkb5qivsVAOTRizCRhO9Y2pJNWgwAiqsnUdcwpI+oinuawgxMJJFaRjcZQ5hAaDdjJQBAN9adRYnwIcmIiZhIoinMoKrL+I4F6ceoqgequ9cxgZBLOZZGHBxBuvvQ9VWqtES+Y0H6N8X1U8Cy0jHTLfCBD7hCYfdm90WJ8CFMKJaOiAaWRYVCpC+azh8ClpWOnUnYO/EdS0cwrGU9isvH+Q4F6cdYnZbrXWhp9f96mEDotP4fuL3zI/dEifAPpGNnAEDzjVi0YA3SO3RTXfOtOMBxO76m2O4G2bjZuFiqyU3RlRXxHQvSX6nuXGWUjULfYIHPYL5j6ZTQN7g7S2GgRPgHosEjSGcPqrZCU5jOdyxIv6S4eITVaSXDJ5Ju3nzH0ilMJJGOmQ4Ayqsn+Y4F6a8sZzaZvkOJ8I8wTNIyoBDVjiI9xqiblddiAMBuquUWBzmySYsBw5Q3zzFqJd+xIP0PVV2myb+LCcWSUVP5jsUIUCJsSzZ2JgCobl9CcxMjPdV8K45RKURBI4QBoXzH8ggCDz/R4OGsRoWe+ZBeUF47CSwrHTUFF0v5jsUIUCJsi3T3EfqHMmql6u41vmNB+hluEKoFjqnqUEuXmUvHUIs40iMsTSlvnAMA2YT5fMdiHCgRdkA6diagAYVID9GNdZrCdEwgFA+N5DuWbpGETyCc3amqB5rcFL5jQfoT9d3rjKJe4DVQ6BfCdyzGgRJhB6SjpmCkQJ2VTDfW8h0L0m+o7lwBhhGHjuk3lUU4zhVeFZfR1KNID7R0k7GW4iCgRNghXGonHhoJDN2cdIHvWJB+Q5VyCQAkIyfxHUgPyKPmYwKhKj2BqavkOxakf6BqytU5tzGBUDrKUmaT7zuUCDv2cEAhgnQD3VSnKUjHSIE4zCKWHuwmXO4gGRENDKO9hdZdQbpFmXAaWFYSMQWXyvmOxWhQIuyYeGgkLnfQlRXpHhTwHQvSD6hSrwLDiIf0n3rRVvLoxQCgvXUOdZNGHo2hueKB3CqGD+qhRNgxjCClo6YCgBKtUIh0gyr1MgBIRvSnelGOMCBU6BvMNjdxVbsI0gVVeiLdUCMY4CccGMZ3LMaEEmGnuNpRVdIFNEk/0jW6qU6TfxcjBeJh/aleVE82YR4ANN+O5zsQxNK1zibTPwYIdR9KhJ0S+gYLPAPopjp1VjLfsSAWTXXnKjCMOHQ0LpbxHUtvSIZPBJzQ5KQw6ma+Y0EsF11fpc5KwkgBt2KdNUGJsCvSlunWUO0o0hVVymUAkFjekmzdhMvsSb8QltKpM2/yHQtiuZTXTwPDSEZMwmX2fMdiZDwkwrq6ulOnTm3fvv3LL7/sbJ+KiorXX3997dq1u3fvZvmb9kI6dibguCrtOqNS8BUDYuEYRYMmP63/1otyBEMjAUB9B82mhHSCYZQ3YsEa60WBl0S4f//+99577/Tp0/v27etwB4qipkyZUlNTs3jx4s8++2z79u1mjlCPcHARDR7B6rTcIz+CtNecehkYWhTSX+tFOYIh4wDDVBk3UN9RpEPqzJt0XSXp5i0KHMZ3LMbHQyJ86aWXrl+/vn79+s52OH78OAB8/fXXq1at2rVr186dOzUajRkD/ANZ5CxAtaNI51SpVwBAOjKa70D6BHN0FXgPYjUqTW4q37EglkiZeBa44iCG8R2L8VliG+H169cnT56MYRgAjBs3rqmpKS8vj69gJMMnYCKJpjCDqi7jKwbEYjGKBk3eXYwgxcPG8x1LX0nCJwLX8QdB/ojVadVZtwDDuG4T1ofkO4AOlJeX+/j4cK9xHHdxcSkrKwsL62DYSl1dXUFBwbJly/Rb1qxZM2fOHOPGIwgbr02+UH/tFDN+oU6nIwjCuMdHOqRUKjGLf/bU3ogDhiZCRjfTAIp+3JCsVColg0cC7G2+e10wfz3glviIbDX6xbVtSJd1i9VqCO/BKkLUv65zhmEEAoFAIOh6N0tMhGKxWKfT6f/UaDRSacezddjb2zs7Oz/xxBPcnxiGjR8/vrOde40cP7s6+QKVEi+ftlIkFqNEaB40TRv9pzS65oxEALAbPVVi8aF2jaZpO/dQlZs3VfWAqCwSDbLCdiDL0S+ubUP1uckAIB0xoX+FDQAMw3Snu6UlJkIfH5+0tDTudVNTU11dnbe3d4d7EgTh6Oi4atUqk8YjDhpJOntQtRX0vWw8JAJHD8tmgeO4hX/VjLJRW5CGEaRkWJSFh/pI3LctCY9qOn9Ik5YgGTyc74ismeVf23/AsprMmwAgDZ/Qn8JuRdOPnhHFgj7Vb7/9VlFRAQDLly8/d+4c9/rnn3+OiIjw9/fnMzIMk4yeBgBaNPUGYkCVegUYWhQyympmH5YMnwgAatRMiBjQFmXSjXWks4fAM4DvWEyFh0R48eLFwMDAbdu23b59OzAw8LnnnuO2r1u37s6dOwAwbNiwdevWjR07dsGCBW+99dbHH39s/iDbkEXOAgzT3rnCannrv4pYmuaUSwAg7VfrLnVN6B9K2DtTtRVornlET5WeCADi8Al8B2JCPFSNRkZGxsY+XN5IJmsZfZWenu7h4cG9/vzzz59//vnS0tKIiAgnJyfzB9kG6eYt9AvRFmep0xPkY6bzHQ7CP0bZaDX9RR/CMHF4lPLqSdXdawLvQXxHg1gE1d3rACCxpuu8HR5KhFKpdJABffLz9/cXi8X63UJDQ6dPn24JWZAjHTsTAFRJ5/kOBLEIqjtXgaFFwRG41I7vWIxJEj4B0CAKpBVVXUpVlOBSuXCQVS030YYFtRFaOGnEZMBxbU4Kq1HxHQvCP24cff9aj747REEjcIlcV1qIBs4iAKBKSwAA8ZCxGGGJPSuNBSXC7sJl9gK/EJam1FlJfMeC8IxRNqpzUjCClIRH8R2LkWEEKR4aCQCqu2jeUQTULfWi1nadt4ESYQ8IQkYDgDrjBt+BIDyz1npRjmR4FACo0ATcNo9RNmoKMzCCFIWO4jsW00KJsAcEoWMAQJV+A/hbEAOxBK3rLllbvShHPCQSE4q0RRl0Yy3fsSB8UqcnAkNzteV8x2JaKBH2AOHhRzp7MIp67b1cvmNBeMMoG9W5qVZZL8rBhCJRUASwrDotge9YED61NBBae70ooETYU6IhYwDVjto21d1rwNCi4JFWWS/KkQyfAKiZ0LaxlE6dnQwYJunPC212E0qEPSMaEglcjQFiq6y7XpQjGTYecEKTk4KWpLZZmpwUVqMSeAcSjm58x2JyKBH2jHDwcEwo0t7Poxtq+I4F4QHTrNDkpgJOWHc/OlxmLxoUxtKUOvMW37Eg/FClWf84ej2UCHsGEwhbmk/QDcImqe5cZWlKHDwSl9nzHYtpcfOOopH1NopluQYg637g00OJsMckYZEAoM5AtaO2SJVyCQAkIyfzHYjJSYZPBAxTZ95idVq+Y0HMTXsvl66vJpzcbWSmPZQIe0wcNg4wTJ2VjG4QtsagXtT664sIR1ehz2BWo9Lk3OY7FsTc1Pp60X61gHCvoUTYY4SDi8BrEKtVa/Lv8h0LYlaqu631onIHvmMxBzHqO2qruIm2rWpC+S6hRNgbkqFc7SgaRGFbbKG/qCFJ+ETg7onMo5c2RawGXVupKyvCxVKRzazPjBJhb4jD0CAKm8OoFJqcFKvvL2pIMMCPdPfh5tniOxbEfLg6AKufaNsQSoS9IfQPxeWOVE25rqKE71gQM1HducbSlDhohI3Ui3JaV2VCtaM2pHVCGVupFwWUCHsJw8TcFDPpqHbUVnAVAJIR0XwHYlZcIlSjZkKbwagU2oI0wAnxkLF8x2I+KBH2EmomtC0MrclJAQDuAch2CP1DCEdXqrZCdz+f71gQc1Bn3GRpShQYjkutfKJtQygR9pJoyGiMIDUF6UwzmoPK+mkKMxi1UjDAn3By5zsW88IwSdh4AFDdRSPrbQI307otDBAyhBJhL+FimXBQGDC0Ohut02v9uNWYba04yGkZRIGaCW2AfuFxm2ogBJQI+0KMakdtBjejnih0NN+B8EA0eDgulevKiqiqB3zHgpiWJjeVUSkEXgNJlwF8x2JWKBH2XkszYfoNYBi+Y0FMiFE06B7kYwKhaNAwvmPhAUaQ3DMfN8gasWK2WS8KKBH2BenhS7p6Mc1N2uIsvmNBTEideQtYVhQ0AhMI+Y6FH2gCbhvB1W/Zwkq8baBE2CfcyHoVqh21ai2tJqG22EDIEYeOwYQibXEWWn3Miunu51O1FYSDi9A3iO9YzA0lwj5BzYTWj2XV2clgqz1lOJhQJA4ZBSzLVZ0hVolbgFBsMxNtG0KJsE9EgeGYSKIrLaTrq/iOBTEJ7f1cRlFPugwg3bz5joVPLVPMoERovVqmjAgbx3cgPECJsE8wUtDypIymmLFS6kzbHThhSDRkDGCYJv8OS+n4jgUxPrqhRns/DxNJREEj+Y6FBygR9hVqJrRumixu4IStJ0LCzkngNYjVarQF6XzHghif6u41YFlx6Gjb7BGGEmFfScLGAYZpcm6zWg3fsSBGxqibtcXZGEHazno0XRCHjgIANIOEVbLZgRMclAj7Cpc7Cn2CWJ1Wk5fKdyyIkWmyk1iaEg4Kw8VSvmPhnzhkNACos5L5DgQxMlaj0uTdARznev/ZIJQIjaB1eUJUO2ptWhoIbXJCmfaEgcMwoVhXWkA31vIdC2JM6oybLKUTDQzDZfZ8x8IPlAiNoKWZMD0RWJbvWBBjahk4YfMNhByMIEWB4cCy3EIciNWwwQUI20CJ0AiEPkGEvRNdX6UrK+I7FsRodOXFdF0lYe8s8BrIdyyWAjUTWiGWVWfdAhtuIASUCI0Dw8RD0Mh6a8NNtC0OHW2D44s7IwoZBQCa7GRU+WE1tPdyGWUj6eppyyNlUSI0jtbaUZQIrYcmKwlsdcWJzggG+BOObnRjna60kO9YEOPQZCdD6yOOzUKJ0DjEIaMwUqAtzmSUjXzHghgBq9NqCtIAx8W2fYNoj/tCuNZTxAq0NITb9nWOEqFxYCKJKDAcGIarT0P6O01uKqvTCv2CbbYfXWdEIRHQWoxA+jtWq9YWZQKO2/hIWZQIjaZ1Au5EvgNBjIDrPoD6i7YnDhkFGKYpSEMzSFgBTd5dltIJ/YJxqR3fsfAJJUKjEQ8bBwDqjFssTfEdC9JXrT1lUCJsC5fZt8wgkX+X71iQvkL1ohx+EmFCQsLcuXPHjBnzxhtvaLXa9jts2LBhVatPP/3U/BH2AuniSXr4MmqltiiT71iQPqFqyqmqB7hULvQL5jsWS8TNMIBqR62AJjsJbL6nDPCSCGtqaubNm7d8+fLvvvvu8uXL77zzTvt9jh07Fh0dvXLlypUrV0ZF9ZvlkiVoeUKr0FIcDBkNOKoy6YAI9ZexCnRDja7iHiaSCP1D+Y6FZ6T5T/njjz+OHj362WefBYB///vfixYtevfddwUCQZvd5s2bFxTUzxZKFg+NbLpwWJ2e6LBoA9+xIL3XuuIEGjjRMeHAIbhYqisrouurCUdXvsNBekmdnQwsKxo8AiN4SAQWhYfPf+fOncjIlqldx44dW1tb++DBg4CAgDa7bd68WSQSRUZGvvLKKzKZzNxR9opwUBgulunKS+j6KsLRje9wbF2xgj1RwsbcY8pV4CYGVzHmIgJXMeYqBndxywsXMeYqAtKg4MfSlDo3FTAMTTHaGYwghYHD1ekJ6uxk2bjZfIdj07QM1GmgTsPWaqBO2/pCA3VatlYNdVq2TgM+MmyxPzbfF3f84wpLmuzbACAOieAndEvCQyKsrKwMDW0piZMkaWdnV1FR0SYRbt26NTw8XKPR7Nix48yZMxcvXsQ7qqSqrq5OS0sbOPDhDFivv/766tWrTRR5c3OzTqcjCKKLfYiBYUzmjYY7CcJR00wUho1QKpVYz6d0oVm4VYOfeoCdLiPS69u8vdPJUJyE7EA5PBNIPxFAk8VprEZFDPBXESJQKHoeeL/U028bGxgG6QnK9Bts2ATTRWWtendtGypTwa5cYm8BUanuznHYAwUgwOlod2aBNzPfi/aVAbCsOicZABi/IQrrvc4ZhhEIBO1rHNvgIRE6ODg0Nzdzr1mWbW5udnR0bLPPtm3buBfTp0/38PBIS0sbPryDYS6urq7BwcFHjx7Vb/H09JRIJKYJHHAcF4lEXSdCGDqmPvMGFGfIJy8yURg2gmVZuVzezZ0bdXDmPnOihD11j6lSt2x0EMJsb3yRPzbEEatWQ7WarVFDtYatVkOlCqrVbLUaajRstRrqtFhdLSTXku+nkd+p0ocDSMMiu392K9CjbxsAxCMmqE7spvLvyGUyNAVdT/X02zZ0q5r9LI35tYDRMQAAAhycReAkwpyErS9E4CwCJyH3ArMXwu1q9lgxc7mCvVCOXyjH/5ZEjnLF1tsVLmmqJxxd7QOsuUcYwzA0TT9yNx4SYUBAQE5ODve6oKAAwzBv707nuHNwcJDJZA0NDZ3tIBQKBw0aZPwoe6t13o3bwLLoBmFqxQr2aBF74h5zqYzVMi0bB9tji/ywBX745AGY4A/1CJ3+HNVqiCtlPr7D3KpmyfxbAPA/KmJZAxvsgH7BjpFu3qTLAKqmXHs/T+jbz9ry+yOahaNFzGfpzJVyFgBIHB4fhL8yDB/v/uhLdPIA7OVheK0GTt5jjhWzZ+4zydVsZFbyEoBjwoisBHqJPz7JAyNtuGcYD4lwzZo1UVFRBQUFgwYN2rlz55IlS7iHo/379w8YMGDGjBkPHjxgGMbX15dl2c8++wwARowYYf44e4d09yEc3biVKNCqBaajoWF7Cv1hastzMYnDFE9soR++0BcLdexx9nIVw+OD8McH4Vfzav3Si5px8dvVoW8eohb64X8NxycPQOmwA6KQUdS1GE12MkqEJtWghd3ZzH8zmMImFgCcRPBsCP5SGO4r69ll6SyCPw3G/zQY1DQRV8ra7UsBgBhRxO9pzOdpjK8M+180scDXRi91HhLh0KFD33rrrdGjR9vb2zs7O+srNo8cOTJ8+PAZM2YUFxcvWLBALBar1WpPT8/Dhw/b2/enaa7EIRHKxLPqnNsoEZpIQiW74RKdUc/iGKwahC/1x+b64E4iIxx5ZG1SHcuKgkc+M0S0N485XswcL2bGumF/DceXB+C2/MjcnjgkQnktRp2VZDfzcb5jsU75jex/Mpg92UyTDgAg2AF7OQx/KhiX9e22LSZg/gBdaW06i2FvLR81tAo/UsTmNLALz1DrgvDPxhNG+a/Uv/DTa3br1q2bN2+uq6vz9PTUbzx06BD3YsKECTU1NVVVVWKx2MHBgZcI+0IUHKFMPKvJvm03dRnfsVgbJQVv3aJ3pjMMCyEO2LeTiGijFte4gRMu4WO+iibeH0N8mcF8mUnfrGKfOE8H2DEvh+HPD8FFXbYR2w5RcATghLYwg9WoMJGpGuZtU34j+7dE5ngJw7AAADO8sFeGEfN9MdxIF7umII3VaQU+gyMDHCMDYPsY+DyN+UcSvTeXiX3A/G8iscTfth76ePu0YrHYMAu2geO4h4dHf8yCwHVHxjBN/h2W0vEdi1WJK2XDD1OfpTE4Bq+NwFOWkcbNgsAwaq5DeehoAHATw9uj8OInBF9HE6GOWFETuyWBnnKSuq9ES/EBAOASudAvmKUpTd4dvmOxKseLmTFHqaPFjBCH9cH4nWXkufnkQj+jZUFonRVIP0CIwODVcDzlMXLSAKysGZbG0qsv0NXqLg9hXWwr7ZsHLncUeAawWo22KIvvWKxEvRb+fJmeFUMVNrEjXbDExeT/jSXExi6ZaUtyGGUj6eZNuj58RBMTsDEUT19OHp9N+MuxxEp29FHqfCnKhQCtd1I0xYyx0Cy8fpNeGkvXa2FZAF78hGD3ZCLc2fjtduqORhAGOWAXF5A7owgZCT/nM2GHdQcLmU4OYG1QIjQJru+oJgfdIIzg5D02/DC1O5shcdg2Ak9cQo5yNUmTfsuKE0M6mGgbx2CRH570GDnHB6tUwexT1DvJNGPz2ZC7k6qzkvgOxBpUqWHeaerDVIbA4e1R+KGZhLtp6psZZaOutAATCIUBQ9v8E47B5jA8bTk50xurVMGqOHrRWaq02fovdJQITUIUPBIA1Dm3+Q6kf6tUwbqL9MIz1H0lG+WOpS4jPxxLCE12zbYuvdTphDIuIjg1l/xwLMECvJvMcE/utkzoPwSXyqnK+1RNOd+x9G83q9ixR6nYB6ybGE7PJd8ZRZiu+6Y6KwlYVjR4OCYQdrhDgB12dh75dTRhL4ATJWzYIWpXlpUXDVEiNAlR4HCMFGhLcphmq52ywdQOFBNDD+l+zGPkAtgZRVxZRA7p+biI7mOaFdqSHIwgRYHhXeyGAWwbgR+dRTgK4fcSZvwxKqPe+p+XO4XjosEjAECDnvn64LM0ZuLvVLGCneKJ3VkumOFl2jEMXANh1ytOYAAbQ/E7y8nZ3li9FjZdoZfG0mXNJo2LTygRmgQmFAkDhgDDoH4EvcACbE2kn00Q1Ghgtjd2dxm5OQw3Yk+BDqmzk4BhhIHh3ekAucgPv7mUDHfGshvYcceoXwus/Hm5C2K0EkUfNOlgVRy9JYGmGNg6HD83jxxg+u636pwU6N4ahP5y7PQ88ttJhIMQjhUzww7rrlZY52MfSoSmIgqOANRM2HMMC89foT++ywhx+GYScXoeGWBnjkG+mqwk6LJetI3B9ljCYnLNYFyhgyfO039NpCmbzIaiIWOAKxEyNvn5+yC9jo08Rh0sZByEcHgm8e9IwgwDVVuWBLB3Egzw787+GMCGEDxtOTnPF6vVwJxT1LkHVpgLUSI0lZZ+BNmoyqgHaBbWX6K/zmJEBPwwQfvnEFOXA1uxLNfjo8OeMp2RkrBvKvF1NCHAYcddZnoMZcV1R50hnT1IVy+uYpnvWPqTn/OZ8ceprHp2iCN2fTH5WICZbsUP60V7MgGkjww7MZv8cwiupGDBGeq3Imt76EGJ0FSEvsG4VE5VPaBqK/iOpX/QMrAqjv4hl5EL4OQccoG3+f6z6cqK6IYawtG1m4/JhjaG4lcXk35y7HI5O+YoZa11R10Qh3K1o6jvaLdQDLx9h1x9gVboYO1g/OZS0zZ+t8FVYouDe7wkPY7BrknEq+E49/90b65V5UKUCE0Gx0WDhwOAJjeF71D6AYUO5p+mfitiXERwfj5p6v4CbbQsSR86pnfzpI9xxRKXkJMHYKXN7PST1I95VnWPeCRRyGhoLWogXdPQsPAs9WkmKSLgq2jix6lEH+dL6xGWpjT5dwHDRL1agxAD+GQc8VYEztXc7M62nuscJUITEgWPAnSD6IY6Dcw+RcWVsp5SuLiQHOtm7pl/1T1sIGxvgATi5pNbhuFaBp6Jpw/YUvcZUdAIjCA1RVmMWsl3LBZNx8Cq8/SZ+6y7mL2yiNwUau7br7Ywk9WoBAP8CXvnXh/k/dHEh2MJmoVnL9M7063kOkeJ0IQeNhOyNldd1n2VKpgeQ12vZP3lWPwCcpiTubMgq9NqizIAw0RBfVrkhMRhx3ji/dEEzcKfLtLHi63kHvFIuFgq9A8FhtbkpvIdi+WiWVgXTx8vZhyFcHiydoxpJoXoWsvMat3oL9q1bSPw/00kMAxevk6/dvPRq/1ZPpQITYh08yadPRhlo660kO9YLFRZM0yPoVJq2BAH7PIiIoiP9f+4CYiFPoNxmREWOXkrAn9jJK5jYGUcHXPPVh6ARKGjAUCThSo/OsYCbLpC/5LPOAghdj45womfC0PdjRGE3fTcEHzvFILE4aNUxgpyIUqEpiUKGglolFUnCpvYSSeo9Do2zAm7sIDs6fpqxqLJSYHW4S5GsX0M8bdwXMvAijjqYplN5MKW/jJZt/gOxBKxAC9cpXdnMzISfp9N8lIWBG7KiPu5GEGKAocZ5YBrBuOHZxAiAj5KZZ6/2r9nHESJ0LS4RmnUX6a9zHp20gk6v5Ed64bFLyQ9pbxFws2Kws2KZyz/Hkc8NwRXUbDwDMUtKW7dhD5BuMyeqimnqsv4jsXi/D2R/iqTkZBwYg45ib9FnjW5t4FhhIOGYUKxsY652B8/MpOUkPBVJrMuvh8PpUWJ0LTEIaMAwzT5d9GSTIaSqtnJJ6gHSnaqJxY3n3ThbyFQplmhfZCPEaRoYNsJiPsCA/hyIrEhBFdSsPAslVRt7bkQx1vm10WDKP7o9Zsts0McmkFO9eRz/fcOV5zou3m+2Om5pJ0A9ucxK+JoTf+sJUWJ0LRwmb3AayCr1WgLM/iOxVJcq2CnnaSq1bDEH+f+C/FIk5sCDCMcFGbEx2QOBvDVRGL5QLxBC/NOW/+UpC0rrqBmQgNvJ9EfpjJCHA7PJOf78pkFoXtTjPbO5AHYmXmkoxCOFTMr4ih1P8yFHSfCrVu35ufnt9lYUFCwadMm04dkbVqXZEK1owAAuQ3skliqSQdrBuOHZhC8r/be2kBozHpRPRKHn6YRC3yxKjXMjKHyGq05F4pDxwCAOuc2S1N8x2IRPkxl3rvNcNfAQj+esyBVXUrVlOMye6HPYFMcP8odO7+AdBPDiRJ27cX+117YcSL88ccfKyrazodSUVGxa9cu04dkbVB/Gb1qNcw/Q1erYZEf/sMUc8ys+EjcUlniICPXF+kJcTg0k5zhhZU1w4wYuljR3+4Q3UY4upIefqxGpS3O5jsW/n2exrx+kyYw+GEKsXwg/xe6OoubUCaid1NGdEeEC3ZhAekohMOFzLYb/axU2INfqLKy0snJyXShWCtRYDhGCrT3c5nmJr5j4ZOahiWxVF4jO8oV+2kaYcL11rqNbqihqh5gIonQSOcVygAAIABJREFUL8h0ZxETcHw2OXkAVqJgZ8TQVrzMKdd3FM0gsSeH2ZJAc+3EqwP5z4JgynpRQ2FO2LHZpIiAj+8yX2T0p54zf5je59y5cwcPHgSAxsbGf//73x4eHvp/UqvV586dGzOmB1MSIxxMKBIOHKrJTdXk3ZEMn8h3OPxgATZcoq9VsN4y7NgsQs5ru6Bey7yLQSMAN20VrZSE3+eQM2Oom1XstJN0/EJzrLZjfuKQ0Yr4o+qsJPt5f+I7Ft7szWWevUwDwH8nEBvNPndMxxiaWw/O6D1l2ps8APt+MrH6Av3yddpXBov9LeMbeJQ/JMKSkpJz584BgFarvXnzplj8sPuARCKZMmXK+++/b+4ArYI4OEKTm6rJvm2zifDvifRP+YyjEM7MJXx4Gi/YXuvACZPfHQDAXgCn55LTTlJ3atl5p6nz80kn/vrKmohocDhGkNp7OYxKgUvkfIfDgwMFzPpLNMPCJ+OIF4ZaSg7QluQwKgXp7kM4uZvhdE8E4lkN7LvJzNqL9KWF2EgXS/n/3oU//FTr16/Pz8/Pz88PDAw8cuRIvoG0tLSffvopMDCQr0D7NW40odpWV/H+XybD9SA/PJMMM/sMap1iWaMPpe+aswjOziNDHLCUGnZxLNVPO5p3AROKhf6hNrse9bUK9ql4mmbhgzHEq+GWkgVBP5WuietFDb09ivjTYLxJBwvP0veV/aAtoONfKzs7OzIy0syhWDGhTxAutbPNJZlO3mM3X6MxgG8mEdPNu6ZE13QVJXRjLWHvJPDwNdtJPSQQN5/wk2NXytnnrlpdJmztf2uDfaRLFOyyc5SGhpeG4m+OtKAsCK0jCE3dQGgIA/h2MjHVE3ugZBecoZssfhB1Vz9YeXl5SkpK0h+ZLTKrol+SycZuEMnV7BPnKZqFt0cR64Is6+7wsDhosn50HfKWYcdnEzISvs9hPrnbnzoUdEfLRPM2dp0rdLD4LF2hglne2Kfj+R4S9EesRqUryQac4G5BZiPE4egscpgTdqeWXRlHWfikMx3fm+7evTthwgRPT8+IiIgxf2Tm+KxGy1xrOTbUoe6Bkl0SSyt08GQg/s9RlpUFwbwNhG2McMZ+nErgGPz9Bv17iWXfIXpI6B+Ki6VURQldX813LGbCAmy4TKfWsiEO2IHppCUMCjKkzklhaUoUEIqLzT2NoYMQfp9NeEjgzH1Lr//oeFHIJ598sra29j//+U9wcDCOW9gP2z+Jgw2WZDJvEYQXjTqYf4a+r2SneGLfTbaEsRJ/xNCavLsAIDbNUPpHeiwAf3cU/COJXnOBvrYYM//iU6aCE8JBw9QZNzS5qdKxM/iOxhzevEn/WsA4ieD4bMICO0CZZ+BEZwLssBNzyKknqN3ZTLAD9vfhFppNOkiEDQ0NGRkZR44cWbJkifkDslbckkxUbYWutEDgbeV9jnQMrDhH3allhzpiR2aSvE8f0562JIdRK0k3b8LRja8Y3ozAM+vZn/KZRWfpG0tINyNP8cYbcfBIdcYNdW6KLSTCg4XMh6kMicOv08lgPhYRe6SWMUIhvV90uo/GuGI/Tycei6Vfu0F7S2HNYEvMhR3EhGEYAHh5eZk9GCsn0hcKrRoLsPEKHfuA9ZRCzFxLfEYGAHVuCrQW0/mCAeyeTIxzx4qa2GXnKK21VJFy17nGBvpIJ1WzT8fTLMDn44mZ3paYBem6SqrqAS6Rm3TKiEda5Id/FEmwAH++TF+rsMROpB0kQnt7+wULFhw/ftz80Vi31g51Vn6DeC+Z+T6HkZJwZCbpL7fEuwMAaFr60fGZCAFATMCRmaSPDLtSzj53xaIbUbpP4BlA2DvR9dVU5X2+YzGh0mZ2SSzdTMGGENxyhgy2wQ3ZEg0ebuopIx7pr+H4S0NxNQ2Lz1I5DRaXCx9WjZaWlmZktKyQsGbNmldeeaW2tnbOnDlS6R+aWGfOnGnWAK3IwyWZdFpMIOQ7HJPYl8e8m0wTGByYTo5zt9AsyGo12qJMfVdefnlK4cgsYvIJ6rscJsIF2xxmobfUHsAw0eDhzcnx6pwUubsP39GYhJKChWfoB0p2hhf21UTLq/pvZdI55XvqsyiisIk9eY9ddJa+tpjPxdfae5gIz5w5s379esN/+/LLL7/88ss2b2BZi0vm/QUusxd4D9Ldz9cWZXAzcVuZW9Xss5dpFuDzKP6n2++CpiCNpXRC32Bcasd3LAAAY1yx7yYTT56nX02kQxyx2RZZydYjouCI5uR4Tc5tefRCvmMxPhbgqXj6dg0b5IAdnGFx3UQfYllNbipYTCIkMPhlOjn5BHW7hl15jjo7z4K+uoeJcM6cObGxsTyGYgvEwRG6+/nqnBTrS4SVKlgWS6tpeG4I/qKl1hRxNLkpYAH1ooYeH4Rn1LHv3WYej6MSlpAhFtntovvEwaMAQJObCgwDVtft/J9J9OFCxlEIv1tkN1E9XXkx3VhLOLgIPPz4jqWFXAAn5hBjjlIXytitN2jLGXP5MBF6eXmhDjKmJgqOaDp/SJOdDAue5jsWY9IxsOo8dU/JRrljn0dZysXdmZalui3jMVnvndFEdgMcKGAWn6UTFvfvmUgJZ3fSxZOqKdM+yBP6BvMdjjEdKmS232YIDPZPs/TnldaRspZ1nXtJsd9mklNPUp+lMcOdsWeCLeI5ySKCsB2iwHBMINTez7OyJZm2JNDxZaynFA7NJISWfU0xykbdg3yMFAgHhvEdyx9gAN9NJsa6YTkN7OPnLX0mjkeyyrnWkqvZp+JpFuDT8QTvK84/Eje/j9jyKp/Gu2NfRxMA8MJV+maVRbS1dTygfvbs2bW1te23u7i4BAQELFu2bM6cOSYOzDphAqEwYKgmN0WTmyoZEc13OMbxYx7zRQYjIuDITNJLaul3B01eKrCscGCYBfZXkpBwdBYReYyOfcC+mkjvtPiydRdEwSOV109pclLsZqziOxbjKGsGrpvo+mC8H/RpYmht/l3gae6kR3oqCL9Wwe7KYlbE0TeXkO58r0rW8c/p7+9fWFiYlpYmEom8vb0Jgrh9+3ZlZSVJkqdOnZo7d+4777xj3jith9i6VqK4WcVuvEwDwBcTCIvtJmqo5THZwuqL9Lyk2KEZhJiA/6QzX2f141Ihtxi6piCN1Wn5jsUIVBQsOkvdV7LTPLGvovvBA4q2OJtRN5MevoSjK9+xdOw/E4gJHliJwiLqPzpOhAMHDgwMDCwoKLh69eqxY8cSExMzMzMFAsGaNWsKCgpeeeWVf/3rX6WlpWaO1Tq0DDe2imH1FSpYdo5W0/DCUHxDiMU/IwOAfgShpSZCABjvju2aRADA5mv05XKLqDjqBVxmL/AayOq02qJMvmMxgk1X6KRqNtAeOziTFPSHK91i60X1hDgcmkF6SbGLZezfbvA8iLaDn1Sr1X744Yc7duww7DsTHBz8zjvvfPDBByRJfvjhhwRBJCQkmDFO6yH0GYxL7ajqUqqmnO9Y+kTHwMo46r6SjR6AfWYxvb+6RtdVUtWluFgm9OVzoo1H+tNg/G/huI6BVXHUg/6wnFuHWubX7f+VHzvTmR/zGLkAjs4iLGr0Wxc0ubzNKd99XK8CEQGfpzE/5vFZKuwgEVZXVzc1NTk6OrbZ7ujoWFBQAAAikcjX11ehUPTulCzL/v3vf3dxcXFxcdm6dWuHAxOPHTsWGBgol8vnzJlTXt6/E0ZbOC4KGgGtnfj7r1cS6MvlrKcUDkwn+sUzMrQ+JouC+J9o45E+iiTm+mDlKlgcS6sovqPpFevoL3O1gt2aSGMAuycR/WVudFar0RZlWciUEV2Lau04s/Eynx1nOriBubq62tnZ7dq1y3AjwzDffPPNoEGDAIBl2YqKCje3Xs5W/NNPPx09ejQ9PT0jI+P333/fv39/mx2qq6vXrl371Vdf1dbW+vv7b968uXcnslhWMNfaj3nMlxmMmICjs/pBBxk9Hpde6ikcg/3TyEF2WHK1pS9h0xlRYDhGkNp7OYyqlw/NvLunbJkG9rX/3959x0Vxpg8Af96Z2crSu4oC0lRQLCj2iKKxxRJjiS1Nc8ZEczEaL5d2KeaXHhPvUi+eJtGosXfFLoII0pQmUkVA6bB9yu+PQWJBXGB3Z8v7/SOfZTM78zCM88y+5Xn7EbMDreRxr6VkRLcgQq4QOpZHWxxMvBhGaBh4Mo65pRYmhlZGjYrF4jfffPMf//hHenr61KlTPTw8ysvLt2/fnp6evmXLFgA4efJkY2Njh9cm3Lhx4/Lly318fADg5Zdf/uWXXxYsWHD3Blu2bImKioqNjQWAt956KygoqKamxs3NrWOHs0DWviTT5SruxfMMAGwYRg72tJ74LazQxiO5SWBXLDl8H735GhvthZb1spobMQ+JpeIeodqCq9rrV2Th0UKH024tt+ZxXdEHgyy9CeFuVvTAx/t2GJldx52t4GbG0ScnU+afgtX6AdeuXfvjjz+Wl5evXr362WeffeuttziO27Vr19y5cwFg+PDhNTU1Hf5GmJeXFx4ezr+OiIjIy8t7cIOIiAj+dffu3eVyOd8k26p6/xFWV7afX5KJVTbobxYKHUu7Vahh2nFGTcNy6xkgw/ur0IaXn9CxGKqfW/PAmVcTmHiLLNvfNqteiWJZPHPpNhfoiLbFUJa3omZb+H5Zix0a/SARAX/EUF3kiG+INn8Arc8jBIAlS5YsWbJErVZXVlb6+vpKJH/1EUulUqm044un1dTUODo213h0dHSsrq6+b4Pa2lp/f/+WH52cnFqd1AgAVVVV+b6PSZ79ATb/jX/n22+/Xbx4cYdja5tardbpdCRphGdDwr8P1FTWZyZKnARbD68D9CzMPC2+oSSGebLv99E0mrIqQIc7oR9Gl3kRAIiAPo3G3rNJTfWC5SHUv/OoWXH6M7FaX9PMuDL62eYx3UIAQJ2TQpr0WjGBH6+R/8sTyUnut2FakY5rNOocEBOdbR6natSXFSCRWOvRXWc9p10B8OswYtIp8TdX2T4K7Tx/46RDlmVFIpFIJGp7s4cmQp5MJrs7JxmFh4dHQ0MD/7q+vt7Ly+u+Ddzd3Rvv+vvV1dU97Nunh4eHs3NDfb/J/35jiRlWQiFJUiKRGCURkn2iai6fhOJsx8ef7vzezOaleCbhNuvngHaNl7jJTD5+ruWBySiqirMBwLF3lNyouzWDr0dAdhN98iY8kyg7NdlUCx0b92w36z1QJZExt27IWR3p7G78/ZvGuQruH2k0AvjvKGqon0kKL5jkbAMAgPp6GnCcOKC3k5vVnHBejCNsGMYuOcesTBYN8JUN8jDC13CWZRnm0Tn1r0SYm5t78uTJ6Ojo/v37b9q0SaVStfqBZcuWdTKy0NDQjIwMfjmnjIyMkJD7SxGGhoZu376df11UVKTVagMCAh62N7f8Yw3+I15NZMLd0Cgfq2m/kIb2B4S01zM4Wo+oRzytWIj/5rLfZbNSEnaOI72FrgTRbiyju54BVtVx0oIiYFsMNWgPnXCLW5HA/GANE7qbEaQkMFyTfUmbny4fGCN0NAYpU3JPnaD1LLweQcztaU2N/7w77aLWd50DwAuhREoV9302O/M4kzzdjBVnuDt++eUXAFi3bh3HcQ9+S3tw+w7btm1bQEBAQUFBUVFRz549t27dyr8/f/789PR0juOqq6udnJx2797d2Ni4cOHCefPmPWxXycnJAwcOXH2Rhp90Xr/pihvZzofXBqVSSdO0sfZW8cnfSldO0FzLMNYOTepCJSv5RQc/6TbmMuY5YkNDgxH3pi24WrpyQvlHzxtxn2aWcpuVbdTBT7ofso3/JzDu2b5nzyf/LF05oWbLFybav3FpaG7IXj38pBt3SE+b7HZiurPNcVz5B8+WrpygLc4x3SFMSstww/fp4Sfd6AN6XaevdIZhdDrdIzf763lnwYIF9fX1q1atAoDr16/XP0TnU+/s2bOfffbZUaNGjRgxYtGiRXPmzOHfLy0t1Wg0AODm5rZjx4533303ICBApVJ98803be/w4yhyQjd0Sw0z4qxpxlXzOIJrVjCO4IaSm3mc1jKwMpx4xjKqxbfXncpqVvmYzBvg0TzjakUCk3DLagbONI+RzkkROhCDLL/AXLzF+TuiP6xtgAyvuWSETCHuZtElI9ogJmDHWKqrAzpTzq1MMNPAmb+aRu/uUVQoTDv75O2333777bfve/PMmTMtr8ePHz9+/HgD90Yi2DqGGryXvlzFvXCO+X2MdTQcSUMim07v0uSlOU1cJHQsbeEHkVeoYVxX9Plg6zi3D7KKQhuPtDCISKni1l9hZx6nk6dTXR2s4FYt6hJAKJyZ+mr6dhnl2VXocNrynyz2v7msjII/x1pNBZn78O2ikqC+Vr0MpK8c9o8nR+ynv8tm+7qhv5l+4tBDD8AwzPHjx7/88st169bx72RnZ5eWlpo6oI5xlcD+8aSzGLZcZ7/ItI7pFJKgvoikdMW5rEYpdCwPxQE8f5ZJus0FOKKtYyxoRel2uavQRoTQsXTW54PJMb6oQg1PnWC0VjHPHiG+lJKF11pLuMX9PZEBgO+GkwONMUxDEHwdH2uZKduG/u7of6NJBLAigTlVbvL2j9ZvbBUVFVFRUePHj1+7du1//vMf/s0ff/xx3rx5pg6ow8Jc0KbRJIFgTRJzuNQKGo6QWCruEQYso83PFDqWh/oknd1ynXUUwb7xpEfHp8wI7K5CG1Y2XvRBFAE7xlEBjqjlxm35+NLPllxrjX+w0LGwKoJYHGydj3vAl4yw+i6AFk8FEKv7EnoWnoqjrzeY9pbe+p98yZIl9fX1CQkJR48ebXlzzpw5CQkJRukmNJFpPYi3+xMsBwtOm/zEGYWF11o7VMr9M5khEPz2mNVUWWyV1RXaaJu7BLaPJaUkfJfN/jfXCto/JKF8d3g6tFZYWHBaBmYep8uUXEwX9H9R1tr4D80lI2pJZ3fK22pKRrRtXRQ5yQ9Va2FmHNOkN+GBWkmESqXy8OHDX3/9dXR0NHFXQ3NISAjLsjdu3DBhOJ32Tn9yWg+iRgvTj5v2xBnFnboblviknFPHPX2KZjl4fyD5RA+rfUYGACsfUN6qQR7Nq+Itv2AFFWcod1/K3YdVNepu5Asdy/04gCXnmIQ7A2SstPGfZ2MPfABAItgyhgpzQRk13OIzjOku9Fb+7PX19QzDBAUF3fc+Py1Rq9WaLBgjIBD8+hjZ2wVdqTXtiTMKiX8YIZXrK4qZ+vvL6wirTgfTjjP1OpgdSLwZac33BgBW2cAX2hAH9BY6FmNaHEys6ENoGZhxnC5otPArHSSW2jq6Lu2vJZY8rbbxn2fhi053jLMY9saSrhLYVcT+67Kp+gJaX31CLpdfunTpvvdPnDhBkmTPnj1NFIqxOIrgwATSXQK7itgPUy274YggxT0jwMJuECwH80/RefVcpDv6ZZQ1jiG/B98iJw7ojUQmKREioC+jyandidsamHyUqbPsdeCbewEsbOmxnYXsOynNjf/93Kz8SmcZ3fVMuPPMYUtCnNG2GIoi4P3L7PYCk9zSW0mEYrF43rx5a9euPXXqFEIIADiOO3r06N///veZM2c6OzubIg7jCnBEW2MoEsG7KczOQovOhfzjm8aSbhCrk5hDpZy7BHaNIx0eUYPPCtheu2gLEsHvY8i+biinjptxnLbk6vPSkEhAiB+1JHQszVKquEVnGJaDzwaT06y88R8AdMW5rEZFefuRLh5Cx2J8sV3RJ1EkB/DMWSalyvjtH63/+b/88suePXvGxMRMnDjx1q1b7u7ujz/+uKen54YNG4wegYnEdkUfDSI5gGfPMldrLbfhqLmbMPey0IE0+zWf/TKTFRGwcxwV4Gjlz8gAYEMDylvlKIJDE8iuDuh0OfeSBS9bSChcRL7+nE6rK8oWOhYAgJsqbtpxRkXDcyHEaxFWnwWhpV3U5r4OtngtgnghlFDTJlm2sPUrwMnJ6fTp0zt27Jg3b97jjz8+ZcqUn3/++dKlS22UXrNAa/oRc3sSjXqYGWe5DUcinx6kkytTX62vLBE6Fki6zS0917zQ4GhfW8iCdE0lXXWTkFtxoY1H6uqAdo4lZRT8N5f96orlfiu0nCWZmvQw6QhTpuTGdmkec2QDbKNkRNs2DCOjvVBxEzf7JK036pX+0EchkiRnzZr1888/79u3b/Pmzc8///zdKzFZBQTw35FkpDvKq2+uEGaJEJIEW8TY0ZsqbsZxRsPA8t7E0jBbeEaGO1+1JcGRVl1o45GGeKH/jSIRwOqLzP4SC82Fzb0AQl/nDAdPn2LSa7hQZ7RjLCWyievirpIRfYWOxYQkJOwa11x9bYVRq6/ZxFXwcHIK9sSSXeToVDm3+AzDWmQT6Z3ZhELeIDQMzIxjbqq4Mb7oq2gbeUYGAE3uZQCQhg4QOhCTmx1IfDCI5O/yadWWeKFLekYgktKV5AlbSmlNErO/hHWXwIEJpKuVPds/lPZ65p2SEaatjik4XznsHkfKKPg+m/0u22jPfPeMhZg+fXp5eXnbH7h48aKxjm0ePRTo0OPkqP30tgLWVw4WeJeXhg0EfnAjywryxYUDWHqOuXiLC3BE223lGRmAL7SRDncmdNu8NyOJ3Dru13x26jEmaRrlKxc6oHshiUzUPVRXeFV3PVPaJ1qQGH7MYb/MZMUE7IqlgpxsofGfxw/Hte120RZRnuinEeSC08zKBKa3CzJKJ8499zy1Wq26S1JSUnl5uepenT+k+fVzQ7tjKTEBX1+xxEqkpLM75dmV1Sh1pXmCBLA2iWmZSmW9ddQepCu9xiobKDdvyt1X6FjMAQH8NJIc6YNuKLknjtEqy1uJRdjW0RM3uZcvMADwwwjSitYuNYQND41u1fwgYk1fQs/Ck3F0Vp0R2j/u+UZ4d0E1lmVJkvz000/nzp3b+cMILqYL2jSanH+aWX2R8ZXD0xa23qY0tH/T7TJNXqq4R5iZD/1ZBvtpBisiYHsM1dfap1Ldq7mDsNcgoQMxH74TJXofnVzFLTzN7BhLEpb0J5WERMLR3wXpBcipa15ud20/a11K7GFstWRE29ZFkTn1sK+YnXCYOTeF9O/cEHebuiDaNrcn8e1QkgN45gxzrMyyOlGEqrW2+Rr7RhLDf5OY6GdJt0xjsJ8Owrt5SOHghOZKHP9MtqwRYmL/Xkgi01cUMw015jxujRaeOM7UamGmP/HRIIvrHOkkGy4Z0QYSwR9jyNG+6IaSG3eYqejchAo7SoQA8FJv4rUIQs/CrDg61ZIGFEiC+wFB6AqucjqN2Q66t5h9/hzDAXwZTVpxxf2HaJ6yZuvj6FoV6oz2xFJiAv4vnf0hx4L6AhBJSQL7tPTdmgf/7/1aPTfAA21+zLK+IhuFvbWLtpBRsG88NdADXW/gxh+maztR/dPWbn+P9PkQclEw0aiHyUfpIoup0EjIFOJuQRxDawuumueIp8q5uScZmoX3B5KvhtvgZaC9nsHRerFfiA0svdQBo3zQdyNIAHjlAnPipqVc5yBE0dHlF5hT5VwXOdobawuVkh50p9a2zU6lb4OTCI48TvVyQZk13KSjtLKj/eI2eAdsG98MGNMFlavg8SNMtcWUEG9uHTVLrbXkKm7aMVrDwCt9iLf72+Y1oMlNBQCpfYwXbdVzIcTrEYSehdknaMsprsR/cTHbIr1vJDE/5bAOFByYQHZzsLkvgwBM7S26qpyQ2XLJiLZ5SOHI46SfA0q8xc0+0cGJ9vc8IB08eFCpbJ7iw3EcACQmJhL3DuifPXt2B+O1GGICdsdSo/bT6TXc1KN03CRKbgHPidLQ/o1x2zS5qc5TTXugnDpu4hG6UQ8LgoivLW8yibE0j5QJsa8Owvt8MpjMb4A9xWzMIfrEJMoSFpUUdQ0kFM5M7S36dhnl2dWkx3ojifk0gxUTsDWG7O8u/O9uCvwjhSSor22XjGhbdwU6PokcuZ8+VMotPsP81v4G8HsywEsvvVRSck+hr/Xr169fv/7ud2wgEQKAkwgOP04N208n3OJmn6D3xAq/DpnYvzcSifVl11llA+HgZKKj3FByjx9hqjQwpTv6ZZQN9pfwmIZafUUxEkvF/uYehWtRCATbxpKz4mB/CRtzkI6bZAEDgxGShkSqLp/R5KQoTJkI30pm+OHQ28aSU7sL/c/bZLS5qWA3M2XbEOqM4iZRow/QW6+zzmL4bnj7HvHvSYS//fabWm3saqaWylcOxyeSw/fTB0u5ZfHMTyMF/m6ERGJxQB9tXqr2WroscqQpDlGlgfGHmeImLtoL/RFjQxPnH6DNTQGOkwT1RZRI6FgEJibgz3HkUydgXzH72EH62ERqkIfAuVASOlB1+Yw297Ji5BMmOsQ/k5l1aayIgO1jyenWv7LEQ3GcNj8dbLrWtuH6uqGDE6jxh+nvs1l3CXzYnuHB9yTCkSNNcv+1WEFOaP94KuYg/XMu280BvTtA4H8w0pBIbV6qJi/VFImwUQ8Tj9DZdVyEGzo0gbLJUQMt7HPixMOICdgxlpx9AvYWs+MPC58LpWEDASFNXhpH603xpGIvWRBAX1HMNNSSzu6Ut5/QsViEYd5oawz5ZBzzURrrIkGvG7yuiC1fJYYY7Il+H0OSCN67zPw7S+CB5nz7hinK82sYmH6cTq7igpzQsYmUzZRYbB3HNS+9FIYTYTMxAdvHkk/0IGq18PhhgecOkc7uIu/unE6jK8ox+s7XJDHr0lg+99t2FoS/xovae7vo3aZ2J/47iiQQrLnIbMwz9JZu4xeKIab1IP49nASAly8w76QwAt4hxN2CCQcnuqqcrq4w4m75Qswnb3Jd5OjYRNJHZsR9WyJ+vjZ/txU6FgvC54ZpPYhqLYw7RJtidVPD8fV1Nbkpxt3tmiTmswyWz/o2sNbuIzWvQWiXEyfasDCI+Dqa5ACWnGP2FBt0ndv+tWKIF8OIn0eSFAEfpLIvnGXBhjcUAAAgAElEQVRoob4ZIsTP/jbiJAqWg6XnmN1FrKsEjk4kbWOt3bbhdtGH4XPhDH+iRguxh+lk4XKhhC80n2PM9ajtLQsCy+iuZ8KdqZnY3V7pQ7w3gGQ4ePo0W2LAYid2cLkY5vlQYvc4yoGCX/LYacc7PjGzk6TNC9Ybp3VUScNTJ5hf8lgHCg5OsIjR82bQPHHC7sfRtUpEwLYY8skAolYLsYfoS7eFyYWSnhFIJNbduMY21Rtlh3aXBQF0xbmsRkV5+5EuHkLHYoneHUCs6ENoGTCk4oxdXDEGmtIdnZhEeUrhUCkXc5C+bb5iZ3/hb9+aa2nAdfYOdUPJjTpA7ypiXSWwfwI11MsusiBH67XXMwEh3HHyMCICto4hnwog6nQQe5i+eEuAXIhEYknPCOA4o8ysX33R7rIgAGhyUgC3fLTp66Hksl5IYsDoUXu5aAw0xAslTqOCnVHSbS56L32t3tz3CMqjC+XmzTbV628WdGY/adXcsH3M5SqupxOKn0qNMcaSXVZBV3iV02lFXQJIR1ehY7FcIgK2xpALgoh6HYw/TCcIkQubSynldrZ19J/JzOeZrJiAbfaUBQFAk50Md3pbsVYhgA1DiTDnR29pR9eNgQId0bkp1EAPVNDIDd0nwD2Cb/HvzJptfxayw/fTpUpuhA9KeILq5WIvWRD+qqyGH5MfgUTwv9HkgiCiQQ+xh+jzt8x9K2geL5OT0pnGjzcvNY8R3WYHY0TvxiobdKV5iKQkPSOEjsUW2NGlYzhvGZyaTI3viqq1MP4wffSGWXMhXzy3Y1WJOYAPUtnZJxgVDUvCiJOTKE8bWmjXEHc6CHEifDQ+Fz7dk1DSMPuc6Ih5r3ORrz/p7M7UV+srijvw8UY9LDrNfJxuLzMl7qPJvQwcJ+4ZgSS2PgrcLOzr6jGcowgOTKAWBhFNeph6jN50zXwDSaWh/QEhfvGEdn1Qw8D8U8w7KQyB4Mto8scRpA3XjmkVq2zQ3chHIrEkMFzoWKwDiWDzY+SCIKKJRpOO0H9PZDRmW8EQIf55RdP+1tFLt7kBu+lf81k5BX+OI5+wsywILR2EuF3USOzuAjKciIBNj5Fr+xF6Fp49w3ycbqZcSChcRL7+nE7brunGFWoYc5Deep11FMHe8dTfbXFlpUfS5qUBx4kD+tjVCqWdRCLYNJr8V1+aIuDrK+yQveZbqoJvwdbmtGM2IcvBpxns8P10fgMX6Y6Sp1M2XEf0oTiOb/mQ9hokdCg2wv6uofZAAB9Hkd8OIxGCNy8xL10kzTPFsHkSxTVDB9Rl1nDRe+nEW1w3B3RmCjXZ5taaNxCeQdgxBIK/96ITnqBCnVFGDTdoD/1JOsuaPhvytda01zM5vc6Q7SvVMOUY/UYSQ7OwNIy4MNW++r9b6G8WMvXVpLO7yKeH0LHYCJwIH+3l3sT2GFJKwqbrxNTjrBmGkkqa12wzqJtwXzE7bD9d3MQN80Yp0ylbXW7GEHwhApwIO2agB0qZQS0JIzQMrL3ETD1G3zJxBX7CwUnUtSen12kLrjxy4wMlXMRO/eFSzksGByZQP4wgZTZdL7cNmhx+vOggQPb7j924cCI0yJMBxNGJlKuYO34TwnfSay8xTe3rv2sfSVAEIildcS6reURRhM8y2BlxTJMeFgYRJydRXnbccU7fLqOrKwgHJ1HXQKFjsVYOFPw4gtw1jnSXwKFSru8u/aFS0z728b1cbU+i0DDwygXmiWP0bQ2M74rSZ4om2WubBw93EBodToSGGuWDUqcwz4UgmoNP0tnQHfSv+aZqPUJiqbhHGLCMNj/zYdvElXHR++g1SQzHwUeDyE2PkYbMG7Vhfy1Jjx+TO2eGP5E+kxrbBVWqYcpRekWCCUfQNE+iyE5+2AZXa7nBe+kNWayIgM+HkEcmUjZfLLdtnFatK7gKBIFrJxkRToTt4CnlfhyOLk6jor3QTRW36DQzYr+pihfzA+q0rd0g4iu5MQdpviaIjwx2jiPfjLTVFXbbAU+cMKKuDujYROqzIaSIgG+vslF76Mwak1zn4oDeSCLTVxQz9dUP/t/vs9movXRmDRfijC48Qa2KwNc5aPPTOYYWdw8l5I5Cx2I7cCJst0Ee6MIT1KbRpK8cLlRyg/fSS88zRq/Hxo8HU2cl3f3m5Spu8lF6xH76dDnnJoH/iyLz54hm+OM/IgDLaK+lA+4gNB4CwesRROI0KswFXanlBu+l118xfhMIIilJUN+WYZAtKtUw4zizLJ5R0/BsCJEynRoo9HrCFgIXlDEFwe6hNTU1169fZ1mBlwDsGASwKJjIfUq0pi9BIfgphw3Zrl9/hTXimFKxXzDp6MrU3tJXlgBAVh036wQzaA99qJRzEsG7A4jCuaI3+hG2vb6u4fj+VMrbj3TxFDoWm9LfHaVMp14MIzQMvJrIhP9Jf5rBlimNmRCld80mZDg4WMrNOsF036rfU8y6iOGPGPKXUaTC+Mv3WqvmDkI8ccKohEmE7733XlBQ0NSpU8PCwvLz8x/cwMPDA90xZ84c80doCEcRfDKYzHySmuSH6nTwaiITuZuOKzPSPQIhfqmasstJi04zETvpnYWsjILVfYmCuaL3BpBO+NZwFzxxwnTkFHw/gtwTS3Z1QFl13BtJTI8/6AmH6d/zWZUxFmnhv9wos1P+kUR330pPOUrvLGRZgBn+ROoMak4gbvD4C111k64qJ+QKsV+I0LHYFAEusoyMjPXr16enp2dlZU2fPn316tWtbpaXl8dxHMdx27ZtM3OE7RLijA5OoA5MoIKd0dVaLvYwPfYQ/UEqe+Im18mRpcrAgQBwMf7Sr/ksheDl3kT+bNGng0l3215fvkP+GimDmca0HkTRHGr/eOqpAEJEwLEybsFpxud3/XNnmTPlHa8W2qCH/9V2uS3zRqqGg0n5N1VcmAv6ZDBZMle0axzpbwfLZ7ZLc7to6EAg8POBMQnQsrZ169YpU6b4+fkBwLJly0JCQhobGx0d7+/41el0arVaJrOOIWKT/VBsV+qrTPbDNObkTe7kTQYASAQRbmi4NxrqhYZ5o7YXxdWxkN/A5dRxefWQW8/l1HEFlZEXgRysvPpST+2aKIceCnxTaB2nVetLcoEgxT37Ch2LLaMImNIdTelO1mrJbQXsr/nshUpuYx67MY/1d0QLg9DCICLY2aCrlAM4W879ksfuLGSVNHwijXxaffR1aWrwE6F2sl5Yx/DtohLcQWhsAiTCoqKi0NBQ/rW/vz9C6MaNG7169bpvs5EjR2o0muDg4O+//37o0KGt7orjOJVKlZLyV4mm4OBgJycnE0XeNjEBb/QjloQRcWXshVtcQiWXWs2lVXNp1dy/swAAfGQw1Jvg86K/I+TVQ149l1fPZddxufVQ1Mgx9z5Xk4Tihluof03W5x6ZMkXrZwADAE1eGsfQksA+hFQudCx2wVUCf+tF/K0Xca2e25zP/nqNK2rkPkjlPkhlh3mjKE+kbrPJVMNAfCV3vYEDAAQwxhf18xsIh49O1KR6es0z0+9ghTiG1uZnAEJ4pIzRmSQRlpWVrVu37sH3V61aFRgY2NTU1PI9DyEklUobGxvv2zI+Pj40NJRl2Y8//nj69On5+fkPfmUEgJqamuLi4iVLlrS8s2LFilmzZhnvV7mHSqXS6/Uk2dZ8PTHAJC+Y5AUQDmoaLtcSF6uIi1UoqQpVqNHuInZ3UesfpAgIdOCCHdlQZwh25IIcud4unDyhn+Z4VmPGBSbA7hZbUSqVyLAZgeorFwEABYQ3NTWZOCibZfjZvpsvCW+EwuoQiL9N/F5I7C0lLlTChUqDGkr9HGC+Pz0/kPV34DhNaP1RUleY1VRTBWLbXzClY2ebvp7JadWkTw81KQF8qRuGZVmRSCQSPWJIhUkSoVQq7du3lUYquVwOAF5eXnV1dfw7er2+qanJ29v7vi35r4wEQfzzn//84osv0tPTR4wY8eAO3d3de/XqlZz80Nm4xkUQhEQiaTsR3k0BMMEFJgQ0/5hXzyXc4i5Ucgm3uEo1F+iIermgEGcU6gxhLqinExI/0Oyv7zdcc3wrcy1VoVAY7/ewDhzHGfhbNxVkAoBTxFCx/Z0lYzH8bLdqoiNMDAQVDQdK2JsqkLd5X5GS0EOBRvogAt25PSkU6u4huqJsqvy6tM+QDodhLTp2tuuLrwKAvM9gO7wbdBjLsgzz6HoQJkmE7u7uL7744sP+b//+/Xfu3Mm/vnjxoqenZ9euXR+2cVNTk1qtto0/fIgzCnFGi4Pb8RFR156ksztTV6UvLxL5+psqMmvG1FXRt8sImULcvT1nFjMBOQWzOzrIUxo2UFeUrcm9bA+JsGNwZTXTEWDo0YIFCzIyMr7++uvExMRVq1YtW7aMoigAWLZs2fr16wEgJSXl888/P3v27NGjR2fMmBEZGRkRYXcNg83u9Ae0UYPKzjUPHwjuC4R9l5izcs2zCduzJJNdYRpq9eVFSCwVB/QROhYbJEAidHFxOXHixIULF9asWTNt2rS33nqLfz80NJQfSurq6pqTk/P2229/9dVXw4cPP3z4sOGtkbZH2isKADTZl4QOxELhymq2QdwjjJAr6Fs36OoKoWOxRJrsS8BxkuB+iMIziI1PmMIkkZGR27dvv+/NV199lX8RGBj4888/mz0oCyUJG4BISldwldUoCamD0OFYGI7T4KWXbANBSIL6qTPitbmXqWGThI7G4mhxu6gp4VmZlo6QOoh7hHEMrTVseUK7oruRzzbVk25elEcXoWPBOqu5F6DNJZnsFMtq8lIBV1YzGZwIrYC0dxQAaLJw6+j9tM2V1fBjsi3g54lr89KANdmyT9ZJV5LHKhsodx/8wGciOBFageZuwqwk6HgpK9t0p7Iabhe1BZSbN+XZlVU36UryhI7FsjQvSd8rSuhAbBZOhFZA1CWAdHZnGmr0NwuFjsWCcDqtrigLEJIE9xM6Fsw4mltH8djRe+HKaqaGE6E1QIjvG8BjR++mvZbK6XVivxDCQZiiepjRScPwJIr7saomXUkuIikpfuAzGZwIrcOdSRR4NuFf1JmJACCNiBY6EMxoJMGRiBLpSnJZ1f1lF+2WNvcysKw4sA+SWMcKBNYIJ0LrIAkdgEhKW5jFqnGNQQAA4DhN1kUAkIXjcuS2A4mlYv8wYFnttXShY7EUuKCMGeBEaB0IqVwc0BtYRpuXKnQsFkFXnMs01JJuXrjynI3hxwDjSRQtmhedDsMTJ0wIJ0KrcWfsKG4dBQBQX0kAAFnEMKEDwYxMEjYA7swfx/TlRUzdbdLJVdQl4NFbYx2FE6HVaJ5NmI0nUQAAaK4kAoCsD+4gtDXibsGEwoWuqaRvlwkdi/D4YQGSsEHQ/mWbMMPhRGg1RL7+pKsX01CrLysQOhaB0dXl+opiQuog7hkudCyYsSEkDYkEPHYUAHAHobngRGhN8CQKniYzAQCkvaMQKUyxXMykJM2zCe29m5DTaXUFVwAhaUh/oWOxcTgRWhOcCHnqqxcBQBqO20VtkzRsECCkvZbG0XqhYxGSNj+do/VivxBC4Sx0LDYOJ0JrIg3pj0hKW5Rtz7OsWHWTruAqIik8js5WkU6uIp8enE6jK7wqdCxCam4X7YXbRU0OJ0JrgiQycWA4sKw9Dy7XZCVxDC3uGU7IFULHgpkKv069OjNB6ECExI+UwQ98ZoAToZW50zpqv5MoNFcuAh4vautkfYcDgDr9vN2OkebHzRIyhbhHqNCx2D6cCK2MtPdgsOOVKDiGbm4vwh2ENk3sF0y6ejH11bpSO12Jgh8KIAnpDwQpdCy2DydCKyPy6U65ebNN9bob14SORQDa/AxW3STy9afcfYSOBTMlhGQRQwFAnXFB6FCEocUdhGaEE6H1kfCto3ZZYkZzFdcXtRd/tY7aH46h+WqreK1N88CJ0PrcWYnCHidRaJonTgwROhDM5CSB4YTCmb5dpq8oEToWc9MVZrEalcinB+nqJXQsdgEnQusjDbmzVI2yQehYzEpfXkRXV5BOruLuePiAHSAIfkiUOjNe6FDMTZOVBHdGxmFmgBOh9UFiqaRnBLCsvdWg4ruLpH2icd1FOyHrOwwA1Ol2lwj5X5lvHMbMACdCq2SfJWY0VxMBQIbbRe2GJHQAIZXrb+TT1RVCx2I+upI8urqcdHYX+/cSOhZ7gROhVfprwXq7mUTB1FfrSq8hkVgSjOsu2gtEiZqHhl2xo5n16vRzACCLHIlbPswGJ0KrRHn7UR6+rLLBfmZZaa5eBI6Thg1EYonQsWDmwy85aVeTKPiBsrJ+I4QOxI7gRGit+MJLmix7aR1VX0kEvoMQsyeyPkOQSKwtuMI01Aodiznob+TTVeWkk6vEv7fQsdgRnAitVfM6vfaRCDmdVpufDgjxhXUw+4EkMklwJHCcJuui0LGYgyrtHADI+o0EAt+czQefa2slCY5EIrGuNI9tqhM6FpPT5KRwOq24Rxjp5Cp0LJi5Nc+sz7CLsaP8rynrN1LoQOwLToTWConEkp4RwHH2sH7pnfGiuF3UHskihgJBavPSWI1K6FhMS19WQN+6QTq6SgL7CB2LfcGJ0Irx7YTqTFsfR8Bx6qtJcGdpHszeEA5OksDeHK3np5nbMHXGeQCQ9h2G20XNDJ9uKyaLHAkEoclKYjVKoWMxIV1RFttUR7n7inz9hY4FE4Yswi5aR1Vp5wFAHonbRc0NJ0IrRjq5SQLDOb1OY9ODy9VXLgKANAIX2rZfsn4jACFNdjKn1wkdi6noy4voyhLCwUnSM0LoWOwOToTWTT7gMQBQXT4tcBymxE+ckOF2UTtGuniIuwVxWrU2z2Z7xP+aPogXIDQ7nAitmyxyFCIpTV4a02ibs6zoqnK6soSQKcR4+IB9k/a18Zn16rSzgOfRCwQnQutGyBWSsIHAMrZamJgfCiTtPRiRlNCxYEJqnkRxJRFYRuhYjI++dUNfUUI4OEmD+wkdiz3CidDq8a2j6sunhA7EJPiJE3gBQkzk3Z3y9mOVDdrrV4SOxfhUqWfgzkQRoWOxRzgRWj1ZxFAklmoLs+iaSqFjMTJW1agtyEIkJQ0bKHQsmPCa647a4nwhdUtBGUwIOBFaPSSWysKHAMepU88KHYuRaa4mActIgvoSMoXQsWDCa24dTT9vY4uu0LfL9OVFhEwhCYkUOhY7JUwiZFk2Nzc3JyenjW2Sk5P37NlTXl5utqisl2zAGLDFsaNqvl0UjxfFAABA7BdMunox9dU2tuiKih8m03cY7ggXigCJcNOmTS4uLv3793/uuecets0LL7wwb968LVu2REREHD9+3JzhWSNpr0GE3FFfdl1fUSx0LEbDMbQ2JwVwIsRaICSLGAo2N3ZUnYbXXRKYAIkwJiYmOzv73//+98M2SEtL27VrV2Ji4vbt2z///PM1a9aYMzxrhEhKxg8uTz0jdCxGwxReZTUqUddAyt1H6FgwS9HcTZh+XuhAjIauLteXXSdkCkkIXnFaMAIkQj8/v65du7axwe7du8ePH+/u7g4ATz31VGZmZlFRkZmCs1pyvnU05ZTNdJ/QOcmAC21j95L0jCAUzvTtMn1FidCxGAfftS8Nj0aUSOhY7JclNkmXlZX5+fnxrx0cHNzc3G7cuOHv7//glnq9vra2dtu2bS3vDBo0qNUtjYJhGIax0DlMVGA46exOV5VrSnJF3YKFDscI9LkpACDuNdhiz7ktseRr+z7S3kNUSceU6eccPecKHUsH3X22+QUIpX2HWcv5ty4sy3IGfDcwSSLcuXPnt99+e9+bJEmeOHHCkI/rdDqK+iswsVis1Wpb3VKlUtXW1m7fvr3lHYVC4evr2/6QDcKHQZIWOtFHFD6UiT+gvHRS5tld6Fg6iykvZOtuE46urKffw/76mBHpdDprOc9k2CBIOqbJuCAeOUPoWDqo5WwzNZX6sutIIuO697aW829dWJY15I5tkkQ4dOhQb2/v+95ECBn4cV9f36qqKv41y7LV1dUPy23Ozs6BgYE7d+7scKjtJZFILDYRUoPHaeIP6DLj3Z9cBgafbctUlxkPAPJ+w+UODkLHYhcYhpHL5UJHYRAuIrpJIqNvFkg0TaSbl9DhdETL2W5MTAGOk4VHOzi7CB2UbWJZ1pCv2iZJhF26dOnSpUt7P8UwDEEQCKHhw4evWrWKZVmCIOLj411cXIKDbaGtz9TEPcIoz6707TLt9UxJUF+hw+k4jqFVyScAwCH6caFjwSwOEomlvaPUqWfVmfGK0db6pZDXXF8Ur7skNAEGy+Tm5q5du/bPP/8sLi5eu3bt5s2b+fednZ3j4uIAYPLkyTKZbNGiRb/88ssLL7zw2muviUS4G9kg8shRYP0TCtUZ8WxTPdklUNQtSOhYMEvUPHbUyidRMHW3daXXkEQmDRskdCz2ToBEKBKJXF1dR40atWLFCldXV4WiuWjIRx99FBISAgAkSZ4+fTosLCw5Ofn9999fvXq1+YO0UrJBYwBAnXaWY2ihY+k4ZcIRABANjBE6EMxCyfoMQSKxtuAK02DFi66oUs8Cx8n6DEYisdCx2DsBRo0GBga+8cYbD76/cuXKltdubm5vvfWWGYOyESLv7iJff315kTYnxUrnodPVFdpraUgkFvfF84ux1iGJTBLcT5N1SZN10Xrbz9XpuL6opcC1Rm2NfKB1l1tTJR4FjpP3H42keJgM9lDNdUczrHX1MaauSleci8QSaS/cLio8nAhtjXzgGEBInZnA6TRCx9J+LKNMOgYADkOt9TEfMw9ZxDAgSG1eGqtRCR1LR6jTzwHHSXsPRmKp0LFgOBHaHNLVS9wjjNNp1FcShY6l3TTZl5j6asq7uzgAr0ePtYVwcJIE9uZoPb9ipdXhq8Th+qIWAidCG9S8VK8V1h3lh8k4RE8QOhDMCsj7PwYAyvhDQgfSbmxDjbYwC4nEst6DhY4FA8CJ0CbJB4wGgtRkXWJVjULH0g5MQ60mOxmRlEPUWKFjwayAfFAMIXXQFlzRlV4TOpb2obMuNreLSmRCx4IB4ERokwiFizS4H8fQ1jXRSnnxCMfQ0r7DCAWusoE9GpLI5EPGA4Dy/AGhY2kf/dVEwO2ilgQnQtskG/AYAKgunxI6EINxnOriccDVZLD2UIx8AhBSpZxkm+qEjsVQTEMtXZKDRGIpbhe1GDgR2iZZ32GIEmnzM5iGGqFjMYj2WjpddZNy85biVdkwg1EevtJegzhar7x4TOhYDKXOjAeWlYYNJKTWUdzVHuBEaJsImULaOwpYll/tzPIpEw8DgHzIBGsvF46ZmWLkNABoij8ALCt0LAZRJhwGXF/UwljieoSm1tDQ0LK6Rbuo1WqxWCz46hMURXXr1o0gHvEQI+//mDrjguryacXo6eYJrMNYZYM6MwEIwmHwOKFjwayMNGwg5dWNvnVDfSVR1neY0OE8gjYvVX/jOqFwkeHCSZbEHhPhvHnzUlNTZbJ2j9fiOM7wxaRM5/bt2xs2bFi0aFHbm0nDowmpXFecQ98uozy7mie2jlFdiuP0OmmfIaSrVa6qgwkJIcWIqXW7vms6t9fyE2HjyT8BQDx0Eq4valHsMRHqdLrNmzePG2etXz6WLl1qyBqeSCSWhkerkk+q0s46xc4zQ2Adpkw8CniYDNZRDkPGNxzapL2Wrr9ZKOoSIHQ4D6UvL9LkXkZiqXiQtd58bBXuI7Rl8gFjAECVbNFjR3VF2fqKYtLJVdo7SuhYMKuEJDL5oLEA0HR+v9CxtKXxxHbgOIehE5HcUehYsHvgRGjLpGEDCIULXVmiLy8SOpaH4qvJyAePR6Q9tk9gRqEYPR0QUiWfsNgiEkxdlTr1LBCko5UvJmyTcCK0aQQp6zccAFQpFvqlkNOqVWlnASFcVg3rDMqzqzR0AKfTWuw8iqYzuzmGlkeOJN1wR7jFwYnQxvGrMikTj1rmYhSqlFOcVi0J6kt5dBE6Fsy6KUZOBb7KDMcJHcv9WI2SnzXhGDNL6FiwVuBEaOMkgeGSwHC2qa7p3D6hY2mFMvEIADgMnSh0IJjVk/YeQnl2pavLNVkXhY7lfsr4Q6xGJQnpL+oWJHQsWCtwIhReSUnJ4sWLY2JivvjiC9YEk4IdJzwNAI0n/+S0aqPvvDP0Nwt1JXmE3FEWYemj3jErgJDD8MkA0HTWsp75OIbmH0Px10GLhROhwBiGmTBhQr9+/b755pt9+/Z99tlnRj+ENHSAJCiCVTY0nt1j9J13Bt9YJI8ai+dUYUbhMGQ8Eks1uZctanSYKuUUU3db5OsvDR0gdCxY63AiFNjBgwednZ1fe+218PDw9evXf/PNNzRNG/0oTpOeAYCmkztZVZPRd94xnF6nSjkJAA6DxwsdC2YjCJlCPigGAJTxB4WO5Q6OazqzGwAcY57C5QMtFk6EAouPj4+OjuZf9+3bt6amprCw0OhHkQT2kQRHsuqmJov5UqhOO8eqmsT+YaKugULHgtkOxajpgJDyUhyrUQodCwCAJjtZX1ZAOrvLBowWOhbsofDMLQCAJj3ozVKwlyTASXTPOxUVFXFxcefPn+d/ZFm2vLw8ODjY6Id2nrTo1vq0ptO7FaOmERYwn1d5kV+MHleTwYxJ5NNdEtRXey1ddfG4JVTZbTy5AwAUj83E02QtGf7bwMmb3PjDNGOWEdcI4Pcx5Lyef30Rl0qlkydPfvHFF/kfJ06cKJVKTXFocUBvadhATU5K06ldTpMXm+IQhqNvl2mvX0ESmbw/fkzGjEwxcpr2WnrTuX2KUdOEbY3UlV7T5mcQUrnDUPzAZ9FwIgQPKXRXoDqdOTKhowj5yO/5l9mtW7fi4uKBAwcCgE6nq62t7datm4mO7jR5sSb3cuPZPYrR04RdBV6ZeAQ4Tj7gMSRpd+lzDGubLDyacvehq25qcpKlvYSs29d08k8AcBg+mZA6CBgG9kg4EUJfN1QwR9TI/ksAABQ3SURBVLDzMGPGjEmTJmk0GqlUevDgwUGDBnXpYqqp5WK/EGmvKE1WUuOpXc5TnzPRUR6NZVSXTgAAfkzGTIIgHIZNrt//36az+wRMhHRNpSr9PCIpxcgnhIoBMxAeLCOw8PDwmJiYiRMnvvfee6+88sqHH35o0sM5TVwICDWd28c01pr0QG1Qp8czDTUiX39x91ChYsBsm0P0BCQSa3KS6dtlQsXQdHoXsIxswGOki6dQMWAGwolQeBs3bly1apWnp+epU6fGjh1r0mOJ/YJl4UM5nabxxA6THuhhOK26bv/PAKAYMVWQADB7QDg4yQeOAY4Taj0KVtWoTDwKCOFJ9FYBJ0LhIYSmTJmyfPlyUwwWfZDTpEWAkDL+AFNfbYbD3af+4P+Ymluirj1xuyhmUorRMwBAmXiU1ajMf/Sm8wc4nUYaNkjk62/+o2PthROh3RH5+sv6juD0usYT2818aF1xTtP5/UCQbvNeA4I089ExuyLy9ZcEhnNatSr5pJkPzdF65XlcU82a4ERoWYqKivjKMrm5uZcvXzZF6VEAcJq4ABBSXjjE1N02xf5bxTF07davgGWdxs4WdetptuNidksxahoANJ3Zbeb1KFRJx5mGWrFfsCS4nzmPi3UYToSWJTIysqSkZMGCBXPmzHnttdeGDh3a0NBg9KOIfHrI+4/maH3D8T+MvvOHaTz+h76imPL2cxw/z2wHxeyZrO8w0sWDvl2myUs131E5rvHMbgBQjHnSfAfFOgcnQotz+vTp7OzsS5cunT59OiQk5OuvvzbFUZwmzAeCUCUeZWpumWL/99GXFzUe/wMQcp3zKi6xjZkJQSqGTwGA+r0/cTqteY6pvnqRriyl3LzlkSPNc0Ss83AiFF58fPyMGTMmTpx49OhRANi9e/fTTz8tEokAYOHChb/99pspDkp5+8kHjuEYuuHYFlPs/x4sW/vH1xxDK4ZPlgT2MfnhMOwOxahplLef/mZh7Y5vzXPEJr6m2ugZuBfciuBEKLCCgoIpU6bMnTv3s88++/7771UqVWlpaVNTU1xcXFxcXGVlZVFRkal6CifMB4JUXYqjq8pNsf8WTWf36IpzSGd3pynPmvRAGHYfJJF5PP8ukshUl+KUFw6Z+nC6klxtwVVCrnCInmDqY2FGhCvLAKtRNp3axdF6MxwLEaTDyKmkk1vLOxs3bpw1a9acOXMA4KuvvtqzZ09jY+O+ffv4Mtx6vV6v16tUKoVCYfRgKI8uDlHjlBePNhzb4vb0KqPvn0dXV9Qf2gwArrNX4EJTmPlRXt1cZ6+o+fWTut3fi/yCxX4mm6TEcQ2HNgOAw/ApuHagdcGJEDRXkxqO/m62wyG5wvGuXvTi4uKIiAj+tb+/v0Qi8fDwWLVq1ezZswEgLy9v4MCBpsiCPMfx81TJJ1TJJ51i51KeXY1/AI6r2/4Np9PIBzwm7TPE+PvHMAPIB47RFV5tOn+g5n8fea361kSrr9Tt/I8mJ4WQO/KjVTErghMhyPqNcNWqWbU5VqxFEpl80D21Yzw9PSsrK/nXtbW1Wq02LCzsypUrfCLMzMxsSZOmQLn7yIeMV1441HD0d7cFa4y+f+WlOE3uZcLByWXm34y+cwwznPOMv+nKCnWFV2t++9RjyftGX5Wi4djWpvP7kUjs/sK7pKOrcXeOmRpOhIAokcOwSUIdfebMmbNmzXr55Zd79Ojx0UcfIYTmzZu3ZMmS559/3s3N7bPPPnvppZdMGoBT7FxV0nHV5dOOsXNF3t2NuGdW2VC/9ycAcJn5N2EXu8AwRFLui9dWfrZck3WpIe4Pp1hjzuFRJZ9sOLwZCMJtwRpJYLgR94yZhzCDZaqqqo4dO7Zjx46HDQPZu3fvjjsSExPNHJ45DR8+fO3atcOHD+/Ro4ebm1vfvn3Dw8M/+OCDmJiYsLCwcePGLVy40KQBkK5eDtGPA8s2HNho3HnHtX9uYJUN0l5R8oExRtwthnUM6eLptvANQKjh8K/avDRj7VZz9WLNli+A41xnvSzrN8JYu8XMSYBvhCkpKSNGjAgODs7MzNRoNBKJ5MFtnn/++XHjxjk7OwPAwIEDo6OjzR6m+axcuXLlypX86zfffBMAnnnmmWeeecZsATjGzlUmHVNnJlRv/MBtwRokNsLKwOrMBHXqWSSRuc5+pfN7wzCjkIYNdJowv+HIb9Wb/8/79Q2ki0cnd6gryq7etA5YxunxBQI2LGGdJEAijIiIaGhoKC0t7dmzrTpbH3zwgXmKUGOks7vHkn9Vb/xQnXHh1jeveyz5F+ns3pkdshpl3Z8bAMB58jOkq5eRwsQwI3CaMF9XlK3JSanetM7z5U8R2fF7oL6ypOqndzmd1mHYJKfHFxgxSMzMBGgaFYvF/Gzxth04cGDz5s1ZWVlmCAmTBEd6vfYN5e2nv5F/64tXdCV5ndlb/b7/MvXV4h5heK0lzOIg5LZoLeXuoyvMqt/3c4d3w9RXV/3wFqtskPaJdp213IgBYuZnoYNlwsLCrl69qtFoXn755TVr1rz11lutbqZUKsvKylavXt3yzhNPPDF48OC2d86ZtwKvKdA0rdUau2SUo7vz3z5u+O0T/fXM29++rpj1ijRyVAd2oy+4qkw4jEjK4cnlWn3HZ2dqtVqxGBdjMxP7OtukWDFvVf33bzad2UP4Bkr6j27vDliNsv6Ht5iaW1T3EMXc17R6GoA2/OP2dbYFxbIsQuiRX71MkgivXLkyZsyYB98/cODAkCEGTSbjp5MDQFpa2qBBgxYvXuzn5/fgZgRBkCTp6vrXYGW5XE4Qtl8uByFkil+TUDi7Lf2gcc+PqoRDjX98yVWXO7RzcB1H6xt3/wc4Tj52jrhzK7ERBGEPf0oLYW9nW9IjTDH1+cbd3zfu/k7ULYjybuX28jCcXtf4v4/om4WUt5/r8+8R0nbPnbe3s235TJIIe/Xqde3atQffd3Rs9zzWyMhId3f3a9eutZoIZTKZj48PP8DEcMjYU4jMjyRJQ5qXO0TkNmeFyLNL/f7/Nh3bwtXddpmz0pB+FE6nVaefb7pwkLl1Q+Tr7zJhXmd6XwBAJBKZ7HfE7meHZ9t59HSmJFeVcqrht0+8Xltv6Bgxlq3+9Utd4VXSxdNz2ceks9ujP/IAOzzbQmFZlmGYR25mkkRIkqSLS7vnjRUWFvKJjWXZlselK1euVFdX41EzZuYYM4vy7FLz66fKpON0dYX7c28TDk6tb8px2sIsVdIxddo5filwJJG5Pv1aJ7MghpmB65yV+rLr+ori2m3r3Ra+YchHanf+W50RT8gdPf72UecHnWIWQoC7lVarXbhwoVKpBID58+c7Ojpu3LgRAF555ZXIyMgPP/zwyJEj//rXv6KiotRq9a5du958881Wvw5iJiWLGOa14ouqn9/VXs+89dVKjyXv39d8xNTeUl46oUo6Tlfd5N8R+/dyGBwrGzAa1xTFrAISS92ffbvyyxWqlFPAspRPd9LZg3RyJZ3dCUc30tHlvgI0DUd/V8YfRCKxx5L3RD7GrD6BCQuZf+QIwzCnTp1q+VEkEo0ePRoAkpOTnZycQkJC1Gr1uXPnrl27JpPJBg8eHB7+0EoNKSkpL774YnJycrsCiI2NdXd39/f37+hvILAjR44sX758yZIlZjgWU19d/fO/dKV5hEzh/uw/JSH9OZ1WnRGvTDquvZbGT8Annd3lUeMcBsdSXt2MeOjGxsYOtKVjHWPPZ1uderZ688etVJMgSNLRpTk1unhwHKeMPwgE4f7cO7LwTs1stuezbWZ80+gjG6IFSIRG1LFEePTo0bS0jtSV0Ov1JElaQi/33Llze/ToYZ5jcTptze+fqdPPA0HKIoZqcy83N4GKxLKIYfLBsdKQ/mCCc4JvFuZk52dbW3BVX3adbaxl6qqYO/9lm+of3NJ1zkqHoRM7eTg7P9vmhBOh8alUKolEQpL2t94mx9Uf/F9j3Db+J7F/mMPg8bL+owiZqZbFAHyzMC98th/E0fq7UyPbVEf59JAPeKzze8Zn22wMTIR4RANmAIScpzwr9gvS3yyUDxjTrrHmGGalECUiXb1waSR7gBMhZihZv5GyfiOFjgLDMMzIhO/uwjAMwzAB4UTYDikpKS2L6GKmdurUKY1GI3QU9uLIkSNCh2Av9Hr9iRMnhI7CXlRXVxuykB9OhO2wYcOGuyd+YCb19ttv5+TkCB2FvZg/f76+E4VhMcMVFRW9/vrrQkdhL+Lj4z///PNHboYTYftY9SBbDMMwu2LgHRsnQgzDMMyu4USIYRiG2TXrnj5RX1+fn58fGxtrnsNduXIlKytr06ZN5jmcnSsoKFi2bJlCYcI5+1gLhmEmTpxoAwuzWD61Wl1eXm62u5adu337tiGbWXdlGY1Gs3XrVrOV5K6oqHB2dpbJ2r38GNYBxcXFfn5+llDQzh4UFhYGBAQIHYVd4DiuuLjYemsdWxetViuXy1tdH/du1p0IMQzDMKyT8OM2hmEYZtdwIsQwDMPsGk6EGIZhmF3DiRDDMAyza9Y9fcKcWJY9c+ZMYWGhv7//8OHDJRKJ0BHZrJSUlNraWv61g4PD0KFDhY3HHmi12nPnzoWEhHTv3l3oWGwWTdOZmZnZ2dkAEBUVFRwcLHRENi4vL+/y5csikWjEiBHe3t5tbEm+99575orKijU2NsbGxu7du5em6b179/r7+wcGBgodlM1asGDBnj170tLS4uPj8/Pzp02bJnREtu+dd9556aWX/Pz8oqOjhY7FZiUmJi5durSxsTE3N3f16tUSiQQ/5JnOF198sWzZMpVKlZqaumrVqkGDBrVx08bTJwyyYsWKoqKi3bt32+Py9GYXExOzfPnyJ598UuhA7EVaWtrSpUsVCsUTTzzx6quvCh2OXdi/f/9zzz1n4HRvrANKSkp8fX35tek//PDDw4cPx8fHP2xj3EdokK1bt7722muZmZnnz59Xq9VCh2P78vLyjh49WlxcLHQgto+m6RdffPGHH37gbxmYeSiVSg8PD6GjsGXdu3dvuaR9fX21Wm0bG+M+wkerr6+vqqp6//33ZTKZWq0uLi4+ceIELgxhOjKZLC4u7syZMxcuXFi6dKkhq6hgHfbRRx+NHTu2f//+QgdiL8aPH69SqW7durVz506hY7ELSqXyiy++WLFiRRvb4KbRR6usrPTx8Vm7du3HH38MAIsXLyZJ8pdffhE6LpvFMAzfBJ2fnz9gwIADBw6MGjVK6KBsU3Z29uzZs5OSkmQy2YQJEyZOnIibRk0tLi6uoaFhw4YNXl5ef/zxh9Dh2Di9Xj9r1iypVLp169Y26jXib4SP5unpKRKJRo8ezf84ZsyY//znP8KGZNtaOmKDgoIGDx6cmpqKE6GJfPHFF46Ojnzyy8rKamxslMvlS5cuFTouWzZu3DgAiImJcXNzW7duHR52Zzo0Tc+fP5/juN9++63tqsU4ET4aQRCPPfZYfn4+/+O1a9e6desmbEh2QqVS5eTkLF++XOhAbNaLL75YVFTEv05MTAwNDY2IiBA0IntRXV3NcZyTk5PQgdgshmGeffbZ+vr6vXv3PrL/GydCg7z11ltPPfWUUqlUq9Xff//9oUOHhI7IZpWVlS1atGjUqFEikWjHjh09evSYMmWK0EHZrKioqKioKP71zz//3K9fPzyg33TWr1+fnp4eFhbW0NDw22+/LVu2DI+XMZ3PPvtsy5YtCxYsWLlyJQDI5fKvvvrqYRvjPkJDZWRk7Nq1SyaTPfnkk0FBQUKHY7N0Ot2ePXuuXr0KAH369Jk5cyZF4cc1czh06JCfnx/+Rmg65eXlBw8eLCws5MtEPHJtIKwzEhISMjMzW36USCSLFy9+2MY4EWIYhmF2Dc8jxDAMw+waToQYhmGYXcOJEMMwDLNrOBFiGIZhdg0nQgzDMMyu4USIYRiG2TWcCDHM+lRWVm7atKmqqkroQDDMFuCpyhhmcc6cOfPss88+7P9GRUUtW7bsmWeeSUxMxKVJMKzzcCLEMIvTrVu35557jn+tVqvXrVs3fPjwxx9/nH+ne/fuAQEBH3zwgZ+fn3AxYpjtwJVlMMyi1dTUuLu7r1q1ypB1GWma5rdvWcFDp9MplUpXV9cHN2ZZ9vbt21Kp1NnZ2chBY5hVwX2EGGZ9EhISfH19U1NT+R8nTJgwf/787777ztvb29vb28fH588//9TpdCtWrHBycnJzc4uIiMjOzm75OMdxn3zySZcuXXx8fFxcXAYPHpySkiLQr4JhwsOJEMOsj1arraio0Ol0/I+NjY1xcXEbN27csmVLfHx8nz59Fi1a9Nxzz9XU1MTFxR08eLChoaGlrRUA3njjjXfeeWfFihWpqannzp1TKBSxsbFlZWUC/TYYJjDcR4hhtkClUh04cMDLywsAvvnmm379+uXk5Fy6dAkhBABr16596aWXKioqfHx8SktLv/rqq3fffffNN9/kP7t79+6AgICffvrpvffeE/BXwDCh4ESIYbagf//+fBYEgJCQEACIjY3ls2DLOyUlJT4+PidOnKBp2svLKy4uruXjfn5+V65cMXvUGGYRcCLEMFtw93AYsVgMAC4uLve9wzelVlZWAsAbb7zRkiZ5vr6+5gkVwywNToQYZl/4MaLx8fG9e/cWOhYMswh4sAyG2ZdRo0YhhHbs2CF0IBhmKfA3QgyzL7179160aNG6devkcvncuXM9PDwKCgoOHTrUs2fPmTNnCh0dhgkAJ0IMszs//vijp6fnu+++u2bNGv6dkJCQDRs2CBsVhgkFV5bBMEvHMAxBEPeNbWEYpqV8TMdoNJrc3Fy9Xt+tWzcfH5/OxYhhVgwnQgzDMMyu4cEyGIZhmF3DiRDDMAyzazgRYhiGYXYNJ0IMwzDMruFEiGEYhtk1nAgxDMMwu/b/CnVfkNuIOv8AAAAASUVORK5CYII=",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (6.3, 2.)\n",
+ "\n",
+ "dt0=1/10\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "sol = solve(prob, IRKGL16(), dt=dt0, adaptive=false)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "id": "bc9fefd2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, 6.3, 2.0)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "44-element Vector{Float64}:\n",
+ " 6.3\n",
+ " 6.2\n",
+ " 6.1\n",
+ " 6.0\n",
+ " 5.8999999999999995\n",
+ " 5.8\n",
+ " 5.7\n",
+ " 5.6\n",
+ " 5.5\n",
+ " 5.3999999999999995\n",
+ " 5.3\n",
+ " 5.2\n",
+ " 5.1\n",
+ " ⋮\n",
+ " 3.0999999999999996\n",
+ " 2.9999999999999996\n",
+ " 2.8999999999999995\n",
+ " 2.8\n",
+ " 2.6999999999999997\n",
+ " 2.5999999999999996\n",
+ " 2.4999999999999996\n",
+ " 2.3999999999999995\n",
+ " 2.3\n",
+ " 2.1999999999999997\n",
+ " 2.0999999999999996\n",
+ " 2.0"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "65ca7d23",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Julia 1.9.1",
+ "language": "julia",
+ "name": "julia-1.9"
+ },
+ "language_info": {
+ "file_extension": ".jl",
+ "mimetype": "application/julia",
+ "name": "julia",
+ "version": "1.9.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Examples/Simple Pendulum- Forward and Back integration.ipynb b/Examples/Simple Pendulum- Forward and Back integration.ipynb
new file mode 100644
index 0000000..416ed33
--- /dev/null
+++ b/Examples/Simple Pendulum- Forward and Back integration.ipynb
@@ -0,0 +1,1319 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "c5b2c9a2",
+ "metadata": {},
+ "source": [
+ "# Simple Pendulum example: forward and backward integrations"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "b343f609",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "using OrdinaryDiffEq \n",
+ "using IRKGaussLegendre\n",
+ "using Plots"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb9278c5",
+ "metadata": {},
+ "source": [
+ "## ODE definition "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "df7272c0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "simplependulum (generic function with 1 method)"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Constants\n",
+ "const g = 9.81\n",
+ "L = 1.0\n",
+ "\n",
+ "#Initial Conditions\n",
+ "u₀ = [0, π / 2]\n",
+ "\n",
+ "#Define the problem\n",
+ "function simplependulum(du, u, p, t)\n",
+ " θ = u[1]\n",
+ " dθ = u[2]\n",
+ " du[1] = dθ\n",
+ " du[2] = -(g / L) * sin(θ)\n",
+ "end"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "20c50ccf",
+ "metadata": {},
+ "source": [
+ "# Forward Integrations "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c9b43ebd",
+ "metadata": {},
+ "source": [
+ "### Case 1 (adaptive)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "028c6101",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2AU1dbAz52yLb1XUgktlIRQBIFQVVQUFfQTFXjwnuhTVHwPFX3vCSiKAvaKiopYEDuIIjU0gZBAAoQA6b3XzbZp3x+TLGsaSbbMbPb+/kpuZmfOZubOufdUJAgCYDAYDAbjqhBSC4DBYDAYjJRgRYixDTU1NampqX/++WdeXp7RaGz316NHjy5dunT37t2OFOnSpUtLly79/PPPHXlRe7Ns2bL//Oc/vf1URUXF0qVL33zzTXuIJDe2bt26bNmyS5cudX+Y+Ez++uuvjpEKI2ewIsRYS0pKynXXXRcQEDBu3LiJEyfGxsZ6enpOmTLlu+++Mx9z6dKlLVu2nD171pGClZWVbdmy5ciRI9afqrGxEVmgUCgCAwOnT5++ZcsWnuetP3/P2bx58zfffNPbTzU0NGzZsuWPP/6wh0i94vPPP7f8T7q5uUVERPzf//3fiRMnbHWJlJSUzZs3l5aWdn/Y5cuXHf9MYuQJJbUAGOdm9+7dt99+O8uyU6ZMmTp1qo+PT2FhYUZGRkpKSnx8/Lx588TDQkNDp06dGhkZKa20VoIQmjFjhvhzUVHRwYMHDx48+Pvvv2/fvh0hJK1szkVgYODIkSMBwGQyZWdnb9++/bvvvtuyZcvChQulFg3jimBFiLGKFStWsCy7adOmJ5980nK8pKQkPz/f/Ovs2bNnz57tcOlsDEEQe/fuNf/6888/33XXXTt27Ljvvvtuv/12CQVzOiZPnmw2GBiNxieffPK9995bvnz53LlzPT09pZUN44JgRYjpO5WVlZcvX1YoFI888ki7P4WHh4eHh5t/ra2tLSgoCAsLCw4OFkdyc3MbGhqGDRumVCr379+flZXl6el58803BwUFiQdcvnz58OHDWq1WtLhanry8vLysrCwyMtLf3//UqVOnTp0SBGHSpEmJiYk9EZvn+dTU1LS0NL1eHxUVNWvWrL69fG+//fa7777766+//vXXXy0VYWZm5okTJxobG8PCwmbNmhUQEGD5KfGLDx06VK1WHz58+OzZszRNT5kyZfjw4R0vUVNTs3v37urq6qioqNmzZ2s0mnYHiP+KqKgoPz8/y/Hz588bjcakpKSuhC8qKqquro6Li2v33c+ePYsQGjVqlPhrQ0NDbm5uUFBQeHh4Tk7OwYMH9Xr9+PHjx48fLx7Q0tKye/fuoqKiAQMG3HLLLW5ubtf+x/0VpVL5+uuvf/XVVw0NDUePHr355pvFpyU0NDQkJOTKlSspKSkNDQ0LFiwIDQ0FAJ7njx8/fvbsWYZhoqOjZ86c6e7u3umZeZ5PSUk5d+4cTdMzZswYNGhQT+RhWfbIkSMXLlxgGCYuLm7mzJkqlcrygIyMDEEQEhISWlpafvvtt+Li4vDw8FtvvVWtVosHHD9+PD09nSCIWbNmxcXF9fYfgpEAAYPpK7W1tQBAkqRWq+3+yI8//hgA1q1bZx657bbbAGDPnj1jx441P40ajea3337jOG7FihUEcdWBvXTpUsuzrVmzBgDefffdOXPmWD7M999/v8lkMh924MCBjp89f/58O33p4+Pz7bffdi9/Q0OD+E3bjYuSzJ07V/y1pKRk6tSplifXaDRvvfWW5UfuvPNOANi7d29ycrL5MITQ008/3e7k33zzjYeHh/mY0NDQU6dOAUBsbGw7AT777LN2nxXfvxzHib9evHgRAG6++WbzAf/85z8B4Pfff2/3QQ8Pj8DAQPOvP/zwAwA8+eSTzz33nKX5d8mSJRzH7d+/39/f3zwYExNTWFjY/X/ys88+A4C77rqr3fjo0aMB4NNPPxUEYcuWLQDw/PPPL1++3Hzy/fv3C4KQk5PT7vb5+/t/9913lqdasmQJAGzfvv26664zH0YQxNNPP83zvPmwTz75BABefPFFy8+mpKTExsZanj8sLOzQoUOWx/j6+np6ev75558hISHmwyIjI3Nzc+vr62+44QbzIEVRH330Uff/EIwcwMEymL7j6+sbFRXFcdzixYuLi4v7cIYHH3zQzc1t165dqamp//3vfw0Gw8KFC9esWfPll19++OGHp0+f3r59e0hIyCeffPLzzz+3++y6desuXrz466+/FhUVHThwICEhYdu2bf/+97+7uVxhYWFycvL58+dXrFhx7NixrKysjz76iCCIe++9t28xNaL519fXFwAaGhqSk5NTUlIWL1588ODB7Ozsr7/+2t/f/7HHHvv66687fnGDwfDDDz+kp6d/+OGHnp6er7zyyv79+80HnDx58v777+d5/t133y0oKDhz5sy0adPuuOOOPghpPd9///0HH3zw/vvvnz59eseOHeHh4Vu2bHnllVfuuOOOe++999ChQ0eOHJkzZ05eXt7jjz/eh/NzHFdUVAQAlvvaTz/9dPv27Zs2bUpJSdm1a1d0dHRDQ8OMGTPOnDmzaNGi06dPZ2dnb9y4UavV3n333eKix5IVK1ZwHHfo0KGioqJffvklMjLylVdeeeONN7oR4/Tp0zfeeGN5efnatWtPnTqVkZGxcePG+vr6W2+99cqVK5ZHGo3GO+6449Zbbz148ODRo0fnz59fWFi4bNmyxYsXV1dXf//992lpaZs2bSIIYvny5dcM28FIj9SaGOPcfPvttzRNi8/SsGHDlixZsnXr1pqamnaHdbUjTEpKYlnWPDh37lwAoCjqwoUL5kFRi9x///3mEXEbRFHUlStXzINVVVXu7u4kSRYVFYkjHXeE8+fPB4B33nnHUrYjR44ghCZPntzN1+x0R3js2DGlUgkAX3/9tSAIog5euXKl5TE5OTkqlUpcLogj4o5wxIgRlpvXd999FwAefvhh88jMmTMBwHI/wfO8uIl0/I6QIIi0tDTz4E8//STe8VWrVpkHW1pafH19KYrS6/Wd/Afb6Lgj5Djuf//7HwCo1era2lqhbUeIEDp58qTlZ1evXg0At956q+XgBx98AACjR482j4g7Qm9v77q6OvPg+fPnCYLw9vZuaWkRRzruCMeNG4cQ2rVrl+X5t23bBgALFy40j4jrnkcffdQ8YjQaRbNtZGSkTqczj4sugw8++KCbfwhGDuAdIcYq5s+fn5aWdscdd7i5uWVlZYmBf0FBQQsXLmxqarrmxx9//HGSJM2/ii/6G2+8cdiwYebBKVOmQNvey5Lbbrtt4MCB5l8DAgIWLlzIcVzHvaOIVqv96aef/Pz8RB1gZtKkSSNHjjx27FhjY2P30vI8v2zZsmXLli1ZsmTKlCmTJ082Go3Tpk0T9eu2bdsIgnj22WctPxIbG3vDDTcUFBSIqsjME088YV5AAMCsWbMsv2NTU9OBAwfEb2Q+BiHULiLJYUydOlU0XYqIdwQAVqxYYR7UaDRjx45lWbYntoH09HTxP7lgwYL4+Pi1a9cCwLp160QdIzJt2rRx48ZZfkrUys8884zl4N/+9regoKD09PR2T8iSJUt8fHzMv8bHx990000NDQ0d944ily5dOnXqVGJi4i233GI5vmDBAm9v799++63d8Zb3QqFQTJgwAQCWLVtm9hRC148uRm7gYBmMtYwYMeKHH34wGAwnTpw4efLkb7/9lpKS8sUXXxQUFKSkpHSfV9AufkGMK+l0sLKyst1nzQEdZhISEgAgKyur02udP3+eYRiNRrNq1ap2f9LpdDzPFxcXe3l5dSOtIAibN28WfyYIYujQoffff/+KFStIkiwrK6uoqPD09Fy/fn27T4mWsYKCgvj4ePPg4MGDLY8RQ4QqKirEX7Ozs3meHzJkiEKh6PgFHU+7O+Lj40PTtJubW7s4IPOdumaESH5+vvk/qdFopk2btmLFinYeX8vFEAAIgnDx4kWEUDsfoUKhGDly5N69e7OysqKjo83jHR+PxMTE3bt3Z2Vl3XrrrR1FSk9PBwCTydRO0YqXqKqqamlpMYcCKRSKdrlA4ndvd1sDAwOhs0cXIzewIsTYBpVKNXXq1KlTpz799NM//vjjvHnzjhw5sn//ftHE1xWWy2cAELVmu9hIMWpG6FAUt91bGNreO83NzZ1eSzRvVlZWml/Blvj4+JhMpm5EBQCSJKurq8Wfvb29LXW8uJvU6XRdnZxlWcuR7r+jVqs1fx1LOo44ho7RqgihjoPit+hJhYE5c+aIFX8oirIMCLLEMgwHAIxGI8MwHh4eHa8rLiPa3feOj4c40v3jkZOT09Ud1Ov1ZkWoUqksg7mg7bt3+jx3fHQxcgMrQoztueOOO5KTkw8ePJiWlta9IrSGqqqqdiPi0rurXAjxhTt+/PjDhw/3+aKW1raOJw8NDS0sLOzzyc2I+QAddxIdR7rSPS0tLd1fQnxHt/sgy7IGg6Hd29weKBSKrv6TXaFSqWiabm5u1ul07XShuJNud9+7ejy60rvi+Pz587du3dorwTD9AOwjxNgFMYrE0v9nc86cOdNuRLRuWVogLRkxYgRFUenp6Xq93ubChIWFBQYGFhUVlZSUWH+2oUOHkiR58eJFg8FgOS5+QUvEvMx2CrK+vr68vLz7S3T6wZycHIZh+iy2vRFTLdPS0iwHjUZjZmam+a9muno8Os3XBADR4vrnn3/iDZwLghUhpu9otdpvvvmm43bk0qVLR48eBYBuErqtZ9euXdnZ2eZfKyoqtm3bRlFUV0VePD0977zzzpaWlhdffLHjX0VrZJ9BCC1atAjaAimtPLmHh8esWbNqa2vFGEsRnudfe+21dkfGxMQAQLtQjpdffvmab/OuPtgrOR2MWLFv/fr1lt/u448/rqqqGj9+fEREhOXBn376qZjnKpKZmfnHH3/4+vpOnz6905PHx8ePGzcuJydHjCZth5WPB0bmYNMopu8YDIZ77733qaeemjdv3oQJEwICAhobG0+dOrV582atVjtt2rR22eW2JSwsbPbs2Rs2bBg1atSlS5eeeeaZlpaWlStXhoWFdfWR11577ciRIy+99NKVK1fuueeeuLg4sXLKTz/9VF9fb43JFAD++9//7t69e9u2bWKrh8GDB+t0uvz8/N9+++3kyZM5OTm9Otu6desOHDjw5JNPtrS03HzzzQ0NDRs3bhST7SyZNGlSWFjY4cOHly5det999+n1+h07duzatcvPz89SDXRk9uzZXl5eO3bsCAsLmzt3bl1d3datW9PS0sStvDxZvnz5li1bdu/evWDBgkceecTT03Pnzp1r166lKGrjxo3tDvb29p4xY8ZLL70UFxeXlpYmprW88MIL7crEWPLRRx9df/31y5YtS01NveWWW6Kjo6urq69cubJ9+/bQ0FAxjwLTL8GKENN33Nzc7rvvvj179rz++uuvv/66eVyhUCxduvS1116zaynqVatW7d+/X0xdEHnwwQe739OEhYWdOHFi2bJlO3bs2LFjh3ncy8vroYceslIeDw+Pw4cPP/roo9u3b9+3b595XK1Wm4uP95zRo0fv2LFj8eLF//73v8UMxYiIiF9++aVd4KhCodi+ffvcuXO3bNkipt+Fhobu3Llz0aJF3StCHx+fL7/8csGCBeZ7N3DgwN27d4tpAPLEw8PjwIEDCxYs+Oabb8wtOEJDQzdv3jxp0qR2B7/22mtvvfWWOReCoqjVq1e3y5xph5hF8+CDD27evNkyZCYgIADXku3fIGwQx1gJz/OZmZlFRUXl5eUEQURGRo4dO7ZdKERTU1NlZaW/v795vKKiQqfThYeHW2YIaLXaqqoqb29vy3wyAMjLy6NpesCAAeKva9euff755z/55JMlS5ZkZGSIvp8JEyYMGTLE8lN6vb6kpMTLy6tjsGV+fv7JkycbGhq8vb0jIiLGjBnTLlGh43csKCiANoti95SXlx8/fry6utrd3X3AgAFjx461DO6orKxsaWkJCwuz3HuJ51coFJYFWgGgsbFx7969tbW1kZGR06ZNUyqV7f4VIk1NTXv37q2pqQkNDZ01a5ZKpSouLmYYxiwtwzAFBQVubm5i3reZ2travXv3NjY2RkVFTZ8+nabpgoIChJA5N6ClpaWystLLy6tdLdP8/HzxXlsOVlVVabXa0NDQbnZdzc3N1dXVbm5u5qKyXR3j4+PTaUCNIAhnz57NyMgwGo2xsbGTJk1qd7nq6urm5uaQkBCVSnXixIkLFy4olcrk5OR2ttOOz6SZrKys9PR0rVYbEBAQERExevRoS2+3+CRERUVZfqSmpqapqSk4ONjyXhsMhrKyMg8Pj44hrBhZgRUhxvmwVIRSy4LBYJweHCyDwWAwGJcGK0IMBoPBuDQ4WAbjfMyYMUOpVI4ZM0ZqQTAYTH8A+wgxGAwG49Jg0ygGg8FgXBqsCDEYDAbj0mBFiMFgMBiXBitCDAaDwbg0WBFiMBgMxqXBihCDwWAwLo1zK8La2tq3335baimkoSd9wPsl+Iu7GoIguGaWl8t+cXD40+7cirCgoMCyYZtLcc0W5P0Vl/3iOp1OahGkwWg0siwrtRQSwHGc0WiUWgppcPDT7tyKEIPBYDAYK8GKEIPBYDAuDVaEGAwGg3FpsCLEYDAYjEuDFSEGg8FgXBqsCDEYDAbj0mBFiMFgMBiXxukV4RODParefFJ7+Gder5VaFgwGg8E4H06vCN1IwpSf1fDD+1Ubl7M1ZVKLg8FgMBgnw+kV4ZuXm3wXraLDB7K15VVvPGkqviK1RBh7wTVU8wYXLSuDwWDsByXJVY1GY2ZmZmNj4/Tp0wmiE2WckpLCMIz4c1BQ0IgRI7o6lZYVNInJ6vjxtZ+uM1xMrX7nKf+lzysHJdhLdIxEcA01FeuWEhoP9d0rIH6M1OJgHErzj+8bL5z0ufdJ1ZAkqWXBOBSurqryteWqQQnedz9OqDR2uooEijAjI2PcuHFBQUHFxcUGg0GpVHY85q677ho8eLBGowGA5OTkbhShCFKo/P7+fP03r+tS99d89L+gZzZTfsF2kR4jEbrT+wXGxDXWtmxZTd35kPv1t0otEcZBCLpm/ck/BI6t+fA/HjPu9rp5IRCk1EJhHETLyd95baMuPcVUnOO35L90SJQ9riKBIoyLi6uqqqqtrY2Nje3msM8++ywuLq7np0Uk5bvg3wLL6M8cbt7zpc+Cf1ktKUZG6E7vBwDVkCRDdlrDjneYosve8x5FtEJquTB2x5B5VOBY0juAa6pr3rfdmHveb9EzpHeA1HJh7I8g6E4fBADSO4CtLq16/XGfeY9qxs2y+XUk8BFqNBovL69rHnbkyJGdO3eWlJT04tQIec1Zikiq5fR+tqo3H8TIG1PxZaaiiHD39n9wrXr+40ihajn5R9WbK9i6SqlFw9gd45kUAPCa87fAJ16j/IJN+RcqNzxiuHBSarkwdsdUkMXWlpNefsHPfuw+5XbBZKz7alPdlxsEk42bckjjI7wmISEhu3btMhgMhw8ffvnll5cvX97pYXq9vrKy8qWXXjKP3HTTTZFjZuhP7mn4bZtXv94UMgxjdqP2e7Qn9wKAavRUhuPR0PG+AwY2fL6OKcmt2rTc676VijiXcAm71B03w9VXsUWXkEJFDR6DlGqf5Zuavn3TmHWq5uPVmutvdb91CSJl+hKzHpZlWZYlSVe0A4tPu/bUfgBQjZ7KIsJtzt/J0JimH97Tpe43leV7P7CK7Jn/iyTJTiNRLJHpM5SZmYkQAoAjR47MmDFj3rx5ISEhHQ/jeZ5l2fr6evNIS0uLZvp8Q9oBw9kU9dQ7qeBIxwntWHied5VOrTxnOHsEAJQJyeK3JoIivB97XfvtG8YLJ+s/ft7txvs1yXcCQlILal9c6I5boEvdB4JAx48XaKXA86B291z4rP7Yrpbdn+mO7mQKsj0W/LuHL0Sng29DakEkgOd5jjHpM44AgGLUFPGfoEic6h0U2bTtFbY0r+6Nx93nLVeOmHjNU11TC4JsFSFqe6lNnjzZx8cnOzu7U0Xo5uYWFha2YcOG9uPX3aQ9utNwcIff4ufsLqtEmEymTuOM+h+GCyd4bQMdHOEWMxTMX1ypVP99dfOBHY27Pm35batQUehz7wqkUEktrB1hGMZF7rgl9RlHAECTNN3yuytnzNMMGln32ctMyZWGt1Z43/O4JjFZOhntBUmSJEm64E0HAIZhhNxMQddMh8W4RQ02jyujh2ieeq/u69f0Z480ffmq++TbvG7/h/VWARnlEdbU1DQ1NbUbzM3Nra2tjYzs3cbO44Z7kUKpzzjKlObaTkCMNLSk7gcAzdgOHnKEPGbc7f/31YTaXXcmpXLTcrayWAL5MHbDVHSJrSoh3L2VcaPa/UkxYFDgynfViVN4g67u85frvtwgMCZJhMTYCV3aAQDQJE1vN46Uar9Fz3rf8RAiSO3hn2veW8U11lp5LQkUodFoXLZs2XPPPQcAjzzyyIoVK8TxxYsXv/rqqwCwZ8+e2bNn/+9//1u5cuWkSZMeeuihmJiYXl2C9PR1m3gLCELTb1/YXH6MI+ENLYYLJwEhTdK0Tg9QxY8PfPJNOjiSrSyuev1x/bnjDpYQYz90pw8AgDJhSqf5EoRK47foWZ+7H0MUrUvdX/Xmk7i2VL9BMOpbJ/7oqZ38GSH35Ln+j7xCevkZc89Vbvin8fIZay5Hrl692prP9w2TyTR06ND58+cPHDgwNjZ2yJAhABAaGpqUlBQcHBwYGOjm5tbQ0ODt7b1ixYqHH364q/OUl5fv3Llz2bJlHf+kGBCnPbaLKS9QDR1Devvb8ctIhIuYRnWn9unPHVcNHu0+eY440vGLE26ebmNnstWlTGmu/uxhgTGpBiX0P5ehyWRSKFwpXYTn6r9+XTAZPOYuI738uooZUQyIUw8bZ7x8lq0obDn5B+UXbKdUM8cjOggpSqYOLLvSkrqfuXBCOSjBffJtXR1D+QS6jZ3JlOUzZfm6tIMgCMrYEX2b+BL8iymKmj9/fsfxqVOnij94enr+3//9n5VXIdw83SfNad7/bdPv2/yXvWjl2TBSIaYPasbM6P4wpFT7LX6u+cCOxl8/a97/LVNe4PvAU4Ta3SEyYuyCITuda66ngiLI0GsYhOjwgUEr363f/qYu/VDd1vWGi6k+8x9Div6/TOzHmM6mQGd20XYQ7l7+D77Q9MdXTXu+bPp9m6n4iu99KwlNrye+jHyENsdj+jxCpTFcPG3MPSe1LJi+wNZVGvOzkEKlHnnt2LBWl+E/1hIaD0PWqarXHmcqCu0vI8ZeiC4itzHXeBWKIKXad+Ezvvf9GymUutT9Va8tZ8oL7Coexn5wjbVsQRaiFepR11/7aILwvOl+/3+sITQehgsnKzf801R0qbdX7M+KkHDzdE+eCwBNv38ptSyYviCGzqtHTUJKdQ8/oho6Jmjlu4oBg9jq0qrXnxDDrzFOh2Ay6M+fAITUnbqIukAzdmbgk2/TwZFMRVHVa4+1nPjdbgJi7EjrxB8+gVC59fAjqmHjgp56TxE1hKuvqn7r39qUn3p1xf6sCAHAfeqdhMbdeOWs8UqG1LJgeokgiLESbmOvYRdtB+kTGLD8Vc3oqYJRX/vZS02/fm4f+TB2RJ9xTDDqldHxvS0aTAdHBK54QzNmusCY6r95Q9xWYpwLXdpBANCM6Tw+ritI74CARze4X3+rwDINP35Q99Um6HEKZj9XhITa3X3aXQDQfGCH1LJgeoepMJutLiW9/JS9LxyDFCrfhc94z30QENG092tj3nl7SIixH62h8z2zi7YDKdW+9z/lefMiABArVWKcCKY0jykvQBoP5ZBeN5lBFO09/1HfB55CCpXu1F7d2cM9/GA/V4QA4D7xFkDImJOJ04ycC52YPjhmep/jP92n3ukx5XYAMFw8bUvJMHaGa6ozXD6DKFqdMKXPJ3GbcBMgZMw9J3CsDWXD2BtxDaQYMbHPafKapOlec5YAgC7tUA8/0v8VIeHmqQiPExgT3hY4EQLHiqu5a8aLdo9y8GgAMF4+axuxMA5Bl34IeF41bFwfwv/MkB4+dEiUYDKY8i/aUDaMfREEXfohAFAkWFUqSJOYDARpzD7Nt7Qv0tIp/V8RAoBycCIAWJlxiXEkhvMn+JYmOnyglTlhytgRiKJNxZd5ndZGomHsjugb7ptd1BLVoEQAMF5Kt4FMGIdgvHKWa6ih/EPI8F704OsI4e6lGpQgcGwPK2y4hCJUDU4EAAOeD86DmD7Y2zCZjiCFUhE1FHjemJNpC7kwdoepLGJKcgiNu2rYOCtPJdoDDHgF7Dy0rYFmWF8QQ4w37qF11CUUoSI6HimUTGker22UWhbMteFbmgxZqUCQvQqd74o2ewBeBjkH4qtQPWoyomgrT4XtAc6FwJj0mccAoKt6ir1CPXIiohXG3Eyuuf6aB7uEIkQUrYwZDoKA14ZOge5MisCxqiFJpIeP9WdTxYn2AHzrnQFB0LeGzltrFwXRHhA9DHjemIOzp5wA/bnjvEGniBpCBYRZfzZC5aYaOgZ4nm+qu/bB1l/PKVAOwm5Cp6E1XtRqu6iIImIQoXFnq0txO3v5Y8w9z9ZVkj6BypjhNjmh6CbEbhGnoDV98Fpl1XqOZnRPd5auoghb3YRYEcoetqrEVJhNqNzUwyfY5owEoRw4EgCMV3DsqNxp67wzzVY101vDhrEilD28ttGYnYZIyoatJVXx43tYlMpVFCEdGkO4e3N1VWx1qdSyYLpDDJNRJ0xCtM06LSgHiW9DvAySNQLLiCXxrMyZsUQxII7QeLA15Wxtha3OibEHokNEOXg04e5lq3MiWuF188Ke9Ot2FUUICKkGjQLsK5I5gtBqHhk704ZnVQ1KAADD5bMgCDY8Lca2GC6c5HVaOnwgHRxhs5MiJFYmwm4RmWOrnJl2uCff0ROPo8sowqu51dhIIl+MuefY2grS12YuIhEqMJz0DeS1DbgjgZyxpqxaN+DsKfnD1pSZii4hpdpmDpFe4kKKUDU4CQCMVzJ7XokV42DEMBm3sTNt3lZXFZcA+G0oY3id1qL0VLoAACAASURBVJCVCgjZ0EUkohwiTvwMbA+QLbrTB0AQNKMmSdVF0oUUIentTwWE8Xqtqfiy1LJgOsEii8jGewK4GjaM42Vkiv7sYYFlVINHk15+tj0z5RtE+YXwLU2mkiu2PTPGVuhslzPTN1xIEQKASqw0gd2EskR/7jiv1yqihlCB4TY/uWpwIiBkzM0UWMbmJ8dYT6uLyBaZ1B1pLaqAJ74sMRVcbO0zM3CUVDK4liLERUbkjBgvqhljyzAZM4S7Nx0SJZiMpoJse5wfYw1cXZUx/wJSKNUje9CRvPfgFbCcuboGIiTTRy6mCOMSgCBN+RcFo15qWTB/gdc2GLLTEUlpEvveead7WkswX8FvQ9nRkrYfBEE9YmIPs756i3JQAhCEKe+8YDLY4/yYvsNzurNHwG7GgB7iWoqQUGkUEXECxxpzcUsmeaE7fQB4ThU/jnDztNMllDh6UK7o0w6BfXzDIoTaXRE+UOBYY94FO10C0zcMF1N5bQMdHEGHxUoohmspQjAbSXBSkcxosaddVEQZOxJRtKkIl2CWF6biK0xFIeHuLa5U7ERb9hSe+PJCd9r2ecN9wOUUoRK3KJMfTEUhU5JLaDxUw8ba7ypIoVREDQGeN+bilkwyoq3C5NQ+dyTvCW1uQjzxZQRv0OkvnACE1LbOmektLqcIFVFDkVLNVBRyPShJjnEMulN7AUAzOtn6zjvdo4zDSRQyg+f16TYutdwpiuhhSKlmyvK5pms35cE4Bn3GUcFkVA4cSfkGSSuJyylCRFLK2BEgCPhtKBcEQZd+COxsFxXBtdflhuHyGa6pngoIU0QMsuuFEEmJvdhw7XX50FZjXbL0QTMupwgBvw1lhuHyGa6hhvIPVUQOtve1FBGDCbU7W1nMNVTb+1qYntBWVs1mVba7oS2bEFtHZQHXWGvMyUS0Qj3KLjkzvcIVFeFVNyEuuSQDWtMH7VBWrRMIQjlwBOCUMnkgmIz6zOMAoBntCBcRdhPKCl3aQeB5Vfx4Qu0utSwuqQjp4EjS05drrGUqi6WWxdURTAZ95nFASDPGQVlEuNaafNCfOyYY9YroeJt0JL8m5onP4okvA1pXwDKwi4JrKkJAqK3EDN4WSIw+46hg1CtjhlN+IY65Ymta/eUz2B4gOa2h845aAwFCykG49rosYCoKmbJ8QuOhGjpGalkAXFQRtr0NsX1MclpSRbuoI1xEIlTQANI7gGuuZyoKHXZRTEd4bYPhUjoiKU2CvWoJdQRPfJmgS90HAJpEuweK9xAXVYTKQYmAkDEnQ+BYqWVxXbjGWmNOBqIV6lGTHHldsU8vDpqQFl3aIeA51bCx9qsl1BHl4NF44kuPIOjEWkIOMwZcCxdVhKSXHx0UIRj1psJLUsviuuhO7weeVw+f4GBvuRKHDcsASULnSS8/OmgAnvjSYszJ4BqqSd9ARdQwqWVpxUUVIVztRIHfhpLRWnXegXZRkTZ7wDnckkkq2OpSU9FlQqVRxY938KVxrTXJEX3D9ui/3WdcVxG2eQuwfUwamJIcpryAcPcWX0yOhPTwoYMjBZPBVIhbMkmD6CJSJ0xGtMLBl8YTX1qu9t8eLRe7KLiyIlQOHIlIylR4iTe0SC2LK9IaJpM0za4VJruibVuAkyikwOwikiJ0Xhk3Ck98CTGcP8HrtYqIQVTQAKlluYrrKkKkVCsihwDPGa/gEswSoD+TAgCaMdJkEeFtgYSYCrLY2nLS2185cKTjr44UKkXUUDzxpUI+ZdUscV1FCNhbIB1cfRXXVEe4eykGxEkigDJ2OCIpU9FlvC1wPG3tJqZJ5SLCLWikgtc1Gy6eBoJUO6SWUM9xaUWIi45KhakkBwAU4QOlEgAp1XhbIBXGnEwAcHDOjCW4KalUmAqyBY5VxgwjPXykluUvyFcR1tfXZ2dns6wd030UEYMIlRsuwex4mOIrAEBLtB0UEYuM4F4EDkYwGZmqEkRSdGiMVDIoIgYRGne2qoStq5RKBtfEVHwZABQRdi+v31skUIS7du1KSkpSKBQTJ07s6phXX301Njb2nnvuGThwYEZGhr1EIUhl3EgAMOCgCcdiKpZ4Rwi4yIhEMKU5wPNUSJSUJUUIQhk7EvAyyOEwJbkAQEs68TtFAkUYHh6+YcOGV199tasD8vLyXnjhhVOnTmVkZCxbtuyJJ56wnzBt3gL8NnQoTGkOSL0jVEQOJlRubGUR11AjoRiuhhzWQGCOD8AT37GYiq+ADO5+RyRQhAkJCdOnT/fy8urqgO3bt0+fPn3gwIEA8OCDDx4+fLisrMxOwqjM8TK4BLOj4BpruaZ6QuNO+QRKKQdBii2ZcLSUI2FKZbEnaI0PwL3YHAjf0sQ1VCOl2jHNRnqFHH2EBQUFohYEAD8/P29v76Kiok6PFARBr9enWdDY2Nira1GB4a0lmMsLrJMa01PEVSEdHid5XQnRHoCDJhyJTPYEVEAY5RfMtzQxZXnSSuI6XL31Uk/8jkiQy3xNWlpa/Pz8zL9qNJrm5uZOj6yrqyssLPzHP/5hHnnsscfmzZvXq8uRMcO59IONmX+qPAP6JrAktLS0IPk9Tz3BkJcFABAUqdVq+/BxG35xbsBgADBkp2ubm2U4OdvR0uL0mR4CY2Iri4EgjJ4Bph7ffYPBQJIkTdvYp0hExUNtRdO5k0qvINue2VawbUgtiG0w9mbi2/BpV6lUFHUNTSdHRRgUFFRfX2/+tb6+Piio8yfVz89vyJAhaWlp1lyOiB9Xl34QCrPcb1pgzXkcjCAI7u7Sd3buA4bKIgBwjxmm7pP8tvzi7kN03v5cQ41SW0uHRNnmnPbESe+4GVPRJYFj6ZAoD1+/ax/dBkVRdlGEw8fVpe0X8s/LduKLWlClUkktiG0wVhYBgFv0UE3PHmNHPu1yNI0mJCScOHFC/DkzM5MkSbOl1B6oBicCQsZcXILZQTAlYu6ELBzmykG49rrjYIqlD5IyoxJrr+edFxiT1LK4BEyJePdlMfHbIYEiLC4u3rx5c0pKSmVl5ebNm//44w9xfNSoUceOHQOAefPmVVVVrVmz5vjx48uXL1+6dKlGo7GfPIS7Nx0aLZiMpoKL9rsKRoRrrucaawmVm8Na0nePKk5sWY4VoSNoLaQQFiu1IAAAhJsnHRYrMCZTfpbUsvR/eL2WratACiUdGC61LJ0ggSJsbGxMS0tTKpUzZ85MS0vLzc0VxydNmuTj4wMAarX6wIEDOTk5//nPf2bOnLl+/Xp7i6TCSRSOoi2VXi4O89ZOrbnncKdWB9C2J5DFjhDMJWZwrTX7w5TkgCDQoTFAkFLL0gkS+AiHDx/+4Ycfdhx/9913zT8PHjz4iy++cJhIysGjmw9+b7iU7nnLIodd1DWRSRqZGdLThw6OZMoLTIXZypjhUovTnxE4likvAIQUYZLVlGmHanBi8/5vDZfSveYskVqWfo7cJn475OgjdDzKmOGIok0lV3hd5+GpGFvRuieQ03xocxPiIiP2hS0vFFiGCgxHSrXUsrSiiI5HtIIpzeW1vUu7wvQWOTsIAStCEaRQKqKHAc8br9itnBsGAMy5RLIxjgGAahB2EzoCySutdwTRCmXMcBAEPPHtjQzvviVYEbaiwrnV9keepSXaWjRn8wad1LL0Z1qjhWX2KlRiN6H9EYx6troUUTQVHCm1LJ2DFWEruPagA2jdDobFyiRSRgQp1YrIwcBzplzcksmOyHNP0LYCxorQjpjESJmQaETKMXMdsCI0owgfSGjc2ZoyrrFWaln6LbL1E7RtC/AyyG7wPFOWDwjR8sidMEOHxRDu3lxdFVtdKrUs/Za2phPyuvWWYEXYBkHQYQOh7WWNsQeyjRzDbkJ7w1QVCyYj5RtMaGRWHAch1aBR0NYuGGMP5GkMsAQrwquIUd2mUlyE117IMGRURBE5BClUbGURDhu2E601ZeR36wGAHjAI2tpiYOyBbE1BZrAivAodFgMADFaE9oHXtZWWCBogtSwdIEg6NArw3bcbphIxWliOr0K8ArYrgsnIVBYjkqJDoqWWpUuwIryK6L3AC0M7wZRcAUGgw2LlWVqCDhWXQfju2wVZ7wjFiV+Wj3sT2gOmLA94jgqORLRCalm6BCvCq9DBEYhWsLXlOIzeHsjWQSgi2gNMZflSC9IfEQRTaS7I9e4Tbp6kl59g1LM19moA7srI30EIWBH+BYKkgiJAEBj8NrQDsnUQiiha7QHYPmZ72KoSwagnfQIJdy+pZemctk0hvvu2p80YIN+QUcCKsB2KcGwdtRcyrCljCR0aDQixFYW4+rbNad0TyNJBKIKXQfaj7e7LdOKLYEX4F9ocRXg+2BjeoGNryxGtoGQYKQMAAEihovxDBY5lK4qklqW/Ia4sxfQkeULjeBn7IHAsW1EIBEGHyjdSBrAibAcdjheGdoGRfWkJuBo2jO0BNqbNGCB3RYhvvc1hyvIEjqUDByCFSmpZugMrwr9Ah8YAQkx5PraP2RaZ20VFcLyMXRCE1h2hXN3DAED5hyKlmmuo4VuapJalX9HqIJTxGkgEK8K/QKg0lF+wwDJsVYnUsvQr5J9RC9hRZB/Y2gpepyW9/EhPX6ll6RqE6JAowHff1jhFyChgRdgRGr8N7UDbfJD3jhCnEtoBmUcLmxGXQSYcOGpTnOXuY0XYHvw2tDmCUc9WlSCSokJk2oRFhPT2J9w8eV0z11AttSz9B2fZE+DCUraH55jyAkBI/N/KGawI26MIF+PHsCK0GabSXBAEOlTWkTIiOGjC5jjLngDfepvDlBcKjInyDyVUblLLcg2wImwPNo3anDaHuaztoiKt9rFSHC9jM+SfRChCh0QDQTAVRQLLSC1LP6GtwKwTTHysCNtDegcQbp5iL3WpZeknOItxDHAiqa3h6qt4bSPh5kl6B0gtyzVACiUVEAY8hxNJbUVbG0InmPhYEXYCNpLYFqb4CjjJfMC33rY4RVURM4pQ7BaxJa1JU84w8bEi7IRW+1gJ3hbYAMFkZKpKEEmJ4ekyhw6OQBSNC6/bCmdxEIq0LoNw4KhN4HmmLB8QknmVURGsCDuh1T6G54MtcIomLFchSCo4AgSBLcduQhvQ2nJE9g5CERw4akOYqmLBZKB8gwmNh9SyXBusCDuBxqW3bYcTmUdEcLyMDXGyHaHZQ4wbE1qNnDtQdgQrwk6ggwYgWsHWVvCGFqllcXqcoqaMJdgeYCu45nquqY5Qu1O+wVLL0iNILz/Sw4fXa7l6HChnLW0hck5gFwWsCDuHIOngSNyY0CY4RU0ZS1rtYyXYHmAtV4OkEJJalp4iNknA8TLW07YCdo6JjxVh5+C3oU0QGBNbUST/JiyW0GGthdeB56WWxbmRf9OJjuCwYdsgCKKr1Vl8IlgRdg62j9kEsY8HHRSBFEqpZekphNqd9AkQGBNTjQuvW4UTpZGZwYGjNoGtKeMNLaR3AOHuJbUsPQIrws4RZy+OH7MSJ6opYwluQ2ETnKiQgpm2wlLYJ2IVTmcMwIqwcxSt9rEC3JjQGpzxVQhX7QH4bdh3+JYmrr4KKdVUQJjUsvQCOnAAohVsHQ6UswrnihYGrAi7AinVlF8IbkxoJSbnqSljCXYUWU/rniAs1okiZQAACIIOjsKBclbidCtgrAi7pNVIguNl+orAsWxFISCkkH0TlnbgxGrrca6gQUvosGjAE98aBMHp3MNYEXYJdptbCVteILAMFTgAKdVSy9I7KN9gQuXGNdVxzfVSy+KsOFcamSU4UM5K2LpKXtdMeviQXn5Sy9JTsCLsEnEfgzOK+ozT1ZS5CkJivgfeFPYZ5yosYklbYSl86/sIU3IFnKqGBmBF2A24MaGVmJytpowl2DpqDbxey9ZVIIWSDhogtSy9hg7FgXJWYSrJBedpOSKCFWGXkN7+uDGhNYh7AieqKWMJNoxbA1OSA4JAh8YAQUotS68hVBrKNxgHyvWZVvdwmDOtgLEi7A66tR8Tto72Hp5jysUmLE4WKSOCd4TW0Np0wgntoiJ4GWQNYqSMc919rAi7Q4HbUPQVprxQYEyUfyihcpNalr5AB0cBQTJVxYLJKLUszofTpZG1Ay+D+gzXUM011xNunqRvoNSy9AJpFOHu3btHjx4dGhq6ZMkSrVbb8YAZM2aMaWPVqlWOl1DkalsWTC8xlThZaYl2IFpBB4YDzzOVhVLL4ny0NaZ31ruPJ36faetA6WQOEcrxlywrK7vnnnu++uqr66677m9/+9uqVavefvvtdsdkZGR8/PHHAwYMAAAfHx/HCymCF4Z9pi1o0MnmgyV0WAxTUciU5ikGDJJaFmdCMOrZ6lJEUlRwpNSy9JG2npTYFNRrnNQYIMGOcOvWrcnJyXPmzAkICFi7du3WrVuNxk6sT/Hx8UlJSUlJSTExkjmZWhsTdl1vSc9CM+NgoZwDpyst0RG8LegbptJcMVIGkRKss20C6RtIaNx5bSPXWCu1LE6Gk058CRThxYsXExMTxZ9HjRql1WpLSjqJzlqwYMHYsWMfffTRyspKxwpoAUG21lvq8DY08fDmeT7yG2bA18y7WTyPO1pbwvNMmRgp43z51GauaQ8wcvDpZX7CL+x9B7kGkwMlkzdtldad7FXYjmsugy43Cg8f40Z8z36Xj9t1XcVJd4QSLNlqa2vj4+PFn0mSdHd3r6mpiY39yxtz48aNCQkJBoNh/fr1N91006lTp2ia7niqmpqazMxMS9vpCy+8sGjRIluKGzgAii9r8y6aAqPEAV6Ab4vIF89RRS2tRRQfPc59ms28MYYZ5eM4fdipb1UmcJVFgslA+AS1cADNzbY9ucO+uOAdBACm0tzmpqZ2BTNrjeiTHPKjHLLSgADgRJVwrIL7bCKT5GvHd2JLS4sgOMGCS5d/EQB4//BmG916g8FAkmSnbwD7IQQMgJxMbf5FZsCQdn/6s5p4+xK1u4wQl7/z93P/iDOtG8WobJ0qwrIsy7IM4zRGJ17bwDXWIqVGr3CzcuLb8GlXqVTXfHgkUIQ+Pj7mdxnP81qt1s+vfSWexYsXiz988803vr6+mZmZSUlJHU/l7+8fHx9/8OBB8VeEkLe3t22lRVGDTWn7iZpSDw8PAPi1WFiVyp2rEwBguA96aSzB8vDYn3xaHTFtn3L5MGJNEunhqAkriiRDdNnlAKCMGGQnCR30xT08Wjx9uaY6NdNC+YWIY5cbhdfP81uv8DoWACDBDz00lPjkEp9aDTfuV6wfRz4xnLBTkWmEkLu7u33ObUt0lYUA4DFwuMJGt4mmaccrQiJ6iOnPX80THwA4AX4s4Ded409UCQCgIuGBOGKgJ3o+jfvoCnm6jvpmOjnIy5Y3X1SEKpXKhue0K4bi7GYARUSch6enlady8NMugSIcOHDguXPnxJ+zs7OVSmVYWJeNWpRKpUKh6NSJKEKSpF2jaeg2t/nJKuGZVO5QuQAAA9zQfxKJpYMJEgEA3BhOrD3DbTrHv36e354nvDyWWBjn0nkpzh40aIYOi+Ga6pjSPMov5GiF8NYF/ocCnhMAAK4PQk+PIm6NIBDA0kHEi2e5F87wT57gDpYJnyaTfk7Th9jGCIyJqSwGgqRDoqSWxSoUoVcrLBo52J7Hv3SWv9QoAICXAhbFEU+PIkI1CABmhaF7DnBnaoUxP7HvX0/eN9B1577zVlWU4J498MADe/bsOX36NMuy69evv/vuu9VqNQC88847P//8MwDk5+enpqayLKvT6VatWuXu7p6QkOB4OUXExoSG0oIpPxsOlQt+Slg/lrx8N/XgkFYtCAAaCtaPJU/Ppa4LRGU6YVEKN+cPtqDZCaxYdoJxzu5LHRGXQReycif8wk7exe7I5ykCHhhInL+LOjqHmhPRuvmjCFg9mvxpFumrhJ1FfOIP7LFKF737TGke8BwdEolohdSyWAUVEolIiq0uXXdSG/YVsyiFu9QoxHigN64jyxbQb04gRS0IAIl+KG0udd9AopmB+w9xCw9xLa5amo0pdUoHIUiiCGNiYt555505c+b4+vpWV1dv2LBBHM/IyMjLywOAurq6Bx54wM3NLSgo6NSpU7t27dJoNI6XEwBKWoSHUhUFdDApsMPZkqdHEbn30E+PIjp1BozyRcdvoz5PJv2UsKtIiP+eXZ3OmVzQjy4IptI8cM6FoSXNDOzjogAgMyv3RJUQoIKnRxF591Bbp5LxPp1YwOZEEGfvpK4PQsUtwtRf2dXpnAuGULXmjzr5rQeA3BayyiMcBOGHkwW1RkjyR58nk5fvph4fTmg62NE8aNg2lfw8mXSj4IscfuxPrOg9cTWcNGQUJDGNAsCiRYs6hrR89NFH4g9JSUnZ2dkOF+ov1Bnh1UzurQu8noUx6pgoU/nOkYWhY6+RFYcAFsYRN4QTT53kvsjh16TzPxQIH1xPTgxyqt6k1sFWlQhGPekTSLh7SS1LHyloFj7I5j+8yPs3Rx4EGGnKf+M68h9DOnkDtmOAGzp0CyWaSdek80crhG3TqGAna0JlFU4aNGiJ2Qa+EWLmQcE9moK35sRf34MpvDCOGBuA7jnAnasTxv/CvjyGfHy4C5lJ+ZYmrq4KKdVUYLjUsvQaF7pPPUTHwisZfOx25pUM3sDC/Ghi5thYAHCr7mk+WbAatk4lD9xCDfFG5+qESTvZhYe4GoM9hZYTTl1TJq1GWHiIi9vBvpLBN5ggZEA4TyuDjdXLY3TX1IIiopl0z01UsBr2lwkJPzD7Sl1oc+C8ewJegJ1FvKUNXD0gBgAe9CroiRYUGeqNTt5GPRZP6Fl44gS38BCndZqQT2tpdRCGxbQLsXYKsCK8CsPD+xf5gd8yz6RyDSa4MRyl3UF9O4MMiRkIAKZeJlZPC0Hpc6nnEgiagC9y+OHfM1/muISd1ElryuwpEa7fyY75if0ihycAFsYRZ+6gDt+mUIVEgSD0tv7yzDB0ei41ORhV6mH2HnbdWZfINBU4li0vBIIQUzCdBT0Lb5znY79lb/uDO1ElBKphTRJZci+9eIo48XtXX0ZNwZsTyM/MZtKfXcVM2moMcLbiaiJYEbZi5CB5F/vPY1y5DsYFoAO3UL/fRCX6IbjamDAHepnXoqbgxTHk2TupKcGoUg/3H+Jm7mYvN/bzWeGMe4KTVcKcP9jjlYKvEp4ZReT/H/V5Mpkg3v2+tmkNc0MHbqaeSyB4Af5zmrvpd7ZSb3vJZQVTli9wLB0YjhROE/EvANxzgFtxgitoFgZ7oQ8nkYX/R/8vkfBXmVvV5/d24gPAojgidS41whdlNwjjf2E3Z/f/RbC4YhCr0zkdWBG28uxp7s8qIdwNfTeDPHE7NS3k6u6e9PIj3L15nbZvjQmHeqNDt1KfTiH9VbC/TBj1A7smnTdythNdVrRV4XEiL1ETA/cd4hgelg0hiu6lXx57NSAQzBVG+tSRhyLgxTHk7zdRQWrYWyok/sgcKOvPyyBnjBZ+L4vfWcT7KOHnWWTWPOrBIVdD4Qg3T9I7QDAZ2JqyPpxZNJP+YwihZ2HZUe7eg1xTvzaTtt59vCN0XvaUCK+f42kCvptB3hXdSUK0IkxMKupj2UkEsHgQcXEe/bdBhJGD1elcwo9sRX/cH7A1ZbxeS3r5kZ6SlUrvLf88xuU2CUn+6K2JpFsHR6AiLBqsq788KwyduYOeHorKdXDDb+zqdI7rp9qwdU/gPIrwfL3w75McAGyeRN4WSXSc+a1l9vrakVRNweZJ5FfTSA8avsnlx/zEptf0z3vPG1rY2gpEK+igAVLL0hewIoQqPSxOYQWANUnk+MDO3bxtZSetqkbvr4ItU8hDt1JDvFF2g/Do8X64KzSVOJmDcOsV/ssc3p2Gr6eRis5mAx0aAwix5YUC1/fssBAN/DGbWj2aBIA16fys3Wy5rs8nky/O5R42cHDvAc7Awd8HE/OiO38Ttq6ArevQe28skTaXSvRDVxqFiTvZd7L6oZmUKc4BQaDDYoCwdaE5h+DqilAA+NthtkIPU0PQ0yO7/G/YsB/TlGD0x2zSk4bv8/nv+125XsapasrkNLUuR96ZSMZ1URwLKdWUX4jAsWxlsTXXIhE8P5rYezMVooGD5ULCj0xaP9sc8BxTLlZad45ImZUnufP1wmAv9MaELt/dtpr4cV7oz9uoR4YRRg6WH+cWHOxvRgFnjAywxNUV4dsX+N3Fgp8SvphKdlMjsi1exjb9yQa4ofXjSABY/idX37/6n7eGUDuDImR4WHCQa2bg3lhiUbcl8druvg2WQdNC0Nk76FlhqEoPCw/1q3oLTHmhwJgo/1BC5Sa1LNdmZxH/bhavIOCraZ3Yw83YcOIrSXhnIvndDNJLAV/n8h/3r/AZZ88fdWlFmFknPH2KA4CPJpPhbt3lvtCBA5BCydZV8jrbtD5YNoSYHIzKdSC6KPoJgiB6U5zCOPbcaS61Woj2QO9ffw1jTuu2wDr7mJlANey8gRrshbIahFcz+s/b0IkKzJbrYOlhTgB4aSw52r+7iU/5hRAqDddYy2sbbHLpu6KJzZNIAHg6letPUcRtO0InmPid4rqK0MDB/Yc4AwcPDSXuiLrW/4Eg6OBIEASmLN8mVycQfDyZVFPw6WX+j/6ScM3WVfK6ZtLDh/Rq305EbhwqFzad4ykCvpxGel2rKKb18TLtUJKweTKJAF48y2U39JO7L26b6DC5K0JegEUpbLUBZoWhFdes/IIQFRINYhKFjbg7hpgTQdQb4ckT/WQRLBj1bFUJIikqJFJqWfqI6yrCFSe4c3XCUG+0aXyPvLu2tY4CwCAv9N9EUgBYdrSflJ9gSsT4abm/CqsNsOAgywuwZjQ5oYvwKEtsaBo1MyUYLR5EGDl46Fg/cRc5i1V80zl+b6kQoILPk6medMxqXQb1NXC0U96ZSLjT8FUu/2txf7j5ptI8EAQ6NBqR0tTstB4XVYQ/FfIfXOSVJHw1jexh6Szb2sdEa4uc/QAAIABJREFUVo4gkvxRQbPwfHp/WBuaikXjmKzNIwLA0sNcuQ6mBKOnR/Xo+Se9Awg3T76liWuosaEkG8eTgWpIKRe29YOSQ6KxBCFa3vnU6TXCf05zCOCTKWRIzyr5W5NI2hUR7uh/iSQAPHKsP7SqcHYHIbimIixtEf5+mAOAV8a2Vg/pCW2phLZcGFIEfDKFpAl44zx/3Pkb9zjFfHjzfGsC9RdTSbLHNRHt8Tb0VcKGcSQArPiTq3byUrRMZbFg1FO+QYSbtR1Z7UcLCwsOciYelscTcyJ6+urrc2mh7lkxnEj0Q4Va4cUzTr8IdvaQUXBBRcgLsCiFqzXCjeHosd7UhrdJPllHRvmiJ0cQvAAPHXP6GEL5z4fz9cKqVA4APp1CRrj3ojQwbYdlEAAsjCNmhqFaI4hBW86LU6yBHjvOXWoU4n3Q+rG9yHWjQ6KBIJjKYoEx2VAYioAPJ5Ekgo3n+LO1zr0IbqspI+u73z0upwhfyeT3lwmBavgsmepVjXSkVFP+oQLHshVFthVpzWhyqDc6Vyesd+YYQq6+itc2Em6epE+g1LJ0jo6Fu/dzBg4eGUbcHtm7J18RGg122BYAwHsTSRUJn13mnbr6WlshBfnaRb/P57dc5lUkfDWNVPfGk4VoBRUQDjzHVtp44o8NQA8PJVgelh114taVAmNiq0qAIOmQaKll6TuupQhPVQvPp3EI4PPkvnSJs0l9mY4oSXj/ehIBvHSWy3LaGMK26Hn5Oggf/5O72CCM8EWiQbJX2CNeRiTOCz2XQAoA/zzGOW8FWqa1H69M736RVvjHUQ4ANo0nR/r2ukmQzcOGzawbS4a5oVPVwodOm1bIlOYJHEsHRyD6WuHXUsAL0JNotM4V4cqVK3Nz29/1vLy8ZcuWWS+ZVDQzcN9BjuHhieHETeF96ZjVah+zXSC1meQQ9OAQwsjB3w8769pQ5saxHfn8x5d4NQVf93JDIEIFRyCSYmvKBKPtk7+eGkUM80aXGoWXM5xTEwoCUyJWWpfjjpAT4P5DXL0RboskHh7Wl6V/q4fYDssgTxremkAAwKpUzkmr7sl8BXz73h61wer8sfjiiy8qKyvbDVZWVm7evNkGoknEo8e5nCYhwQ+93BsPgSUKW2dQWPLKODLMDf1ZJThpKUI5R88XaoVlbRuCeJ++rIEQSVFiIml5gW1lAwAFAR9MIhHA+gzeGdMK2Zoy3tBCevuTHnKstL7uLH+kQgjVoE8m9zw66i/Yzx4AAHdGEXMiiEYTPP6nUy6DWlfAsowW/jKH31XUownVi/VRVVWVj48cH/Se8FUuv/UKr6Hg62mksq9VYVvnQ0luH/qTXRMvBbw3kQCA505zBc3O9zZk5Fpum+VbNwRzI4mHh/bdF2CneBmRycHo70OcNa1QzkFSxyuFF85wBIKtU0n/vjZJbJ34fWpM2BPEtMId+U6ZVmgqkekKuMEE/zrJAUBPlj9/MRLt27dvx44dANDU1PTqq68GBQWZ/2QwGPbt2zdmzBgbC+sQiltaayu/cR05xLtvi0IAANLLj/Tw4Zrrufpq0tf2ISG3RRL3xAjb8/ilR7h9N/culkdauMZarqme0LhTvkHXPtqxvHCGO1ohhLmhj6dYVRdfERqts9u2AAA2jCN3FfEp5cJnl/m/DXIm571sreKNJrj/EMfy8PQoYkaoFRPf00ec+GxdJeUXbEMJRSLc0ZrR5L9Ocv88xl24i3KnbX4FeyFwLFteCAiJ1mNZsSqVq9TDpGA0vAde4b8owqKion379gGAyWRKTU1Vqa6uoNRqdXJy8gsvvGBzce0Ny8M9+7l6I9wVTfxjiLXvFzoshstOM5Xmqu2gCAHgrQnkvlL+QJmw9QrffSVoWdFaUyZ8ICB5qe8jFcK6szyJ4MuppJ/SqlO1bQvspQi9FLBxPHnfQW7lSe7WCCLAaXq8mwspyE4RPnyMy28WxvijtUnW9gYSJz5TlmcPRQgAjw8nvszl02uENenchp7VupIDTFl+a6SMsvfBh/bkRJWwOZtXEPDhpB7Zw//yql2yZElubm5ubm5sbOyPP/6Ya8H58+e/+uqr2Fg5GoK758Ns/s8qYYAbEmvdWomdAkfNBKrh9QkkAPzrhDPV5JVnTRmGh78f4TgBViUQySHWamg6PBYQYsrygbeXE3dBLHFDGKo1wr+cqgpla5VRmVnFt+fxX+fy7jR81UWnyV5hw0ZsnUIi2DyJJBG8ccGZ0grlaQwQAJYf53gB/jWCGNYzE2DnD8ilS5fGjRtnU9mkod4Iq9M5AHhrIuFr3YZAxB4VRtrxwEDipnBUa4THnMd5Ls/58MFF/nKjMMQbPZ9ogzUQoXYnvQMEk5GtKbP+bF3x/iRSTcG2HH6fk5RiZ+sq+ZYmwt1bVpXWDRw8fYoHgNfGd9lpslfYL3DUTJI/Wh7fmlboLI5ikywn/te5/OkaIcwN/afHE7+7lVJFRcXZs2fT/oot5HQca85wNQaYHorm9jKBuivsGj9m5sNJpAcN3+bxPxY4RwRpa8ionOZDMwMvnuUA4NVxBGUjG7P4NrRTvIxIjEdrKfaHj3F6Z6hCybRGC8trO/jmeb5QK4zyRUsH23bi2/HWA8CLY8goD3SqWnj/onNMfKZYdt2XDBw8m8oDwItJRA/rSENXivDcuXMTJ04MCQlJTEwc81dsJa4DyG4Q3sviSQSvX2czmzsdGG7bxoSdEuGO1o0hAeCR407QuZfXNnCNtYRKQ/mHSi3LVdad5ar0kByCel5V8poowu2+LQCAlSOIUb4op0l4yRnSCsUOlLJyENYb4dVMDgA2jO+u23avaJ349VV2nfhuFLw7kQSAZ1O5khbZ7wp5jinPB4TocBlFyrx1gS/UCiN90cLexFh0rjHvvffeurq6t99+e9CgQQThNCEb7fjXSY7h4aGhRB9qSXQJQdDBUaaiS0xZvnLgCJudtgOPDCO+zeePVgjPpHIf2sK7aT/E7aCsImVKWoS3L/AIYKNN4w4cYBiHtiqUE3eyr2bw98b21MkhFTI0jq1O5+qMMHsAmhVm24kfaSq6bO+Jf/MAdEcU8WMB//if/Pap9ruODWAqigTGRAWEESo3qWVppd4Ir2T0ZQ3UiSJsbGzMysr68ccfb7/9dlvJ53j2lQq7iwVPGlaPtrEWocNiTEWXmNJcu84HsXNvwg/sR9n8/Ghipg2ntK2R4atwVSqvY+G+gcSYbvuP9xZ7R0yYGR+IHhxCfHCRX3qYOzanR23zpIIplVc+dV6z8MFFnkTwSl/rZnQFHRZrKrrMlOXZdeIDwLsTyQNl/A8F/C9FcLOMjCztYeRXYFZcA90Ujm7o5Quzk90eQggAQkNlfAeuBcvDihMcADw/mgyydVivY7wFADDYCz2bQAoADx6VddOyVuOYbF6FZ2uFr3J5BQFrk2xszKD8QpBSzTXW8tpG2565I2KloRNVwieX5Osuassf9ZBP/uhTp3gTD4sHESNsaAcCAAcug0I0IOZ7PHESNcu4ZbfcCinkNQsfZvMEgpd6vwbq5E3h6el5yy23/PLLL7aQTRrev8ifrxdiPdEjfSot2D1tjQntPh8AYNUoItEP5TcLa2TcuVd8NchnYbjyFMcL8PhwIsbD1juptsRhu8bLiHjSsGk8AQArT3FlOpm6i9ryR2NlYhU/WSX8kM+rKXh+tO0nvsNuPQA8OoyYEIiKW4QXMmTxj+0UucWKP32KN3Lwt0FEYo+7zJq5ahotKyvLysoSf77vvvueeOKJurq6G2+8UaP5SyPnmTNnWimuvak3gqg2Xr+O6HM1tW6gQ6MBIbaiUOBYRPa+fnNvEDv3jvuZfe0cf3eMjQ19NkEw6tnackTRVGC41LIAAOwqEvaVCj5KeGaUXRyrirAYU/4FpjRPNXi0Pc5vyT0xxJc5ws4ifuVJ/stpcvQTm0ryQE57gn+d5ASAlSOIAW62nymKsBiHTXwCwQeTyDE/se9dIhYNEZLkN/FBEMTNgEzu/skq4Xsr1kBXb+eePXuWLFli+bf33nvvvffea/cBwT7V9mzI8+lcrRGmh9oyXNASsTEhW13KVhQ6wDWS6Icejyc2neOXHuZOz6VomYUumUrzQBCo4Eh7vxp6AifAM6kcADyfSNokbbQjrfYxO8fLmHlnInGwnP8ql18wkEiWX6HfNgehLIIGv8vnj1UKgWr410i7LBqQUk35BbM15WxVCR0SZY9LWDLSFz06FF6/AOLEt1UKkK0QO7GQ3v6Em6fUsgBYvQa6+vK68cYb9+7dazvBpCG7odVV/obtUiY6QofHstWlptI8x8QIrE0ify4UMuuEDZn8swnymhCiSpCJg/DjS/yFeiHGAz1kRXHt7nGYo0gkwh39L5F86hT3yDHu1Gzk7pir9himNB/kESnD8PDsaR4A1iaRnnar1UmHxbI15UxJrgMUIQCsTkQ/FgoZdcI7WfwTw2U28UWHiAxuPdhiDXRVEYaGhjp1gIyImDLx8FDbu8otUYTG6M8cdtjbUEPBh5PImbvZF89y9w9EEe4yspO0zQfp9wRaBlancQCwfpxdTOIidEg0ECRTWSwwJsd0Il0xnPgyh8+oE145T2y63gEX7Cm8QcfWVSCKpmVgFf/gIn+lURjqjZbas145HRqjzzjKlOUBzLDfVcxoKHhtLH/nQeK/adydUXKc+AoZ1No2r4HWjO77GkheqwwrOVAm7C4WvBSwxuoau93jsMBRM9ND0b2xhJ6F/6bJK4awtc6kDBThxnNchR4mBKJ50XZ8qhGtoALCgOeYikL7XcUSioDNk0kCwduXqPP1MnJMMGV5IAjiykBaSRpNsPYMBwDrx9qsilCniBUVHBMoJzI7TJgfTWgZeOxPeU18k2wm/vtta6C/W1FFqHO/zg033FBXV9dx3M/PLyoq6s4777zxxhv7fEk7IQA8dYoDgKdHkfau3H/VPiYIDouXWzeG+L6A35bDrxhOJPQ+LMou8DxTUQgI0SHR0gpSphM2ZvIAsGF8H5uv9hxFWAxbWcSU5Tmsrti4APTwUOLdLP5fJ7g9s6X3xYqIaTNyeBW+nMHVGCA5BN1mo0qKXdFWcdRxK2AAeHMCuaeE/7mQ319mVTMp2yL6RCS/+40meOEM9//snXdgFVXWwM+019J774USWiAh9CYirlgoUizrqosIusLqqlhXv0UURVaKDdRFxbYoa1eUKj0kAZJAKOm919en3O+PeQkhBAjJtJc3v78ew2Pueczce+49FQDW9K2SYvf/NCoqqqioKDc3V6vVhoWFEQRx4sSJ2tpakiR/+eWXmTNnvvTSS70fUxy+KOAy61GYG7Y8SfRjLt+YkLMYmaZascfqINoD+9tgnEPwuGJaE9C15chuI30CcYPM3qsXMzkTA/Ni8PFBoq8UErsJef41ivDRoN8q0G+KKcatkKVQpCpC3UL4BOJunpyplW1pEHusDkIM8MwIR0caThkPnzO1ss31mEYne1XF1Scde6A+hkZ2/49jYmLi4uIKCwsPHTr03XffHTt2LC8vj6Kou+++u7CwcMWKFatXr66sFLEG//Vi5+DFTA4A/nU9hVb7gtj9mLrluWTCTwt7q9Cv5YqYEO1LocwO87xm9PEFjsJhdYoUpn4JGhFcjo8WnhjMAcCTx5TSmkAh7mG+itBdQlcRuhJUaAxIPvFXDMEj3bFTjeizAkUYSC8+elnzR8tNaNMZYfZA3Swcdrv9tddeW7duXefYmcTExJdeemnVqlUkSb722msEQRw9erSPYwvIO2e4glY0yBu7N14ir6csxwJvDTw7ggCAx4+yjAJmhEKWQv5/Y9lgXJCGO9eELzBNVxSAtKlESxOZOE8suxF9ckEBz573kmIYrxjkQrwqQldCmv4zXdAR8K9ROLRrfdnhHYQauSf+SuH2QN28PfX19W1tbd7e3l2ue3t7FxYWAoBWq42IiDAaRazCfl202OEVR8MdQrJsG1nmAwA8MhiP8cDymtEXJfJnWCshUmZXBfq1HHlp4PkREv2H4O7ehIcPZzUzjTXSjMjTsdy/kCn/asjHzZK+wfIWXP7HMZZD8FiSCFWEroAmNAYA7FIlknZwTzye7IdVmNCG0/JvgxymIFlDRrPq0RcFnI6AVULsgbq5hb+/v4eHx+bNmztf5Dhuy5YtsbGxAIAQqqmpCQgI6PWohw4devDBBx988MGDBw92+4Wqqqonn3zyrrvu2rx5M3ethuCvZzvMxLMipTuny2IaBQAt4TAAvpJLyb8aVsg8HzgET6azAPDMcMJf5AipzkicVt/Bojg8xR+rMKF/58q8GirBQfhzGdpdiXy1DjOJNDh2wOVST3wcgzfSCAB47RRbb5V48K4oIU6K3wP9LQmPFmIP1I0i1Gg0zz777MaNGydPnrx27dqtW7e++uqro0aN+vHHH1988UUA2LNnT1tbW697E2ZmZt58880pKSmjR4++5ZZbMjIyunyBpukpU6YYjca5c+du2rRp1apVV7kbbfBfn8thAK8KXWz+6lABUvQn65YFcfjYQKzSDPKuhpyxmW1rwnUGGQsuf3KBO9mAwt2wv4kfIdUZWQzjANDhDnntFFttkXjwS5DdKs4ieDqdBYAXkgkfcaoIdQsZHIkRJF9XRbpRAQDghlDs5gisI1dELhBDM7XlgOMyxor/WIr2VglZSbH75WPlypWbN2/mj2X333//888/jxDasWPHwoULAWD8+PGNjY29PhFu2LDh4YcfXrp06ZIlSx555JH169d3+cL333+P4/g777wzd+7czZs3b9y40Wa7Ynfa6pF/NjEwJwYfGyit25Z/DxCS/ljQofXXnGJr5VsN7WXt/Xdkcph3ZFW+mipRhFQHssTL8PABckYa/k/WOuyyFxb56ByX24RiPbBlIhTWvwoYQZLBUYAQXVUs5bg8r48mCMxRPUD60Xn4aqtkQBimkXAD0lkAzrEHelG4SopXfIcWL158/vx5s9lcVFRkNptPnjx5xx138H+l0+ku9yD2nKNHj06ePJn/PGnSpMuDbo4ePTpx4kS+G1RaWprJZMrPz7/S3eweoaRU4YJdkMs6CgCTQ7A/hXFtNLws395QduPYv3O5chMa5Y/dFSf105e+okJn+JSpLee4s82yrYZ2WQuLmBj4ZxYLAK+m4hrJpz4VJl0bii4M8cHuT8RpDp7JkM0a5Hj08k38j85zZ5pRnKeQe6BrbKT1en10dLRQg/FUV1f7+fnxnwMCAqqqqi7/Qni4o2gThmG+vr5VVVVJSUmX36qpqclksgad/+nh2Rv4K8uWLZs5c6awAl8Jzj8MAMzF52CUDHFDKxMsv1V5bznL/TXGmuAhw4JoKTkPAJx/mMRhUyaTCcOwOiv22kkKAPu/YXazSXKficGbN4y31dVgeomiRUwmE/8hgoQ/x5AfFRD/OGL/cqIMDeu41kbO2Izp3CyUHsR/+larlSAIirpYPuvVXLLKTKT4cTcH2qQP2kN+ocBP/OFTRB2IaafzxacGwuf5mh1F3K5i2xh/GdShpeQcACD/cFEnfsfb3vU6g72YQQFg/xxqt5ut9h7cSqfTkeQ1NN3Fvz537tyePXvGjBmTnJz88ccfm83mbv/B0qVLezD0NcSy2x3yW63WLm2eAECv13d84Urf4fH09PRqyvn3wpHeNzzDX0lKSrrSlwWHjB5oAUC1ZZKN2JlhAeyDidj7Z9HLOdod02U4EBtrSgHAEDVAI+3PZ1nWYDCsPcW1MeiWCJgZLWGQTCfMwVH20vNkc7XWT9x+5R1wHNfxpq0aDdtL2Z8q8IxW/aRgqU3TtpIzAECFxRrcpNgE4DjeWRFWmWHDORYA3kwj3QyiFdi+MmTMIAsA1Ik+8XktqNNd8obHGeCJody/TqIXszUHZuHSuyUstaUAYIgeoBXz53d+2zvzehZXY0VjA7G7Buh6+Ntx/NrL40VFePjw4WXLlq1evTo5Ofmpp56qre2+ZkrfFWFERERJiaNOY2lpacfhr4Pw8PCcnBz+c1tbW3Nz8+Xf4SEIIipn251b/95HkXqHNjyO70+GIU76JkQ4jv/fKPKLAvq7UnSoFpso7WqIaDtTVwE4oQ2NwXrwngkIjuMX2rAt5xCBwZrRJC7DUgAAQIXG2kvPs1XFeMJwaUbEcbxjSoe4wZPD4MVM9qnj6NjtoleV6wJTVQQAmvC4niwxfQdvh//jyydZIw1zovFJofJkEGnC4wCArizGAUDM/4EuP7yDp4bjH5ynj9SiHSVwp5iVdbsBIbqyCAA0YeI+/W5/eKUZrctFwPtKBZ34F0e65557WlpannjiCQAoKChouQJ9H3Lu3Lnbtm1DCCGEPv3007lz5/LXt2/fXl1dzX/h999/5z9/9tlnI0eOjIyM7Pu4goNpdGRgOGIZRqr6y13oaDvyj2NSFxuhq4qBY6nAcGk6MHTh6XSO5mDxQDzJR7bCFlS4PImkHfxjKB7hhh2vQ19JXm1ExrSZvGb0n/McicMqOcICeHCDB+ETiOxWpl6e6lruFLw0koD2nuxSwjbVcWYj7u5NePlJOjAAdKqkOEHoff/Fl4miKE9PT41GAwDu7u6eV6DvQy5durS+vj41NTUtLa26uvqRRx7hr99///38QTApKemBBx5ISUmZOXPmiy+++Oabb/Z9UJHg+/DZJU8q6uDJoXi4G5Zeh74uknQ1dKTSh8sQNHioDv+uhHOn4J8j5Swp4AgclTxmuIOOZtzPZEi9GjoKi8jx9P9xjGU4eHggPshbzuJeGvniZXgeHIAn+WBFbei9PEknvr0iH2R69KJWUrziHVmW/f3339etW7d69WqHHHl5ZWVlfR/S29s7PT397bff3rhx4/HjxzsCUM+ePTtx4kT+87p16/bu3bty5coLFy50XFQg8kYPQqfVUOK9oVxnAgTwz1MkADw1jAjWSzz4JWjCYgHD6KpixMpW1+D+RDzZDytuQ5vOSLcaIruVqavACJIMktpOs68K/VyGPCh4PlnmskpyJZJ2QGDwWioBAC+fYBuvmFwmPDLmj/KVFJcOEqWSYveKsLq6OjU1dcaMGStXrnznnXf4i5s3b160aJEgoxIEkZaWlpaWRhAXX+jw8PDObuGEhIQpU6Z4eXkJMqJIOOxj5VfM7pCA+xPxIZLvDe0yzYcvC7j0BjzUgD0+VOZWmphWT/oFO5KLZQLHYHUqAQCrTrANUq2GdGUxIEQGR2KkpIEqHIJ/HGMB4NkRRJCseyCQNZG0g1mR2PQwrMkGa05JtwWWq7ga32nAWwMviLMH6n41Wbx4cUtLy5EjR3bu3NlxccGCBUeOHBHETdhv0ITHA68VpK2/3BkCgzWjpd0bIuQIl5BWEdo5Rwb9v1JwNwV05VPCajgzHLsxDGu2w+qTEq2GDqu45EvhZ+191h6TtopQtzhMQfIZxnneGE3gGLyVyxW2SbT+yHIi7NgDPTNCrEqK3bxSJpPpl19+eeutt8aMGdM5bicxMZHjuPJy2fa/CgR38yS8/ZHNIpfbnOdPEZLuDZmGKs5qJrz8cPfe11XoBRtOcwWtKMkb3Zcg/1II8lUc7cIbaQSOwabTXH6rFKuhXY5CClYWXsjgAGB1itRVhLqF9AvGdQa2pYFta5JRjBF+2KI4vKMJndjwheYxSkMFdh/GLxKfXOCy6lG4G/aoaFWEurlvS0sLy7Lx8fFdrrMsCwBXqXbmmlBhfFMemVfD11IJHIMNp7lSo+iroSy7wnqr49Dzr+GM1OkCV0CuDiRdGO6L3RuPdxyXxYaWowXPpjwoMaIRftg9UvVZuwbt/af4XAIZeSUF1xGOtuRij8W3HqOCowGXzkdrYRxqXtRKit13nzAYDMePH+9yfffu3QRBxMXJ3IVVafABVHZZ3YQAMMofWxSHW1l4XvzaS7L4CZ5MZ5tscFM4Nj1YzhqbnZE9dLCDf6XgehK+KuDS60ReDRGiq0pA2qdfboZXswEAXh8tbPJYn1DINijKHXssCecQPHlM9Hkhyw541Um2zIRGilxJsfvuE4sWLVq5cuXevXv5gp8IoZ07d/7973+fM2eOwqNXpKc9n0z+1fC1VFxPOlwpog5kL5d6PvxRjT4+z2kJWD9W/i6MHRA+gbibJ2dsYVsa5JUkwg1bkYQjgBVHxM0oZeoqkM1CeAfgbgJkUvWQx48TbTTMi8FvDFOMGlRA4GgHvOdsbxX6sVTciS+9IjzdhNZmczgGG8eKuwfqXseuW7cuLi5u2rRpN998c21trZ+f38yZMwMCAjZt2iSiLM6JJiwe2lsxyAtvQ+9wLIsHfyLUSNV5wM7BwwdZBPBCMjFAkh70PYcKiQbFrIZBejhSi74rEdEkIH3Tif8Vcz+UgScFb41RhlG0nfZQKfl3wN7tXamfTGcZMe1B7XX2JXr6HIIlB1k7Bw8PwscFiTvxu3+3PD099+3bt3379kWLFs2cOXPWrFkffPDB8ePHAwMDRZXGGSF8A3GDB2dsZlsb5ZYFnh1B+GlhXxX6pUysvSFnNrLNdZhGS/qHijREF149yeU1owFe2D/kTpm4HIVEDwKAB+WILOfL7oiE3bEHkqgRXRsNjx3hAGDVSAhzU94eCCfo2nJE96Tys7gsG4wneGFnm9FH50V79hxLV5cAhlGh0WINcSlbznGHalCwHl5JEd0OdMWVhSCIefPmffDBB99///0nn3zy4IMParXydJ9SPnI1rb4cb40j1/iJY2LtDR0O89AYUassdnChBb12isUA3p1AaBVkFnWgHPsYACwZiA/yxs63oC1nxVoNHbkTUhnHnstgy01olB9aPECaAa8DjNJQgWHAsXR1sdyyAIXDKyk4ALyQybaJ04+ErilDtJ30C8Z1UlRar7VizxxnAWDjOMJb/DKOittiOyOOeJkK+a2jALBsMB7vifHliMS4v8SRMssOs1YWHhiATw1R1oGARzlQAUt0AAAgAElEQVTxMgBAtq+GL2WxrSKthpVFINXTz6hH75zhSBzeHoMUEifchfZ4GZkDR3nujMHHB2G1FngzRxTPSPvEl8gY8FQW2WSDmyOweZJUFb8kHPWOO+64vDtgF44dOyamPE5Je30ZRayGGhxWpeAL97AvZnIL44RPPJeypsyn+dyuCuSndVSTUiBkcBRGUnwICaaVu94JwOxofGIwd6AavX6KXSW0QYkztbLN9ZhWL4FVnOFgyUGWRfD0MHy4j1LihLtAhcVB5l66PB/gJrllAQBYm0aM+555PZv76wA8XGhLspTu4Z3l6JtS3EDC2+MkmviXKFuLxWLuRHp6elVVlflSpBHLuVCOaZRnfiw+LgirNKN1OcIfCukKiSJlGm2OqJ9/jxWrnETfwQiSCokGhOzKsI4CwNo0AgNYlyt8RimfI0SFxgIm+gHtrdNcVj2KcsdEKqklCJqIeACwl1+QWxAHYwKx2dG4hYGXs8Sa+BIoQjMDyw6xAPB/o4gYD4lMAZcowp07d+a0c+rUKQB4/fXXcy5FGrGcCyowAtNomcZqzixDq/rLwdpXw9ez2WqLkHd29JzCMD5aUlSeSmdrLTA5RDE51FeACo8HALpMKavh6ADszljcwsA/hV4N2/dAohsDSo3o5SwWADaNI5RQS+9KUBEJgGF0RSFwSjmzvpGGa3D4z3kut0nobZBUT//lLLawDQ3xRlLW0lP0EuM04DgVHN3RslIJjA3EbovCjTT8X5aQU5SpLkUsQ/qHim0GPFiNPjrHaQl4b7wy3UMXaa83qxR7AAC8loprCUdhKgFvS0tVXO3Rw5yRhoVx+KxIRT98XOdG+gUj2k7XCNCWRxBiPbAlg3AWwdPpQk58tqWBMzbjenfCO0DA215OTiP6dy6HY7AhlaEk1E6qIhSG9rR6RcTL8LyWipM4bDnHnW0WbDWUJmjQzsGSgywCeGY4MVDWtnM9gYpQ1okQAGI8sGWDcA4BH3cnFNLkU28v4n4o5bw18O8xyjWKduCwB8hdWKozLyYTXhr4uQztrhRw4hcCv8qJaRXnECw+yNIcPDoYT/WTtM+iqgiFwXEsUIybEAAGemOLB+AMB4sPskKVG7HzQYMiL4Vrs7kzzWiAF7ZyuBO8n1RIDEaQdE0psiuoDO/zyYSPFn6rQDvLhXn2joZTvPFDNFrssPwICwCvjZa532QPaZ/4ClKE/jpYOZwAgCePsZxAE1+aliPv5nHHalG4GyZ4nNc1cYKFxilQTqG1zvwrhQhzww5Wo9UnhdleSRApU9CKVp1kMYD3FJk4eDkYpSGDI4HjlGMYBwBfLTw7ggCAvx1hjUKkUvAtiMmAcEwjYj7xsxlslRnGB2GLBzjH0tTuIVaQIgSA5Ul4pDt2ogFtPC3MxJeg5UilGT2XwQLAhrG4h6SdLgG6pE/89NNPJpOJ/4wQAoCjR4/il+ZNz58/XzLhnAgqJAZwgq4uRbQdo8TP/+wZflr4eDIx4xfm/06wN4ZhYwL7ataQoMbSskOshYH7EvApikwc7BZNeDxdUWgvz9dED5Rblov8bTD+WT53sgH97Qj7n0l93VNIEClztBa9l8dpcHh/goKKa18dTUQC8B5ihCQIpu0hehI2jsVv/519+jg7JRQb7tvniS/+019+hGuxw+1R+OxoGfZAlyjCZcuWlZaWdr6yfv369evXd76iKsJu4Xt00dUldHUJPzcUwg2h2BND8Teyubv3sifmkJ592GqxzXWcqRV38yS8/IQT8BI+L+B+q0B+WngjzRkOg+20588oyE0IAFoCPp9KpHzLbD3PzQjDFvWteL/YkTIMB0sPsRyCJ4fjST5K0SjXBHfzJHwC2aZapq6ClLZL39W5LQpfOgi9m8fdtYc9fgfZlwZGyG5l6iowgiSDo4QT8BJ+KUNfF3FupGwVZS/579m2bZvFImi4vStBhcfR1SV0RYGiFCEAvJJC7K9C6XXoscPs1sm9VzBiR8q02OHJYxwArE0jApSaONgtjmOBkhxFPIO8sTfTiKWH2KWH2LGBWHQfsrLETiNbm8OdbEDxnthzI5xpDwQAmvB4S1OtvTxfUYoQANaNIQ7VoOxG9MQx9t3xfZj4lcWAEBkciRGi5LKYGXjkMAsAr6QQfXlF+8IlP2zixImyCNE/oMLjIWOPouLHeCgcPptKJP+P+fgCd1N4708G9ooiENNB+HQ6W2lGk4Kx+xKdwz/UARUWBzjOVJUghsZIyf0bV+XhQfjeKvTfQu6efez+WWQvk1HaU4NECpcoMaJVJ1gAeGc8oVdw4mC3UOHxlpzDdHk+jJwityyXoCPg86lE6nfMe3nc1BBsfmwvp5XYkTIvZLJFbSjFH3tUwsTBLjjZiqNkeA2hqMDRDuI9sbVpBAAsO8SW9LbgiONMIM58OFaLtpzjNDi8N0HpiYOXg2m0VGA4Yhm6qlhuWbrhvfFEpDt2qAatOtHL0AmmsYazGHF3b8LTR1jZeB45xJoYuCdeWR0He4ijvozC4mV4knwwvjzhw4fYXlcaEjVSJrsRbTzNERi8P4GQcearilAw+CQburIQOEkzYHrIkoH4nTF4sx3u2dfLbArHxjBc+BMhX1iSQ7ByOD5I8YmD3aLAfLIOfLTw6RSCwOD/TrD7q3rz7B2xEiI8egD4ooD7qQz5auFNp3IMd0BFJAD/6JG4fXF7x9+S8Fsj8SYb3Nu3iS9GpAzfcZDmYPkQfKS/nBNfVYSCgevdSZ9AZLcxdRVyy9I9708gItywg9VozanrVtXIZmEaqjCCFMMRsjaHO9WI4j2xZ5zNP9SBAvPJOjMpGHtqGM4huHcf23T96Y7iRQu32OEfxzgAeCONCHSGxMHLITx8CE9fzmJkGqvllqUbMIAPJxEhBvijGr2Rff17dIToqhIQxxS08TR3tBZFumMvj5R54quKUEgoRz8mJVpHof1kgGPwzyz2aO31bQ7pykJAiAyJEtxh3uEfenc8oXNWPQhUeAIoL5+sM/83ihgTiJWZ0EMHr7vcjHhxUk+ms5VmNDEYu9/ZHMOdUWY2YQcBOtg6mcQAXsi87onPd1YhvANwN09hpao0o39msQCwcSzuLrdj3YlfPgXSHkav0PkAAJNDsL8PwRkO7t57fQ087aKl0j96mDUxcG88Pt0J/UMdOAzjVUWIZeSWpXtIHD6bSnhS8HURd729KkUqrnasFn3otI7hzig2bLiDGWHY34fiDAf37Lu+XpXiRQs/cohrscPcGPy2KPnVkPwS9CccHXoVGS/TwSspRLIfVtiG+FpWPUSkSJn/FnI/liJfLax1Tv9QB7jOQPqHItrOVJde+9syEeuBbRhHAMAjh9jzLT09GXAWI9NUi1EaKiBMQGHsHDx4gOUQPDMCH+ycjuEO2juSKlcRAsDqFCLZDytoRY8dvo6Jz0fKaMIE7sf7Uxn6toTzpGC9TImDXVCEEP0GKiwelFdorQtaAj6bShhI+M957suCnp4MxNgYttLw+DEOANaMdlb/UGfau9MpejW8LwG/Kw43MXDXXtbes4dPVxQBQnztJAElef0Ud7oJJXhhfGFMp8bhIVZS4fXL0RLw3xsIDwo+vsB9fh0TX3ireBsNDx9kAWB1KhEmdAPh3qEqQiEhvP1xd2/O1Mo218kty9Xg86wBYGkPsyk4jq4uBgyjQoXcGD5znK0woQnB2INOUljy6jjFNggA3hlPxHhgmfXopcwenQzEWArzW9HqUyzm5I7hDgifQNzdizO1sk21cstyNeI9HRN/2SG2qK1HJgExdsDPZ7DlJpQagD08SCkTXyly9Bv4IGOFW0cB4OFB+O1ReLO9R0HVdF05stsInwDc4C6UAMfr0Pt5HInDpnHO7R/qoD2fTNHHAgDw0sCX0wgKhzXZXE869YhRXG0pX1E2Eb8htH88fKWHDXeweCC+IBZvscPCPSx9rWMhZ2plWxowrZ70CxFKgIx69PYZjsRlThzsgqoIBUaZbSi65YOJRIgBDlSj168VVC1404lzLYhPZ3xqGN73isAKgQrn+5UXKDORtDOjA7DnkwkOwX372YZrZVPYhU4j23KW21WB/HXwxmjnPwy2055I6gQT/93xRIQbll7niNa+Crxep0Jjhaon3kbDQwdYFsHfh+DJfgqa+KoiFJj2wFEnmA/+7UHV/8xkj9dd7WQgrHnkv4Vc6rfM+RY03Bd73mkTBy8HN7iTvkHIbqNry+WW5do8NwKfEIxVmNDiA1ddDTmWqSkDDCNDBLCK2zl4/Ci75CALAG+mEf5OVVH26jiFm5Cno8DCKye5A9XXnvhC7YFONqCUb5kTDSjWA3tJ7sTBLqiKUGAc80FJreqvAh9UTXNw976rda1zGMf6HDJq52D5EXbBHraNhrvi8IO3kk5XWPLqKLm+TBcIDLZNIbw18L9i7v2zVzzC8p3FSL8QXGfo44hFbWjiD8y/czkShzfTiD8n9KvFh4rgUwmdQBECwOQQbOVwnEVwz1ULLAhoFX83jxv7vWP7++tMoi/dMMSgX72LSoAMCMO0eraxljO1yi1Lj1idQozwwy60oBVHr3gyaA+X6NOZoNyEpvzIbDjNaQl4awzx2VRC9ixawXFUVHAGRQgAUe7YBxMJAFhxhM1p7P5kIJQx4NsSbtS3THodinTH9t1CPj60v608pG8wbvBg25rY1ka5ZekRL40kxgZipUa0+MoFFgTJH22lYdFedtkh1srCvfH44dvIBC8FGUV5+tvrKD/toZX8Zkr58NkUehI+PMd9XdTNyYAzNrOtTbjOQPoG93qUX8rQiB3MkVoU7YEdvJVcPqR/vngavr6MwhoTXoW5Mfj9ibiVhXv3sbbu1sO+nwlsLDx6mJ39O9tkgznR+Kk55Lggxa2DAoBhyq+n0RkSh21TCU8KviniPjrfzcRHDM3UlgOOU8HRvR4lox4l72C+LOA8KfhqGvHJFMWdBXn653okL0puQ9Etg72xtaMJALj/D/bpdLbMdMnhgP8hvXaYswheyGRn/cY02GBWJJZ1B5kia3VdUdFEJgLvIVZk/eVu2TCWSPDCTjWi0d8xn+ZzXSIJ2yNlemkMuNCCxn7PvH2G0xKwcRzxzXTCW9N3kRWKkttQdEusB/bOeEc2xUMH2bPNl7y0dFUxYhkyIBzTaHtxcwSwPpcb/z1T2IZG+WNZs8le94GSAOVK5rw4UfxYB0sH439OwI00vJ7NxX7FLNxzsSahwzzSq84DtRa46Rdm1QkOx+DVVOL7GaRPb+aU04C7eRLe/pzVzNRXyi1LT3Gn4KtpRLgblt2I/ryPjf2KeSOba7E7/rYvptEvCrhR3zInGlC8J3b4VvLRwf18tXEiD3EHd8fjjw/FaQ62nOWSvmFu+439oz18hq7sfaRMkw1m/86uOMrSHDyWhB+6lYzzVPT2t5+/mrLA25FoJ4mX4cEAPp5MZM0mHxqIkxh8VciN/Z5J+Zb55AJn621xtQPVKPl/zO5KFKCDX24iVw7HFT0VBMKJogc7SPbDChaQH08mhvpi5Sb0VDob/gW9/AhbWlHHmVpxgwfhHXBdN7SysPwIe9deto2GOdH48TtIeZvsSIOzpBJ24c004sJ88rEkXEfAD6Xc5B+Zkf9jPrnA2cp7aRU/XodSvmW+K+E8KfhyGrF+LKFVVohoN6iKUHio0BiMIOnacmS//oY3spLsh70/gShaSP1zJO6vg8x6dN9+Ni8vHwDMAddhHOOtIjf8zPAd50/NoZy6oPZ14TgWOEMiaWc0OPw5Ac+eQx6YRc6KxEw0bDjN/XX7eQCwBFzfcfBcC0r7jtlwmtMR8NaYfm4O7YwjUK6pljO2yC3L9RHrga0fS5QspF5LJUIN2IkGdN9+9sipAgCwB13H0+cn/oQfmMI2lOKPnZijaHNoZ+SRkqbp77777sMPP8zP7373tH///l3t5OTkSCxeH8EIkgyKAI6jq4rklqU3BOvhpZFE+SLq48nESC86wlLJYnjivrA/72PPNF/b9dVKw/zd7IqjLMPBY0n4rj+RIX0NvHcmnM5R1IUJwdgPM8gTc8h74/EkaxEAfGKMnvAD80Mp1xO35ycXuJRvmexGNMALO3p7v42K6h4Ma48PcMqn76+Dp4fjhQvIjycTg70gxlQMAKOPRiw/wpabrv3w661w607mojn0NjLWw2m2vzJE8HAcd/PNN5tMpuTk5KeeeuqLL76YMWNGl+/MnTt3wIABBoMBACZPnjx06FDp5ewLVHg8XVlElxdoogbKLUsv0RLw5wR8oba89hBb5RbZgjSf5nPb8rkbwrDHkvBZkd3bOU80oDt3swWtyEsDH00i5kS70joIAB2NCcsvAEJC1eOQnuG+2CdTiIqCElQNJR4xh2rQbb+xCV7cI4PwJYPwbquDWhhYcZTdfJYDgHvj8XfG98P0mGtCRcTbCnPp8nzdwFFyy9JLHBPfp7b2kLFV410IPhtOc+/lcQti8aeG40N8un+lj9WihXvZ4jbEl+m4JcLJ3nwZFOFvv/1WWFh45swZnU43cuTIF1544XJFCABbt25NSEiQXjxB0ITFmeF3e0WBm9yS9BHeYR43IP7cbeSmM9wH57hdFWhXBZvoxS0bhC8eiHcOhv7kArf0EGtmYKQ/tv0Gwon2gwJCePkRnj5saxPTWEP69T7hRAkQ1YUMwFuzE5LbiDdzOD7Z9NVT7MOD8MeSCN9OcU95zWj+bja3CelJeDWFcK2DYCec1E14OWxlIQAExsZl3kG+lct9Uch9ms99ms+ND8KeHn7JPhgBbMjlnkxnaQ7SArEvpxLRTjjxZXhff/rpp5tvvlmn0wHAnDlz0tPT6+q66dVw+PDhX375paqqSnIBBaC9P5mTOYoupyOjNsELWz+WqLyLemsMEeGGnW9BK46y0V/SK4+z5SZkYeCvB9j79rNmBh4aiB++1ZmsIoLjjNGDl4PsVqa+EiNIr/DI5UPwggXkf28gUgOwGgu8nMVFfUkvOcheaEHQbg7NbUKDvLFjt7mYOfRS+sejh4v5o3Ej/bFPphDn7yQfS8LdSOBtA8k7mE8ucDQHdVb4069Mhx/kwCzSGbUgyHIirKioGDXKYTfw9fXV6/WVlZUBAZeEpQUGBn7zzTc2m+3QoUOvv/76smXLur2V1WqtqalZvXo1/0cMw2655ZZBgwaJKn+PCIzk+5XTNquwXdw6oGmapq+n1XSv4Pe2WGAEP5YBg2UDYHECfF0MG85AZgOsOcW9lcsF6qDMBO4UvDcW5sdwwHVNRxMQaX54XyBDY+HMcVvpBXJwmoC3lfiH0yXnASEiKJLhEHA0ANwRDreHw65K+Pdp2FUJm89yH53nhvrAiQYAgAcTYV0q0pOM4DLSNM0pvo65A98QTKNlGqptLY24waOPN2MYhmEYgpAh5tJWlg8AeHAU/8qF62BtCjwzFDafg3fOwqlGdN9+9vkMluag2gJBevjPBJgeygHL0dfR9PdqCPi2EwSB49fYnImiCM+ePTtnzpzLr2/btm3kyJEIIayT7wTDMJbt+p+Xm5vLi75///4ZM2bMmTMnOLgbKxP/ojQ2Xqxp1NjYePndZIDSEr5BbEO1rbqUDIoUYwSWZUX/pQgxVSUAgAdHdR4LB5gfBfOj4HAttvEs9kMZVmaCwd7w+UR2gBeILZQUP7xv4CExAGAvv6ATVE6Jf7itvAAAyJDoLoNOC4JpQZDdBOvP4NtLsBMN4EHBpjRufjQCEOXp8wJccy1TCERwFFN63l6eT8UN6+Ot2HYEEey6YCoLAQALiuw8ujcJTyXB8oHweRG2IQ8/2wIAMCUY/Wc8CtYjYcUU8If35M0RRRHGxMR8++23l1+PjIwEgJCQkNpaR/vKtrY2s9kcGhra5Zsdok+ePNnb2zsvL69bReju7h4WFrZ27VohpRcITXiCpaEaryvXRSWKcX+apnnzsngw9VWc1UR4+hr8u/d1TYuEaZFQ3Ib+qEZzY3A3UoroCAl+eB+hYga3AjDl+cLKyTCMlD/cUlcGALrIhG4HHR0Cn4XAGhP6pgjNisTETpcmCIKinCP2Rhc5wFh6HmpKdUmj+3grfqMv/dvOWYxscx1GadzDYy83aOkAlg6Bh4fAz2WozoLuTcDFaCso8Q8XRRFqtdrExCuu/lOnTn3ppZc4jsNx/Ndffx08eDCv5JqamiiKcne/pPVrYWFhQ0NDVFSUGHKKiiY8znLqAF2eDynT5Jall3T4Ca7+tWgPzEkdAyJB+Abibp6cqZVtrie8/eUWp5f0pKZMuBu2fIj66C/BSRNJO0NXFAFCVEjMVdw6GMAtERhAP3n6Mlgb7rjjDoqi5s2b9+qrr/7tb397/vnn+ev33nvva6+9BgC//fbbrbfe+vLLL69cuXLChAmLFy+OjRWyO7Y0OBoROPd8EL41uYvg9NGD7VmwfAV5lZ7jjKWFutDebcaFJr4MwTIURR04cGDbtm3V1dU7duwYN24cf/3xxx/39fUFgLS0tLq6uvz8fB8fn88//3zKlCnSC9l3LlYcddp8Msd8UJfC64cKj7eey6LL8/VDxsgtS29g6iqQ3Ub4BvY94sPVIEOiMErD1FUgmwXT6uUWpzcI2IbQWZCnJYaHh8fSpUu7XJw2zWFC9PLyuvvuuyUXSmAIDx9HPllTLekbJLc4vcHuqLorTGN6l6L9WOCsJ0JH04k+t2J2QTCCpIKj7WXn7RUF2tghcovTG+yCNqZ3CpwjEMtJocKcrw1FB5zFyDbVYZSGDAiTWxbnw9Gv3HkaE3aBriwCIfrxuibt3eqdcxvEsUxNKWAYGeJCpiBVEYqIM7ah6ICuKASEqNBYcJKwdUVB+oXgene2pYFtbZJblt7ggl4iAXHqiqN0TRmi7aRfCK5zoRrB6honIu0RE055IlSXwj6BYY5tkJOuhmqcVB+gIvh6s8756MtdceKrilBE2gutOed86G0bQhUeTUQCOOexgDM2s62NuM5A+jp3rVS5cDRiqyl1ukZs0BEp42ITX1WEIkL6heA6N7algW1zPvuYvQ/9qVXAmbdBvA2DCo110mhn2cFIigyOBI7jXa3OhSNOKty1Jr6qCMUEw/jcA/505UQglmGqeYd5tNyyOCuUwzDufPEyql207zhvImlPCin0P1RFKC6OY4GzKUKmpgwxNOkf6lIOc2GhAiMwrZ5trOVMrXLLcn24YBqZ4LSnETvZNohtrudMrbjBg/AOuPa3+xGqIhSX9npLTrYxbE+lV5fCPoBhvGHZ6Y4FapxU33HSE2EPqyr2P1RFKC7tgdROFjiqGscEwRm70yHaTtdWAI5TwdFyy+LEUGFxgONMVQmi7XLLch3YXXUPpCpCcSGDIzvqLckty3WgRsoIgjMeC+iqYuBYKjACozRyy+LEYBotFRiOWIauLpFbluuA3wFrXK+qoqoIxQUjSDIoEhByrvgx13SYC44jn8ypKoy4rHFMcBz2AKeqvu2yE19VhKKjcbY2FA6HuZun87YQUghUUCSm0TINVZzFKLcsPUW1iguFwx7gPBMf2a1MfSVGkGSwKL3ElYyqCEXH6RxFaqSMYOA4FRIDCDlR2LDackQoqHAnswfQlUWAEBkchRHyNGOQEVURio7Txcu4YO158XCy7nTtNnz1RNh3qPA4wDC6qgixjNyy9AhHKr1LPnpVEYoOFRYLGMZUFTvLfFCNYwLS3obCObZBTEM1ZzUTnr6Eh4/csjg9uM5A+oci2s5Ul8otS49w5YmvKkLRwTQ60j/UUavFGVDDJQTEuQJH2zMI1UcvDJoI53r6rlhllEdVhFLgRG7ziw7zoAi5ZekPkCHRGEkxtWVOkT+j1pQRFkdHUmeY+IAQn+nhmu5hVRFKgRPVX+bbELqmw1wMMIIkg6MAIbszxMu4snFMDBwnQmfwEDO15chmIXwCcTdPuWWRAVURSgFva3KK0EE1UkZwNM7Tna796aumUWGgwhMAw+iKAuA4uWW5Bi5eQ0NVhFLgWAorCgAhuWW5BqpxTHB4e4DyHUWcxcg212EaLekfKrcs/QTc4E76BiG7ja4tl1uWa+CyqfQ8qiKUAtzNk/Dy46xmpqFablmugYvPBzFwbIMUbx+jywsAISo0BnB1WRAMZ0kjdnGruPrGS4RztKFAiK4qBld1mIsEFeIc/crVQgpi4Cz2ABd/+qoilAhHoTVl55MxteXIbiV8AnGDh9yy9B8wSkMGRQDH0VWKrjdrV1PpRUDD15dRdmNCztjCtjbiOgPpFyy3LPKgKkKJcARSK1sRunJpCVFximxCWo2UEQFNZCK0m53lluWK8G8mFRoDGCa3LPKgKkKJcIoMivbyWupSKDDtjQiU+/QRyzDVJYBhVEi03LL0K/ji9ZzVzNRXyi3LFVEnvqoIJYL0CcQNHmxbE9vaJLcsV8TFHebiofwKI0x1KWIZ0j8U0+rllqW/oXx7gDrxVUUoFRjGv2dKjpdxcYe5eLT3Ky9GDC23LN3jePThrnsmEA/lB46qE19VhNLBe18U6yZUHebigWl0ZEC4w/yoSPhIGY0LL4Xi0V5fRqGKEDE0XVsOOE4FR8kti2yoilA6KGX3Y1Id5qKi8H5M7eW2VUUoPFRH4Kgi42XoqiLgWCowHNNo5ZZFNlRFKB2OeBmlmkZVh7moKLwfk/r0xYPw8iM8fTizkWmqlVuWblBraICqCKWECorENFqmoZqzmuSWpRtUh7moKPlEyDbVcqZWvv6R3LL0TxzZU4p8+q7cfakDVRFKCG+FR0iZ1bf5o6qLzwfx6OhXDhwrtyxdUbvSi40mXLn2APXpg6oIJYZS6nxgW5vomjJMo3Px+SAeuM6N71dOK68/s63oDABoIgfILUi/hXLkzyjuRIhou730HGAYn/jvsqiKUFIcgaPKa9RpO5cFCGnjh6ltCMVDsflktnNZAKBNGC63IP0WKlyhgaP2ojOItlNhcS5eVW2EhZcAACAASURBVFFVhJLiqMCrPEVoPZ8FALoBI+UWpD+jzOpCnKnVXp6PURpt7BC5Zem3kL5BuJsnZ2xmm+vlluUSrOf4iZ8styAyoypCSaFCYwEnmOpSRNvllqUTCNnOnQAA7UBVEYoI349JaccC2/mTgJAmJgmjNHLL0p9Rpj3Adv4EqDtgVRFKDEZpqMAwxDJMjYIcRXRlEdvaSHj5UUGRcsvSn1Fmv3KruhRKggLry3QYAzQxSXLLIjOqIpQaPpBaUWn1DvPIwBS5Benn4AZ30icQ2a10nYL6lbefCVzdOCY2DreIkuwBvDFAGztENQYoVxE2Nzfn5+ezrOJizfuIAh1F/FKoVZdC8VHasYCpr2QaqnE3TxfPp5YA3jCuqMaE/A5Ym6hOfDkU4U8//TR69GidTjdu3LgrfWft2rWxsbG33357fHx8Tk6OlOKJjUZh8TKIttsKcgDDdIkj5Jal/+OoL6OYY4HDGJCYrNbVExvSLwTXu7MtDcrpP2O7cBJUqzgAyKIIQ0NDV61atXr16it9oaio6OWXXz569Ojp06f/+te/rlixQkrxxIYKiwcMoysKFVJ40FaYi2i7Jjwed/eWW5b+j9IiJhxBUupSKAEK6z/TyRigpg7LoQiTk5NnzJjh4+NzpS989dVXU6dOTUxMBICHH354//79VVVVEgooLrjBnfAJQHYrU1chtywAHTlk6lIoCRcrKihhG8RxtvxTwJ8IVcRHUdsg1RjQGSVmTxcXF8fHx/Of/fz8vLy8SkpKQkJCLv8mQshisWRmZnZcSUhI8PT0lEjQ3qKNGmRurLWezXQPDJdbFjWRSFIIDx/Cy49taWDqK8mAMHmFsZed58xGMiCM8A2UVxIXQVGGcdUY0BlRFOG+ffu2b9/e5SJBEBs2bOjJPzcajb6+vh1/NBgMbW1t3X6zsbGxpKRk8eLFHVcee+yxefPmXb/I0pKQDCf2GzP3wsgben0Pk8mE9Xkrxxmb6coiTKO1B0TRRmMf7yYNgvxwGcFDYtiWhtb8XI3e67r+ockkcK12a84xACBihxiV/eitVitBEBRFyS1IX2F9QwHAVnq+h//hTDvCi8Jx1gsnAYANT1Tm0xfwbdfpdCR5DU0niiL09/cfNmxYl4s43lMzbGBgYHNzc8cfm5qagoKCuv2mn5/fwIEDO58InQKUMsXy7btM6Tk9a+t1vX+EkLu7ex8lMZ9N5yureXhf0VKtNAT54TLCRQ+kz2YQ9RW9+BXC/nBLUS4AuA9J0yv7/5Mkyf6hCMFtgFGr55rrDBiHu13bcMVrQZ1OJ7gg9uKzyGIiA8I8w2MEv7lQSDnNRVGEQ4YMGTKk9+WaRowY8dZbb/Gfc3JycBzvsJT2DzCNTjdwlCX7sOXUQfdJt8soSbtdVDWPSAeljH5MyG61l5wFHNfGdd2zqogFhlGhsfai03RFgbxJC2oVhS7IECxTVVW1ffv2jIyMhoaG7du3Hz58mL8+atQo/vOdd95ZXV39yiuvpKenP/bYYw888IDBYJBeTlHRj5gEAJaTB+QUAqH2SJlRcorhYlzMJ5M1XsaWn4MYWhM5ADco+jjYz9BEKGIb1D7x1cgABzIowoaGhl27djEMM2XKlF27dp06dYq/npqa6uXlBQB6vX737t2nT59+4oknJk2atGbNGumFFBt9UhpGaWxFp9mWBrlkoKtL2iurRcglgwuikH7lqjFAFpTQiE01BlyODFGjQ4YMef/99y+//t5773V8HjRo0Oeffy6hUFKDafW6QSnyWketZzMBQDdwlBo/LTFUWDzbepwuzyd9u3d+S4B6JpAFJWRQ2PKzEUNrogepxoAOlFtird/jsI6eOiiXADa1wJJMaCITAMBeeFouAdjWRrqmFNPqNVED5ZLBNaGCIzGNjqmvZFsb5ZLBek6tLtsVVRHKhsM6Wpgry5RAtN1WmAsYps4H6dENSgUA84n9crkJbedOqH2Y5QEndANHAULmrH1yidBeW1i1il9EVYSygWn1uoEpgJAsh0J70Wlkt1FhcWplNenRRA8iA8LYlgbbhVOyCKD2YZYRQ8o0ADBn7JFldLa1ia4uUY0BXVAVoZzoR0wEmWJH21svqfGi8mAYOQUAzJlyrIYdfZhVq7gc6JLScDdPujyfriqWfnTbuUzVGHA5qiKUE/2QMQ7rqOSxo9azamU1OTGk3gAYZjl1ENltEg+tRgvLC0aQ+uETAEAW66iaQdgtqiKUE0yr5x0GlpzDUo7LtjXRlYWYRqt2ppYL0j9UE5HIWc2W00clHvpimXU1WlgmDKOmAm8dldhJ3GEMUHfAl6IqQplpt47+IeWgtvMnACFt3DCMdP6yVU5Lu69or8TjWtWW9HKjjR1C+gWzTbW2wlwpx+1kDIiUclzlo5qJZUY/ZCxGaWwFuWxLQ6/rjl4vavy0EjCMnNLy3RZr3nHO2CxZyBJiGVtBLmCYNkHtwywfGKYfOaXt9y/NGXu0cUMlG7YyfV9Fi0UXHWUpLJRs0N5hNpsvLyim0+lCQ0PFGE5VhDKDafW6ASMtuUctOUfcJ8ySZlA1floJ4O5e2gEjrWfSzScPuE+4VZpB7UV5yGahQmMIT99rf1tFNAwp09p+/9Jy4g/vOUsxSiPNoBMf+geGk8TeEmzjV9KM2GsQQpc3mamsrDx48OCoUcKH+KmKUH70IyZZco9aTv4hjSKkq4rZ5nrC04cKjpJgOJWrYEiZZj2Tbs7YI5kitHW0Y1WRFSookgqPp8vzrWfS+dgZsUEsY7PTp/Jyg4ODJRhODMaPH2+ziRJcpvoI5Uc/lLeO5kiTWd+eOJGixkrIjn7oOFznZi/OY+oqpBnRqhoDFIPDSSxVCo29KE+agZwRVRHKD28dBYQs2VLEjl4MGlSRG4zS6IaNAwBzphQhM5zFaC87jxGkNq73XdJUhMIwairghPV0OmdqlWA4fuKrdIuqCBVBe1cm0WNHEUOrsRKKoj2SfrcEkfS2C6eA4zSxSZhG+F6vKtcL4eGjSxyBWEaa2lK8MUClW1RFqAgks47aC08ju5UKiyU8naYlff9Gl5hMePkx9VX2knNij2VVHYQKwzBKonJrvDFA7FGcF1URKgJMq9cmjpQgs17tQqc4MEyycmuqVVxp6IePx7R6W9FppqFa1IF4YwCGqwt+96j/L0rBIEndUeu5TFAVocJwHAtO7EcsI94obGMtU1+FG9z5lngqSgDT6PRDxgJC5ixxncT8DhhwQtRRrpfMzMx58+bNmDHjiy++kFcSVREqBR1vHc3PFs86ypla6YpCjNKoldUUBRUeR4VEc8YW29lM8Ubh90DahGRQjwVKwpDSXm5NTHhjAKYkRVhbW3vLLbcsXLjwlVdeeeGFF3744QcZhVGnhFLAdQZtYjIgZM05ItIQ1rPtheelSuBV6SGOkBkxraPtVnHVQagsdANGEp4+TE2ZveyCSEN0GAMUtQf68MMPb7nllnnz5qWmpr788svr1q2TURgF/b+o8NZRs2jWUdVFpFgMo6YChllyjnBWkygDIMT3PlSrLSsOnNAnTwYxD4UXjQFK4tChQ2PGjOE/p6amHj58GMnUpxrUyjKKQjdkDEZStoJskYpPqh1YFAvhE6iNG2rLz7ZkH3YbfaPg97eXX+BMraRvEOkXIvjNVfqIYdQ04/5vzZl7vW//qxhuvKsYA1rswEmifTQEuF2qbaqrq9esWfP+++8DAMuydru9sbHRz0+iestdUBWhgsD17trEZOuZdEv2YbdxfxL25nR1iVpZTckYUqbZ8rPNGXvEUISO5jtqH2ZFoolMJIMimJoy67kTukEpAt/9ysaAd85wjxxmBR7uClA4HL2NHOl/sZqVTqdbvHjx9OnTAaCtrW3q1Kk6nWzpraoiVBaGEROtZ9LNJ/8QXBHygRhatbKaUtGPmNT8zTu2CyfZ5nrC21/Ym7f3G1GNAQrFMHJq6y+fmDP3CK4Ir2IMCHODEANYJVGFgTrMW3vJlfDwcI1Gw1fQzsnJ8fHxcXNzk0KU7lAVobLQDR2LkZQtX3jrqNp6SeHgOoNucJrl1AFz1j6PafMEvDOi7fbiM4Dj2oThAt5WRUDcUqe3/vqpJfswslkwrV7AO1/FGHB7FH57lGxhInPmzHnvvfdWrFiBYdh33303Z84cuSQBNVhGafDWUeA4YeuOIpaxFeSoldUUjiOSXujYUVtBDqLtmvAE3OAh7J1VhILwDdRED0Z2q0XooHHF7oBnz55ts9kWLlz49NNPv/vuu08//bSMwqiKUHG0x44KWXfUXpiL7FYqNFbtQqdkdINH426edEUhXVUs4G3bo4UVtxSqdEaMbVAnY4DidsAURe3evXvOnDmxsbGZmZkJCQkyCqMqQsWhGzoWI0jeOirUPRW7K1TpDEaQen4bJGgkvRot7BQYkidjJGU9l8W2Ngl1z3ZjQLwyjQE6nW7BggVLliyRvUWiqggVB6531w4Q2Dpq5SNl1KVQ8bRXYd4NHCfIDTljM11ZhGm0muhBgtxQRSRwg4duUApwnOXEPqHuaVPbT/YMVREqEb4rk1CZ9Zypla4owCiNNlbtQqd0tDGDSb8QtqXBVpAjyA2t504AQtq4YRhJCXJDFfFwtOrNEKzuqLMU2WcYpqioCAA4jjtx4kRentQ9hFVFqET0DuvoKUGso9ZzWYCQNm6oWlnNCcAww6gpIJyvSHUQOhG6wWm43t1edp6uLun73ZzIGFBdXT106FCTyTRx4sS///3vixYtWrBgActKlOMIqiJUJhdjR4UIIVMrqzkXhtTpAGA5eQDR9r7fzXr+JDjDmUAFADBKox8+AQAsWfv6frd2Y8BQZzEGbNq0KTIyct++fcePHy8qKvr2228lG1pVhApFL1xXJjWZ2rkgA8I0EYmc1Ww9fayPt6JrStnmOsJDLSfkNPDWUVPGbuhz4U3lOwi3b99+8803z5s379SpUwCwbdu2v/zlLwBAUdSiRYu2bdsmmSRqQr1C0Q8b1/zfDdYLpzhjC+7u1ev70NWlbHMd4elDhUQLJ52KuBhSptnLzpsz9/D7oV7jSKYekKyWE3IWtHFDSd8gprHGVnSGiBzQl1spfAe8c+fOFStWfPrppx4eHsuXLweAoqKiqqqqXbt2AYDRaOS9htKgKkKFguvdtYkjrHkZltwjbmNm9vo+tnPt8aLqUug8GEZNaf5ui/XMcc7Uirt59vo+Cl8KVboBw/Qjp7Tt+sqcsdujD4qQqSm7pjGAaag2Hfml70fPnoBpdB7T5nUOU3j//feffPLJadOmAcBzzz23YMECs9n80UcfabVaAGhqampuFix/7JqoilC56EdMtOZlWE4e6IsidISNJapLoTOBu3vrBoy05h03n/zDffys3t0EsYy9IBsAtIlqpIwzYUiZ1rbrK8vJA+63LQbo5f6VTx7VJl7NGGA6+mvbrq96KeX1o4lM7FxJtbS0NDExkf88YMAAAPD19X333XeTkpIA4H//+9+aNWskk01VhMpFP3Rc8383Ws+f7PWxALGMLT8HMEzJfgKVbjGkTLPmHTdn7OmdIkS0vfmbtzmrmQqOJLzkaW2j0juo4CgqPI4uL7DlZZCDUntxB1vhaV7DXb2GhseUOYS7N2IEiMm6JvzervMVf3//mpoa/nN1dTUADB06NCcnh1eE2dnZQ4cOlUAwHlURKhfc4OGwjuYc7t2h0JpzBNmtVGgM4ekjuHgqoqIfOhbT6u3FeUx9Fel/fU0E6ZrSxq2r6apijNJ43nyvSBKqiIdh1LSW8gJr1l7361WECLXt+qrll0+BY7WxSXwM6pXA3TzdJ9/RJ0H7wNy5czdt2jR79myDwbB27VoAePjhh994440//elPLS0tH3744TfffCOZMKoiVDS9to6yLQ0tP3xoztwLALrBo8WRTkVEMI1OP2yc+fhuc+Yez5vu7vk/NKX/3vz128huJYMi/P7ynBok5YwYRk5p+eFDW95xN4sJetyljzM2N257w3o2EzDMY/oCrz/9WYw2v0LxwAMP5OXlJSYmenp6Pvroo/n5+QsWLMjLyxs8eDBFUS+++GJqam9Ow71DTZ9QNPqh4zCCtF04xZlae/hPEG1v/f2L6lceNGfswUjKc8ai61pGVZRDe7m1nmbWI5ul8bO1TZ+/iexWQ+r0oCc2qlrQSSG8/HQJIxBD23IO9fCf2C6cqnl9mfVsJu7u7b9kldes+5WsBQGAIIh169bV1tbm5+evWLEiNzcXAF566aXy8vKioqK//vWvUgqjnggVDW7w0CYMt57NtOQccRtz0zW/bz19tHnH+0xDFQDoktK85zx8eTdOFWdBN2Ak4eXH1FXYS89prhVASFeXNn7sMId6zXpARpOXiiAYRk21nsuyndwPk267xlcRatuzveWnrcBx2vihvveuVL3C14sMirC+vv69997Lyspqa2v7+eefKaqbqgdz585tbXWcgSZPnvz8889LK6OC0I+YZD2baTn5x9UVIVNT1vzt+9a8DAAggyK8Zz+s664Vp4ozgWH65MnGfTvMGXuurgjNx3c1bd+I7DYyKNLvL8+qB8F+gH7EROzrt+miM0xjDekbdKWvXWIOvWG+1y1/AVy18103MijCpqammpqa1NTUZ599lrtCif39+/d/8MEHERERAODj49KBHvph45u3b+Sto93GjnLmttZftxkP/ggcixs8PG+6233irQq3iqj0EMOoqcZ9O8xZ+7xuX9ztF5DN0vTVenPWPgAwpN7gc+djmEYrqYgq4oBpdLqkNMuJ/ZasfR7TF3T7HduFU42frmFbG3F3b997nlT3vr1GBkWYkJCwcePGwsLCZ5999ipfS0pKkrdVo0LADe4O62juEbe0Sw+FHGs6urPl5485YwvghNu4P3nd8pe+5F+rKA1NRAIVHEVXl9jOnYDIrqWT6fL8hq2rmfpKTKv3mf+YYdRUWYRUEQndyCmWE/tNx3d3owg5rvW3z1t3fgYIaROG+977tNpzuy8o10d4zz33kCSZmpr63HPPBQQEyC2OnOhHTLSezbScPNBZETKFOTW/fsK3MtcmjPCe87BqEOuXGEZNbflpqzlzj+ZSRWg6/HPzjncRQ1Ph8X73PUMGhMkloYpIaAeMxN29mZpSuryACo/ruM62NTV++rrt/AnAcc+b7vaccZdqDu0joijClpaW33///fLrU6dO9fPrkRd3zZo1w4cPt1qta9asmTlz5rFjx0iyG1Hr6+uzs7M7205XrVp133339VpyZYJihwNO2M6fbKurxvTuXGON5bdtdO4RAMB9g/Uz7qaGjLUB2IxGuSWVApPJhLlSuTg0KA1+/tiSc5iestBxxWYxf/sunXMYADTJk/W3LbFSGui/T99qtRIE0W0wQf+GYRhs0Gg4/lvLkV91NzuWNaYgx/z1eq6tGXf31s/7Gx4/3Gg29/CGSJJqauKBELJYLMbrfNV1Ol236qMzoijC5ubmr7/++vLrQ4cO7aEifPDBB/kPo0aN8vPzy87OHjmym9oo/v7+SUlJe/de7GPp6elJEP3OPebubkscYT2bieUdY1sbjft2IIYGjc7rprvcJ892lh4rQoEQcnd3l1sKCXF3t8UOsRXkUMU57hGz7MVnGz5ZzTbW4gZ3n4WP64eNk1s+0SFJ0mUVIZl2Y/Px3+icQ/5zlwKglp+2Gvd8DQjpBqX63v2P6y3H7+w7SAzD9Hq9GNNfFEUYFRX15ZdfCnIrnU6n1WqtVuuVvkAQhCtE0+iHT7CezWze8S4AAIa5jb4Rn3KnR2ik3HKpSIEhZZqtIMd+8o822tr601bEMprogb5/fuYqwYQq/QMyPIEMCGPqKkzpv5mO/WYvOgM44TXrPo9pd/aujP4rr7zi5uYmuJzSUFIiQL/ibpHBR4gQKioqKisrA4CioiKdThcdHQ0A77zzTkRExK233lpcXNzY2Dh8+HC73b5q1SqDwTB8+HDp5VQU+mHjm79+m18Bvecs1UQOaGtrk1soFYnQD5/Y/M07TEF2S0E2YJjHtHmet/wFI5Tr4FcREEPKtNZfPm368i0AIHwC/f68UhMzuHe3euONNyoqKgSVTizsdrtGo+lycfny5SIVIJVhLlmt1htvvBEAYmNjb7nlFi8vr6ysLADIyMgwm8233nprfX39okWLSkpKKIpKSUn54YcfnHcLIxS4m6ffg/9EtE0/bLzaUMnVwA3uusGjLdmHcDdP37v/odbMcykMo6a1/roNENIljfG9+wnc4NHrW91zzz0CCiYqRqNRSg8Iplj3KcuyOI5f3aidmZn50EMPZWZmSiaVcmhra/Pw6P2UcF5c84cz9ZXNh372mXwH4e0vtyxS48rBMgzD6HQ60+GfAcPcxsx0nU2wxIpQudaVfhjzoqLSW0j/UN0NCwmXihJSacdt3J/kFqGfo2afqKioqKi4NM6tCG02m8vGjPz6669yiyAPv//+O8uyckshA4cPH25paZFbChnIzc0tLS2VWwoZKCsry87OllsKGWhtbT10qKdtNwTBuRVhYWGhswRBCYvJZPrLX/4itxTysHz58srKSrmlkIE1a9akp6fLLYUMbN269YcffpBbChn4+eefP/roI7mlkIGMjIxXX31VyhGdWxGqqKi4AoqN6RMV1/zVsqAqQhUVFRUVl0ZVhCoqKioqLo1y8wh7wubNm5ctWzZ1qst1n+E4bv/+/S74wwHg4MGDqampWq3Ldd3LysqKjo729XW5bjvnzp0zGAx8d1KXory83Gg0Dhw4UG5BpKapqamwsHDUKGHaK86ePXvZsmVX/45zK0Kj0bh+/fq0tDS5BZGBoqKimJgYuaWQgeLi4qioKGcvH9wLysvLg4KCXDCvvL6+XqvVumAVBaPRaLFYXLAJHU3T1dXVQm19YmJi4uLirv4d51aEKioqKioqfUT1EaqoqKiouDSqIlRRUVFRcWlURaiioqKi4tKoilBFRUVFxaVRbveJa8Jx3O7duysqKiZOnHjNoKD+BMdxFy5cKCsrmzBhgk6nk1sc6TAajQcPHqytrR04cODo0S7Uk6+ysjIzM7O+vj4iImLq1Kku2Jjl5MmTFotl7NixcgsiETU1NTk5OR1/TElJ8fb2llEeiSkoKDh06JBer58wYUJISIgEIzpx1OjcuXMLCgpGjx69Y8eOrVu3zpo1S26JpKCqqmrgwIEajaa+vp5PJJBbIoloaWmJiIgYPXp0RETE7t27J02a9Omnn7pIEsWNN97o5uYWEBCQnp5OkuT+/fulbNUmO+fPn09JSQkLC8vLy5NbFon48ssvH3300eTkZP6P69atE6kzuwL597//vXr16htuuAEh5Ovr++6770oxKnJODh06FBQU1NraihD69NNPhw0bJrdEEmGz2UpLS81mMwAUFxfLLY508D+c/1xdXa3T6TIyMuQVSXrsdntsbOxXX30ltyDSwbLs5MmTn3jiiYEDB8oti3R88cUXM2bMkFsKGcjKynJ3d79w4YLE4zqrj/DHH3+86aab+Bzb2bNn5+bmlpSUyC2UFGg0GhcssQGX/nA/Pz+Koux2u7wiSQ/DMHa73d/fhZrUb9q0adiwYePGjZNbEKlpa2vbuXNnRkYGwzByyyId//3vf+fMmePu7r5r1y4pOws5qyKsqKgIDw/nP7u5uXl7e7tmPybX5K233oqNjU1JSZFbEOnYtGnTjTfemJCQ8Mgjj0ybNk1ucSSiuLj4nXfe+de//iW3IDJgMpnefvvthQsXJicnl5WVyS2ORBQUFOTn58+YMWPLli3Dhw/fvHmzNOM6a7AMy7Kd/UMkSbrUvsmV+e6779auXbt7926XKjZ24403xsfHp6enr1+/fvbs2QMGDJBbItFBCC1ZsuT111/38vKSWxapufPOOxcuXAgALMsuWLDgmWee2bZtm9xCSYHVai0vLz979qxerz9w4MBNN9101113SeARd9YTYUhISG1tLf+ZpunGxsbQ0FB5RVKRgF9//fWhhx768ccfk5KS5JZFUgYMGDBz5swXX3xx+vTpW7ZskVscKcjKyjp27NhPP/20ZMmS9957r7q6esmSJUajUW65pKAjMJggiPnz5588eVJeeSQjJCRk9OjRer0eACZMmMAwTEFBgQTjOqsinDJlyu7du/lT4O7du8PCwlyzArVLsWvXrnvvvffrr792KaNoF+rr6z09PeWWQgqio6O3bNkyffr06dOnDx8+3M3Nbfr06S5lBuDJzMx0nbCAG264IT8/n/9cVFTEsmxYWJgE4zpr+gTLsmlpaeHh4ZMmTXrrrbeee+65JUuWyC2URCxfvtxoNH700Ue80WDTpk2usDrU1tbGxMQkJSV1xJQ/8MADrtB4pKGh4Y477rjhhhsMBsPBgwczMzPT09OlWR2Uw44dO5577jnXSZ9YsmSJwWAICwvLzs7+3//+t3PnThcJF6JpOjU1dejQoWPHjt2yZcvEiRM3bNggwbjOqggBwGg0/uc//6murp4yZcqNN94otzjSsXXr1s4Bkw8++KArZFi3tbV98cUXna9MnTo1ISFBLnkkg2XZ3377LSMjw2azxcTEzJ8/3wUbEhUVFR0/fnz+/PlyCyIRWVlZe/bsqa+vDw0NnTNnTkdgoCvQ1vb/7d09SCNBGMbxiYWIiMSvZCJRCEKKiIiFaQS7oI2NlSAETadFGsGIhRGEgCAIIghaSBobBRu12kYkKIiksdDGQhGyKCkMfkWjVyws4nEcnKe7m/n/qmQyy75TPWR3eKeQTqd1XQ+HwwMDAz9zUwcHIQAAX+fUd4QAAPwXBCEAQGkEIQBAaQQhAEBpBCEAQGkEIQBAaQQh4Dy6rqfT6dvbW6sLAcqBU5tuA2Vsf39/dHT0T792d3ePjY2NjIwcHR0pdSQT8E0IQsB2/H5/LBYzPj8+PqZSqZ6env7+fmOktbU1EAjMzc2p04ISOupRowAAAiBJREFU+FZ0lgFsLZ/PNzQ0TExMLCws/HXy6+urMd/sulcsFu/v7+vq6n6f/Pb2dnNzU1VVpeA5R8BHvCMEnOfw8NDn82WzWeNrX1/f8PDwysqK1+v1er1Syq2trWKxGI/Ha2tr6+vrOzo6Pnasfn9/n5+fb25ullK63e5wOHxycmLRUgDrEYSA8zw/P+dyObP3eqFQ0DRtfX19Y2Mjk8m0t7dHo9FYLJbP5zVN293dvbu7M5+1CiESicTMzEw8Hs9mswcHBzU1NZFI5Pr62qLVABbjHSFQDh4eHnZ2djwejxBiaWmps7Pz7Ozs+PjY5XIJIaampsbHx3O5nJTy6upqcXExmUxOT08b125vbwcCgbW1tdnZWQuXAFiFIATKQVdXl5GCQohgMCiEiEQiRgqaI5eXl1JK40Rrj8ejaZp5eUtLy+np6Y9XDdgCQQiUg4/bYSorK4UQbrf704jxKFXXdSFEIpEwY9Lg8/l+plTAbghCQC3GHtFMJhMKhayuBbAFNssAaunt7XW5XJubm1YXAtgF/wgBtYRCoWg0mkqlqqurh4aGGhsbLy4u9vb22traBgcHra4OsABBCChndXW1qakpmUxOTk4aI8FgcHl52dqqAKvQWQawu1KpVFFR8WlvS6lUMtvH/Junp6fz8/OXlxe/3y+l/FqNgIMRhAAApbFZBgCgNIIQAKA0ghAAoDSCEACgNIIQAKA0ghAAoLRfKjHXop8k8BgAAAAASUVORK5CYII=",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (0.0, 6.3)\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "#sol = solve(prob, Tsit5())\n",
+ "sol = solve(prob, IRKGL16(), reltol=1e-14, abstol=1e-14)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "4ffb595f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, 0.0, 6.3)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "36-element Vector{Float64}:\n",
+ " 0.0\n",
+ " 0.01\n",
+ " 0.03\n",
+ " 0.07\n",
+ " 0.15\n",
+ " 0.31\n",
+ " 0.514181125280798\n",
+ " 0.7330761872358589\n",
+ " 0.9463065906690233\n",
+ " 1.1575428055787818\n",
+ " 1.3328706604956533\n",
+ " 1.564884826131938\n",
+ " 1.776797626468188\n",
+ " ⋮\n",
+ " 4.223525717220678\n",
+ " 4.390227172003325\n",
+ " 4.618935373466419\n",
+ " 4.831187955871726\n",
+ " 5.034628174841646\n",
+ " 5.242958339993569\n",
+ " 5.409629638633526\n",
+ " 5.638312467582614\n",
+ " 5.850565456658035\n",
+ " 6.0540058685209095\n",
+ " 6.264918449748646\n",
+ " 6.3"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bed51f6d",
+ "metadata": {},
+ "source": [
+ "### Case 2 (adaptive)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "3c6f59bb",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2AU1dbAz5QtaZveE9IILZTQewelKgiIIg998J74HqLiJ0+xIioiqNgQBUVFBBEVRYpIM3QCCUlIQgIhvfeym21Tvj8mWZZN353dmeze31/ZyezM2b0799xz7ikYy7KAQCAQCISjggstAAKBQCAQQoIUIYIfKisrr169eunSpezsbK1Wa/Lf8+fPr1ix4ujRo7YUKTMzc8WKFd99950tb2ptVq5c+eqrr3b1XaWlpStWrPj444+tIZLY2L1798qVKzMzM9s/jftNHjlyxDZSIcQMUoQIS4mLixs1apSvr++IESPGjBkTFRWlUCgmTJjw888/G87JzMzctWtXUlKSLQUrLi7etWvXuXPnLL9UXV0dZoRUKvXz85syZcquXbsYhrH8+p1nx44dP/74Y1ffVVtbu2vXrr/++ssaInWJ7777zvibdHFx6dGjxyOPPHL58mW+bhEXF7djx46ioqL2T7t165btf5MIcUIKLQCie3P06NEHH3yQoqgJEyZMmjTJ09MzLy8vOTk5Li4uJiZm4cKF3GlBQUGTJk0KCwsTVloLwTBs6tSp3N/5+flnzpw5c+bMn3/+uX//fgzDhJWte+Hn5zdw4EAA0Ol0GRkZ+/fv//nnn3ft2rVs2TKhRUM4IkgRIixizZo1FEV98MEHzz//vPHxwsLCnJwcw8uZM2fOnDnT5tLxDI7jJ06cMLz8/fffFyxYcODAgccee+zBBx8UULBux/jx4w0OA61W+/zzz3/++eerV6+eN2+eQqEQVjaEA4IUIcJ8ysrKbt26JZVKV61aZfKvkJCQkJAQw8uqqqrc3Nzg4OCAgADuyJ07d2pra/v16yeTyU6dOpWenq5QKGbNmuXv78+dcOvWrbNnzyqVSs7janzxkpKS4uLisLAwHx+f+Pj4+Ph4lmXHjRs3ePDgzojNMMzVq1cTEhLUanV4ePj06dPNm3wffPDBhx9+eN++fUeOHDFWhCkpKZcvX66rqwsODp4+fbqvr6/xu7gP3rdvXycnp7NnzyYlJUkkkgkTJvTv37/lLSorK48ePVpRUREeHj5z5kxnZ2eTE7ivIjw83Nvb2/h4amqqVqsdOnRoW8Ln5+dXVFRER0ebfPakpCQMwwYNGsS9rK2tvXPnjr+/f0hISFZW1pkzZ9Rq9ciRI0eOHMmdoFKpjh49mp+fHxoaOnv2bBcXl46/uHuRyWRbt27du3dvbW3t+fPnZ82axf1agoKCAgMDb9++HRcXV1tbu2TJkqCgIABgGObixYtJSUl6vT4iImLatGmurq6tXplhmLi4uBs3bkgkkqlTp/bq1asz8lAUde7cubS0NL1eHx0dPW3aNLlcbnxCcnIyy7KxsbEqlerYsWMFBQUhISFz5sxxcnLiTrh48WJiYiKO49OnT4+Oju7qF4IQABaBMJeqqioAIAhCqVS2f+ZXX30FAO+8847hyAMPPAAAx48fHz58uOHX6OzsfOzYMZqm16xZg+N3N7BXrFhhfLU333wTALZt2zZ37lzjH/PSpUt1Op3htNOnT7d8b2pqqom+9PT0/Omnn9qXv7a2lvukJsc5SebNm8e9LCwsnDRpkvHFnZ2dP/nkE+O3PPTQQwBw4sSJiRMnGk7DMOzFF180ufiPP/7o5uZmOCcoKCg+Ph4AoqKiTAT49ttvTd7Lzb80TXMvb968CQCzZs0ynPDf//4XAP7880+TN7q5ufn5+Rle/vrrrwDw/PPPv/LKK8bu3+XLl9M0ferUKR8fH8PByMjIvLy89r/Jb7/9FgAWLFhgcnzIkCEA8M0337Asu2vXLgB44403Vq9ebbj4qVOnWJbNysoyGT4fH5+ff/7Z+FLLly8HgP37948aNcpwGo7jL774IsMwhtO+/vprAHj77beN3xsXFxcVFWV8/eDg4L///tv4HC8vL4VCcenSpcDAQMNpYWFhd+7cqampue+++wwHSZLcuXNn+18IQgygYBmE+Xh5eYWHh9M0/cQTTxQUFJhxhSeffNLFxeXw4cNXr1597bXXNBrNsmXL3nzzzR9++OHLL7+8du3a/v37AwMDv/76699//93kve+8887NmzePHDmSn59/+vTp2NjYPXv2vPDCC+3cLi8vb+LEiampqWvWrLlw4UJ6evrOnTtxHH/00UfNi6nh3L9eXl4AUFtbO3HixLi4uCeeeOLMmTMZGRn79u3z8fF55pln9u3b1/KDazSaX3/9NTEx8csvv1QoFO+9996pU6cMJ1y5cmXp0qUMw2zbti03N/f69euTJ0+eP3++GUJazi+//PLFF19s37792rVrBw4cCAkJ2bVr13vvvTd//vxHH33077//Pnfu3Ny5c7Ozs5999lkzrk/TdH5+PgAY27XffPPN/v37P/jgg7i4uMOHD0dERNTW1k6dOvX69euPP/74tWvXMjIy3n//faVS+fDDD3OLHmPWrFlD0/Tff/+dn59/6NChsLCw995776OPPmpHjGvXrt1///0lJSUbNmyIj49PTk5+//33a2pq5syZc/v2beMztVrt/Pnz58yZc+bMmfPnzy9atCgvL2/lypVPPPFERUXFL7/8kpCQ8MEHH+A4vnr16g7DdhDCI7QmRnRvfvrpJ4lEwv2W+vXrt3z58t27d1dWVpqc1pZFOHToUIqiDAfnzZsHACRJpqWlGQ5yWmTp0qWGI5wZRJLk7du3DQfLy8tdXV0JgsjPz+eOtLQIFy1aBACfffaZsWznzp3DMGz8+PHtfMxWLcILFy7IZDIA2LdvH8uynA5eu3at8TlZWVlyuZxbLnBHOItwwIABxsbrtm3bAOA///mP4ci0adMAwNieYBiGMyJtbxHiOJ6QkGA4+Ntvv3Ejvm7dOsNBlUrl5eVFkqRarW7lG2ympUVI0/Trr78OAE5OTlVVVWyzRYhh2JUrV4zfu379egCYM2eO8cEvvvgCAIYMGWI4wlmEHh4e1dXVhoOpqak4jnt4eKhUKu5IS4twxIgRGIYdPnzY+Pp79uwBgGXLlhmOcOuep59+2nBEq9VybtuwsLDGxkbDcW7L4IsvvmjnC0GIAWQRIixi0aJFCQkJ8+fPd3FxSU9P5wL//P39ly1bVl9f3+Hbn332WYIgDC+5if7+++/v16+f4eCECROg2fYy5oEHHujZs6fhpa+v77Jly2iabmk7ciiVyt9++83b25vTAQbGjRs3cODACxcu1NXVtS8twzArV65cuXLl8uXLJ0yYMH78eK1WO3nyZE6/7tmzB8fxl19+2fgtUVFR9913X25uLqeKDDz33HOGBQQATJ8+3fgz1tfXnz59mvtEhnMwDDOJSLIZkyZN4lyXHNyIAMCaNWsMB52dnYcPH05RVGd8A4mJidw3uWTJkpiYmA0bNgDAO++8w+kYjsmTJ48YMcL4XZxWfumll4wP/vOf//T3909MTDT5hSxfvtzT09PwMiYmZsaMGbW1tS1tR47MzMz4+PjBgwfPnj3b+PiSJUs8PDyOHTtmcr7xWEil0tGjRwPAypUrDTuF0PZPFyE2ULAMwlIGDBjw66+/ajSay5cvX7ly5dixY3Fxcd9//31ubm5cXFz7eQUm8QtcXEmrB8vKykzeawjoMBAbGwsA6enprd4rNTVVr9c7OzuvW7fO5F+NjY0MwxQUFLi7u7cjLcuyO3bs4P7Gcbxv375Lly5ds2YNQRDFxcWlpaUKhWLTpk0m7+I8Y7m5uTExMYaDvXv3Nj6HCxEqLS3lXmZkZDAM06dPH6lU2vID2h6TEfH09JRIJC4uLiZxQIaR6jBCJCcnx/BNOjs7T548ec2aNSY7vsaLIQBgWfbmzZsYhpnsEUql0oEDB544cSI9PT0iIsJwvOXPY/DgwUePHk1PT58zZ05LkRITEwFAp9OZKFruFuXl5SqVyhAKJJVKTXKBuM9uMqx+fn7Q2k8XITaQIkTwg1wunzRp0qRJk1588cWDBw8uXLjw3Llzp06d4lx8bWG8fAYATmuaxEZyUTNsi6K4JrMwNM87DQ0Nrd6Lc2+WlZUZpmBjPD09dTpdO6ICAEEQFRUV3N8eHh7GOp6zJhsbG9u6OEVRxkfa/4xKpdLwcYxpecQ2tIxWxTCs5UHuU3SmwsDcuXO5ij8kSRoHBBljHIYDAFqtVq/Xu7m5tbwvt4wwGfeWPw/uSPs/j6ysrLZGUK1WGxShXC43DuaC5s/e6u+55U8XITaQIkTwz/z58ydOnHjmzJmEhIT2FaEllJeXmxzhlt5t5UJwE+7IkSPPnj1r9k2NvW0tLx4UFJSXl2f2xQ1w+QAtLYmWR9rSPSqVqv1bcHO0yRspitJoNCazuTWQSqVtfZNtIZfLJRJJQ0NDY2OjiS7kLGmTcW/r59GW3uWOL1q0aPfu3V0SDGEHoD1ChFXgokiM9/945/r16yZHOO+WsQfSmAEDBpAkmZiYqFareRcmODjYz88vPz+/sLDQ8qv17duXIIibN29qNBrj49wHNIbLyzRRkDU1NSUlJe3fotU3ZmVl6fV6s8W2NlyqZUJCgvFBrVabkpJi+K+Btn4ereZrAgDncb106RIy4BwQpAgR5qNUKn/88ceW5khmZub58+cBoJ2Ebss5fPhwRkaG4WVpaemePXtIkmyryItCoXjooYdUKtXbb7/d8r+cN9JsMAx7/PHHoTmQ0sKLu7m5TZ8+vaqqioux5GAY5sMPPzQ5MzIyEgBMQjnefffdDmfztt7YJTltDFexb9OmTcaf7quvviovLx85cmSPHj2MT/7mm2+4PFeOlJSUv/76y8vLa8qUKa1ePCYmZsSIEVlZWVw0qQkW/jwQIge5RhHmo9FoHn300f/9738LFy4cPXq0r69vXV1dfHz8jh07lErl5MmTTbLL+SU4OHjmzJlbtmwZNGhQZmbmSy+9pFKp1q5dGxwc3NZbPvzww3Pnzm3cuPH27duLFy+Ojo7mKqf89ttvNTU1lrhMAeC11147evTonj17uFYPvXv3bmxszMnJOXbs2JUrV7Kysrp0tXfeeef06dPPP/+8SqWaNWtWbW3t+++/zyXbGTNu3Ljg4OCzZ8+uWLHiscceU6vVBw4cOHz4sLe3t7EaaMnMmTPd3d0PHDgQHBw8b9686urq3bt3JyQkcKa8OFm9evWuXbuOHj26ZMmSVatWKRSKP/74Y8OGDSRJvv/++yYne3h4TJ06dePGjdHR0QkJCVxay1tvvWVSJsaYnTt3jh07duXKlVevXp09e3ZERERFRcXt27f3798fFBTE5VEg7BKkCBHm4+Li8thjjx0/fnzr1q1bt241HJdKpStWrPjwww+tWop63bp1p06d4lIXOJ588sn2bZrg4ODLly+vXLnywIEDBw4cMBx3d3d/6qmnLJTHzc3t7NmzTz/99P79+0+ePGk47uTkZCg+3nmGDBly4MCBJ5544oUXXuAyFHv06HHo0CGTwFGpVLp///558+bt2rWLS78LCgr6448/Hn/88fYVoaen5w8//LBkyRLD2PXs2fPo0aNcGoA4cXNzO3369JIlS3788UdDC46goKAdO3aMGzfO5OQPP/zwk08+MeRCkCS5fv16k8wZE7gsmieffHLHjh3GITO+vr6olqx9gyGHOMJCGIZJSUnJz88vKSnBcTwsLGz48OEmoRD19fVlZWU+Pj6G46WlpY2NjSEhIcYZAkqlsry83MPDwzifDACys7MlEkloaCj3csOGDW+88cbXX3+9fPny5ORkbu9n9OjRffr0MX6XWq0uLCx0d3dvGWyZk5Nz5cqV2tpaDw+PHj16DBs2zCRRoeVnzM3NhWaPYvuUlJRcvHixoqLC1dU1NDR0+PDhxsEdZWVlKpUqODjY2Pbiri+VSo0LtAJAXV3diRMnqqqqwsLCJk+eLJPJTL4Kjvr6+hMnTlRWVgYFBU2fPl0ulxcUFOj1eoO0er0+NzfXxcWFy/s2UFVVdeLEibq6uvDw8ClTpkgkktzcXAzDDLkBKpWqrKzM3d3dpJZpTk4ON9bGB8vLy5VKZVBQUDtWV0NDQ0VFhYuLi6GobFvneHp6thpQw7JsUlJScnKyVquNiooaN26cye0qKioaGhoCAwPlcvnly5fT0tJkMtnEiRNNfKctf5MG0tPTExMTlUqlr69vjx49hgwZYrzbzf0SwsPDjd9SWVlZX18fEBBgPNYajaa4uNjNza1lCCtCVCBFiOh+GCtCoWVBIBDdHhQsg0AgEAiHBilCBAKBQDg0KFgG0f2YOnWqTCYbNmyY0IIgEAh7AO0RIhAIBMKhQa5RBAKBQDg0SBEiEAgEwqFBihCBQCAQDg1ShAgEAoFwaJAiRCAQCIRDgxQhAoFAIBya7q0Iq6qqPvvsM6Gl4B+WZVFaSzeiMz3ZEeIBPVzdCNs8XN1bEebm5ho3bLMbKIrSarVCS4HoLB22g0eIB5qmrdGZGWElbPNwdW9FiEAgEAiEhSBFiEAgEAiHBilCBAKBQDg0SBEiEAgEwqFBihCBQCAQDg1ShAgEAoFwaJAiRCAQCIRD0+0V4XO93Sq3v6xOuQgoSRaBQCAQXafbd6h3xjFNZqImM9FlzCzPRasBw4SWCIFAIBDdiW6vCLdlKe/718t1h3epLh7FZU7uD/5baIkQrcDSFF1dRvoGCy0IAuG4LF68+M6dO0JL0TUYhsHxJs8ljuM//fRTeHg473cRRhFqtdqUlJS6uropU6YYPqQxcXFxer2e+9vf33/AgAFtXapOz7hOnEf6hVR9tb7hzC+YzEkxY6m15EaYS+3P21SXjilmLEWj041QJ52r+XGrYs5y13FzhJYF0Vno+pry9/8rixro+ejzmFRm/K+zZ89+99133t7eQslmIcuXLy8uLrYTRZicnDxixAh/f/+CggKNRiOTyVqes2DBgt69ezs7OwPAxIkT21GEHPK+w7weX1f17cb6P/dIw/rI+w6ziugIs2BpSp10DgDq/9zDKOs8FvwXebC7BcrzhxhNY+3Pn1GVxR4P/huNWrdAnXSWrq9pvB5HVZV6/3s94eZp/N+BAwcGBAQIJZuFuLq6WunKAijC6Ojo8vLyqqqqqKiodk779ttvo6OjO39Zp4Fj3Wctqzv8TcPpn5EiFBXa28mMWkkovBi1Unn+D6ax3vOxtRjR7d3y9g2jqtdmp3PDpPz7V7q61GvpiyYWBkKEqG9cAgBMKtflZ1Zsfc77ybckAT2EFkrsCBA16uzs7O7u3uFp586d++OPPwoLCzt/ZdfxD+ByF+3tJH1RN/OD2zfqlAsA4DJmls/Kd3C5S2NiXOUXr7Ja1AFA1KjTrgBDy6IH+T69GXd1V6dcLP94DV1bKbRciPZgGhu0d25gBOn/v+2yyP5UdVn51mc1N68KLZfYEemqPDAw8PDhwxqN5uzZs+++++7q1atbPU2tVpeWlm7cuNFwZGFErPPNC/VnflUsfs5WwvKPXq+naZogCKEF4QOW1aReBgBJ3xF4UITnqvdqdr6uvZ1U/tn/PFasx10UQsvHA3q93rClbTc0Jl8AAEm/EVhItNfTW2q+Wq8vyi778BnPFW+QQZFCS2c+NE3b5XhxaFIuAUNLew9h3X3c/72hfv9HmqSzlTvXK+Y/5TRqhtDS8QBFUV0dO4IgWo1EMUakijAlJQXDMAA4d+7c1KlTFy5cGBgY2PI0hmFomq6pqTEcqRo60TnzsibprPOMf+D3Ose7EUwzQgvCA1ReBl1fTXj64QFhDMPgfqEe/9lU99Ub+oLb1Z+/5PGv9bi7j9AyWordDJYBVq/T3U4CDJP2Gc4wDObp77lqc913G/W56dWfv6R4bK2091ChZTQTe3q4WqJJa1p0MgwDOOH2yPOEb7DqxL76X7bpS/OElo4HWJbt6th1qAVBtIoQa96WHz9+vKenZ0ZGRquK0MXFJTg4eMuWLcYHq4qT1Mnn9Vf/UsxcZgtZrQCO4zRNtxpG1O3QZFwFAOdB4+5+nMAesmc/rPzyFX1Rdu32db7/2Uj6hQgposXodDr7GCwD6tvXWZ1G2qOXk19Q0yGZTPb0ezX7PmxMOFP37TueC/7rMna2oDKaCU3TAGBn48XBUnrdreuAYW6x44jmDyib/bjUO6D2wKfqC4dZvbjafavV6oMHD9bV1c2bN6/VGb4lEonEGmMnosoylZWV9fX1Jgfv3LlTVVUVFhbW+eu4TZoPAMoLR1i9jk/5EGbBbd3LB441PkgoPH2f3iyLjKFryss/WqPLzRBIOkTraLhRGzDa+CBGSryW/k8xYykwdM2BT2t/3Y7KOYkKbWYiq1VLQ6MJj3u8LC6j7vd+cgMud2FpWijZWqLT6SZPnnzkyJGCgoIhQ4bcunVLQGEEUIRarXblypWvvPIKAKxatWrNmjXc8SeeeGLz5s0AcPz48ZkzZ77++utr164dN27cU089FRnZhT0JaUSMNKwPo6xrTDhtDfkRnUdfkktVFOGuHrLwvib/wp1cfZ7aKO83nGlsqPj8JU1GgiASIlqBZTXp8QDg1H+06b8wTDFjqeejazCCVJ79verbjWi5KR7UrS1fOOS9h/g++wEmpgSYX3/91dnZ+Ycffti4ceOqVas2bdokoDACuEYJgpg2bRoAPPTQQwAglUq54y+88IKnpycAjB49uqam5vbt2wqF4qeffho/fnxXb+E6cV717k3Kvw+6jLwfJT8JiDrlIgA49R8FrbnpManM51/ra/Z/orpyvGrnG15L/+c0eILNZUSYos1JpxtqSJ9ASWB4qye4jLyf9PSr2vW2OvlcRV2Fz7/W464etpUR0QKW1aRfgVaXLwAAIAkMx6Ry28rUHgcPHpw7dy7396xZs6ZNm7Zr1y6hhBFAEZIkuWjRopbHJ02axP2hUCgeeeQRS27hHDu+7tDX+tI8TWaivE933dW3A9Q3LgCA071+0XvACc9HnsNd3BpO/1z1/SZPtdJlzCzbyYdoDU3qJQBwGjCmnXNkvQb7PvtB5c7XdbkZ5VvX+Dy5gfQPtZWAiFbQ5d6k69tbvgCAqKyCoqKia9euvffeewCgUqlqamqUSqX1UubbR6TBMpaCE67j59b9sUsZdxApQqGgq8v1RdmYzEkWPai98zDM/YF/4S6KusPf1Pz0CVVV6j53ua1kRLRCOx42YySB4X7PfVS1c72u4Fb5x897L39d1rODClAI66HuxPLFhPOl7EtXaY1N9g39nGDXBDLA6e4RjUajVqu5mH+dTgcAWq0WKUKecRk9q/6vfZqMBH1xjiQoQmhxHBH1jYvAsk79RmASaYcnu019GHfzrPnxo4ZTP7E6jcdD/xHV6tVx0JfmURVFuIui5bZuSwiFl+/qzdW7N6lTL1d+8bLnI2uch02xgZCIlnRy+WLMuTL2Qpntwp1u17EBTncf6qCgoBkzZjz55JMAkJ2dvX37di8vL5sJY4LdKkLc2dVl+DTl+T+U5w55Ln5WaHEcEfWNi9CVJ9NlxHRcJq/+frPy3CFGrfR6bC3ShbaHq37gFDMS8E7Vc8Ckcu/lr9f+9qXy7O/VP2wh3L07cAAgrABVVkCVF+IuCll4v86/638D8RkhGGMTVehCQh+Pex7nsWPHXrlyhVOEly9fHjNmjICxPHarCAHAdeI85YXDjddOecx7EpM5dfwGBH8wqnptdipGkPJ+Izr/LqdB432c3Cq/frPx2mmn2AlO/UdZT0JEq5hhWACOezz0HwBQnv1dfeMiUoS2p8kvGjOy1ai0tiAwGOwtmO5Zvnz5wIED9+3bFx4e/tprr33yySdCSQKiyiPkHdI3WBrai9XrdHmZQsvicKhTLwPDyHrF4nLnLr1R1ivWbfICANBlpVhHNESb0HVVuvxMTCKVd71wjNPAcQCgzU6zglyIDjBn+SI0vr6+x44d++233zZs2PDuu+/Oni1kfQZ7tggBQBoZo8vP1OakyXrFCi2LY8EV2m4vXrRtZJH9AUCbk86zTIiO0KReBpaV9xlqRpcJaVhvjCD1xdmsVo0cMLaEbqjR5WVgEqm89xChZekasbGx+/fvF1oKAPu2CAFAFtEPAHRoSrUtrFatvXUdMEweY45vUxreB3BCX5jF6sRVEcru4Txs8jYS0doHk0glIT2BYXR5qE6QTdHcuNS8fBFRmmD3ws4VoTQyBgB0uTfBTmvsihNNxjVWr5NF9CMU5tQ9x6RySVAES1O6AiGrLjkarFatvZ0MOO4UM9K8K8giYwB5R21Ok1/UrOULgsPOFSHh5kn6BDKaRn1JjtCyOBBcQRl5V1KaTECmvO1Rp8ezlF4W3g937bhdaKtII2IAjZptYbVqbZZFyxcxUFpa2r9/fwDYsmVLdHR0v3799u7da0sB7FwRQvPDiTacbAZLU1wj0C7l9pogjegHaNRsS6uFtruELLIfAGhzbwIjouLO9o3mJud9iTF7+SIGKIrKzc09ePDgnj17Ll26dPDgwRdeeCEpKclmAti/ImyyLZC7xlZobyczjUpJUATp06m+Kq0iixoAALqcNNTfwDawNKXJuAZcYVhzwV09SN9gVqvWF+fyJhmiXbpjvKiB4uLinTt3/vDDDxqNBgC2bdu2du1aHx+f3r17//Of//ziiy9sJon9K0JumxDZFjaDy6M3L17UAOHuTXj4Mo1KfXkBT3Ih2kOblcI0KiWB4aRvsCXX4dad2uxUnuRCtAdLU5qb8cBlEHY3cnJyhg0blpycnJaWtnTpUgBISkoaPHgw99/Y2FhbWoR2nj4BABL/HrizG11TTtdWEB6+Qotj77As52GzxC/KIYvs15gYp8tJl/j34EMyRHs0jZrFARfSyBhV/AldTjpMeJAPuRDtobuTatHyhaG1OelAU3zL1Qq4q4dJqcvNmzcvXrx469atALB9+/a1a9dWV1ePHTuWayhPUZQtK67ZvyIEDJOG99Wkx2tz0p0HTxRaGjtHl5dB11eTXv6S4C60kGwVaXi/xh35780AACAASURBVMQ4XXaay6gZvMiGaBOWVadeBj48bFJkEdqQ5kLbZo5a/amf6o98x6tE7eG7egu35cGRlJT00ksvcX9zrYecnJxOnz4dEREBAKdOndqwYYPNZHMARQggi4zRpMfrkCK0PlwevdwyvyiHDPm0bYWuMIuurSDcvaWh0RZeSuIXiru603VVdHU54eXHi3iIttBYtnyRR8fq+qSyNkktw2VOknsbdZEkSVFNxqherweA8PDw6urqIUOGAEB5eTmnEW2DQyjC5lUqipexOtzWvdNAS/2iACAJisRkTlRlMaOsRX1frUpTA8L+o3moco5h0rC+mrTL2pw0Z6QIrYm+MIuqLiPcvaUhZi5fpOF9fZ56h1+pOs/o0aMPHTq0YMECADh06BAALFmy5Icffpg2bRpN03v37n366adtJoz9B8sAgLTH3eJPQstiz+hLcqmKItzVo0sl8NsEx6VhvYFltTk3ebgaom34jTzkkih0OWjdaV2aFp0D+Fi+CMELL7xw9erVmTNnLl68+MKFCwCwevXqlJSUmTNnjh8/3tPTc+HChTYTxiEsQq74ky4vQ5eXIes1WGhx7JamJ7P/qC6VwG8HWUSM9laSLifN7F0QRIdQ1WX64hxc7sxX1whUX8Y2WFIPTwz4+fldu3bt0qVLTk5OQ4cOTU9PVygUV65cuXLlikwmGzp0qC27MjmEIgQAWUQ/XV6GNjsNKULr0Vxomwe/KAdKq7cBGm5bt99wjOBnNpCE9sIkUn1JLqNR4XIXXq6JMIGuLtcXZeNyl27d9MrZ2Xnq1Knc31ziBEmSY8fyEGHQVRzCNQqGoqNoSrUadHW5vugOJnOSRfPW6EMa3hdwXF9wm9Xr+LomwgTeDQuMlEhCooFldcinbTXUN7jlyzC+li8OjsMowghU/Mm6qG9cBJaV9xuOSaR8XROXO0sCw1lKry+8zdc1EcYwqnptdjpGkPK+w3i8LNomtDao0Da/OIoiJNw8SZ8gVPzJejQVlLE4j94ELu5Gm41MeaugSbsCDC2LHoQ7ufJ4WVTg16owjQ3a7DTely+OjKMoQrhbaw2tUvmHUdVb6cmUcrZFLppSrYKVAi5kEf0Aw3R5GaxNqpY4GlZavjgyDqQImzv7IEXIP+rUy8DQsl6DeX8ym2yLbFR9m39YvU6TkQgY5tSf50qVuIuC9AthdVp9UTa/V0ZANy+0LU4cSBE2Tal3UPEn/uEaEFojyYH08ic8fBhVPVVZzPvFHRztrURWp5GGRFujBi9ad1oJltJrMhMBw5xizO8TgjDBgSKOJP6huLMbXVeFqm/zC6tVa28lAobJLejg0w7S8L7qpHPa7DQLGyMgTLCqYSGNiFFdPq7NTnedON8a13dYtJmJrFYt7dGL8PAx4+0pKSlFRUW8S2UblEqlla7sQIoQMEwa0U+TdkWbneY8ZJLQ0tgPmoxrrF4njYghFFapFi+L6KdOOqfLSXMZeZ81ru+gsKwmPR6sY8dDc1q9DlXf5htLli+TJ09++eWX2z+HrilnKYrw9MFI3sK/LYFhGLy5QIerq2twsFVWw46kCAFkEf00aVd0OelIEfKIOoW3+qKtgkIQrYE2J52uryG9/CWB4da4PukbTCg86foaqqqE9Da/RTPiHlhWk34FzA3P3rt3b4fn1Pz0ieriUfcH/+02eYEZt+CdhoYGNzc3a9/FgfYIwRA4ioo/8cfd1qDW8YsCgDQkCpM5UeWFjKreSrdwQJoKbfPRJ6QtpOF9AUCHHjf+0OWm0/U1pE+gJCDMSrdwzM1dB1OEob0wgtSX5DAaldCy2Ana28m8dDZvD5yQhkYDy+pyUaUS3rBB5CEy5XlHzVPX63ZojtN2rFFzLEWISaSS0J7AMLq8TKFlsROa8uitaVgAgAxNqbyiL82nKopwFwW3/LcS3Kghi5BH+Oqf3A6kTyCh8GKUtVRFd42pMQPHUoRgeDjRlMoLLKtJuwLW3CDkaEqrR1MqTzT5RWNGAk5Y7y6S0J6YVKYvy2caG6x3F8dBX5ZPlRfiLgp+2py1jQMWu3c4RXg3QRthMbq8TLq2kvTylwRFWvVG0vC+gGG6gluoUgkv2CYjGyNIaWgv5NPmCw3fbc7aommb0JEmSYdThLKo/lzxJ1R923KaSuAPHGvt1qC4k6skIIzV6/QFWVa9kSNA11Xp8jMxiVTee4i174XC03jEZoW2pZH9AVmE9g3uomiuvp0jtCzdnrs9sq1Ps7sGTamWokm7Aiwr7z0Ek8qtfS+0TcgXdEON7ZYvTXHaBYyyztr3EgkOpwih2fBHq1QLoSqKqPJC3NWdm+ysTXNUtwOtUq2ELTubI582X2huXAKWlfcZikllVr8ZTkh79AKW1TqMT9sRFSFq0ssLXD1lWXhfa+9YcEhRlBMfsFq19lYS4DjvhbZbBXc2+LRRR0mLaIoXtVUDQkfLJnRIRYicbHygL80DANI6dUlaQvoEEgpPuqGGqiyxzR3tEl1RNkvppcFRuKuHbe4oRQ4YPtDlZQCAvM9Q29zO0bIJxasIa2pqMjIyKIp/j4rELxR3UdC1lXRNOe8Xdxz0JbkAYL0KFy2RhjvWKtUaUCW5ACAJirDZHVHCkuXQ9TWMqh53diXcvW1zR2lEP8BxfcEtVq+zzR2FRQBFePjw4aFDh0ql0jFj2kw+27x5c1RU1OLFi3v27JmcnMyzBBjGTakOFRbFO02K0FYWIThkehPvNNnxtly+RHIWYSrqKGk2VGkeAEgCwm12R1zuLAkIYym9vtAhfNoCKMKQkJAtW7Zs3ry5rROys7Pfeuut+Pj45OTklStXPvfcc7zLIEMJ2pbBUnqqsgRwgvQLsdlNUQii5eibplTbKULSO5Bw90YdJS2BW3SSgbYbNTCUc3IM76gAijA2NnbKlCnu7u5tnbB///4pU6b07NkTAJ588smzZ88WF/P8CDVXQURTqplQZQXA0KRvMEZKbHZTVKnEcvQleWBbOx6afdpom9BsbL98AUM5J8eYJMW4R5ibm8tpQQDw9vb28PDIz89v9UyWZRsbGxOMqKvrVOKLtEcvjJToi1H1bTPRl+aCzZ9MjCClIdHAslzgAKKrMKp6RlmLy11sttXEIXOkKdUaCKIIZRHNafUO4NMWYz9ClUrl7X33QXV2dm5oaN0CqK6uzsvL+/e//2048swzzyxcuLAzd8EDI+iCW3U3r0uiYy0UmHf0ej1N09YIFOILdd5tAGC9A63XM7p1QqIhO1WZkUSF9rXpfdtFpVJhVq6twwtUzk0AwPxClCqbrv+ogAgAUGfdkNj419IaNE1rtVqGYYQWpAtwdrxO4au35RcodcbdfZi6yrrcTMLXdjsgJlj+cMnlcpLsQNOJURH6+/vX1NQYXtbU1Pj7+7d6pre3d9++fa9du2bGXejogQ0Ft4jSHNfB48wU1GpwilAut3rhD7PRVJUAgEtYtJOrqy3vS/aO1Z49yBbddrXtfduHZVlRydMWytoyAJAHR9pa2ugBKpkTU1XiDDTu2uaeiG2gaVoikTg7OwsrRuehaytrNSrcReHmH2TjW+siYxqvx5FluS4RfWx8awO2ebjE6BqNjY29fPky93dKSgpBEAZPKY+gbEJLsH0YG4c0IoYrFYsqlZiBIB42AK5SSW9gWRTxawZNo2bDjBcDUoepvi2AIiwoKNixY0dcXFxZWdmOHTv++usv7vigQYMuXLgAAAsXLiwvL3/zzTcvXry4evXqFStWWGP5JovsDximy0XVt7sMq9NS1aUYKSF9bb1ExZ1dSb9QVq/j6togugQlRKQMB9omNBvbJ+wakEU6Sh9QARRhXV1dQkKCTCabNm1aQkLCnTt3uOPjxo3z9PQEACcnp9OnT2dlZb366qvTpk3btGmTNcRoqr6t0+jQlNpF9KV5wLKkX4hVu9m1hSyiL6Ap1Sxsn0RoAHWrNxtKKDseQBIUicudqYoiur6m47O7MwLsEfbv3//LL79seXzbtm2Gv3v37v39999bWxJZZAxVUaTLSZeGRlv7XvaE7VPpjZFGxKguH9fmpLtOnC+IAN0Uur6aaWzAnd0Ihaft7y4N7ws4ri+4zep1mERqewG6L1ykjM1qGd4Djkt69Nbeuq7LvWnt5tvCIsY9QpuBsgnNQ8AlKjS7a1DJrq4i7PIFlztLAsNZSq9D1be7BMvqy/IBQBLQQ5D7Nz9udj5JOrQidMBGzLxg43LbJpA+QbirB11XRVWXCSJAN6Vp+WLb6iTGNBcdRY9bF6BqylmtmnD3xp3dBBFA5hitlR1aEZJ+IbirO11XRVej6ttdQMDdewAADEPbhGbQ5GGzeaCvgeZu9ciU7wJNRdKFetYApGF9ACf0hVmsTiuUDDbAoRUhYJgsvC8AaHNShRal28BoVHRdFSaVkd4BQsnQ1IYCTaldQbDciWaaW9yh6ttdQMD4Jg5M5iQJimBpSpd/SygZbIBjK0JuDx9Al5cptCDdBqokD1hW4t8DhKulwsXia3ORIuw0LEuV5oOgrlHC04/w8GUalfqyAqFk6HbohXZog2NsEzq6IuTSVPWlrdcyRbRE2A1CDkloL4yU6EtyUanYTkLXVTIaFeHmibsoBBSjyShEpWI7TVORdOEsQrhrLdjzqDm6IiT9QwGAKkOKsLMIvEEIAAAYKZEERwHD6AtRDminaN4gFHLUAIAMCgf0uHUelqXK8gHDhB04R7AWHF4RegVgUhldV4Vsi07S3MdH4CmViyZHU2onac6dEHrU/EIBALlGOwlVVcLqdYSHLy4XsjIq6RsMOEFVl9pxt3pHV4SAYaRvCHAN9hCdoDkKP1xYMUj/HgCgR4qwcwib+mmAGzW0fOkkYvC+AABGkKR3ADCMHbdWdnhF2Gxb2LfhzxeMqp5uqMHlzoS7j7CSSJp82mj50ilEYseTvkEYQVJV9mxb8IgYImU4mhww9jtJIkWIVqldgFuikgFhAoaMciCLsAs0VyfhvjQBwQiS8AkElqXKC4WVpFtAiSBShsPuHzekCJtsC7Rv0RmELdNlDOkdgEmkdF0Vo2kUWhaxQ1WXsjqNgNVJjGl+3Ox2SuWR5ght4RWh3Y8aUoRA2rvVzyOCJ2XfBcNI32BkW3QGkWzrcjQ7YNC6syMYmiovBAyTCG3HgwNMkkgRAukThBEkVV1q3zWEeEHAhnYtkSCfducQQy6aAYm9O9n4Ql9RxFJ60isAk8qFlgUkfqGAYVRFkb12b0WKkNu3CAKWpSqQbdEBghd8MoZEPu3O0dzHR0SjhizCDqHE9KxhMifC3Yel9PZa6R4pQgCDB9x+DX9eoOuqmMYG3EUhSEO7ljRZhKV5QgsidkTk0OaeNQyjygvt1bbgC5EE+hqw78xdpAgB7H2M+UIkSdkGuH0LZBF2AMNQ5QWAYSJRhJhUTnj4sjRFVZUKLYuoEU/uBEeTA6bUPh83pAgB7gYH2+cY80VzUna40II0QfqFAE5QVSUspRdaFvHSVJ3E0xeTOQktSxMoc7cziGpnF+x9Sx4pQgDDBj56MttFPMHcHHcLXlQUCS2LeGmeT8OFFuQuKHO3Q1iaoiuLAcdJv1ChZWnCvrfkkSIE4MYYw+jKYpamhJZFvIhtiQqovkwnEJtDG1DmbiegygtZmiK9AzGJVGhZmuAefKos3y7bSSJFCACASaSkVwBLU3ZcTM9SuEL4IlOEdl/wwnJEUmXUGGQRdoh4KlcYwF0UuIuC0TTS9dVCy8I/SBE20RTVjbyjbUDVlDOaRkLhJWxDOxMkqItWR+jFlE3PcdcitEfbghcokUXKcNjxNiFShE1IUAhiu4iqOokBFDjaPixNcdVJSL8QoWW5C+6iwF3dWa2arqsSWhaRIpL+kSaQ9hvlhBRhE8hd0z53y22LCdLPkJTGCC2LGKEqipu2mkRQncQYVF+mfUSV+mnAjrfkkSJsAj2Z7SO2rCYOXO5MKLxYvY6qsc+CFxZCleSC+EYN0E5Eu7B6HVVVghGkqOx4sOsteaQImyADegCGUWUFyLZoFRFG4XOgIs7tIKqSeMagdWc7cLMQ17tRaFnuAVmE9g+yLdqDYaiyfMAwMkAsWU0GUHZ2O4jTwwaGbgb2OKVaTnPCbrjQgphCePhiMie6oYZR1QstC88gRXgXZFu0haE6CS53EVoWU0gUONo2IgwZ5UAWYTuIdvkCGCbxCwUAqtzeJkmkCO+CbIu2EGEqvQE0pbYFS+mpimLACbFtNQEA4e6Ny50ZZZ392RaW05REKMrHjfMJ2V+cNlKEd7HjLBkLEa1hAXcLpqMWWqZwHR5I3yCMlAgtSwuaMzrsb0q1HHGmKnE0t3yxt0kSKcK72HFMlIVQpbkg1iUq7uqBuygYtdIuC15YgpgNC0AJS23A6jRUdRlGSkifQKFlaQV7rTiKFOFdmmyLUvsspmcJ4kzvNcAVJkZTqglituMBVRxtA31pPrAs6R8KOCG0LK1gr24zpAjvgru623ExPbMxVCfhZi4RgqbUVhFhlVFjSNRXuTXEbsf7BGKkhKopZ3UaoWXhE6QI78Fe1zuWQFUUibM6iQEywD73LSxEnMWADKCihq0i8uUL4ATpEwgsS5XbVe8zpAjvwY6L6ZkNVSJqDxsgi7A1WL2Oqi7DCJL0DRJaltYhvQMxUkLXVrBatdCyiAjR1kAw0BxLYVemPFKE99A8pSJFeBfxZjU1g8IuWqIvzQOGIf1CxFad5C44TvoGA8vqy1HE71303WTdSZXa1boTKcJ7QFNqS5o8bOKrV2mA9PTDpHK6vpppVAoti1gQu4cNAO4WQ7CrKdUSGE0jXVeJSWWkd4DQsrSJXUbXI0V4DyinviUi7BFqCoaRfsHAZc4hAKA7eNgAFUNoAVWaBywr8e8BGCa0LG1il5u7SBHeA+HugwpeGMMVwgecIH2DhZalPST2uG9hCeL3sAEqj9cCkcc3cXC9z+jKYpamhJaFN4RRhEePHh0yZEhQUNDy5cuVylbcWVOnTh3WzLp162wnGYZxSWlolcpBlRcAw0j8gsVYncQIVCfWBD1XA0HEDm24u3xBo9aE+PfjAQCTSEkvf5am6MoSoWXhDQE20ouLixcvXrx3795Ro0b985//XLdu3aeffmpyTnJy8ldffRUaGgoAnp6ethSPDOihy8+kSvNlkf1teV9xIvJUegNNUU7Ipw0AAKxWTddUYBIp6S3G6iQGSL8QwHGqopil9CJfadmGbmHHAwDpH0pVlerLCkix5hZ3FQEswt27d0+cOHHu3Lm+vr4bNmzYvXu3VqtteVpMTMzQoUOHDh0aGRlpS/HaCRylGKhuRVJ7plssUQG19bkXfWkesCzpFwq4qPc+ONsCGJqyI9vCErpFiBPYY761AM/JzZs3Bw8ezP09aNAgpVJZWNhKjMOSJUuGDx/+9NNPl5XZtEGgpI0p9XQx2/8XKniv/pM0xnEqsHWbJapPEEaQVHUpq2tlqVKrg9cS6JifqR/vOETX5ebiamKfT6HdOG2GhT1ZzJCD1LOXaMoBxo1pVNL11ZjMifD0FVqWDmg/cDShkp1znJpyhCpQdZuZUgDXaFVVVUxMDPc3QRCurq6VlZVRUVHG57z//vuxsbEajWbTpk0zZsyIj4+XSFrxnFRWViYnJxv7Tt96663HH3/cEvEYV28A0JXkNjQ0cEcqNNgrSeT+PIIb1Wcv0UdyddtHUL5yaw2zXq+naVqv11vp+p1HV5wNADo3H6r52xAtmJc/W1FUl3uLMFLbKgrbfov4JJOo1WEAsOQMfbNS+0I/njf5W93nFhBN3m0AYDwDGkQ/aqynPwAo87OoyEHGx48U4W/dkKTXYQBwvYpNrdR/P45yI3l44mia1ul0NE1bfil+oXLTAQD3DWkQ2c+pJbSbNwBoinJMfmC36rG3UyW/F+DcOI38jfppvHaQp0WjZvnDJZfLW1UfxgigCD09PQ2fjWEYpVLp7e1tcs4TTzzB/fHjjz96eXmlpKQMHTq05aV8fHz69+9/+vRp7iWGYR4eHpbK5+qqlEiZ+moXCYHJnb/KYF66SldrwYmEV2KJ3u7w1Hn6rxJizF/EtxPJGSFWiXLmFKFcLnBJM1anqautwEiJe3i0OEsAG6MLDFNXFEmVVc5uAwBAQ8MXN5l3k+lyNQDA1CBslB+2KZnZcIMs1Eq/GEdIePWGuLm58Xk5y9BWlwCAa3gvuZikahU8tKcWgKgtM3yBp4vZl6/RV8pZAAhzxf7TF9+aSp8uI2acIY/cT4S6WPrE0TSt1WqdnZ0tFZ1vlPUVACAPjhTVb6lVmMg+SgC2qtjN1ZXL9MhTsm8mMrtvMzQLTiSs6osnVLJnStiZZ2T7JpNzelg0ajb4QgRQhD179rxx4wb3d0ZGhkwmCw5uMzRfJpNJpdJWNxE5CILgOZoGw0i/EH1RdmZW/r9yel4sYwFgciC2fRzR2x0DgPEB+BNx1J+F7Kw/qdUx+OYRhEzsOsJMmraaxFoI3wTSvwfARaqsQM/AvjvM+kQmp4EFgFF+2NvDiKlBGACMC8AfPkXtusXkKdmfp5EeUqGFtg7dIgqfwziVML6Cfes6fTifBQAfObwwgHi2Py4nYHEkNvs4faOaHfk7deg+cpiPeHPsLIGrZSjmyhUGcCdXQuFJ19fQNRU1zn7v36A/TmU0NEhwWNEbf2MIHuSMUQw8fZH+MoOZd4L6cBTxTIyot6sFEO4f//jH8ePHr127RlHUpk2bHn74YScnJwD47LPPfv/9dwDIycm5evUqRVGNjY3r1q1zdXWNjY21pYS4XygAvHU892IZG+AE300kTs8mOS0IAP5OcHQG+dEoQoLDJ2nM0N+oG9XdxhXeJZob04cLLUin4KbUnOy8mF+ox+PonAa2vyf201Ti4gMkpwUBYEYIdm4uGeKCnSpmx/1B5SntcOAYjYqur8akMtJLvNVJDHBRTrqywsWnqFG/U4fzWTcJvDgIv7NY8uIgXE4AAIS7YZcfJGeGYiWNMOkw9XuefW4YdpfANA5um3Dvpbyo/fr3khkdA4si8LQF5JfjiCBnDABIHL4YR3w0imABnr1EP3uJpkX8tAmgCCMjIz/77LO5c+d6eXlVVFRs2bKFO56cnJydnQ0A1dXV//jHP1xcXPz9/ePj4w8fPmxLP8aRAvbzyhAAiNAU/qMnnrZQsiza9FvCAJ7tj194gOzljqXVsCN+pz5OtcOHk+o+MRcswEU2GAAqCwpu17F9PLDvJhLJD5GLInAT82GQF3b5ASLWG0urYUf9Tl2tEPHTaRZUSS6wrMQ/TMzVSQwUUk5KuRem117KLHUi4cVBeN4jkk3DCcW9ezpuEjg0nVzZB1dRsOAk/UmaHT5uIu8faUwjBTclIQBw7kZuvR6mBWMJ88ifphLR7qY/uWf74z9OIeQEfJLGzDlONQgf9tA6wpirjz/+eElJSX19/bFjx3x9m0Kkdu7cuWbNGgAYOnRoRkaGVqttaGg4ffq0zczBkkZY9jc95zh1FQsFgCfcC3dPIrxkbZ4/zAdLmk8+E4NraHjuMj3/BF1lX8kV3cXDdrKIHf4b9eD1IBbDorRFO8fCjYfIZdG4qQ5sJtgFOzuHnBmKlaph8hF7szCaA33FPmoVGnjpKt3rAJVEhgLAat+irIclm4YTnm08cSYWxsrzdhVKyihrGWUdLnchFF5Cy9IeegZ2ZDDRP1Hf1IQAwFi8MG4OeWImGevd5qprUQR+ahbpK4c/C9nxf1CFogwlFbXf1mYwLOzIYPoc0H+fxTiTMGdoGAC41XacJeNEwsejiZ+nEl4y+C2PiflZ/2ehGIfZPJqrjIp3Sr1Qxk46Qk0/RiVUsl5uTmoXX5KlnvApJzv6XXMWxlN9cRUF80/Q6xNFF0NoNuKvMlqthfWJNOdS0zMAvj0A4CmfwsBO+H04C8OJhB0ZzNy/xGthdJXm0vbhorXjGRYO5DD9fqZWnqeLG1nCvwcAzJIXTgjoWOAx/tilB8je7lhyNTvqEJ1UJbpJEilCuFrBDvuNWnmertfDQ+F45iJy5bhQjCCpqhJWr+vMFRZE4InzyXEBWJkaZh+n1l2l9d1/rSryrabUGnbaUWrcH1RcCevnBFtHEbcfJr1CulBfhsRh+1ji7WEEALyZyDwj7j2MziNmi1BNwdvXmcj9+jcTGaUeFkTgqQtIbt3Z+ezsRRH48Rmktwz+LGQnH6FKGq0psa0Q86gBwO95zIBfqIdP0Vn1bIwn9us04ov54dCV8nhRCuz8XHKMP1akYicdoU4Wiethc3RF+GsuM+oQdb2KDXfD/riP/GUaEeKCYQRJeAcAy3a+m0GYK/b3bHL9EALHYFMyM+4PKqteXCPdVZq2mgLEuNVUr4f7j9GnillPGbwzjLjzsOS5/ricaDKDulTw4pVY/IfJhIyAT9OY+SdoVfcvI0yJeKtpWRz9WgJdp4P7grH4eeTPU4m+HpgZfZXHB2AXHyB7KrCESnbUIXuIVhNzpMy+O8y8E3R6LRvhhn03kUh5iJwfjpPu3riTK6OqZ5S1nbyOjxxOzSIfjsTrdDDrOPV1pojMBYdWhLU6WHWBZlh4JgZPW3BPsktzq5EuTKkEBm8MweNmk+FuWHwFO+Qg9d1tEY10V2kOGRXjk/nyVbq4kR3th2Uvlrwci7s2B1aY16r+0Sj85EzSWwZ/5DMTD3dvC4NR1dMNNbjcmXD3EVoWUw7nsz/nMG4SOD2bPD7zbhZEU3GZLtaJ7eWOXXqAHOuP5SvZcX9Qf4nMwugqog1Mq9HCmss0ALw5lMhYdM/WO+kfAgD6rnTolRPw4xTipUG4noF/naNfvioWL4xDK8J1V+lSNUwIwD4aTTjfm1FpdjeDMf5Y0nzy0Si8QQ9PxNH/vdBdN59Eu9UUX8Fuv8lIcPhyHGGSCGh2X+VxAdglIwsjtUYkj2eXuVskXWR2vIqCpy/SALBhKDE5DUA90wAAIABJREFU8B7ZCIUn7uzKqJV0Q02Xrukjh5OzyEei8Ho9zD5OfSUmC6OrcP58ET5uL12ly9QwKRB7bTAuvVddmFdxFAN4dzixczwhweHdZObR07RGBHOk4yrCy+XsjgxGisMX44iWc0ZTnq9Z3QzcpbB3MvHdRMKZhO03mb9LuuWsKs5+vBQDK8/TDAv/NwAf4GU6bnctQrbL33n0vRbGie5pYTR1XxLffPpmIp2nZIf4YKtbS6zmep911SgEADkBeycTL8fiFAP/PkevE42F0SXouiqmsQF3URBuNu200yEXy9ivMhkZAdvHtjJJWtKq/l+98SP3k+5S2J/NTDtKVWosltUyHFQRGubTtQPxvh6trJ2bS2+bX159WTS+bhABAP93he6OVbrFWW77ozQmqYqNdMNeG9xKsRvcRYG7urNaNV1XZcbFOQtjcSRep4PZx6mfsrufhUGJMuYipZr9KJUhMPhiLNHKhGpZY0IM4J1hxNcTCAkOm5KZZX+LwL7oIuIMz9Yz8NQFmmHhxYF4n1Ynyaa+yma2fJkejJ2fS/ZwxS6UsaMPUWVqi6S1EAdVhB+lMSnVbJQCeyW29eJhXBdmqqLIki7Mzw/AQ1ywxEp2T1Y3m1K5PXBc7kK4m5aBFZA8Jbs+gQaAbWNNXdkGJBasUgFATsC+5j2MVRfpuk5FDYsIETq0GRaeOk/rGfhPX3y4b+sOW8tb1S/vhR+9n1RIYE8Wc6Sgmy08m7svhQstyD1sTWVuVLPR7ti6tiZJy541AOjviV1+gBzig2XVs69eE3IF44iKMF/JvplIA8AnowmnNuZTTCojPf0s7MLsTMI7w3AAePka09itwhH1xTnAlT0U01bT6ouMioJHo/B2ap2Tlq1SoXkPY0oQVqmBzSndzLwQYXWSnZnMpXI2wAneGtZmxVrOl2vJlAoA04KxN4cSAPBSfDfLhGlavojJIsxXshsSaQD4fAwhb2PcSO8ATCKl66oYjfkBZoHOcGAqIcXhm1tMmnB7846oCFdfYpR6eDQKnxXa3ixPBpjvrjGwtCc+zAcrUrFbu1UNNhFuEB7IYf7IZ9yl8P7I9n60FlqEBjYNJzCAralMN+qpRtfXMKp63NlVPNVJytSw7ioNAJ+MMY1sMsby5QvHf/vhUQostYb9vlsFbIswQvvpi4yKgsd64tOC254kMYz0DQaWpcotGrhIN+xffXCahVeuCTZqDqcIf81lDuUxCkkH8yncnVLzLLkdjsH7IwkA2JRMd6O4fLFlNdXrYc1lBgDeG9FU0rctLHeycQz3xRZG4GoK3rrebaZUEXrYnr9M12jh/hBsUUR7jxvp5Y9JZXRdFaO2qPmcFIc3h+AA8GpC9/HBsCz3cxXP4/Zz86Jzy4gO2s5IzEp9acn6IYSbBH7PY86XCrPudCxF2KCHZy91aj6Fu+lNlq5SJwZic3vgSj10ozpeYstqevkqXaRiR/ph/+7d0fKFs+MtHjUA2DQCl+KwK1NIj02XaC7TJZZR+7uE3XeHcSLh87EdtfHCMNI3BAA6X8KiLZb0xIf6YEUqdlt691jB0DUVjKaRUHjiLgqhZQEAaNDDc5cZANg8guiw6B1pVuZuS3zl8PwAHABeiBfGq+1YivC1BLpQxQ73xZ7s0/EHNyOnvi22jMQlOHydyXSXBDVRZTVdrWC/uMmQOHw5jmirjrYBwt0HkzkxylpGVW/hfQ0em1eF89h0CVHZ8VoanjpPswCvDyYi3TreaTavGEJLMICNwwkA2JhEV3eHIvjN8U3hQgvSxCvX6CIVO8IX+1dHi05o/rFZ7oABgBcGEAFOcKWcFaQIvgMpwpRqdlt6Z+dTMDjZys1JSjOhtzv2ZB+cZuF/8d3AKBRVVhOX6EKzsHYAPqhF4mArYJjEj58pFQDeGEy4SeA34Tw2XUJUkTLvJNGZdWyMJ/Z/Azo1yZhdDKEl9wVj04OxWh1sSu4Gj5uocicSKtnPuz5J8vKsuUrg1cFcrBNj+74ijqIIGRa4vi3PxeCD2+4YYgzu5EoovFidlqopt1yA9UMIdykcK2DFXwtKVJEyH6Ux16vYMFfsldYSB1uFtDgH1ICfk8Aemy7BbdWIwSK8XcduSWEwgM/GEJLOzTGSgC4UTO+QLSMJHINP05h80fdeFo8dz7Cw6iJNs/B8f7ydtkrGkH4hgBNUVQlL8dAH5Mk+eLQ7llnHfnPL1prQURThtnTmcjnbwxV7Y0hn51MwTKl8PJw+cuDy69deEXtst3ieTEOiy7axhEsbiS4t4cvJxmHw2BwSd9tCuraSUSu5kgJCywL/uUBraFjRG58U2Nn0Gx4tQgAY5IUtjsQ1NLyRKOpRg7shTsI/bp+mMVfK2R6urVeraBWMIEnvAGAYqqLIcgEkOLw9FAeA9YmMjcvft64I165de+fOHZOD2dnZK1eutL5I/FOqhtcTaAD4dPTdAs2dga9YfI41A/AoBZZSzX5r8/VOl+Cqk4gh5oJLdHkkCp/dbqKLCfxOqa4S4IzRF4Xw2HSeJjs+KEJgOQB232ZOFbPeMnh3eFcWnb7BGEFSVaWd7H3WIRuH4TICdt9mRNj97i4sy63YuDW3gJQ0whuJNAB8NqarkyQ/qS8ciyLxUX5YcSP7sW3zzVpXhN9//31ZWZnJwbKysh07dlhfJP5ZfZGu1cH8cPyBsK5ZwPxOqVIc3hqKA8Ar12gxNxQViWv055ymRJcPOkp0MYHHKCeOlc0em29FnJ0mEju+Wgtr42kA2Dqa8JF34Y13e5/xYVsAQLgbtrIPzrAgbMmS9qGqSlmdhvDwwZ1chZVk9SW6TgcLIvC5PcyZJPl63DCATcOb8s3KbVh0rQufuby83NNT+OiJrvJnYVPzl09Gd9kP3ByLz9uU+kgUPsYfK1PDBzfE+nCyrF4EWU31zTHcnUl0MYH0DsBICV1TwWr5eZIkzSuYN0ScnSYSD9v/4ulyNUwIwJb27PrjxuuUCgCvDSYUEjhSwJ4uFqlRKJL4pj8L2V9yGDcJfDTKjFHjJ3PXwMRAbGYo1qC3aazTPRsvJ0+ePHDgAADU19dv3rzZ39/f8C+NRnPy5Mlhw4bZTDJeUFOw6kJT85cQly5XC+Or4IUBDOD9kcTYQ9TmFGZFbzy06yJZG6qmnNWqCXdv3NlNQDFeudoUw92ZRBdTcIL0CdKX5lEVRZKQnrzI83Ak/lEqc7mc/TiNWTdIjDvrTQ2YBJ1Sz5eyuzLb7OjSIaR/KNzg83HzkcPagcRrCfS6q/TlB0nRPWxc+2uhly+NzZPk28PMmiT5thYA4L3hxPFCals6s6of7meTYbvnkc7Pzz958uTJkyd1Ot3Vq1dPGpGQkDBx4sTt27fbQij+2HCdzm5gB3u33vylQwg3T9xFwaiVdH01XyKN9sPmh+NqCt5IEKOfTQxPZnwF+/lNRoLDV+M7FcPdEn7dNdDc4gAA3kumq0SYnXbXjhdsq4lrVsACvDSo9Y4uHcK7RQgAawbggc4QX8H+kiPGx00MRdLfTKSzG9ihPtiqfuZMkhL/Hlx/AmB4+4YHeGGPReE6BtbbKtbpnk++fPnyO3fu3LlzJyoq6uDBg3eMSE1N3bt3b1RUlG3E4oVCFbs1lcEx+HJc681fOkOT4c/vemcELsXhu9tMcrXoPDbN1UnCBZSBa1z1fGsdBzsJF4tveVUgY6YEYTNCsDodvHNddG5tqrpMcDv+kzQmraa9ZgUdQgbw/6y5kMAFir9yjdGLTxXqhS7hdLOW3cp1yDJ3ksRkToS7N6vXUdWmYSWW8NYwXE7A3jtMSo0tTMLWlwCZmZkjRoywwe2tyqZkRkvDw5FtNn/pDLzbFgDQU4H9tx/OsPDCFdFNqYLHXJwtZc+Xst4yeNXc+RSsM2oAsGkEgWPw+U0mt0FcKxjBNwjVFGxJoQHg41FtNivoEAnX+6y8EBg+n4sVvfDe7titOlZ0LewZhiovBAzjTGFBeDeJ0TPw7z74MB/zJ0nzWtW3T5hr0yT5RkqnE6csoD1buLS0NCkpKeFebCATL5Q0wq5bDI7By5bt6PC+Fczx+mDCWwYni9ijIuudJvgSdWMSDQDP9Ce6FMNtAr+phAYGeWGPReFaGl4TmVu7uY9PuFACfJXJlKlhuC82syuJLiZgMifCw5elKaqqlEfZSBw2Duey08QVrU1VFrN6Henlj8mcBBEgp4Hdl81IcHhxoEWTJI/1ZYx5NZbwksGpUuKk9YuQtP75b9y4MWbMmMDAwMGDBw+7F2sLxBebkmk1BQsjzHevcTTZFry6awDAUwYvxzb1rxdRdhrDUGUFgGGkQEvUpCr2r0LWhQTztisMkH6hgON0ZbElfZVb5a1huIyAvXeYxEoRrWCEteP1DHxwgwGAl2MtDSOy0grmoXB8jD9WrgZRdUNr2oYQzo7fksJQDDzWEw/vRDHYdrCGRQgAnjJYO5AAgBeu0IyVn7bWf7iPPvpobm7up59+evz48RP3Yl1xeKJUDTszGQzgFcufzKZ6XTw/mQDwdAwe7Y5l1IrIY0NVlbB6HeHpi8s7KjtvHd5OYliAVf1wb5lF18EkUq6vMlVZzJNoTYS5Yqv64QwLL4spO60p9VOgKfWHLCZPyfb1wB7oYgpaS/jN3DWGy07bkkKX2TA7rX2EXb6UqeHb2wyOwQudKwbbDlbaiQCA5/rjIc6QXM3+lG3dSbIV92tdXV16evrBgwcffPBBq97bemxOptUULIjAB1pmDgIA4eGLyZzohhpGVc9vnxQpDhuH4YtO0a8n0I9G4e5tty21GcI2CM2oZQ/mMjICnu3PQ34C6d+Dqiqlygp434B5NZb49hZzvJA9WcS217bUZhjseCFCRhkW3m82B80L8TWmySLk2wEDAOMDsLk98D/ymXdT2Pdieb+8OQhbG/aDG00+sxhPS4fNGrFpHHICXorRP31V8vI1Zn44LjM/bKADWplxMAwDgKCgIGvd08pUaprMQX7yvTDMSu4aAFgYgY8LwCo0sDlFFOaFsEvUTckMw8KK3nhXM+hbhff6MgYMHpu18Vb32HQGqrqU1esID2Hs+F9zmbQaNsINeySSj+ULfwXTW7J5BE7i8GUGe6fBGpfvMgL2najWwhc3GQB4kY9JEnf1wF0UjEZF11VZfjUTHougYzyxnAZ2R4YVjcJWvgWFQjF79uxDhw5Z765W5b1kWqmHB8PwoRbEQRljPXcNAHwwksAAPrzB5ImgTD7nAea2vm1MgYrdd4chcR4cNRxNxRCssEoF+H/2zjtAiiJ7/K+quydszjkvadklRxXFiHhm4Qynfr0zIZjAiJ5ZRPAUxYDhuDu9Q+9OTn+KGURFBclpYZe4Oec0uxO6q35/9MywbJzd6bRQn7/WcabrMTVVr169BAtzcHIg2luv+o2NL+h7L7p8HwGAR8ZiXol586QSKtD7rDujwtD/DcMuAs/nahGI2DdUEsXacsBYF3/8m3mk1QWzk5A/waKdUSmoEAA4BEsnYwB4bo/Uolqs04kfREVFRV5envz3jTfeuHDhwoaGhosvvjgg4KRj5oUXXqiWLEpQ74B3Dinjt/eieKG1zkyNRtdl4v8cJ0/sJP86VzXL3zfcSdl6rMzl+4iTwP8Nx+n++e29qJGd7cXCwdMT8e2/SPKNjRpD+I7nhk2HWfu2jO6so7FWuGW4Ml+C3D2DtDVLzfVcWJQiz+zMc5PwfwrI/4rQ1ho6XZuaJb0g1lZQSeSj4pGgtVPEJsKbByUAGHTGZ3f42BRHwUFXdal5xASlnunlilR8Xjz5sZK+vF96bpIqm+QJRfjdd9/deuutnf/fqlWrVq1a1eUDVIWTmoK8vF9qc8FlKcif3MEu8DFqHXZkXpyMPysiHx4j92X7lfLoL5SKNWXg+fdqSXUH/P0IQQAP+xfG3ZmT+ioj5b/VP47Arx4gBxvpe4fIH3XtHCAf0XQxLF7cKwHAg2M4q3ImlhCb4mjLdVWXqKEIEwPRPaPRS/vp4h3ST5fqaRfK+4kus/ZuPqm1w/QYdE6cYutCPYtQZtlUbvrn4opcMj+Li1fBA3Dip3DxxRcPlaDQ3qh3wFt5BAB876flCx5vkyqXbACQFozuzcZ/2U8e2iZtuky3xSk21lCnnQuJwAFaF8J/9YDUIcI1aTjHb7+9F2wN4kLCpZZGqbGWi4hR6rFe5BubKzdIz++R5iQgHQuzeux4rY8vW2voz1U0wgx3ZSlpE/OxyY7juWJ1KYycqOBjvTwyBq0+RDZVwndl9OIk3c6d8vFF+1lzEVh5kAC428ErBR+r7iY5NRpdlYb/XxF5bo/09lnKG4Untt2EhIShGyAj82qu1OqCS5LRVEXtKj4yHgkmqamWOjpUSn19fDz3jyPk5yqq4+LU64ja6IC38wgAPKbcbbYMH5sitTS6qkvUUIQAcEUqnhFHfq2irx/ilp2hxgg+4OlbpP3EPb9HAoB7RuNgP0ofdEfVO20ACDPBQzn08d1o8Q7pokTe/0jXwaHXcnv/CClpo+Mi0O/8KH3QHZVSCTuzdDL+ooSsPkwW5eARoQpPmxHr6A+OFpcq5iAAAMZ8VAJQ6qpR67wTZoJHxnIA8KKGnUe6IJ/mtD+ivpVHWlwwK1Exv70Xta9rAGD5FA4A3jzMVemUnSZ3m+JCwjW24/fW029KaZAA9+UovNx49Wdt3nApJQjtracfHdct1sm93LT17EoUXtrvPnQqu9i48GhktkotjaS9TdEHn2BUGLp1BBYJ/Hmn8rPWsyKcNWvW5J64+OKL582b99133ykuh/+8k0+anHBuPDpDBR+4HJKnbDngLtyVhcPNsKmSbqnWxwsr/+s0zkWzibBSab+9F7WvawDgzFh0VSq2iWiFTg0mXToZFi/uIxTgzlH+lj7ojic2TcVZs3Dw7EQMAEv2EH0SYCgVa2V/fJKWw35cQI610OGhaG660iYQQnx0Iqh8gnl6Ig7g4ZNCcqBR4Wnr+etITU0tLCw8cOCA2WxOTEzkOG7Pnj01NTU8z3/zzTezZ89+5plnlJXDTxwSrDxAAGDxOHViilRLJfQSLMA9ozHoZxTq4mp6N5/U2WF6DDo3XoXji/rXNQDw9ESMAFblEV3aM4l6zNrxFvpJITFz8IASpQ+6wIVGIbOVtDURW4viD/dy83A8LAQdbqafFulgFIoN1dTp4EIjtWxMTwH+sp8AwKNj8aC78fSB2rEUAJAQgG4biaknaUdBev4dp6enZ2ZmFhQUbN68+fPPP9+2bVt+fr4gCDfeeGNBQcHChQuXLl1aUaFw8Sp/eP8oqWin4yLQLHUcbNpsqffncEECfFVC9yrW/XAAuENGNbQtVPLbe9Hg+AIA4yPR+XGSTXTfzGuMy536qalFuHQvkSj8cThOVKOzNEJCjOoTxyF4YAwGgBf26mAT6pKw+0Ux2VNPkwLRzQrlunRBm03y4bHYhOHfx8mxFiXnrYdvxOl0Llu2bMWKFZ1jZ0aMGPHMM88sWbKE5/lly5ZxHLd161YF5fAHibpr/ip+8e1FjS7M3Yk0w+0jMQV45YCq4/SAu4acNYgLidBs0H+o47f3Ip+4ia2FtDWp8XwvD2ZJALDygNSmeXMDUfPUzzIbXXOMcAgeVKj0QXfcjQlV3lJvHYETAtDeevpdmdaqUJeE3eX7CQA8NAab1Jk39SqOdiY5EN04DHv3fKXo4Supq6trbW0NCwvr8npYWFhBQQEAmM3m5OTktja1nKID5X+F5GgzHRaiwsW3Bz4mCTAn16RWaQiZB8dgE4b/FYHGVaC0P6JK1H1Ro97xBQD42CRQ2eEEADNiyFmxqMEBqlaB6hGX5hP3ci5xErguAw9XOnLPi6C+cxcAzBwsGoPBkw2pJdqHjP5YSbdU02gL3D5KrU3SE5um7qwBwKPjMEbwjyOkol2xE0wPX0pUVFRwcPB7773X+UVCyF//+teMjAwAoJRWV1dHR0cPetTNmzffdtttt91226+//trjGyorKx9++OE//OEP7733HiH9bC5yHNTD6lx8yyCO5yPjgBDFuxl0Qb64kCi8mqdpQK/2R1QV/fad0Oa6BsDdVGvFAeLQcFOVHWnYEsCFRmozYq0d/nqIIIDFihTy7QVVixp2Zt4oHGF294JWe6zOaB+hLSv7+7K5QNUSlbmoeMTxsvtTrTEAAGBkKJqThh0SrFDOKOzh12wymR5//PE33nhj5syZL7/88vvvv//iiy9OmjTpyy+/fOqppwDghx9+aG1tHXRvwl27dl1yySWTJ0+eOnXqpZdeunPnzi5vcLlc5557bltb25w5c958880lS5b08bSW5Gm762isFf5PnYtvL3LgqFyWWlUeG4c5BGsKULlNu8WpsUVIAV7cp6Lf3os21zUA8LtkNDEKldvoP49qZxTKlq6Wgb4rD0jtIlye6m+bz75Rr2B6F4IFuDdbhwg1jS3CPfX0+3IaIvjb5rNvEMdzUQnegFhV+fMEjADeySd1dmUe2PP3snjx4vfee082y/70pz898cQTlNJPP/30+uuvB4CzzjqroaFh0Bbh66+/ftddd82fP3/evHl33333ypUru7xh3bp1GONVq1bNmTPnvffee+ONNxyOXo8YdSMvA4CFOZxF5TqdvFaGf2YIujoVHBKs0LCJqEvbepVflpDcBhX99l40u64BgEfGYgBYvp9IWh1gNHYQelN1lenr0jt8ZBziBTlFUtWBAODebC5IgG9K6d56jaZNTraTKx9pM+LzewgFmD8ahyud69IF9Rr1dGFcBJqdjGwivJmnzAmm1x/0HXfcceTIkfb29sLCwvb29r1791511VXy/7JYLN09iL6zdevWmTNnyn+fc8453YNutm7devbZZ8vdoKZNm2az2Y4dO9bb0whvCRFgvqJFnnpE7YIXnXl0DCCA9w5pF5HvOaJqZBEu3auu396LZhYhAMxNxyNC0fEW7VpSaJxEuCqPNDnh/ASkerlqzPFu26Jc3YEAIs1w5yjsvaLQAPda0+rQmddEPy8mVh4WKV36oDuaeSIA4PFxHAC8cZAoEqHWz4Wx1WpNS0tTYJxOVFVVRUa6XRrR0dGVlZXd35CU5M4zRQhFRERUVlZmZ2d3f1RjY6PNZk/Yv/bqD1bLryxYsGD27NnKCiwjhkQCgLOiSIMooUyT6/xY88Zq4ZU9HY/nqH5pQx0dUksDEkx2IRDU/9f9XIO31ghRZnpDUrvqo5mDkGCSmutb62tVKo8HADabTT633T+Su3s7/8Ie8bJYpwaluxwVRQAghUZr8JvsEOHVXBMAWjjC2dam0IVUH0QmQFVxa/ERU1icsg+WJMnhcHSOPLgrA97KM39SSPZW2ocFq24XOkqOAQBExGkTb7hkp0AovjldCpQcag8ohkUDQEdZAVZuJO/i6sL4IDgzWthSi1fu67h/VF+bpMVi4fl+NN2J/3348OEffvhh+vTpEyZM+OCDD9rb23v8wPz5830Qvi8sFovT6Y69tNvtXdo8AYDVavW+obf3yISEhIQ25r58/cSw2Y/Jr2RnZ/f2Zj+hqSPaECJ1FQEWM2B1z1Yul2vxGLKxGt49yi+eYA5StJZjd5x1pUApH5MUEKRFeu+KQxIA3J/DRYVo0UjWFp3oqigUWutN4SNUGkKSJPlXd+toWHaQHGyCH+utl6mTE9KZ1rpyAAhIHsar85vvzD/yaY2dTI1Gl2ZY1B4LAKTENNfB37jGGsWXsyRJHMd1fmxmAPzfMPLXw/T1I+bVZ6t+t+RqrAIAS2KGSjtVZ4pa6doSImBYPEEICFC935OQPLwdAOorFPyneRdXd56YCL/7TnrrCL9onLkP1xjG/c/pCUW4ZcuWBQsWLF26dMKECY888khNTU2PH/BfESYnJxcXu0NOSkpKvMafl6SkpNzcXPnv1tbWpqam7u+R4Tgu7cCHv5+9yE+RfMISwIVHSw01pKFa7cJIGOMZcXRGHPq1iq4+4s78VQ9SUwYAQmyyL78YP9lRSzdWQIgA92Rz6o8GACDEpbgqCklNKU4bpdIQGGP5q7NgeGAMLNoqLd1Hr0hV97REHR1Scz0STKaoeFD5q3QReCVXBIDHxmMNfiTgLWpYU6L4cJRS73x5WTwe/eOouOY4fXoSSg1S9wQjV64wxaVo8E2+fEASCfxxBE4P0aLXqSkuBRASaysQJYhTJj61+2R5uSQZJkWRXXX0X8dhnn9pISc+fNNNNzU3Nz/44IMAcPz48eZe8GcwmTlz5qxZs4ZSSin917/+NWfOHPn1tWvXVlVVyW/YsGGD/PeHH344ceLElBRdG755EGLlwFEtbsAB4LFxHAD8Zb9kV/lyVMvqJC/sJQBwTzYO06odqQYVRztz5ygcbYFtNfTHSnUv2eQ27nx0otpaEADWHCPFbTQrDF2RolFWjzaphF4ygtG16dhF4FX1I9Q088dXd8D7RwlG8JDKJ2kvyGTmI2KpJEp1XR1eKvHoOAwAL+0jon/zduILEgQhJCTEZDIBQFBQUEgv+Cc2AMD8+fPr6uqmTJkybdq0qqqqu+++W379T3/6k2wIZmdn33rrrZMnT549e/ZTTz31yiuv+D+oIniiulXPoJCRI/KrOkDtiHzNgg/zm+gXJcTCwb3ZWpxPZeR6XaJqnUO6EMDDfdkcqJ+mLVYVgyaBvoTCy/sJADw+HmvWtIiPSQKMpbpKKonajPjnCRgj+OshUqNmpCqxt8v+eD5CYd9nd1bkutt8ZivX5rNf5Lbe6jXq6cKcNDw6DBW00v/6F6HW60lBkqQNGzasWLFi6dKl8iv5+fmlpQr888LCwrZv3/7WW2+98cYbO3bs8AagHjp06Oyzz5b/XrFixY8//rh48eKjR496X9Qdd56vymVKOuOOyPf7vNM3mlUneWEvIRTuHIXj1Apb6QFtyuN15t5sHGaCDeX0txoVjULN7PhPikheE00PRtdnaFegCaUPAAAgAElEQVTkAQkmPjyWSqLaJSy8jA5Dl6XgdhFeP6jiCUasKgFK+Zhk6CkAREGanfDuIQIem0kztExYAgCM4KGx7pqx/hSN7fk7qqqqmjJlyqxZsxYvXrxq1Sr5xffee++GG24Y/FCd4Dhu2rRp06ZN47gTlkFSUpLFcsIPP3z48HPPPTc0NFSRERXBnVOvlUUInoj8gla6tlAtTUhFl1hfBRjLXVTUQz61CVh1l2cX+OhEd3k8UaNKoKEmd9N2uYacSmhmx8uV/h8Zi3ltu5dqlrnr5c/jMQC8mUeaVCuk6C7hpL4dv/IgaXbCxUnKt/nsG16rYghebhqGU4OQfNs06If0/NO+4447mpubf/vtt86tB6+77rrffvtNETfhEIWXXcHVpdBf1Tel4BA8PBYDwLJ9atXIF2vLgUh8ZDzi1Q1Ole/xbx6G1Q5G6ALiBXd5PPWT0rwsyuGsPHxWpHzjNC/a2PHfltFddTTOCreoXPqgO5rVl/EyNRqdn4CanfBOvloLXJuaMjYR3pTbfKrTlq4P3Bahhtdm3rO1nJ08OHr4cdtstm+++ea1116bPn1653CdESNGEELKylQvn2NY5KKO1OUUG6o0G/SW4TglCO1voF+VqLKliprUlKnqgA+OEozgEW0vamQ0vq4BgBgr3DYCU9WMQiqJ2tjxsqfzwbGcVbUalb3Ba76lgkdzvHpA6lDHNalNldF380mtHabHoJkqtPnsG16OKKwuAapdhUjZ27K9lm6sGOSgPexKzc3NkiQNGzasy+uSJAFAH9XOTgc8FUe1O6UKGBblqFgOUZvqJHLs65w0PFK1lgV9oGV9GS8PjcUCho+Ok8JW5XcEsaZMAzv+1yr6cxWNMPsbmz44tKzl5OXCRDQ1GtV0wN+OqHKC0cAi9FZnVKnNZ9/ggCAuOJw67VJTrWaDWji4L4cDgKWDjVDruftEQEDAjh07ury+ceNGjuMyMzMHN9KpgSdeRjs3IQDcMQpHWWBLNd2kQkS+qP4RtdRGV+URjODPE3TYT+GERajplpoahG4chkWiilGojR3/5C4JAO7NxsEql3ToEbdFWFOqpW0BAI+Nd/t3XUrPG3U5xYZqwBwfFa/wozvx7iFSblOxzWe/aNMQuwsLsnCoCX6ooNsGFaHWc/eJG264YfHixT/++KNc24ZS+t133y1atOiaa64xVPSK9nj8FprOcSDvzjdQwyjUwCJ8ahexS3BDJh6nZsuCPuD1mDUAeHQsxgj+rmjjNBkNZu3rUvpTJQ03w/0a5rp0Rm4TTZ0OsbHn4h4qcWUqzglHJW30w2MKa0KxthwI4aNUtONbXfDCXgkAXpiialuXvtCy4qiXUJO7t8bgasb2fEJfsWJFZmbm+eeff8kll9TU1ERGRs6ePTs6OvrNN9/0S9ihj6wINbYIAeD+bBxqgu/K6M46RbdUua4xQurVyjnURNccIyYMz07UxxwEObcJIbGmTLMoJ5lRYejqNOyQYKXSadpq2/GEwp93SgDw5ARO7ZYFfaBZY8LOIHB7spft8ysivztyEzdVA32X75NqOuDsOHSpTuYg6GQRAsADY7hAHtYVk9yGAU9bz3tTSEjITz/9tHbt2htuuGH27NmXXXbZ6tWrd+zYERMT47e0Qxs+TgdXMACEmuDOUe6cQgUfK9ZXUZeTC43EFrXKHj6ynYgE5o/GmSG6rUxsCeBCIqjLKTZWazz0E+MxAngrT+FGImpbhP86RvbW07RgtED9vi59oFlbny78IRMPC0GHm+mnRYouN5UDfSvb4bUDBACWTdHHiJfxWAuaHl8AINIMt43EFGD5wJ0Rvf7KOY6bO3fu6tWr161b989//vO2224zm/U7GRqGE9c1DVpvqQ+O4aw8fFpE8poU08Fq56L9WkW/KCFBgg5h3F3w2BZab6njI9GsJGQT3Z38lEFlO94uwVO7CAA8PwmbdZ03XqctlUPuiPwX9ippE7pUXm7P7JZsIsxNx2fG6nboBJ1i02QeHotNGP5znBxtHti86XncG6LIRqHG1zUAEGuFW4Zjb70rRVA7F23xDgkAHh7LxWpYSqZHBM3ry3iRDwErD0iKNE4D9e34N/NISRsdG4H+kKnz/qBxxdHO3DoCJwSgvfV0fZmC585SAODjVFluh5vp348QHsNzk3SeNS40ElsCia2FtGmddJ4UiG4ahiUKr+QObJM8KTnoqquu6t4dsAvbtm0bsHSnFkJciuPIHldViWX0VI2HfmQsXn2YrDlGnp6oTFq6qhbhZ8VkczWNsbrTP/TF3c1Ac+cuAMyMR3IjkfcOEUWq6qg6a01OWLZXAoCXpnKaVRbtDV4nlzwAmDlYmIMf2S69uE+6OEmJJEq5pANCcvFbxXlsBxEJzM/CWWF6TxsAH5fiLMp3VZWYh43ReOjHx+MPjpL3j5InJ+DEQF+/ipOWZUdHR3sntm/fXllZ2X4yKkg+xBD0yKCQSQ9G12VgF4EVAzzv9IZ6riaJwhM7CQA8PYHTJfi+C27nrh6zBgCLFW0kItu1KtnxL+6V6h1wbjy6OEn//ZQLDsdBoaSjTWqu1370BaNxpBk2VdJfqxQwCuUif1xYtBoNorfV0M+KSCAPT+qRO9gdT751kfZDZ4agOenYIQ2skchJivC7777L9bBv3z4AeOmll3JPRmGphyDaF3HuzJ/HY4xg9WFlauTLrdEEFe5q3j9CDjbS9GB0ux652N0R4j2VELSNcpK51NNI5F9KNBJRzyIst9E38wgCeHmaIfZT8N5pVxZpP3Qg747IX6ZE2pKqNWUW75AowINjcLwWva77R15uYqU+587Hx2ME8E4+qbP7+hFDbFJDC0GnwFGZLOVq5EvN9aS9DQcE46AwRWTzYpfg2d0EAF6cgk3G+IlhaxAXGkmddu2jnGQe8dSM9b+RiNuzq0I2/ZO7SLsI12XiSdpWau4DIS4NdLqAAYD7c7ggAb4qpbv9TltSr6bMumLyUyWNtsCDYw1zfIlPA/0uYMZFoEuSkU2EN/N83SSNsUsNKXBgCA4Ko44OLWsIdUaukf/GQX9r5Iuq9fFZeYCU2uj4SPT7dAP9wOTFqdeWqmAjEU8SocITd6iJ/usYETA8r3e0RWf4eD3vtCPM7rSll/yOUFPJIpQoPL6TAMCTE7gQA/ggZNyeiMoivQSQr4jfOEhafYtQM9Avfghx4p5ND+Qa+S0uf1u/qtQRptEBy/dLAPAXA0RbdEbfxckht1H4on+NRKTmemK34cAQHKRwjSc543PeKDxMv4zP7rgvYHS6ZAOAB8dgMwf/KyRHBhiR3wX5BKa4Hf/BUXKwkWYEo3m6Znx2gQuJwIEhpL1VamnURYDpMeicONTgcDdl7BcDfXdDCHdUt06nVABYNoXjELx6wK8uPx5Xk8JH1GX7pEYHXJSILkw00H4KJxz4us3azcNxciDKbfCrdpdKNWV+qaJflJBgwSjRFl5OXLLp4YkAgIQAdMtw7A3+GiSUuv3xitrxHSI8vYsAwJLJRvFBePEEFRbpJcBj4zkAeGW/1O5DI5GTwoK/+uorm80m/00pBYCtW7d27sQEANdee61Sgg5d3FHdemSMykyJRndl4bfyyILN0qbL+MEpHDVanJfZ6Bt5BOld26JHBF0v2QDAhOG5SfhPP0sPbpMuTcaDK12mRqAvBXh0uwQAD43lYvTO+OwCDgjmQsKllkapsZaL0Key1RMT8EfHydpC8k0pvmRQpcuk5npib8dBoTgwREHBXj9Iymx0UhS6Xu+Mz+7w8amOggOuymLziAm6CDA7CU2NRttr6ZFmOj6yn1k7SREuWLCgpOSkzX3lypUrV67s/ApThHDCItRNEQLAC5O5TwrJL1X0H0fIrSMGswzUCD58ZjfpEOH6TDzRMNEWXoS41BN9lbE+G8ctI/D7R8mmSrp4h/TujMGcFdSw4/9fEfmthsZZ4QEDZHx2h49Lk1oaXVXFeinC5ED03CTuga3S3VukA3P4gIFnFapRU6bB4Q5nXaZffe0+0P0CBgBemMxd9I1PjSVPmtI1a9Z0dCgRlX+q4w4Olq9rkD4/wlATrJjO/eFH6dHt0pWpOHKA5gXpaJNaGpHJzIVHKyVSXhN9/wgxYVhipGgLL8hs5cKjpYYasb5S7X62vcoA8PZZ3PhPxdWHyS3DB1MKy5NEqNiWKhJ4fAcBgKcmckGGibbojBCf6jiyx1VZZBk9RS8Z7h2N/3WU7Kmnz++RXhz4bYcaVUaX7pWanDDLeD4IGX0DR2UuTPS1F9VJivDss89WR55TDRwUhgNDiK1FamngQiP1EuOGTPz3I+T7cvrINulv5wxscbpXZkyygor88R1EojA/S8/62n0jxKVKDTWuymK9FCEAZIWhR8bhJXvIXZulXVfxwgDPDG4foXIxF387Qg430xGh6PaRRjy+gDFsCx7DOzO4M9aJr+SSm4bh7PCB/cIVtwhL2uhbeQQjWDbVcD4IGXeQdmWRjtYCAKyb5ZP9btCfvvER9I4Plnn7LM7CwT+OkJ8G2LNX8ZW5rYauKyZBgj59sX3ECKdUAHhiPDcyFOU20AEVvwDZjm9tRCYLF6aMHd8hwpI9BACWTsYDVcmaoWN5vM5MjUZ3ZWEXgbs2SwON2/EkESpmET6xk9gl+EMmntCf90sv5DQzYm/XpSqQFw6BLxfHRv3tGx7d42VkhoWgR8dhCnDPFmlADbUVr/8r17Z4aIz+9bX7wLOlFukrhpmD18/kAODZ3VJh6wA2VXdj+ljF7PiXc0mZjU6NRtcYKeOzC3x8GiCkVwmLzrw4hUsMRL9W0b8fHtgJxlWlpB2f20A/PE5MGJ41pA/Cizs8rbJIZzl8wNDfo5HRsS5+Fx4bx40MRQcbB2ZeuKqUtAi9tS0WKVFUWj14vZPSvMxKRNdn4nYR7t4ygGRQZbuF1Nnh5f0SALxoyGgLL9gSwIVGUqdDrK/SV5IQAV6ZhgHgke2S7zUOia2FtDUhs5ULjVJEjEe2S4TC3aNxRrCR580oFzC+YOhty8jonufrxczBGwM3LxT03ntrWzw10UC1LXpEiE2RW9VTyadYMlV5bToXZoJvSgfQ/VXZQN/n90gtLrgsBZ2fYOj9FIy0pV6XgS9NRg0OeHi7ryeYEzVllLDjN1XSb8tosOCu5G5kDHKn7QtMEQ4SHRvEdOeiAZoXcq92xPF8VIL/o8u1LdKD0Z3GqK/dB8hk5iPjqCSKtRV6ywKxVnhhMgcA92yRmn2rlqdgEmFhK333EMEInp9k9P0UvFtqZZHOcgAAwFtncYE8/PMo2Vjh07lTwSqj1NPj87Hxhsv47I7uhdZ8x+g7l2HhQiJwQDDpaJNaGvSWBQDgVY958Xlx/+aFWFMGhHBR8Yjzt9Gat772UuPVtugRQ51S78rCZ8SgynZ4erdPJxgFy8r8eSdxSHDLcNxvrrER0LeLVhdSg9Dj4zkAmL/Zp75aClYZ/biAbK2hCQHo/uwhsNg84b76O3f7ZQh8m4aFd9cQ0jleRibOCs9P5gDg3i2k307oLuWSst84SEra6LgIdG3G0Pgt8Ya5ZAMAjODdGZyA4c2DZFd//Q2o0yE2VCOO56Li/Rx3XwP9bwGxcPDMxKExa8a5GpV5ZCweG4GONlNfinErZRG6CDy5iwDAs5PwIJL6tQcH6NzyxXeGxjIwJu5OaYZZnAuy8LQYVGqjz+/p55iq1MpscsLyfRIA/GWasepr94FxnLsyYyLQvdlYojDvV6nvqHyxpgwo5aMT/LfjH9omEQr3ZeOUoKExbUJciqcqkBKtjf2Gx/DWmRwCWLpXOtTUzwlGqer27x4iR5vpyFD0x+FDZt821AVMHwyZL9SAuBWh3hkUXjCCt87kOAQrDpB9DX0tTncwt9+KcNk+dzfziwxZ26JHdOyd3RvPT+LSgtGuOvp2fl/mhVIOwvXl9PtyGmaCRw0fbeEFmSx8RCwVXWJdpd6yuJkRh/40AjukftIKqdMhNdYijucj4/wZrs0FL+yRAGD5VMwPnW3bUBcwfTB0vlHjYairUZlJUWh+FhYJ3N3n4hSVOKL+UkVfP0gQwF8M083cF/jYZMCcWFtBRd86lalPAA+vTccA8OcdUkV7r/OmSJVRhwSLt7ujLSIGVfVbLwwYefHSNC7aApsq+2onIqc/8tGJgP1aJi/uk6o64MxYdGXqUNq0jVAVyBeG0ndqNIw5x0smc/EBsLm695xfIol1FYCQP2XG/ldIZn0jdohw+yg82Xj1tfsA8QIfFQ9EktviGIQrU/GVqbjFBQt/62NL9bdbSIMDLv5W3FNPU4LQvaOH2No34HKLNMPL0zgAeHCb1Ojo+T3+t7+mAE/ukpbuJQjgJaMWVOsNg1Tg6pchthgMBRcWhS2Bcras3rKcINQEr07nAODR7VKdvYc3iPVVVHRx4dHIPMj465UHyHU/SHYJFozGb581xFYmGC/yQub1M3CQAGsLydelPRuFfiYRHm+hZ64TN1XSpED0xSzOOhSiLTpjQEUIADcPx+fFo5oOd1ZDd/x0EDokuOlHackewmN4dwZ31sCrtOuLEN+p5YuBYYrQL+QSZfr2Y+rOdRn4d8mo3uFuMtcFf2rKUIBndksLt0qUwtMTseySHHJ4ktKMtaWmBKFnJnIAsGCzZOue7k8ksa4SEOJjBmPHb62hZ34hHm6mYyLQliu4sRFDb9o8RZyNNWsI4J0ZnIWD1YfJ5uoeTjD+VBmVLfiPjpMgAT67iL/D8Hm63UFmKxcWTV1Osd4ozt0eGXrfrKEw5ikVAFae4S7G/WO3YtyDDhl1ErjxR+nZ3cSE4V/ncvKuPRQxYLyMzP3ZeEIkKm6jS7rF/cpOTT48BpksA33sJ4Xk/K/Fmg6YlYh+vZxPDhx6WhDczl0s1pYboSpQZ0aEoofHYkLhrl97qPfrSSIc8HLzWvAJAejny/hLB9UQ2Ajo3hDbF5gi9AsDxsvIDAtBj43nKMBNP0r/OELETutzcOm9TU6Y9Y347+MkRICvZ/M3DhvCvxw+3lgZFF54DG+fxWEEL+eSe7ZIVZ2qWbodhAO/YXtxH/n9RqlDhAWj8dezeYPXwOsDJJj4yHgqiWJtud6ydOXx8dzwUHSgkV78jbit5sTRk0qiJNvxA/THb66m09eJh5vpxCi04yrOsC0mfMFoCUs9MoS3MyNgtAyKzjw6Fk+LQRXt9Nafpaz/if86RuRA0kFYhKU2OuMLcVMlTQxEv1zOX2D40pR9w0cnIo4X6yupsycnqq5Mi0FPT+QohbfySOZ/XY/tcEdhDMJB6CJw+y/S4zskhGDFdG6I3mN3xrCRFxYO/n42F26GHyvpGevEqzdIBxopAIh1FVQS+Yg4ZBpAhO5/jpMLvxbr7HBZCtp0KZ8QMLSnzSAtX/qGKUK/8MyxERWhmYMtl/MfX8CNDEXHWuj//SQN/1h8L98dLem7RXigkZ61TjrYSEeHoS2XD0n3UhcQx/MxSUCpoQJHvTw1AefO4X+fjjtEWLaPpP7HtXiH1F45sONLqwuu3CD+7TCxcPDRedyinFNhpcuXbMbMzp4Rh4qvF5ZN4YIF+KyYjPtUvHajVFY4YAfhygPkxp8kuwR3jsL/70I+aMha8F4MewHTmVNheegIFxaNzFaptZHYWvSWpQcwgt+n47y5/McXcCNCUWErfeanWmJvd1pDISDElyf8UEFnfCGW2ugZMejny/mhUoikXwx+XZMVhj6+gNt2JX9ZCmp1wfJ9ZP/hEgCg0T5tqeU2es6X4jelNM4KP1/GXzdEqt/1i3G6aPVIsACPjsPHrxMeHYdNGNYWkjd+KgIAR6RPxxeRwPzN0sKtEgJYNoV7dwY3hBLn+0CITTVOy5fe0Oebdrlcn3/++d/+9rdjx471+IZNmzZ97yE3N1dj8QYAQu7GhIY8pcrI6jB/Lv/xBdw5XCkA7MHJ4z4V1xaSvmtD/a+QXPqd2OyEa9Lwxt/xkUMq/7pvDFXEuTemRKMvZvG/Xs7PjIWUjnIAOPO3uPcOneTx7c6+Bjp9nbS3nmaHo61X8lOiT5GzCxg176ULURZYNoU7ci1/5yicaS8FgMeKE+7/rZ/+ha0uuGKD+E4+CeThkwu5R8edEjoQAOSWLxFxVBLFOv1bvvSGDl83IeSSSy5ZtmzZrl27pk2btn79+u7vmTNnztNPP718+fLly5d//vnn2gvpO0KcQeNluiCrw3dHVgBAdVDSgUZ67UZpfO/q0JsseF82XnvB0Es765sh1Dv7rFi0cUZjIOloMoXn2oPn/SqN6X3WPismZ64Ty2z0ggT06+V86qliwcvwMUmI48W6CuryrW2VfiQHondncJdZywAgn09+/SDJ/Ni1eIfU0lM5o84W/E+X8UOrdowvGPlOW0aH7W39+vUFBQV5eXkWi2XixIlPPvnkrFmzur/t/fffHz58uPbiDRQ+1rjxMt0hNSUAcOMZaXwc99wesr+BXrtRmh5DHh+PL09xLz+Jwv2/SW/lEQSwfCr3yNhTbVmCNynNwCuzM3LqZ0xK8scXcI/vIIea6LUbpSnR5MkJJ2YNAFYeIA9skwiFP43AclOLUwzE8VxUglhdItaUComZeovTH5Ty9eUU4B9z0p47hNcWkuX7yN8Ok4fGcPfnYIsn+WhHLb1ivVjVAdnh6KuLuVPs7CLDx6XCga2uymLruLP1lqVndFgrX3311SWXXGKxWADgmmuu2b59e21tbfe3bdmy5ZtvvqmsNHQaJpzIkhkailC2XM1xyXeOwgXX8e/O4OIDYGsNvWK9dNYX4sYK6pDgDz9Kb+URMwcfnXdqakEA4CPjkWASG2uoo88bK2Mgh4ya4lJkj++7M7iEALSjll6xXprxhfhzFZUo3PfbiUIHfz/nFNSCMobN3O2O2FhDnXYuJCInMfjjC7jNl/Mz41GdHRbvkEZ8LMpX3J8Vk3O/Eqs64MJEtPmUs+C9CIaPl9HBIiwvL580aZL8d0REhNVqraioiI6O7vyemJiYTz75xOFwbN68+aWXXlqwYEGPj7Lb7VVVVUuXLpX/EyF06aWXZmVlqSp/VyITAECsKna5FCvi7HK5JEniOOUz1mXLFUUluFwuBPCnTLg2Fd4+BCsOwpZqeuHXYrQFau0QboZPzoMZsZLLZYiuN2rARSeJFQUd5QVC8gg/H+VyuRSc/e44KosBAEUlyqP8KROuS4W38uGVg7C5ms78UkwPgsI2sHDwtxnw+zTi6p7XfarAxSYDgKO8UBg7yC9ckiS150vGUV4AAFxMsjzWlAjYMAu+KoOndkNuI533q7R0r1RqA0Lh1uHwxnQqIA2E0gcUlQQAzsqiQfwL/Z8sjuMw7udgqIoiPHTo0DXXXNP99TVr1kycOJFSitCJgw9CSJK67rYHDhyQRd+0adOsWbOuueaauLgempiIoihJUkPDiR7xDQ0N3Z+mLiGRyGSRWhrEtmZkDVLkkZIHRZ7mhba3krZmZLbSwDDvwy0IFmXB7cNg1WH8Wh7U2lFKIHx2vpQVChp/kRrDxSSLFQXOikKc4O8lmxqT1RnZIsRRid5RzAgeGA23DoPX8tBbh3FhG0Sa6f/OpdOj6ak9azgmCQDEquJBf+EqLa7uyDUQuOjEzmPNjodZv4O1xej5ffh4KyCA5ybQh7MJ0FN6uUXGA+akugrRYUf8wDJC/J+sfrUgqKQI09PTP/vss+6vp6SkAEB8fHxNTY38Smtra3t7e0JCQpd3ekWfOXNmWFhYfn5+j4owKCgoMTHx5ZdfVlL6gSPEJjtLj3JN1abwKEUeyHGcJEny7bGCOCqOA4AQm2yxdi23bbHA05Nh4VhYV0JmJeJY69BPX+oPV1KGY+8mVFfh//fscrkUn6zONNSWA0BAciZ38ihxFlg2HRaNg/8WkMtTUHrwqXmx1hkueVgLgFRdOugvXJIkhJCq8yXTUVcBAObE9O5j3TIK/jACPi4g0VY0a+j08vQDCx8VL9aU8a31snved9ReXDKqKEKz2TxiRK/XTeedd94zzzxDCMEYf/vtt6NHj5aVXGNjoyAIQUEnGVUFBQX19fWpqalqyKkUfFyKs/Soq6rElJ6ttyx90W9NmVAT3DyUa6cNiCGRQQEApK2Z2FqwJYALiejxDbFWuC/7dJk1IToR8YLYUEWd9kGUXdWSvmsZChiGdJ3CgSLEpYo1Za7KooEqQm3QYSauuuoqQRDmzp374osv3nvvvU888YT8+s0337xs2TIAWL9+/eWXX/7ss88uXrx4xowZd9xxR0ZGhvZy+o4nldDo8TKDqzJ6qjIkagFD58b06HQwHfoDc3x0IlBq/DhtscbfToSnEu4MCqPGy+gQLCMIwi+//LJmzZqqqqpPP/30zDPPlF9/4IEHIiIiAGDatGm1tbXHjh0LDw//6KOPzj33XO2FHBCybSEaf2UOtu/EKQkfEYdMFqmpjrS34QBlnLtqIFYp0Jj+VEKIT3NVFomVxSa/o5zUQ642ha1BvdnxpxsGv4DRJ006ODh4/vz5XV48//zz5T9CQ0NvvPFGzYUaPO7S20adYy9+9gg91UBIiE1xlh4Rq4uNfKftYseXk+GHginvaUzPji9uDF4V6DS6pFYPOSlNaqojdpvesvQKdTqkxlrE8XxkD2FHpydDohywvKUKcWxLdTMkUgldA+8Wcmrjbvli1KpATBEqAUJ8TDIAiFWleovSK2JNKVDKRycCHqoNdRVnCG2pfKyh48W0xOAF02WYRdgFxPGyc1f+ZowGU4TK4F6c1cZdnOyGrTvGj5ehjg6puR4JJj4iVm9ZjAIflYAEk9RUa+QLGDl0jrkhOsMbuMAvU4TKwMfJFqFx42Vka5XdsHXG3U7SwLaFq9prx7Ol6gEhPjYZKDX0BUz1gDsRnvIY+QKGrS5lEGKNXnGUWYTd4cKisSXQsO0kYVCN6U8HDB55QeztUksDEkx8OAR9cFsAACAASURBVLPjT2DkWWOKUBncgaOGvhplSYTdQEg25Q3rcHIxV1NPGNm2APn4Qikfk8Ts+M64L2AMOWtsnpSBj4pHvCA11hqzmwGVRKmuAhDio5P0lsVYCHFpYPAtlVmE3fDcaRfpLEcveA6dbNZOQnbuig3VBtwkmSJUCMzxMUlAqcuQMVFiXQWVRD4iDplOoTbzSuBpGVqktyA9I1+28yzm4mQMnp3NKlf0DMaeTdJwLiSmCBXDyGn1LJi7N3gDx+JTSRTrqwBjPqprVfrTHD4iFpmtUnM9aW/VW5YecLHAtF4wbOoLU4SKIR8AjVlojdWU6Q0je5vEmjIgklyuQW9ZDAZCRi7wyyzC3jCsm5ApQsXwWISGXJlVzCLsGS40EgcEE1uL1NKotyxdEVl8U+94ijgX6SxHN6joEhuqAHPMju8Ob9TAUaYIFYM36mEHWMGnPpFPMAacOJbx0geGdROKteVACB8ZN9AOtKcDnqvRIp3l6AZThIrBRyUgjhcbqqnTrrcsJ0OpWFsOAHIdOEYXDHtK9YSMslnrAcPeacsiMTdEj/CRnpYvHW16y3ISTBEqhreYntECR+WkDi4k3MjNhnTEuFuqHOLEttSecGdnVxTqLUhXPIFpbNZ6AiH5YGe0IlxMESoJ775kM9Ycsxu2vjHodQ2lYk0ZAPAxLPWzB7iwKGwNIrYW0tastywn4WJ2fJ8Y8wKGKUIl8ZTeNpYiZDdsfSMkpINccZRSvWU5gVhfRV1OLiwKWwL1lsWg8IZMWBJZ6mefGPMChilCJZGjUYwWduFidzV9ggNDcFAosduk5nq9ZTkBqynTL0Y05QkR6yoAIYH543vBmKmETBEqCW/IDAq2pfaLAcsBsyqj/WJA20JsqKIuJxcahcxWvWUxKJ5UwiK9BTkJpgiVhI9JAsyJ9ZWG6sLMttR+MaBtwY4v/eJJJTSSImSVK/qDC4/GlgCpxVgtX5giVBLE8Xx0AlAq1hglcJS0NRFbC7YEcCERestiXAxY8IKFOPUL7y6YXqSzHJ1wscoV/YIQH2s45y5ThApjtMpPnpWZAgjpLYtx8fTONtDKlENGWb3KPuBCwnFgCGlvk1oa9JbFDbPjfUE25ZkiPJXxdDMwiiJkdzW+4G7GVF1ikMBRqbmetLfhgGAcFKa3LIbGaHfa7m4hzCLsE08XLaYIT13cVr9hOvSyGzZfwAFBXGgkdXSIjTV6ywLAkrJ9xmh32m47nk1cn3jK4xXpLcgJmCJUGKNdjbLCzT5iqF6vrFuIjxjqTltqrid2m5yNo7cshsYdpG2MWZNhilBh+NhkwJxYV0lFl96yADCL0GcMVcSZ1UDwEfedtrFmja21fjjR8qXVKC1fmCJUGMQLfGQcEEmuc60v1NEhNdcjwcRHxOoti9ExlAOf1UDwEY9L3hBVgVyspozPGK3lC1OEymMcB76ruhQo5aMTAbOJ7ge3bWGM6xpmW/gIDgzhgsOJvV1qrtNbFuaGGAC8werLsP1Redyltw3Qg4Ltp74jxKcCQmJ1CRCirySko01qaUQmMxcera8kQwLeQOdO5obwFaNVBWKKUHmMEy/Dasr4DjJbubBo6nKKDVX6SuIOGY1JZqmfviAYJl6GWYS+Y5xZk2GKUHnc8YcGyKBgFuGAMMidtnyEYrPmIwbJoCDtbVJrIzJZuDBmx/ePHDgqVhYZwbkLTBGqAR+bDBiLtRVUEvWVhHnvB4RB4mXk4wvPasr4hmFmrRjk4wuz430AB4W5W74YoyoQU4TKI0dpUknUN3CUupxifRVgjo9K0FGMIYRBUgld7hs2dnzxCU/ei85VgVzVZQDAx7Iuyr5ikAsYGaYIVYGP1b/QmrP0KBBJiE9FgklHMYYQBsnOdpUdAwAhIUNfMYYK2BrEhUVRp11f566r9CgACImZOsowtDBU7zOmCFVBMEDvbGfBAQAwp2frKMPQQohNBYTEmjIgkl4yiHWVUksDDgrlI+P0kmHIYQQ3ocO93EbrKMPQwh1dr/e5U4YpQlUQDJBB4Sg4CACmDKYIfQWZzHxEHJVEl3532s7CgwBgzshmribf0b3pOeloc1UVI14QkobpJcOQg1mEpz687hYhpc6ifJC3VIbP8HrbFo7CPAAwMTt+IPB6x8s4C/OBUlPKSMQLeskw5DhRHs8AgaNMEaqC7pdsrqpi0t7KR8SyYO4BoXt6k/tCmx1fBoLuFqGjkN2+DBgcEMSFRFBHh9RYq7csTBGqAzKZ+fAYKolibYUuAjiOHwC2MgeOvrH4pL3NVV2KBBO7YRsQQpx87izVqyqQ+0KbOQgHiHH6MRlXETY1NR07dkySdAtb8BP37Wi1PoGjnpXJFOHA0Ne2cBYeBEpNqSMRx+siwBAFma1ceDR1OcX6Su1Hp5LoLDkCCJmYIhwgul/AeNFBEX711VdTp061WCxnnnlmb+95+eWXMzIyrrzyymHDhuXm5mopnlII3vQmPWCRMoODj00BzIm15bp00WIOwkGjY810V9kx6nQIsck4IFj70Yc0xqk4qoMiTEhIWLJkydKlS3t7Q2Fh4bPPPrt169aDBw/efvvtCxcu1FI8pZBr7+oSdiE11UmNNTggSP6dMXxH3y5azgJmxw8SHe+0PYfOHO2HHuq4C62dnopwwoQJs2bNCg8P7+0N//3vf88777wRI0YAwF133bVp06bKSh1uPPxEz5V5PBdkw4KF4A8cT/vsIo3HpZLoLD0CCJnSsjQe+hRAx6pAzsI8ADCzWRs4fFwqIOSq1rkqEAAY0RVRVFQ0bJg7WCAyMjI0NLS4uDg+Pr77Oyml7e3tu3bt8r4yfPjwkJAQjQTtEyEuDXG8q6qEtLfhgCAth2aue38Q4lM79m/WPs/XVXqMupxCfJrGv5ZTAx2T0mRFyNwQgwBbArjQKKmpVqyv1LcSpCqK8Kefflq7dm2XFzmOe/311335eFtbW0REhPc/AwICWltbe3xnQ0NDcXHxHXfc4X3lvvvumzt37sBFVgUudZRYcKB53xZhTK/e0B5xuVySJIniIGt2dxzdDwAkIbOtrW1wTzidEcNiAaCj7Dj2+duz2WzIb+PbcWg3AKDkEWzWBgENjACMxZqy1uamvkONJElyOBxEofhSUl8ptTbioDC7JQTYxA0cHJMkNdW2Fh4WLD0bMP4vLovFwvP9aDpVFGFUVNTYsWO7vIh9bpIeExPT1NTk/c/GxsbY2Nge3xkZGZmVlbVz587Byak2NGd6c8EBKMwNOmPWgD4oK0KLxTKIQUlHW1NNKeKFkOFjWZXRQeBKG9kOQOvKg4J8tcwopb6/uTcc5UcBIGjE+AC/H3V6YouIFesqLR0tQp/tViRJEgQhICBAmUHzigDAnJnj/w/g9ERKynQd2cM3Vff2BSqyuPpFFUWYk5OTkzN41/H48eNfe+01+e/c3FyMsfemdGhhyZrcvG61/dBOoFQzd52zMM9d5IJpwUHBxyQhjhfrK6nLqd13SKmjMB8AWAj+oBHi08S6SrGquG9FqCye+CY2a4OEN0bgqA7BMpWVlWvXrt25c2d9ff3atWu3bNkivz5p0iT579///vdVVVUvvPDC9u3b77vvvltvvVWp45vGCPFpXESM1NLoKj+u2aDuGLZMFsM2SBDH89GJQIiWpWLF2nLS1sSFhLNa24NGly3VU1OGLbdBYpAMCh0UYX19/ffffy+K4rnnnvv999/v27dPfn3KlCmhoaEAYLVaN27cePDgwQcffPCcc85Zvny59kIqhWXUZADoyN+h2Yis6YT/aF+7ku2n/qN9fztiaxFrypBgEhJZz6xBIsSlAEJidamOLV9Al6jRnJycd999t/vr77zzjvfvrKysjz76SEOh1MKSNcW25Wt73s6Qi27QYDgqupylRwEhU9ooDYY7VRHiUju0VYTOgjxgxxf/0N62cMhuiLQsVglo0CCThY+IFeurxNoKPjZZLzGMW2Lt1MAyYjziBWdxPmnvOfBVWVylRzwh+KzIxeAREtLB02pVGxxFcgg+czUNHj42GXG8WFtB7DZtRvRkELJZ8wt5uTk1XG7dYYpQXZDZasrIBkLsh3b1/26/kWtts94FfmLOyAHMOY7nEnu7BsORtmaxpgyZLCbW39wPEC+YMnKASPY8jTwRTveFNlOEfmEePh4AOg5u1VEGpghVx5I1BQDs+VrkeLiLVTJXk3/gwBBzxmgquuyaOHcdcq3ttFGAOQ2GO4WxjjkDAOy5v2kw1gk3BAsZ9Q/rmDMAIXveDupy6iUDU4Sq41GEO1QvI0Sp+66GWYR+Y83Rbkt1zxpzEPqNNecMQKgjb7sGNdNPuCEsgWqPdWrDhccIiRnU0eE4tl8vGZgiVB0hLoWPjCdtzc4ydS/B5Wa8XEQMa8brP5axZwGAPW8HlQZZ38d33BkvzLDwGy4iRkjQaEuVZ40dOhVBPnd2HNDi3NkjTBFqgWXUJACw56l7O+pwJ06we1EF4CNihYR0YrepvaVS0eUqOwYYs0BfRdDsdtRRwHpmKcaJWdOp+jZThFpgGT0Z5NtRNZFD8JnrXim02VKdJYep6BLi09kNmyLIs9ZxQOUtlVJncT6wC22FEBIz+cg4qaXBWXpEFwGYItQC8/DxSDA5Sw4TW4t6ozgK5ZBRZhEqg0W+rsndouqW6mQ3bIri3lKb61XdUl01paStmQuN5CJi1BvltMKSMx0AOjTxyneHKUItQCaLOSNH1SQKqalOamDNeJXElDSMC4uWmutVde4yB6HiWLKngcpbqicqjR06FcMTnrZFl9GZItQIS5a6t6OsGa/yIKT67SilzqJ8YBahomhwp+1kxxelMWeOwYEhrqoSsbZc+9GZItSIE9mE6tyzsWa8auB2OKm2pbqqS0h7KxfOAn2VxLOlFqu3pTqYRag4GFtGTwGdbkeZItQIPjaZj4onthaVXBfuGza2MhXFlDkGBwS5KotU2lJZEx9VwJx8AaPSlkramsTacmS2Cglpajz/tMV9O6pHEgVThNohd6JQo/4TsdtcVcWIF0zJwxV/+OkM4ni3KX9wmxrP91QCYveiCuO+HVVnS3VnEKZlsUpAymLJmowEk6MwT2pp1Hhopgi1Qzb81VCEzoI8IIQ141UDVVN9PRYhU4QKYxml4pbKHIQqgUwW84gJQKk9b7vGQzNFqB3uJIrSI6StSdkny6n0zLBQA8voKUgwOQoOKp76IrU2ivWV2BIgxKcp+2QGMlvNw8cDpfZ85bdUBytkqBpqe+V7gylC7UCCyZw5Bii1H9qt7JNZLpp6ILPVPGwcENKh9O2o3ELZlJYFmC1D5VEpdpS6nO5KQKmsEpDyWHOmA0KOI7up067luGwFasqJAtzKQUWXs/QIIGRKy1LwsQwvKm2prEaXqlhypgNC9sMKb6nO4sNUEoWEDGS2KvhYhgwOCjOlZVGXU3FroZ9xtRyM4XYT5u8EQpR6prsKflwqa8arEha5TczhXdTpUPCx7owXVhJPHbjgcFPqKOpy2g8ruaV6Zo0dX9RClwLcTBFqCh+dyEclkPZWZ4liSRTuGLZMljihFlxwuCllJHU67Ef2KPVM6nS4ygsAc6aUkUo9k9EFNUx5RyGLb1IX69gzAcB+YCsQSbNBmSLUGo9RqNjtqKdGF1uZKqL4luosPkQl0ZSYyW7Y1MM69iwA6Di4TbEtlVJn0SFgIaNqwkcn8rHJpL1V3tm0gSlCrXHXWlMqiYI149UEi7engUJ32p4CCGzWVMS9pdpaZHes/8gtP/mIWC4sSpEHMnrEOuZM0DZ2lClCrTEPG4dMZmfZUalVgQwndzPesCgunFXBVxEhNoWPSSK2FkeRMlsqcxBqg7IOJye7fdEE7QtwM0WoNUgwmTPHAqUOJTpRuBMnMsf4/yhG31hzpoNSt6PeG7Y0pgjVxX2nvX+zIk+THYSs5afamFJHciERYkO1q6JQmxGZItQBBTtRsBs2zfCk+ipwSnVVFBK7jY+M50Ij/X8aow9MqaPcW2plkf9Pc7shmEWoNghp3J6QKUIdkPul2Q/t8t+Hz5rxaoYpbTQXEi7WVbqqiv18lKfEKDMs1Me7pe739wQjNdeL9VXYEsBafmqAxgW4mSLUAT4yjo9OJO1tzuLD/jxHaq6XGmqwlTXj1QSELKOnghJGoZOF4GuIUluqbA6a0rNZJSANMI8Yj8xWZ9kx0lynwXBsRvVBkSQKTzPe0awZrzYolUTBLrS1xLulSk21/jyHOQi1BPGCJWsyUCoe2qnBcEwR6oNca63DvyQKVmJUY8wjJyGz1Vl6VGoa/ClVaq6XGmtwQJAQm6KgbIzeQLxgGTUZKO04sNWf57BWIRojnztdihak7A2mCPXBPGwsMltd5cel5vpBP8TTdII5CDUC8YJl5ESgtOPg4LdUtx2fxux47fDflKdOu7O8AHE8qwSkGZbRUxHHS0V5pL1N7bGYItQHxAvmYWOB0kEXQiR2m6uyiDXj1Rj/t1RnUT6wrvTaIm+pjmP7Sccgt1Rn8SEgkpCYgUxmZWVj9Aa2Bpkyc6gk+uNCEusqfGmgxhShbrg7UQy2BaWzMA8oFZJHsGa8WmIZPRUw5zi6j9jbB/cEVhJPe3BAkCkjh0rioCs6sVYhuuB/PYT6vz3ni2+YKULdkLMJHYf3DC6JgtXa1gUcGGLOyKaSOLgTDHV0uCoKEcebUkYoLhujD6xj/NpSWdMJXbDKjV/ydlCXcxAfF2vLfcwfZYpQN/jIOD42mXS0OYoODeLjLFJGL9y3o4PaUh1F+UAkIXkYu2HTmBNbquga8IcJYbW2dYELj8FxqdTR4Ti2bxAf79j3q4/vZIpQTwZ9O0pFl7PkMGvGqwsWOS8tbyeVxIF+lpUm0QsuPEZIzKCODuex/QP9rKuykNhtfFQ8FxKhhmyMPhCy5OTdwZw7PVUU+o9KY4pQT6zePr0DxFV6lDXj1Qs+Mk5IzCB2m+PowE6prqoS29bvgLmadMKdWT/AiF/q6Gj+6n1gs6YTwqgpAGA/uA0oHcDHKG3+4u/OksPIZOFjkvp9O1OEemLKyEFmq6uiYKBJFHIYFcvI1otBFCtxHNlbu/IBqanWlJZlGTVJNdEYvSLfaTsGsqVKzfU1bzxsz9uBA0OCz71aTekYPcPFp/ERsVJzvbPE1zpc1OVs+Oey1o0fI44Pv/Y+X8IJmSLUE8QLluHjgFLfjULS0dbw0Sst6/8NAJbh49WUjtErnsiLrT5uqbZt6+vefYJ0tFnHnR1993LmINQFITFT3lLF8mO+vN9VWVTz6kJX2TE+OjFm0WtCYqbaEjJ6xN0N1LfbUWJrqXv7sfY9m7AlMGre8wGTz/flU0wR6ozbTehboow9f0f1snnt2zcgwRR21Z3WcTNUlo7RM0JiJhceIzXVOcuO9vNWSlu++qDx3yuoJAZf8PvIPz7O0l10RC7A7Ty4rd932g/tki14c0Z2zMJX+agE9aVj9IzvFzBiXWXNa4scBQe58Jjo+18xj5jg4xBMEeqMJXsqADgO7+478oLY2xs/fr3uvaek5npT2qjYh94KOvcaVppENxDyJbOeiq6GNX9p2fBvwDhs7j2hl9/Gpkxf5Nbnrvx+wtNs276r/+vTxN5uHXd21PwXcWCIJtIxesacOQYHhriqSsTa8j7e5iw+VPPaIrG2XEhIj7n/FSE+zfcheH9lHDh1dXXvvPPO7t27W1tbv/76a0EQur9nzpw5LS3ucgAzZ8584okntJVRO7iwaCEuxVVV4izK762/rv3w7sb/vCY11iDBFDL7puDz5rL697pjzTmj7efPO3J/C/ndLT2+gbS31v/tOcfxXGS2Rt7ymNy5gqEv8pYq1ZSJteV8dGIP76C05bsPW75dAwBB51wZdvVd7OyiPxhbRk9t3/F9R+5vwefP7fEtHfu3NKxZTp0Oy6hJEX/8M7YEDGgEHRRhY2NjdXX1lClTHn/8cUJIj+/ZtGnT6tWrk5OTASA8PFxbAbXGkjXFVVViz9/ZXRFSp6P5y7+3/bIOKDWljAy/8UFWqdkgmDJzcECQq7JIrC0HS1eLQayrrHvvSbGmjAuNjLrjOSGJuZeMAcbmrMkdO3/ocUuloqvx3yvad/0ImAufsyDwrEt1kZHRHeuYM/pQhG2bPmv67F2gNHD6xWG/vxdxA9ZrOhgWw4cPf+ONN6677rq+35adnT1p0qRJkyZlZGRoI5he9JZN6Cg4WP3S/LafP0eYC77g2uj7X2Fa0DggjrfIGU7dHE7Oovya1xaKNWVCYkbMopVMCxoKS/Z06MnhRGwtdasea9/1IzJbo+54hmlBQ2EZNRmZzM6iPKml8aT/QUjTp283/b93ACBk9k3h1y8ahBYEI/sIb7rpprPOOmvhwoW1tX51ETM+pkw5iaJQaqyRX6FOh+2bf9a+8ZBYVyEkpMc8sDL08lsHN8EM9ejRTdix95fatx4lbc2WrMkx973ChUXpJB2jZ8yjJiHB5Cg8aUv1BFkc4EIjY+57WT6bMowDMpnNw8cDpZ0NBuq01//9ubafP0e8EHHTIyGzbxr081XZW5ubmzds2ND99fPOOy8yMtKXJyxfvnzcuHF2u3358uWzZ8/etm0bz/cgal1d3b59+zrfnS5ZsuSWW3r22RgZPmOMK3978/7fTJMukEoO2T55i9RXIo43nXmZ5cLrHRzvaFO9EQljwKRkIcHkKDwo1VYhhADAseWrjm/eB0rNZ/zOcskfbS4JXGzijIUkSSh1ND22t3nPL6ZJ5wOAVHK47cPl1NbCxacF3vSYIzSSLTfjYLPZ5MWFR0yEg9ta9/xCc84CANLa1L5mmVh+DFmDAm98hKSNbutl1iwWS4/qozOqKMKmpqb//e9/3V8fM2aMj4rwtttuk/+YNGlSZGTk/v37J06c2P1tUVFROTk5P/zwg/eVkJAQjuMGJbWeoDHTG/O3k0M7xfoK2SPIxadH3fyIkJCut2iMPgiyDx9nz9shlOYHpqY3/ndlx/YNgHHY1XcFnXOl3rIxekaSJDL2TNuxveTI7qCZV7Tv+qH5369S0WUdc0bEzY8ik0VvARknQSkNCgoCAGniOe2fvSMV7A808WJjTf1fnxQbqvmo+Kh5S3qOexoIqijC1NTU//znP4o8ymKxmM1mu93e2xs4jjsFomksoz3ZhPmAOD7wgmvNM68RAoP0lovRD9acM+x5O1z7f6k7sNlxdB8yWyP/b7Ele5recjH6Qhg1GRByHNnd8vUHLRv+A5QGzbwq7Mo7WTC2keGCw01po52FB1u+/qdt+3rS3mZKy4q6/RkcFOr/w3WYeEppQUFBaWkpABQWFhYVFcmvr1q16osvvgCAoqKi3bt3S5LU0dHxxBNPBAQEjBs3Tns5tYQLi5azXoSE9JhFKwMvuoF5BIcElpzpgJB4PNdxdB8XGhlz78tMCxofHBRmSsuiLmfL+n8DQmHXzA+7+i6mBY2P7JVv/elT0t5mHTcj+u7limhB0CV9wm63X3TRRQCQkZFx6aWXhoaG7t69GwB27tzZ3t5++eWX19XV3XDDDcXFxYIgTJ48+YsvvggMDNReTo2JuOlhZ8mRgKkXIY53uQbeKYahB1xIhCl1pLPokJCQHnXnc1xYtN4SMXzCmnOGszAPmSyRtyyW40gZxsc65ozmdasBIPjca0KvvEPBFE9EB1TSW0MkScIYoz7/qbt27Zo3b97OnQPu3mBwXC6XJEkWC3NXDAGcpUea92yOuvh6ZLbqLQujfyRJcjgcFkRaN/wnYNJ5rIKowWltbQ0OPtFjp+3nz7E1KGDKBcqOYtz7t6EY88I4DTElj7CExTMtOLTA1qDQK27XWwrGgFEpDI1dizMYDAbjtIYpQiNSUlJy4MABvaVg+Mr69et7KxbIMBqVlZV79uzRWwqGr/zwww9Op1PtUZgiNCLr1q374IMP9JaC4Sv33HNPdXW13lIwfOL7779/++239ZaC4SuPPvro8ePH1R6FKUIjYtgIJgZjqMMWF6M7TBEyGAwG47SGKUIGg8FgnNYYN33CF5qbm48dOyan559KlJSUdHR0HDp0SG9BGD7R2Nh4/fXXm0wmvQVh9E9lZWVDQ8Opt2mcqpSVld1+++0BAQNrtNuZq6++esGCBX2/x7gJ9b5gt9v//e9/y/17TyVaW1sdDkdUFOvgMzQoLCxMT2fl0YcG7e3tra2tsbGxegvC8ImioqLU1NS+K6v0TXp6emZmP2UThrYiZDAYDAbDT5iPkMFgMBinNUwRMhgMBuO0hilCBoPBYJzWMEXIYDAYjNOaoZ0+cUpis9m+/fZbp9N58cUXR0RE6C0Ooy9aW1t//fXX2tra0aNHT548WW9xGD5RUFBQUFBw3nnnsRY3Bqejo+P777+vr6/PysqaOnWqP7GjfcOiRo1FY2Pj9OnTMzMzQ0NDf/rppy1btrC4fMNSX1+fnp4+bdq0pKSkDRs2XHDBBe+//756a5WhCDabbcKECUePHm1razsdOn4PXY4fP37hhRempKRkZmbu27fv22+/jY5Wq/E1U4TG4qWXXtq4ceO3336LELrrrrswxqtWrdJbKEbPOByO2trapKQkAKisrExLS9uxY8fYsWP1lovRF/fdd19AQMDy5cuZIjQ4Z5999syZM5csWaLBWMxHaCy+/PLLuXPnylbF3Llzv/zyS70lYvSK2WyWtSAAREVFCYKgQb8Yhj/89ttvu3btmjdvnt6CMPqhtLR0y5Yt999//+bNm3fu3Kl2mzPmIzQW5eXliYmJ8t+JiYmVlZWSJDFPhvF55ZVXRo0aNWHCBL0FYfSKw+FYsGDBhx9+iDEzAIzO8ePHQ0JCrrjiiqSkpKNHjwYHB69fv95qtao0HPtBGAtJkryrlOM4Qgi7uzY+n3766cqVK9esWcOOLEbmySefvPrqq0ePHq23IIz+sdvtTU1NixYtWrt27c6dO202/yvKxAAABF9JREFU2+rVq9UbjilCYxEfH19TUyP/XV1dHRMTw/PMajc0X3755YIFC77++utRo0bpLQujV0RRfO211woLC+fNm/f/27ufkFS2OA7gx4j+EWlpOopGFigpUhK1kcogKVq2CgKpqEUu3AQZLTIIgiAyIopqES1sUyBEBYkJEVYQYlCUUQQlgVK4KPpnWm8xIJdL993He887U/P9rGbOzDC/WX2ZM2fOGRgYIIRYrdaTkxOm64LPyWQyQkhdXR0hJD09vaam5vj4OHW3QxCyi9Fo3NzcpLfdbrfRaGS0HPgNt9vd1dW1urqKTlGWS0tLczqdzc3NDQ0NBoOBEFJfX4/fk1irrKxMJpNdXFzQu+fn5yldXAGjRtklFArp9Xqz2czn88fHx71eb2VlJdNFwefC4XBJSYlOp6uoqKBburu78Tch+11dXRUXF2PUKMtNT087HA6r1RoMBl0u1+HhoVgsTtG90O3GLgqFwu/3O53OWCy2u7ur1WqZrgh+KTs7e2Ji4seW/Px8poqBf04oFM7OzmZmZjJdCPwdi8WiVqu9Xq9arT46OhIKham7F94IAQCA0/CNEAAAOA1BCAAAnIYgBAAATkMQAgAApyEIAQCA0xCEAADAaQhCgK8nEoksLi7e3d0xXQjAd4Af6gFYZ3t7u6Oj41dHq6qqenp62tvb9/f3RSLRnywM4FtCEAKwjlwu7+zspLefn59HRkYMBkNTUxPdUlRUpFQqh4eHUzr7IgB3YGYZAFaLRqNCobC3t3dsbOy3J8fjcfr85IJQsVjs8fHx07nf3t/fb29vs7Ky+Hz+/1w0wJeCb4QAX8/e3p5UKg0EAvRuY2NjW1vbzMyMRCKRSCQURa2srMRiMavVmpeXV1BQoNPpTk9Pk5d/fHyMjo7KZDKKogQCQXV1td/vZ+hRAJiHIAT4el5fX8PhcCwWo3cfHh48Hs/CwsLS0pLP59NqtWazubOzMxqNejye9fX1+/v7ZF8rIcRmsw0ODlqt1kAgsLOzk5ubazKZbm5uGHoaAIbhGyHAd/D09LS2tkavUzM5OVleXh4MBg8ODng8HiGkv7/fYrGEw2GKokKhkMPhsNvt9Pq0hBCXy6VUKufn54eGhhh8BACmIAgBvgO9Xp9crU2lUhFCTCYTnYLJluvra4qitra24vG4WCz2eDzJyxUKRUpXAAdgMwQhwHfw43CYjIwMQohAIPiphe5KjUQihBCbzZaMSZpUKv0zpQKwDYIQgFvoMaI+n0+j0TBdCwArYLAMALfU1tbyeLzl5WWmCwFgC7wRAnCLRqMxm80jIyM5OTmtra0ikejy8nJjY6O0tLSlpYXp6gAYgCAE4Jy5ubnCwkK73d7X10e3qFSqqakpZqsCYApmlgFgu0QikZaW9tPYlkQikZw+5t95eXk5Ozt7e3uTy+UURf23GgG+MAQhAABwGgbLAAAApyEIAQCA0xCEAADAaQhCAADgNAQhAABwGoIQAAA47S/vKt09vrsH8gAAAABJRU5ErkJggg==",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (-1., 6.3)\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "#sol = solve(prob, Tsit5())\n",
+ "sol = solve(prob, IRKGL16(), reltol=1e-14, abstol=1e-14)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "507ae9bf",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, -1.0, 6.3)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "41-element Vector{Float64}:\n",
+ " -1.0\n",
+ " -0.99\n",
+ " -0.97\n",
+ " -0.93\n",
+ " -0.85\n",
+ " -0.69\n",
+ " -0.485818874719202\n",
+ " -0.26692381276414107\n",
+ " -0.05369340933097668\n",
+ " 0.15754280557878175\n",
+ " 0.3328706604956533\n",
+ " 0.5648848261319378\n",
+ " 0.776797626468188\n",
+ " ⋮\n",
+ " 4.242958339993569\n",
+ " 4.409629638633526\n",
+ " 4.638312467582614\n",
+ " 4.850565456658035\n",
+ " 5.0540058685209095\n",
+ " 5.262334710087114\n",
+ " 5.4290081278892215\n",
+ " 5.6576957059353505\n",
+ " 5.869948843132042\n",
+ " 6.073390204248931\n",
+ " 6.282394606551372\n",
+ " 6.3"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "33e6acfa",
+ "metadata": {},
+ "source": [
+ "### Case 3 (constant step size)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "596eb99e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd3wUZfrAn3fKlpRN753QQw+9R0BEQcV6IqcIKt4hP8UTFT1PjxNFRTk9KyqeCEjxQJGi9FCEAIEAISQkISG9191sm/L7Y3aXdVNINrs7k933++GP7DDl2X1n5nmf+iKe5wGDwWAwGE+FEFsADAaDwWDEBCtCjGOoqak5e/bsqVOnrl+/rtfrbf73xIkTixYt2rt3rytFysnJWbRo0XfffefKizqbxYsX//3vf+/qURUVFYsWLfroo4+cIZLU2LBhw+LFi3NycjreTbgn9+zZ4xqpMFIGK0JMd0lNTR07dmxISMjo0aPHjx+fmJioUqkmT578448/WvbJyclZv359RkaGKwUrKytbv3798ePHu3+qxsZGZIVMJgsNDb3tttvWr1/PcVz3z9951q1bt2XLlq4e1dDQsH79+v379ztDpC7x3XffWf+S3t7esbGxf/rTn06fPu2oS6Smpq5bt660tLTj3a5du+b6exIjTSixBcD0bPbu3XvPPfcwDDN58uSpU6cGBATcuHHj4sWLqampSUlJDzzwgLBbZGTk1KlT4+LixJW2myCEpk2bJvxdVFR05MiRI0eO/Prrr1u3bkUIiStbzyI0NHTIkCEAYDAYsrOzt27d+uOPP65fv/6xxx4TWzSMJ4IVIaZbLFu2jGGYDz744IUXXrDeXlJSUlBQYPk4a9asWbNmuVw6B0MQxIEDBywff/755/vvv3/79u2PPvroPffcI6JgPY5JkyZZHAZ6vf6FF1747LPPli5deu+996pUKnFlw3ggWBFi7KeysvLatWsymWzJkiU2/xUdHR0dHW35WFtbW1hYGBUVFR4eLmzJz89vaGgYOHCgXC4/dOhQVlaWSqW68847w8LChB2uXbt27NgxtVoteFytT15eXl5WVhYXFxccHHzmzJkzZ87wPD9x4sThw4d3RmyO486ePZuenq7VauPj42fMmGHfy/eee+556KGHfvjhhz179lgrwkuXLp0+fbqxsTEqKmrGjBkhISHWRwlffMCAAUql8tixYxkZGTRNT548edCgQa0vUVNTs3fv3urq6vj4+FmzZnl5ednsIPwU8fHxQUFB1tszMzP1en1ycnJ7whcVFVVXV/fp08fmu2dkZCCEhg4dKnxsaGjIz88PCwuLjo7Oy8s7cuSIVqsdM2bMmDFjhB00Gs3evXuLiopiYmLuuusub2/vW/9wf0Qul69du3bz5s0NDQ0nTpy48847hbslMjIyIiIiNzc3NTW1oaFh3rx5kZGRAMBx3O+//56RkWE0GhMSEqZPn+7j49PmmTmOS01NvXz5Mk3T06ZN69u3b2fkYRjm+PHjV65cMRqNffr0mT59ukKhsN7h4sWLPM8PGzZMo9Hs27evuLg4Ojp69uzZSqVS2OH3338/f/48QRAzZszo06dPV38QjAjwGIy91NbWAgBJkmq1uuM9v/76awBYtWqVZcvdd98NAL/99tuoUaMsd6OXl9e+fftYll22bBlB3AxgL1q0yPps//znPwHg008/nTNnjvXNPH/+fIPBYNnt8OHDrY/NzMy00ZcBAQHbtm3rWP6Ghgbhm9psFyS59957hY8lJSVTp061PrmXl9fHH39sfch9990HAAcOHJgyZYplN4TQyy+/bHPyLVu2+Pr6WvaJjIw8c+YMACQmJtoI8N///tfmWOH9y7Ks8PHq1asAcOedd1p2+Otf/woAv/76q82Bvr6+oaGhlo87duwAgBdeeOG1116zdv8uXLiQZdlDhw4FBwdbNvbq1evGjRsd/5L//e9/AeD++++32T5ixAgA+Pbbb3meX79+PQC88cYbS5cutZz80KFDPM/n5eXZDF9wcPCPP/5ofaqFCxcCwNatW8eOHWvZjSCIl19+meM4y27ffPMNALz11lvWx6ampiYmJlqfPyoq6ujRo9b7BAYGqlSqU6dORUREWHaLi4vLz8+vr6+//fbbLRspivrqq686/kEwUgAny2DsJzAwMD4+nmXZBQsWFBcX23GGp59+2tvbe/fu3WfPnn399dd1Ot1jjz32z3/+c9OmTV9++eW5c+e2bt0aERHxzTff/PzzzzbHrlq16urVq3v27CkqKjp8+PCwYcM2btz44osvdnC5GzduTJkyJTMzc9myZSdPnszKyvrqq68IgnjkkUfsy6kR3L+BgYEA0NDQMGXKlNTU1AULFhw5ciQ7O/uHH34IDg7+v//7vx9++KH1F9fpdDt27Dh//vyXX36pUqnefffdQ4cOWXZIS0ubP38+x3GffvppYWHhhQsXUlJS5s6da4eQ3ed///vfF1988fnnn587d2779u3R0dHr169/9913586d+8gjjxw9evT48eNz5sy5fv36c889Z8f5WZYtKioCAGu79ttvv926desHH3yQmpq6e/fuhISEhoaGadOmXbhw4fHHHz937lx2dvaaNWvUavVDDz0kTHqsWbZsGcuyR48eLSoq2rVrV1xc3Lvvvvvvf/+7AzHOnTs3c+bM8vLylStXnjlz5uLFi2vWrKmvr589e3Zubq71nnq9fu7cubNnzz5y5MiJEycefPDBGzduLF68eMGCBdXV1f/73//S09M/+OADgiCWLl16y7QdjPiIrYkxPZtt27bRNC3cSwMHDly4cOGGDRtqampsdmvPIkxOTmYYxrLx3nvvBQCKoq5cuWLZKGiR+fPnW7YIZhBFUbm5uZaNVVVVPj4+JEkWFRUJW1pbhA8++CAAfPLJJ9ayHT9+HCE0adKkDr5mmxbhyZMn5XI5APzwww88zws6ePny5db75OXlKRQKYbogbBEswsGDB1sbr59++ikA/OUvf7FsmT59OgBY2xMcxwlGpOstQoIg0tPTLRt/+uknYcRXrFhh2ajRaAIDAymK0mq1bfyCZlpbhCzL/uMf/wAApVJZW1vLmy1ChFBaWpr1sW+++SYAzJ4923rjF198AQAjRoywbBEsQn9//7q6OsvGzMxMgiD8/f01Go2wpbVFOHr0aITQ7t27rc+/ceNGAHjssccsW4R5z7PPPmvZotfrBbdtXFxcS0uLZbsQMvjiiy86+EEwUgBbhJhu8eCDD6anp8+dO9fb2zsrK0tI/AsLC3vssceamppuefhzzz1HkqTlo/Cinzlz5sCBAy0bJ0+eDGbby5q77767d+/elo8hISGPPfYYy7KtbUcBtVr9008/BQUFCTrAwsSJE4cMGXLy5MnGxsaOpeU4bvHixYsXL164cOHkyZMnTZqk1+tTUlIE/bpx40aCIF599VXrQxITE2+//fbCwkJBFVl4/vnnLRMIAJgxY4b1d2xqajp8+LDwjSz7IIRsMpJcxtSpUwXXpYAwIgCwbNkyy0YvL69Ro0YxDNMZ38D58+eFX3LevHlJSUkrV64EgFWrVgk6RiAlJWX06NHWRwla+ZVXXrHe+MQTT4SFhZ0/f97mDlm4cGFAQIDlY1JS0h133NHQ0NDadhTIyck5c+bM8OHD77rrLuvt8+bN8/f337dvn83+1mMhk8nGjRsHAIsXL7ZECqH9WxcjNXCyDKa7DB48eMeOHTqd7vTp02lpafv27UtNTf3+++8LCwtTU1M7riuwyV8Q8kra3FhZWWlzrCWhw8KwYcMAICsrq81rZWZmGo1GLy+vFStW2PxXS0sLx3HFxcV+fn4dSMvz/Lp164S/CYIYMGDA/Pnzly1bRpJkWVlZRUWFSqVavXq1zVGCZ6ywsDApKcmysV+/ftb7CClCFRUVwsfs7GyO4/r37y+TyVp/QddjMyIBAQE0TXt7e9vkAVlG6pYZIgUFBZZf0svLKyUlZdmyZTYRX+vJEADwPH/16lWEkE2MUCaTDRky5MCBA1lZWQkJCZbtrW+P4cOH7927Nysra/bs2a1FOn/+PAAYDAYbRStcoqqqSqPRWFKBZDKZTS2Q8N1thjU0NBTaunUxUgMrQoxjUCgUU6dOnTp16ssvv7xz584HHnjg+PHjhw4dElx87WE9fQYAQWva5EYKWTN8q6a4Nm9hML93mpub27yW4N6srKy0vIKtCQgIMBgMHYgKACRJVldXC3/7+/tb63jBmmxpaWnv5AzDWG/p+Duq1WrL17Gm9RbX0DpbFSHUeqPwLTrTYWDOnDlCxx+KoqwTgqyxTsMBAL1ebzQafX19W19XmEbYjHvr20PY0vHtkZeX194IarVaiyJUKBTWyVxg/u5t3s+tb12M1MCKEON45s6dO2XKlCNHjqSnp3esCLtDVVWVzRZh6t1eLYTwwh0zZsyxY8fsvqi1t631ySMjI2/cuGH3yS0I9QCtLYnWW9rTPRqNpuNLCO9omwMZhtHpdDZvc2cgk8na+yXbQ6FQ0DTd3Nzc0tJiowsFS9pm3Nu7PdrTu8L2Bx98cMOGDV0SDOMG4BghxikIWSTW8T+Hc+HCBZstgnfL2gNpzeDBgymKOn/+vFardbgwUVFRoaGhRUVFJSUl3T/bgAEDSJK8evWqTqez3i58QWuEukwbBVlfX19eXt7xJdo8MC8vz2g02i22sxFKLdPT06036vX6S5cuWf7XQnu3R5v1mgAgeFxPnTqFDTgPBCtCjP2o1eotW7a0NkdycnJOnDgBAB0UdHef3bt3Z2dnWz5WVFRs3LiRoqj2mryoVKr77rtPo9G89dZbrf9X8EbaDULo8ccfB3MiZTdP7uvrO2PGjNraWiHHUoDjuA8//NBmz169egGATSrHO++8c8u3eXsHdklOFyN07Fu9erX1t/v666+rqqrGjBkTGxtrvfO3334r1LkKXLp0af/+/YGBgbfddlubJ09KSho9enReXp6QTWpDN28PjMTBrlGM/eh0ukceeeSll1564IEHxo0bFxIS0tjYeObMmXXr1qnV6pSUFJvqcscSFRU1a9as999/f+jQoTk5Oa+88opGo1m+fHlUVFR7h3z44YfHjx9/++23c3NzH3744T59+gidU3766af6+vruuEwB4PXXX9+7d+/GjRuFpR769evX0tJSUFCwb9++tLS0vLy8Lp1t1apVhw8ffuGFFzQazZ133tnQ0LBmzRqh2M6aiRMnRkVFHTt2bNGiRY8++qhWq92+ffvu3buDgoKs1UBrZs2a5efnt3379qioqHvvvbeurm7Dhg3p6emCKS9Nli5dun79+r17986bN2/JkiUqleqXX35ZuXIlRVFr1qyx2dnf33/atGlvv/12nz590tPThbKWf/3rXzZtYqz56quvJkyYsHjx4rNnz951110JCQnV1dW5ublbt26NjIwU6igwbglWhBj78fb2fvTRR3/77be1a9euXbvWsl0mky1atOjDDz90aivqFStWHDp0SChdEHj66ac7tmmioqJOnz69ePHi7du3b9++3bLdz8/vmWee6aY8vr6+x44de/bZZ7du3Xrw4EHLdqVSaWk+3nlGjBixffv2BQsWvPjii0KFYmxs7K5du2wSR2Uy2datW++9997169cL5XeRkZG//PLL448/3rEiDAgI2LRp07x58yxj17t377179wplANLE19f38OHD8+bN27Jli2UJjsjIyHXr1k2cONFm5w8//PDjjz+21EJQFPXmm2/aVM7YIFTRPP300+vWrbNOmQkJCcG9ZN0bhB3imG7CcdylS5eKiorKy8sJgoiLixs1apRNKkRTU1NlZWVwcLBle0VFRUtLS3R0tHWFgFqtrqqq8vf3t64nA4Dr16/TNB0TEyN8XLly5RtvvPHNN98sXLjw4sWLQuxn3Lhx/fv3tz5Kq9WWlJT4+fm1TrYsKChIS0traGjw9/ePjY0dOXKkTaFC6+9YWFgIZo9ix5SXl//+++/V1dU+Pj4xMTGjRo2yTu6orKzUaDRRUVHWtpdwfplMZt2gFQAaGxsPHDhQW1sbFxeXkpIil8ttfgqBpqamAwcO1NTUREZGzpgxQ6FQFBcXG41Gi7RGo7GwsNDb21uo+7ZQW1t74MCBxsbG+Pj42267jabpwsJChJClNkCj0VRWVvr5+dn0Mi0oKBDG2npjVVWVWq2OjIzswOpqbm6urq729va2NJVtb5+AgIA2E2p4ns/IyLh48aJer09MTJw4caLN5aqrq5ubmyMiIhQKxenTp69cuSKXy6dMmWLjO219T1rIyso6f/68Wq0OCQmJjY0dMWKEdbRbuBPi4+OtD6mpqWlqagoPD7cea51OV1ZW5uvr2zqFFSMpsCLE9DysFaHYsmAwmB4PTpbBYDAYjEeDFSEGg8FgPBqcLIPpeUybNk0ul48cOVJsQTAYjDuAY4QYDAaD8WiwaxSDwWAwHg1WhBgMBoPxaLAixGAwGIxHgxUhBoPBYDwarAgxGAwG49FgRYjBYDAYj6ZnK8La2tpPPvlEbCkcD8/zuKylB9GZNdkx0gE/XD0I1zxcPVsRFhYWWi/Y5jYwDKPX68WWAtNZbrkcPEY6sCzrjJWZMU7CNQ9Xz1aEGAwGg8F0E6wIMRgMBuPRYEWIwWAwGI8GK0IMBoPBeDRYEWIwGAzGo8GKEIPBYDAeDVaEGAwGg/FoerwifCbRx1B8TWwpMBiPgKkpa/p1I9tQLbYgmE7RfHBr/fb/cC1qsQWROj1+hfpAGVHz+WshS96lo3qJLQumI3ijoW7DakBI3itJ1itJFt0bCFJsoTCdhdO1NO/frE79iWcZXc750KVrgOjx02j3puVCauPubwFAdyUtcN6L8r7DxJZIuvR4RVijZ7mW5urPXw1Z+h4dFiu2OJh2Uafu1F7+HQC0l04CAJIpZHH95b2SZAkD5b0GIZlcbAEx7cDzmtO/Nu3dwDbXA0KEwstQkNWcutM35X6xJcO0C1Nb0bD1YwCggiKY2vLqz1f4Tpn79OYD+dcLxBata3AcR5inXARBbNu2LT4+3uFXEUcR1tbWpqenNzY23n///URb88qff/7ZYDAIf8fExIwdO7a9U60vbLlv2mTd1bM1n60IWfo+FRzpLKEx3YBTNzYf3AoAqll/Zuur9QVZTFWxPjdDn5sBAFRQeNiKrxBFiy0mxhZ93qWGnV8aS/MBQN5rkP99z7BN9TXrXm/a+50yaQwVGi22gJg24Fmm7vvVnE6jHDIhaMGrTQe2Nu/f3Hx0R+rBtA1btgYFBYktoJ0sXLiwrKzMTRRhenr6hAkTevfufeXKFZ1OJ5e3YQosWrRo9OjRPj4+ADBu3LgOFCHD8UELX69Z9w99bkb1p6+ELl1DBoY6UXqMXTTt38zpWhRJY1QzHxW2cJom/fUrhoIrLelHmNqKlvQj3mNuF1dIjDVsc33Dj59qL54AACowzO/uJ5XDJgEADeA95nZN2v66zR+E/t8H2EEqQZr2fW8ozCYDQgP+tAwIUjVznmLAyLrv3+V5bsiQIeHh4WILaCeCRnAGItzEgwcPbm5u3rVrV8e7ffTRR9u2bdu2bduyZcs63hPRsuCn3pQlJLH1VdWfvcw21jpOWIwDYKpLNSf3AEH4zVlo2Uh4q5SDx/nd/aTf7IUAoE7dKZ6AmDZo2P4f7cUTSK5U3fV42IqvBC0o4Dd3MekfbCi82nx0h4gSYtpEf+1C86FtQJBBj71MeJk0hyy2b9jyzxDZ42NhTkIERSiTyWj61k6wPXv2fP/991evXu3MOZFMEbz4X7LYvkxNefVnr3Dqhm6LiXEYjbv/y7OM95iZdHhc6/9VjphCqgKNZQX6axmulw3TJmxTvTYzDZFU2Eufq2Y8gmiZ9f8SCu+Ah58HhJr2bWAqi8USEtMaTt1Qt/E94HnVHfNlCUnW/4VkcptxxFiQ6AShX79+ly5d0uv1S5Ysefnll1977bU2d9NoNKWlpcuXLxc+KoB6wj8MKourPn3F7+lVltlQj8NoNLIsixASWxAHwBTlaC+dQDKFYtrD7a0tJR83q+W3TY2Hf/SLG+Bi8RyCXq+XydzqFdNyah9wrGzQWNYngG1r1FCvwYqR03RnD9ZsfD/gr+/2IAcpy7J6vZ4k3TFjmecbv3+Pbaqnew2ST7rXLZdyMxqNXf1eFEXdcrglqghPnjwp/HHhwoVRo0Y9/vjj0dFthOUJgiBJMiAgwLKlYfI9kcc3MuWFuuM/+cx6zEXiOhqCIHiebzONqMeh3vNf4HnvKXMpv3ZD9N7j7tQe+dGQk87XlpMhUa4UzyEQBOEeg2WC53VnDwKAcvTtHXwv37ufNFzLYIqvaY//7N1zMkiFJ8utxsuMJnWnIec84a3yf3Q5QUn03d5NEEJdHbvOWBRS/7GGDx8eFBSUm5vbpiJUKpXh4eGvvvqq9UZ9eGD1J8v1l04E3L3IVWI6HoIgOuNAljjaS78bC7NI3wC/6Q+hDr6Of5DXyGma3/fqTu72f/BZFwroGGiadoPBsqDPv8zWlJF+QT6DxnZk6tH+gY8sq/ny75oDm72HjKfDe0bxEkEQHMe503gJGIqvafZtAIQC570gDwoTW5xOodVqd+7c2djYeO+990ZERHTmEIqinDF2EpoWFRYWVlZWAgDHcZaNmZmZtbW1iYmJnT+PPHEQqQpkasoNxbmOlxLTaXiWafzlGwBQ3TEfyZUd7+wz5V5ASHP2ANfS7BLpMO2iOf0rAHiPvv2WDk9F/2TvsXfwRkP95g+AY10iHaYNeJap2/AuzzI+k+5WJLWbYy8pDAZDSkrKnj17iouLR4wYce2amA3CRFCEer3+oYceWrp0KQA8+uijTzzxhLD92Wef/c9//gMAv/7669ixY5cuXfrkk09OmjTplVdeiY3tymQTIeXQiQCgzTjueOkxnUZz6lemupQKi/Eed8ctd6bDYhX9R/IGveb3vS6QDdMenE6jvXgCEPIa26lqFr97niIDQg1FOc1Hcd6vaOhzLzLVpVRIlN/dT4otS2fZsWOHl5fXpk2b3n777SVLlqxevVpEYURwjVIU9fTTTwOAUBdhsXPffPNNlUoFACkpKSRJ5ubmKpXK5557bvDgwV29hHLYJPXxXdqM49b5+hhXwuu1Tb9uBAC/2Qs72UrNZ+pc3dWz6uO7fFLux3neYtGSfoQ36OV9h1FBnXJVEQqvgAeW1Hz1hubUPt/bHnC2eJg20WWeBgCv4ZN7UFeKnTt3zpkzR/j7zjvvnD59+vr168USRoTXDUmS06dPb7195MiRwh9KpXLmzJkzZ860+xLyXoNIvyCmttxQfE0W09fu82DspvngNk7dIO81SDl4XCcPUfQbQUcmGMsKtBnHvJJvc6p4mPZoOf0bAHiPvbURb0ExYBThrWKqS5mqEtxrRhS0WWkAoOj0syYFSktLz5079+677wKARqOpr69Xq9XOK5nvGDeddyOkHDpRfexnbcZxrAhdD9tY25y6AxDyu6drjhqfyffWb1mrProTK0JRMJbmG4pzCS9f5eDxXTiMIBQDRracO6zNOuOLFaHLMZbks3VVpF+QLLpPlw48UcG/cpbVuSS2G6qE9ZOpcKtUAZ1Op9Vq6+vrAUBoqKnX67EidDDKYZMEReg3eyG4RUFeD6LlQipv0CuHjJfF9e/SgV7JKY27vzUU5+rzL8sTu+wSx3QTzenfAMBr5G1drbxWDBzdcu6w7soZ36n3OUc0TLtor5wGAEXSmK6+6I5X8icreecI1Qa5jXy48qaEkZGRd9xxhxAmu379+ueffx4YGOgyYWxwW0UoT0gi/YKY2gpDca4sFhuFLkWfcx4AlEMn3XJPGxAt85k4u+nXjeqjO7EidDG80dCSfhgA7Gj6qhg4CpGU4Xomp1UTyp7ayKKHor18CgCUg7rsF31pCHFHNOJcogq9Kejv/wc9PWHChLS0NEERnj59evz48SK2EHFbRWjlHT2GFaEr4RmjPj8TEFL0G27H4T4TZzcf2qbNPMXUlFPBncrXwDgE7aUTXItaFtOXjupCtZIAofCWJQzQ513W51yw7kqKcTZsY62xNB/JFPI+Q7t6LIlgeJBoumfhwoVDhgz54Ycf4uPjX3/99Y8//lgsSUBSdYQORzlsMghFFLzrzH+M4Xomb9DRUb0IH387Did8/L1GTAWeVx/7yeGyYTpAY0qTsTNJTTFwDABos844UibMrdBePgU8r+if3OP6iIaEhOzbt++nn35auXLlO++8c9ddd4kojDsrQnnCQNIviKmrNBSLWarpaehyzgOAot8Iu8/gM/U+QEiTtp/TtThOLkxHMDXl+rxLSCZXJk+17wyKgaMBQJd1Fs87XYnuShoAKAb1jCJ6G4YNG7Z169Z9+/Y99NBD4krizooQEBK8NLiy3pXosgVFmGz3GeiIeHnCQF6v1ededJxcmI5oSdsPPK8cOolQeNt3Bjo8lgoK59QNhhs5jpUN0x68XqvPzQCCUA4cLbYsPRu3VoQAXsMmAUDL+VQ8S3UNbHO9sew6ksllvZJuvXf7yPsOBwB9/mUHyYXpEI7TnD0IAJ3pAdQBiqQxAKDLSnOMVJhbocs+xzNGefwAwsdPbFl6Nm6uCGXxA8mAULah2lCEZ6muQH/tAvC8PHFINztcyHsPAQB9HrYIXYHu6lm2oZoKiZIndGv6InhHcZjQZWgz0wCgpzQX7YCKiopBgwYBwPvvv9+nT5+BAwdu3rzZlQK4uSIEhJRDJgD2jroKXc4FALAvX9QaWVx/RMuMpde5FrUj5MJ0hCZtPwjdZLqXvy7vPQTJFMbS62xDjYNEw7QPx+myzgCAsmcGCK1hGKawsHDnzp0bN248derUzp07X3zxxYwM163U7e6K0OIdvYhzR50PzwsVhPJuZMoIIFomi+sHPK+/nukIyTDtw/P6axkA4JWc0s0zIYpW9BsBPK/DRqHz0RdmcZomKiSKCosRWxY7KSsr++qrrzZt2qTT6QDg008/Xb58eXBwcL9+/Z544okvvvjCZZK4vyKUxQ8g/UPYuirsHXU2xoobbGMt6RdEh8d1/2zyxCEAYMi71P1TYTrAWFbA6TRUUATpH9z9s4lzT60AACAASURBVCmShNxRrAidjtBou+eagwUFBSNHjrx48eKVK1fmz58PABkZGcOHm5xJw4YNc6VF6L4F9RYQUg6bpD66Q5txvKsdvzBdQpedDkLhhCM6RMh7D4bfcL6M0xFsblniIIecTTFwNCCkyznPGw09rrKtZyE0lOlWo22O1RdkAcs4TKb2IXz86cgE6y3vvffeww8/vHbtWgD4/PPPly9fXldXN2HCBGEBeoZhXNlxzQMUIYDXsEnqoztaLhzzu/tJ3HfUeTjKLyogix+IaJmhNB937XIqhoIrACBPGOiQs5GqQDoq0ViSp8+7qBgwyiHnxLSGqSxmqksJb5U8foDdJ2k6tK1pz3cOlKpjQpa+b903MSMj45VXXhH+njp1KgAolcrDhw8nJCQAwKFDh1auXOky2TxCEcri+pOBoWxdleFGjiweG4VOgTca9Nft76zWGkTLZDF99dczDdevCHn5GGegv54FAN0sd7FGmTTGWJKnu3IGK0Lnoc00N9ru3GKfbaLoM8zQP5PnOMfJ1S6EXEn/MZZJURTDmIxRo9EIAPHx8XV1dSNGjACAqqoqQSO6Bo9QhICQ15CJzUd3aC8ex4rQSRgKrvAGPR2daF9ntTaR9xmiv56pz7+MFaGTYOur2IZqwsuXDnVYwoUiaXTTb5t0WWcAljjqnBgbdFdOA4AyqVt19LL4AcHPrHKQRF1m3Lhxu3btuv/++wFg165dADBv3rxNmzZNnz6dZdnNmzc/++yzLhPGMxQhgCJpTPPRHTjg5DzMndXsbyjTGnniEIDN+lycL+Ms9NevAIAsIcmBIQNZTF/SN4CpqzSWF9IR8Y46LcYCp2nSF15FFK3oP1JsWeznxRdfnDp16qxZs1QqVVNTEwAsXbo0JSVl1qxZjY2NQUFBDzzwgMuE8RRFKIvrBwRpLL2OY/hOwtRZrb9jAoQCsvgBiKINpXmcTmN36y9MBxiuXwEAueP8ogAACCkGjtKk7ddlncGK0BloM08Dx8n7JSO58tZ7S5XQ0NBz586dOnVKqVQmJydnZWWpVKq0tLS0tDS5XJ6cnOzKVZncv3xCAMkUdEQczzLGkjyxZXFDbnZW615rEhuQTE7H9AWOM1zPcuBpMRaElFEHK0JLA+4ruIjCKQh+UcWgHh8v8PLymjZt2vjx4+VyuVA4QVHUhAkTRo4c6eK1CT1FEQKAUDuhv5EttiBuiD7HMZ3VWqMQeq3lY++o4+G0amPFDUTRdEwfx55Z0T8ZUbRQ8e3YM2N4xqjLuQAIKXt+ZzXp4HGK0IAVoRMwBwgdky9qjaz3YADAYUJnYCi8Cjwvi+3r8OkLkitlvZKA44TSUowD0edf5vVaOirRIQ0QMAJYEWK6jaWzWn9HZsoIyBOSEEkZSvLw2oQOx5Qp08sxpfQ2KAfiFjNOwVCYDeau9BhH4UGKkA6LIRTebF0V21QntixuhbHiBttU56jOajYgmZyO7QscK9R9YxyIY0vpbTAtyZRzwRkn92SMJbkAIHO0N9vD8SBFCAjJ4voBNgodjamzmhPMQQGhG4U+H3ffdiQ8yxiKrgFCMucoQiokivDx49QNbF2VM87vsQjrHguvMoyj8CRFCCBU0+MVtB2LYzurtQavTegMjEXXeIOeDo8jvHyddAnBajEUX3PS+T0QtqGGbaojvHyooAixZXErPKWOUMAUJiy8KrYg7sPNzmp9hznpEvKEgYikDEW5vF7bowunJIU5QOjgwglrZLF9dVfPGYpzlUMnOu8qHoWh6BoAyGL62t0A4dKlS6WlpQ4VynWo1c5andTzFCFChqJrwLHd6dGHsaC/nskb9HR0bwd2VrMByZV0TG9DYba+IMt5DlhPwxwgdKIipKP7gPndjXEIwlpydGxf+w5PSUl59dVXO96HZ4xsfTUiSTIwzL6rOBaO44T1KADAx8cnKirKGVfxLEVIeKuooAimpsxYfoOO6iW2OO6APu8SCEsvORN576GGwmx93iWsCB0Dz+sLrwKAkwKEArLYviAkd/A8XvXFIRiLhUwZOxXh5s2bb70Tx5WuuJ/XayNW/kCqAuy7kANpbm729XWW996CZ8UIARdROBrTk9mNtWA6gzlfBreKdQzGqmJO3Uj6BVFB4c67CukXRKoCuRY1U1vuvKt4EDxvEB43p2bKEIQ5hORB7Zw8UBHixFFHYijJAwBZTG+nXkXeKwmRlLHoGm/QOfVCHoKpxaiDFuPtADqmL2DvqINgasq4lmZSFUj6BTn1QkJFjaEAK0L3RbBdsCJ0CGx9FaduJLxVpH+IUy+E5Eo6KpFnGb0nPZzOQ/gZHdsYtk1ksX3A7DbAdBNTpozzCycEh7nekyp3PU4R0lG9EC0zVhZzWmclIHkOZnPQFbW98j5DAMCQh72jDsDgnF7brRGiWbiCwiEIitDuTJnOI4sfAARhLM7jjQZnX0sieJwiRCRFR/cGnsfumu4jLOVBRzvXLyogTxwCALo83HS0u7DN9UxNOaHwoiOcvgK4kC9jKM4Dnnf2tdyem7UTToZQeNHhcTzLGDzGlPc4RQg3qwmxd7S7GIpdESAUkCcOAoI0FuXgMGE3EcxBYdbv7GsRPn5kQCiv1xqrip19LTeH44yl+YCQixwwCUlgrrHxBDxTEeJ8GcdgLM0HADrKFYoQyZWy6ESeZXA/hG6iL3B64YQ1wovbWOQptoWTMFbc4A06KjCc8Fa54HIyD8uX8URFKI8z58tgd003YJvq2cZaQunj1BR8a0wPJ/Zpdw+XBQgFzN5RPGrdwuQXdX6AUMCcL5PlIS9JT1SEZGAo6RfEaZpweVN3ELrg09G9XVYrTUclAoCx9LprLueW8AadoSQfkZQszrmlnxZoU8dRbBF2C1NPGVf12qaCwk0vyeqe2o+tS3iiIgQAWSz2jnYXVwYIBWSRvQDAUJrvsiu6H4bCbOBYOioRyeSuuaLQGNNYmg8c65oruiWCInSZRQjmSjMPKVgSQRFWVVVt27bt9ddf/+yzz9rbp6io6Nlnn507d+5HH33Eso5/fsxhQrwMhf0YS/PAbKW5BioiDpEUU13K67Uuu6iboXetXxQACC8fKiicN+iNFUUuu6ibwRsNTPkNIAiZCx83c1m9R+TLiKAId+7c+fXXX6elpW3cuLHNHQwGw9SpU2mafuqpp77//vs33njD4TLgZSi6j8kidEnthAAiKSosBnjeWH7DZRd1M4T0B6cuOtEaHCbsJsbS6zzL0GGxrlx9xRwm9IiXpAiKcPHixfv373/kkUfa22Hnzp1eXl5r16698847v/jii88++0ync3DGvCy2LxCEsfS651SMOhZO08TWVyG5kgqNduV1TWHCMhwmtAuX9NpujbAMBU4ctRthDuFKvygA0NG9ES1jqoo5TZMrrysKUowRnj17dsKECcLfycnJOp0uLy/PsZdAcqVQMSqUhGO6iqn5b1Sii1cVENYMwWFC+2Bqyni9lvQPIX1duqoAtgi7STdXX7IPRFKy2H7A857gOZPiMkyVlZUxMTHC3wihoKCgioqKQYPaaBBcV1d37dq12267zbLlqaeemjNnTmeugqJ6Q1lB87WL8pBYh4jtQIxGI8uyDMOILUi7mBwmYbHOWyqzTdjACADQFeW6+Lodo9FoUE9YZsh4/SoAEGExLv71+IAIQMhYVtDc2IBIkd85LMvq9XqO48QVo0voCnMAgAmKdvVtH9Ub8i8352QwcS71pVvT/YdLoVBQ1C3uOikqQi8vL71eb/mo1Wq9vb3b3NPf3z8iIsJ6qckhQ4b4+Ph05iqo9yDD2QOoorCT+7sSQREqFAqxBWkXQ1UxAHglDPB27a/HJSapAbjKIh9vb+ksccfzvATvotY01ZUDgCKmj6ul9fHRhEYzlcXypmrXNEbpAJZlaZr28vISV4zOw+laGmpKEUX79U5CFO3KS5O9B+uP7UTVJSLe3q55uKSoCGNiYi5cuCD83djY2NDQYDEQbSAIwtfXd/r06XZcRaij0t9wf6vfGZhcoy5/qQkrXbAN1UxNGRXilLWq3RghtkpHOr3FaGtksX2ZymJjca7oirDHYSzOBZ6nI3u5WAuC+VbxhJC8hGKE3333XVlZGQA88MADBw8eLCkpETaOHj06OtrxGRl0WAyh9GHrqtjGWoef3L3hdC1MbTmiZS7OlBEw5cuU4DBhlzGWFYA5zupiZNF9AHcFsgsX95SxhgoKJxRebGOt2+fLiKAIDxw4EBgYuHTp0rNnzwYGBs6fP1/YvmTJkitXrgBA//79n3322eTk5ClTprzzzjsffvihU+RAyNTzoghXE3YNY0meaYoqRrxHFpUAAAYPmKU6Fk7XwtRVIoqmxbCkhYUJcX8ZOxBREQJCVHgsABjLC0W4ugsR4UU2derU/Pyb03maNtn7N27cUKlM/WRXrVr1zDPPlJWVDR482HnefHl8f/21C4YbOcrB4510CbfE5Bd1YQWhNYJBY8SJo13EWFYAPE9HxANBuv7qdFRvIEhjeSFvNCBa5noBei6GYiFl1EXN1WygI3sZCrONZQXy3kNEEcA1iKAIaZoOCGgjezsoKMj6Y0xMTHuhQUdhKqvHjda6iGnRiWjXNbmwBncctQ9jeQEA0BHxolwdyeR0WIyxvNBYel0W318UGXoinLqRratCciUtRhgCzDeM4FR3YyQUI3Q9dExfwLZF13HlerytoYIikFzJNtZy6kZRBOihmAKEYmTKCOBqQjsw+UWje7tg8cg2MefLYEXovpCqAMLHj2tR43yZzsMbdMaqEkRSYtkWgBCNu293HcGGFiVTRkCYd+IwYZcw9dp21aITraEjEwAhY0Whe6/H5NGKEADo8DjwgPmOAzGW5gPHURHxrk/mtiAzhQmxd7TT8DxTcQMA6AgRLUKh0Rq2CLuASRHGiJEpAwAAhNKH9AvmDXqmpkwsGVyAxytCwfAvLxRZjp6D63ttt8aUL4MTRzsNU1vB6VpIvyDCx08sGYQ0Y2NlEV48pPMYinLB5c3VbPAE76jHK0LBIqzAqxl0FnOmjLiKEOfLdA1zgFA0vygAIIqmIuKB57FPu5OwdVWcuoHw8qUCw0QUwxOsBY9XhJ6RE+VAxK2dEBBqAIyVxXjxkE4iYk8Za4R8Gewd7SRC4YQsrr+43QTNL0l3nnd6uiKkIuIBIaayCHpUE16x4I0GprIYCELcVyqiZXRoFHAsNuU7iTCdpyPjxRVD6K+G82U6ieDzkMWIOemEm67RQnHFcCqerggJhRcZEMIbDUxtudiy9ACM5QWmBUJlcnElEbx82DvaSUwpo6K6RsGc9IEbrXUSYQFqSqz0bDN0WAyiaKa23I2Du56uCMGcR4e9o51B6PApVim9NXiF3s7DG3RMbTkiKVF6w1pDRcQhWsbUlHG6FnEl6REYTYm+8SLLQZBUWAzwvBs7YLAiNHvAywvFFaNHYCgRUkbFX0DAlDiKW293AmNZIfA8FR4n+lqAiKSEVypTUSSuJNJHcFMhkpLCKitunziKFSHQEXFg9kJgOsZYnAcAtNhBCwCQRZstQreu83UIEsmUETDNO93XtnAUQuICFRot+vQFLG6z8kKR5XAaWBFaxthtJzuOgmcZY0UhICSLEt81Svj4k6oATtfC1FWILYvUEb25mjW4YKmTmPKbwuNElgMAPGBhQqwIgQqLQSTF1JThXPyOYSpu8EYDFRKF5EqxZQHA1YSdRloWYXgcADBYEd4KYa5ASUsRuq21gBUhIJKiQiKB45hKHLfoCCn0lLEGK8JOwfOC218iilB4s7uxk81RmEZN9EwZAAAgVYGmtswNNWLL4hSwIgTwAA+4QxB30YnWuL27xiEw9VWcVk34+JG+bax95nqowDDT4iEtzWLLImmMFYVgzmCQAu6dXY8VIYC5Ugcrwo4xhZrEW77ABkES3K+rY5hy8Zur/QGE6LAYADDixNH24fVatr4a0TIqKEJsWUwI3RjcNZcCK0KAm4mjhSLLIW2MlUUgmeg9ANAh0UgmZ+uquBa12LJIF0NpAZiTbCUCDhPeEmPFDeB5KixGrGUIW+PeYUKp/Mrigl2jt4Rtquc0TYTSh/QLElsWMwRhdtdg72i7mDJlpBFqEqBw4uitMAUIJTPpBOwa9QSooHAkU7ANNThu0R5MpZDDFiu2IH/AVFaPvaPtI4V1J2wwOWCwImwfU08ZaSnCeCAIY2UxzxjFlsXxYEUIAAAI0eGxgB/O9pHgFBVwx9FbwRsNTE2ZqUWWZMCu0VvCSKS5mhWIllHBkcCxTGWx2LI4HqwITWDvaMcIdz8tpfcpmJeqN2BF2A7G8kLgOKFpstiy3IT0DyEU3oKzXWxZJIrwIpJIEaEFN35JYkVoQnDXMOWFIsshVSRV3muBjuoFCDEVN3iWEVsWKWIupZeQXxQAACHKlDiKjcI24FrUbGMtkinEXY+3NW6cOIoVoQlPWHOrO0gwaAEASKaggiN5lsFNnNtEUs3VrMGN1jrg5rMm6nq8rXHjxFGsCE1Q4fEgWP24iXMrOHUDp2kiFF4SShk1Y8qXwYmjbSFZRUiZHDBYEbaB4JeSTim9BawI3R9SFUD4+HFaNdtYK7YskkOofabCY6U2RYWbitANH87uY16YXnKKEFuEHSAU7EotDAEAVGC4qSuQ2wV3sSK8CV6YsD2k6RcVoMPiwPzuwFjDNlRzmibCWyVFOx4/a+1jmr5IKWXUBEKmgXO7eSdWhDfBD2d7CBE4KkxaRYQCQiIrjhG2RoIVhBZIvyDCy4fTNHHqBrFlkRySWoDJBnf1jmJFeBMa98VvBylbhFRIJKJopr6KN+jElkVaSK03rA3CvAoviG0Dp2ni1I2EwluCdjxYFKHbJY5iRXgT8xgXiiyH9BBihLTE2sqYIEgqOBJ4nqkqEVsUaSHB5mrW4DBhmwjTFyoiXoLxeMAWoSdAR8QDQkxlEXCc2LJICMF/heRK0j9EbFnaxmRb4DDhH5FsyqgAVoRtYg4QStH7AuaXpNCoQWxZHAlWhDdBciUZEGLqSoUxY/KLhkkxZVSADhfChG7Y+clueMZorCoFgpCmQxvMpiquoLBBymEIACCUPqR/CG80MLXlYsviSLAi/AN0RC9wRw94d2Ck7BcFgJsWIX6l3oSpLAKOpUKiEC0TW5a2wWtQtAkjbUUIlqRC9/KOYkX4B8wLE+KH8yaSrWqyQJsUIbYIb2I09YaV7vSFVAUQ3iqupZltqhNbFglhqtmVqmsU3DRMiBXhH8AVFK0x+2qk+0qlQqOBIJjqMtxx1AIjeUUIeBmKVrCNtVxLM+GtIn0DxJalXdwycRQrwj/gllZ/N5FyEaEAomVUYDhwLFNdKrYsUsFkx0tstRAbzAVLWBGakHimjIDZWnCrUcOK8A9QYTGIpJjact5oEFsWScC1qNmmOiSTS60Rvg3CG5/BiaNmpB/ZBfM6zzhMaMHsfYkXW5COoEKigCCZ2gp3WqEXK8I/gEiKCokCjsOvVAFzyqjkGuHbYF5XGYcJAQCAY5maMkCICokSW5SOMNkWWBGaEXJopRwgBABE0VRgmOkecxewIrQFe0etEeI3En8ywey5xdMXAWG2TgaEILlSbFk64mYFBV7yBQAs806p9kCwYH7c3GfeKY4i3Lt374gRIyIjIxcuXKhWq1vvMG3atJFmVqxY4UrZKDxLtUIINUltYfrWCBLixFEB6aeMChDeKsLHj9Np8JIvAAA8f7NmV9rQYdHgXo8b5fpLlpeX/+lPf9q0adPYsWOfeOKJFStW/Oc//7HZ5+LFi19//XVMTAwABAS4NIEKJ45aI4TEpVzVJECFxQJCTFUxcBwQnu7nECxjKlTq0xcAoMPj9HmXjBU3SP9gsWURGaa+itdrSVUg4a0SW5ZbgC1CB7Bhw4bJkyfPmTMnJCRk5cqVGzZs0Ov1rXdLSkpKTk5OTk7u1culXYPbc42yPLR4XnK+6ZUq7ZwLACAUXqQqkDcamLpKsWURH7NF2DMUIbTvgNF60hPH9BC/KNx0wLhPJEIEizArK2v48OHC30OHDlWr1SUlJYmJiTa7zZs3DyE0ZsyY119/PTQ01GXiUUHhSKZgG2s5rZpQ+gDAtUZ+/TVuQy5XpYXhQei2SHRbJDExHHmL8OO5FGGZYiSTU4HhYstya+jwOLaxlqm8QQVH1OhgbSZbowMfGmiryR4CSIkkbo+SdOJP9xGm6hKvnRCwabTG8XClnj9WwR+v4I9X8OUt/LQotLg/cU8cQbu7nS94X6TcucKCKUm7qgR4HhAycrApj1tzmWswQF8V9PNH/f1Qf3/Uzw/ifKWdZWdGhHd5bW1tUlKS8DdJkj4+PjU1NTaKcM2aNcOGDdNqtatXr545c+aZM2domm59qpqamosXL1r7Tv/1r389/vjj3ZQQBYXz5YWVebk/8f2+LyBPVZseQRLBuRr+XA3/3iVORsDIIG5KGDc9nBsV5OD+s0ajkWVZo1Hk7GS2KAcAUFBkc1txXKnBBYQBQHNR/nfckNcyqFp92w/g6ovcfbHce8ONoQqHJWi0GecWEaE7id4nyNDcLLYst4DxCwGA5uLrn57VnqxGp2uIBsPNgUMAB0v5g6VsmIKZn8AuSGTjvLs7aizLGgwGlmW7eR6H01KcCwBsQFiz5EcNAAhff665ofpG4eaGsLVXqRsa06iVauBI+c0xUlIwNoj9eBRj98B1/+FSKBRtqg9rRFCEAQEBlu/GcZxarQ4Ksl15a8GCBcIfW7ZsCQoKunTpUnJycutTBQcHDxo06PDhw8JHhJC/v3/3JawKjJeXF750sHKj7yAA8KXhoV7Ewr7EsCB0spI/XMYdLuPTa/jfq4nfq4l3MmFpErF2LEk6buYjKEKFQuGwM9qFpqkaABTRvXx9fcWVpDMQMb0Np+Hg5fJnSmkAmB6FHkwg1EYwWs1SGgz8J1ncjiLiaKX8w7Hk430cZmVI5ydiG2sb9S2Et0oVFim2LLeG6zVQA6CrLPlHBskjBABxPmhSuOlfhBfalMd9mc1droMPrlJrs6nbo9DiAcTdsQRh7+PGsqxer/fy8nLk13AELTWlAOAb318mmXupA1rC4rjmhr/uq/qRjgaAAf7o1WHEhDB0rRGyG/jsRj6ngc9u5Mtb4EglOeUAuXEqNSvGzjFzwcMlgiLs3bv35cuXhb+zs7PlcnlUVLvVTgqFQiaTtRlEFCBJ0rHZNHuK+aO1kc8BxGhKJvVBC/sSD/YiLF7QGVFoRhQJAI0GSC3nDpXx67K5/1zhSjSwaSqpdC9naU9JPgQAPQubmqPvBPCpLw6Ngg/GkPN7t63knhlAPHOC/bWEX5DKbs7jvpxIxvv2COdNZ2FMib49YNQAYEelV286INhY/2BgzZyh4ZPDUazPH4ZjyUBiyUDi90r+y2xuewH3awn/awk7N57fehvpVs5SjmMqiwEhKlzqDm0e4KNMDpqiHoCL/k3FQ/skvzacuD/eNDVJ8IWZ0TdHsFoHi46xvxRxs/czb4wg/z7M/hmMUxHhVvrzn//822+/paenMwyzevXqhx56SKlUAsAnn3zy888/A0BBQcG5c+cYhmlpaVmxYoWPj8/QoUNdI9vuIv7+g0wOHQMAzwSXHptNLehLtBkL9JPB3XHER+PI/bOoQDnsLOSm7WVq3GuNdFMRoeSDFqnl/LCdzKuFUQAwkCm+ej/VnhYEgDgftO8OasNUMkgO+0v5Qf9jPsrkODcqYxOmL9LPbwKA9y5xDx9ms+WxALC+f+n83oSNFrQwPgx9N4UsfYT+91hSeNz+dJg1utGKeEI3K9I/hFB4iy3LLXjhNLvsNHuJjAaAJSGlF+6jHkxoV72FKODn28l/JZMI4I109u79TH27Ro2YiKAIe/Xq9cknn9x1112BgYFVVVXvv/++sD0jIyM/Px8A6urq5s+f7+3tHRoaeubMmd27d3t7u+Lm2HWDu/8go2dhXFIsAMjqOpUcPCkcnZhDxfuiU1X8+F+Y/Cb3eadKv902AHxxlUvZw2Q38KHB/qxSJTe2+OlvvZrBn3sTWQ/Qf0okNAw8f5pN2cO4TUqwySIMjRZbkI5gOFh8gn35DAsAoXFxAMB1YhWtADk8N4g4MIsKkMOOQm7eEZZxF11oqlOSfOeKVRncvzM5OQmPjo8HgChNyS0NPATw9+HEnplUkBz2FPOjfmYu1knuJSmOc+Hxxx+vqKhobGz89ddfQ0JM655//fXXL7zwAgAkJydnZ2frdDq1Wn348OFhw4a5QKSfb3APHmINHPxtMPHKtBggCKamvJOrGQzwR6fuppKDUW4jP/4X5ky15IbZDjhdC9tYa+pnLVUOl/H/d4oFgH8MJzLuo7wiutBfJlQJP6SQu24no7zRsQr+iWOsOwybxSKUsGu0yQiz9zPrsjkvCrZPI8ckxUNXWliMCEYHZlH+MvixgHv0qJvoQomvxyvwxVXu7+dYEsHmFHLqYGHts85WUMyMRulzqeRglN/Ej9/FfJ8nrWET08uOOkys7fh/HcvOQu6hQ6yBg+VDiDVjSETLTM30qjvbTC9cCUfvombFoCotpOxhdt2Q1jDbAVNRBDxPhcZItj49r4l/8BBj5GDFMOKfyaSMsDRx7kJ505xY4uAs0k8G265zb2f0+FEDyddOFGv4ib8wv5XwYUo4fCd1Xzxhx1L1ycFo/yxKGLU/p7JuMIWR/nq82wu4Z39nEcAXE8n74gnSL4hQeHHqRk7T1MkzxPmgE3OohX2JFgYeO8pulJIulOg7zpXsKOQePswaOHhpCPHeaFLYKHTlYKq60DrBh4ZdM6gn+xEtDNx3kN1eIKFhtgOJT1EbDXD3frZOD/fEEf9KNo2aeYXertX59vdHm1MoEsE/0tmePoPhtObVQgJcV3rbeRoNMGU3e7mOH+iPTt1NjQlFIHSyRchY2bWOo6NC0G93UH4y2JLPPd7zdaFRU3+UFAAAIABJREFU2tOXA6X8/CMsy8M7o8gn+xEAAAhRoV1utKYg4ZvJ5IdjSQD4y0k2p1Eqw+bpivB/Baao+ytDiXfNWhDMrRO62kOIIuCrSeQbIwiWh6ePs0VqqQyzHZh7ykjxyWR5eOQIc7WBHxKINk4lLYF6uxdjujMGvT2K5HiYf5S9Ut+jR60YhGmcJOuY/3qSLWjmk4PRybupBHOyLqHwJlWBvEHf1a5AY0LRvjsoFQ2b8rgnerQu5HmmugSEJaalR1oVf99BxsDBi4OJl4feVBmmRmtdsRYElg0i5vcm1EZ46BArkeZBHq0Iz9XwjxxhjRy8Oox4ZxRp/V/CGBu7PsYA8OYI8r54osEAj6WyPTcdUXAw0mFStAhfOsPuK+ZDFPDzDNLHqlLW3K/Lns5PLw0hHu1NNBvhngNsnSQT2zqDlJurbcrjNudzPjT8kEL6y/7wXybvaNc73Y8LRfvuoHxp+D6Pe/6U5GrkOwlbX80b9KQqUGhlJSmyGvi7fmPURniiL/HemD+8JE3Wgl2P2+cTyH5+6FId//xpSYya5ypCAwdPpLJGDp4dSKwaSdr8rzA1s7ur7JcTyQgvSC3n37/UU11t5hVhJKcIv73GfXiZkxGwYzplUwJoR9zCmq8mkiODUX4T//BhpoemYJjseOllyhQ280t+ZwHg32PJPn621qodTjYL48PQ3pmUgoRPs7hDZT1y4mk0jZrkpi+lGn7mPrZWD/fEEesm2rYMEQS2z1rwoWHbNFJBwrpsbku++A+b5yrCty6wmfV8Xz/03mhbLQjWy/rYtVJasAK+nUwhgH+ksxdqe97Dyeu1bEM1omgqSFopoycr+b+cZAHg84nkxPBW3r+bcQt7ZqlKCnbOIMOVcLCU/1uaJCaqXUWaFiHLw59T2UYD3J9ALOrXxjvHHJIvse/8E8PRGyNIHuCp46xGGq62LiF4F2nprRbyzEm2RMNPiUBbbiOpVuMmCGy3tTAkEP17HAkAi0+wuWIHCz1UEV6o5Vdf5AgE30xqux0M4a0ivFW8Xss23boorU1mRqOlSYSBg/lHpOIH7zzGSiFlNBqINmYJYnFDzd93kNGzsGwQsbBv27euUP5vn7sGAKK90Y4ZlJyEj69w66+JP1HtKtK0CN/O4E5U8FHe6MuJbd9Owvp2dkSbLLw4mBgRjAqa+VfP9rwZjLFKigHC7QXc7iLeXwY/pFCKtsaNDI5AJMXUVfIGO2MJi/sTD/cimozw8GFWL+q4eaIiNHKw8JjJKdqGVWGG7vaaW6tHkQP9UVYD/3JPezhNAUKJpYwuSGWrtHBHNHp/TLvqufsr9I4LRZ9PIAHgryfZy9Kr/O0A0ypUBEkFR4gty03SqviVF1gCwXdTyCB52/sIFmF3Ro0iYP1kkibgkyzuZGVPGjWQZMVLowGeO8UCwOrRZEQ7bVkRSZHBkZZMH/tYN4nsrUIXakX2wXiiInznIpdRyyeq0NujOjJ3qG6vuaWkYFMKKSPgkyvcryU96eE0NVeTkmGxJZ87Ws6HKGBTCtVBf3PzkqHdWintib7EMwMIPQtLe1T+BVNdChxHBUcg6ha99l1GsxHmH2UZDl4YREyLbHfYTMFdTZN9wV2BoYHolaEEx8OiY6yuJ42bFF2jr5xly1tgQhh6qi1XtoXuzztVNGy9jZST8GkW96N4JWcepwgv1/GrLrAI4OtJZMcLCt5cc6sbDAtC/xpJ8gALj/WkTqQmi1AymTJqIyw/wwHAO6PIwHasCgG66zX1bfLOKDJUCanlvBQi+Z3EKL1228+dYvOa+OFBaFWHk06wpKd1wzsKAH8fTiYFoJxG/s3zPUYTclo121SPZHIyIERsWUz8Xsmvy+ZkBKybRHbcI5uyq8zMhhHB6IMxJAA8eZwtaBbHYPAsRchw8MQx1sDBXwYSUyNuUWjlqFWYXxxMTI1A5S3w9Ike83AyEktjeyuDLdHwo0PQE+2EBi1QgeGIlrGNNbxe250r+stAqKhZfobrKfkXUvOwbS/gvr3GeZn9Ih1Dddu2AAAZAesnkySCDy5z52p6hg9GmGpTIdESKf00cPD0CZbj4aWhxED/W74k7Wlh0ZolA4n7E4hGAzx/Wpx5p2cpwvcvc+k1fLwvWn2r+Sl0u4LCghAd8ZfBzkLu256Qf8EbDUx9FSIpKlgSC9rlNPJrL3MEgk/G32J+CgBAEFRIFPB8N1+pALCgDzE6BJVo+FUXesYMhpFSymi1Dp45wQLAmjHkgFu9T+GmRdgtBwwAjA5BywYRDAeLjrGGHvC0SS7R9/1L3JV6vq8fem1YJ16SYY55SQLAZ+NJFQ27bnCHxaiB8SBFmNXA//M8iwC+mkj6diKGQgWGI5mcbazldC3dvHSsD/p0AgkAL59hm0Redv7WCKEmISVMbFkAAJ47xRo4WNSPGBXSqSmzKcup69XZNhAI/jOeJBB8mMnl9YRFRYxSShn91wW2Tg+3R6FnBnTqJUOb8mW6qwgBYGUy2ccPXarjV1/sAZqQkVLKaG4j/9YFU0PRNjNFbaBDYwAhproUuO5OFkOVsGIYCQB/SxOhD4mnKEKOh6ePs3oWnupPTI/qnAsCISokChwxSwWAeYlESgSq1sF7F6VuXpgMC2mE7ncUcr+V8AFyaN30oD0c4mQTGB2CFvQh9Cwsk0b/i47geaa61FJJKS7Xm/kvr3Ikgg/GdpDY9AfMIXkHjJqSgv9OJgkEqy70gLxfSTm0//o7q2NhQV8i5VaRIwEkV5J+wTxj7Gp7vDZ5fhAR74syavnvcl09g/EURfh1Dneyko/x7ijzvjXdrBi14e1RJAJYm8mVtUj64RRaRUjhydQy8Lc0DgDeSiZDFJ09Sqj66GbiqIV3RpH+MthdxO8plvSoMbUVvNEgpF+KLQu8coYzcPB4H2JQQGfjXlRIFBAkU1vOMw7wmYwPQ88MIAwcPHVC6i1IjZJJGf0ulztYyocooGsvyfDulplZUJDw9kgCAP5+ztWBeY9QhFoGVl7gAGDtWELVlcTy7vQQas3YUHR/AtHCwJvnJe2xkY6vZvVFtrCZHx6EFnfOvSbgQIsQAEKV8OYIEgCWnRa55rdjGMmkjJ6u4n8s4LwoWJnchVFDJEUFhQPHMTWdXfusY1aPIqO8UVoVL2JS/i3hWYatKbc4n0SkRgcvprEA8OHYdss926Q77fFa86dEYmwoKmvhXew58whF+EkWV6rhR4Wg+xK69n0dlS9j4e2RBE3A+hwuq0G681SjNFyj15v59y5xCOCT8WRn/WsAIIyaYFsYDQ6RZMlAYlAAym3kP8yU7itVOuv4vHSG5QGeH0REeXctDZJyqAPGl4bXhxMA8I90TrJWIVtTzrMMFRiGZF1RPk7g7+fYGh3MiELze3ftJUk7onLXAgL4YAyJANZc5ko1rhu2tr/z8uXL8/PzbTZev3598eLFzhfJwTQa4N2LLAC8NbJLr1MAR5SL2tDHDz3dn2B5WHFWqq9UIdQEQIWKPEV9/hSnY+HPfYjxYV0bN4fbFhQBH48nAeDtDLbEhQ9nlzCnjIpsEf58gztewYco4OWhXW7OJzRac5QDBgAW9iV6q1B2gwgxp05iCkNIYNK5/hpHIvjP+C6PmmMdMAAwPgw92ItoYeC1c64btbYV4ffff19ZaRv8rKysXLdunfNFcjBrLrO1epgcjm7vZI6MFcK6bmxNGc86zGP9xghTlvCRcim+UoUKPNI3gPDyFVGM/aX8L0WciobOFLq0xrweU3cTRy2kRKAHEwi1EV46I9VXqgRKP1keXj3LAcA/RpBdikEIdLP1dmtoAt4cQQDAP89z0nRrSyRTZuV5zsjBY32Ifq0WBrklDqmpt2H1KEJBwvd5risG7YIVXFVVFRAQ4DxRnEGVFv6dyQHAu20tMXFLEC2jAkJ5lmFrKxwlUogC/jaEBIBXz0rRYWP2sIkZIGR5U5/Dfya32+ewY5zxcH4wlvCiYEs+d7xCguNmyrcU95X6dQ6X1cD3VqHF/e2JuTg8EgEAjyQSgwNRkZr/MluKMxhB69OixuOzG/iNeRxNmDzJXYX0DSC8VUJ/HEeJlOCLliYRHA/LXdWA9A+FYgcPHty+fTsANDU1vffee2FhYZb/0ul0Bw8eHDlypGvEchRvX2TVRrgnjhgbamfXBioslqmrNFYWOzB55G+DiS+usqer+P8VcA90MWzpbG72uRCPLflcdgOfqEJLBtr54zjcIgSAGG/08lDyjXT29XT26F2SqLC0wDbVcy1qwsuH9BVtqqo2wpvpLAC8PYqg7Ro32tLUkOcd1WaFQPBWMnHPAfbtDHZRP6Ljroqux7zuhJjTlzfPcywPT/YjEnztfUmGxhgKrjCVRaTKYbffa8PI/17jjpbzu0uJR/o76qzt8ocbtqio6ODBgwcPHjQYDGfPnj1oRXp6+pQpUz7//HOnS+Q4itT8F1c5AsE/u5K9ZoPZtnBMKFjAm4I3Rgj19ZzUml+YFKF4hgXLw1sZHAC8NszO9ylYGl44zskm8MIgIlgBqeV8qsTc2lJYfWnNZbZCC6NDkN1zO8JbRfj4cboWu9c+a5O744hxoahSCx9JL9fJbMeLNu/MrOe3F3AKEl6zyxwUMAV3HWrK+8lM2dqvZdAucGv/4csvXLgwPz8/Pz8/MTFx586d+VZkZmZu3rw5MTHR6RI5DiEw8GgiMTTQ/tkl7aDOTzYs6kv090fXm/mvJeaxET1l1GIO/rmL2WvWWDW8cOTP60PD84NIAJBaT2fR23RVaOGDyxwArBnT5ZQ0a2hHtN5ujdDy+/1LbL2dC+c5BZMdrxTTjn/9HMfxsHgAEdPFFF9rzMFdB4/a0/2JAf6oQI2+uOr0l2Tb75qcnJzRo0c7+9pORUgVkxHwZjfMQXB0KeHN0xLwzigCAFZeYJul1HRN3CmqtTnYekXszoPkSlIVKDRNdZhwAACwNIkIlMNRiRmFoluEb6abYhCT2l/gszNQjmu0Zk1KBJoehRoM8N4lCc1gRA/rnqvhf77BeVHwStdTfK1xYE29NRQB740mAWD1Raevbd7Ry6aioiIjIyP9jzhXHMfxejrH8vBkf6KXvY5vAVPcwtFPJgDcG0dMCEOVWlgjmYeTN+jYxlpE0VRA2K33dgIOMQcFnDRLVdHw/+ydd2AVVfbHz70z80p67w1CQgmhiqCoCCJg+alrW+taWbtiR9auq6hYQEUX67rquuuurK4uYkEsoHQDISGUJKSXl15emZl7f3/MvBCSl+TlvWnB+fwVHvNm7nvz5p577jnne+6cyADAY0ZyCnldaydK2uhb+wmLYfmM4O+aKh4hAPz5OAYBvLyX1AXVlURJdBdJf3iHSAFunYCT7EGdx7t8UTJ+JHF2BpoaTeqc8GaJuk6h7x/unj17TjzxxOTk5KlTpx53NKqORim2O+i/y0gICw/6IaA+ODgsypsTpWTcQkJa77xYSJqNsWPD11cCpWx8KmAdUniUcgclOHXChABwWx6OtsJ3tfQHw6SPej1Cffz4p38lAoFrcvE4P7pMDA6nRBNQnxwfj87Lwl0CPF1glLvG6yrhtKmerqukERzcF5w7CABsrNT7TIH+BP25L08AgGd3q1sA43u+ufTSS8vLy19++eX169d/fTQqjkU5pMqE2/NwYMn3fVAjq1vixES0MA118LBqryHcC333ahR0B6FnlarClBppkSOFBnEKpewSxFl08eMrOumHhwiH4YHJStw1pauze/PEdMwgeKOElnWqcfphI+iaMvrQdhEAlkzEwxJU840kEUepGiuYM1PJ5BhU1aWuKoKP325bW1tRUdFrr7126623LliwYP7RqDcUpdhYS7+uplEWuG9SsCsdCU6dMKGE1PTr5b3ECJFCHaualHUHQc3lCwDckYejrbChhhqhplBoqARK2YQ0Xfz4pwsIT+DS7MCT73sj91VubQyyr7JP8qLRZdnYQ+DpPcrMDEEirTt12RrdUEO/q6XRVrgzX6lJUpUwIQAgkDNalxcQXjVT6OPJQQgBQEqKIZqyBsDjO0UAuHcSE62Qep+yEoh9ODkJnZKEmt3wmvqZUUOiY1WTsu4gHNlkU+WuGcop1DHUVN1F39lPMFLGHQQAwJiNS+nR+VOcR6djC4aPyvH+Np1XMJT3CM31iGGZ2CTtr/7QDhEA7slnoizKnNDryisfJgSAC7Lw+ChU1kE/OKjWJOnj5xsREXHWWWd99tlnKl1SVX5poN/V0igL3Jqn2OpYvWiTxJ+mMgDwwh7VM6OGRNBJVkZxdxAAmKh4ZLWL7S3EqcpG2B15OMoC39bQn/R2CmUxID2WL8/vIW4RLshSIDrYg7LdDPowOhxdlYNECs/u1nndKekGMHEp2re/XldJN9fTeBvcrtwkqWA7yf5gBMumYAB4ukAt/fQj96CmpqaoqEj6+/LLL1+yZElzc/PChQtDQo6Ksxl8d/SpXwkA3DJheO2WBkfKSlfpyQSABaloRjza1kjfLCG3KffTHDY9nV01l5VR3B0EkOIWKXzVIaGhypKpvDSF5BQ+ulN8dKe49mTFTz8M5Miu5hvajS5Ys4/07FwpBZeQ7lRz3XnPRHh7P/ztAHl0Gk4LonguSOQ2hHrkNz22SwSA+yczYcpNklyCisFdALg0Gz+2k+xvo/8oJZdlKz9JHjGE69evv/baa3v/3+rVq1evXt3nDZTqHxQZiD3N9PMKEsLCHROVjAGwMUmI5aS4BbIGl2g8AMum4N99LT63m9wwHlt0MoVCc70unV3VcAcluIQ0vuqQUF+phiEEgDsm4pcKxW9r6M+NeIF+EuVyZFfzrdGXCsUuAc7OQMEIVvRHpcrdHrIj0AWZ5J/l6Pk95MVZugULBZ38+A01dEsDTbDDzcPp8TkkUoha6iqlho/LIHhgCr7uB/GpX8klozFWegFzZMQLFy4cKUmhA/F0AaEAfxyH/e9m7hcYs/GpfG0531BlSc9R9NQy52bi/Biyp5n+7QC5bqw+llCvlFFV3EEA6EkcVSfaBABRFrhjIn5sJ1m+l1kwWqWLDAURBbmzq6a+RZsHVhcRAHgg6OT7PrDqaDn15u4J4sfl7Jp9ZNkURuG5wm/0Skx7ukBKFmXsilorqT+B0FQnOmpVmkOuHIOf2EX2ttC15eQCpSWaj3wZKSkpIzdBBgAOtdN/lhILhrvyVXCcE9L52nKhoVIlQ4gAHpiML/tOXF5Ars7VyRDqIa5GVHMHQeXEUYklE5mXCsl39cymejp7mH0TFUFoqqMCz8QkaNzZ9eW9pNUDp6Wg4XaLHBIuMR0QEhqqgBCV8mAnRtGzMtDnFXTVXvGJ6fo4hbwe687tDvpNNY3gFHYHJdiEdKGpjm+oUulDcRjun4Rv2iQ++Ss5f5TCPqGxWh8Ew7O7iUjhypygRPMGgktSq863h4tH45xIdLCd/qNUnzC+LuW9n5STfa10dLjy7iConDgqEWWBO/IwADy5S5/0UTkFX9vlSycPLxWKAPDgVOWtiHryeL1ZNoUBgFeLSLsuZUuUCg1S+2tNH7flBQQAbp6AIxVKFu2NqvkyEtfk4tRQ9GsT/bxC4UnSt3u8YMGC5mYfQiqxsbFZWVnnn3/+woULlR1HkNQ54b0DhEFw3yRVTLucyVan4j1mENw/CV//o/jnXeQCPUpsddkafaaAAMA9k5R3B0FqJoWQ0FgDRASs1sL/jonM83vEL6tgp4NOi9PaKZRkOTW+a6/vI01umJWATk1W5fOyieliW5PQUMmqVlpwQgKak4y+r6WvFxOVJo1BEFsaqcfFRMRge5hmFy1po2vLiY2B2/NUeRZU6k/QGysD9+bjJb+Ij+0kZ2co6RT6/gVkZmaWlZUVFhZardbU1FSGYXbt2tXQ0MCy7Lp16xYtWvToo48qNwYFeG636BLhwlE4d/gdlv1BJeHKPvwhB2eGoaJW+rmKv6UBkfRUtQxafFVNtztooh2uzlFlJkIWKxMdT0VBUK6vcn9irHD1aBEAntujgyuvfcqoS4QX9xAAeFgFd1CCU7NytwcpuqlL2ZIu+6LLCwihcO1YZfS2+sOqnDgqccN4nBwCOxz062ol0zZ9T0CjRo3Kzs4uLS3dtGnTp59+umXLluLiYo7jLr/88tLS0iVLljz11FM1NTUKjiMYmtxyGvdSpap6+9ErbqHiDhiH4Z5JUrmMehfxDXF2ih0tyGJjouI1u+gzBSIA3KF03L438pSq5ioVAG4dK1gwfFxKDrZrnVPNy8sX7abUt0tITTedFocWpavl/sobMCrftYVp6Lg4VO+Ed9XU7vKJ9vH4yi76wUHCYrhHhRQKCQ1C8gBgY2TV+ycUDUb4+FI8Hs/y5ctfeOGF3rkzubm5jz766JNPPsmy7PLlyxmG+eWXX4K5sMPhcDgcgxzgdDorKyuJH/3kVhWKnTyckY6mxKr1ZEoWQm3fAgCuy8WJdtjRBF/XaLrJ5pU9TFWqM/iQbG2kG2popEWVuH0PqlZn95AaAleMwSKFFZqXaWvsEfJELkX/0xTFM9iP4O2Gre5dA+/S+bndRND2vgmax+NX7CY8gUtGK6OE5xMmIhqHhElLapUuIXHTeBxjhZ/qlNSy8DEHORyOjo6OqKioPq9HRUWVlpYCgNVqTU9P7+wMULDD4/FccMEFEyZMyMvLu+CCC9xuH50XXnnllZSUlLlz544bN664uHiQs4lcyCtFBLzRb/VQTxe/N3YW7spnAOCZQk0Nofb9eKW4/U3jVYnb98Bq4hECwH2TMUbw1wOkVnn9/QEhXe2kqx3bQpiIGG2u+P5BcriTTohC52WquHzR5lkDgN9l4XFRqKyD/l3bDDWNt0YbXfBmCUEA96u2ZyahQekLAIRxcOsESX1UMafQx/cSFxcXHh6+Zs2a3i8SQt54443Ro0cDAKW0vr4+Pj7APbQ333yzoqKisrKysrKyurr6jTfe6HNARUXF0qVLN23adPDgwcsuu+yOO+4Y5GyOvN81u+GUJKR28ro2vgV41zubGtCmeu322TReoha30k8PExujsPRBf7zyeKrftbGR6HdZ2CXK6ZTa4BVXS9PGjydUTm56YIryFc29YSLjkNUudrSQbnX7RGAkO4XPFBCi4a62xlujq/aK3QL8XyaeGK3u70Sb4C4A3JbHhLLwv0q6u1mZ2+bDEFoslmXLlr388stz5sxZsWLFu++++/TTT0+fPv3zzz9/+OGHAWDDhg0dHR0B9yb84IMPFi9ebLVaLRbLH//4xw8++KDPAX//+99PPfXUCRMmAMAtt9yyYcOGuroBNyQ7kqaA+u4gaOhbhHNwy3gARdc7Q6JxyuizuwmhcE1usB1Bh0S9Zkz9uX8SBoDXikmrR4OrAfQsX7S6a2vLSUkbHRWOLhmtcpql1NZHk8ftsmycGYb2ttDPlM7IHwji6hLbm6VMLg0u18HDq0UEvL9PVdHGIwSAOBtcPw5Tb9p58Pj+apYuXbpmzZra2tp77733mmuuefDBBymln3zyySWXXAIAs2fPbm5uDtgjLCsry83Nlf7OyckpLy/vc0B5eXnPAfHx8REREYcPHx7obJTSvHBPjqestLS0tLS0u1utnSnNfAsAuHkchHHwRYVi650h0TLn4kjcXv0nU1KMI51tpKtd7WvNiEfzU1HPvKMBGgcIpd3se/JVqXXpg6q9z466UE+G2q9a3TVt/fjXi0mLG05NVl76oD9arjvvzscchn+WkdIOBSbJAdP1Fi9evHjxYqfTWV9fn5ycbLUe0a2w2Ww2W+DCRB0dHXa77AiEhoa2tbX1PyAm5kjMIywsrP8xEg6Ho7PT3fjuXact/Up65aGHHrrooosCHtsgkJBoAPDUVXR0dKhx/t5YeP6KDMvrh6xPbHe/fYL6Fb9EFB01gJDLHulS/9M9vYvlCXtRhhgPGlwNUEwy1BxqL9/PZIxV6RI98fLbc/A31ZaVhcLiTLd6qbA9OKvLAUAIj9PgN/ldPbPdwSXY6IXJXRrcNTEyHgC6q0rJeIUvJoqix+MRxSPbLRcnw+M269ZG+OxA19wk1c0hf/gAAEB0kgZ3zSXCC3usAGjJWE9Hh/ItHvsghkmT5GEFP9pAyShRABdnch+UMU/vcL8wfbBJ0mazcdwQ+uJDPKx2uz0rK2vwY4ZLQkJCa2ur9HdLS0tiYt+22r0PAIDm5ub+x0jExcWNL15e+NXHyo7QN+HhXbZQ0t0RiikOjVD1UjzP3zNZfLsM1lYyy2dZsyPUXcoJjdVtosDGJIbHxKp6IQBwuOC9Uh4B/Ok4a3i4FjqPfEpmd80hrrMpNFxFYezw8HAA+L9wmLFX2NYIH9eG3jJBdb+pq7kWAMKzcjk1P5rEyh8FALokn02IVjO7yQubPsYNgFvqw5X+aKIout3u3k11wgHuzCfLtokrD1jPyVF9/dLW7gAAe+ooxT9afz7cR+qc4rQ4dO4YLZT0aUhOF8OSloYwmxVxiv1OBvqi/jSd/r1ceL+MeXKmLTG4IMuRu15SUrJhw4ZZs2ZNnTr1r3/960B7jDfddFNQFwSYPHny1q1bJW2aLVu2TJ48uc8BkyZNevXVV6W/9+7dixDKzs4e6Gy25rIgx+M/bEKap6KEr6+0js5T+1qpIXBlDn6rhDy3m7x+kroRUDnnQpNQ0ytFYpcAZ6Ur3LJgEDQL7kosnYwv+EZcsYfcME7dLUS5mAdjNjZZxcsAAMCWBi1qXXqjdg+KPtw8Hj9bIG6oob800FkJKq87tYrHCwSe2y0Jo2t01xDDMjGJQmO14KjhkrPUvtz4KHRuJl5bTl4qFJ+eEdQkecQQbt68+eabb37qqaemTp163333NTT4FvoL3hDefPPNl1566QknnIAxXrly5fvvvy+9fsIJJ7z44ouzZs26+OKL77///ueff37+/Pn33nvvVVddFRamnRDRILCJ6Z6KEqFBC0MIAPfq9/VsAAAgAElEQVRNwu/sJ389QB6ZxqgkBiGhWcpoJw8v7yUAcL/SLQsGQQ7uqp/JJnFeJh4XRfa10o9KyRUqCKj2IDhqgIhsXLKCS++B0KbWpTdsfKqqbX36EGmBWybgP/9Kni4gn56u9rpTo3j8R6XkUDvNjUTnZ2mnIcclpguN1UJ9pQaGEACWTsZry8lrxWTpZCaYH+eRL+iKK65oa2u7++67AeDQoUNtAxD80OfPn//SSy89+eSTjz322PPPP3/66adLr48dOzY0NBQAQkJCvvnmm02bNv3xj3+cOnXqc889F/xFFUEDMb3eSL9gDTLyNUvmXrOPNLthVgI6OUm7KkktA/gAgBHcOwkDwFO/qpuRL+dcJGaoeA0AANjXSj+rUFGj0ieIs7DRiVQUREetNle8M58J4+C/h8keNTPUqChI8XgpLVbFC3kzKh+YrG6tSx+8rrxGj9vx8WhuMmrzwGvFQQV3jyy1OI7riSiq7YFdfvnll19+eZ8X33333Z6/8/PzP/nkE1XHEADyPdbKtwCABybjf5WR14rJA1OYKNUW47wmyYceAi8WSqIkmja+kXwLQSvfAgCuGIMf3UGKW+kXleT/MtRajGvW0E5tjcqBYBPThKZavqFSm037WCtcNxavLCTLC8gHc9X6iUo+LhubpHbbrLXlpLCFZoahy9XcluiPt4JCw0lyCvNdrfBSobhkIrYFet8G/I5EUfz6669feOGFp556SnqluLi4slK7j2dAWK3KRXuYFocWpqmeka9NOdpf95OqLpofg87K0FQ0B7EcG5MIRBQcGqnjWjDcma96Rr42bbMOd9IPD6mrUTkQmlVn93B3PrZg+EcpOaSaZqz3rqlu2p/6lQDAvZMwp+1989417foGnJ6Kpseheie8sz/wx833l1RXVzdjxowFCxYsXbp09erV0otr1qy59NJLA77SMQAbnwKYEZrrKK9VyTTA0skMAKwsFLvV0ciXauzUlukSiBxnelBNjcqB0KzOt4c/jsPxNvi5gX6jqEZ+bwRNUpye30N4Ar9XU6NyILSR3u5Neii6MgeLVNZTVQOhvgK8VZLq8WUV3eGgSXa4bqzWy5cjWU5UO6keSR5oRRCasb6/psWLF7e1tf3888/r16/vefH3v//9zz//rEiYcISCGJaNTQJCNPMtAORK2EYXvFWiysPp3RdV98l8/yAp7aDjotCFo3ToBa29bxHKwpKJDAA8ulOt+K53a1TFG9fkhrdL1O3rMgiaSW/35oHJmEHw1wOkukuVeVwbP/6pX0UAuHsSE/BWYcDgkHAcFkndTrHdR0dblTg/C+dGotIO+s+yACdJH7/vrq6udevWvfTSS7NmzcL4yAG5ubmEkKoqPXrlGQZtGhP2QdJGWrGH8CqYQg32RUUKTxfILQt08Af18AgB4NY8HGOFTfX0+1rlp1SxvYU4O6VJR/GT9/DiHrFLgLMzVNeo9AmXmAFeF0ozsiPQhaOwW4QXClVZd2rgx/9QR3+sozFWuGGcDssX0GPdib0t2Z8pCDBBzcc31dbWJorimDFj+rwuaTH4bBbx20HKxec13AEHkNVyKzrph4eUfzg1yLn4RynZ30bHRKivUTkAGieOSkRwsqS4so3TJDSoReuJTOviDgIADovEoRHE1a2lbwEAD0zBCOAvxaRJhalOftzUzPX98y4RAG7PY8KHUFNRC41rQCWuzMFpoWh3M11bHsgk6bv7REhIyLZt2/q8/u233zIMM0ht+28BXTzCnv4pamjkq11NTyj8eZfcskADjUqfsNqWEvZwex6OtMC3NXSz0o1ENKh4kdTD52iiUTkQ3vQ0TZ3CyTHozHTUJcAqpcuWxPZmtf347Q76VTUN5+C2PJ0eNp02YCxYXrE9vjOQOdJ394lLL7106dKl3333HUIIACil69evv/POO88///zISBW3YoyPtzpb6/1hqaNmcSv9V6Cb4APhlQBWa0r9pJwUtdKscHSltmncvWHC5ZahpLN16KOVI8oiz0eKO4Vqh5o6eXh+jwgAD2gofdAfXTZgAOCBKQwAvFxEOhQV+tWg9FNadEqt3PRC43rrHq4fi9NCUUFATqHvuemFF17Izs6eN2/eGWec0dDQEBsbu2jRovj4+FdeeSXo0Y5spB+xxjlRAMBi2Sl8aAcRlbsyFXihuR4wZuNUkemiXlGSpZO1TuPug2btJPtw50QmnIMvq+i2RiV/MGqLAb1cRBqccGIiWpimmzsI3sdN4w0YAJidiOYkoxZ3sGXafZB2C9ULQxR7pQ+WqNzmc3DkSbJOUz8eAKyMLCb38I5h75z5npwiIiI2btz48ccfX3rppYsWLTr77LPffPPNbdu2JSQkBD/cEY0uOVES1+bi0eFofxv9SLlIodBYDURkY5MRq0o84bPDZIeDpoWiq3N0NYN6BPAlYqxw8wQMAE8qWlMo2QaVsvA7eXhxjwgAT0zXcz6Fnlb1mt818LrCL+wRncqVLamdKfPkLkIoLB6ntfRBH9iYRMRZxDYHdave76IP14+Tu0sO1ykccHpiGObCCy988803P/vss/fee++6667r3Ynpt4xeUyqH4aGpGAAe3Rl4uUwfVJ1PAeDJXQQA7puErTrPqPrELSTumsiEsvDfw+TXJmWcQsp7hJYGxLBMbJIiJ+zDi4Wk0QVzktG8FD3dQejJctLDEC5Mk8u03wqiTLsP3kwZVR63g+30H6XEoof0QV8kIXhKhcZqja9s8e6cPbZreE6h3l/ZCESXnCiJK8bg3Eh0sJ2+d1CZh5OvUzFosa6SbnfQJDtcr3lVb390SRyVSLDDDeMxBXhilzJ3TWisBkKYuGQ1FONaPfDCHhEAHtfbHQQANjZJ8i2IS62G24MgrTv/vEvsUsgpVDUx7ZkCIlK4YgzOCNN5+QKaK4725tpcnBGG9jTTT4bjFB71IJ133nm1tUNI3G7ZsiWQ0R1D6OhbsBgemYYv/058Yhe5Ygy2BG1fpHw8lZ7MJ38VAeCeSYwGLWqHRE4c1WP5AgD35DOvFZP/HCaFLQrU5KmaMvrCHrHVA/NT0SkaCqMPCEJsXApfWy40VlnSczW++DmZeFYC+aWBriwky6YE+7BRj0tsbUQMy8b47q4aDOUd9L0DhEG61br0gUtId+o0SUqRwps2iY/tJOdn+Vu4fNS35nQ6u3uxdevW2tra7qNRZewjCh3jFgBwyWicF43KO+jbSgjNSEtUNfZqpJqBeBvcqFUHu8Fh41IQwwpNmsrj9ZAcAtePxYTKe8VBwqtWRNjkhpWFBIzhDkqwSVJZvQ5TKgJ4agYDAM/tFpuDrink6yuBUjYhDbDy3+1DO4iHwGXZOCfSAMuXHm9Bp0ny2rE4IwwVttB/++0UHjVJrV+/fo+XgoICAHj22Wf3HI3yox5p6Bi3AACM4NFpUkY+CTaMT6nQqFbyoVQwcFc+E2oAdxC8LUOBUi3l8XojBUr/VUb2tQYbKVQvZfS53WI7D2emoxNUbk7rP3qF5CXmJqMFqajVA88UBFsAI6imZbi7mX54iFgwPDrdEItO0DV+BAAWLKePPrbT30ihUb64EURP3EL7nCiJC0bhKbGoppuu2ReUeyG0NFCPm4mMxXaFu25trKXf19KehEmDILvyOj2caaHomlwsUrktQDDIfrzShrDBCa/sJQjgMcO4g6D3lAoAT81gEMDLRaSmO6gVjJwpk6S8Ibxvq0go3JqHR2sujD4QbEIaICQ0VGlcZtbDtWPl9FE/C68NNE+NGBBi41KAUl1CwQCAAB6fjgFgeUFQLSnkAKHSS1RC4Z4tsjsYoZPIk0+072bQh6WTsQXDh4dIQTCtX73JeIp7hM/sFrsEOCcTHxdnlPkUjniEWhel9TA9Dl04CjsFeHxnUCsYOTFN6bv2bQ1dX0WjLLBM2zafgyN1s5HSm3UZgAWDFNZ93L/0UdMQBgKrq28BAGdn4OPjUZ0zqD6FKgUI/3aQ7HDQ9FB050Rj/bq88ni6GcLMMHTLBCxSuOuXwPfZpK0IJjwah4QrOLbabnitmCCQN96Ng+xbNNYAUauPx5A8cRxmMby9nxxoC3wFo8bWKAW4f6sIAPdPZmINVt2mfffWPlydKzuFe1uGvmvG+tGPFLybbLpNqT37V8/uFgNWgZLLe5OUrJ3oFuCh7QQAnp6BQ4wRHeyB00lxtDcPT2PibLChhv7ncIArGJUChE8XiE5B3nVX9sxBgixWJjqeioLQVKfXGMZGomtyMU/g4YCdQql3G0LKbmh/dIjscNCUEHS7fsqiA8HpmqcNvZxCf6S4jpqrvvjii66uLulvSikA/PLLL707MQHAxRdfrNRARy5yvkydnlPqojQ0OxFtqqer9pI/BZTbLfcIVXSJ+kyBWNlFj49Hl+mnLDoQR7KcKAWkz3QfZYFHpzG3bhbv20rOTA+kAEYNldGqLvrGPtKTh2U0uMQMsbmBr6tg41P1GsPDU/HfDpB/lpL7JuGpw18rSN28mah4ZLUrNSQPgYd2SCm+hlt0gq6Vuz1ck4slicchOer7u/nmmysqjtqLX7ly5cqVK3u/YhpCOFJKqKchBIAnjmPmfSE8v0e8ZQKOsgz77YqX91Z10RV7CAJ4YRZjLLcCAABwaAQOiyKdrWKbg4mK12sYN4zDq4tIUSt9eS+5e/giIGrIdD2xi7hEuDQb5+nRd3BI2IR0KN4uNFQCnKDXGNJC0a0T8Io95E/bxf8tHLbZkUs/Fd19+UsxOdROJ0Shq3ONuHzRsd66Bw7DukVMnG3oX/VRd/T99993OvXJhBxZcInpgJAk8AFYt1/h3GQ0LwVtqKFP7BKfnzm8UDnpbCNd7VJMW6nxLNtGugW4eDSerV/jnsHhktLdB1v5ugodDSGL4YVZzKIvhSd3iX/IwfG24b2dV7qafruDvlVCJK0Gpc6pLLpHIiSWTmHeKCHrKukPdXS4agPyolM5P76dlyuUnp6Bjbjq1LvupYex/hVWHmUITz75ZHUGc6yBLDYmMk5sbRSa61Xq2+Anzx3PzPxMWLWXXDFmeDs2vKwpk6HUJuG2RvrBIWJjYPkMg86nAMAlZroP7hHqK2DcdB2HsTANnZmO/ldJH9khrp49vBWMN+dCmSlVpHDjT6JI4d587OeUoT3ePW3dEkclYq1wdz7z8A7xgW3ipv8bnlOoeKbMit1iowtOTkLnZBr0cWOi45HFJrdgVLpAS3EM+iUaH32L0nqYFodum4AFAjf8JA6rPZOgdMroXVtEQuGOiXiUYYqZ+iMXpem9SgWAFTMZDsMbJaTQj5S2HqjHJbY1IZZTSqbr1SKyw0Ezw9Aj0wyUfN8HqfZOF3GZPtw5ESfaYXM9/WyYuU5SS0WlHrfabnhhD0EAzxxv3LsGCEkxXd1deX8wDWGA6NXfrj+PT2cywtC2Rrp6OKUUygYI/1VGfqqjCXZjFTP1RwrSCHWH9R4IjI9CN47HAhleKYUs0xWfqsiGfHUXfWi7CACrTsAGEQDyCQ6LwqERxNkptrfoO5IwDv40hQGAJb+QzuFkawuKquI9vkvsEuC8LGwcASCfeBNHTUN47GKEULBEGAcvn4AB4MHtYnWXv+6F0LM1GjRuEe7fKgtUGqqCvj9yy1ADLF8A4NFpTIwVvq6mn1f4fdfklFFl5tMlv5B2Hs7LxIbdXuvBIOlpAHDjeDwtDpV10KXb/F3BKBuPL2yhb5YQFsNTxxn/rumfOOonRv8qDQsn9c42xpR6Tib+XRZu5+H2n/11CnnlOhGu3EtKO2h+DDJCu6XBkfTkSFe72KGzbwEAMVaQNiTv2SLy/t03QbkW5/+rpP8qI2EcrDrR6HcNvD9U3cOEAMBhePcUxoJhdRH5rtavFYxXJF2BRaeHwB82igKBG8bhcVGGdgehR3jEAHdtSEbAM2BMvHpdhjCEAPDqiUykBT4pJ/5EL6jHLbY0IoZlg+7s2uiCp34VAWDFTMaY2Wt9YA1QVt/DzeNxXjQqafN3W5uvqwAANmi9SqcAt22Wmw6mh46A26a7TElv8mPQQ1MZCnDtD37JWQh1ijU7e2SHuKuJjg5HT88wdAxCgjPMttmQmIYwQJjIWGwLkTY99B4LAEByiNw657afh45eCA2KdYS5ZZPY5oGz0tGC1BEwnwIAl5gJxvAtAIDFcr7DY7v82taWDKH0EYLh8V1iaQedEotuM5Iq+iAYLdq0dDKeFofK/dsgleW2g/bjN9XT53YTBsHfTmXCjR2DkGDj9ZfH85OR8RgYEYTYeKPELSRumYCPi0MVnfSRnUP87HiF5LZfKSIfl5FIC6w6cQSsTyXk/nZ1hjCEAHBWOjorHbW44fcbhtggpaIgOmoAoSB9i70t9Pk9BCN4fTbDjpAJQA7uGuausd4N0tf82CBVpH9kBw9/2CiKFJZOxicatU63D8hiZaMTqCgIjiH6vevOCHkODIm0yWacUDCD4K1TGBbDykKy0zHYwynUSToXQT2Z2x1U6jLx1smMcfq/DIlxok09vHcqmxmGNtXTZYO6F0JjNRUFNjYZccOXEfJCAW7dLPIEbhyPZxo757A3bIzOvc/64/8GqaCEBsKSn8XSDjotDj1s4EKX/hhtBTMQpiEMHN27GfRnUgy6bQIW6RBlhcFH71s98PtvRbcIt+fhC0aNpF8Ra6QsJ4kYK/xjHmPB8Pwe8snAPbWF2sMQtEzX2yVkYy1NtMOTRmo6ODQY69v7zCdLJ+PjhtoglVoRIYZlglDe+PQweXs/sTHw1zlMAPq0OiL9XPl6/QuWBmdEfakGwwjdDPojpT9sd9AVuweeUoOT25ZWwaUddEY8em6Y0m66w8YkIotNbGsi3Z16j+UIMxPQ8uMZCnDdD+Khdt9LGHlDOynwAOHeFtmJf3EWE22wrj1D4l13GuhxYzG8PdQGqdBQBYQwccmICbBUs94Ji38UAeDZ45mJhhSDHQSjRSIGwjSEgXOkm4GRCOPg9ZMYBLBsu/jhIV+2kIiCoxYQYhMC1PJfWUjWlpNorx8zwvB+cENNqQCwZCI+Pwu3euDiDaLLl4MhGcKAK16quugZX4qtHrhoFL40e8Tdth59GWPdtZ4N0ut+EH0mqQVfp3T9j0KjC05PRbcar9fSkHBJmWBujR7bSFmXQlMdFQJtCagOZ6aj52YyhMI134tfVfddqAqOWirwbHQCsgxT7xkAALY00Pu3igjgnVMYI6upDYKhEkd7QABvn8KMiUA7HfSOn31YQjkLPyCPsNUDZ3wpVnbRk5LQX+eMMCdewqvlZKCtUQkpg7Ssg97+s49whNwtJNDdlzf2kc8raIwV3jllRFQn9UVSMxYaKoEE3kJcA0xDGDiIYdmYRNnBMhh35+N7J2EPgQu+EbY1HvV48kFoyjS74fcbRA+BO/PxuYaXIxkI1pC+BQBEWuDj0xg7C2v2kb8dPHriIKLQWA0IBeBbuEU472uhsIVOiEKfns7aDaymNgiyhIXB/HjwZpDaWXhnP7l5U19bGIwGQnErvWuLCACrZzOpI6Hcsz/YFsJExlHeIzQZbpLszUidywwCawzpbZ88czzzhxzcycNZ64X9bUcez4Ab2lGAq78XD3fSExLQ8pFQzzsQskdoAMXR/kyJRatOYADgpp/Evb30uIXGmsD8eELhyo3i97U0NRStW8TEjLTQYA9sQpq395nhitLyY9Da+aydhdeLyeIfRdLLGEoubACP29ZGOudzoZOHK8bg348ewRM1l2zcx62HEfz9GgE5J8qQO+AI4M2TmTPTUaMLFn4p1nTLTycfUN8JQmHpVvG/FSTWCh/NY7iR/MORO4cYzyOUuH4svioHdwlw4beiwyW/KM0jAeyL3vmLKNV6rlvIZISNSK9CAllsTFQ8FXihqU7vsfhgYRr6fAEbysJbJeTq770525QKjZI87PA8wv9V0nlfCI0uODsD/eWkEbzohB5X3pCTZA8jeT4zAFIoWKgr13sgvuEw/PM0dlYCKu+QEyUgILlthwvOXC88K6tasCN6PgUANj4FsZzQXE89rqGP1oPVs5lJMWhfK52yVvixjkKPpswwayee3U1W7SVWBv5zOpsfM7LvGhim99lAzEtB/1vEhnPwt4Pkio2iQEBoaaAet6Rw6/953t1Pzv1a6BLg2ly8dj4bMjK3sntgR0K+jD6GkFL6448/rl27tq7O9+KuoKBgh5fS0lKNh+c/8j2uNa7XH8rC5wvZ8VFodzM99yvBJVBZ8Mlvj/DnBjptrbC+iibY4ctF7BnpI34+BcywcclAqaFqQHsTwsK6RczJSai6i877n/DnX0kAtRPvHyRLt4oYwXtzmFOTR/5dO9JO0qB3DQBOSULrz2AjLfDRIXLJd6KrbtgSTk8XkGt/EAUCD07Fb54yYqR/BmFElBLq8DVTSi+88MIbb7zxo48+mjhx4k8//dT/mNNOO+3qq6++4YYbbrjhhjfeeEP7QfoJJ+dEVVFR0HssAxJrhS8XMWmh6Ic6+rtP6omrG4dF4tAIf967spDM+VyQsg13nsfOHyGCokPCGjJxtDcpIWjDmeyyKZhQeHC7uP9AOfjtEZZ20Cs3ild9L1KAF2YyF4/kCFNvOCNJbw/ECQno6zPYaCv8u4y89dNh8BYcDwmhcNtmcdk2ESNYPZt5YvqITBPtD5uUCQgJ9YZOHNXB6964ceOWLVuKi4vDw8NXrVq1bNmyH374of9hn3zySU5OjvbDGxbIYmVjkwRHrdBYE6Tkh6pkhKEvFzEL1oldtZUAsJdNL66hp6UM9qC183DdD+K/yggCuDsfL59xLCxOe+CS0p0FstScYWEx/Pk4Zk4yvvo7T0JXDUXoZ5I2Z9C31HTTJ3eRN0sIT8CC4ZHpzB0Tj53bxhpPHs8nM+LRt2eyC9YJztIqANiN02YIMHiybicP1/wg/quM2Bj4YC5zftaxc9ewLYSJjBVbHUJzHRuXovdwfKPD1/3pp5+eddZZ4eHhAHDJJZf8+OOPzc3N/Q8rKirasmVLe7shejsMgjdMaGjHHwDyotH+i9m7E6sBYCdOm/8/Yc7nwsZ+chhuEfa10rXl5Lj/CP8qI1EW+OR0ZsXMY8oKwpEOvUa/awCwIBXtOMVhJZ4aNu60by2P7hT3tVJnvw2IJjfct1Uc80/htWJCKFydi/dfzC6bckzdNkM1YxqcqbHo2zPZCXwVADxYkZL0AX/tD+LGWkqOfuD2NNMVe8jp64S49/l/lZFoK3x1BnssWUEJ45fV6+ARVlVVTZkyRfo7ISHBarVWVVXFxBzVuzk0NPS5555zu9379+9fvXr15Zdf7vNUHo/H4XC8/vrr0j8RQvPmzRs9erSq4+8Dk5QJhb94asst+ScqdU7Ri1InlLAhOIWp7AIYm50WS+CHOjr3C+HUJDg1GZV3QmkHLetAVV2051GdEgP/mIuyI6jiI9EdJj4NAPi6CkU+mho3qzcRLeUtADQ+HQAe20ke20kAIM4GqSGQHooyw4DD8M4B2uYBBHBBFnp0KoyPAgByrN230AgcEka6Oz0tDiYiOrBzqPRw9ScvEmJpNQUIT0lvb4d39pN39pOMMHTZaMiLhg018FUN9PTewghOTIDXZuO8qGPurgEwiRmwb4enpswyfsZw3xv8zcIYIzTENrMqhvDgwYNXX311/9dfe+21/Px8nucZ5khCMMuyHo+nz5ElJSU2mw0APvvss0suuWTBggXx8fH9T+hyubq6urZt29bzSkZGRmpqgMphARKbAgDu6lLO7VbqlDzPi6I45M0LAHftYQCYm5dcNFpYXYJXFaONdWhjXY/toxyG9FAYFUqOj6P35BEbA8p9LANBI+IAY8FR6+ruClgEsgePx+NW82ty15QBwJjRaf+dLq7Yiyq6cVUXOFzgcEFB8xEXY34yeXQymRpDAY7NuwYAOC6VVJS4aspYa0hgZxBF0e12956CVIJ2d9DOFrDYPj4r4kCn8FEZ+ns5c7iTLt995JgkO52fTOcnkdNSIMZy7N642GQAcNeUBTBJBv9wWSwWlh3iGVfFEKakpKxYsaL/61lZWQCQnJzscDikV7q7u7u6ulJS+m4cS1YQAM4555ywsLC9e/eeeuqp/U8YERGRmZn51ltvKTf2YcNl5HQCkMaqkJAAn8z+SIaw50tQkDZHNQCEZeRERtgfnQF3Toa/7CNNLjo6AmWHo9ERkBGKjrFd0AEI6YhJEhw1lq4WLggZawlRFBW8+/1xNdUAgD0t+4xRtjNGyS/WO6Gqi1Z20YpOqHfSRWn45KRjI7tiMNzJmUJFCdPaEBIybN9CQhRFhmFUvV8S7pqDAGBJGRUSGjo5FCYnwlOz4Kc6+v5BUtNNT07CC9PQpBgVVrvGg00f0wVAHTUBfO1qP1wSqhjCkJCQWbNmDfS/J5100vPPP08pRQh9++23Y8aMSU5OBgBBEBBCfVZq1dXVLS0t0gHGhE1MB8xIwh+INXTfaOLsFNtbkMXGRMvudaQF7pv0m7B7/WETMwRHjVBXEbwhVBtvY/qjsvAT7ZBoR9PjfgsT6RFkpXujlhL2hq8tBwAuOavnFQRwchI6OWlkF8gHAJucCVIFM6VgSNOvwyR40UUXdXZ2XnfddX/5y19uueWW+++/X9oDPO+88x555BEA+O6776666qpVq1Y999xzc+fOvfDCC8eOHav9OP0EsRwblwxENGxRWg9e/d80Y/4WNcZb3mTcAL4MpULQ/SOPGWS9LgNX7vbQ3xD+ZsG2UCYylvIeY6oCgS6G0Gq1bt68OTs7u7Cw8LXXXrv++uul1xcvXnzmmWcCQH5+/vTp0w8dOuRwOJYvX/7hhx9qP8hh4c2JMvrD6e3jY86nAEeE1oxuCIWmOlmdJGQY6iTHKpJdEWrL9R2GP0jWWrLcJnJ2vVHztPVR74mPj//Tn/7U58Vzzz1X+iMuLu7222/XfFCBwyVnOXdvEgy/SpU9wsXQQBcAACAASURBVKTAW6MdS7CyR2j0TTZp7jD+/q02MFHx2B4mdrSQzlYcFqX3cAaGUqmkyvQIJdikTCjZydcetuUNGDXTkd9ofEhZRo5HKHWEMQ0hQC9VICMLXoA3QMgaWK5BUxDy6hqW6zySQRFbG4mzkwmPNrS11hCDRyJMQ6gAbPIIeDIhILntYxhktcud0poNGreQ8GbKmHdNRg4T1pTrPZDBkPZFWXNf1ItkCA3bg8I0hArAxqcihhWaainftyDSOFDeIzTXy3rTJgDQ83AadZUqEUxj+mMSLmUUGH7daWbK9EH246XEUeNhGkIFQAzLJqQBpUaeUgVHDRDCxiUbvMZDS2ShNaOuUgEAKJVKBYysZKsxknUxuiGsKwfTEPYC28OYyFjqcRtzA8Y0hMrAGb4fE19TBmbOxdFIiaNGNoRiSyN1O5mIaBwSrvdYjIJsCOsOG9O3kJA9wqQsfYdhKIwsy2waQmWQUxANeY8lZEOYMmrII387sPLWqHETR+XG9Inm8uUIOCSciYylbqcxfQsAAEKE+kpAyExx6o13kjTi42YaQmU4sko1Kl5DqKkiucHhEr2ZbEb1Lfg6sxbNB97dUYM+bkJjNeU9bEwitqmuDTaCOPK4GQ/TECqD7PXXlus8joHha0rB9AiPBodG4LAo6naKbQ69x+Ibb6KvWfFyFN58mTK9B+IbKUDImvuiR8PKk6QRly+mIVQGNi4FcRahpYG6nXqPxQeku0Nsa0IWGxubpPdYjAWXZOgwobd2wvQIj0Jedxq1gsLUlPGJnEhRb8TgrmkIFQJjKXHUmI4/X+11B02V0aORbIxB030pleKXZspoHwxeQWHWTvgEh4QxEdHU4xZaGvQeS19MQ6gYRk4cNTNlBkLadTSm0JrY5iCuLhwagcMi9R6LsWATMwBjvqGKCrzeY/GBaQgHgjVq4qhpCBXDyMnBUjTFNIT9MbLghbwvau6w9QNxFjYuxZgtXyjvERw1gBk2IU3vsRgOrxql4R430xAqBmvgxFHTIxwI1sCZbHLKqFn66Qsu2aD5MkJ9BRDCJaSZyhX9kRJHDegtmIZQMTjDagFT6p1Ss/QeiuFgImOxPYx0tYvtLXqPpS+yuJqpMuoLwyqOSjOAqTLqE1mW2TSExzBsbBKy2MRWB3F26j2WoxAaq6nHzcQkmA3tfMKljgIAvvqQ3gPpi9w/0syU8YVh82W8AUJz98UH3lLCSqMljpqGUDkQknu9GmwHXN4XTTZL6X3DpWaDIQ2ht4jQ9C18YFjFUbN2YhBwaAQTHk3dTrGlUe+xHIVpCJWENWRjQimOYjEDhAMgqe1IggPGQWxrIt2dUsa53mMxImxcCrJYpbZ/eo/lKMyU0cEx5iRpGkIlMWaHXskjZFOy9B6IQbGkZgOAp9pYhlCQ90Wz9B6IUUGIS8zoaQRvEIirS2xzIIuVjTWbnfmGM6Qss2kIlcSYEohmyujgsMmZiGGFhipDqQLJnV3NAOHAGPBx42vKgVIuKdNUrhgI1pBNQE1DqCQGLCWkbqfQXI9YjotP1XssBgUxLJuUAZQaa0qtNxvTDwEr5cvUGKiCQlIbNvdFB8GYwiOmIVQSJjoeWe1iezPpatd7LDJ8TRlQyiZlAmb0HotxkcOERsqXMUNNQ2LAfBm5bZZZ+jkwnCFb1ZuGUFEQOnKbjYGnphQALKlmyuhgSN+PxziGkBC+uhQQ4tKy9R6KcfEaQgN5hLKEk7l8GZgjLV9aDZQ4ahpChZHrfGvLdR6HF2mvhjWfzEHxVlAYJV+Gb6yiHhcbnWA2ph8EJiIGh0aQ7k6xrUnvsch4ayey9B6IofFOkgbaHTUNocIYreeWp1qqnTA9wsHg0rIBIb6mFAjReywAAHzlQQDg0nP0HojRMdTuqBQTwSHhTGSs3mMxNJycp31Q74EcwTSECmOsCgpKBVluO0vvoRgabA9jouMp7+EbDSHizFcdBMk8mwwKZ6R8GW96dpbeAzE6lrQx4F3tGQTTECqMoZaoQnM9cXUzETE4LErvsRgdi5F2R6VopSV1jN4DMTqGWneair5+wqWPAe9qzyCYhlBhmMhYHBJOutpJZ6veYzErCIeBgcKElEr5q1yaaQiHwFAeoVk74SdcQjqy2oXmeuNk15uGUHnkzj4GCBOahtB/jFNBITTVke5OJjLWFFcbEi45CxCSOh/pPZaevhNZ+g5jBICQ9Lh5DOMUmoZQeYyTOOpN5jYN4dBwUgVFlf6GkK8+CF4P1WRwkNXORifIvXD1hVK5kbIpBuQHFoPtjpqGUHnkMKEBfAu5KNuM3vsBG5OI7WGks1Vsb9Z3JJIxtpiZMv7BJhtid1RoqqMeFxMVZ1a8+IOUL+OpPKD3QGRMQ6g8lvRcAPBU7Nd3GJT3CI3VgBmzs6tfIGSQxoTelFGzdsIvOGP0ejV3X4aFVBpkeoTHMlzqaMSwfH0F9bh0HAZfWw6EcInpiOV0HMYIwiD5MrzsEZqZMn5hkHwZsw3hsOASM5DFKoXD9R4LgGkI1QBxFjYpEwjRN+DkzZQxS+n9xZsvo6chFNuaxI4WHBLGRMfrOIwRhEEKlsyU0eGBMZcyqidBWndMQ6gKloxcAOAr9dwd5c1S+mHibUyo6/Kl6gBI+6JmHx//YBPSEMMKjhr9N2BMQzgcDBUmNA2hKljSc0DvMKFZOzFc5MaEjdU6Nib0VB4Eb06diT8ghmUT0oBSHZXuqSgIjdWAsRmP9x8pCm6QMKFpCFXBkjEWDGIIzei93/RqTFiu1xikjVmzdmJYeMOE5XoNQKiroKLAxiYjzqLXGEYc0mrPIKWEpiFUBTY5E3EWwVFDnPqEgsW2Jln/NypOlwGMUDi9d0elnSKLKbc9HOSG2LXleg3Ac3gfeJe/Jn7CJmUiziI0VhNXl95jMQ2hOiCG5VJHA6V6CcuaFYSBITUm1CtfhnS1i62NyGpn41J0GcAIRfqde/RLHPUcLgEAS6ZpCIcBYlguKQso1T1PG3QxhIIgFBQUvPfee59++ulAx3R2dq5cufKBBx5Yt26dlmNTELmaUKd8GTNlNDD0raCQtoksqaPNTJlhIUebKg/o1fRc9ghNQzhMjKO+rYMhfPHFF88999wVK1Y888wzPg8ghMybN2/Dhg2JiYk33XTTq6++qvEIFUHffBk51GQawmHCpY7WsTEhX3kAzDaEw4eJjGWi4omzk2+o1P7q1O3k6ysQy5mR3eEiJ47+Ng3hXXfdVV5efueddw50wFdffdXQ0PDvf/97yZIlb7311vLlywVB0HKEisBJ+TK6eYSSITQzZYYHtodJ2pW6NCb0dl8y59NhY8kaBwCe8mLtL+05XAKUcmnZpnLFcJE9QgNUUOhgCBmGGfyAjRs3zps3j2VZAJgzZ05jY+PBg/ovGYYLl5iObSFic4P2/ZioKAgNVYCQqf8bADrujkqaMmb3pQCwZI0Hb6xOY7z7ouO0v/RIh0uRRLgqdSxYkmD1vbxPamtrk5OTpb9Zlo2Nja2pqRk3zsfvrL29vaKi4vrrr5f+iTG+5JJLTjzxRO3GOihMyihSurfz4F7LuOnDeiPP86IoBnxdoaaMigITl+ImAC49q4xHIigxA/Zsdh7ejyfM8vMtLpeL44L1BoirW3DUIM4iRMaL5l0bJih5NAC4y4pcQ311oii63W6MFfMBXGVFAIBSsoe8tEl/cGK6WFPWVb6PzRzv84DgHy6O44b0vlQxhK+88spdd93V90os293d7c/bWZYlvSI0PM8P9EXYbDa73X7cccf1vJKUlBT8lKQU1oyxfOleUnOIy/d3Su0BYxzwBxEc1QDApYw2zlcxgrCmj+kGIHXl/n97HMcF/1V7KiuBUjYp02KzB3mq3yBs5ljEsEJ9BUsEZB3sC8QYE0IUfDSEqgMAYMsaz5qP2/Cxpud015SR2nJuzCSfBwT/cPmz6FHFEN56660333xznxeR34lwKSkppaXyxpTT6WxpaUlJ8Z1NbrFY4uPjb7zxxoCHqipSFplQfWjI9UgfpHXAcN/Vg1BRAgDWzNyAz/BbxpqeAwBCTZn/3x7DMMF/1WJNGQBY0nPMuxYIjJ1LzfZUlIjVB605U4Y4Von7JSE2N4jtLTg0wpqQaub6BoAlPbd7y1diTelAd0TBmzUIasUIcT+GNISbN29ubW0FgLPPPvvrr79ub28HgE8//TQ3Nzc7e0SmD0gVFLzmiaPusr0AYB2dp/F1jw3Y6AQcEiZ2tGjcmFCunTADhIHizZfZp+VF3YeLQQoQmlYwIGR9Gb3zZXRIltm6devpp5++YsWKoqKi008//ZFHHpFeX7BgwbZt2wBg5syZc+fOPfnkkxcvXnzbbbc99dRT2g9SEdjYJBwaIXa0iK2Nml2UuLr52nLEcmZDuwBByNuGQlN9GW8bQtMQBoiUL+PW1hB6S+nNTJkA8ebLVFCPW8dh6JAsM3bs2OXLl/f8MyoqSvrjm2++GT9ejpd+9NFHGzdurKysXLp06Qh1BwEAELKk57j27fBUHLBHadRVx1NeDIRwmeNM2cOA4VKz3Qd381WHbONnaHNFynv4+krAjNm+IGAka+Q5rGkFhZwymmUawgBBnIVNSONry/naMh3XEzoYwsjIyOnTfWRRzpp1JKMEITR37lwNB6UWlvRc174dnooS+ySNclk90r7oqAnaXO6YhEsdDQCeGu0qKPiaUiAilzLKXL4EDBubxEREi+0tgqOWjUvW4IpUFPiqg4CQFAQxCQxLeg5fW+6pPKijITS1RtWFy/CKP2mFu7QIACyjzABh4MiKoxr2VTYDhIqgsVPI15RR3sMmpOGQMG2ueEwihQOkTpx6YRpCdTmiOKqNCiIRPRUlgJDpEQYDm5Qp93rVqs7XLKVXBK8h1Kis3gwQKoIR+jGZhlBdmKg4JiKGdHcKTbUaXM5TXUrdTjYuBYdFanC5YxXEsGxyJlDKa7U76jWEIzYcbgxkfZkyjTxCT0UJmN2XgoZLzQaMhdrDVOD1GoNpCFWHk5xCTYooPGVFYBZOKIFVSkE8VKjBtago8LVlgJCpMhoklvQcwJivKaW8R4PLmU0nFAFZbFxCmvwU6IRpCFXHIoUJNTGE7tJCALCYhjBorNmTAMB9cLcG1xLqDlOBZ+NTB5dEMRkSZLVzyVlUFDSoSyPOTqGhCnEWU9o+eOQwoU7dW8E0hBpgyZDChFqEgiX1fauZKRM01pxJgJC7tJCKqnc+MTNlFETeHVW/DYW36UQOYoyo2Dyy0L0fk2kIVUcKIXiqDqrd4k5oqhNbHTg0go1PVfVCvwVwWBSXmE49bg1ceTNTRkE0y5eR9kWtZgWhEkg9OE2P8FgGh0awMYnU7VS7a6invAikCkJT7UkJrGMmgya7o56qQwBgMTNllMCqVQWFZGu5DLOCUAG41GxAiK8t02ADxiemIdQCThPRUY9ZQago1hwtwoTU4+arDgBCZmN6RZCq+sRWh9jqUPVCcsqoWTuhBNgWwsalUIEX6g7rMwBdrvpbQw4TqmwIvVrbZgWhMlizJwFC7rIiVVep7tJCynss6TnYbhZlKwFCGpTVC45a0tnGhEezMYnqXeU3hSU9BwA8Ou2OmoZQC6TEUVXzZYirS9baNtWeFAKHRXJJmdTj4itUDDi59+8CAOvYaepd4reGbAjVVN/2uoNm4YRiyJrph7TI0+6PaQi1gEvPAYT46kPq+RaesiKg1JKRi1izO6hiWMdMAgCXmrujrn07AMBmGkLl0KANhZSVKl3IRBGsuVMBwL1vp0YiXEdjGkItwLZQNj6VCrxQW67SJcwAoRpIhtB9QC1DKHa08LXlyGI1p1QFsWSOBYT4qgMqrjsPmx6hwnBJGUx0gtjRwtfoUFZvGkKNsKisL2MGCNXAOmYSIOQpL1JJ/Mm9fxdQas2eZPrxCoLtYWxCOuU9fLUqCnlU4PnqQ4CQGYZQFtvYqeDdI9EY0xBqhKr5MlQUPBX7ASFLlmkIlQSHRnBJmdTj9qgTJnSXSAHCqWqc/LeMVe5Wr0q+DF9TSgWeS8zAthA1zv+bxTbuODAN4bGNZfQEAHAf+FWNk/PVpdTjYhPScGiEGuf/LWPNmQyq7Y669u8CM0CoAt7EUVXChFIajlk4oTjW3CmAsadsL/W4NL60aQg1wpKWw0REC011vAqFMp7SQjCV1dRBDhOqkMzG11WIrQ4mPJpLylT85L9xvEJr6hhCsyu9OuCQcEt6LhV4bTR+j7q0xtf77YKQbfzxAOAq/EXxc7vLisDU2lYHOUxYpnyY0F2yE6R9UVMJSGm45CxsCxGaasWOFsVP7m06YRpC5bGNmw567I6ahlA7bHkzAcC5d4viZ5a7L5nNeFUAh4RzyVmU9ygeJjT3RVXEm8miuOgo6WoXmuqQxcYlZSh7ZhMwDeFvAdvYqYizeA7vI51tCp5WaKoV25txWBQbl6LgaU168IYJCxQ8JxUF98HdgJBUPmWiOFJtg+L5Mp7yYqDUkpEDmFH2zCYAYMkci+1hQkOV0Fyv5XVNQ6gdyGq3jpkEhLiKtip4WqmC0NTaVg85TKho3MJzeB91O7nEDCYyVsHTmvQghwmV9gide34GAGuOuXxRB8xYc6cAgFtbp9A0hJpiy5sFAM69ShpCqYLQYu6LqoY1Ox8Q8pQXK9j33BsgNPdF1cKaNR4Q8hzep2S3eiI692wGAPvk2Yqd0+RodNkdNQ2hptgnzgSEXPu2K5h54SmVSuknKnVCkz7gkHAuZTTlPQq6F66SnWAGCNUEh0VaMsZSj0vBDRj3wd2kq51NSDMTfdXDNnY6ALj379KyJZNpCDWFiYrnUkZRt9N9aI8iJyTOTr6+AnEWLt1s66oi3t1RZcKExNnpqTiAGNaabS5fVCRk6ikA0L3re6VO2F3wEwCETJ2j1AlN+sPEJLAJacTVrarYfR9MQ6g19gkzAcClUO6oV2t7LGJYRU5o4hPrmHxQLkzoPrAbiGgZNR5Z7Yqc0MQn9qlzACFX0VbqdipwOkpde34GAPvkkxQ4m8nAaL87ahpCrbFNVNIQug8VghkgVB+pN6FSASf3/p0AYM0190XVhYmMtY7Kox63IjVL7kOFYnszG5/KpYwK/mwmgyBrrRWbhvDYxZIxlglXSGKG0u5dG8H7uzFRDxwSxqVKYUIFxEpcJVIFoZl5qDr2aXMAwKnE7qiz4Ecw3UFNsI7JRyznqTpAutq1uaJpCDUHIdsEZSRmXPt3ic0NbGySGWrSAOuYyaDE7qjY3CA0VmN7mMXsXaA+IVNOAcy4iraR7s6gTkSpc/cmAAiZcrIyIzMZGGSxWUbnASHu/aqIM/fHNIQ6oJTETPfWrwEg5PgFZgWhBiiVL+OS9kVzJgM2nz7VwWGR1jH5VBRchT8Hcx53WZHY1sTGJnNpZlaaFijViYKKgj/Zp+ajqAOKSMwQZ6dz9yZAKPT4+QqOzWQgrNkTAWNPebBhQrNwQmOkJM/uXT8EcxJnwU9glg9qiPSAuPZtD/I8TW89JvgRhDINoQ4ckZgp3hbwSZw7v6e8x5Y7lYlOUHBsJgOB7WGW1Gwq8J7yosDPQqm022OW0muGfdJsxLDu/bsCDzhRKhtCc19UK7iUUUxEjNjWJNZXBHwSvqbMVeTXHGsaQn2QJWYKA98d7dryFQCEzFyg2JhMhkLSBe3e9m3AZ/BUHSRd7WxsEhuXrNy4TAYDh0ZYc6dSUZCCfAHgOVwitjYy0QlmWFc7ELKOmw4AQhAd0Dp/+NTPI01DqA/2vOMBwF2yIzD1BL7usKeiBNvD7PknKj00kwEJPfEMwLh7x3diW1NgZzCV1XQhyMr6I/miZjBeQ6TdUSHQZuakq717xwZAyJ925aYh1AcmOoFLGUVc3YFlIXZL7uD0UxFnUXpoJgPCxibbJ59ERaHzx88CO4NZOKELtkmzEWdxHygIbAXj3L0ZzHxRzbGNmw4IiYcD1Pjt+nkd5T22CcczUfFDHmwaQt2w582CgCrrqSh0b98AUr6oibaEz70AALo2fRGAWAnpbPOU7QWMrTlTVBiayYBgW4ht7DSgVJLMHhaeyv1CUy0TGWt24tUYHBphSRtDeU8ggpRE7PzpcwAIO/kcv6417AuYKETAEjOuom1iRwuXnGXJMCMWWmPJGGvNzifOzq5fvhzue9u//ogKvG388TgkXI2xmQyCfeocAHDuHPbuqPNXKV/U3BfVASlMGIBsunP3ZrG1kU3M8DM92zSEuhGwxEz3VjNNRk/C510AAB3frwUi+v8usbmha9PngFDkWVepNjSTAbFPnIUsVnfZXrHVMaw3moIyOhIy+SRAqOvndWJLw7De2PnDfwAg7JRz/Fy+mIZQPwKSmCGdra6ibYCZkGlzVRuZyWDYJszkkjLE5obuX3/0/11tX/6NCnzIcfNMpUpdQFa7bfzxQKmrYBh3ja86KDhqmYho66g89cZmMhBc2hhu4omU97T9923/38VXHXKX7sX2sNDjTvPzLToYws7Ozr///e/33nvvDTfcIAi+cybvuuuuG7ysWbNG4xFqhiwxU7AJKPXzLV3bvqWiYM87nomIVnNoJgODUNip5wNA53f/9vMdfN3h7u3fIoaNWHSlmiMzGYyQaacAgHM4yxdnwSYAsE+abcoA6YV94RWIs3Tv+t5TXuznWyR3MHTmAv+7u+hwd8vKyt57773Ozs41a9aIou/Npffeey8vL2/+/Pnz58+fNGmSxiPUDNu4aTgs0lO53/8sRFlWbeZCNcdlMgQh0+cx4dGeygPuA34prrV/8VcgJPTEM9nYJLXHZjIQtgkzkdXOV+4Xm+v9fEu3vC9q5ovqBoqMC597AVDauvYv/jgMpLO1e9f3gHGof2kyEjoYwvz8/HXr1t17772DH3bGGWdcdNFFF1100axZs7QZmPYgiy3690sAoO2/b/G15UMe76ko4WvLmfBo23iz3YSeIM4iPWYd3/1ryIM9FSXOwp+RxRZ++qXqD81kQBBnsU+cBZTyhX7ljvI1ZUJDFQ6LNEXt9SV8/iVMVLzn8L7und8NeXDnpv9R3mPPmzWsRadx/f1ly5ZdeeWVL7/8stvt1nssKmLPPyF05gLKe5o/WDFkcX33lq8BIOS4eWYbXt0Jm30WsthcxduHzHVq++wtoDT81N+Zu9m6I+WOunf/NPShhLSv+xvI+6KM2gMzGQRksUac+QcAaPvvO9QzmDmgotC1+QuQ0mSGgyrzqdPpLCkp6f96Tk5OaGioP2e48cYb8/PzXS7XqlWrvvjii3Xr1iFfyT9NTU3FxcXTph1JkL399tsvvPDCgEeuC9zCP+D9BXzVQcdnb9tPvwwAeJ4XRbFPAJXynq4d3wEA5J/U2RlcTxkTBcCWaXPdv6xr+eojsuAqn79PAOD373If3I1CwtHMM8y7pjs0bSyyhYo1ZY4vP7SdNNhc2f3ZGs+ezcgeypg3Tle6uroQQjB+FpuaLVQfalr/oW3uRQMd7Nn9k9jWxCRm8MljeO9ds9lsLDuEpVPFEFZWVi5evLj/62+++ebkyZP9OcOTTz4p/XH22WcnJyfv3bt34kQfuxMxMTGZmZlvvPFGzytjxowJCwsLaNQ6Emb5w30NL9/r/vE/kVNmW0blSYbQZrP1Pqh750bq6rJkjI0cPV6vgZr0xnb6xXVb1/O7fwqbf6nvXx2l9Rs+AoCI0y8JjzW10Y3BeX9s+8dLri/fszI4/PRLfB7S/uX7nq1fIc4S/8fHLZk5Gg/QpDeUUunh4s6/sfHle90/fhp9yjlMZKzPgxu2fgkAEaf+LnSYVkAVQ5ibm7ttW+B9FXoTGxsbERHR3Nzs838RQiEhIdOnT1fkWjpiGZUXftrFHV9/1Pz+isT7VgPue1+cuze1/WcNAISa5YOGgY1NtufPdhb86PllHZx/Q/8Dund9z1cdYqLiw076P+2HZ+KTkBnzRUHo/OTVti/epaIQseiKPgd0bvq8/cv3ATOxVy+zmFUThsGanW+ffLKz4Me2z9+Jufye/gd4KvZ7yvfhkPCQ6fOGe3IDxQjXrl27adMmAGhoaHA45KLXt99+m+f5YzhxtIeIRVdwaWOEptrWT17r/brY1tT01uNNbz8htjdbR+eFHDfse2yiHlJxvWfbV/0V16goSEGmiEVXmJKwhsIybW7M5fcCZtq/fL/t83d6/5ez4MfWf68GhKJ/f4fUIsbEOESecy1iue7t33oq9/f5L9LZ2vHVhwAQesIiZLEO98w65Fx0d3enpaURQgAgOTk5KiqqtLQUAN56660pU6bMnj27uLj47LPPTklJcblchJAPP/wwKipK+3FqDGLYmCvva1hxa9eWr7hxM9jxM4DSzs1ftP/3beLqxraQiLOvDZt9lqnzZCgsmeOsoye6SwsbXrrTkjmWTcrkkjK55CwmMrb7l/VCYzWbmG52TjYgIdPnIpZtfu+Zjm/+QQU+6tzFgJD7wK/Nf3sWCIk8+xpz68WAsLHJYXPO6/j247a1f4m/bQUgxFcfchZtdRVu8VSUAKWAmcB2XxD1u5RbbURRRAhhjAHA7XYfPnzYZrOlpaXhgUtZd+zYccMNN2zfHmwXY+PQ+cOnrZ+8hkMjwi+7x/nNPzxlewHAnn9C1IW3DrQtbqIvrpKdTWse7pPxi+1hlIjU7Yy95kFTnctQiKLodrtDQkIAwFn4S/O7f6YCH3bS/4XOWtj4yn3E1R0253dRv/Ox0W2iCx0dHeHhR7R5iau77slrSWerPf8ET+VBsbVReh1xFmvOlNATFgXWmc5AhjAAjj1DCJQ6/vKga98O6V9MREzUBTebM6nBaW+os3Y0CnUVfG0ZX1/J15RJzdAtmeMSlrxoOvGGorchBABX8bamt5+gvAcxLBWFkOlzY664z7xlxqGPIQSArs3/a/nnKulvJjLWljfTnne8NWdqADuiPZjlaAYDoehL76r///buOByb0wAACBlJREFUPqSpto8D+Nk051vO3JxTp7kGvkysRmU9iKmkj93BExj+4fMEUmJYo3sRQUZQ9lDIY1RahNILlJD1h5EgS2xNKUoNVCySMnwrl8xlajXn3HJ2/3Fg3NxP6rhzXtd2vp+/zo5nXL8xt+/OOdfL+UPzM+agf/wm/FcRP8DjOsFyDi8gSCCRChQpzj3z01++mwyrIuPwlUo5/6Qt4gP//XzzzA+7zT9x05r/HMNbRrmgbTsdXycYvk9AcuqqaMWyvF8IQur4CEVhv190WKeD5Bgm4an4waGCYO+/se0dBPGqcPX/rL0vQv75b0xV4QH4/JDflnnOXrzrNPIRSZkFZmEFgGXnF5fkF4ffndxF0fAJAACAlYcgpNHIyEhvby/pKsBVOp2OHQ4E9DMajT09PaSrAFe1trba7XZ3t4IgpFFjY2NtbS3pKsBVhw8fNplcXdkHyNLr9TU1NUsfB3QoLS0dHBx0dysIQhp59JgWAJrhwwX/D0EIAACchiAEAABO8+zhE1+/fh0YGMjJySFdyDIbGRmxWq19fX2kCwGXTE1NFRQU+PlhZm0PYDQaJycnve9Lw1t9/PixuLjYORPQ35CXl6dWqxc/xrOnWJudnb13715MTAzpQpaZ2Wy22WxisZh0IeCS4eFhuVxOugpwyczMjNlsjoiIIF0IuOT9+/dr165daOFrV8jlcoVCsfgxnh2EAAAAvwj3CAEAgNMQhAAAwGkIQgAA4DQEIQAAcJpnD5/wShaLpbm52W635+bmhoWFkS4HFmM2m58/fz4+Pq5UKjdv3ky6HHDJ0NDQ0NBQVlaWj48P6VpgMVarVa/XT0xMJCUlpaam/krf0cWh1yhdpqamtm3bplAohELhkydP2tvb0S+fWhMTE3K5fOvWrTKZ7PHjxzt27Lh9+7b7PquwLCwWi0ql6u/vn56eDgoKIl0OLGhwcDA7Ozs2NlahULx69aq5uTk8PNxNbSEI6XL+/PmWlpbm5mYej3fw4EE+n19dXU26KPg5m802Pj4uk8kYhjEajXFxcZ2dnevXryddFyxGo9EEBgZWVFQgCCmXnp6ekZFx7ty5FWgL9wjpotVq8/Pz2bOK/Px8rVZLuiJYkEAgYFOQYRixWLxq1aoVWC8GfkVHR0d3d3dJSQnpQmAJBoOhvb39yJEjbW1tXV1d7l7mDPcI6TI6OhodHc1uR0dHG41Gh8OBOxn0u3jxYmJiokqlIl0ILMhms6nV6rq6Oj4fJwC0GxwcDAkJ2b17t0wm6+/vX716tU6nCwgIcFNz+Iegi8PhcH5KfXx85ufnce2afg8ePLh8+fKdO3fwk4Vmp06dysvLUyqVpAuBpc3Ozn758uXo0aP19fVdXV0Wi+XmzZvuaw5BSJfIyMhPnz6x2yaTSSKR+PrirJ1qWq1WrVY3NTUlJiaSrgUWNDc3V1VVNTw8XFJScvLkSYZhNBrNmzdvSNcFPxcVFcUwTEZGBsMwvr6+6enpvb297msOQUiXzMzMR48esds6nS4zM5NoObAEnU5XXFzc2NiIi6KU4/P5dXV1u3btys7OTktLYxgmKysLw5OolZSUFBUVNTAwwD7s7+936+IK6DVKF4PBoFKpCgsLhULhpUuXWltbN23aRLoo+LmxsbF169alpKRs3LiR3XPgwAGMJqTfhw8f4uLi0GuUctXV1ZWVlRqNpq+vr6Gh4eXLlxKJxE1t4bIbXWJiYrq7u+vq6ux2e3t7e3JyMumKYEEBAQFVVVV/3rNmzRpSxYDrRCLRtWvXBAIB6UJgMWq1OiEhobW1NSEh4fXr1yKRyH1t4YwQAAA4DfcIAQCA0xCEAADAaQhCAADgNAQhAABwGoIQAAA4DUEIAACchiAE8Dwmk6m2tvbz58+kCwHwBhhQD0Cdp0+f7t+/f6G/btmy5dChQ/v27Xvx4oVYLF7JwgC8EoIQgDoymayoqIjdtlqt5eXlaWlpO3fuZPfExsbK5fKzZ8+6dfZFAO7AzDIAVJucnBSJRMeOHbtw4cKSB8/NzbHHOxeEstvtFovlp3O/zc/Pj4+P+/v7C4XCZS4awKPgHiGA5+no6IiMjOzp6WEf5ubm7t27t6amJiIiIiIiQiqV3r9/3263azSakJCQsLCwlJSUt2/fOp/+48ePioqKqKgoqVQaGhqampra3d1N6KUAkIcgBPA8NpttbGzMbrezD81ms16vv3Xr1t27d9va2pKTkwsLC4uKiiYnJ/V6/cOHD799++a81sowTGlp6enTpzUaTU9Pz7Nnz4KDg3NyckZHRwm9GgDCcI8QwBvMzMxotVp2nZorV65s2LChr6+vs7OTx+MxDHPixAm1Wj02NiaVSg0GQ2VlZVlZGbs+LcMwDQ0Ncrn8xo0bZ86cIfgSAEhBEAJ4A5VK5VytLT4+nmGYnJwcNgWde0ZGRqRSaUtLy9zcnEQi0ev1zqfHxMS4dQVwAJohCAG8wZ+7w/j5+TEMExoa+pc97KVUk8nEMExpaakzJlmRkZErUyoAbRCEANzC9hFta2tTKpWkawGgAjrLAHDL9u3beTxefX096UIAaIEzQgBuUSqVhYWF5eXlgYGBBQUFYrF4aGioqalJoVDs2bOHdHUABCAIATjn+vXr4eHhZWVlx48fZ/fEx8dfvXqVbFUApGBmGQDaORwOPp//l74tDofDOX3M3zM7O/vu3bvv37/LZDKpVPprNQJ4MAQhAABwGjrLAAAApyEIAQCA0xCEAADAaQhCAADgNAQhAABwGoIQAAA47Q+FWyyOqWribgAAAABJRU5ErkJggg==",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (-1., 6.3)\n",
+ "\n",
+ "dt0=0.1\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "#sol = solve(prob, Tsit5())\n",
+ "sol = solve(prob, IRKGL16(), dt=dt0, adaptive=false)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "688c60a3",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, -1.0, 6.3)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "74-element Vector{Float64}:\n",
+ " -1.0\n",
+ " -0.9\n",
+ " -0.8\n",
+ " -0.7\n",
+ " -0.6\n",
+ " -0.5\n",
+ " -0.39999999999999997\n",
+ " -0.29999999999999993\n",
+ " -0.19999999999999996\n",
+ " -0.09999999999999995\n",
+ " 5.551115123125783e-17\n",
+ " 0.10000000000000006\n",
+ " 0.20000000000000007\n",
+ " ⋮\n",
+ " 5.2\n",
+ " 5.300000000000001\n",
+ " 5.4\n",
+ " 5.5\n",
+ " 5.6000000000000005\n",
+ " 5.7\n",
+ " 5.800000000000001\n",
+ " 5.9\n",
+ " 6.0\n",
+ " 6.1000000000000005\n",
+ " 6.2\n",
+ " 6.3"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cf87f1ca",
+ "metadata": {},
+ "source": [
+ "# Backward Integrations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb08bb81",
+ "metadata": {},
+ "source": [
+ "### Case 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "bc2a51d9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd0AU19YA8DNlOx0BpStSLEhT7BVR7CWaokaNvsT3kmdezJdikvdSTDOJaS/lJcYYY0yiMbFEFLsiVhQERXoHpfftO+X7Y2DdAFKXnWX3/v6CYXbm7O4wZ+bOvediLMsCgiAIglgrnO8AEARBEIRPKBEixlFdXX39+vUrV67k5+drNJpWf7148eL69euPHTtmypCysrLWr1//448/mnKnfW3Dhg3//ve/u/uq8vLy9evXf/75530RkrnZvXv3hg0bsrKyOl6NOyaPHj1qmqgQc4YSIdJb8fHx48aNc3FxiYyMnDBhgp+fn52d3ZQpU37//Xf9OllZWTt37kxJSTFlYPfu3du5c2dCQkLvN9XQ0IAZEAqFrq6uM2bM2LlzJ8Mwvd9+123fvn3v3r3dfVV9ff3OnTtPnjzZFyF1y48//mj4ScpkMm9v70cfffTq1avG2kV8fPz27dvv3r3b8WrZ2dmmPyYR80TyHQDSvx07dmzRokUURU2ZMmXatGmOjo5FRUWpqanx8fEjRoxYtmwZt5q7u/u0adN8fHz4jbaXMAyLiorifi4uLj537ty5c+eOHz++b98+DMP4ja1/cXV1HTVqFABotdrMzMx9+/b9/vvvO3fuXL16Nd+hIdYIJUKkVzZt2kRR1Mcff/z8888bLi8tLS0oKND/OmfOnDlz5pg8OiPDcfzUqVP6Xw8fPvzQQw/t379/5cqVixYt4jGwfmfy5Mn6BgONRvP8889//fXXGzduXLx4sZ2dHb+xIVYIJUKk5yoqKrKzs4VC4TPPPNPqT56enp6envpfa2pqCgsLPTw8Bg4cyC3Jy8urr68fPny4SCQ6c+ZMenq6nZ3d3Llz3dzcuBWys7MvXLggl8u5FlfDjZeVld27d8/Hx2fAgAGJiYmJiYksy06aNCksLKwrYTMMc/369aSkJJVK5evrGx0d3bOT76JFix5++OFff/316NGjhonw1q1bV69ebWho8PDwiI6OdnFxMXwV98aHDRsmkUguXLiQkpIiEAimTJkycuTItruorq4+duxYVVWVr6/vnDlzpFJpqxW4j8LX19fZ2dlweVpamkajiYiIeFDwxcXFVVVV/v7+rd57SkoKhmEhISHcr/X19Xl5eW5ubp6enrm5uefOnVOpVGPHjh07diy3gkKhOHbsWHFxsZeX17x582QyWecf3F+JRKJPP/30l19+qa+vv3jx4ty5c7mjxd3dfdCgQTk5OfHx8fX19StWrHB3dwcAhmEuX76ckpKi0+kGDx48c+ZMGxubdrfMMEx8fPzt27cFAkFUVFRAQEBX4qEoKiEh4c6dOzqdzt/ff+bMmWKx2HCF1NRUlmVDQ0MVCkVcXFxJSYmnp+f8+fMlEgm3wuXLl5OTk3Ecj46O9vf37+4HgvCARZCeqqmpAQCCIORyecdr7tixAwDeffdd/ZKFCxcCwIkTJ8aMGaM/GqVSaVxcHE3TmzZtwvH7D7DXr19vuLW33noLAL766qsFCxYYHsyrVq3SarX61c6ePdv2tWlpaa3ypaOj42+//dZx/PX19dw7bbWci2Tx4sXcr6WlpdOmTTPcuFQq/e9//2v4kqVLlwLAqVOnpk6dql8Nw7CXX3651cb37t1ra2urX8fd3T0xMREA/Pz8WgWwa9euVq/lzr80TXO/ZmRkAMDcuXP1Kzz99NMAcPz48VYvtLW1dXV11f964MABAHj++edfe+01w+bfdevW0TR95syZAQMG6BcOGTKkqKio409y165dAPDQQw+1Wh4eHg4AP/zwA8uyO3fuBIA33nhj48aN+o2fOXOGZdnc3NxWX9+AAQN+//13w02tW7cOAPbt2zdu3Dj9ajiOv/zyywzD6Ff7/vvvAeCdd94xfG18fLyfn5/h9j08PM6fP2+4jpOTk52d3ZUrVwYNGqRfzcfHJy8vr66ubtasWfqFJEl+9913HX8giDlAnWWQnnNycvL19aVpeu3atSUlJT3YwlNPPSWTyWJjY69fv/6f//xHrVavXr36rbfe+vnnn7/99tsbN27s27dv0KBB33///eHDh1u99t13383IyDh69GhxcfHZs2dDQ0P37NnzwgsvdLC7oqKiqVOnpqWlbdq06dKlS+np6d999x2O44899ljP+tRwzb9OTk4AUF9fP3Xq1Pj4+LVr1547dy4zM/PXX38dMGDAs88+++uvv7Z942q1+sCBA8nJyd9++62dnd0HH3xw5swZ/QrXrl1btWoVwzBfffVVYWHhzZs3p0+fvmTJkh4E2Xt//PHHN99887///e/GjRv79+/39PTcuXPnBx98sGTJkscee+z8+fMJCQkLFizIz8//17/+1YPt0zRdXFwMAIb3tT/88MO+ffs+/vjj+Pj42NjYwYMH19fXR0VF3bx5c82aNTdu3MjMzNy2bZtcLn/44Ye5ix5DmzZtomn6/PnzxcXFf/75p4+PzwcffPDZZ591EMaNGzdmz55dVla2ZcuWxMTE1NTUbdu21dXVzZ8/Pycnx3BNjUazZMmS+fPnnzt37uLFi8uXLy8qKtqwYcPatWurqqr++OOPpKSkjz/+GMfxjRs3dtptB+Ef35kY6d9+++03gUDAHUvDhw9ft27d7t27q6urW632oDvCiIgIiqL0CxcvXgwAJEneuXNHv5DLIqtWrdIv4W6DSJLMycnRL6ysrLSxsSEIori4mFvS9o5w+fLlAPDll18axpaQkIBh2OTJkzt4m+3eEV66dEkkEgHAr7/+yrIsl4NffPFFw3Vyc3PFYjF3ucAt4e4Ig4ODDW9ev/rqKwD4xz/+oV8yc+ZMADC8n2AYhruJNP0dIY7jSUlJ+oWHDh3ivvFXXnlFv1ChUDg5OZEkqVKp2vkEW7S9I6Rp+vXXXwcAiURSU1PDttwRYhh27do1w9e++eabADB//nzDhd988w0AhIeH65dwd4QODg61tbX6hWlpaTiOOzg4KBQKbknbO8LIyEgMw2JjYw23v2fPHgBYvXq1fgl33fPPf/5Tv0Sj0XDNtj4+PkqlUr+ce2TwzTffdPCBIOYA3REivbJ8+fKkpKQlS5bIZLL09HSu45+bm9vq1asbGxs7ffm//vUvgiD0v3In+tmzZw8fPly/cMqUKdBy72Vo4cKFQ4cO1f/q4uKyevVqmqbb3jty5HL5oUOHnJ2duRygN2nSpFGjRl26dKmhoaHjaBmG2bBhw4YNG9atWzdlypTJkydrNJrp06dz+XXPnj04jr/66quGL/Hz85s1a1ZhYSGXivSee+45/QUEAERHRxu+x8bGxrNnz3LvSL8OhmGteiSZzLRp07imSw73jQDApk2b9AulUumYMWMoiupK20BycjL3Sa5YsWLEiBFbtmwBgHfffZfLMZzp06dHRkYavorLyps3bzZc+MQTT7i5uSUnJ7c6QtatW+fo6Kj/dcSIETExMfX19W3vHTlZWVmJiYlhYWHz5s0zXL5ixQoHB4e4uLhW6xt+F0KhcPz48QCwYcMG/ZNCePChi5gb1FkG6a3g4OADBw6o1eqrV69eu3YtLi4uPj7+p59+KiwsjI+P73hcQav+C1y/knYXVlRUtHqtvkOHXmhoKACkp6e3u6+0tDSdTieVSl955ZVWf1IqlQzDlJSU2NvbdxAty7Lbt2/nfsZxfNiwYatWrdq0aRNBEPfu3SsvL7ezs9u6dWurV3EtY4WFhSNGjNAvDAwMNFyH6yJUXl7O/ZqZmckwTFBQkFAobPsGTa/VN+Lo6CgQCGQyWat+QPpvqtMeIgUFBfpPUiqVTp8+fdOmTa2e+BpeDAEAy7IZGRkYhrV6RigUCkeNGnXq1Kn09PTBgwfrl7c9PMLCwo4dO5aenj5//vy2ISUnJwOAVqttlWi5XVRWVioUCn1XIKFQ2GosEPfeW32trq6u0N6hi5gblAgR4xCLxdOmTZs2bdrLL7988ODBZcuWJSQknDlzhmviexDDy2cA4LJmq76RXK8Ztk1R3FZnYWg57zQ1NbW7L655s6KiQn8KNuTo6KjVajsIFQAIgqiqquJ+dnBwMMzx3N2kUql80MYpijJc0vF7lMvl+rdjqO0S02jbWxXDsLYLuXfRlQoDCxYs4Cr+kCRp2CHIkGE3HADQaDQ6nc7W1rbtfrnLiFbfe9vDg1vS8eGRm5v7oG9QpVLpE6FYLDbszAUt773d47ntoYuYG5QIEeNbsmTJ1KlTz507l5SU1HEi7I3KyspWS7hL7weNheBOuGPHjr1w4UKPd2rY2tZ24+7u7kVFRT3euB43HqDtnUTbJQ/KPQqFouNdcOfoVi+kKEqtVrc6m/cFoVD4oE/yQcRisUAgaGpqUiqVrXIhdyfd6nt/0OHxoLzLLV++fPnu3bu7FRhiAdAzQqRPcL1IDJ//Gd3NmzdbLeFatwxbIA0FBweTJJmcnKxSqYwejIeHh6ura3FxcWlpae+3NmzYMIIgMjIy1Gq14XLuDRrixmW2SpB1dXVlZWUd76LdF+bm5up0uh6H3de4oZZJSUmGCzUaza1bt/R/1XvQ4dHueE0A4Fpcr1y5gm7grBBKhEjPyeXyvXv3tr0dycrKunjxIgB0MKC792JjYzMzM/W/lpeX79mzhyTJBxV5sbOzW7p0qUKheOedd9r+lWuN7DEMw9asWQMtHSl7uXFbW9vo6OiamhqujyWHYZhPPvmk1ZpDhgwBgFZdOd5///1Oz+YPemG34jQxrmLf1q1bDd/djh07Kisrx44d6+3tbbjyDz/8wI1z5dy6devkyZNOTk4zZsxod+MjRoyIjIzMzc3lepO20svDAzFzqGkU6Tm1Wv3YY4+99NJLy5YtGz9+vIuLS0NDQ2Ji4vbt2+Vy+fTp01uNLjcuDw+POXPmfPTRRyEhIVlZWZs3b1YoFC+++KKHh8eDXvLJJ58kJCS89957OTk5jzzyiL+/P1c55dChQ3V1db1pMgWA//znP8eOHduzZw831UNgYKBSqSwoKIiLi7t27Vpubm63tvbuu++ePXv2+eefVygUc+fOra+v37ZtGzfYztCkSZM8PDwuXLiwfv36lStXqlSq/fv3x8bGOjs7G6aBtubMmWNvb79//34PD4/FixfX1tbu3r07KSmJu5U3Txs3bty5c+exY8dWrFjxzDPP2NnZHTlyZMuWLSRJbtu2rdXKDg4OUVFR7733nr+/f1JSEjes5e23325VJsbQd999N3HixA0bNly/fn3evHmDBw+uqqrKycnZt2+fu7s7N44CsUgoESI9J5PJVq5ceeLEiU8//fTTTz/VLxcKhevXr//kk0/6tBT1K6+8cubMGW7oAuepp57q+J7Gw8Pj6tWrGzZs2L9///79+/XL7e3t//73v/cyHltb2wsXLvzzn//ct2/f6dOn9cslEom++HjXhYeH79+/f+3atS+88AI3QtHb2/vPP/9s1XFUKBTu27dv8eLFO3fu5Ibfubu7HzlyZM2aNR0nQkdHx59//nnFihX6727o0KHHjh3jhgGYJ1tb27Nnz65YsWLv3r36KTjc3d23b98+adKkVit/8skn//3vf/VjIUiSfPPNN1uNnGmFG0Xz1FNPbd++3bDLjIuLC6ola9kw1CCO9BLDMLdu3SouLi4rK8Nx3MfHZ8yYMa26QjQ2NlZUVAwYMEC/vLy8XKlUenp6Go4QkMvllZWVDg4OhuPJACA/P18gEHh5eXG/btmy5Y033vj+++/XrVuXmprKPfsZP358UFCQ4atUKlVpaam9vX3bzpYFBQXXrl2rr693cHDw9vYePXp0q4EKbd9jYWEhtLQodqysrOzy5ctVVVU2NjZeXl5jxowx7NxRUVGhUCg8PDwM77247QuFQsMCrQDQ0NBw6tSpmpoaHx+f6dOni0SiVh8Fp7Gx8dSpU9XV1e7u7tHR0WKxuKSkRKfT6aPV6XSFhYUymYwb961XU1Nz6tSphoYGX1/fGTNmCASCwsJCDMP0YwMUCkVFRYW9vX2rWqYFBQXcd224sLKyUi6Xu7u7d3DX1dTUVFVVJZPJ9EVlH7SOo6Njux1qWJZNSUlJTU3VaDR+fn6TJk1qtbuqqqqmpqZBgwaJxeKrV6/euXNHJBJNnTq1Vdtp22NSLz09PTk5WS6Xu7i4eHt7h4eHGz7t5o4EX19fw5dUV1c3NjYOHDjQ8LtWq9X37t2ztbVt24UVMSsoESL9j2Ei5DsWBEH6PdRZBkEQBLFqKBEiCIIgVg11lkH6n6ioKJFINHr0aL4DQRDEEqBnhAiCIIhVQ02jCIIgiFVDiRBBEASxaigRIgiCIFYNJUIEQRDEqqFEiCAIglg1lAgRBEEQq9a/E2FNTc2XX35pst2hoSam1JWJzhFjQZ+2KaFP25S6ct7u34mwsLDQcMK2vqZSqWiaNtnurFync6wjRoQ+bVNCn7bJMAxDUVSnq/XvRIggCIIgvYQSIYIgCGLVUCJEEARBrBpKhAiCIIhVQ4kQQRAEsWooESIIgiBWDSVCBEEQxKr1+4l5NwXYlr/3N6FXgGhosHh4JGHvzHdECIIgSH/S7xOhhMCoylKqslSZdBYTCO1mrbCZsQwj+v37QhAEQUyj3zeNfprd5PbS/xyW/VM8Yhyr0zYc3VX50dOa/DS+40KQHmFoXXkR30EgiHXh585Jo9HcunWroaFhxowZON5OMo6Pj9fpdNzPbm5uwcHBD9qUimYF7oMF7oNtJs3XZKfU7f9CV15c9cWLsshZ9gvX4zK7vnoPCNIH6g9+K0/4Uzh4hMPC9cLBw/kOB0H6hCr1Yu0vH8vGRNnFrMJtHPgOh49EmJqaGhkZ6ebmVlJSolarRSJR23UeeuihwMBAqVQKAFOnTu0gERoSBYS6vfS/pjO/NZ3ep7h2QluU6fr855hQbOQ3gCB9g6q6q7h8DAC0BXcqP39eEjzBbv5agZs333EhiDGxlK7h8HesRiW/GKu8cdY26mGbaUsxgZDHkHhIhP7+/pWVlTU1NX5+fh2stmvXLn9//+5uHBMI7WJWSSOmV+94S1deVLf/S6eVL/QiWAQxnYZjP7I0JR09g3Qe1HT+gOr2ZdWda7Kxs+xiVqFeYIjFUFw+RtVWCAZ6E86D1HeuNRzdJb8Uaz93jXTMTMAwXkLi4RmhVCq1t7fvdLWEhIQjR46Ulpb2YBeki8eAv72BiSTK66cV1072YAsIYmLakmxVSgImENrPf8JuzuODXv/RNuphDMcVV+LK313XcGQno5LzHSOC9BarVTed2gsAdvPXDXjyLdfnPhX6DqPrq2t/+bjigw3q9EReosL4mmMvPz/fz8/vQU2jwcHB/v7+arX6woUL77///saNG9vdyMWLFx999NGnn35avyQmJkbfjqpOudDw80eYQOj0z22k++Dex6xUKkUiEUEQvd8U0qmmpiZbW1u+ozCduu3/0eakyKYvs5m7Rr+QqatqOvGTOvk8sCwutZVOWyqdtLAvGpGs7dPmlzV/2vLT+xQn9gi8Apw2bmu+/2NZze3LTUd/oGsrAEDoH2q7YD05yNcou+Omfmw3yxgy02EGt27dwjAMABISEqKiopYtWzZo0KC2qzEMQ9N0XV2dfolCodBPeikcNUmcmaROOlv/01bHZz/BRJJeRsUwDMMwGE8379aG+7T5jsJEtNk3tTkpuMRGPGXxX961vbPtw8+Jx89TxP2oy7stP/aj8tJRWdTD4jHR0F4vsx6zqk+bd1b7aTMquSrhEADI5jzOsCy03IYJRo53HDZGfSVOeXqvNiel5tNnRWFTbeauxW0de7vHrp2xzTQR6kOfPHmyo6NjZmZmu4lQJpN5eHh89NFHD9qO8NHnKssLdXfzlYe+cVq9uZdR0TSN7ghNRqvVdnodZyFYtuHkzwBgO/MRieOAtn8XDR1ps/EjTfbN+sM7dHfzmg58rb581C5mlSR0srFCsKJP2wxY7afdcHIPo5SLgyJsho9p80eROGqZ3fjZTWf2y+MPapLPa9Ou2ExeZBv9KC6W9niP3M1Sp6uZ0TjC6urqxsbGVgvz8vJqamp8fHx6tk1MIHRe+xomkiiTz6OHhYh5Ut6M15bkEPbONpMXdrCaKCDM7YUvnde+RjoP1JUX1ex6t+rrzdqSHJPFiSC9QTfWyhP+BAyzm/P4g9bBpbb2C9a5vfyNJHQyq9M2nfmt/O218vhD0Mc30DzcEWo0mmeffZbLec8884ytre2nn34KAGvXrg0NDX3nnXdOnDjx2WefjRkzRqVS7dmz5+9///uQIUN6vDvSxcPxkX/V7t5a//uXQs+hAo+ebwpBjI6lqcZjuwHAbs7jmLCzuwQMk4ROFgePV1472XBstyY7pfKTZyUhk+znP0EOcDdFuAjSU40nfma1GknIZKFPUMdrki4ezmtf0xZlNhz+TpN/p/7gN/LLx+znPG7EJpDWe+yj7XaAIIiZM2cCwNKlSwFAKGx+8v/CCy84OjoCwPjx4+vq6nJycuzs7H777bfJk3v75qXh0zSZSYrEUzW73nV74cvePyxEEGNRXDlOVd8jXT1lkdFdfAlGkLIJc6UR05vO/dF05jdVSoL69hXp2Fl2MY8Tdr19poIgfYGqKVdePQE4bjf3gbeDrQh9glye/Vh952r9wW+piuKaXe+KAkIdFj4p8Oxo3F3P8NZr1CiSkpI2bNhw48aNTtdkddrKz57T3c2Xhk/r8cNC1GvUlKyhZx2rVZe/8wTdWOe87nXJqAk92ALdUNN44mfF1ePAMJhQbDN5Yc+eqVjDp20+rPDTrv3pA2XSOdnYWY6PPd/d17I0pbx2suHYj4y8ATBMEjLJfuHfSCe3rryWe0YoEAg6Xs2MnhH2KfSwEDFDTecO0I11Qu9ASfD4nm2BsHd2fPjZ5mcqWjX3TKXpzG8sTRk3VATpMV1ZoTL5PEaQtrNW9ODlXBPIwFe/t416GCMFqpSEiq1PNRzZyagVxorQWhIhtDwsBID637/U3c3nOxzE2jGKRvm53wHAfsETvSyoIXDzdl77mutzn4mGjGQUjQ1HdlZs3aBKSYD+3N6DWIyG2F3AsrJJ80nngT3eCC61sV+wbuCrO6Rjolr60Twhjz8ETOedQjvfeO830Y9Iw6fJxs5iddqa3VtZrZrvcBCr1nhqL6NWioeNFvmHGmWDQt8gl40fOT/xb9LVk6q6W7Pr3crPNunu5hll4wjSM9rCDPWdq5hIYhf9aO+3Rji6Oq180fVfnwoHj2AUjfUHvyn/4B/qO1d7uVnrSoQA4PDQM4KBPlRFceOJX/iOBbFedG2l4uIRwDD7+U8Yc7sYJgmZNHDzt44PP0vYOWmLMqt3vNXXXc8RpAMNsT8AgO20JUacZULoG+T6r4+d1/2HdPGgKoqrv3uz6suXdBXFPd6g1SVCTChyfHQTACiunUDPURC+NBz/iaV00vDpAg/jd4EDnJBNmDvw3ztJV0+6rlKd2XlvMgTpC+rMJE3uLVxqazP9IaNvXDJqotvmbx2W/gOX2Wlyb9V892aPr/msLhECgNA3SOAxhJE3qG9f4TsWxBrpygqVN85gBNn1ruQ9gAnFsnExAKC4crzv9oIgD8SyjUd3AYBt1MO4WNYXe8AI0mbKooH/3kkOcKeq76lSL/ZsO9aYCAFANnY2ACiuohMEwoOG2B+AYWQT55HO7RQONCLpmCiMIFV3rtGNtX26IwRpS5V6UVuSQ9g5dVwyqfdwiY3t9IcAoOns7z3cglHj6TekY6IwoUidlUzVVvAdC2JdNPl31HeuYSKJrTH6DnSMsHUUjxgLDK28fqav94Ugf8EwDXE/AYBdzKrOSyb1mjQymrBz1JZka3JSe/ByK02EuMRGMmoisKwSjSlETKvhyE4AsJ3+ENHryvpd0dw6evU4GkqBmJLi+imqoph0HigdO8sEu8MEQtnEBdDTm0IrTYQAIBs3BwAU106gPnWIyahuX9EW3MFt7G2mLTXNHsXDRhOOrlTVXU1+mmn2iCAsTTWd/BUA7OatxQgTFfK0mbwAE0nUGdd7MGTIehOhaGgw6eZF11erM5P4jgWxDgzD9R2wm7WiNzPLdA+GcVVMFVdPmGiPiNVTXDxC1ZQLBvlKw6aabKe41FY2dhYANJ0/0O3X9kE8/YYschYAKK7G8R0IYhUU10/ryotIJzfZhLmm3K907CzAMFXKBUYpN+V+EevEalRNp38DAPv5vS2Z1F0205YCTqiS4+m6ym690KoToTRyJkaQqrRrdEMN37EgFo7VaRuP7wGusYjspASwcZFObuKAMFanVSafN+V+EevUdP4A3VQn9A4UD4808a5JJzdp6GSWpuTxh7r1QqtOhAZ96k7zHQti4eQJf9J1lQL3wdLwaabfu3TcbABQXD5q+l0jVoVRyuXnDwKA/YJ1Jr4d5NhGPQwYJr8Sx6i60f5h1YkQAGTjW0Ycoz51SJ9h1IqmM78BgP2C9bycHSSjJuI29rp7BbrSXNPvHbEeTaf3Miq5eNhokX8ILwEIPIaI/ENZjUpxqRuXfdaeCMVBowknV6qmTJN7i+9YEIvVdPo3RtEo8gsWDxvNSwAYQUpHRwEqIoH0JbqhRs5V0J23lscwbGcsAwB5/CFWp+3iS6w9EQKGtXSZQScIpE/QjbXyC4eBayzij834OQCgvHGO1Wp4DAOxYI0nfma1GknoZIHnUB7DEAdFCDz96KY6ZdLZLr7E6hMhN+IYx1WpFxlFI9+xIBao8fgeVquWhEwS+g7jMQzSzUvoO4xRK3pcjxFBOkBV3VVeOwk4bheziu9Y4H7Fta4980KJEAiHAeLAcJbSKZPO8R0LYmnunx3mruY7lpYqM9dQ4wdifI1xu1makkVGC9y8+Y4FpGFTCSdXqrJUfedaV9ZHiRBAf4K4ggYUIkbWELuLpSnZ2NlmcXYIn4qLpZrc21RFCd+xIBZFV1aovHkBEwjtZq/kOxYAAMAJ26lLAbjgffMAACAASURBVEB+7o8urd7H4fQP4pHjCFtHXVmhtjCT71gQy6EtyVbduogJhObQWAQAmFAsCZsKAIpEVGIXMaaG2B+AZWUT5xOOrnzH0kw2bjYutdUW3KGr73W6MkqEAFyfusiZgLrMIEbVcGQnsKzNlMWEvTPfsTTjJiBTJp5Gs1IjxqItaJ5QxW7mw3zHch8mkthMnA8ArFbd6cooETaTjYsBDFPejGc1Kr5jQSyBOitZk52CS21so8zo7CD0DRIM8qWb6tR3EvmOBbEQDbG7AMB2+kO4jQPfsfyFbMpCTCDsypooETYjXTxEfiNZjQqVoUKMgGWbp1uKegSX2vAdzV+0TMyEnogjRqDOuK7Ju43L7Ew2oUrXEbaOdvOewITiTtdEifC+5omZUJF+pNeUN+N1pbmEvXNfz83dA9LRMzCBUJ1xo7uFiRGkNZZtOPojANjOfMR0E6p0h2zKImKAe6eroUR4nyRkEi610RZl9mA6KwTRY2mq8dhuALCbs9oEc3N3Fy6zkwSPB5ZVJKISu0ivKFMuNF/wTZzPdyy9ghLhfZhAKI2YAQAKNG090guKK3FU9T3S1VMWOZPvWNrHtY4qr51AJXaRnmOYxuM/A4BdzCozvODrFpQI/0LGlaG6fgaVoUJ6htWqm07+AgD289cBTvAdTvtE/qHkgEFUbYUmJ4XvWJD+SpF4kqooJl08pJHRfMfSWygR/oXAfbDQO4BRyVW3L/EdC9IvNZ07QDfWCb0DJcHj+Y7lwTBMikrsIr3A6rTNt4NzV2MEyXc4vYUSYWstVWbQCQLpNkbRKD/3O/A3GVvXycbOAhxXpV5i5A18x4L0P/JLsXR9lWCQrzR0Ct+xGAFKhK1JI6ZjIokm7zZVdZfvWJB+pvHkr4xaKR4+hq/J2LqOsHcWB41maarrFfoRhMNqVE2n+Zxf0+hQImwNE0mkoVOAZVGXGaRb6NpKxaVYwDD7uWv5jqVLWgYUovFCSPc0nfuDkdcLB48QDx/DdyzGgRJhO7hp65XXTqIyVEjXNcT9yFI6acR0gacf37F0iWTkWMLOCZXYRbqFUTTKzx8AAPt5a/iOxWhQImyH0HeYwGMIKkOFdJ2urFB54yxGkHYxj/MdS5fhhHQMKrGLdE/Tqb3N7f9DR/Edi9GgRNg+WWQ0oDJUSJdx9bVlk+aTAwbxHUs3yMbP4UrsQhcKEyMI3VAj71ft/12EEmH7pKOjMIFQnZlE11fxHQti7nR389XpiZhIYhf9KN+xdA85YBBXYleLxgshXdB4fA+r00rDpvSX9v8uQomwfbjMThI8ARgGdSVAOqW6cw0ApBHTza36fldwJXa1SWf4DgQxd1R1meLaScAJuzmr+Y7FyFAifCCuy4wi8SQqQ4V0TJ2eCADi4ZF8B9ITkpBJuMSGLsnRlRXyHQti1lSpCcDQ0vCppIsH37EYmfkmwrq6uszMTIrird+maGgIOcCdrq1UZyXzFQNi/hhlk7Y4CyMFYrMfO9guTCCURkwHVGIX6Yw64zoASIIn8B2I8fGQCGNjYyMiIoRC4YQJD/xAP/zwQz8/v0ceeWTo0KGpqammDO8+DJONnQWoygzSIXXGdWAY0dBRmEjCdyw9JJswFwCU10+zlI7vWBAzxaiV2oIMwAlRQCjfsRgfD4nQ09Pzww8//OCDDx60Qn5+/ttvv52YmJiamrphw4bnnnvOlOEZko6djRGkOu0K3VjHVwyImVOn3wAA8bDRfAfScwL3wfigwYyiUXX7Mt+xIGZKk5XE0pRoyHBcYl4TTRsFD4kwNDQ0KirKweGB3Qr27ds3Y8aMoUOHAsBTTz114cKFsrIyEwZ4H2HnKB4+hqUp5Q3UlQBpD8OoM29Av31AqCeMiAIAJeoahjxAywWfhZSSacUcnxEWFhZyWRAAnJ2dHRwcioqK2l2TZVmlUplkoKHByBWEW2pwx6EuM0hb2uIsRtFIOg/q790HhKGTMaFInX2TqubnohMxayxrGRd8D2KO02coFApnZ2f9r1KptKmpqd01a2tri4qKnnzySf2SZ599dtmyZcaMxmsYbj+Aqrpbn35D6+Kj0+kIwkwnmbMwCoUCM/t6vurUSwBABITJ5XK+Y+kVJcUKRozX3jxff+moOKqfjYbsd/rFsW2IvldAN9Tg9s4aG2dNvzrUGYYRCAQCgaDj1cwxEbq5udXV3X8mV1dX5+bm1u6azs7Ow4YNu3HjRp/Gw4yNbjz5K5MSb7PkaZFIhBKhabAsa2Nj7k8jlLmpAGA7aoLY7EPtGMuywknzqm6e1yWfG7BgHeDm2FZkMfrFsW2osSgNACQjxtrY2vIdS/cwDEPTdKermePhHhoaevXqVe7nW7duEQShbynlhXRcDGCYKuUCq1LwGAZibujGOm1pLiYQWkbRRZFfMOnmTTfUqDOT+I4FMS8W0COsYzwkwpKSku3bt8fHx1dUVGzfvv3kyebRS6GhoZcuXQKAZcuWVVZWbtmy5cqVKxs3bly/fr1UKjV9nHqkk5s4IIzVaTWpF3gMAzE36ozrwLKigDBMIOQ7FuNoKbGLxgsh9zFKubYoEyNIcUAY37H0FR4SYUNDQ1JSkkgkmjlzZlJSUl5eHrd84sSJjo6OACCRSM6ePZudnf3qq69GRUVt3brV9EG2wnWZ0SSiEcfIfdz4YkvqRyeNnIkRpCrtKt1Yy3csiLlQZ94Ahhb6jey/I2U7xcMzwpEjR3777bdtl3/11Vf6nwMDA/fs2WPCoDohHjUBt7Gny4t0pTmETxDf4SBmgKE1WTcBQDwsgu9QjIawdRSPiFTduqy8fsY2ajnf4SBmQZ1hyQMnOOb4jNAMYQQpG40GWiH3afLTGZVcMNCbdO5P8y51qmXa+uNovBACAMCymswkQIkQ4cgmzAUMUyWfZzUqvmNB+NfcLmpxw6rEw8YQjq5U1V1NfhrfsSD805bm0E11hKOrYKA337H0IZQIu4p09SS9g1iNSpmSwHcsCP+aZ5ywvH50GCaL5KatR40fCKjTrwOAxOIu+FpBibAbRGO4EwTqU2ft6PpqXXkRJpIIh4zkOxbjk46dzY0XYpT9aeg00hdaWj4s7oLvr1Ai7AbhyAm4WKotSKdqK/iOBeGTOj0RWFYcGI4R5liSopf044WUyef5jgXhE6No1BZnY6RA5G+BM04YQomwGzChSBgQBgAaNOLYurVcJlts94H7XWYQK6bOTAKGEfkFY0Ix37H0LZQIu0cUEAYAaKpea8ZSOnV2CmCYBfejEwePx6U2utJcqqac71gQ3nAPCC34gk8PJcLuEQaGA4AmOwWYzuvXIRZJk3uL1agE7kMIe+fO1+6fMFIg8g8DAA265rNaLMtd8Vte1+i2UCLsHtLJjXTxYFRybXE237Eg/GgeX2zpl8niQNT4YdW0RVmMvJ50HtjfpxjrCpQIu00cFAFc6zlilbiBExKLT4RBo6G58YPhOxaEB5Y6UrZdKBF2mygwHNCVsrWiasqoqru41EZo6ZX2CCdX1PhhzSyvlG4HUCLsNnFAKEYKtEWZaJSVFVLfSQTubgm3/Gkpxc3XfKjxw+ow8gZtSY7FTDHWKZQIuw0TioW+QcAwmtxUvmNBTM2qLpO5xg/UX8YKNU8xNjQEE4r4jsUUUCLsCXEgekxojVidVpN7CzDMkmac6IA4IBQjSE1hJqNGU1Jbl5YLPgsvKKOHEmFPiILCAQ2rtz6a7JusTiv0DsRtHPiOxRQwkUToEwgMrcm5xXcsiAkxjJqbYszSe4TpoUTYE0JPf9zGnqqtoKru8h0LYjrWdpkMqHXUKmmLMhhFI+niQQ5w5zsWE0GJsEcwTBwQCqh11MqoM5LAajqUc5qfAqBEaE3U6dxIWSs6zlEi7CFR82NCdIKwFrryYqqmDLexF3r58x2L6Qi9A3CpLVV1F9Vasx6qDAudYuzBUCLsIXFQBGCYJieFpXR8x4KYQvMEhMMjAcP4jsWEcFzkHwKoddRq0I11urv5mFAs8gvmOxbTQYmwhwh7Z8FAH1ar1hZm8h0LYgrNldWs6TKZ0zKa8CbfgSCm0Dxwwj8UEwj5jsV0UCLsOTTc2HqwGpW24A7gOPelWxVRUAQAaHJuolpr1sBKZuJtBSXCnms+QaDHhFZAnZXMUjqR73Bcast3LKZGOrmRA9wZpVxbgmqtWTqG1nADJ4KsYqSsHkqEPSfyC8YEQm1pDiOv5zsWpG9Zz8Rs7RIHhQPqGmYFNAXpjEpOunmTzoP4jsWkUCLsOUwgFA0ZCSyrzk7hOxakL7GsVVVWawuNJrQS3INwi59ZpS2UCHsFnSCsge5ePt1QQ9g5CdwH8x0LP8QBYRhBagozGLWS71iQPtTcNdr6LvhQIuyV+3MTsizfsSB9pblddMRY6xo4YQATSQTegcDQmlxUa81i0Q01urJCTCgWDhnBdyymhhJhrwgG+RL2znRDja68iO9YkL5i5e2iHG7CetT4YcHU6YnAsuLAcIwU8B2LqaFE2DsYhubptWyMUq4pzMQIUhQQwncsfLrf+IFYKCsspauHEmFvNV8poxOEhVJn3gCGFvqNxMUyvmPhk9A7ENVas2AsTWmyUwElQqRnxEGjAcM0ebdZnZbvWBDjaykoY9XtogAAOM5NVq7JRiVmLJA2P41RKwSDfAlHV75j4QFKhL2Fy+wEHn6sTqvJT+M7FsTYWJa717faEYSGxOgpgOVqvuCz1uMcJUIj4B6foH4Elkdbkk031ZHOAwVu3nzHwj/RsNHA3RGiWmsWp7lrtLW2fKBEaATNV8roMaHFsfKzQyv3a62V5vAdC2JMdH2VrrwIF0uFg4fzHQs/UCI0AuGQEZhIoisrpBtq+I4FMSYrr6zWVss1H2r8sCjqO4kAIAoMxwiS71j4gRKhEWAEKfILBpZFraOWhJE3aEuyMYFQNNSqB04YQqWULBIaKYsSoXE0j7JCJwgL0jwx29AQTCjiOxZzIQoIxQhSU5COaq1ZDJam1DmpgGHWOXCCgxKhcaBaa5bHmscXPwgulnK11rR5qNaahdDk3mI1KoH7EMLeme9YeIMSoXGQrp6k80BG0ai7m8d3LIgxMAw3Jzt6QNgKV0ECTVhvMax84AQHJUKjEQWEAeo7aik0hRmMopF09SQHuPMdi3lBfaQtjNXOOGGIn0R47Nix8PBwd3f3devWyeXytitERUWNbvHKK6+YPsIeaJ68FD0mtAjN7aLDI/kOxOwIfYJwqQ1VWUrVVvAdC9JbVE05VVmKS21EvkF8x8InHjrLlpWVPfroo3v27Bk3bty6deteeeWVL774otU6qampO3bs8PLyAgBHR0fTB9kDooAwwHFt/h1Wo8JEEr7DQXqlZQQhekDYBo6Lhoaobl3SZN8kx8XwHQ3SK80XfIERgBN8x8InHu4Id+/ePWXKlIULF7q6um7ZsmX37t0ajabtaiNGjIiIiIiIiBgyZIjpg+wBXGIj9A5gaQrN2dbf0Y21unv5mFAs8gvmOxZzhGqtWQx0wcfhIRGmp6eHhYVxP4eEhMjl8tLS0rarrVixIjIycuPGjZWVlaYNsOfEQaMBnSDMXl4j+1kaMzuOeuwcnV7fTi/flonZwqxwYrauEOlrCqJaa+aKYeFKJbv5Oh16gHroNH2rtp3jnNVpNbmpgGHcF2rNeGgarampGTGieQZkgiBsbGyqq6v9/PwM1/noo49CQ0PVavXWrVtnz56dmJgoELRzSqqurk5NTTVsO3377bfXrFnTR5GrVCqtVksQD2xDYLwCAUCZfp2IXtVHMViPdh8e9xjNwrVq/Pg9PO4ekdWon2ie3Z/PPOxDvzKS8pXdP1Mob10BABgc3NTUZMQYzFn3Pm2hDHdyY2or6rNvER5+na+P/JVxj21DahriK4mjd/G4u3iFuvk4T61lDxYyi7yYV0bohtnfP86pnBRWqyHchygxAVjooc4wjEAgaDd9GOIhETo6OuqPA4Zh5HK5k5NTq3WeeOIJ7oe9e/c6Ozvfvn07PDy87aYGDBgwcuTIs2fPcr9iGObg4NBngQNBECKRqINECMMilFIbpvqeRKsgnQf2XSRWwtbWtpdbaNDCiVLmSDEbV8LUtDTAO4ogxhOf54VdrWS3ZzK/FhK/FxN/C8T/HYa7SzGWppry0wDAIXQS0esA+pFufdr0sDHyS7F4SYZtUGjfhWTBen9sG6rVwNES5nARe6KUkeuaF/raYot8sBhP/GQp800mc6gE/7NU9PAQ/I0wPMgBA4D6wjQAkAWPM24wZoVhGJqmO12Nh0Q4dOjQ27dvcz9nZmaKRCJPT88HrSwWi4VCoVqtftAKBEGYUW8aw34E4+fwHY31KmhiT91ljxQzJ0tZbUvr3RBbbL43tsAbnzIIE+IAACuHwksh+Ds3mZ3ZzP8ymO+zmLUB+FsOLROzOVnjxGxdJAoMl1+K1WQlQ/RjfMdivYrk7IlS9kgxc6KU1bUc58MdsAU+2HwvfOJAjLsljPEkXgklPr5N//cOszeP+S2fecgXf3s0bo9qyrfgIRE+/vjjISEhSUlJISEhH3zwwfLlyyUSCQB8+eWXXl5eixYtKigoqKmpCQ0N1Wq1b7/9to2NTUhIvyn2KA4MV926pM5MlqFEaFo0Cyk17JFiJraYTapubv8hMJjohi3wxhf4YMMdsLav8pJh304iNo3E30thfs5jtmcyHlWJ6wCwQDRwoiNcrTVtQQajVuJiKd/hWJc7dWxsMXukmLlc0VzISn+cL/XF/O3bOc5dxLB1DPH8SOKTNPrzNGZ/AXM9+15C9T1WYiv0DjRx/GaIh0Q4ZMiQL774Yt68eUqlcsKECT/99BO3PCUlRavVAkBNTc3KlSsLCwsFAkFkZGRsbKxMJjN9nD3zlznbcFSvoM8pKDh7j4ktZv8sYspVzQsdRTDTHefu/xy7UCg0yAHbPY14KQTfksxMzr0OAI/fCxufTP9fMGGLusu0BxdLBd4B2oJ0bd5t8YixfIdj+WgWrlSwsSXMgUI2p6H5Ok9Kwgx3bPlgfKEP7iDsfCOuEtg6hnhmOL7tFqNJSASAI6LwqxfY18PZoXbtpE/rwc+kG2vXrl27di3Lshh2/9PfsWMH98Po0aOzsrJa/bW/IJ3cSBcPququtjhbaN1jVPtUFxs/u2WkI/ZreE3ZkRI1KT0rCDqZzHydzvxfMPGvkbjYqgdZtU8cGK4tSFdnJaNE2HeUFJy5x+zPZ48UM/Xa5oUuYojxxJcPwWZ54KLuH5leMuzz8URJcjIAnLcdvT+X2ZvPPDoEfzMCH2Lb/065RsHn7FMd57n+mAU54sBwedVddeYNlAiNq2eNn92iupMIAI4jI87FiF+9QSeUs5uv019nMK+F4usCcBLd4RsQB4Y3Ht+DBgv1hSo1xJUw+wuYU3dZTUtXD+46b/ng+w//eozVafHC2yyGfbRytGMuvjOb+SmX2ZfPrA3AXw/DPWT99dzbY1Y6DWOfEgVFyC8eUWfdtItBgyiMgAU4XMT8UdBOz88F3liMZ5caP7tIPzHbpIFY/HzycBHznxtMWh274SL9WRrzVgS+bDBudSeJB2iutVZRQtdVEo6oY5ER5Dexe/PYQ0XMjar7D/8mD8QW+eCLfTA/47VearJvsjqt0CfIdaDjtwPh+WB8SzKzN5/ZnsnszmE2DMM3hxADrak6FkqExif2D8EIUluUwSjluNSG73D6N4aFZy7T32Q0t34G2GMLvLH53vgkN8zo92esTqvJSQEM4ybVwgAW++ALvfFf85g3k5mMevbhM3SYM/POaGKuF8qGXB/pUapbl9VZN2XjZvMdTb93vJR96DSlpAAApCTM8sAX+mALvPEBYuPvq9UUY4H22M/TidfC8LeSmd8LmM/TmO8ymX8Mw18aRbhaRzpEbT3Gh4kkQt9hwDCa3FS+Y+nfaBaeuEB/k8FISNg6hshaTmYtJ7eNJaYNMn4WBG5iNq1G6DnUcGI2HIOVQ/H0ZeS3kwhPGXazhp13gpp0hIovQxNPognrjeZAIbPoJKWkYLEPfiiaqF4lOBhNPBHQJ1kQWiYPaTX10nAHbN8MImUJudQXV1Hw8W1myD7d5ut09QMHr1kOlAj7hCgITVXTW1oGHj1L785hZCT8GU2+HIIHtNcv3IhaZpxoZ1iVAIengvC8R8hvJxEDJXCpgp12lIqOo65XWXU6bC46mn0TzUfdG7/kMY+cpbUMPDMcPxBNLPLBJX3ZVEdVlFDVZbiNvdAroO1fg52wP2YStx4ilw/GlRR8kMr47tVtvk7XtlMQ2nKgRNgnuLY1DUqEPaWhYe1l4e8FjIMQTs0lZ3qYoilS3dn4YiEOTwXhuY8Ito4hHIRw+i4beZiKjqNSaqw0DZAD3EnnQYyiUVuaw3cs/dW3mczj52mKgZdD8C8nECY40FX6dtEH97kZ6Yj9FkWkLL2fDn326jZfp+ssNB2iRNgnhJ7+uI09VVtBVd3lO5b+R0HBvBNU7F3cRQxn55HjXU2RBamqu1T1PVza+fhiGQkvh+B5jwg2h+AyEk7fZSMOUY+fp4vl1pgOucYPTSZqHe2Jj24x/7hIsyxsG0tsHWOiMTqdXvDpjXLCfosiriwkZ3tich18kMr4/ab7OdcCK62jRNg3MEwcEApoJorua9DC7DjqzD12oIQ9P58MczZRt5T783R3rQyCkwjeH0PkPiLYOAIX4LAnl5l4hC6yvlyIpmTqsdeT6JcSaQyD/00i/i/YRKdiVqvW5qcBjnNfXFeMdcWOx5AXF5BR7lidBtbE0wcKLS0XokTYV0SBqHW022o0MPMYdamC9bHBjs/Q9n5cYNepM24AgHh49yZmGyiB/44nspaTkwdipQp2dpxV9CwwJPIPAZzQFqSzGlXnayMAAMACbLpKv32TIXH4cSqxIch052F11k2W0gl9gnCZXbdeONENOz2X3BJB0CysOEefs6zOYigR9hVxUARgmDonlaUpvmPpHypUMOModaOaHWyLnZ1HDLEx3X8aq1Vr8m4DhnX9MtmQjw0WO5sMc8ayGtg5xyl9+X9rcH8+6rzbfMfSP9AsPHtd8FkaI8Rh73Ri1VCTnoT1I2V79vL/hOGbRuIaGhadpPRFLSwASoR9hbB3Frh5sxqVtiCD71j6gTIlzDhK3aplgxywhPmEiUs9qbNTuPHFuE0Pp/GyE8CJOWSAPXajml10itJ0PvGL5eC6hqHW0a6gWVh3gf4xn5CS8Ocs8qHBpj4DqzNvAICkva7RXfTxOGJtAN6kg5jjVGZ781r3RygR9iGxfiJvpEOFTezkWCq9ng1zxi7MJ01f4amXl8kcFzHExRADJXD2HvvYOZq2kFNE58SBYQCgRv1lOqNlYPkZbkQQe2QWOdvT1Me5rqyQrq0k7BwFvZhOGQPYPomY64VVqyE6zkL6iKFE2Ie44cZoNGHHshrYybF0XiM7xgU7PZd06ZsRxB3rYARhtwyxxU7OIR1FcLCQ2XjZWu4KhT5BuFhGVRTTdZV8x2K+lBQsOEEdLGQcRXBkmm6GOw/FiZofhA8b08HAia4Q4PB7FDlpIFaqYOeesIQhhigR9iHR0FGYQKgtzWHkDXzHYqbu1LHTj1KlCnbKQOzMXNLJeFVDu05/mSz0HNr7rQU7YQdnkmIC/pfBbLlpaZ3r2ocTIv8Q4EbWI+1p0MKsOOrkXdZNAufnkaOd+TkwjNLywZGQEDuLDHXG7tRZwnNxlAj7ECYQioaMBJZFJ4h2JVWzU2OpMiXM8cKOx5B8zfx3f1iVkSY8mToI2zeDIHF4I4n+7x2ryIWo1loHajUwK466VMF622AJ88lRTvwUqmXUSm3+HcBxUUCoUTZoL4Sjs4nBtlhiFbu4nz8XR4mwb6ETxIMklLMzjlI1GljgjR+YSfZpTamOGfEyWW+hD/79ZAID2HSV3l9g+blQzNUUzEK11lorV8G0o1RiFRtgj11cQLQ7fbxpaLJvsjQl8h2OS22NtU13KXZqDjFQAmfusWsv0Ey//fLbT4QvvvhiXl5eq4X5+fkbNmzo+5AsSnOHuswkdIIwdK6MnXuCatTBo374HzMJHqe9ZdRKbUE64IQoMMy4W17tj789mmBYWHWOPnnXwr99VGutXUVydvIR6nYtO9wBOzeP8OJ1nr/mlo9ePwhvxc8OOzGHdBDC3jzmn/32uXj7ifCnn36qqKhotbCiomL79u19H5JFEQzyJeyc6IYaXUUx37GYi6Ml7NzjlFwHTwbhP08jBLy2SmiykliaEg0ZjkuMP2HWa6H488G4loFlpy1q0FW7uCsJTRZ6CtAsq4GddITObWQjBmDx80l3Ka9Td7FsX7R8cEY5YQej+/dz8W6chCorKx0dHfsuFMuEYajvqKF9+cySU5SahqeH499OInif5Vad3tKPrm9sG0us8W8edJXVYMm5ENVaM2TYC+zsPLKPZlPqOt29ArqhhrBzErgP7ovtTzN4Lv55Wv/LhX95MnP69On9+/cDQGNj44cffujm5qb/k1qtPn369OjR3StAhQCAOChcef20JivZdtpSvmPh2Z5c5okLzYX2TVZiuCMsy40vFg+P7KM9YADfTSYq1WxcCRt9jL60kOf2sb4jCggFHNfm32E1KkxkHdO5PsCNajYmjqrRwBwv7I8oPp9/67UMEIo0Vo+wthb64DunwJrz9PPX6IFSeGRIf+qA8pevqLi4+PTp0wCg1WqvX78uFt+/jJFIJFOnTn377bdNHWD/Jw4aDRimyb3F6rSYQMh3OLz5JoN55jLNsPBmOPFGuFn8k+ju5tENNYTDAMFAn77bCzfoius3OPc4fWE+6cjHKJG+xtVa0xZmavJu992FhfmLL2MXnKSadLDQB983g8/n34b66AFhK48Pxe8pYPN1+vHztJ0Am+PVb675/nI+WrduXV5eXl5enp+f38GDB/MMpKWl/fLLL35+Pa9HYLVwmZ3Abv1z8gAAIABJREFUYwir02ry0/iOhTcf3mL+cYlmWfhsnLlkQQBQpff5ZTJHSsLhWeQwByytjl10ilJZaPVZcaC111pLKGdjjlNNOljtjx/gtReYIUat0BZlYgRprIETHXg5BP+/YFzHwMNnqWuV/eZZQPunpKysrMhI672mMzpx0Giw4kEUH95iXk6kcQy+nUT8a6S5ZEHom4ETD+IsghNzCC8ZllDOPnqOpvrfY5TOWflgoRIFu/wMpaZhQxD+wxTCFHPsdo0mI4mlKeGQEbhYZoLdfTSWWOOPy3Uw7wSV0U+KkXZ0ViovL09JSUn6K5NFZknEVtxfJraYfeU6jWOweyrxpAmnm+kUo2ziLpPFfX+ZzPGSYSfmEM4i+LOIeeqiBdYiFfkG4WKZrryYrq/iOxZTU1Gw5BRdoYJZHthXE/nvBWbIlBd8AIAB7JhMLPDGazQwq58UI23/Me7t27c3bNhw5cqVtn9i0Xi47hMOGYGJJLqyQrqxlrBz4jsc08lqYB8/TzEsvD+GWGna6WY6pc64AQwjCgw1Zc+OYQ7YsRgy6hj1QzbjKgGz6DFkRDgh8h+lun1FnZUsGzub72hM6pnLdFI1O9gW+3k6aT73ggAALMs1VouHma6rI4nDvhlEzHH2QjkbdYy+uIB0M+/uU+0nwscee6y2tvaLL74ICAjAuzZhN9IBjCBFfsHq9ERNVrJ0zEy+wzGRJh0sPUXXa2GpL/5yiNkdRS2XyabuCB3pgh2KJuedoD5IZQaIsRdMNTW5aYgCw1W3r2isLBFuu838kM3YCODPWQTvIyVaaekR5iIY5GvK/UpIODKbnH6USq5m55+gzs7jrYZiV7STCBsaGtLT0w8ePLho0SLTB2SpxEER6vREdWaSlSRChoUV56j0enaUE7Z7mnldIgNw44v7duBEB6LcsR+mEKvO0y9do51EsC7AcnJhy2jCm8Cyfd0FyUycvsu+cp3GAHZOIUY6mt1bVhlpZpUesBPA8Rhy8hHqRjW76CQVF0OKzLUFpJ3/QAzDAMDd3d3kwViylslLraUY4+tJdGwx6ySCAzMJmRmMo2pFW5rDKBpJ50GkqycvATzmh38xnmABnkqgDxZaTs8Z0sWDdB7IKBq1pbl8x2IKhU3sY+coioHXw/HlJp9ltyvu15Tng4sYjsUQg6Rwrox99Kz59hFr55uzs7ObN2/en3/+afpoLBjp6kk4uTLyet3d1kVcLc+hIua9FIbA4OfppJ+d2V0jA4AmMxlaqoLx5enh+KuhOM3CyvP0xXLLuTyynr6jch0sOElXq2GRD/56mDne7DT3CCMFJusR1pZ+ks5DRcwz5lqM9P61+r1799LT07mfV65c+dxzz9XW1s6ePVsqlRq+YOZMq2jZ6wviwAjFlTh1ZpLAGPPema2MenbNeZoF2DaWiDH5HNxd1Nx9ICiC3zDeGU1UqeG7TGb+SSp+PhnC0wQ9xiUODFdcPqbOSrad+QjfsfQhFmDdBTqtjg1ywH6cal7dRPU02SnAMMKho/it9TPSETs2m5x5jNqeybiI4Z3RZnfRcD8RnjhxYt26dYZ/+/rrr7/++utWL0C9RntMHBiuuBJn2SeIOg0sPEk36mDVUPw5cxoyaIjVqrWFGYDjoqEh/EaCAfxvIlGngd8LmLnH6UsLCF9bszyhdoeV1FrbkszsL2AcRfBnNGFvrgWjuCFb3INbfo1zxfbOIJecpt5NYZxE2PNm1kfsfiKcPXv2qVOneAzF4okCwiz7BMGwsPI8ldvIhjlj304yu4s+PU1OKkvphL7DcKnxZ5zoLgKDn6cTDVr21F02Oq4fdDTvFC6xEXoFaIsyNXlpvPTRMIE/i5gtN2kcgz3TSB6nGOyUJvsmtFT84d18b2zXFGJ1PP3CNdpRBE+YUx+x+4nQ3d0ddZDpU7jUwosxvpRIx5WwbhI4PIuQml8HGT0zaRfVE+Lw+8x+09G8K8RB4dqiTHVWskUmwqwGdnU8zbDwYSQx14zLaVKVpVRtBVfike9Ymq0citdpYeNlesNF2lWCzTObT8+McrI1aC7GaIklZn7JYz6+zQhw2B9FmvkEC82JkNeeMq3YCeDobNLPDrtRzT50mtKaa+e6LmrpL2OBx3m9FhacpBu08Jgf/sIosz5/NreLBo02q3Es/xyOvxKC6xh4+Ax11WyKkbZ/3T5r1qza2tq2y52dnX19fZcuXTp7thWNljUicVB444mfLa8q8c0a9m8JNAB8Pp6YPNCM/uvaouurqYoSXCwVeAfyHctfDJTAiRhi0hHq1F32mUv0d5PNt225UyLfYfpaa4SDC9/hGA3NwopzVE4DG+aM7ZhsfqNj/0qdxbWLmtEFH+fdMUSVGnZkMUtPU9cXkR5mcN3c/hWNj49PQUFBWlqaSCTy8PAgCOLmzZuVlZUkScbFxcXExLz55pumjdNCCH2CcLGMqiihasr5jsVoqtSw5BStouBvgfg/hpn1NTK0XCaL/EMxwuxab/3ssKOzSSkJO7KYr9L7810hToiGBkPLudhivHaDjithXcRwMNqsG/8BgKUpbd4t4LommBmuj9gMd6xMCUtP02ozGFLR/mlr8ODBfn5++fn5ly5dOnz48LVr1zIyMgQCwcqVK/Pz85977rn33nvv3r17Jo7VEuCEKCAEWh5iWwCKgYfPUEVydrwr9uWEfnATw41vE5lBP7p2hQ/Adk8lMIDnrtLnysyl4agHLG804R8FzIepjACH36JIHxv+b2I6pi3IYNRKwSBfwmEA37G0g8RhfxTpZ4clVrFPJfCfCdtJhFqtduvWrZ988olh35mAgIA333zznXfeIUly69atBEFcvXrVhHFaDgubs23TVfp8GTtICvujCLOtn3Qfy6pzUgBAHGSmiRAAHhqMvzgKpxhYfprKb+qvubCllFKyZZRSSq1l18TTLMBn44hpg8w9C0LLJYg5DJx4ECcRHJlF2Angp1zmszSe2z/aSYTV1dVNTU0ODg6tljs4OOTn5wOASCTy8vKSy+WmCNDiiIaNBu6OkOnPbV8AALA7h/kynRERcHCmWTT0d0pbmsPIG0gnN3KAWXeQfn8MMc8Lq9HA0lO0on/O4quvtWYBpZT0X8Qaf/zp4ebe+M9RZyWBGbd8cIY5YLumEhjAC9fouBI+L5ja+VIHDBhga2u7fft2w4UMw3z33XdDhgwBAJZlKyoqXFx6/gz88uXLTz755JNPPnnp0qV2VygvL9+8efPKlSt37NjB9P+EYYg7CzNKubY4m+9YeuVqJfvURRoAvpxAjHXtB1kQ9JXVzGbgxIPgGPwygxzugOlvRPoj7ulUf+8jrb81H+dq1qNjDTFKubY0FyMFIr+RfMfSiSW++GthOM3CqvNUbiNvR3o7iVAoFL766qtffPHF1KlTt23btmvXrvfffz8iIiI2Nvb1118HgLNnzzY1NY0e3cP5a5KTk2NiYsLCwiIiIubOndt2sl+KoqZNm1ZXV7d48eLPP//83Xff7dmOzFZLq1E/PkGUq2D5GVpDw7Mj8L8F9o9rZLg/cMKsL5M5dgI4EE3YC5sfTfEdTk/cn4miP+Me1g6UwO/9ovEfALh2UYYRDhmBCc1sUqj2bIkglg3Ga1uKUvGi/Z5PmzdvdnZ2/uijj1588UUAwHE8ODj4wIEDixcvBoCJEyfW1ta2bTvtos8//3zDhg1PP/00ABQVFX322Wc//fST4QqHDx8GgG+++QbDMC8vrwULFrz00ksikahnuzNDoqAI+cUj6sxku9kr+Y6lJ7gxQKUKdtJA7KOx/eTcYFhZzZ/nympdFGiP7Z1Bzj9BvXqDHulkRqOPu6illFIaq1X3izNyW7tzmK/SGREBh6L7R+M/px9d8AEAN4NVRj17p45dc54+EM3DuJQHXss/+eST2dnZSqWyoKBAqVSmpKRwWRAAxGJxj7MgAFy9enXatGncz1OnTm3b6ebq1atTpkzhZoOKjIyUy+W5uQ+c0oUS2/c4Er6I/UMwgtQWZTJqBd+x9MQzl+mEctbHBjswkxT2m7tB0OTeYimd0DsQl9ryHUtXxXhib4QTDAurzlHZDf2siRSX2gi9Alia0uTd5juWntA3/v9vYr9p/OeYVWW1rrAVwMGZhIMQDhUxb9/kof2jk7EwEonE19fXuLssLy93dnbmfnZxcSkrK2u7gqdn8yxxOI47OzuXlZWNGDGi7abq6urSIzeNffoDj/Jr3JKVK1f23WB/pVKp0+kIwgj3QIRXAFWY3nDrmqC/1VrbkUt8l0lKSNgzQSOh1H3XZUqhUGBGrYihSrsGAPjgkf2rn9dz/pBUKThcgi88oTs3S2dL9kk6NPqnzcEHj4CizKa0RMprmNE33qfKVLD0lEhDw9//v707D6iqTBsA/pzl7pcLsigomwiICCKyiLuiIChaaW5lZvVlWU02UzPjtEw1TTZtUzZ9zdT0TVOZWlruIoqKKwQiIrLKrmwi273c/Zzzfn9c3Lcr3HvPXd7fX9fT4b4Ph9N5znnP+z5vOLtoqN6yp4yVjrYJ197EdLYRUje9+2ALx21NfhT8ZwK56Kjg7dPsSKlu7jDLpEOO4wQCgUBwj6KF1xJhZWXloUOHkpKSYmNjv/32W41Gc9sfWL169QAjE4vFBoPB9Fmn0920zBMASCQSo/FaV/Ft9zFRKBRCITo7+sXF0pwASgUASUlJd9rZIkQikUUSIRsZr6ovQ/XnpPHTB/5tNnOsFf3hNAcA/55MTvS3bnFolmUt+6fsrSkBANnoRJE1zxBr+G46TN7DlXTCM/miX2aS1ljxx+JH24QanajL+ZmrOWvV/ystTs/CikNcixZN94X1E4U0aeHVJax0tE3UjeUAII6Il8pkVmrCSh4YAes06I8F3NN5gpPzyEgPC5zoHMeZs2LStUR48uTJ5557bt26dbGxsX/4wx8uXbp02x8YeCIMCAhobGw0fW5sbBw2bNhNOwwbNuzcuXOmzyqVqru7++oD4k0oipJp2y4h+is6Jf8B2tqLoZBXDPyrJKPiVXu/M1Setsi32cYFNVpymDVy8Eo0+Wio1V8NWupQm7Ddl5m2RlIsFQ8fRTjOMTdRiGB7CpG4ndnViN4+g96Js/zBt+zRvkocMpoQSYytDUjVRbl7Wfz7reSF42zeJRTsRmyZRQutUEHGSkfbRF91BgAkEeMc6Npy1R9ioLgTNtZwD2Wj/AeoQZYYGcKy956wf+1ILV++vKen5+WXXwaAmpqanjsYeFgLFizYsGEDQgghtGHDhoULF5q2b926ta2tDQAWLlx44MAB0+eNGzeOGzcuMDDwTt82LO+LOG+iqgctz2E4x3mHIvQPI2UKpqOVaW/iOxaz6FhYmM22aWHWMOJviQ4zQOYq0/ABUViMHVZWM0eIG/HjTJom4d0i7qdahxlESlC0OCwGHKqCxD9Kuf9UcRIats6kvB1tiA9iGX11MRCEnc8gvIv/m0ol+BDVSrT4EMPY6ky/lggFAoFCoRAKhQAgl8sVdzDwJp977rlLly6NHz8+KSmpubn5+eefN21fuXLl2bNnASAqKmrlypXx8fFz5sx54403Pvroo7v9Aqxhy0zKUwS7G9FfzzjMBQIIom9wefkpvkMxy6pjbEE7GqEgfkym7b3Y8O3oHWF+8d3NHEp8kEghgKeOsSWdDnPTZ5pN6Ci11nJa0Mu/sgTAN1OpOG/HO9ENdeVIrxX4BjnQ8/dNxBRsnUkNlkB2E/pTgY2qr93x7phl2UOHDpWUlOh0uldffRUAysvL5XJ5QEDAAJv08PAoKCjIz88HgISEBJrui6GsrGzw4MGmz59++unq1aubm5tjY2PvOUJ1uBuxcQY9J4t5+zQb5+0wo8zFEXGa0zm6ilPyqQ/wHcs9fHKO+76akwtgewrl6YjTWBDSVZ0BxxlQfie/jSLPdKDvznMPHmDzH6S9HOFv0TdrtqIQELKr9YBu1dCLFh9kjBysjSGXhDhevyI4QmU1cwTKia0z6Zl7mY9KuLFexKOhVv9b3L6B1tbWhISE1NTUtWvXfvHFF6aNX3311bJlyyzSKkVREyZMmDBhwtUsCACBgYFi8bWeiJEjR86YMcPMeRqz/Ym/xveNMj/vIKPMRRHxQBD688XIaOA7lrs52Iz+kM8SAP+dSkUNsusL2Z0YLlb3VVbzufmFtMP5cjKV4EPUqtBSG3YcDQQ92P9KrbVavmO5Gw0DDx1g23WQHkC8G+94nf8mDlFZzRxTfInPJlAA8PRx9tRlq1/Sb58In3766Z6entzc3KysrKsblyxZkpuba5HXhNawNoZcHEJ2G2D+Ad7KE9wXSjFIMDQEGQ362nN8x3JHDb19F9zXY8mFwx3yHhmurjhh95XVzCGmYEcKPUxGZDeh3+fzX7bfHKKwsWDfpZRMHc5FHSjcndg4g7bGuFwbcKDKauZ4dhT5TASpZWD+fqZZY91ceJtLm1qtzszM/PTTT5OSkq4fdxQeHs5x3MWLF60aUL8RAP83hYoaRFR0oxU5jlGeUWwqwG2vxRi1DCzIZi/rYLY/8eY4R71HBrtckn4grq718ek57v8qHeCp8EqtNft9Tfh+Mbe5hnMTwC+zKA8rDz63niuV1aIctI7Prf4xkZrmR7Ro+go6Ws9tEmFPTw/LsqGhoTdtNw1C1ev1VgxnYORXzuMdDdzfHKE847XXJ/YHAaw8yp6+jCI8HHWAjAky6A11ZUCSpucS5zBhMPGPCRQAvHCSzW+397s+0chxQJKGmnPIoOM7ltvYewG9foolCdgwnRrtmJ3/Jo5VWc0cAhJ+TKYDZMTJNvRirhUz4e1Xn5BKpQUFBTdtP3jwIEVRI0aMsF40AxfmTmyYQZMEvH6K3XfR3i8QwuGRpFhqbKlnu24/a5NH7xdzP9Vy7kLYnkJZe4KmVV2prBbuQJXVzPF0BPlcJKljYUE226rlO5q7IqVyoX8YYhl9jd29BchvR0sOMSyCt8ZR84MctfPf5EplNedJhAAwRALbUigJDV9VcP8st9bjze1Xn1i2bNnatWsPHz5sqgOEEMrKyvrtb3+7YMECd3d7r+05N4B4axzFIVh2iKnotutcSFC0qG+WlX1V6N9Wz73Wd49Mj3R34HtkcMbb5Ks+TaKm+hJNarQwmzHYdw+I2C4XrC/vRnP2Mb1GeDyMfD3WsbMg03aB6WwjZQrBsBC+Y7GwOG/i6ykUAKzJZY+2WuWSfvu//d///vcRI0YkJyenp6dfunTJy8srLS3Nx8fn888/t0YQFvd6LLloONltgHn72Q777coFuDKCQ1dhR7MJ9zehZYdZDsE7cVRGoGNnQXCKGYR3IiBhy0w6UE6cbEPPn7DrgTMi+3tNeEGNZmeyHXqYF0h+PcVx+/779N3wRcTb+RyV/nlkBPn7MaSRg0UHmcZey+fC2ydChUKRk5OzZcuWZcuWpaWlZWRkfP311wUFBVfn+dk5AuDbaVSiD1GtRA8dsOubZXFEPADoK4uAs4sLWe4ltDCb0bPwm9Hkq2Md+x4ZANieDmNrIyGSCIMi+I7FKgZLYEcKJaPh60ruizL7PdGFw0f1vQXovsx3LAAAl3UwO5O9oEYTBhObkina4c90ZxsRdqu/JVBzAohLWnjgAKthLPzld/z7UxT18MMPf/311zt37vzuu++eeuopx1oRUELD9hTaX0Yca0XPHreLHHNbtJcv7TOM0/YaGir5jgWKO9HcrL6eovUTHHiY6FWmgUhih62sZo6xXsS30ygC4KU8NqfFTt8FEBQtHDEGrrzH4peGgQcOMOXdKNqT2DObljn+qYFYxlBTAlfq+Dgl05uaMHfiTAdaccTC8wIc/0bozvyksDOVktHwTRX3yTn7vVk2TaLgvXe0qgfNzmS69LAg2Bl6ikz6ZhA6Y7/o9RYO7+s4ejibqVXZaS40Pazw3jtq4GBBNnOyDYW4EVlptEXKOvPOUF/O6TQCv2DKw5vvWKxokAh2pVLuQvi5jvvAovMCbrgXevDBB29dHfAmv/76qwWbt7ZYL+K76dSig+wrv7KhCpgXaI+JXxwR13t0h668UJG+gq8YapRoxh62TQupw4iNM5yhpwjguspqTjGV/u7eS6BKu9CeC2jBAfbEfHt8yum74Ss/BRwHPC2MwCF4LIfNuogGSyAzjfJzpLWh7kZf4bQjwm4y0p34bhr1UDb76ik2ytNiBTVvOB21Wq3mOvn5+S0tLZobWaRVW1oQTL49juIQPHqYPWuXpYpFoTGEQGi4UMX18lO1p0mNUjLZZg2a4UfsSKVFztAnCgBgbKrherspz8FOUFntnkgCNibTozyI4k70uKU7jiyC9hlGew/lNCpDYxVfMfw2j/2pllMIYF8aHe7gw6Gv5zSV1cwxP4g0zQt45BBTZqF5ATckwqysrJIriouLAeCDDz4ouZFFWrWx12LJ5aGkygjz97Nt9jfjihCKhMNHA0I6Pl6ftOsgNZOtU6Hxg4kdqbTYWbIgXH1BONL5HwdNFALYltLXcfThWXt8FyCOTAAAXfnNc5Rt4/VT7GelnISGXbPpWC/nyYJOVlnNHK/HkotDSKURFhxgeyxRqtk5usDugQD49xRqwmCioRctyGasWqqnf/gqMdNjgPR9TFk3ivYk9s6m3QQ2bt+6TLMzXaG/6CpTxxFJwJ8K2D0X7O6xsK93tIyHRPhFGffuGY4iYMN0aqqv82RBcMbKavdkKqg5xpOo7OmrhzBALpEIAUBMwc5UOsSNONlmjx1HV4qOngJku9A0DMzbzxReRmHuxP502iHXV7ozZNAb6kqBJEXhzlNZzRzW6DiyFFFoDCEUGS6eZ1Vdtmx3Yw33m1yWAPhqCrUg2Nkuek5cMuIu5ALYmUr5iCHrInqzcKAPN852TtyFtxh2zabchfBjrd1VIhX4BVMePqyyy9hso6VqDBwszGaOtaIAGXEgnfKV2KZZ29HXnEWMURjgbJXVzGHxjiNLIQRCUegYQEhvw/Wos5vQE0dYDsEH46knw53witdXWS3CtRIhAATJiU3JNE3CujPcj7UDuqQ74WlxF5EexPfTKVMl0k019pULTeexbRasN3Kw6CC77yLyk8KhuVSQ3Kl6ikyu9Is67bSquzB1HEVf6TjSWnr28UCIR5leE9ooEeZeQg8cYAwc/DGGfCXaCS931yqrDXW2ymrmmDmU+CiRQgBPHWWLBzAW8oZB1nv27FGr1abPCCEAyMvLI28c6Lx48eJ+N2YP5gWSHyTCK7+yj+WwWhbs5w5RHBGvzsvSVRS6zVpi1YY4BI8fYXc2cF4iOJBOhyqcMAvClcWtXGQc3a3kAtieQiXtYLIuojlZzM5Ue3kBLI5MhJ+/0FUWAscCad2hWee6UEYWo2HgqZHkewlONAzsOs5dWc0ca6LIM53ov1VcRhZ7LIMKduvPcbghET733HONjY3Xb1m/fv369euv3+LoiRAAXo4mdSy8for9n6OsygBrouwiF4pGxgJJGerKOJ2GFFtrfhMCePYEu6mGUwhgXzrt0IvO3AXb02FsayREEmHwKL5j4U2IG3Ekg07JZHNa0Ky9TGaaXbwGpr186cH+zKWL+voKUcho6zVUr0Jp+9hOPTwUTH452UkKRNzK6SurmeOfk6g6FTrSgmZlskczqKHS+/5r35AIN2zYoNXa3/QCK3htLOkpghdOsi/lsS1a9Dc7uFskJXJh0EhDXZn+fLEkeoKVWvljPvvvCk5Cw85UOt7bWS8OoKs8DQg5d2U1c4zyIE7Mo2btZfPb0ZRdzP50apiM/z+6ODKx99JFXXmB9RJhuw7S9rFNajTdj9g4g3LWNOgKldXMYRoLOWsvU9COkvewRzLoIfc56OGGy8SUKVMsGZ19Wz2KdBPAE0fZ94s5hOBvifz/zyKOiDPUlekrCq2UCN86zX54lhOSsHUmPc2P91/Xilykspo5guTEsXl0aiZT0omm7GYPpFMj+O4MF4+K7835RVdW4D53pTW+X2mE9H1MZQ8a40lsS3GqqbE3MdS5RGU1cygEsD+dTt7DFHWg2ZnM4bn3VzzPLnoF+bI8lNw6kxJR8MFZbvVxluN7qLlVi45+Vsq9fZqjCPh+OjXHQnWJ7BRCLjiD8C58JXBkLj1+MFGnQlN2M+e6eD7RRSOiCZHE2FzL9nRY/MsNHDyczRReRiMURFY67eHIa0rfk94lJ07ciYcQ9qXRER7E1cUDzOfSiRAAHggif5lFS2j4soJ7LIdleB1JKgwIJ+XuTEcr095k2W/+bxX3Ui5LAHw5mVoc4uR/dGNTbV9ltcH+fMdiLwaJIDudnjmUaNHAzL3MmQ4+cyFBC8RhMYCQxe/5WASPHmYPNKGhUuecFHQTl6qsZo7BEjiQTgW7EbmX0EPZjM7s6YVOfk00x5wAYl8arRDAxhpuQTZr/rGzPIIQh8eCpQeX/1zH/c8xFgF8nEQ9NdL5/+Kmq4M4HF8dbiAXwM5UOj2AuKSFGXuYE2185sK+SRRlljzPEcCzx9mtdZy7EPbMpob3a/SgA+mrrCYQikZE8x2LHfGXEQfSKT8pZDehpYfMfbZx/suiOab6Egfn0l4i2NXIzdl3f8/UlmXxWms7G7hlh1kWwXsJ1G/tY3ystblmoQ1zSGnYnkIvGk52GyA1k9nfxFsuFI9OBAB9ZSFiLTbJ8U8F7NeVnISG3an0WCcqJXonuspC4Djh8NGE0A5GA9uTUAWRlUZ7iWBHA/fkMc6cd14ucWU0R7w3cXAuPUQCh1vQ3CxGyVMuFEXEA0Hoq4uR0QIVQQ42oyWHWCMHr44l18a4xN8aGQ2GujIgCFerrGYmIQmbkqknwkkNA/P3M9sb+HkZQHn4CHyDOJ3GUFdukS/8ewn3fjEnIGHrTHqyc5USvRP8gvAuoj2JvWm0mwB+qEHnuu+9v0tcHM0U40kcyaADZMTRVjRrL9Oh5yEGSjFIMDSkr06ySFnlAAAgAElEQVTmwJxsQw/sZ3Qs/GY0+W68846cu5G++iwyGoQB4aRMwXcsdooi4P+mUmuiSD0Liw6yG6r5yYUWXIniu/PcK7+yJAHfTHX2gWDX6RsR5nqV1cyU6EPsSqUltFn1m3EivMFId+JoBhWqIAra0fTdTAsfyy9eGTs6oN7Rog40N4tRM7AynFw/wVWyIODbZPMQAJ8mUW/EkgwHjx9hvyjjIRdeWYkif4Dfs6uRe+oYiwD+Pp56NNRVLmhM2wW26xIp93DNympmmuZH7J9NDjZjzJSrnDfmC3Yjjs+jx3gS57rQpF1MrcrW71H6XhMOYLzM+R40Zx/TbYCHgsl/O29NjdvS4RmEZvtLHPWPiRRC8PxJ9r1ztq48IAyJIsUyY0s923Wp31+SdwktO8QyHLwRS9pJiSjbuPYi3FUrq5lp4hDCDyfC/hkigZwr865m7GGremyaC4XDI0mxtN8XiMZelJLJtmohZRixaQZFu9JfmFV2GVsbCKFYGBzBdyyO4YVI8r/TKJqE90rptQU2HTBNULQoPAYGcM9X0onmZDFqBp6JIP8S50LdHoArq1maK10m78cgEWSl0ZN9icZeNHU3c3YAdc3vF0HRorAYuPIO4L40a9CMPWxDL5rmR+xIoUWudXHoW9BRFDaWoO2jwrQjWBFGfj+NEpDwfjH3/EmblpUYyEoUx1rR7H1Mlx4eHk7+7yTXOtERy+irzwJB4J4PS8GJ8I7chZCVRqcOI9q0MGMPk99uuyuEqG8Sxf1dIC7rIGUvW6tCV98SuxpXXnppIJaOIH+YZBRT8EUZt/KI7cpKiCMTgSB0lacRcx+jtHMvodRMZupupkUDM4cSG6Y7bSnROzHUlSO9VuAbRLl78R2Lk8CJ8G6kNOxMpR8MIjv1MGsvc+ySjQ6XOCIeAPSVRcCZ21tV1o1m72PKulG0J5GZZi9r7tgUQvrzuLJaP6UNZU3Dzb+v5hYfYvU26SWl3L0EfsHIoDPUmjVGuqAdzcliJu5kDjQhDyG8HUftSnW5bg+4OiIsIo7vQJwHToT3IKJgy0xqeSipMsJDOVTmRVs0Snv50j7DOG2voaHy7nuyCLbVczP3MlFbmdOXUZg7sT/dLlbbsT1jcy2r7KI8vOkhAXzH4pBm+BEH0mlPEWyr5+btZ9Q2Wc5XHJkIZkyiKOpA8/ez43cwmReQmwDeiCVrlwj+HEu6YLcH4MpqVoAT4b3RJHw7jXp2FKllYOFBbkO1WaUKBuiekygu6+BvxVzIj8yCbPZQM5IJYPUo8shc2unrK96JrgLfJg/U+MFEzlzaVwIHmtDsTKbbAkUd7sF0nmvL7pgISzrRwmw2bhuzq5GTCWBtDFm3VPCXOOq+1hZwJpxaabhwnhAIRSFRfMfiPHAiNAtJwBeTqJdGsQYOHsthh//IvHaKLe+2Yj68yySKwsvoiaNswCbjnwrYxl4U7k58mkRdXCb4YhLlZ60FfR0AnjhhEdGexNEMOkhOnGhDsduYP+azJ9oQa7UzXTQ8kpTImbZGpqPlpv9U1o2WHGLHbmN+qeckNLwSTdYuEbyXQHm5ago00VUVAUK4sppluWTPQr8QAO/GciPc6b+XQp0KrTuD1p3hEnyIx0LJpSNIH7GFmxOFxhACoeFCFdfbQ8rdAcDAwdY67h+lXN4lBAAkARmBxAuRVKo/nklkqqxWCgQhDsOV1QYqzJ04No9Ky2TLutEHZ9EHZzkfMWQEkvMCiVR/UmbZawZJiUbGas8c05UXyidnmLZV9aC/FHGbajgOgZiCZ0aRa2OcfykJM+GSEdaAE+H9WT2KeD6KOtGKvqvmttRyBe2ooJ19+Vc2zZ98LIyYF0haahVQQigSDh+tryrSVRV1R0z7Vzn3VQXXpgUAGCSCJ8PJ5yLJEGevr28+fU0JMhqEgeGmmwZsgAJkxNmF9LFWtKuR29GAapTomyrumyoQU+zMocT8IDIjkBgqtczpJx6VoD1zTFdeIJ+cUaNE7xRxG6o5FoGIgv8ZSf4phhwmw+f5NbiymjXgRHjfCIDJvsRkX+ofE6j9Tdz359GOBm5XI7erEdyF7PxAckUYOXOYBZ7SxBFx+qqi7JxTD5+ZZOQAACI8iGcjyP+JsPRduePDS9JbHEXAdD9iuh/18XioVaFdDWj3BS6nBe25gPZcYAEg0oNYFELMCyTHeQ/obBePSgCC0FUVv3xc+7/naT0LAhIeGUG+FYdv9W5mqqxGuQ3CldUsi58LKsMw+/btu3Tp0vTp00NCbvMXPXLkiNHYN7VoyJAh0dH2uOCWiIJ5geS8QOjSU1vquO/Ocyfb0PfV3PfVXICMeCSUeDKcDHfvz//JehZ+rOV+bor9X4CAlkKkQBmB5JrRlEXyq1MyjSrC/UVWEuJGrIki1kSRl3Ww9wK3uxHtu8iVdaO3T6O3T3NBcmK2P5ERSMz2J4X3P+qgmfK45BEypKvmVMFZo2LcouHkugQyVIHP9NvoexEeHosrq1kWD4mQ47j09HSVSjV27Njf//73mzdvTklJuWmfhQsXjhw5UiqVAsC0adPsMxFeNUgEqyLIVRFkRTfaXMt9fx7VqtD7xej9Yi7Om3gslHwk1NyXiLUq9FUF93UF16EHgMA3hN6+hsu10xoDwkKt+zs4susqq43iOxYn5y2GFWHkijDQsdTxVrSrkfu5HjX0oq8q0FcVIKPZGUOJRcPJ+UGkh/De33ZJC38/x64/x71Ix/8GalZRRf9+OLF/944uAldWsxIeEuH+/furq6vLy8vFYnFcXNwbb7xxayIEgP/+979hYWG2D28gIjyIt8ZRf44F06Ph5hqu8DIqvMz+IZ9N9ScWDScXDb/9zCcEcLAJfVXB/VLPmUboxXkTqyLIYGmcLj/Lo6EQcCK8M31lISAkCovBldVsRkzBrGHErGHU+glQ2oW21HG7G1HhZbS7Ee1uZCmCTRpMzAskHwwmRt4usbXr4OMS9rNSTssASQCEx0P7jzNVBb7uz9r+d3EUuLKa9fCQCPfs2TNnzhyxWAwACxYsWLVqVXt7u4+Pz0275eXl1dbWxsTE+Pr62j7IgSCJvpeI6ydQB5q478+j7Q2c6QKxJpedd+NLRJURNtVwn5VypV0IAEQULAgkX4oiJw4hAECri9flZ+kqCt1mLeH1d7JreEl6fo0eRIweRL01DupVaH8T2tXI7b+ITrShE23s2gIIcSMyAolFw8mJQwiSgA49/KOU/XsJpzICAZARSLwTR40dNLr5jIJpb2IuN9PeQ/n+hexUX2U1v2BcWc3ieEiEzc3N48b1XbO8vLwkEklzc/NNidDHx+enn37S6XS5ubkfffTRs8/e/j5Rp9O1tbWtW7fu6paMjIxRo6zVP2Y0GkmS5DhzSzFSAGl+kOYHrVr4sQ421EBxJ5heIoYq4JEQaNPCD7XQawQACJDBMyPhyTDwFnMAnOkNKRkSBSRlqCvTq3pIsWtNEjQajVffE98NQvqqMwBAjYg2a3/sdsw92nc1TAxPjIAnRkCnHrKaYNcF2N8EtSr0WSn6rJTzk8DEwZDVDL1GIAAeCIQ/j4XoQQiAMbIgDIvRnTmmLsmTTp5nkd/InvXvaGvLTwGAMDwWn+fmM/NybZVEWFlZuXDhwlu3f//997GxsRzHkeS1V+oEQbDszZUNS0tLTfvk5OTMnj37wQcfvO1zIcMwDMN0dnZe3dLZ2Xnrt1kKy7L9+3IfIbwwEl4YCaXd8EMt8WM9Wa2Ev5wBACAApvui1SPRXH9kqh18QwtCCR0QxjRU6KrOiEaPt8Qv4TDMPNpMcx2r7CTdvQivodb70zu9fp/bt+VOw+IgWBwEBg6OthF7LhJ7LhIX1PBzAwDAXH94fQw31hPBdWe7IHyc7swxfUWhaMIcS4Vht/p3tE2V1agRY/B5br6b0s2dWCURBgcHb9269dbtQUFBAODr69vW1mbaolKpNBqNn5/fTXteDX369OkeHh7l5eW3TYRyuXzYsGEfffSRJaO/M47jRCIRRfV/qmCcL8T5wocT4FAz2ljDyWh4LpKM9Ljb6ABpZIKyoQLVlojjpvW7XUdkNBpN/ed3p6ovBQDJqHhzdsbuxMyjfb/EABnDIWM4AEBRB8ppQVN8iXjv25zwwjETVVs+M9aWiEjC6Wum9ONoc2ol01RDCIRuEeOc/vhYEMdx5tw3WCURikSiiIg7royanJz81ltvmRJ1VlZWZGSkKRF2d3cLBAKZTHb9znV1dR0dHYGBgdaIky8UASnDiJRhZiVU8ah4Zeb397skk+vAMwgdRawXEet1x3s+Uu4uDAgzNFbpq8+KIxNsGZhDwJXVrIqHWqMPPvggRVGLFi16//33X3jhhddee820ffny5e+99x4A7N+/f/78+W+//farr746ZcqUp556asSIEbaP004IA8JJuTvT0cq0N/Edi91BRoO+9hyurOYczFyJwjXhympWxUMiFAgEx48fT05OVqvVW7dufeSRR0zbX3rppQULFgBAYmLiokWLOI5zc3P77rvvvvzyS9sHaUcIQhweC/1dyNu59VVW8w/DldWcQN+KK2X5fAdij3BlNavip7KMQqF4/vnnb9o4a9Ys0wcPD4/HHnvM5kHZL3FEnOZ0jq6iUD71Ab5jsS/6qiIAEOH5xU5BGDiSlHswHa3MpYv0YH++w7EjuLKateFlmByAKCIeCEJfXYyM1l8gzqHgympOhSBMTzz4ofAmV5YYw5XVrAUnQgdAKQYJhoYgg95QV8p3LHaEVXUZW+oJoVg4PJLvWDDLEI9KAPwW4Ba4ZIS14UToGPrW6b3zgvUuSF9xGhAShY7BldWchnhUPJCkvqYE6bV8x2IvrlVWC8evAKwFJ0LHcJcF612WrgrfJjsbUuomDByJGKPufDHfsdgLQ10Z0msFvkG4spr14EToGIQho0mx1NhSz3a38x2LfUBIX2kaKYMToVO50juKJ1H06esXjYjjOxBnhhOhYyAoWhQ6BgB0Faf5jsUuGFvqWWUn5e4l8HWqYguYODIeAHSleLxMH1wywgZwInQYooh4AMAlZkz6xotGxPMdCGZhQv8wSuHJdrcbWxv5joV/nFppuHCeEAhFIVF8x+LMcCJ0GKbpxvrKIuBwyV08g9B5EYTI9EYcT6LAldVsBSdCh0F7+dI+wzhtr6Ghku9YeIaMBn1NCRCEOBxXVnNCfSVm8NAwXFnNVnAidCR9FwiXn0Shrz2HjAahfygp9+A7FszyxCPjgKQMtec4nZrvWHiGK6vZBk6EjgRPojDBwwecGymVi4IjEMvoq1x6EgWurGYzOBE6ElFoDEELDBequN4evmPhEy604fTwJArAldVsCCdCR0IIRcKQKEBIV1XEdyy8YVVdxuY6QijCldWcmGlJQl3pr4AQ37HwBt/w2QxOhA4G11rTVxbhympOTzA0hHL3YpWdxpZ6vmPhx7XKajgRWh9OhA6mbxJFxSmXvVPGt8kugSBcfHnCa5XVFJ58x+L8cCJ0MAK/YMrDh1V2GZtr+Y6FDwjhkTIuwsVXosCV1WwJJ0LH07dmm0v2jhpbG/oqqw3BldWcnGjkOIKi9XVlnLaX71h4oK/AN3y2gxOh4xFHuO5swiuV1eLwODqnR4qlwuGRwLGm6uouhVMrDRdxZTXbwYnQ8YhGxgJJGWpLOZ2G71hsDfeLuhSXnURhqqwmConCldVsAydCx0NK5MKgkX2DylwJMhr0tedwZTXX0TeJorzA1YaG4Rs+G8OJ0CGZXqHrXWwlCkNdKTLoBcNG4MpqLkLgF0x5DmaVXcamGr5jsam+ymq4pryt4ETokFyzKjEeR+eCTG/Eta7UO2psa8SV1WwMJ0KHJAwIJ+XuTEcr097Edyy2Y1qUGN8mu5Qrswld6J7PNDgIV1azJZwIHRNBiMNjwZUeCllVl7G5lhCKhMNH8x0LZjvikeMIWmBoKOfUSr5jsRFcMsL2cCJ0VK5Wa01vGkc3AldWcy2EUCwMGQ0cZ0oPTg9XVuMFToSOShQRDwShry5GRgPfsdgCHj7gslyqxAyurMYLnAgdFaUYJBgaggx6Q10p37HYgr7K9OIE3ya7HJeaRIFHhPECJ0IH5jq9o8aWerb7MuXuJfAN4jsWzNYEQwJpLz+ut8dw4TzfsVgdrqzGC5wIHZjrLFh/bfgAHkfnksSj4sAFVqLAldX4ghOhAxOGjCbFUmNLPdvdzncs1oULbbg4F3lNiCur8QUnQgdGULQodAxcmWDnrBBj1NecA4IQheHKai5KFB5LCISGxkqut5vvWKwI3/DxBSdCxyZygRIz+uqzyKATDA2hFIP4jgXjByEQikZEA0LOfc+HS0bwBSdCx9ZXdPR8EXAs37FYi/rXLACQjJnEdyAYn8SRieDUK1Hoa0vZ7nbK3QtXVrM9nAgdG+3lR/sM4zS9hoZKvmOxCk6t1JXkAknJkmbzHQvGp2v1dTmO71isQp2bCQCyxFQ8Isz2cCJ0eH0XCCedRKHO24cYo2R0IuXuxXcsGJ9on2G091BOozI0OuE9H6dTa4uPAUFIx6fyHYsrwonQ4TnzJAqE1HlZACCbkM53KBj/rs2sdzqaU4eRQS8KG0t7+/EdiyvCidDhiUJjCFpguFDF9fbwHYuF6c8XM+1NlIe3aS0ezMU58UoU6rxMAJDjGz6e4ETo8AihSBgSBQjpqor4jsXC+t6aTEgHEp+oGIhCYwihyHDxPKvs5DsWSzJcqDJerCFlCnH0BL5jcVH2e31RKpV1dXUs67SDIS3IKWutIY1KW3ISSFKWmMJ3LJhdIARCUegYQEjvXKe6OncfAMgSU/DKKnzhIRHu3bs3KSlJIpFMnDjxTvt88sknQUFBc+bMCQsLKy11iaLSA2HqMtJXnHKmqsSGwkOIMUoiE6lBg/mOBbMXzldiBhl02tM5ACAdj8dF84aHROjr6/vmm2++8847d9qhvr7+jTfeyMvLKy8vf/LJJ1988UVbhueIBH7BlIcPq+wyNtfyHYuFIGQoPAh4mAx2o77ZhJWFTjNxVnP6CKfTiEKiBL6BfMfiunhIhOPGjUtPT/fyuuNo+M2bN8+YMWPkyJEA8Oyzzx45cqS1tdWGATokccQ4cKI7ZX31Wa6jhfLwMT0BYJgJ7eVLDwngNL36+gq+Y7EMdd4+AJBNSOM7EJdmj+8I6+vrw8LCTJ+9vb3d3d3r6+tvuydCSKvVFl5RVFSkVqttF6g9EUdNAAB1biZiGb5jsQB17l4AkCXNxsNksJv09Y46xUoUxpZ6Q305KZFLYqbwHYtLo63xpUeOHNm6detNGymK+vTTT8358d7eXk/Pa6szS6VSlUp12z07Ozvr6+uffvrpq1t+85vfLFq06P5DNotGozEajRRFWen7ByRoNDUkkGlr7Dq5Txg7ne9oBgRpVNqzJ4EkYfSk3t5evsNxCWq1mnCQgiYoeDTAL5rSfGq6tf5Pt7arR1t7dCcACMZMVhuMYDDyHZcT4jhOIBAIBPcYhWSVROjp6RkZGXnTRtLsW/vBgwd3d1+rMd/V1TVkyJDb7unl5TVq1KhTp2zUH0iSpEgkstNECECmLO3c8IHhyC+ek9KBtNMgzaHK34cYIz0yXhEwnO9YXAVCSC6X8x2FWVD0eI1IwrbWS1i9g9YbMh1txBiVZ48DgMeUeQIHOfgOh+M4c6YeWCURRkdHR0dH9/vHx44du379etPnkpISkiRHjBhhodCcmXTcdGXWD0x7k+bMMem46XyH03/qX/cDgChhJt+BYPaIoGhxWIz2XJ6u/JRDV6DVFh/j1EphYLjAH1/feMbDC5iWlpYtW7acOnWqo6Njy5YtJ0+eNG1PSEjIzc0FgEWLFjU3N7/33nunTp1as2bNE088IZPJbB+n4yFJt5mLAUCZtdFx51HozxczbY2Uhzcdhldlw27vyiQKx6611jd9MAkPk+EfD4mwo6MjOzubYZjp06dnZ2cXFxebtsfGxioUCgCQSCQHDx4sLi5es2bNpEmTPvjgA9sH6aCkCTNpzyFMW6O25CTfsfRTXzWZpDQ8TAa7E/HoRADQV5523KFhzOUWfU0JIRRLHLnzxmlYpWv07qKior788stbt3/11VdXP0dGRm7evNmGQTkJgqLlMxd1b/lcmbVREj3R4dZz4dRKbclJIAhZYqqG72Awu0V5+Ah8g4ytDYa6MlHoGL7D6Q917l5ASDpuGimW8h0LZpfTJ7CBkI2fTbl7GZtqHHF8ubogGxkN4lEJlCeuJoPdjWklCk3hYb4D6Q/EMpr8bACQJeF6EXYBJ0JnQ9ACt+RFAKDcv4nvWO4TQn39ohPn8B0KZu9kE9KBpDT5B5jLzXzHct+YykJW1SXwCxYGR/AdCwaAE6FTkk2cQyk8DQ0VusrTfMdyH/Q1JUzbBUrhKYnE1WSwe6B9hskSUxDLKDO/5zuW+2Y4lQ24fKA9wYnQCRECoXzagwCg3LeB71juw3WLLjnwJEjMZhTpjxECoeZ0jrGphu9Y7gPb3c7UnCUEQml8Mt+xYH1wInRO8inzSZnCUFemrynhOxazcGql9uwJIAgZrsGPmYdy95JPygCEevZ+x3cs90Gduw84TjJmMil14zsWrA9OhM6JEIrlUx8E05xCR3BlmEw8HiaDmc8tZSkplupKf9VXO8YNHyCkzj8AuF/UzuBE6LTk0x4gJXJ9VZGhzgEWdNT01eDHw2Sw+0DKFPLpCwBAufe/fMdiFl15Adt1ifQcIhoRxXcs2DU8zCPknVKpvHz5cj9+UKvVCoVC3muN0jTt7+9/z9qtpFgmnzxPeWCT8sCP3qv+YpvY+kdfXWJsbaQUnmI8TAa7T24zFvYe362vLdWVnzKtUG3PTC/ChfEpDjfH17m5YiJctmxZUVGRRCK53x9ECNlDhf729vbPP/98xYoV99xTPv0h1dHturJ8w4UqYUC4DWLrnyvDZNIIyhVPSGwgCJHEbdbinu1f9ez6P3FEnD0nGFbZpSsrAJISjJ3KdyzYDVzxumMwGL777rtZs2bxHUg/rVq1Sq/Xm7MnKVPIJ81VHdqqOvCj15NvWDuw/uHUSu3Z40AQUjxMBusX+aSM3pxtxuY6bfFxyVj7XdhPk78fsYwkZjLpNojvWLAb4HeETk4+YyEhFGlLThpb6vmO5fY0pmEyEfG05+0X28KwuyMEQkXaowDQs+e/wN17zR1+IKTOywI8TMYu4UTo5Ci3QbKkNEBIdcBOC830XR0m4qsD1n+yxFR6SCDT3qTOz+Y7ltvTny9mLjdTHj7i8Fi+Y8FuhhOh83ObtYQQCDVnjjGXLvIdy830teeMrQ2UYpA4MpHvWDBHRpLuacsBQJn5HTIa+I7mNq6rF4GvunYH/0mcH6XwlCbMAo5TZv/Idyw3U5/cCwCyJDxMBhsoydgpAv9QtqdDfWI337Hc7LplVRx1aIJzw4nQJShSlhIUrTl1kGlv4juWazhtr6majBSvTYoNHEG4z30cAJQHNnM6+1rFS1OQjRijeFQCNQjXi7BHOBHyr7Gx8fHHH09OTv744485jrNGE9SgwdL4ZOA41eGfrfH9/aPJP4AMenFEHB4mg1mEeFSCKHQMp1b25vzCdyw3wMNk7BxOhDxjWXb27NkxMTGfffbZzp07P/zwQys15JayDEhK8+t+tvOSlZq4X+pcUzUZfHXALMb0UKg6/DPX2813LH0MdaVXXoTjehF2CidCnu3Zs8fd3f13v/tdVFTU+vXrP/vsM4ZhrNEQ7e0njZ2KWEZ1eKs1vv9+6WuvXB1Gj+c7Fsx5CIePFkcmIr1Wlf0T37H06c3dBwDS8bPxi3C7hRMhz06cOJGUlGT6PGbMmM7Ozrq6Oiu15Za6DAhCnbeP7emwUhPmU+fuBQDZeDxMBrMw93lPAkH0ntjNdrfzHQtwOrX2zFEgCNn4VL5jwe4IX4MAAHqNYLTKu7mbUSQoBDdsaW1tzc7OPn78uOmfHMe1tLSEhYVZo3XBkEDJmEna4uO9Ob+4P/C0NZowE6ft1RabqsngqwNmYQK/YGnsNM3pHGXWxkFL1vAbjObUYWTQi8Jjae+h/EaC3QVOhHCoGaVmMiyyRVsEwA8zqGUjrj2Ii8XiuXPnPvPMM6Z/pqeni8Vi6wWgSH1Ee/ZE74k9bjMXkXIP6zV0d5r87L5hMt5+fMWAOTHF3JXa4uPqX7Pcpi+ghwTwGIm6b1kVPC7aruFECN5iCJQT3QZbZEI3AeErvaEosL+/f0NDQ1xcHAAYDIauri5/f3/rBSAYFiKOHK8rzVMd2e4+d6X1Grq7K1cHPEwGswray1c6PlV9cq9y3wbPx//EVxiGC+eNF6tJmUISPZGvGDBz4EQIYzyJ2iW8HYeHHnpozpw5Op1OLBbv2bMnPj5+6FDrdqEo0h7Vlf2qPrbTbcbDpFRu1bZuy1BXamypp9wGiaOSbN865iIUacs1pw5qzhx1m7lI4B/KSwx91WQSZhG04J47YzzCg2V4FhUVlZycnJ6e/tZbb/3mN7/561//au0WhQFh4pHjOJ2m9+h2a7d1W1cG0aXiYTKY9VAKT/nkeYBQz55veQkAGXTa0zkAgOtF2D+cCPn3zTffvPzyyz4+PocPH545c6YNWlSkLQeA3pxtnE5tg+aux2l7+wbRJeFFlzDrcpu1lJTKdeUF+uqztm9dU3SE02lEIaMFvoG2bx27LzgR8o8giIyMjOeff95Kg0VvJQweJQqN5nRq9XFbV2XUFBxEBr145Dg8iA6zNlIql09bAAC8PBT21YvAj4OOACdCF6VIfRQAVId/RnqtLdtV/2qqNYWvDpgtuE1/iHIbZKgr1ZXl27JdY1ujob6cFMskeDF6R4AToX2pr683VZaprKw8ffq0lUqPAoAofKxw+GhOrezNzbRSE7cy1JUZm2opt0HiqAk2axRzZYRI4jZrCQD07PoPIJvMkQKAK8uqSL0sNfYAABHrSURBVONnEEKRzRrF+g0nQvsyduzYxsbG5cuXL1my5He/+92ECROUSqWV2lKkLAWA3kNbbLZ+m2kQHR4mg9mSbHIG7eVrbKnXFB2xTYuIMWpOHQIAWRKeIOQYcCK0Ozk5OeXl5QUFBTk5OeHh4Z9++qmVGhJHJggDw1lll6m70to4nVqDa01hNkdQtFvqIwCgzPwesVYp5HsTbfFxTq0UBoQL/EfYoDls4HAi5N+JEyceeuih9PT0rKwsANi2bdsjjzwiEAgA4LHHHtuwYYP1mnabtRQAVNk/2eAC0TdMJjyW9hlm7bYw7HqyhFkC30CmvUnz634bNIeryTgcnAh5Vltbm5GRsXTp0g8//PBf//qXRqO5cOFCb29vdnZ2dnZ2W1tbfX299d4USqInCIYOZ7vbNQXZVmriKrwkG8YbklSkrwAAZdYPyKC3alNMR4u++iwhFEvGTbdqQ5gF4Vc1wOnUvYd/QYzRBm0RJCWbMo9SeF7d8s033zz88MNLliwBgE8++WT79u0qlWrnzp2mMtxGo9FoNGo0GrncOiVgCMItZWnnt++pDvwoS0wBkrJKKwCG+nJjUw0pU+BqMhgvJGMmCYMiDA0Vvcd3uSU/bL2G1CczASFp7DRSLLVeK5hl4UQIutJ8ZdYPNmuOkMrdZiy8+s+Ghobo6GjT5+DgYJFI5O3t/fLLLy9evBgAqqqq4uLirJUFAQBAOnaqct8Gpu2CpvCwNGGWlVrpqzWVNBvXmsL4QRCKOSsu//NV1cGfZBPTSbHMGo0gltEUHADcL+pocCIESczkQXotp+21QVuESCKNv6F2jI+PT1tbm+lzV1eXXq+PiIg4d+6cKRGWlJRcTZNWi4lQzFrS+cNHygObpXHJQFq+t5zTqTVFR4AgcL8oxiPxyHGisBj9+eLewz+bekotS1eWr8zcwCq7BH7BwuBRFv9+zHpwIgSCFsgmzuGr9QULFjz88MMvvPBCUFDQu+++SxDEsmXLnn766aeeesrT0/PDDz987rnnrB2DNG6GMusH5tJFTfExaew0y345p1MrMzcgg14UPhZXk8H45T73iUufvqTK2SafMt+Cy5DpKgqVmd8bGioAgHL34nexT6wfcCLk2aRJk9auXTtp0iSKop599tkxY8ZERUW98847ycnJOp3uiSeeeOyxx6weBEm5zVrStflT1f5N0rFTgSDu/SNmMNSVqXMzNWeOmoYnyCfNtcjXYli/CYMjJNETtCW5ygObPR56duBfqK8605P5naGuDAAot0FusxbLJs4lBMKBfzNmSzgR8m/NmjVr1vSto/3qq68CwMqVK1euXGnLGKQJs5RZG40t9dqSXMmYAa2dxmlUmoKD6ty9xtZGAACCEIXHyifNlcRMtkysGDYAijmPa8/lqU/scZu2gPIc3O/v0VefVWZ+r68pAQBS7u6WvEg+eR6uI+OgcCLEAEyTjmcu6t76v8r9P0iiJ/TvodBw4bw6N1Nz6qDpEZBSDJImpMgmpONl6DH7IfALlsbN0Jw6pMz6YdCy3/bjGwx1ZcrsH3WlvwIAKVPIp8yXT1+Ax4g6NB4SYUdHx5dffnn69Omenp69e/eaZo7fZOHChVdLi02bNu3111+3bYyuSJaUpjqw2XixRld+ShyZYP4Pcppe7Zmjvcd2GlvqAa48Ak6cI46egEupYXZIMedxbdFRdcEBefJCwZD7WCPJUF+hPLDJlAIJkUQ+eZ5byhIrDUDFbImfRHjx4sVx48a99tprd5oqfuTIkY8//njYsGEAMGTIENsG6KIIWiCfsbBn+1fK/T+YlQgR0p8/03tyr64k11SYhnL3ksbPlE2cQ3v5Wj1cDOsv2nOIbEJa7/Hdyr3fez3xmjk/YmyqVR7YpD1zDK6mwFmLSYkV5zVhtsRDIgwPD//iiy9qa2tfe+1up+DEiRNttj4fZiKfOFeV/ZOhvkJfdUYUPvZOu7HKTk1BtvpkJtPRAnDtEVAyZqL1puRjmAW5pT6izs/Wnj1uaKgQBkXcZU9jS70y6wdt8XFAqC8FzlxMSnEKdCr223P12GOP0TSdmJj46quvent78x2OSyCEIrfpD/Xs/ka5f6PPrYnw1kdAD29pXLJ8cgY1qP+DDjDM9iiFp3zqA6rsH5WZ33s/++5t97khBQrFsqTZbilLKbdBNg4VswGrJMKenp5Dhw7dun3atGmenp63br/VunXrYmJi9Hr9+++/n5aWlpeXR9O3CfXy5cvFxcWDBl07Nd99990VK+4xVdZ6pTttRq/X9/ZapwJAbDJxcIu++mx3aQEd1DcpmFN2GouP6n/N4rrbAYCgaHpknCh2uiByPJCkFgCsEIxarSYsNJEDuycXPNpk0hzixB5dRWH32Vw65IayFeyli/pj2wxnjgJCIBCJ4meKpi4g3Twsdaq74NHmC8dxAoHgtiNRrmeVRNjd3b1p06Zbt0dGRpqZCFetWmX6EB8f7+3tffbs2XHjxt26m7e3d1RU1PVJV6FQUNQ9eudIKxRPsTGRSGStumtyOZr2oHLfBubYdo9Rcfrq4t6Te7VnTwLHAgDtM0yWNFs2PtWCk5HvBCFk1dpy2PVc8WjL5ZD8cM+e/xqyN3v8Nsk0UtrY1qjK/lFTeBg4jqAF0sQURdry64sDW4QrHm2ecBzHsuw9d7NKIgwKCvrpp58s8lUSiUQkEmm12jvtQFHU9U+EZvr666+zs62+3oKV5OfnJyTcx6jO+yWf+mBvzi+6isLmPz/C9XYDACEQSmKnyiaki0ZEW2q6PYbxTj7twd5jOwyNldpzeYIhAcqsjZrThwEhQiCUTU53m7XE4ikQs088vCNECHV3d/f09ABAV1eXWCz28PAAgH/961/+/v4ZGRn19fXd3d0xMTEGg+Hdd9+VSCRjx95x4EY/vPLKK2fOnOnHDxqNRoqieH+gXLZsWWqqFde2JaVy2ZT5qgObud5ugW+QbEK6NGEmKXWzXosYxgtCKHZLWdb98xddmz/htL2mp0BZUppbylLK3Yvv6DDb4SER6nS6+Ph4AAgJCZk0aZK7u/vp06cBIC8vb/To0RkZGe3t7YsXL25ubqZpOjY2dufOnTKZJWfqzJ49e/bs2f34QY1GIxKJ7tn16gQUKUspubswcKRweCTfsWCYFckmzunN+YXpaCUoWjoxTZG6jPLw4TsozNYIhBDfMdye0WgkSfLuWaewsPCZZ545deqUbUJynURoD1QqlZsbfgy1EVc+2oaGCm1JrmziHNrTRlOWXflo25jpHSE/g2Us4p6hYxiGDZwwKOLuUwkxp+fw4ycxDMMwbCBwIrwPhYWFVxfRxazt8OHDOp2O7yhcxb59+/gOwVUYjcaDBw/yHYWr6OjoyMvLu+duOBHeh88///zw4cN8R+Eq3njjjYqKCr6jcBWPPvqo0WjkOwqXUF9f/8orr/Adhas4ceLERx99dM/dcCK8P3Y7tgjDMAy7iZlXbJwIMQzDMJeGEyGGYRjm0ux3+oQ5enp6qqurU1JSbNPcuXPnysrKvv32W9s05+Jqa2tXr16NSzLaBsuy6enpuBK0DWi12paWFptdtVxce3u7ObvZ74R6c+h0uk2bNgUEBNimudbWVnd3d4lEYpvmXFxDQ0NAQADvBe1cRF1d3fDhw/mOwiUghBoaGoKDg/kOxCXo9XqpVDpjxoy77+bYiRDDMAzDBgjfbmMYhmEuDSdCDMMwzKXhRIhhGIa5NJwIMQzDMJfm2NMnbInjuCNHjtTV1QUHB0+aNEkkEvEdkdMqLCzs6uoyfZbJZBMmTOA3Hleg1+uPHTsWHh4eGBjIdyxOi2GYkpKS8vJyAEhISAgLC+M7IidXVVV1+vRpgUAwefLkIUPutsYW9dZbb9kqKgemUqlSUlJ27NjBMMyOHTuCg4NDQkL4DsppLV++fPv27WfOnDlx4kR1dfUDDzzAd0TO789//vNzzz0XEBCQlJTEdyxOKy8vb9WqVSqVqrKy8ve//71IJMI3edbz8ccfr169WqPRFBUVvfzyy/Hx8Xe5aOPpE2Z58cUX6+vrt23bhlfltYHk5OTnn39+4cKFfAfiKs6cObNq1Sq5XD5//vyXXnqJ73Bcwq5du5588kkzp3tj/dDY2Ojn52da1/avf/1rZmbmiRMn7rQzfkdolk2bNv3ud78rKSk5fvy4VqvlOxznV1VVlZWV1dDQwHcgzo9hmGeeeebLL7/ES2Hbklqt9vb25jsKZxYYGHj1lPbz89Pr9XfZGb8jvLeenp7Lly//5S9/kUgkWq22oaHh4MGDuDCE9Ugkkuzs7CNHjpw8eXLVqlXmrKKC9du77747c+bM2NhYvgNxFampqRqN5tKlSz///DPfsbgEtVr98ccfv/jii3fZB3eN3ltbW5uvr+/atWvfe+89AHj88ccpivrPf/7Dd1xOi2VZUxd0dXX1uHHjdu/ePXXqVL6Dck7l5eWLFy/Oz8+XSCSzZ89OT0/HXaPWlp2drVQqP//888GDB2/evJnvcJyc0Wh8+OGHxWLxpk2b7lKvET8R3puPj49AIJg2bZrpnzNmzPjiiy/4Dcm5XX0RGxoampiYWFRUhBOhlXz88cdubm6m5FdWVqZSqaRS6apVq/iOy5nNmjULAJKTkz09PdetW4eH3VkPwzCPPvooQmjDhg13r1qME+G9kSQ5ffr06upq0z/Pnz/v7+/Pb0guQqPRVFRUPP/883wH4rSeeeaZ+vp60+e8vLyRI0dGR0fzGpGr6OjoQAgpFAq+A3FaLMs+8cQTPT09O3bsuOf7b5wIzfL6668vWrRIrVZrtdp//etfe/fu5Tsip9XU1LRixYqpU6cKBIItW7YEBQVlZGTwHZTTSkhISEhIMH3++uuvY2Ji8IB+61m/fn1xcXFERIRSqdywYcPq1avxeBnr+fDDDzdu3Lh8+fI1a9YAgFQq/eSTT+60M35HaK6zZ8/+8ssvEolk4cKFoaGhfIfjtAwGw/bt20tLSwFg9OjRCxYsoGl8u2YLe/fuDQgIwE+E1tPS0rJnz566ujpTmYh7rg2EDURubm5JScnVf4pEoscff/xOO+NEiGEYhrk0PI8QwzAMc2k4EWIYhmEuDSdCDMMwzKXhRIhhGIa5NJwIMQzDMJeGEyGGYRjm0nAixDDH09bW9u23316+fJnvQDDMGeCpyhhmd44cOfLEE0/c6b8mJCSsXr165cqVeXl5uDQJhg0cToQYZnf8/f2ffPJJ02etVrtu3bpJkyalpaWZtgQGBg4fPvydd94JCAjgL0YMcx64sgyG2bXOzk4vL6+XX37ZnHUZGYYx7X91BQ+DwaBWqwcNGnTrzhzHtbe3i8Vid3d3CweNYQ4FvyPEMMeTm5vr5+dXVFRk+ufs2bMfffTRf/7zn0OGDBkyZIivr+/WrVsNBsOLL76oUCg8PT2jo6PLy8uv/jhC6P333x86dKivr6+Hh0diYmJhYSFPvwqG8Q8nQgxzPHq9vrW11WAwmP6pUqmys7O/+eabjRs3njhxYvTo0StWrHjyySc7Ozuzs7P37NmjVCqv9rUCwB//+Mc///nPL774YlFR0bFjx+RyeUpKSlNTE0+/DYbxDL8jxDBnoNFodu/ePXjwYAD47LPPYmJiKioqCgoKCIIAgLVr1z733HOtra2+vr4XLlz45JNP3nzzzVdffdX0s9u2bRs+fPi///3vt956i8dfAcP4ghMhhjmD2NhYUxYEgPDwcABISUkxZcGrWxobG319fQ8ePMgwzODBg7Ozs6/+eEBAwLlz52weNYbZBZwIMcwZXD8cRigUAoCHh8dNW0xdqW1tbQDwxz/+8WqaNPHz87NNqBhmb3AixDDXYhojeuLEicjISL5jwTC7gAfLYJhrmTp1KkEQW7Zs4TsQDLMX+IkQw1xLZGTkihUr1q1bJ5VKly5d6u3tXVtbu3fv3hEjRixYsIDv6DCMBzgRYpjL+eqrr3x8fN58880//OEPpi3h4eGff/45v1FhGF9wZRkMs3csy5IkedPYFpZlr5aP6R+dTldZWWk0Gv39/X19fQcWI4Y5MJwIMQzDMJeGB8tgGIZhLg0nQgzDMMyl4USIYRiGuTScCDEMwzCXhhMhhmEY5tJwIsQwDMNc2v8DbGr5JhXjQaEAAAAASUVORK5CYII=",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (6.3, 2.)\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "sol = solve(prob, IRKGL16(), reltol=1e-14, abstol=1e-14)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "id": "05c59aae",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, 6.3, 2.0)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "26-element Vector{Float64}:\n",
+ " 6.3\n",
+ " 6.29\n",
+ " 6.27\n",
+ " 6.2299999999999995\n",
+ " 6.1499999999999995\n",
+ " 5.99\n",
+ " 5.785818874719202\n",
+ " 5.5669238127641405\n",
+ " 5.353693409330977\n",
+ " 5.142457194421218\n",
+ " 4.967129339504346\n",
+ " 4.735115173868062\n",
+ " 4.523202373531812\n",
+ " 4.321091832579163\n",
+ " 4.11223242974666\n",
+ " 3.946599083738542\n",
+ " 3.7196236204049478\n",
+ " 3.5074094438338523\n",
+ " 3.3042521072743756\n",
+ " 3.0959404164266253\n",
+ " 2.9293329838127105\n",
+ " 2.700549581704843\n",
+ " 2.4882865335512796\n",
+ " 2.2847957361112066\n",
+ " 2.068807183359053\n",
+ " 2.0"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c5a72290",
+ "metadata": {},
+ "source": [
+ "**Note**\n",
+ "\n",
+ "-When tf=0, the integrator not return exactly zero\n",
+ "\n",
+ "-If tf=1., the integrator return exactly one"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a17c971e",
+ "metadata": {},
+ "source": [
+ "### Case 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "e050fa3d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2AU1dbAz7Rt6b33hBZK6NK7iMADFCygiPCe0aeo8InKs/eCYsWCiooIInYRVKSEJgQCJISQQHrvdTdbpn1/zO6ybnq2zGxyf39lb6ac3Zl7z73nnHsOxvM8IBAIBALRX8HFFgCBQCAQCDFBihBhH2pra8+cOfP333/n5+fr9Xqr/x4/fnzNmjX79u1zpkg5OTlr1qz58ssvnXlTR5OcnPzkk0/29KzKyso1a9a88847jhBJamzfvj05OTknJ6fzw4R38rfffnOOVAgpgxQhwlZSUlKuu+66gICAcePGTZw4MS4uztPTc+rUqd999535mJycnG3btl24cMGZgpWXl2/btu3YsWO2X6qpqQmzQCaTBQYGzpw5c9u2bRzH2X797rN169Zvvvmmp2c1NjZu27btzz//dIRIPeLLL7+0/CXd3NwiIyNvu+22U6dO2esWKSkpW7duLSsr6/ywK1euOP+dREgTUmwBEK7Nvn37Fi1axDDM1KlTp0+f7uPjU1RUlJ6enpKSkpiYuHTpUuGw0NDQ6dOnR0VFiSutjWAYNmvWLOHv4uLiw4cPHz58+Pfff9+9ezeGYeLK5loEBgYOHz4cAAwGQ3Z29u7du7/77rtt27atXLlSbNEQ/RGkCBE2sW7dOoZh3nzzzfXr11u2l5aWFhQUmD/Omzdv3rx5TpfOzuA4fuDAAfPHn3/++eabb96zZ8+KFSsWLVokomAux5QpU8wGA71ev379+g8++GDt2rWLFy/29PQUVzZEPwQpQkTvqaqqunLlikwmu//++63+FR4eHh4ebv5YV1dXWFgYFhYWHBwstOTl5TU2Ng4ZMkQulx88eDArK8vT0/PGG28MCgoSDrhy5crRo0fVarVgcbW8eEVFRXl5eVRUlL+/f2pqampqKs/zkydPHjlyZHfE5jjuzJkzaWlpWq02Ojp6zpw5vRt8Fy1adMstt+zateu3336zVIQZGRmnTp1qamoKCwubM2dOQECA5VnCFx88eLBSqTx69OiFCxcoipo6derQoUPb3qK2tnbfvn01NTXR0dHz5s1TqVRWBwg/RXR0tJ+fn2V7ZmamXq8fPXp0R8IXFxfX1NQkJCRYffcLFy5gGDZixAjhY2NjY15eXlBQUHh4eG5u7uHDh7Va7fjx48ePHy8coNFo9u3bV1xcHBERMX/+fDc3t65/uH8il8vfeuutnTt3NjY2Hj9+/MYbbxTeltDQ0JCQkKtXr6akpDQ2Ni5fvjw0NBQAOI47efLkhQsXaJqOiYmZPXu2u7t7u1fmOC4lJeXixYsURc2aNWvAgAHdkYdhmGPHjl26dImm6YSEhNmzZysUCssD0tPTeZ5PSkrSaDT79+8vKSkJDw9fsGCBUqkUDjh58uS5c+dwHJ8zZ05CQkJPfxCECPAIRG+pq6sDAIIg1Gp150d++umnAPDSSy+ZW/71r38BwB9//DF27Fjz26hSqfbv38+y7Lp163D8mgN7zZo1lld77rnnAGDLli0LFy60fJnvuOMOg8FgPuzQoUNtz83MzLTSlz4+Pt9++23n8jc2Ngrf1KpdkGTx4sXCx9LS0unTp1teXKVSvfvuu5an3HTTTQBw4MCBadOmmQ/DMOyxxx6zuvg333zj4eFhPiY0NDQ1NRUA4uLirAT44osvrM4Vxl+WZYWPly9fBoAbb7zRfMB///tfAPj999+tTvTw8AgMDDR//OGHHwBg/fr1TzzxhKX5d/Xq1SzLHjx40N/f39wYGxtbVFTU+S/5xRdfAMDNN99s1T5q1CgA+Pzzz3me37ZtGwA888wza9euNV/84MGDPM/n5uZaPT5/f//vvvvO8lKrV68GgN27d1933XXmw3Acf+yxxziOMx/22WefAcCLL75oeW5KSkpcXJzl9cPCwo4cOWJ5jK+vr6en599//x0SEmI+LCoqKi8vr6Gh4frrrzc3kiT5ySefdP6DIKQACpZB9B5fX9/o6GiWZVetWlVSUtKLK9xzzz1ubm579+49c+bMU089pdPpVq5c+dxzz3399dcff/zx2bNnd+/eHRIS8tlnn/38889W57700kuXL1/+7bffiouLDx06lJSUtGPHjkceeaST2xUVFU2bNi0zM3PdunUnTpzIysr65JNPcBy//fbbexdTI5h/fX19AaCxsXHatGkpKSmrVq06fPhwdnb2rl27/P39H3zwwV27drX94jqd7ocffjh37tzHH3/s6en52muvHTx40HzA6dOn77jjDo7jtmzZUlhYeP78+RkzZixZsqQXQtrO999//9FHH3344Ydnz57ds2dPeHj4tm3bXnvttSVLltx+++1Hjhw5duzYwoUL8/PzH3rooV5cn2XZ4uJiALBc137++ee7d+9+8803U1JS9u7dGxMT09jYOGvWrPPnz991111nz57Nzs5+44031Gr1LbfcIkx6LFm3bh3LskeOHCkuLv7ll1+ioqJee+21t99+uxMxzp49O3fu3IqKiueffz41NTU9Pf2NN95oaGhYsGDB1atXLY/U6/VLlixZsGDB4cOHjx8/vmzZsqKiouTk5FWrVtXU1Hz//fdpaWlvvvkmjuNr167tMmwHIT5ia2KEa/Ptt99SFCW8S0OGDFm9evX27dtra2utDutoRTh69GiGYcyNixcvBgCSJC9dumRuFLTIHXfcYW4RlkEkSV69etXcWF1d7e7uThBEcXGx0NJ2Rbhs2TIAeP/99y1lO3bsGIZhU6ZM6eRrtrsiPHHihFwuB4Bdu3bxPC/o4A0bNlgek5ubq1AohOmC0CKsCIcNG2a5eN2yZQsA3HfffeaW2bNnA4DleoLjOGER6fwVIY7jaWlp5saffvpJeOIbN240N2o0Gl9fX5IktVptO7+gibYrQpZln376aQBQKpV1dXW8aUWIYdjp06ctz3322WcBYMGCBZaNH330EQCMGjXK3CKsCL29vevr682NmZmZOI57e3trNBqhpe2KcNy4cRiG7d271/L6O3bsAICVK1eaW4R5zwMPPGBu0ev1gtk2KiqqtbXV3C64DD766KNOfhCEFEArQoRNLFu2LC0tbcmSJW5ubllZWULgX1BQ0MqVK5ubm7s8/aGHHiIIwvxRGOjnzp07ZMgQc+PUqVPBtPay5F//+ld8fLz5Y0BAwMqVK1mWbbt2FFCr1T/99JOfn5+gA8xMnjx5+PDhJ06caGpq6lxajuOSk5OTk5NXr149derUKVOm6PX6GTNmCPp1x44dOI7/73//szwlLi7u+uuvLywsFFSRmYcfftg8gQCAOXPmWH7H5ubmQ4cOCd/IfAyGYVYRSU5j+vTpgulSQHgiALBu3Tpzo0qlGjt2LMMw3bENnDt3Tvglly9fnpiY+PzzzwPASy+9JOgYgRkzZowbN87yLEErP/7445aNd999d1BQ0Llz56zekNWrV/v4+Jg/JiYm3nDDDY2NjW3XjgI5OTmpqakjR46cP3++Zfvy5cu9vb33799vdbzls5DJZBMmTACA5ORks6cQOn51EVIDBcsgbGXYsGE//PCDTqc7derU6dOn9+/fn5KS8tVXXxUWFqakpHS+r8AqfkGIK2m3saqqyupcc0CHmaSkJADIyspq916ZmZk0TatUqo0bN1r9q7W1leO4kpISLy+vTqTleX7r1q3C3ziODx48+I477li3bh1BEOXl5ZWVlZ6enq+++qrVWYJlrLCwMDEx0dw4cOBAy2OEEKHKykrhY3Z2NsdxgwYNkslkbb+g87F6Ij4+PhRFubm5WcUBmZ9UlxEiBQUF5l9SpVLNmDFj3bp1Vh5fy8kQAPA8f/nyZQzDrHyEMpls+PDhBw4cyMrKiomJMbe3fT1Gjhy5b9++rKysBQsWtBXp3LlzAGAwGKwUrXCL6upqjUZjDgWSyWRWe4GE7271WAMDA6G9VxchNZAiRNgHhUIxffr06dOnP/bYYz/++OPSpUuPHTt28OBBwcTXEZbTZwAQtKZVbKQQNcO3SYprNQqDadxpaWlp916CebOqqso8BFvi4+NjMBg6ERUACIKoqakR/vb29rbU8cJqsrW1taOLMwxj2dL5d1Sr1eavY0nbFufQNloVw7C2jcK36E6GgYULFwoZf0iStAwIssQyDAcA9Ho9TdMeHh5t7ytMI6yee9vXQ2jp/PXIzc3t6AlqtVqzIlQoFJbBXGD67u2+z21fXYTUQIoQYX+WLFkybdq0w4cPp6Wlda4IbaG6utqqRZh6d7QXQhhwx48ff/To0V7f1NLa1vbioaGhRUVFvb64GWE/QNuVRNuWjnSPRqPp/BbCGG11IsMwOp3OajR3BDKZrKNfsiMUCgVFUS0tLa2trVa6UFhJWz33jl6PjvSu0L5s2bLt27f3SDBEHwD5CBEOQYgisfT/2Z3z589btQjWLUsLpCXDhg0jSfLcuXNardbuwoSFhQUGBhYXF5eWltp+tcGDBxMEcfnyZZ1OZ9kufEFLhH2ZVgqyoaGhoqKi81u0e2Jubi5N070W29EIWy3T0tIsG/V6fUZGhvm/Zjp6PdrdrwkAgsX177//Rgu4fghShIjeo1arv/nmm7bLkZycnOPHjwNAJxu6bWfv3r3Z2dnmj5WVlTt27CBJsqMkL56enjfddJNGo3nxxRfb/lewRvYaDMPuuusuMAVS2nhxDw+POXPm1NXVCTGWAhzHbd682erI2NhYALAK5XjllVe6HM07OrFHcjoZIWPfq6++avntPv300+rq6vHjx0dGRloe/Pnnnwv7XAUyMjL+/PNPX1/fmTNntnvxxMTEcePG5ebmCtGkVtj4eiAkDjKNInqPTqe7/fbbH3300aVLl06YMCEgIKCpqSk1NXXr1q1qtXrGjBlWu8vtS1hY2Lx58zZt2jRixIicnJzHH39co9Fs2LAhLCyso1M2b9587Nixl19++erVq7feemtCQoKQOeWnn35qaGiwxWQKAE899dS+fft27NghlHoYOHBga2trQUHB/v37T58+nZub26OrvfTSS4cOHVq/fr1Go7nxxhsbGxvfeOMNYbOdJZMnTw4LCzt69OiaNWtWrFih1Wr37Nmzd+9ePz8/SzXQlnnz5nl5ee3ZsycsLGzx4sX19fXbt29PS0sTlvLSZO3atdu2bdu3b9/y5cvvv/9+T0/PX3/99fnnnydJ8o033rA62Nvbe9asWS+//HJCQkJaWpqwreWFF16wShNjySeffDJp0qTk5OQzZ87Mnz8/Jiampqbm6tWru3fvDg0NFfZRIPokSBEieo+bm9uKFSv++OOPt95666233jK3y2SyNWvWbN682aGpqDdu3Hjw4EFh64LAPffc0/maJiws7NSpU8nJyXv27NmzZ4+53cvL695777VRHg8Pj6NHjz7wwAO7d+/+66+/zO1KpdKcfLz7jBo1as+ePatWrXrkkUeEHYqRkZG//PKLVeCoTCbbvXv34sWLt23bJmy/Cw0N/fXXX++6667OFaGPj8/XX3+9fPly87OLj4/ft2+fsA1Amnh4eBw6dGj58uXffPONuQRHaGjo1q1bJ0+ebHXw5s2b3333XfNeCJIkn332WaudM1YIu2juueeerVu3WobMBAQEoFyyfRsMGcQRNsJxXEZGRnFxcUVFBY7jUVFRY8eOtQqFaG5urqqq8vf3N7dXVla2traGh4db7hBQq9XV1dXe3t6W+8kAID8/n6KoiIgI4ePzzz//zDPPfPbZZ6tXr05PTxd8PxMmTBg0aJDlWVqttrS01MvLq22wZUFBwenTpxsbG729vSMjI8eMGWO1UaHtdywsLASTRbFzKioqTp48WVNT4+7uHhERMXbsWMvgjqqqKo1GExYWZrn2Eq4vk8ksE7QCQFNT04EDB+rq6qKiombMmCGXy61+CoHm5uYDBw7U1taGhobOmTNHoVCUlJTQNG2WlqbpwsJCNzc3Yd+3mbq6ugMHDjQ1NUVHR8+cOZOiqMLCQgzDzHsDNBpNVVWVl5eXVS7TgoIC4VlbNlZXV6vV6tDQ0E5WXS0tLTU1NW5ubuaksh0d4+Pj025ADc/zFy5cSE9P1+v1cXFxkydPtrpdTU1NS0tLSEiIQqE4derUpUuX5HL5tGnTrGynbd9JM1lZWefOnVOr1QEBAZGRkaNGjbL0dgtvQnR0tOUptbW1zc3NwcHBls9ap9OVl5d7eHi0DWFFSAqkCBGuh6UiFFsWBALh8qBgGQQCgUD0a5AiRCAQCES/BgXLIFyPWbNmyeXyMWPGiC0IAoHoCyAfIQKBQCD6Ncg0ikAgEIh+DVKECAQCgejXIEWIQCAQiH4NUoQIBAKB6NcgRYhAIBCIfg1ShAgEAoHo17i2Iqyrq3vvvffElkIculMHvE+Cvnh/g+f5/rnLq99+cXD62+7airCwsNCyYFu/ossS5H2VfvvFW1tbxRZBHPR6PcMwYkshAizL6vV6saUQBye/7a6tCBEIBAKBsBGkCBEIBALRr0GKEIFAIBD9GqQIEQgEAtGvQYoQgUAgEP0apAgRCAQC0a9BihCBQCAQ/RqXV4QPD/Sofme9+ujPnFYttiwIBAKBcD1cXhG6EbihIKvxhw+r31jL1JaLLQ4CgUAgXAyXV4TvXGn2vWsjFR7P1FVUv73eUHJVbIkQjoJtrOF0/TStDAKBcBykKHfV6/UZGRlNTU0zZ87E8XaUcUpKCk3Twt9BQUHDhg3r6FJqhleNnKZMHF/3+Uu6y2dq3n/Uf80z8gFJjhIdIRJsY23lS2twlYfylnWQOEZscRBOpeXHD/WXTvvcvl4xaLTYsiCcCltfXbV5rWJAkvctD+EKlYPuIoIiTE9PHzduXFBQUElJiU6nk8vlbY+5+eabBw4cqFKpAGDatGmdKEIBTKbw+/czDd+81XrmYO0nTwc9vpX0C3aI9AiRaD17kKcNbFOdZtuz5E33uk9aILZECCfBt7ZoT//Js0ztx096zLrF68aVgBNiC4VwEprTv3PqptZzKYaSXL/VT1Eh0Y64iwiKMCEhobq6uq6uLi4urpPDvvjii4SEhO5fFiNI3+WP8AytPX+05Y+vfZb/n82SIiRE69mDAKAYNFqXnda45326+Ir30gcwSia2XAiHo8s4zrMM4R3ANte3/LVbn5fpd9fjhHeA2HIhHA/Pt549DACEdwBTU1b91kM+Sx9QjZtj9/uI4CNUqVReXl5dHnbs2LFff/21tLS0B5fGMK+FazCC1Jw9yFT35ESEtDGUXKEri3F3b/97nlcuewiTKTSn/6x+Zx1TXyW2aAiHoz+fAgBeC+8OfHgz6RdsKLhUtel+3aXTYsuFcDiGwiymroLw8gv+36fuUxfxBn39zjfrv97EG+xclEMcH2GXhISE7N27V6fTHT169JVXXlm7dm27h2m12qqqqpdfftnccsMNN0SNmaU9/Ufj/h1efXpRSNO02Y3a51GfPgAAilHTaZbDBo/3jYhv/PIlujSv+s21Xis2yBL6hUu4Xz1xM2xDNVOcg8kU5MAxmFzps/bN5m/f0Wel1n76rGrSAvcFqzFCooOY7TAMwzAMQfRHO7DwtqtTDwKAYtR0BsPdFv6bCI1t/uGD1jMHDeUF3nduJLrn/yIIot1IFEsk+g5lZGRgGAYAx44dmzVr1tKlS0NCQtoexnEcwzANDQ3mFo1Go5q5TJd2SHchRTn9JjI4ynlCOxeO4/pLpVaO1V04BgDypGnCt8aDIr0ffEv97dv6S6cbPn3Gbe4dqmk3AYaJLahj6UdP3ILWM38Bz1OJ43lKznMcKN09V/5Pe2KvZt8Xrcd/pQuzPZY/0s0B0eXgTIgtiAhwHMfSBm36MQCQjZgq/AiykdO9g6Kad7zGlOXXv/2Q+9K18mETu7xUl1oQJKsIMdOgNmXKFB8fn+zs7HYVoZubW1hY2KZNm6zbr7tBffxX3eE9fquecLisImEwGNqNM+p76C6d4tSNVHCkW+xgMH9xuVz572dbDu1p2vu5Zv92vrLI5/Z1mEwhtrAOhKbpfvLELWlIPwYAqtEzLb+7fNZS1YDh9V+8QpdebXx3nfetD6lGThNPRkdBEARBEP3woQMATdN8Xgbf2kKFxbpFDzS3y2MGqR79oH7XZu2FY81fv+4+5V9ei/5ju1VAQvsIa2trm5ubrRrz8vLq6uqionq2sPO4/nZMJtemH6fL8uwnIEIcNGcOAoBqbBsPOYZ5zLrF/9/P4kr31vMpVW+uZapKRJAP4TAMxTlMdSnu7i1PGGH1L1nEgMANW5Qjp3K61vovX6n/ehNPG0QREuEgWtMOAYBq9Eyrdkyu9Lvrf95L7sVwQn3059oPNrJNdTbeSwRFqNfrk5OTn3jiCQC4//77161bJ7SvWrXq9ddfB4A//vhj3rx5Tz/99IYNGyZPnnzvvffGxsb26BaEp6/bxPnA8837v7K7/Ahnwuk0ukunAcNUo2e0e4AicXzg+neo4CimqqT6rYe0F086WUKE42g9ewgA5ElT290vgStUfnf9z+eWBzGSaj1zsPqd9Si3VJ+B12uNHX/U9Hb+jWHu0xb73/8a4eWnz7tYtem/+ivnbbkd8eyzz9pyfu8wGAyDBw9etmxZfHx8XFzcoEGDACA0NHT06NHBwcGBgYFubm6NjY3e3t7r1q277777OrpORUXFr7/+mpyc3PZfsogE9Ym9dEWhYvAYwtvfgV9GJPqJabQ19S/txZOKgaPcpywUWtp+cdzN023sbKamjC7L0144ytMGxYCkvucyNBgMMll/2i7CsQ273uINOo/FyYSXX0cxI7KIBOWQcforF5jKIs3pP0m/YAdtNXM+goOQJCXqwHIomjMH6Uun5AOS3Kf8q6NjSJ9At7Gz6fICurygNe0w8Lw8bljvOr4IPzFJksuWLWvbPn36dOEPT0/P2267zca74G6e7pMXthz8tvn3Hf7JL9p4NYRYCNsHVWNmdX4YJlf6rXqi5dCept++aDn4LV1R6Hvno7jS3SkyIhyCLvsc29JABkUSoV0YhKjw+KANWxp2v9N67kj99ld1l8/4LHsQk/X9aWIfxnAhBdqzi1qBu3v53/NC8587m//4uvn3HYaSq74rNuCqHnd8CfkI7Y7HzKW4QqW7fFafd1FsWRC9gamv0hdkYTKFcnjXsWFGl+F/nsdVHrqs1OrND9GVRY6XEeEoBBeR25guhkIBTK70Xfm474pHMJm89czB6s1r6YpCh4qHcBxsUx1TmIVRMuWISV0fjeOeN9zh/5/ncJWH7tLpqk3/NRTn9PSOfVkR4m6e7tMWA0Dz71+LLQuiNwih88oRkzG5spunKAaPCdqwRRYxgKkpq37rYSH8GuFy8AadNvMUYJiyXRdRB6jGzg5c/x4VHEVXFldvflBz6neHCYhwIMaOP3QCrnDr5imKIeOCHv1AFj2IbaiuefcRdcpPPbpjX1aEAOA+/SZc5a6/ekF/NV1sWRA9hOeFWAm3sV3YRa0gfAID1r6uGjWd12vrvni5+bcvHSMfwoFo00/weq08JrGnSYOp4MjAdW+rxszkaUPDN28Ly0qEa9GadhgAVGPaj4/rCMI7IOCBTe6TFvAM3fjjR/U734Rub8Hs44oQV7q7z7gZAFoO7RFbFkTPMBRlMzVlhJefvOeJYzCZwnfl496L7wEMbz6wS5+f6QgJEY7DGDrfPbuoFZhc6XvHo5433gUAQqZKhAtBl+XTFYWYykM+qMdFZjCS8l72gO+dj2IyRWvqgdYLR7t5Yh9XhADgPnE+YJg+NwNtM3ItWoXtg2Nm9jr+0336TR5TFwGA7vJZe0qGcDBsc73uynmMpJRJU3t9EbcJNwCG6fMu8ixjR9kQjkaYA8mGTez1NnnV6JleC1cDQGvakW6e0vcVIe7mKQtP4GkDWha4EDzLCLO5LuNFO0c+cBQA6K9csI9YCKfQeu4IcJxiyLhehP+ZITx8qJBo3qAzFFy2o2wIx8LzreeOAIAsyaZUQaqR0wAn9NlnOY11kpZ26fuKEADkA0cCgI07LhHORJd5itM0U+HxNu4Jk8cNw0jKUHKFa1XbSTSEwxF8w72zi1qiGDASAPQ55+wgE8Ip6K9eYBtrSf8QIrwHNfjagrt7KQYk8SzTzQwb/UIRKgaOBAAd6g+ug7B9sKdhMm3BZHJZ9GDgOH1uhj3kQjgcuqqYLs3FVe6KIeNsvJRgD9ChGbDrYJoDzbI9IYYQb9xN62i/UISymERMJqfL8jl1k9iyILqG0zTrss4ATvQodL4jTPYANA1yDYShUDliCkZSNl4K2QNcC542aDNOAEBH+RR7hHL4RIyS6fMy2JaGLg/uF4oQIyl57FDgeTQ3dAlaz6fwLKMYNJrw8LH9aooEwR6AHr0rwPNaY+i8rXZREOwBMUOA4/S5aPeUC6C9eJLTtcqiB5EBYbZfDVe4KQaPAY7jmuu7Ptj2+7kE8gHITegyGONFbbaLCsgiB+Aqd6amDJWzlz76vEymvorwCZTHDrXLBQU3IXKLuATG7YNdpVXrPqpR3V1Z9hdFaHQTIkUoeZjqUkNRNq5wUw6dYJ8r4rg8fjgA6K+i2FGpY6q8M8NeOdONYcNIEUoeTt2kz07DCNKOpSUVieO7mZSqvyhCKjQWd/dm66uZmjKxZUF0hhAmo0yajFF2q7QgHyCMhmgaJGl4hhZS4tm4Z8YSWUQCrvJgaiuYukp7XRPhCASHiHzgKNzdy17XxCiZ140ru1Ovu78oQsAwxYARgHxFEofnjeaRsbPteFXFgCQA0F25ADxvx8si7Ivu0mmuVU2Fx1PBkXa7KIYJmYmQW0Ti2GvPjBXu05Z0x+PYbxThtb3VyEgiXfR5F5m6SsLXbi4iATIwnPAN5NSNqCKBlLElrVonoN1T0oepLTcU52Bypd0cIj2kHylCxcDRAKC/mtH9TKwIJyOEybiNnW33srqKhCRAo6GE4VrVuqwzgGF2dBEJyAcJHcw+PkAAACAASURBVD8d2QMkS+vZQ8DzqhGTxaoi2Y8UIeHtTwaEcVq1oeSK2LIg2sFiF5Gd1wRwLWwYxctIFO2FozxDKwaOIrz87Htl0jeI9AvhNM2G0qv2vTLCXrTab89M7+hHihAAFEKmCeQmlCTaiyc5rVoWPYgMDLf7xRUDRwKG6fMyeIa2+8URtmN0EdljJ3VbjEkVUMeXJIbCy8Y6M/EjxJKhfylClGREygjxoqox9gyTMYO7e1Mh0bxBbyjMdsT1EbbA1lfrCy5hMrlyeDcqkvccNAOWMtfmQLho+qifKcKEJMAJQ8FlXq8VWxbEP+DUjbrscxhBqkb2vvJO5xhTMF9Fo6Hk0KQdBJ5XDpvYzV1fPUU+IAlw3JCfyRt0jrg+ovdwbOuFY+AwY0A36V+KEFeoZJEJPMvo81BJJmnRevYQcKwicRzu5umgW8hR9KBU0aYdAcf4hgVwpbssPJ5nGX3+JQfdAtE7dJfPcOpGKjiSCosTUYz+pQjBbCRBm4okhsaRdlEBedxwjKQMxSgFs7QwlFylK4twd29hpuIgTLunUMeXFq1n7b9vuBf0O0UoRyXKpAddWUSX5uEqD8WQsY67CyaTy6IHAcfp81BJJglhyjA5vdcVybuDyU2IOr6E4HSt2kunAMOU9t4z01P6nSKURQ/G5Eq6sojtRkpyhHNoTT0AAKpR02yvvNM58gS0iUJicJz2nJ1TLbeLLGYIJlfS5QVsc9dFeRDOQZt+nDfo5fHDSd8gcSXpd4oQI0h53DDgeTQaSgWebz13BBxsFxVAudelhu7Keba5gQwIk0UOcOiNMIIUarGh3OvSwZRjXbTtg2b6nSIENBpKDN2V82xjLekfKosa6Oh7ySIH4kp3pqqEbaxx9L0Q3cGUVs1uWbY7wbSbEFlHJQHbVKfPzcAomXKEQ/bM9Ij+qAivuQlRyiUJYNw+6IC0au2A4/L4YYC2lEkD3qDXZpwEANUoZ7iIkJtQUrSmHQaOUySOx5XuYsvSLxUhFRxFePqyTXV0VYnYsvR3eINOm3ESMEw1xkm7iFCuNemgvXiC12tlMYl2qUjeJeaOz6COLwGMM2AJ2EWhfypCwDBTihm0LBAZbfpxXq+Vxw4l/UKcc0fjtvor55E9QHSMofPOmgMBhskHoNzrkoCuLKLLC3CVh2LwGLFlAeinitA0GiL7mOhozgh2UWe4iATIoAjCO4BtaaAri5x2U0RbOHWjLuccRpCqJEflEmoL6vgSofXMXwCgGunwQPFu0k8VoXzASMAwfW46zzJiy9J/YZvq9LnpGCVTjpjszPsKdXpR0IS4tKYdAY5VDBnruFxCbZEPHIU6vvjwfKuQS8hpxoCu6KeKkPDyo4Iieb3WUJQjtiz9l9azB4HjlEMnONlbLkdhwxJAlNB5wsuPCopAHV9c9LnpbGMN4Rsoix4itixG+qkihGuVKNBoKBrGrPNOtIsKmOwBF1FJJrFgasoMxVdwhUqRON7Jt0a51kRH8A07ov52r+m/itDkLUD2MXGgS3PpikLc3VsYmJwJ4eFDBUfxBp2hCJVkEgfBRaRMmoJRMiffGnV8cblWf3uUVOyi0J8VoTx+OEaQhqIcTqcRW5b+iDFMZvQMh2aY7AjTsgBtohADs4tIjNB5ecII1PFFRJd5itOqZZEDyKAIsWW5Rv9VhJhcKYsaBByrv4pSMIuA9nwKAKjGiLOLCC0LRMRQmMXUVRDe/vL44c6/OyZTyKIHo44vFtJJq2ZJ/1WEgLwF4sE2VLPN9bi7lywiQRQB5HFDMYI0FF9BywLnYyo3MUMsFxEqQSMWXGuL7vJZwAmlU3IJdZ9+rQhR0lGxMJTmAoAsPF4sATC5Ei0LxEKfmwEATt4zYwkqSioWhsJsnmXksUMIDx+xZfkH0lWEDQ0N2dnZDOPA7T6yyAG4wg2lYHY+dMlVAKBEWg4KCElGUC0CJ8Mb9HR1KUaQVGisWDLIIgfgKnemupSprxJLhv6JoeQKAMgiHZ5ev6eIoAj37t07evRomUw2ceLEjo55/fXX4+Libr311vj4+PT0dEeJghPyhOEAoENBE87FUCLyihBQkhGRoMtygePIkGgxU4rguDxuOKBpkNOhS/MAgBK147eLCIowPDx806ZNr7/+ekcH5Ofnv/DCC6mpqenp6cnJyQ8//LDjhDF5C9Bo6FToslwQe0UoixqIK9yYqmK2sVZEMfobUpgDgTk+AHV852IouQoSePptEUERJiUlzZw508vLq6MDdu/ePXPmzPj4eAC45557jh49Wl5e7iBhFOZ4GZSC2VmwTXVscwOucid9AsWUAyeEkkwoWsqZ0GWSWBMY4wNQLTYnwmma2cYaTK50TrGRHiFFH2FhYaGgBQHAz8/P29u7uLi43SN5ntdqtWkWNDU19eheZGC4MQVzRaFtUiO6izArpMITRM8rIdgDUNCEM5HImoAMCCP9gjlNM12eL64k/Ydrj17sjt8WEfYyd4lGo/Hz8zN/VKlULS0t7R5ZX19fVFT0n//8x9zy4IMPLl26tEe3I2KHsucON2X8rfAM6J3AoqDRaDDpvU/dQZefBQAQFKVWq3txuh2/OBsxEAB02efULS0S7JxWaDQuv9ODpw1MVQnguN4zwNDtp6/T6QiCoCg7+xTx6ESoq2y+eFruFWTfK9sLxoTYgtgHfU86vh3fdoVCQZJdaDopKsKgoKCGhgbzx4aGhqCg9t9UPz+/QYMGpaWl2XI7PHFc/bnDUJTlfsNyW67jZHied3cXv7JzL9BVFQOAe+wQZa/kt+cXdx/U6u3PNtbK1XVUSLR9rulIXPSJmzEU5/AsQ4VEe/j6dX20CZIkHaIIh46rTzvIF2RKtuMLWlChUIgtiH3QVxUDgFvMYFX3XmNnvu1SNI0mJSWdOnVK+DsjI4MgCLOl1BEoBo4EDNPnoRTMToIuFfZOSMJhLh+Acq87D7pE/CApMwoh93p+Jk8bxJalX0CXCk9fEh3fChEUYUlJydatW1NSUqqqqrZu3frnn38K7SNGjDhx4gQALF26tLq6+rnnnjt58uTatWvXrFmjUqkcJw/u7k2FxvAGvaHwsuPughBgWxrYpjpc4ea0kvSdo0gQSpYjRegMjIkUwuLEFgQAAHfzpMLieNpgKMgSW5a+D6dVM/WVmExOBYaLLUs7iKAIm5qa0tLS5HL57Nmz09LS8vLyhPbJkyf7+PgAgFKpPHToUG5u7pNPPjl79uxXX33V0SIp0CYKZ2HaSi8Vh7mxUmveRVSp1QmY1gSSWBGCOcUMyrXmeOjSXOB5KjQWcEJsWdpBBB/h0KFDP/7447btW7ZsMf89cODAr776ymkiyQeOajn8vS7nnOf8u5x20/6JRLaRmSE8fajgKLqi0FCULY8dKrY4fRmeZeiKQsAwWZhoOWWsUAwc2XLwW13OOa+Fq8WWpY8jtY5vhRR9hM5HHjsUIylD6VWutf3wVIS9MK4JpNQfTG5ClGTEsTAVRTxDk4HhmFwptixGZDGJGCWjy/I4dc+2XSF6ipQdhIAUoQAmk8tihgDH6a86LJ0bAgDMe4kkYxwDAMUA5CZ0BqJnWm8LRsnksUOB51HHdzQSfPqWIEVoRIH2VjseaaaWMJVozuZ0rWLL0pcxRgtLbCiUIzeh4+H1WqamDCMpMjhKbFnaBylCIyj3oBMwLgfD4iQSKSOAyZWyqIHAsYY8VJLJgUhzTWCaASNF6EAMQqRMSAxGSHHnOiBFaEYWHo+r3JnacrapTmxZ+iyS9ROYlgVoGuQwOI4uLwAMo6Sxd8IMFRaLu3uz9dVMTZnYsvRZTEUnpPXoLUGK0ASOU2HxYBqsEY5AspFjyE3oaOjqEt6gJ32DcZXEkuNgmGLACDCVC0Y4AmkaAyxBivAaQlS3oQwl4XUUEgwZFZBFDcJkCqaqGIUNOwhjThnpPXoAoCIGgKksBsIRSNYUZAYpwmtQYbEAQCNF6Bi4VlNqiaAIsWVpA05QodGAnr7DMJQK0cJSHArRDNih8AY9XVWCESQVEiO2LB2CFOE1BO8Fmhg6CLr0KvA8FRYnzdQSVKgwDUJP3yFIekUodPzyAlSb0BHQ5fnAsWRwFEbJxJalQ5AivAYVHIlRMqauAoXROwLJOggFBHuAobxAbEH6IjxvKMsDqT593M2T8PLj9Vqm1lEFwPsz0ncQAlKE/wAnyKBI4HkajYYOQLIOQgGZ0R6A7GP2h6ku5fVawicQd/cSW5b2MS0K0dO3PyZjgHRDRgEpQitk4cg66igkmFPGEio0BjCMqSxC2bftjnFNIEkHoQCaBjkO09OXaMcXQIrwH5gcRag/2BlO18rUVWCUjJRgpAwAAGAyBekfyrMMU1kstix9DWFmKWxPkiYUipdxDDzLMJVFgONUqHQjZQApQiuocDQxdAi05FNLwLWwYWQPsDMmY4DUFSF69HaHLs/nWYYKjMBkCrFl6QykCP8BFRoLGEZXFCD7mH2RuF1UAMXLOASeN64IpeoeBgDSPxSTK9nGWk7TLLYsfQqjg1DCcyABpAj/Aa5QkX7BPEMz1aViy9KnkP6OWkCOIsfA1FVyrWrCy4/w9BVblo7BMCokGtDTtzcuETIKSBG2hUKjoQMw9QdprwjRVkIHIPFoYTPCNMiAAkftiqs8faQIrUGjod3h9VqmuhQjSDJEokVYBAhvf9zNk2ttYRtrxJal7+AqawKUWMr+cCxdUQgYJvy2UgYpQmtk4UL8GFKEdsNQlgc8T4VKOlJGAAVN2B1XWROgR2936IoinjaQ/qG4wk1sWboAKUJrkGnU7pgc5pK2iwoY7WNlKF7Gbkh/E6EAFRIDOE5XFvMMLbYsfQRTglkX6PhIEVpDeAfgbp5CLXWxZekjuIpxDNBGUnvDNlRz6ibczZPwDhBbli7AZHIyIAw4Fm0ktRemMoQu0PGRImwHZCSxL3TJVXCR/oAevX1xiawiZmShyC1iT4ybplyh4yNF2A5G+1gpWhbYAd6gp6tLMYIUwtMlDhUciZEUSrxuL1zFQShgnAahwFG7wHF0eQFgmMSzjAogRdgORvsY6g/2wCWKsFwDJ8jgSOB5pgK5Ce2AseSI5B2EAihw1I7Q1SW8QUf6BuMqD7Fl6RqkCNuBQqm37YcLmUcEULyMHXGxFaHZQ4wKE9qMlCtQtgUpwnaggiIwSsbUVXI6jdiyuDwukVPGEmQPsBdsSwPbXI8r3UnfYLFl6RaElx/h4cNp1WwDCpSzFVOInAvYRQEpwvbBCSo4ChUmtAsukVPGEqN9rBTZA2zlWpAUhoktS3cRiiSgeBnbMc2AXaPjI0XYPmg0tAs8bWAqi6VfhMUSKsyYeB04TmxZXBvpF51oCwobtg88L7haXcUnghRh+yD7mF0Q6nhQQZGYTC62LN0FV7oTPgE8baBrUOJ1m3ChbWRmUOCoXWBqyzmdhvAOwN29xJalWyBF2D5C70XxYzbiQjllLEFlKOyCCyVSMGNKLIV8IjbhcsYApAjbR2a0jxWiwoS24IpDIVyzB6DRsPdwmma2oRqTK8mAMLFl6QFUYARGyZh6FChnE64VLQxIEXYEJleSfiGoMKGNGFwnp4wlyFFkO8Y1QVicC0XKAADgOBUcjQLlbMTlZsBIEXaI0UiC4mV6C88yTGURYJhM8kVYrEAbq23HtYIGLaHCYgB1fFvgeZdzDyNF2CHIbW4jTEUhz9BkYAQmV4otS88gfYNxhRvbXM+2NIgti6viWtvILEGBcjbC1FdxrS2Ehw/h5Se2LN0FKcIOEdYxaEdRr3G5nDLXwDBhvwdaFPYa10osYokpsRR69L2ELr0KLpVDA5Ai7ARUmNBGDK6WU8YSZB21BU6rZuorMZmcCooQW5YeQ4WiQDmbMJTmgeuUHBFAirBDCG9/VJjQFoQ1gQvllLEEGcZtgS7NBZ6nQmMBJ8SWpcfgChXpG4wC5XqN0T0c5kozYKQIO4My1mNC1tGew7F0hVCExcUiZQTQitAWjEUnXNAuKoCmQbYgRMq41tNHirAzZKgMRW+hK4p42kD6h+IKN7Fl6Q1UcDTgBF1dwhv0YsvierjcNjIr0DSo17CNNWxLA+7mSfgGii1LDxBHEe7bt2/UqFGhoaGrV69Wq9VtD5g1a9YYExs3bnS+hALXyrIgeoih1MVSS1iBUTIqMBw4jq4qElsW18NUmN5Vnz7q+L3GVIHSxRwipPNvWV5efuutt+7cufO66667++67N27c+N5771kdk56e/umnn0ZERACAj4+P84UUQBPDXmMKGnSx/mAJFRZLVxbRZfmyiAFiy+JK8HotU1OGESQZHCW2LL3EVJMSmYJ6jIsaA0RYEW7fvn3atGkLFy4MCAh4/vnnt2/frte3Y31KTEwcPXr06NGjY2NFczIZCxOifEs9x+VSS7QFLQt6h6EsT4iUwQgR5tl2gfANxFXunLqJbaoTWxYXw0U7vgiK8PLlyyNHjhT+HjFihFqtLi1tJzpr+fLlY8eOfeCBB6qqqpwroAU4Ycy3hEbDDqhohSfPslP2Mr+XWhT15ji6XIiUcb391GaQPaBzanXwwnlu2PfMi+c51uLhmzKtu9hQaAWaBnVOSgW/5AA78RcmvZ63bHfRFaEIU7a6urrExEThb4Ig3N3da2tr4+L+MWK+8cYbSUlJOp3u1VdfveGGG1JTUymKanup2trajIwMS9vpCy+8cNddd9lT3MAIKLmizr9sCIy252Vtpl3fqjO50IBvySF+LCEMHADA/D+YR4YwGxMZAgO2qpg36HCfIA0L0NJi3/s67Yvz3kEAYCjLa2lulkLCTI1Gw/N818c5nnw1tuUKuSMf17IYAGSmsX+V0p+Mp4OVPAC0FlwGAM4/vMVOj16n0xEE0e4I4Dj4gAjIzVAXXKYjBjnzvpYwDMMwDE3TYgnQFoaDn0vx93LIc/XGRdR1PzMvJ9H/jmcBgFM3sk11mFyllbnZ2PHt+LYrFIouXx4RFKGPj495LOM4Tq1W+/lZZ+JZtWqV8Mc333zj6+ubkZExevTotpfy9/dPTEw8fPiw8BHDMG9vb/tKi0UPNKQdxGvLPDw87Htl2xFFJJaHn4u4dzK5o5U8AJA4LIvBE7zg9Qzu9UtkWgO1cwbp3lABAPLIAQ6S0Elf3MND4+nLNtcraQ3pF+KMO3YKhmHu7u7iyvB3Nf/mRe7HQo7jAQOYH4H9Kwp/Jo1NqcKnHJB/NZ2cE4a1VhUBgEf8UJmdHhNFUc5XhHjMIMPfv4nb8QVFqFAoxBLAEjUNn+Vwb1/iClt4AAhUwn8HE5Va/qPL3Po06u96+SdTCHlJdguALDLBw9PTxts5+W0XQRHGx8dfvHhR+Ds7O1sul4eFdVioRS6Xy2Sydp2IAgRBODSahkJucxMtNOzK4zZf5HKaeADwpGDVAHz9MDzKHQOAueH4bYeYg+X8sB/ov/hcH1cOGjRDhcWyzfV0Wb4UFKGIcDz8VsK9e4n7q4wHABkOt8bhj43AE30wAFgSja88wvxeys/dz6wbxKyrKgGcoEKiRRbaNmShKMOikSotfHiZfe8SV68HAIjzxNYOwf8zCFeRAADXh2FrjrF7CrjUGv432RUvF3QQgiiK8M477xwxYsTZs2eTkpJeffXVW265RalUAsD7778fERGxaNGigoKC2trakSNHGgyG559/3t3dPSkpyflyCgiFCZmKQp5lXNf5byMFLfzH2dzWbK7B1BP+MxBPHox7y64dMzUYS7+JWnGYOVDG5xVcGQNAulRqiXahwuJ0l8/SZfnK4ZPElkUc9CzszudeTecuN16b/Tw6HA9zu2YrDlDAvhvIdzO5DanskXN56ziWD4nFKFnHV3UByJAojCCZmjJer3W5rPH24moT/34WtzWb07EAAKP9sQcT8RXxOGHhKFgSjY/yx247xJ6q5k+VXJ0LQCJF2B1iY2Pff//9hQsXajSaSZMmbd++XWhPT08XrOH19fV33nlnQUGBTCYbO3bs3r17VSqV8+UUEAoTMrXlTFWJkIi5X5FWy7+Tye3K5xgOAGBSEPbQUPym6H/0BDMBCth/A/niOWZQVgEA/Dsv5v1Y8JE7V2K7Yky93S8zjNToYFsO984ltqIVACDGA3soEf/3INytvTEDA3hoKH5dIPbtN3kA8CsdG1XCz48Q37HaazCCJIMi6PICuqJIFi2am1Asjlfyr2WwvxXzPACOwYJIbOMIYmJQ+w80yh07uoB8Ko1NvJIHAOuLY14ZCr4u1fHFWeLcddddbUNaPvnkE+GP0aNHZ2dnO12oDqHC4pjacrosr/8oQgMHPxdxmy9yp6qNprBlMfgjw/FxAV0MbQQGT4RXVHLaClnAzkqP4z8ye2YRXZ4lWah+WYEkr5l/9xL3aQ7XygAAjPLHHkrEl8fhZFcx5uMDsUi/fDYfzlBxD/zBrE3EN40nZC6bvYoKi6PLC+jy/P6jCAUb+IvnudQaHgDcSFgRj68fhg/06qILUzi8PERTbqhpJZSf1oXu/4HZNZOY1IHilCD91NbXI6jwWG36MbosH8aKLYrjaTLAF1e4Ny9yJRqjS/zuAfjaIf8whXWOkFMmJCHhukDsVDU/dS/z2ljioaEuORxSAeGYTM421HCtalwlcqCKExAMADvzOJYHDGB2GPZgIr4wsgfPDq/IZQFmjUnYWQTvXuJOVvG7ZxGxHi4zIFpChcXCmf6yg6KFhm053OZMrlht7Pj3DcbXJhJ+3V7YCWXXVOGxE4LwE1X89N+YJ5Lwp0cSuCs8fKQIu8aUZqKP94fcZv71DG5HLqdlAABG+GIPDcWXx+HyHtYPELaReUYlHJlFrj/NfpDFPXyKTavlP5xMtGtVkzQ4TgVHG4pz6PJ8efxwsaVxFDzAj4XcpgyjAUBBwOoEfP1QfJB3z8YwnmWYiiLA8RVT4uOHkbcdYs/W8mN+YrZNJRZHud5MqJ9UJK1ohc0X2a3ZXDMNAJDog60fhq/oRccvzQUA9+iEw/PJ/51h37zIPXeOO1PDfzmN9JdE3GtnuN7b6XxMhQlzQRq7uBxBjQ6m/Mp8ks3pWVgYiR+8kbxwE3n3gB53BrBILSEnYMtEYucMwp2Cr3K58T8z2Y2u9wP2hzKtr6VzN//Fnqrm/eTw1Ei86DZq62Sip1oQAOjyAp5lqMBwTKa4LhA7v4RcHIU36OGmA+xDf7N61hGyOxBTqfqCPtzxmwww6VfmjYtcMw0zQ7Hf5pIXbyZX967jl+UBgCwsjsJh03ji17mkvwL2lfAjf2SOVUr9B0SKsGsILz/c3ZtrVffVwoQ8wJqjbKUWJgVh2UvJX64nZob21pxhysJjTi1xexyeuohM9MEuNfDjfma+yePsJbZzMI2GfVYRptbwT6exGMCb44ni26nnRxOBvY2RpEuugsWj95HDD3OIt68jZAS8e4mb9CuT1yz1AdES3M2T8A7gDTqmtlxsWRzFfSfYghY+yQ9LW0wevJG8MaL3mSOMT9+Ubnt+BHZ+CTklGCvV8DP3MS9d4DgJP3ykCLuFyUjSN0fDD7O4X4s5bxnsnEEkdOUV7xymtpzTqgkvP8Lz2ubOwd7YmUXkmoF4Cw23H2aTj7MG19GGsrAY6Lv2MQ0Ddx5haQ7WD8PXDzPuDOs1xjWBRfS8EE16ciEZ74ml1fIjf2R2udRMyJhmr49WJP3yKrcrj3MjYfdMYpS/TR2f02mYukqMklFBEebGcDfs8HzymVE4x8OTZ9nZ+xghAlmCIEXYLUxpJ/tgf8hq5DeksgDw0WQi0t1Wv7ahtP2iE0oSPp1CfDmNUJKwNZub+AtT0CLh+aEFVKiwkbSIZxmxZbE/959grzTxw3yxF8fYoZR8RyVHRvlj55aQt8fhLTQsP8yuPMK2ushvaZwB90V7QH4L/+BJFgC2TCIG2Db9BeHR8zwVFgv4P14kAoNnRxEH5pEhKjhcwSf9SP9RKsWOjxRht+ir+Zf1LCw/xLYysGYgfmusHV4GutNCdCsT8GMLyFgPLK2WH/MTs79Eil3CCmEjKc8yTFWJ2LLYmV153JdXOTcSvp1JKGzXgxxLVwiZ1tspF+NBwc4ZxIeTCAUBX+VyE39h6lyh4HFf7fg0B7cfYptpuC0OvyvBDh2/86ITM0OxtMXUzFCsWgs3/sG8kyk5qwBShN3CFC/T11aEG8+w6fV8ghf29nV2WBCAKYS6k+Rqo/2xtCXkv6Lwej0sPsBkNriALjQ9/T41Gha28PedYAHgret6ExfTFrqiiKcNpH8ornDr6Jh7B+OnFpEDvLD0ev6R0y4QPNNXO/4zaWxqDR/tgX00yT4dv8uiEyEq+HMe+ewoAgAeSWWtalaIDlKE3YIKjMBkcqa+imsVueaDHfmzjH87k6Nw+Ho64W6XhMY8L3hTOq/H6y2Dn+YQ/x6IGzi49zgrZRe6gHFZ0IfsYwwHK46wTQa4OQb/zyD7DALdrEo/whfbez2hIODLK9zhCqk/e9IvBFeo2KY6Tt0otix243AF/1oGR+KwYzrhZadEeKYVYWcdn8DgmVH4A0NwhoNkiXV8pAi7B45TwVHA83R5gdii2IdaHaxKYXiA50cTY+2U+YWpr+JaWwgPH8LLupyIFRjAm9cRYW7YiSr+sxzJ2Ums6HvxMi+cZ09W8WFu2MeT7bMgANOyiepGgtkEL+yJJIIHSD7O6iS+LMQwMkRIs9dHOn6DHlalsBwPTybZLfMLr9cy1aUYQZIhUV0e/OIYItwNO13Nf3hZQh0fKcLu0seMJP8+xla0wpRgbMNwu70DdKkQP92tlLueFLx1HQ4Aj51hq7T2EsEh9DHT6PFK/qULHI7B9mk9yBvSJV1axS15dAQ+xBu72sS/mi5xTWiaBvWVwNF7T7DFan5yMPbkSLt1fENZPvA8FRrTnbIEHhS8OwEHgP+dYcs0UlkVIkXYXfqSfezDy9zPRZy3DL6aTrSbPrt3GEoEz//HYQAAIABJREFU41hn5hFLlsXgCyPxBj38n7TdRYR3AO7myWma2cZasWWxlUYD3JnCsjxsHIH3frdoWwRjCYYJk4YukeHw2VQCx+CVC8a6FpKlL20k/egy920+5y2Dr6bZs+P3tCr9kmh8cRTeTMPDp6SyKESKsLv0mXxLlxuNcQofTiKibN4vYUlP+wMAvD8RdyPh61zuQBkaDZ3Bf0+whS382ADsmVF2M4oCAF1Vwuu1pG8Q7tbdiqzXBWJrTH5iKT/7PpNa6HIjL8w4P5hERNs1+2vnIaPtsmUS7iWD7wq4X4okoQuRIuwufWM/mZ6FFYfZVgZWD8Bvi7Pz0+9Ff4h0x54aSQDAf09I2l3UN8pQbLvC7crj3Cn4ejpB2fXh92IOBACbxhGhKuxoJf/5FUmMhu1ChcQAjtNVJTxtEFuW3qNnYbmp499u745vyinTg6cfqsKeG0UAwNq/OTVtX3F6A1KE3QWTK0n/UJ5lmMpisWXpPU+cZc/X8XGe2NsT7LkgAAC2oZpTN+FunoRPYI9O/L9heJIfltvMv3xBuppQJhQmdOVlQV4z//DfRkuAjfmD2mJKpNAtu6gZLxlsGo8DwIbTbLVU/cQYJSMDwoFjmSoX7viPn2EvOKbj87SBqS4FnKBCelalbm0ifl0gVqzmnzknfsdHirAHuHp+mQNl/FuZxrBpD7vsl7DAFD3fXQehGRKHjycTOAavpXNZUnUXuXq8DM3BiiNsCw23xOJ3xNu/1wtxUp1Hz7fL8jh8fgRWrwcpbyt09bDhP0r5d0wbpeze8emyfJ5lqOBIjOrZVgwcg48nExQO72Ry52pF7vjtd4kNGzbk5Vk/9fz8/OTkZMeLJF2M9jHXDKRu0MOaoyzHw3OjiOsC7V8irHfGMYFxAdg9gyTtLiKDIzGCZGrLeb1UVy6d8uRZ9nQ1H+OBfTLFzgsCAGH/qJBpvWcrQoEtkwg3Er6SsJ/Y6CF2zWlQtda4UerFMcR4B3T8Xs+AAWC4L7Y2EWd5SD7Oitvz21eEX331VVVVlVVjVVXV1q1bHS+SdJG58g6K5ONsiYafEow9NsIhZoAeRc+35bVxRKgKOyZVdxFGkKSwkbSiUGxZekxKBf/mRY7E4esZhKe9FwQgZFrXaQhvf8LDp+uj2xDljj1p8hNrJel/d117AA+w5hhTqYVpIdj/DXNIxzfOgLsXLdyWF0YTMR7Y2Vr+/Utidvwe/DTV1dU+Pr150fsMxv5Qmudy9ck+zub2FNh/v4QldAfptruJJwVvSNtd5KLxMg16uPMIy/LwzEhiggMWBNCrICkrHjH5iV+SpJ/Y2PFdsDDh25nc3mLeXwE7Zziq4xtKbZoBq0jYMpEAgKfS2FLxthX+Y//jX3/9tWfPHgBobm5+/fXXg4KCzP/S6XR//fXXmDFjnC2glCC8/AgPH7algW2oIXx7FhIiIrnNxv0SH9h7v4QZtqmObW7AVe6kb1DXR3fA7XH417ncbyX8o6nsF9McYMGzDVloTKsLLgvuPmq0BGxMclRAgC1WcQHBTzzhF+a1DG5ZLD7C1zFjdm8hPH2Ejs/UV5F+wWKL010yG/j/nWEB4NMpRKjKIT8pzzJMRRFgmGA97h3zIrCbY/DvC7h7j7N759pWCay3/OOuxcXFf/31FwAYDIYzZ84oFArzv5RK5bRp01544QVnCygxqLBYNjvNUJandBFFSHOw/DCrpmGVA8Kmr92l1FSRtfd1PQEA3p9IHPme+fIqd2cCPsuO273tgWlZ4EqK8IMsh2ROsMKUSKH3ihAAxgVgyYPwDy9zycfZkwtJXFoP39jx6fJ8V1GEOhaWH2Z1LNw/BF8U5bCOX15gjJSR97aaMwAAvDeBOFjG/VbC/1TELXaYtJ3wj1uuXr06Ly8vLy8vLi7uxx9/zLMgMzNz586dcXG9NAT3GVwucPR/Z9gzNXycJ/auvcOmLelpTpmOiPbAnhhJAMD9J1i9xIxkVHgcYBhdXgCcFL2YbbnaxD+SygLAJ1McZQkQMGYZ7a1V3MwrY4kQFZyu5j+VXvpZl6vH9Ggqe7GeT/TBNo1zYMe33RggEKICoSLm2pNcixjbCtvXvTk5OePGjXOyKC6Ba2UYSangN2dypGPCpi2xV38AgP8bhif6YDlN/CsSy0KJK90J7wDeoGdqy8WWpVs8fobTMrAyAV8a48ApNlNfxWmacXfvLjOtd4mXDN6ZQADA42fYSon5iV0rcDS7kf/wMkfisHMGoXSkrdFgv45/32B8fCBWquGfPCtCx++sh1RWVl64cCHtnzhNMmniQvFjHA/rThnTzDsibNoSY8ioPfqDDIePJhEYwKvpXE6TtGIThNHQJeJlTlTxPxRybiS8Otax3lbaGC1s63JQYFkMPj8Ca9DDulPSmga5Vs79x89wDAf/HogPd7C3lS7puvpSNxG2FZI4bMniztQ4u+O3rwgvXrw4ceLEkJCQkSNHjvknTpZPalCB4a5SmHBHLne+jg93s2d9iXbh1I1sUx2uUJH+oXa54ORgbM1AXM9CssS2FcrCXWNZwAM8lsoCwIbhRIjKsfcSKlDa6CC05INJhDsF3+Rxe4sl9PCNHb+hWvod/2gl/3MR506BfdPJtgPH0hUFgGFUeO8jZSwZ4YutG4qzPPz7GEs71zre/rL59ttvr6+vf++99wYMGIDjKPuMBThOBUcbinPo8gJ5/DCxpekQHQtPp3EA8MpYXOXgOCxhOWh7pIwlr40jfinmUir4r65yKxOk8ga6imF8Tz53oooPVMJ6x2wds8SOxjGBSHfsmVHEhtPsAyfZGaGkmzhRhG3AcSo4ylB8ReIdnwd4PJUFgMeGE8E2xa90DV1ZzNMGMiAMV7jZ65rPjiK+L+Az6vmPrhAbnbjsaucta2pqysrK+vHHHxctWuQ8QVwHKizWUJxDl+VJuT+8k8kVqfkRvthyh0WKmrH7UAgAvnJ4czxx5xF2/Sl2XgQeoOj6FCfgEhETBg6eOMsBwIujHesYFqDLbNpP3S4PJ+I7c7nzdfwL51lHm3a7DxUWZyi+QpfnS7nj78rj/q7mQ1XYOsfPgeheJZjtHBUJWyYR835nXswkbxvIx9i1SkYntPNjYRgGAKGh9jFz9T2k7y1o0MPrGSwAvDGecEIYutE4ZtehEADuiMdnh2F1euMMVwqQfiGYXMk21XHqJrFl6ZAPsrjcZn6wN3b3AIcPhab9ox627B9ti7CtkMDgzYvchTqpGEilPw0ycEY70ItjcCespG1PpNAuN4Rjt8birQzcf9J5Hb+druLp6Tl//vxffvnFaUK4FqbChNLtD8+eY+v1cGMENjvMGfMpYWiw78RQ4MNJhIKAz69wh8qlMRqaNg5LNl6m0QAvnjfOgUjHW5RN+0fj7GgVFxgbgP13CM5w4mehNCPxRw8A717i8pr5Yb6Yc7wJdowVt+LtCYS3jN9fwn9X4CRX4bVpQ3l5eVZWlvD3ihUrHn744fr6+rlz56pU//C2z5492zmSSRYqNAYwjKks4lkGIyTiwbhGfgv/cTZHYA4PFxTg9VqmrgIjKTIw3O4Xj/fENiYRz6Sx951gM24i5RIwksnCYg0Fl+iyfMXAUWLL0g4vnWfr9DA9BLsxwhlzIENpPjhgTSDw0hjix0I+tYb/9Ar23yGOuEPPkIXFSrnjN+jhlQssAGwa58DkCdfgeWEx4IinH6yEZ4ezD58l155kZ4fh3j0ra9Ebrj3OP/74Y/Xq1Zb/++CDDz744AOrE3hXy7Znd4TChExNGVNZZF/XiF14PJXTs7BmID7MKXmqDGX5wPNkcJSDhobHR+C787isRn5TBvfkSPGjZoz2MUnGyxS28O9ncRjAG+OdNGUwOQjtEzRohQcF70zAb/6LffoCvjgaorwccZMegMmVpF8wU1vBVJdSIdEiS9OGF86z9XqYGYrNDXdGxxcqsRDe/ribpyOuf3ccu6eEOlHFP3mWfX+iw9/na4PX3LlzDxw44Oj79Q2o8DimpsxQli81RZhaw39XwClJeGaUk3SGoBLs7iA0I8Pho8nEtL3MixfYZbHYQHtXlO0pUnYUPXGW07FwZzw+2t9JvxJdVgD2jpSx5KZofFEU/3MR93+p8N0cB92kB1BhcUxtBV2aJzVFWNDCf3CZwzFwaB4ZS4wOEYc9emFb4cgfmQ8vc8vj8IlBjn2lrynC0NBQFCDTTWShsdrzRyU4Gv7faZYHeGQYHuHmtKFQ6A8OWRMITAnGVg3AP7/C3XucPTRfZJMUFRIDOEFXlfC0oaeVSB3K+Tr+m3xOQcALY5w0B+J0rUx9JUZSlAOs4mbem4gfKue+L4Jfirh/iZGF0hIqNFabfpwuzweYJa4kVjx+htOzsGoAPsp5c6B8AJDZkGu7SxJ9sEeG4a+kc/eeYNMWk5QjH774tiZXRJqBoz8Vcccr+UAlbBjuPGeaMc+kIxUhAGwaT/gr4EgFvzNX5CyUGCUjA8KAY+nKInElsWL9KZbj4cFE3KFpRS2hy/OB54WZgePuEuGGPT2cA4AH/+Y0YlcrFDIqSC1Q7nQ1vyefU5LwwmjnjecGp3T8p0YScZ7YxXr+rUzHdvz259fXX399fX1923Y/P7/o6Oibbrpp7ty5DhVL4lyzj/G83ePlegfNweOpHAA8M9IZu8eMcBxdWQQYRoXEOPQ+fnJ4YzyxKoV95DQ760bMw6E36wpZWCxTVUyX59srr5jt7C3mj1Tw/grYmOTEOVCpM4ZCALhvEL+rEM7V8Zsvck+J6ic2ZRyV1gx4QyrLA6wbioc7yw4EJp+Io5++koQPJhFz9zMvnWdXJeCBDksR0P5bFRUVVVBQkJmZKZfLw8LCCII4f/58dXU1SZL79++/4YYbnn32WUdJ5AoIhQk5rZppqBZbFiOfZHM5TfxAL+w/g5w3UtDVpbxBT/oE4ip3R99rZQI+IRCr1MI72SIHj0rNTchwxoRqTyYRToivM+OcoRAACAw2jQUA2JTBVomajJvwCcTdPDlNM9tUJ6YcFvxUxB2r5AMU8NgI5/ULTtPMNtZiMoW9sip2wvVh2IJIrJmG5847cFth+4NmTExMXFxcfn7+iRMnfv7559OnT1++fJmiqBUr/p+98w6Mqsoa+HltZjLplfRGQg0ESKMTolIUlCYuYl3Egm0/wZVVVkUQQRHBgoquorLuutgRCx0FpCShhJYQ0kN6n2TKK/f7401iTCFtXpnM/f01PF7uPW/e3HvuPfeUxTk5OX/729/WrVt37Zp95OCXCFXVYzKw8NJpHgA2JJKSWtLb0DwVyuExRABsGksRAFsyaQUrWYP6ChF8mClcrEWRrsQjw2TdLclwPNzCpAFwWxjZwMILaQpnV2ACI0A1A58T4NlTAgC8OIZyk80O1PrVy2IPey2RoknYdlm4WCvVwO9g5FgslvXr12/atKm178ygQYNefPHFtWvX0jS9fv16iqKOHz8ukUx2gaq2BevP8mVGGOdHyOxNIOdUCABj/Yh5EaSRg9XpSp4Uigmm2eKroIJQIgMLq9N5AHg1kdTI+fLFU1KCEBWDDIiLvA8zhQs1ii6D1FR/5v3LwqVaue1A0HxAqJFr4A/xIJYMIlu0vhR08PVVVlY2NDR4eHi0ue7h4ZGTkwMAWq02JCTEYFB7FnZJUc94uNaENp+3Ro/JfFwpj6dMa8Tp/uMsIaNasdmQdPGgXD0FUxNXXaaUDC28eo4vNUKSHzFPyqKD7RH9ZmkvfxsmXL4+4nTPI/iHZLNhd9AERgCARQWBpA0srFHCDgQtpiApXUbb8FIc5cbAd/lSJZnq4Pvz8fFxdXXdtm1b64uCIHzwwQeRkZEAgBAqKyvz9fXtda9Hjx5dsmTJkiVLjhw50uENJSUlTz/99J133rlt2zZBlQXB1WMaXZUqNHKwMFLyUJv2WHeEMo6HSFfirwM5HsEzp5Q0kakkrP5aE9qUIQDAxkTZ10ByHRC2RjQA7ioQ9iuXcs+6Ai5SfuC/ckYZOxDI6CfVgp8TrBhpLdosxbvv4BvUaDTPPvvsW2+9NWXKlI0bN27fvv2VV16Ji4v74Ycfnn/+eQA4cOBAQ0NDr2sTpqWlzZw5Mz4+PjEx8ZZbbklNTW1zA8uyycnJBoNh/vz5b7/99tq1a3vXkaQwvqqoT5ZRjT69ImhIWCtX9FgLgqGWb6ghdXrbJlzukmdjeC8t/FSI9hYrOBuqwjD+fJrQyMGCCHKiv0JrIHkVoa8O/h5LAcCKE7yg0Mun/UMJihbzqigjAQAAFDeiLReUsQMhjuXKi4AkpfYVb4MYHn2qAn1x1fZbo45nz5UrV27btk3clt1///2rVq1CCH399dd/+ctfAGDChAnV1dW93hG++eabDz/88COPPPLQQw89+uijW7ZsaXPD999/T5Lk1q1b58+fv23btrfeestsNveuLwkRfwcIKbstePokzyNYNoyMcpN7KrQUNtffkTeAxEOD/j6SAoCnlZsN1eAvc6kWfXJFYEhYJ/saCKRPLNIZT8WQIc7EmSr03xxlDEUERdP+YYAQW5KniAAiz6UKTRzcIX3KlfaI2VZp3yBCo5Wz35aEWf9IFcy2tgd1OoSWLl2alZXV1NSUm5vb1NR05syZOXPmiP+l0+nanyB2n+PHj0+ZMkX8PHny5PZON8ePH580aZJYDSopKamxsTE7O7uz1jhd7yXpI4pbR/cVo1+KkIcGVo1WIKJAEeOYyJMxZJgLcbYafaZQfL0aMiosP8FzAjw8lIxWIu2cRfrEIh3iRMPqOBKa88kpAhOkcBkK8ZevIeFlJdZA1levxMC/bxA5wosQc+ratuUuElY5OTmFh4fbtsvS0lJvb2/xs6+vb0lJSfsbgoOtSZsIgvDy8iopKRk+fHj7pmpqai4m/m30ncs9S0+LV5YtWzZjxgzbCtwZgk8QADTlZUKcAtbRBkPjiuNaAGL5MF7Lmg2s3AIY87MAQPAJktltqrGx0YUgVsWQS48zz53ib/ZtcpI/7ZreQzSMN1SUEU4yeYs0Nja2fD5YSv5UyLgxaPkgk8Eg975YqK8WDLWEztnIOIH0b99kMlEUxTDW+ID5AfCGhyajFl4/bXpyiALJZpB3IIgDPzZZ0o64Ztpcf+oYIyDywUG8H2GW32fRmJ8JAMgnWNKB3/rX3prVI8h5h5m1p7mFQaynplu/fJ1OR9NdzBF//HdmZuaBAwfGjh07evToTz75pKmpqcM/eOSRR7rT9/XFslgs4meTydSmzBMAODk5tdzQ2T0ibm5uWi0yzFi1ISCNAAQAw4cP7+xmm0OHDzECoPJC2Xpszb9z4GwNEepCPBWr0VEKJL00lBUAgD5ssEbex+d5Xq/X3zcU3ssW0irRtlynf8QqsCVq8g+zFGTRtaVab5nqlQuCIP7SBAQvZAgA6B+xVIinAslXzfkXAYAJitQ7y7EIIEmytSIEgNfGwoyf+Y0XqQeHa7xltc8BANARQ40AUCH5wBe1oE6na31xTzEcKOU9tfBCvEavVWDgG8sLAEAfPlgr5eO3/NrbcNtAuPEKv+8asSlT+3pStzbEJNn1bX+MomPHji1btmzdunWjR4/++9//Xl7ecc6UvivCkJCQ/HxrnsaCgoKWzV8LwcHBGRkZ4ueGhoba2tr294hQFEXTdLbFpSoyZdFAua0E2uCBYn0yAgky1yczcrD2vAYAXo4n9TK7TgMAAGItXEUxkJQ2MILoxu/MhpAiAK8lESm7uVfPCUuHMNLlXuoMJjDSUpDFl+SR0bHy9Nj83LDjinC6CoW6EE/GUPJ+91a4klwA0AQP7M4U03dIsuWdW5keDNODhV+K0Lqz6I2xcp8LaIIHAgB7LY8EACm/gfYPziN45hQHAM+NonyclHj3CLHXcgFAEyTt22/z4K3ZOJYY8w239RJ6PIaIdLXNIviPnu666666urrly5cDwNWrV+s6oe9dzp8/f8eOHQghhNBnn302f/588frOnTtLS0vFG/bu3St+/ve//z1mzJjQ0NDOWvPIPQQAz0pwfNolhEZH+wUjnuNkz7+85YJQ1ESM8ibulF39i7AleSDwjF+wghUYpgbIkXupM5hgZQJJTTz8M00AgJfjSQVswgCgRNhMe15NpCgCtl4UrtTJbRkm9a6Upx+ymLhKubNrbc8SzlWjcFfiMXmzCLXA11QITQbSxYNy91ZEAACI9SLuiSYtNo2v/+PbZBjGzc1No9EAgIuLi1sn9L3LRx55pLKyMiEhISkpqbS09NFHHxWv33///eJGcPjw4X/961/j4+NnzJjx/PPPv/7669dpzSvzxxhPIq8BbbusgN+EWIfPIm9QUaUJ1p/lAWBjEkUqlPHbGkofrHA5xg2JFE1a86zK3LXVcVR2n+HN54UCAxrjo9gaCFoSiyj69kc2z4bPpSoy8BXwl2ni4IV0AQDWxZNahRLuWoqzQelXDwBr4kgnGv6XI5wot83A73Qs8Ty/d+/eTZs2rVu3Trxy6dKlwsLCvnfp4eFx8uTJd95556233jp16lSLA+rly5cnTZokft60adPBgwdXrlx55cqVlosdQiBhXQIJAGtO8/WyO4wo4j245jRfZ4GbAvgbAhUrfKGGPQEADPMglgwiWypvyIkmKBIIgi3JQ7x8/hoVzWugVxMVWwMhi4mrKCYomh7QqZ1GHtbEkXoavswVjttoNuw+igSSbsoQihtRgi/xF+XWQIrEj7Yn2Jn4vxgSAaw4aRtrUMdfaGlpaUJCwrRp01auXLl161bx4rZt2xYtWmSTXimKSkpKSkpKoqg/FjbBwcGtj4Wjo6OTk5Pd3d27bG12KDk1gKgwwWvn5DaRWe1jRZ1Gd9icnAb03iWBImBNrJLF2SzqGA/QnHvpW8lyL3UGoXWivf2twcVysTqdr7PALSGEkmuga3mAEO0fStAypnnuiKDm2fD/jkuSbeQ6yB9IWm60zm/rE+SOoG+N/MnVOuMfsZS/ExwpRd/k2WAR3LEiXLp0aV1d3e+///7LL7+0XLzjjjt+//13mxwT2pz1iRQB8HqGIHNdAk1wFIhaQa78y8+cFCwC3D+IHOauXOphhKzuEipQhH5OsHwkBQD/kCb30nWQeTbMbiC2XRYoAtYnKlmIymoVV8FUCAArYyl/JzhebpvZsPtYTUEyGsafT+PrWbgtjExRbg0EqtkRAoALA/8cTQHA0ycFS59ffgeKsLGx8aefftq8efPYsWNb++0MGjRIEISiIvnWv90n0ddal+Cl07KOB9LZjfLwQWajPMfmJ8rRV7lCS4YFpeCqSgRTE+XuTbools2gNU+PIEOciZPS5F66DjJnHH3+LM0KsGQwGeOp5FRoUS6RQntcGHh+jJhmyAazYfehvf1JnZ6vq+IbamToLrMO/StLoAgQj4GUQkw0TzAaxq9jN36ZeXAIOcyDuFpvAweRDr7Wuro6nuejoqLaXOd5HgDUmO0MAADWxZMMCR9nCZckq1nVIUyQWJRHjtlwxUkeAawYIWsp6vaoZ1Uo0rIykNl5WM4KJEfL0K4i0pmGF8coXJeYlbcET5csHUwO8SByZHaXa64/JcYSSM3fTwqcYJ33ZeiuM8TSY4x/OJAK/whFaNK6Mngpva8OIh1Xn9Dr9adOnWpzff/+/RRFDRyosL9QZwxyJ5YOITlB7iotogOVRfpjwm/yhCOlaIATPD1S6alQNecELYi5l3IlyL10HWRzHeQEeOwYDwArRpIBCiRvaAVCbEk+qOnt0ySsb54N6yxd3m4zZFsG7S5E3+cLrgy8oPwaSF0rYAC4LYyc7E9UmGD9mT4tgTuuPrFo0aKVK1cePHhQTPiJEPrll1/+7//+b968ed3xXlGK50dTLgx8ly8cLpFvU9gcTybtbGjmYeUpAQBeGEO5KuyjAJYi1Y0HioBXEykAePkMXy2XzYLy9COd3QRDHV9XJWlHmy8IZ6pQuLM127iCcBXFyGykPHxJZxtEUtmKP2bDs/IZBORxHG3k4NGjPAC8FEcNkD1rRBtUqAgB4LUkigDYfEEo7IODSMcW502bNg0cODAlJWXmzJnl5eXe3t4zZszw9fV9++23e92TDAxwgpWxFAD87bh8dQk0QVHQXIpBOtae4bPq0DAPYulgJQ8JRMQdoUb2ygPXZ0YwcVMQUWOGtTLG1zMB4SDxbJjXgF5M4wHgjXhOr1AEfQtKFZ3oErEa0Za+zYY9otlVStoV8JqzRL4BxfkQjw9Xy8BX29tP9CXuGEgaOVjVh4jSjr9cNze3Q4cO7dy5c9GiRTNmzJg1a9aHH3546tQpPz+/XvckD8tHkOGuxJkq9FGWTCYyysuP1LsKhlq+vlqiLs5Vow1nBZKA9ydStNLDQWgy8LUVhEZL+wQqLEo7NiZRFAHvXBSy6+WaDaX3Hnzid6GRg0UDyRsDlK9QbbGugWQtRNcdEmwxG/YIJiAcSIotL0KsVAbZjBrYmklSBLw/kVIyZkJE4NnSfCAIJjBcaVHa8ko8qaVgR7aQVtnLgd/ptEpR1IIFCz788MPvv//+008/XbJkiVYre3bbnqOjYEOCWKVFvgMDSYtW8wiW/MqzAjw2TIH6q+2xHpgHRkiaZbF3jPQi7pY324jU9rH/5Qi7CgR3DWzsXn5hqbHGTqjMOCbS99mwRxCMhvELAoFnS/OkaF9AsOwYYgV4YjgZ56OCgV9WiFgL7e1P6mQqt9J9xJxzAoIVJ3ppDVLF6LItCyPJyf5EuRHW9e34tPtY/WWKJbGObsoQUitRmAuxNl4Vnloq9JRpzdo4Uk/DzhzhWJkcs6Gk/jL1LDx1QgCA1xKpQL3yUyE0O0mq8+23zIZP93Y27CnN/jKSOI6+fVE4XgHBelgdp6qBrzpjgMiq0ZS3Fg6VoB8LezPw/3TmMGfOnPbVAdtw4sSJXnQjM5vHUfHfcpvPCw8MlqNsaXN+GdvPhrkNaHU6DwA/VrliAAAgAElEQVTvT1TeR0ZEPTllOkTMNvLyGWHFCf7orbTU7572DyNoRnQhIbQ2dmZ45iRf3IiS/IglKjgYBgChsZ6vrSS0Tiq0iousGk1tzxIOlqCfCtHMEOkHftBASDvIFmUDTLdtyyVN8HwaDwCbEnhXRhUjX7XHwyIeGnhuNPXUcX7FCX5aEN3TI6Q/3W40GptacfLkyZKSkqY/Y0vZJWO0N3FvNGkR4BlZQikkMo0igAeP8I0c3BNNTg9WxYYAmseD2jxlWiNmG/m9HH0rfbYRgqKZgHBAyGJr6+jJCrTtsqAh4V+TFEsr2gYxRogJjARCHQK1w0MDz46iAGD5CZ6TfuhrQqIAwFJ0xeYtP3qMr7PA3DBidojN2+4lKleEAPDoMDLKjbhUi7Zf6fG7/5Mi/OWXXzKaOXv2LAC8+uqrGX/GZlJLzCsJlBsD3+QJe4slN5ExfiGERstVlwpNtizZ/MFlYV8x8tHBxiRV2EYAwFpziiBEb0l1YtvcS13CBEcBAFtoy9mQE+ChI7yA4O+x5HBF88i0pnkNpFJjgMhjw3s/G/YUJiQaCIItzgHBlsbYHwvRN3mCKwObEpVLo9gOi+rfvoaEtfEkAKxK5Rt6GF+vCpOLFAxwgmdixdxLvOQ5KEmS8Q9vKVlpE0qaYOUpHgDeGU/56rq8XSa40gLEc7RPoM3NgLbloaE2y73UJc35Zm1pD3gtQzhThaLciGdj1bIGgj+859U7FUKr2fD5NL5R4rz0pM6Z9vZHrIUts0FZHpFGDh49xgPAugRK2QRSreHrqgRDLenkQnn4Ki3L9VgYSY4fQJQZYVNGzwZ+v1WEALB8BBnlRpytRv/KlH5taA2rt5m/zKPH+Boz3BJCLIxU0TtSs9Nga1qyMq6WPtsIE2LjHWFeA3r5NA8A706glCq92yHqjKdujzgbljTB6z2cDXuB1R5gu8RSz6XyeQ0owZd4ZKiqBn4OiLOcWq3iIkRzROnGDL6kJ+d4KvqubY6Wss6G/0yTfDa0bgtsdEz4vxzhmzzBjYH3JqpoQwAAFtFpUPVTIYA1T3+l9NlGmIAIgqLZsgJksU1Km8eO8Y0c3B1F3hikoknHWnBKNH6om5bZ8LVzPZsNe0HzwLeNIkyrRG9fEGhSHYGDrVBVyZHrM86PmBNOGlh4Ib0HA78/K0IAuD3CGkrxksTZRmyYaK3aDE/+zgPAq0kqso2IqN9TpjVi5bYtF4SrUsbXE4yG9g8FQbCJYfw/V4XdhchbC6+PVdcaSCxBTPsGExo7iCce50fcFkYaWOtQko7mE2IbKEIewYNHeB7B34aTo73VNfBVVXKkS9YnkAwJH2UKGdXdHfh/srzs3r27sbFR/IwQAoDjx4+Tf46bXrhwoS1ElY83xlKJ33GbzwuzQsmpAVL9vJiACCAptrQAsRaC0fSlqeUn+FIjTAkgHhyiumWKOnMsdUaCL3FXFPlZtnDnQf7IbJqR7OvUBEexxTmWomxN+JC+tFNjhv87bl0DqedgWMQuPGVas2kseeCasDNX+FemhPEnmpBoEE+IEeqj2fDNC0J6JQp3JV5UR+Bga+zr7Q9yJx4ZSr55QXj4KP/bLLo7Ttd/UoTLli0rKChofWXLli1btmxpfcXuFOEYH2LVaHJ1unD3If7sPNpbmuWsWKOLLc1nS/PFsdE7DlxDn2QJWgrem6Aq0wgAAF9bITTWk85ulLu30rJ0l7fGU0fK0MkK9EIavy5BqvmlOX6mr8eEz5ziy4ww2Z+4f5Bq10D2MRUCQIQr8cEk6o4D/JO/8xMGEEOkKWBEOrtRnn58TTlXUUz3oUpfgQGJgYNvjiOd1XQwDADIYuIqigmKpv3DlJalu6yJp77KQ8fK0EdZwgPdWAb96SvfsWOH0WiUTDbFWDWK2leMjpahB37lv7lJstkweCBbms8WX+21ImzkYMlvPAJYPYaSaNz2BXvxlGmNuwZ2JFNTdnMbzgk3BJE3SFPd27ot6NtB0ZFS9OFlQUvB+xNVtwYCewgja8/CSPKHAvRZtrD4EP/7rbRGmtWFJjjKWFNuKcruiyJ87JhgYGFhJDk7VIVroDxAiPYPJSiVqejOcWPg9STyLwf4Z07y88JJr672P396sEmTJkkomnLQJPwnhRr1NfdtvvDeJeJhadyxmOAoSD3QF/+xZ0/xeQ0o1ot4aoTqBgMAWIpzwX4OCFsYP4B4fjT1fBq/+CB3dh4jRS0bJmggkCRXko84lqB7kwfEIsBDR3gEsDKWVOEaqCU0yC7cJVqzdQJ1ogKlV6JVqbxYqMvmMMFRxoxjbFE2jEnuXQtf5Qq7CgQ3BjapI6NsG+zIU6Y1d0SSn14RfixEBQbkpe1iTKnxe5eCEGdi6wRryomL0pSwFzVErx1Hj5ejty8KNAnbp1DSnWb1BeuewN7GAwA8O4qcEkCUGWHpb5LElBIaLeMXjHiOLcnrXQuvnhUu1qLB7sQ/1BQ42AJXXSYYDaSLB+XmqbQsPcOFgU+nUAwJr2dIlVvDml+mt/4y9Sw8eVwAgPWJVJDKnONE7MtTpjVbxnU3AEmVM6403BFJ3jeIbOJg0QHeJIErmRhkw17LAaHH0UsWAR74jRcQPD2CHKUyh7EWrAvDYDvbEQIARcCOZMpLC7sKhLcvSBJb1pd4sit16OUzPAHw3kRKq0Y92OwrYYevHgCS/IgXx1ACgnsPcxUm27fPhESD+OpRbxTtc6f44kY0zo94SH3OcSLiwLcXT5nWRLkR2ydTHt1wXlTpVy8Rb4+nBrsT56qRmLTFtpBOLrSnH7KYuYrinv7ty6f5CzVokDvx/BhVToQAyGzkqkoIiu7LQYiCBDsTH04S867xZ7vtVN19+hJPtuwYb+LhvkFksmRezX3EvryF27MylkwJJEqa4N7DnM3fPeXqSbl5CUYDV13a0789VYHevSTQJGydoJaMsm1BiC3JB/s0BQHAwkgy3LXrb9axFKEzDf+eSmlIePO8sKvA9jsDxlqPqWfW0Uu1aMM5gSTgw0mUTqV6ENhrOYAQHRBmRwfmbZgbTj48lDTzcOcBvsnWybeY4GjoVTzZp1eEfcXIWwsbpDnBsgn26CfVGpKAT6dQ3lr4qRC9c1GKgd+baEIxoyyvbjuQWFmF8vAlnd2UlkVCHEsRAkCcD7EmnkIAS361fdaJZjf6HowHAcEDv/FmHh4eSk5SQd3dzrDYVSh9Z7wxlhrpRVysRU8dt7FJwGoYL8lFfA90bLUZnj7JA8CmsaoLHGyNvSRXuw5BzsQHkygAWHHC9iaB3rkNbzovnK5C4a7Ec6PVvAayb2NAN3E4RQgAK0aQNwYRFSa4z9Z2EmuF3p74y2w+LxwrQ4F64mV11N3tDPv1lGmNjoLPp1JONLx/Wfgix5Y7A1Knp30CEWvhSgu6vruZFSf4ciNMCSDujlbvSBSMBq6mnGA0jG+Q0rL0ibnh5INDrCYBo01NAs0VSXugCPMNaM1pHgDeHk+pLXCwNaKnjCZIpfV4bYV6h590kATsSKYHOMGeYvSGTdPyMkFR0JNEa3kNSEyI9+4EsjsnugrSbxaGwz0J0Y3+4SN8vsGWC6Hm6nTdnQ1/LUXb1Zo8oTVscS4gJOZOUlqWvvLGWGqoB3GxFv39pC1NAtYT4p4kXn/sGG9g4c6B5C3SFxDuC/ZuFe8mjqgIAWCAE3w8mSYAnk3lT1fZbDakPHxIFw+hsZ6vrejO/Q8d4Q0sLI4ibw1T94sQBLY0DwiCCewPC8PHhpG3hZG1Frj7kC1LdPVoGWQR4OEjPAJYNUqNyRNa05+mQj0N/7uB0lHwzkXh+3ybLYIpTz/SxV1orOdryrtz/xc5wg8FyF2jolKjndFvVsDXR93zr5TMDCGWDSPNPCzc3+MqjtdBdDLujnX0oyxhTzHy1sIm9Q+GiiJkMVOevqTeRWlZbMPHk6lQF+K3UvTyGZvNhs3xZN3aFqw7w1+qRYPdiadHqn0M2l1ytesT40m8LHoJ/MZfa7LZOqj7bsP1LDx1XACA1xKpAL2t+pcEobGer6sitE60d4DSskiL2gehpLyWSMV4Etn1tnSd6GYZilIjPH2CB4At4yg/Vde4BbC3ohPdwVML26dQJAFrTvNHy2wzGzLBYr3yq10GkqZXovVnBQLgg0kqDRxsjcVuw8g64/9GkDOCiUoT3HuYF2ykCpsDSbsY+AKCJ3/nrzWhif7EA2oNHGxB1OtMYKTKyxD2HbW/CUlxouE/KZSOgg8zhS9zbbMzaHYc7WI8PH6MrzbDzSHE4ig7eAX90jwyNYB4ZiTJCbD4IF9ri3KVpN6F9hqALGa2vOg6t32YKUz8gTPz8MAQVfsJWxF4rqwQCIIO6A9WcRECYPsU2s8J9hUjWxXv7c4xYbkRZv7MiQfD6swo2wb7KjrRF+xgFpaUGE9CNNM/eIQvbLTB4tA6Hq5bqv7f2cKXuYKr+urudobVOGbnLqPtWR1HjfUj8g3owd9sYxK4fn6ZBhYWH+SX/sYbOVgymNyisoqDHSJWFqO9A0iduq14PaTFS2BVKp9WaYOBz4SIoYSdKsKDJWjUN+yeYuTnBLum0cPUfTAs0s+s4tfB0RUhACwbRs4OJWvMcNdBG7hO0L5BhNaJry4XGuvb/2+ZEe4+xN91iAeA9QlUiCpTC7an2V2i/+wJRBgS/j2VcmNgZ67wr0wb7AysGRU6UoRnqlD8t9znVwVXBnYkUx9O6m4WRGXpl8YAkZtDiCdiSIsAdx7kDX32EqC9/Em9K99Qw9dXt/kvHsHqdOGmH7mSJkgOIE7PpW8KspeBjxWhw0AA/GsyFaCHX0vR2tN9ng2bXSvFxVQLAoJtl4WhX7I7sgUnGl5JoB4ZZh9fvmCo5etrSJ2e9vJXWhbbE+lKvDuRAoAnf+cv9zkbu0bML9OuMOG7l4Rx33NZdSjWi0idQ9uFPVykf+8J1idQsV5EVh2yQSF7gugwn0ZJE0z7iXsxnQeA50eT+26mA/X2oQURx3LlRUCSjH+40rJIjt0MSEnx1cGnU2iSgBfT+Wk/cX00lbQvQ3GuGk36gXvoCF9jhpkhxPn59MpYlWYWbI/4IP34wPzOgeS90WQjB7f8wm/PEsx9mBI1oYNAPCFuzr9cZ4GF+/llR3kTDw8PJY/fRg9yt6evsdlTpr8ZA0R0FHyeQjnR8FGWMOsX7mBJ3wZ+uzIUe4vRqG/YA9dQgB72zKRXx1F2cDDYDFuSh3iO9g0mNNJUM1cTWBFauTGIeG8C5aGBvcUo4VvuLwf4K3W9HBWt/ccaOfj7ST7+W05MH/NFCvXjdDqyG0lg1YPVPGKflQe6ydvjqZFeRE4Duv9XPvy/7MtnhCpzb9ohnd0oDx/B1MRVXgOAtEoU9y23M1dwY+CLFOrdCerNJdsZ/dg0KjLMg/hgIuVMw+5ClLKbi/+W+89VgeuVYaj1CTEnwHOp/IyfuXIj3BREnJ7LpEhTFFo62GuO4ikDWBG2ZukQMucO5plYUkfDFznC8K+4h470JtJItCOxxdk/FKCYr7jXzgk8ggeHkJdupxdG2t8X3l89ZVrjwsCpOfT/bqASfYlSI6xK5YM+Z+85xF/qubG0xXtw22Vhwi7uaj0a40OkzbXLV8/XVgqN9aTelfLwVVoWCVkcRRbfyWweSwU5E2mV6M6DfOh/2RfTe+xL3BJKWNSIUn7k1p0RCIAXxpA/z6ClKActNY5zQAhYEbbBUwvrE6grt9MPDiERwLbLQvT/uJWnejYkmMAIoGhzWdHCnxvzGtAob+LYbPr9iZRbb0qXK09/9ZRpg4aE2yPIE7fRv82iZ4USFh4+yxZivuJu+onrUaEScVvw1bHsh47wZh4eHEIem01HudnZbkCk+dX32+1gC+4aeDKGzLmD/mQKNdyTKGmC1elC6H/YJ3/vgTO51VGupvymnVW/laJgZ+LgLfSLY9RaX6kr+r0xoDXKKEKWZb/77rt//etf2dkdO5ofPnx4XzMZGRkyixfkTLw/kTo/n749gjRysOGsMPALdsNZoTuJegUEH1whszTBJBJGc3nrE6jUOXSSn30OBQDEWtjyYgc5MBeZ6E/smkZn3k4/MZzUUbCvGN26hx/zDffpFYHthkIscB8IAHRJtmgOfV+ttXa7g8WRjGMAoCHhnmgyYz69dyY9K5RoYOHNC8LAL7iF+/lTFV2rQw4RJe6RAOBXc/XGICJ1Dm0HcaKdgRB7LRf6uymoBQUUoSAIM2fOXL9+fVpaWlJS0p49e9rfM3/+/BdeeGHDhg0bNmz47rvv5BcSAAa7E/+7gTp+G50SSFSbYeUpftBObtvl650fnK5CY7/nHjrCn9UNBID/Dsl7Jpa0o+Px9rAleSDwjF8Iwag7KbitiXYntoyj8v7CrE+gAvXE6Sp072E+7L/si+l8TSfHhwhgy3nh5nORADDakp0+h7JHc2hrHMo41gIBcGMQsWsanT6XvjuKRAA7c4XE77iJu7hdBZ0moilsRMm7ud38QAD4P++cX+zTHNoCV10mGA2kiwfl5qm0LHKgQCjTnj17cnJyLl68qNPpxowZ889//nPatGntb9u+fXt0dLT84rUh0ZfYfzO9rxg9c4pPr0QPHeHfOC+8FEcuiPiTwaPOAs+n8e9cFHgEQc5E4ogo+HW/S2VOp+3aCfZemryP+OrgmVjybzHkFznCq+eECzVodbrweoZw50By+Qiytf9nnQUe+I3/MlcgKK9GJ08XY40/Vw5g3wEn/aP2Vq8Z7U18mky9FEe+d1l4/5JwtAzduocf6SU8Ooy8J5ps7ff0fb5w/698tRmGewyEKpgk5NipObQFa06Zfu0i1xoFVqy7d++eOXOmTqcDgHnz5p08ebKiooNaDceOHfvpp59KSkpkF7ADREPH/26gotyIy7Vo4X5+3PfcoWZn610FQsxX3JsXBIKAJ4aTlxfQ8bHdSjyofhxzT9AGLfUni1kjK4aEcrP3cGKe0pMVaPQ33Je5grsG/ncD5R1xvfwy9gKymLjKawRF0/6hSsuiJOGuxPoEKn8Rs3ksFexMnKtGDx3hI5ptA5wAK0/xc/by1Wa4NYx8+dbBYP+vHhxvBazAjrC4uDguLk787OXl5eTkdO3aNV/fP7ml+fn5ffXVV2az+ejRo6+++uqyZcs6bMpkMpWVla1bt078J0EQt9xyy9ChQyWSfE4w3BwIH2TCKxlwohxN3c3dHAwcgj3FAADj/eCdcTDcQwAQBL9QsV45azZJVMWNZVmWtV3VjE4Qk6QQfiEy9NVN5HnwDpniB1P84Gw1bL4AO/PghwL0QwE3ygvO1wInwHg/2DEFgvV8Y2AkXDxlLrhCD0uyYe8yPzibnwUIUQNCOQGBoOTbZ1lW6CqPudQ4ASwbDA9Ew39yYPMFuFALq9OFNzKEAD1k1oGGhFfi4LFhAiEEmDVarqrUXFdN6l372CnHcRzHUZQCh8zmwmwAIP3DlBprNvy1UxRFkl1s+SRRhJcvX543b1776zt27BgzZgxCiGgVmk0QBM+3jWE+f/68KPrhw4enTZs2b948f/8OrEziD6W6+o+cRtXV1e1bsyEUwMOD4K4I2HKJ3HKJ+LEIAMBTg9aORvdHIwLA2jmjpbwG8FWl5tICeoAkC2qe5yV9UgAAhLiSfAAg/cMk76vbyPHg1yXGHT4cDy+NgncziQ+vEGeqCQJgxXDhhVhEk8DzQAZEAICl6IrOpnLK/ODmoqsAQAeEK/7qRQG6nMtkgAK4KwIWR8Dea8Tmi8TBUqK+DiJcYMdkYYwXEngAAMo/jCvIshRlMwNH9rE7vhkbiN5DuGs5AEAMCFXq7dvwwbvzy5FEEUZERHz77bftr4eGhgJAQEBAebm1fGVDQ0NTU1NgYGCbO1tEnzJlioeHx6VLlzpUhC4uLkFBQRs3brSl9N1Ap4M1ifDESNhwljfy8MLoDkopaYKjjVWlZEWRLmyQFDKwLCual6WDqywRTI2Um5feR0VnXTI8eHeI1MFr4+CFePgiR4hyI6YE/LG2YyKG1QNwRdm2lZPjODkf3FhRCAC60Gg1fNsURTGMisKPbo2EWyPhdBX6rRTdG026t/Ik04UONhRkQVmBbnhiH3sRF/ryf/+C0cDXVhCMxiU4UiKDVpfI/OCSKEKtVjtoUKez/9SpU1988UVBEEiS/Pnnn4cNGyYquZqaGoZhXFz+VPo1JyenqqoqLCxMCjn7iK/uegWmNcEDjWd/Y4uyIT5FTqlsiKOdE/QCFwaWDG673qS8/EhnN6Gxnq+tpDx8FBGs7zhUGFnvGO1NjPZu6xVjzS/TVUVSNcMW5wJCTECEUlpQfhSwNsyZM4dhmAULFrzyyiuPP/74qlWrxOt33333+vXrAWDPnj2zZ89evXr1ypUrJ06cuHTp0shI+3PWsBYisO/xgD1lekn365WrFEFgS8Qwsn6eSMHmdKcwocppTqTgQANfAWcZhmF+++23HTt2lJaWfv311+PHjxevP/XUU15eXgCQlJRUUVGRnZ3t6en5+eefJycnyy9k3/kj4yhCdpqu2joe8FTYc5jgKFNmOluU7RQzVmlZegNXUYwsZsrLr+8eH44GHRBGMBquohiZjYTWLmMJ+3fJkQ5RpiSaq6vrI4880uZiSorVhOju7r548WLZhbIxlKsn5ebJ19dwNeW01wClxekNzYlFsHGsxzRvC+x1R2gtOuGoEYR9gaBoxj/cUphlKb6qjYxRWpzeYHGYwvQtKO+I1Y9hguw4mlAwGviaCoLR0L5BSstif1jrlbcrTGgvWNNr4TVQr2iuVm+fyyCB58oKgCDoAAcyBWFFKCEtZSiUFqQ3sMU5gBATGAkqcFu3O2jvANLJha+r4utrlJalNzjgKZENaa5Iap8Dv6wQsRbaO4DU6ZWWRT7wHCchzR4TdrkjxFNhnyAI6zLITmdD7CfVB5iQaLDfV1/kiAMfK0IJER1H7XU8OHaeyb6jCYkG+9wWCIZavr6a1OlpLxXFj9oRTGAEQdFsWQGy9Kq+s6I4Qv3R9mBFKCG0dwCpc+brqvgG+7OPOVoJHptjv8sg0YbBBEbaqbez4hA0Q/uHgiCIR632hdVPKtixBj5WhFJCEGLsgbi7siMQz3Gl4oF5uNKy2CuM1TBuf/4y2C7ad+w3kNQxEylgRSgt1m2BvSlCrqwQcSztE+hQB+a2hfELIbROfHW50FivtCw9wwHDyGxOcxixnS2D+NpKobGe1LtSHr5d392PwIpQWprzLdnZwrA5lB5PhX2AIETDst1tC7CfVN+x0x2hw2ZVxIpQWpodqe3McRQbx2xC87bAnmZDxFrY8mIgScY/XGlZ7BgmaCCQJFeSj1iL0rL0AIujroGwIpQW2j+0Jd+S0rL0AOwpYxPscVvAluSBwDN+IQSj6fJmTGcQGi3jF4x4ji3NV1qWHmAtTO94WRWxIpQWgqLpAaGAkH35jznmgbnNscaT2VWGEYc1jtkcqz3ArrJvO+zAx4pQcjT2VobCemDu7Ga/JYRUAjMglNBouaoSwWhQWpbugq3itsJqD7CfgY8sJq7yGkHRtL8ktcTVDFaEkmN3B0XYU8ZmkCQTEAEI2ZHbMC45YiuYYDuzB7DXcgEh2j+MoJQpxqAgWBFKjt35yzhg7nnpsLPqdM02fLwj7DtM8EAgCLYkF/Gc0rJ0C2sovUO+eqwIJYcJigSC4Ery7GU8YOOYDWkuQ2EfyyCuqlQwNVFuXpSrp9Ky2D2kTk/7BCLWwpUWKC1Lt3DkgY8VoeQQGh3tE2jN1WIPYHcJG2JfjqPNEYT41dsGTYh9vX1HzDIqghWhHNjRsfkfB+YDQpSWpT9AB4QTNMOVF9pF/AzOKWNbrBVJ7WHgA0JipIdjHg9jRSgHdpR/WSxD6JgH5lJAUDTtHwYIWezBX8aRjWNSYN0R2sMJMVdehMxGytOPdHZTWhYFwIpQDkRbk124DmJPGZujsZ/qdM1vH5tGbQMTHA0EwRZfBUFQWpYucPAcGlgRyoF1Kiy+CggpLUsXYOOYzRHtAeo/KBKMBr62gtBoaZ9ApWXpJ5B6F9prALKY2fIipWXpAocNpRfBilAOSGc3yt1bMDVxVaVKy9IFDj4epMC6DFK9fYwtugoIMYERQOJpwWbYSxixg1vF8S9eJuyjDAVCbEkeOOqBuUQwAfZRrxwnUpACe7EHOPjbx4pQJqyJ1tQdT8aVFyGLifL0I/WuSsvSfyAYDT0gBASBLVF1vlkLDqWXAI2YX0bdhQkFQx1fX03q9LS3v9KyKANWhDJhdaRWtyJ05NQSkmIX0YQs9pSRAE3oIGg2OystS6eIv0wmMAIIQmlZlAErQpmwiwiK5vRaeCq0Mc2FCNT79hHPcaX5QBBMQLjSsvQrxOT1gqmJq7ymtCydggc+VoQyQXv6kXpXvqGGr69RWpZOcfADc+lQf4YRrrQA8RztE0honZSWpb+hfnsAHvhYEcoFQYi/MzX7yzj4gbl0NNcrz0Mcq7QsHWN99cGOuyeQDvU7juKBjxWhfIinL6o9JsQH5tJBaHS0b7DV/KhKRE8ZjQNPhdLRnF9GpYoQcSxbXgQkyfiHKS2LYmBFKB+Muusx4QNzSVF5PabmdNtYEdoepsVxVJX+MmxJLgg84xdMaLRKy6IYWBHKh9VfRq2mUXxgLikqr8eE3750UO7elJun0GTgasqVlqUDcA4NwIpQTpgBoYRGy1WVCqZGpWXpAHxgLilq3hHyNeVCY72Y/0hpWfon1ugpVb59R66+1AJWhDIiWuERUmf2bXGr6uDjQTpa6pWDwCstS1twVXqp0QSr1x6A3z5gRSgzjFrHA19fw5YVEhqdg48H6SB1zmK9clZ99ZnNuRcBQBM6WGlB+i2MNX5GdTtCxFosBZlAEGLgv8OCFaGsWB1H1Veo05yZDghpo0biMoTSodp4MnNmOgBoo2OVFqTfwgSr1HHUknsRsRkYUCsAACAASURBVBYmaKCDZ1XEilBWrBl41acITVnpAKAbPEZpQfoz6swuJDTWW4qyCUajjYxRWpZ+C+01gHR2Ewy1fG2l0rL8CVOmOPBHKy2IwmBFKCtMYCSQFFdagFiL0rK0AiFz5mkA0A7BilBCxHpMatsWmLPOAEKaiOEEo1Falv6MOu0B5qzTgFfAWBHKDMFoGL8gxHNcmYoOithruXx9NeXuzQwIVVqW/ow665Wb8FQoCyrML9NiDNBEDFdaFoXBilBuREdqVYXVW80jQ+KVFqSfQ+pdaE8/ZDGxFSqqV968J3B045jUWI9F1GQPEI0B2sgYbAxQryKsra3Nzs7medX5mvcRFR4UiVOhFk+F0qO2bQFXeY2rKiWd3Rw8nloGRMO4qgoTiitg7SA88JVQhLt3705MTNTpdOPHj+/sno0bN0ZGRt52221RUVEZGRlyiic1GpX5yyDWYr6aAQShGzRKaVn6P9b8MqrZFliNAYNG47x6UkN7B5BOLnxdlXrqz5ivnAFsFQcARRRhYGDg2rVr161b19kNubm5q1evPn78+IULFx544IG//e1vcoonNUxQFBAEW5yjksSD5pzziLVogqNIFw+lZen/qM1jwuokhadCGVBZ/ZlWxgAcOqyEIhw9evS0adM8PT07u+GLL76YOnXqoEGDAODhhx8+fPhwSUmJjAJKC6l3oTx9kcXEVRQrLQtASwwZngpl4Y+MCmpYBgmCOfssiDtCjPSoahmEjQGtUWP0dF5eXlRUlPjZ29vb3d09Pz8/ICCg/Z0IIaPRmJaW1nIlOjrazc1NJkF7izZsaFN1uelymotfsNKy4EAiWaFcPSl3b76uiqu8RvsGKSuMpTBLaDLQvkGUl5+ykjgIqjKMY2NAayRRhIcOHdq5c2ebixRFvfnmm935c4PB4OXl1fJPvV7f0NDQ4Z3V1dX5+flLly5tufLEE08sWLCg5yLLS/RoOH3YkHYQxtzQ6zYaGxuJPi/lBEMtey2X0GgtvmGswdDH1uTBJg+uIGRABF9XVZ99XuPk3qM/bGy0ca52U8YJAKAiYwzqfvUmk4miKIZhlBakr/BegQBgLsjq5hfONWN7UQTBdOUMAPDBg9T59m34a9fpdDTdhaaTRBH6+PiMHDmyzUWS7K4Z1s/Pr7a2tuWfNTU1AwYM6PBOb2/vIUOGtN4R2gUoPtn47btcQaYTb+51vn+EkIuLSx8labp8Usys5urRqaVabdjkwRVECB/CXk6lKot78RS2fXBj7nkAcIlJclL390nTdP9QhOA82KB1Emor9IRAOndtuBK1oE6ns7kglrzLyNhI+wa5BUfYvHFbIecwl0QRxsTExMT0Pl3TqFGjNm/eLH7OyMggSbLFUto/IDQ63ZA447ljxrNHXCbfpqAkzXZRbB6RD0Yd9ZiQxWTJvwwkqR3Yds2KkQqCYAIjLbkX2OKrygYt4CwKbVDAWaakpGTnzp2pqalVVVU7d+48duyYeD0uLk78fPvtt5eWlr788ssnT5584okn/vrXv+r1evnllBSnUZMBwHjmNyWFQKjZUyZOSTEcjD/iyRT1lzFnZyCO1YQOJvWq3g72MzQhqlgGNQ987BlgRQFFWFVVtW/fPo7jkpOT9+3bd/bsWfF6QkKCu7s7ADg5Oe3fv//ChQvLly+fPHnyhg0b5BdSapyGJxGMxpx7ga+rUkoGtjS/ObNaiFIyOCAqqVeOjQGKoIZCbNgY0B4FvEZjYmLef//99tffe++9ls9Dhw79/PPPZRRKbgitk25ovLLWUdPlNADQDYnD/tMywwRF8fWn2KJs2qvjw28ZwHsCRVBDBIU5+xziWE34UGwMaEG9Kdb6PVbr6NkjSglgxgmWFEITGg0AlpwLSgnA11ezZQWE1kkTNkQpGRwTxj+U0Oi4ymt8fbVSMpgycXbZtmBFqBhW62jOeUWGBGIt5pzzQBB4PMiPbmgCADSdPqzUMaE58zSuw6wMJKUbEgcINaUfUkqE5tzC2Cr+B1gRKgahddINiQeEFNkUWnIvIIuZCRqIM6vJjyZ8KO0bxNdVma+cVUQAXIdZQfTxKQDQlHpAkd75+hq2NB8bA9qAFaGSOI2aBAr5jjaXXsL+osqgH5MMAE1pSsyGLXWYsVVcCXTDk0hnN7Yomy3Jk793c2YaNga0BytCJXGKGWu1jsruO2q6jDOrKYk+4QYgCOPZI8hilrlr7C2sLARFO8VOBABFrKM4grBDsCJUEkLrJB4YGDOOydkv31DDXsshNFpcmVopaJ9ATcggwdRkvHBc5q7/SLOOvYUVQh83FUTrqMyHxC3GALwC/jNYESpMs3X0Vzk7NWedBoS0A0cStP2nrbJbms+KDsrcrwmXpFcabWQM7e3P15Sbc87L2W8rY0ConP2qH0c0E9fX11dWViothRXk7F/exKH0k7Vn0ynXbvmt0DQdHNynshXYf1oN6Mck1333genSKcFQK5vLEuI589XzQBDaaFyHWTkIwmlMcsPe/zalHtAOHCFbt7jmWmc4oiJctGjR6dOnnZyclBbECmItIPBwYG43j68rKirefvvtuXPn9rpH7D+tBkgXd+3gMaaLJ5vO/OYycbY8nVpyLyGzkQmMoNy8ur4bIxn6+JSGvf81nv7VY94jBKORp1NsDOgMR1SEFovl008/vfHGG5UWpJc8+OCDZnPvPSzYkjy+tpJy82T8w2woFaYX6ONTTBdPNqUekE0RmlvKsWIUhRkQygRHsUXZposnRd8ZqcHGgOuAzwgdjubAiXjsK6E4TiPGkzpnS94lrqJYnh5N2BigGqyHxHKF0FiNAQHh2BjQHqwIHQ58TqAeCEajGzkeAJrS5HCZEYwGS2EWQdHagb2vkoaxFfq4qUBSpgsnhcZ6GbrDxoDrgBWhY4E4FptHVEWzJ/1+GTzpzVfOgiBoIocTGtvXesX0FMrVUzdoFOI5eXJLYWPAdcCK0LGw5FxAFhMTFEm52U1J+v6NbtBoyt2bqyyx5GdK3ZcJ7wlUhj5OpnRr2BhwfbAidCxwFTrVQRCypVvDVnG14RQ7gdA6mXMvcFWlknaEjQHXBytC5SkoKLj33ntTUlJef/11QRAk7cuUmQZYEaoM67bg9GHEc9L1wleXc5UlpN5FLImHUQOERucUMw4QakqX9pAYGwOuD1aECsPz/PTp02NjY998883vv//+tddek64vobGeLc4hGA3OrKYqmOCBTEC4YKgzX06TrhdxDaSNHg0kHvUqQh/fnG5NSrAx4PrgIaEwu3fvdnd3f+qpp2JiYrZs2fLmm29ynFTbAtPl5sTzcgXwYrqJ1WVGSutos1Uc7wnUhW7wGMrNkysrtBRekagLbAzoEqwIFebo0aNjx44VP48cObK6ujo3N1eivvCqULXo46YCQRgzfhdMjZJ0gJBY+xBnW1YdJOU0egpIuSnExoAuccTMMu0xsMBKezZnhSLB7c9prktLS/ft23fkiNV/WhCEkpKS6OhoKXrHFVhUC+Xppx04wpx9znjumHPiTTZv31J0RWisp70G0N4BNm8c00f0cSmGw982pR30uO0BICmbt4+NAV2CFSEcuIam/cTxspRDIQD+PZVaNPCPdZlOp7vlllseeugh8Z8zZ87U6SRx62JL83FmNTWjj08xZ59rSj0ghSK0Ft/BdZhViSZ0ED0ghCsrNGWe1g2Nt3Hr2BjQDbAiBB8dhLoQtRY5NKErQ/jr/5TYLDg4OD8/Py4uDgAsFktNTU0fK0t0huiIocWZ1dSK06jJtV9tNV85w9dWUh4+tm28ud4INgaoFP2YqfU/fdqUdsDmihAbA7oDVoQw0ovIuUOx72Hu3Lk333yzyWTS6XS7d++Oj48PDAyUoiNceknlkDq9bliS8exvTemHXFMW2LBlxFoseReBJLXRsTZsFmNDnBNurP/5M+O5Y8hsJLS2LIyDjQHdAZ+dKkxMTExKSsrMmTNffPHFxx9/fO3atVL0gnjOfDUDZ1ZTOVZPelv7jpqvZiDWogmOJvWutm0ZYysoLz9N+DBkMRkzfrdty3gF3B2wIlSejz/+ePny5b6+vgcPHrzhhhuk6MKScx5ZTExgJE48r2Z0wxJJZze2OIctybNhs83ewngqVDVSLINaGQPwCvh6YEWoPARBzJo169FHH5XIWRTwqtBOICjaadQksLUnPfYWtgv0o6cQNGPKTOfra2zVZrMxIAobA64PVoQOgUn0lMFToeppzsK8H2yUbE8w1LLXcgmNVhM+1CYNYiSC1LvqhsaDIBhPH7JVm2ZccaJ7YEWoLvLy8sTMMpmZmenp6TZJPSo01rPFVwlGo43EiefVjjZiGO0dwNdVma9m2KRBU+ZpQEg7cCRBM13fjVEUa6neVJvlHcVJ9rsJVoTqYtSoUQUFBXfdddcdd9zx1FNPjRs3rr6+r0U7TZnpgJB24AicWc0OIAh9XDLY7qwIHxDaEbphSaSTi6Uwiy3N73tr2BjQfbAiVB2HDh26dOnSqVOnDh06NGjQoM2bN/exQZxZzb7QJ9wIAMYzvyHW0vfWTFlnAO8J7ASC0TjFTgQAY/qhvrfWbAwYgY0BXYIVofIcPXp07ty5M2fO/OWXXwDgm2++ufPOOxmGAYC77757x44dfWwfB1PbF7RvkCZkkGBqMl040cem2LICvraCcsXphOwG0TramLofUF9TfOADwu6DA+oVJicnZ9asWe+9997w4cP/+c9/NjU1FRYWGgyGffv2AUBZWVleXp4gCGRvs+WypQV8bQXl5skEhNtSboyU6ONTLIVZTWkHRCfSXmMNph48GqcTshe0A0fQXgO46jJz7kUqdHBfmsIr4O6DFSEIpkbDwa8Rx8rQF0FSzpNmtw7m+/jjjxcsWHDHHXcAwBtvvPHtt982NDR8//33YhpulmVZlm1qanJxceldj+bMZn9RPBXaD/q45NrvPjBdPCU01pPObr1uB0+F9gdBOI1Jbtj3RVPqftc+KEKurBAbA7oPVoRgunCy/pd/y9YdoXdxnTq/5Z/5+fkjRowQP4eHh2u1Wh8fn+XLly9cuBAAsrKy4uLieq0F4Y/K1HgqtCdIFw/d4DGmS6eazvzqMmFW7xpBPGe5eg4AtLguuV2hj09p2PeF8cxvLrcuBejl+lUMHtUOwsaAboEVITjFTvQ0GwWjQYa+CK2TPv5PuWN8fX3LysrEzzU1NWazeciQIefPnxcVYUZGRoua7AWI58zZGUAQ+JzA7tDHp5gunWpKPdA7RYhYS+1X7wimJsY/lHL3trl4GOlg/MOY4IFs0VXzpVR6aEIvWjDnXGjY9wXgHBrdBitCIGjGefzNSvU+b968BQsWPPbYY2FhYS+//DJBEIsWLVq6dOmSJUu8vLxee+21ZcuW9bpxU8bvyGJiAiMoN08byoyRAacR4witkyXvEldZQvv0rG4AW1ZQvX0dW5JHMBq3mXdLJCFGOvRxKXVFV03pB116qggRatj3Rd1Pn4HAayOHiz6omC7BXqMKM2HChJUrV06YMCEsLMzLy2vkyJExMTFr1qxJSUkZMmTIjTfeePfdvZnI+Lqq6h2vVn2yDgB0wxJtLTVGcgiNzmnkeECopwGFjSf3lr/+BFuSRw8I8XvqTafYPrnbYBRBPyYZSNJ86RQyNnb/rwRDbeX7q+p2bwckuN54h+9jr9q2kEU/Bu8IlefJJ5988sknxc/PPvssANx333333Xdf71pDrKXh0FcNe79AFhPBaFynzne9aZGtRMXIiT4upenU/qbUA27TF3fnfmQ21nz5TtOpfQCgT7jR8/bHCI0kRZ4xUkO5e+uiR5ky080ZR50m39qdPzFfOVv92Qa+vpp08fC662kdrrvUE7Ai7FeYLhyv/fp9rqoEAHTDkzzmPYyrcdovusFjKHdvrqLYUpCp6cqBkC0tqP7Eag51n/VXlylz5BESIxH6uKmmzHTzmcPQpSJEqOHAzrrd20EQtFEjvO5eiU+Fe4oCirCysvK9995LT09vaGj48ccfxcjxNsyfP78ltdiUKVNWrVolr4z2B1dWWPvt+6ZLqQBADwjxmPswXhLaPQThNHqK4dDXTakHrq8Im07tq9n5FrKY6QGh3vc9i2NG+wFOoyYRX77D5l7kqstorwGd3SYYaqt3vGa6nAYE4XrDQvdb7oPexhw7MgoowpqamrKysoSEhGeffbazpNKHDx/+8MMPQ0JCAMDTEzt6XA+hqaH+5x2GIz+AwJN6V7fpi10mzQaSUloujA3Qx001HPq6Kf2Q+21LO7wBmY01X2xpSj8EAPqEGzxvf4LQaGUVESMNhEanG55kPH3YmH7I9cY7OrwHm0NthQKKMDo6+q233srJyRHPwzpj+PDh0tXn6ycIfOPxX+p+/EQw1AFJOY+/2f2W+/oSf41RG5qQaMY/jC3NN2eehtC2qZPZouyq7eu4ymuE1slz4RP6uKmKCImRCN2YZOPpw42n9negCAWhfs/n9b/8GxDSRsd63f0MrrndF9R7RnjXXXfRNJ2QkPDcc8/5+voqLY7q4HIyyn7+VCxlro0e5THvYWwQ65fo46bW7d7elHZA82dF2Hjsx9qv30UcywRHed/7D9o3SCkJMRKhHTyGdPHgygrYoqtM8MCW63xDTfVnr5qzTgNJuk1f7DbtTmwO7SOSKMK6urq9e/e2vz516lRv726d4m7YsCE2NtZkMm3YsGHGjBknTpyg6Q5EraysPHfuXGvb6dq1a++9997rN26TIn9KgoT6I7saL3wFAKSXv9O0xUzMODOA2SBHTgDFaWxsJBwpWQYamgQ/fmLMOMYm/8V6xWxs+vZdNuMYAGhGT3G69SETo4H++/ZNJhNFUR06E/RvOI4jhibCqT11v/+sm2md1rirGU1fbhEaakkXD6cFj5NRsYamJmXllILGxh7EjVwfnU7XofpojSSKsLa29ssvv2x/fcSIEd1UhEuWLBE/xMXFeXt7nzt3bsyYDnKj+Pj4DB8+/ODBP+pYurm5UVQXx2O9TmCtEhDL8sU5MCDKffqdLlPmOlqNFYRQX3LO2R8uLubIGPPVDCYvwyVkliXvctWn6/jqclLv4vmXp5xGjldaPsmhadphFSGddFPtqT1sxlGf+Y8AoLrd2w0HvgSEdEMTvBavIF3clZZRQuQc5pIowrCwsP/+9782aUqn02m1WpPJ1NkNFEX1wpvmww8/FMs72A0IAbJuZE+mpsaMG+76t42ugaHKCoWRB318ivlqhuXMrw2sqX73dsRzmvAhXvf84zrOhJj+AR0cTfsGcRXFjSf3NJ7YY8m9CCTlPute15TbcRJRG6LAGSFCKDc3t7CwEAByc3N1Ol14eDgAbN26NSQkZPbs2Xl5edXV1bGxsRaLZe3atXq9PjY21oYCrFix4syZMzZsUAaQxdyw9z9IEChP3ztmz5zz8OOkK3amdRScYifVfrWVu3qu7uo5IAjXlAVut9xHUOo94MfYEH18Sv1Pn9X8dzMAUJ5+3ves1EQMU1qo/oYCY8lkMt10000AEBkZecstt7i7u6enpwNAampqU1PT7NmzKysrFy1alJ+fzzBMfHz8rl27nJ2dbSjA9OnTp0+fbsMG5cE0fyZizU4jJ4grwYaGBqUlwsgEqXfRDUs0njtKOrt5LV6Bc+Y5FPq4lPqfdwBCuuFjvRYvJ/WuSkvUDyFQn+sgSwTP8yRJXt8tIi0t7cEHH0xLS5NNKvXQ0NDg6uqIQ8IxH5yrvFZ79EfPKXMoDx+lZZEbR3aW4ThOp9M1HvsRCMJ57AzHMYcaDAa7PyO0CV36vGAwjgPtE6i74S+UQ3kJYZpRsDyOg2Df/pMYDAaDwfQR+1aEZrPZYY/Kfv75Z6VFUIa9e/fyPK+0FApw7Nixuro6paVQgPPnzxcUFCgthQIUFhaeO3dOaSkUoL6+/ujRo3L2aN+KMCcnp7i4WGkpFKCxsbHXdZrsnSeffPLatWtKS6EAGzZsOHnypNJSKMD27dt37dqltBQK8OOPP3700UdKS6EAqampr7zyipw92rcixGAwjoBqffokxTGfWhGwIsRgMBiMQ4MVIQaDwWAcGvXGEXaHbdu2LVu2bOpUh6s+IwjC4cOHHfDBAeDIkSMJCQlarcNV3UtPTw8PD/fycrhqO5mZmXq9XqxO6lAUFRUZDIYhQ4YoLYjc1NTU5OTkxMXZprzi3Llzly1bdv177FsRGgyGLVu2JCUlKS2IAuTm5kZERCgthQLk5eWFhYU5VAEKkaKiogEDBjhgXHllZaVWq3XALAoGg8FoNDpgETqWZUtLS2219ImIiBg4cOD177FvRYjBYDAYTB/BZ4QYDAaDcWiwIsRgMBiMQ4MVIQaDwWAcGqwIMRgMBuPQqLf6RJcIgrB///7i4uJJkyZ16RTUjxEEISsrq6ioaNKkSQ4VVFBSUnL8+HGj0ZiYmBgVFaW0OPKRlZV17ty5xsbGYcOGJSQkKC2O3LAse/jw4aioKLGgtyNw5cqV/Pz8ln9OnTrVoYrzHD9+/OLFiwEBAZMnT7ZtbdoW7NhrdP78+VevXk1MTPz666+3b98+a9YspSVSgOLi4qFDh2q12srKysLCwuDgYKUlkol9+/YtXLhw8uTJrq6uu3btWr169ZNPPqm0UHJgsViGDBmSmJjo5OS0b9++5OTkzz77TGmhZGXNmjUvvfTSmjVrVq5cqbQsMrFixYqvv/66Zbn/ww8/OMiSl+O4xYsXp6amTp48ubS0dMGCBUuWLJGiI3vdER47duzo0aNXrlxxdXWdPHnyc88955iK0MfH58KFC56eno4WZTVy5Mi8vDw3NzcA+PHHHxcuXPjYY485wjJZo9Hk5OSIn69duxYcHLxmzRrH2RtdunRp165dN910k9KCyM2dd965du1apaWQm3fffffKlSvnzp2TaCPYgr2eEf7www/Tp08XZ/+5c+eeP3++tenAcdBqtQ6YcQMA/Pz8RC0IAAEBARzHOWBtpqamJq1WK2chb2Xhef7+++/fsmWLRqNRWha5uXbt2k8//XTx4kWlBZGV//znP48//nhhYeHBgwclrUFmr4qwuLi4xQzo7Ozs4eHhmPWYMACwZs2ae+65x6Emx8ceeywlJSU5OfmLL77w8fFRWhyZeP3118eNGzdu3DilBZEbiqIuX7787rvvJicnz5o1y2KxKC2RTFy9evWzzz5bunTpG2+8MXjwYOnKkNmraZTn+dZJtmia5jhOQXmko6KiokND0BtvvNHvc41OmzatvLy8zcUHHnjgsccea/nnqlWrcnNzt2/fLqtkEjN79uzCwsI2F++6664VK1aIn++5557y8vKvv/561apVN9xwg9SGI9mYM2dOXl5em4uLFi165plnsrKyPvroo9TUVCXkkpz33nvvvffea3PRy8vrwIEDALBu3TrR7N/Q0JCUlPTuu+/2mxPxbdu2bd26tc1FDw+PQ4cOAYDJZPL29t65cycArF27dsWKFb/++qsUYtirIgwICGiZIlmWra6uDgwMVFYkifD09NyxY0f762FhYfILIzNvvfUWy7JtLvr5+bV8Xrt27TfffHPo0KEWM2n/YNOmTWazuc3F1ju/xMREAJg1a9aQIUN++OGHO+64Q1b5JOO1115r/+De3t4A8NZbb7m7uy9fvhwAzpw5U1JS4uLi0npJZNfMmzdv4sSJbS7StHV+bjn8dnV1veWWW06fPi2rcFIyd+7c8ePHt7nY8uABAQHJycni5+Tk5E2bNkkkhr0qwuTk5CeeeILjOJqm9+/fHxQU1F8zUNM0HRMTo7QUyjB48ODr/O+mTZs+++yzQ4cO9b+sxNHR0d25zWQyNTQ09KdFwHUe/P777588ebL4OT09PSoqatSoUXLJJTl+fn6tV3jXIT09vb3msF98fX2vM35TUlKuXLkifr5y5Yp0XvH2Gj7B83xSUlJwcPDkyZM3b9783HPPPfTQQ0oLpQxPPPGEwWD4+OOPFy9e7OzsvHXrVkdwntyzZ8/06dNnzZrVYgl4+eWXHeG0bN++fVu3bhUr1Hz77bdarfbAgQMOdT4KAHPmzBk7dqzjhE/cdNNNiYmJbm5uBw8ePH/+fGpqqr+/v9JCyUF2dvaECROWLl3q4eGxcePGt9566/bbb5eiI3tVhAAgzv6lpaXJyckO6E7dwkcffdT6fPSBBx4gSXv1geo+2dnZ4vFJC4sWLXKEGBKDwfDDDz9cunSJIIgRI0bcdtttLXYkx+GXX34ZMGBAf9oRXp89e/acPHnSaDSGh4cvWrTIcfyEASAvL+/zzz8XBGHmzJm2qlDYHjtWhBgMBoPB9J3+v3XAYDAYDOY6YEWIwWAwGIcGK0IMBoPBODRYEWIwGAzGocGKEIPBYDAODVaEGAwGg3FosCLEYOyPsrKyTz75pLKyUmlBMJj+gMOF4mIw6ufw4cP3339/Z/+bkJDwyCOP3HfffcePH3eEZDoYjNRgRYjBqI7g4OC//vWv4mej0bhu3boJEybMmDFDvBIaGhoREbFmzRrHLEWJwdgcnFkGg1E11dXV3t7ey5cv37hxY5c3cxwn3t+Sb9ZisTQ2Nnp6era/WRCEiooKnU7n7u5uY6H/v737Bz0njOMAfoySJH+eE4PUDSRZjLbLblLqBqPhRicDJmVSUorBZqEsmM4kGSSLwmIgxWKg5G9+w9X16zv+fvU93Ps1PvXU55ne3fN8ug/AR8EbIcDnGY1GNE3L43jC4XAsFqtUKjabzWazEUJardbtduN53mAwmEwmn883n8/l7a/Xq1Ao2O12QojRaAwGg5PJRKGjACgPQQjwea7X6263kyeVn04nURTr9Xqj0RgOh16vl+O4eDx+OBxEUex2u8fjUb5rpShKEIRMJsPz/HQ6HQwGer2eZdntdqvQaQAUhjdCgG9wPp87nY40065UKvn9/sViMR6PNRoNRVGpVCqRSOx2O0LIeVfNCAAAASdJREFUZrMpFovZbDadTkt72+22y+Wq1Wq5XE7BIwAoBUEI8A0CgYA82ZVhGIqiWJaVUlBeWa/XhJB+v/94PKxWqyiK8nan0zmbzX69aoC3gCAE+AZ/t8NIc3qNRuOPFekqdb/fUxQlCIIckxKapn+nVIB3gyAEUBepR3Q4HHo8HqVrAXgLaJYBUJdQKKTRaJrNptKFALwLfBECqIvH4+E4Lp/P63S6aDRqNptXq1Wv13O73ZFIROnqABSAIARQnWq1arFYstlsMpmUVhiGKZfLylYFoBT8WQbg3T2fT61W+6O35fl8yr+P+TeXy2W5XN7vd4fDQQj5vxoBPhiCEAAAVA3NMgAAoGoIQgAAUDUEIQAAqBqCEAAAVA1BCAAAqoYgBAAAVfsDsF4+nNUA8cwAAAAASUVORK5CYII=",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (0.0, -6.3)\n",
+ "\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "sol = solve(prob, IRKGL16(), reltol=1e-14, abstol=1e-14)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "cf5ae474",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, 0.0, -6.3)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "36-element Vector{Float64}:\n",
+ " 0.0\n",
+ " -0.01\n",
+ " -0.03\n",
+ " -0.07\n",
+ " -0.15\n",
+ " -0.31\n",
+ " -0.514181125280798\n",
+ " -0.7330761872358589\n",
+ " -0.9463065906690233\n",
+ " -1.1575428055787818\n",
+ " -1.3328706604956533\n",
+ " -1.564884826131938\n",
+ " -1.776797626468188\n",
+ " ⋮\n",
+ " -4.223525717220678\n",
+ " -4.390227172003325\n",
+ " -4.618935373466419\n",
+ " -4.831187955871726\n",
+ " -5.034628174841646\n",
+ " -5.242958339993569\n",
+ " -5.409629638633526\n",
+ " -5.638312467582614\n",
+ " -5.850565456658035\n",
+ " -6.0540058685209095\n",
+ " -6.264918449748646\n",
+ " -6.3"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bf0b8d02",
+ "metadata": {},
+ "source": [
+ "### Case 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "id": "840c2638",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd2AUdfow8GfK9k1vpAdCCoQAoQQCofeONBU4VDjBxinecdjurNxP71VU7vQUBRVBRUCKEEoIEGoCJCSQ3hMgvWc326a8f0yyrGmk7O5sdr+fvzbD7Myzu8M88+0Yy7KAIAiCILYK5zsABEEQBOETSoSIcVRXV9+8efP69esFBQUajabNv165cmXDhg0xMTHmDCk7O3vDhg0//PCDOU9qaps2bXrrrbd6+q7y8vINGzZ8/vnnpgjJ0uzdu3fTpk3Z2dld78ZdkydPnjRPVIglQ4kQ6av4+Pjx48e7ublFRkZOmDAhMDDQ3t5+8uTJhw4d0u+TnZ29Z8+elJQUcwZWWlq6Z8+ey5cv9/1QDQ0NmAGhUOju7j59+vQ9e/YwDNP343ffrl27fvnll56+q76+fs+ePWfPnjVFSD3yww8/GH6TMpnMz8/viSeeSEhIMNYp4uPjd+3a9eDBg653y8nJMf81iVgmku8AkP4tJiZmyZIlFEVNnjx56tSpTk5OxcXFqamp8fHxYWFhK1as4Hbz8vKaOnWqv78/v9H2EYZhM2bM4F6XlJRcuHDhwoULp0+fPnDgAIZh/MbWv7i7uw8fPhwAtFptVlbWgQMHDh06tGfPnnXr1vEdGmKLUCJE+mTLli0URX3yySevvvqq4fb79+8XFhbq/5w3b968efPMHp2R4TgeGxur//PYsWPLly8/ePDgmjVrlixZwmNg/c6kSZP0FQYajebVV1/98ssvN2/evHTpUnt7e35jQ2wQSoRI71VUVOTk5AiFwhdffLHNP/n4+Pj4+Oj/rKmpKSoq8vb2HjBgALclPz+/vr5+6NChIpEoLi4uIyPD3t5+/vz5Hh4e3A45OTmXLl1SKBRcjavhwcvKykpLS/39/V1dXW/cuHHjxg2WZaOjoyMiIroTNsMwN2/eTEpKUqlUAQEBs2bN6t3Nd8mSJatWrfr5559PnjxpmAjv3LmTkJDQ0NDg7e09a9YsNzc3w3dxH3zIkCESieTSpUspKSkCgWDy5MnDhg1rf4rq6uqYmJiqqqqAgIB58+ZJpdI2O3BfRUBAgIuLi+H2tLQ0jUYzevTozoIvKSmpqqoKCgpq89lTUlIwDBsxYgT3Z319fX5+voeHh4+PT15e3oULF1Qq1bhx48aNG8ftoFQqY2JiSkpKfH19FyxYIJPJHv3F/ZFIJPr0009/+umn+vr6K1euzJ8/n7tavLy8PD09c3Nz4+Pj6+vrV69e7eXlBQAMw1y7di0lJUWn0w0cOHDmzJlyubzDIzMMEx8ff/fuXYFAMGPGjODg4O7EQ1HU5cuX09PTdTpdUFDQzJkzxWKx4Q6pqaksy44cOVKpVJ46derevXs+Pj4LFy6USCTcDteuXUtOTsZxfNasWUFBQT39QhAesAjSWzU1NQBAEIRCoeh6z2+//RYAtm/frt+yePFiADhz5szYsWP1V6NUKj116hRN01u2bMHxhw3YGzZsMDzau+++CwBffPHFokWLDC/mtWvXarVa/W7nz59v/960tLQ2+dLJyenXX3/tOv76+nruk7bZzkWydOlS7s/79+9PnTrV8OBSqXTnzp2Gb1m2bBkAxMbGTpkyRb8bhmHbtm1rc/BffvnFzs5Ov4+Xl9eNGzcAIDAwsE0A33//fZv3cvdfmqa5PzMzMwFg/vz5+h1eeOEFADh9+nSbN9rZ2bm7u+v//O233wDg1VdfffPNNw2rf9evX0/TdFxcnKurq37joEGDiouLu/4mv//+ewBYvnx5m+2jRo0CgO+++45l2T179gDA22+/vXnzZv3B4+LiWJbNy8tr8/O5uroeOnTI8FDr168HgAMHDowfP16/G47j27ZtYxhGv9vu3bsB4IMPPjB8b3x8fGBgoOHxvb29L168aLiPs7Ozvb399evXPT099bv5+/vn5+fX1dXNnj1bv5EkyW+++abrLwSxBKizDNJ7zs7OAQEBNE0//fTT9+7d68URNm7cKJPJTpw4cfPmzX/84x9qtXrdunXvvvvu/v37v/7661u3bh04cMDT03P37t3Hjh1r897t27dnZmaePHmypKTk/PnzI0eO3Ldv39/+9rcuTldcXDxlypS0tLQtW7ZcvXo1IyPjm2++wXH8ySef7F2fGq7619nZGQDq6+unTJkSHx//9NNPX7hwISsr6+eff3Z1df3LX/7y888/t//garX6t99+S05O/vrrr+3t7T/66KO4uDj9DomJiWvXrmUY5osvvigqKrp9+/a0adMee+yxXgTZd4cPH/7qq6/+97//3bp16+DBgz4+Pnv27Pnoo48ee+yxJ5988uLFi5cvX160aFFBQcHLL7/ci+PTNF1SUgIAhuXa77777sCBA5988kl8fPyJEycGDhxYX18/Y8aM27dvP/XUU7du3crKyvr4448VCsWqVau4hx5DW7ZsoWn64sWLJSUlx48f9/f3/+ijjz777LMuwrh169acOXPKysree++9GzdupKamfvzxx3V1dQsXLszNzTXcU6PRPPbYYwsXLrxw4cKVK1dWrlxZXFy8adOmp59+uqqq6vDhw0lJSZ988gmO45s3b35ktx2Ef3xnYqR/+/XXXwUCAXctDR06dP369Xv37q2urm6zW2clwtGjR1MUpd+4dOlSACBJMj09Xb+RyyJr167Vb+GKQSRJ5ubm6jdWVlbK5XKCIEpKSrgt7UuEK1euBID//ve/hrFdvnwZw7BJkyZ18TE7LBFevXpVJBIBwM8//8yyLJeDt27darhPXl6eWCzmHhe4LVyJMDw83LDw+sUXXwDA888/r98yc+ZMADAsTzAMwxUizV8ixHE8KSlJv/Ho0aPcL/7666/rNyqVSmdnZ5IkVSpVB99gq/YlQpqm//nPfwKARCKpqalhW0uEGIYlJiYavvedd94BgIULFxpu/OqrrwBg1KhR+i1cidDR0bG2tla/MS0tDcdxR0dHpVLJbWlfIoyMjMQw7MSJE4bH37dvHwCsW7dOv4V77nnppZf0WzQaDVdt6+/v39zcrN/ONRl89dVXXXwhiCVAJUKkT1auXJmUlPTYY4/JZLKMjAyu45+Hh8e6desaGxsf+faXX36ZIAj9n9yNfs6cOUOHDtVvnDx5MrSWvQwtXrx48ODB+j/d3NzWrVtH03T7siNHoVAcPXrUxcWFywF60dHRw4cPv3r1akNDQ9fRMgyzadOmTZs2rV+/fvLkyZMmTdJoNNOmTePy6759+3Acf+ONNwzfEhgYOHv27KKiIi4V6b3yyiv6BwgAmDVrluFnbGxsPH/+PPeJ9PtgGNamR5LZTJ06lau65HC/CABs2bJFv1EqlY4dO5aiqO7UDSQnJ3Pf5OrVq8PCwt577z0A2L59O5djONOmTYuMjDR8F5eVX3vtNcONzzzzjIeHR3JycpsrZP369U5OTvo/w8LC5s6dW19f377syMnOzr5x40ZERMSCBQsMt69evdrR0fHUqVNt9jf8LYRCYVRUFABs2rRJ31IInV+6iKVBnWWQvgoPD//tt9/UanVCQkJiYuKpU6fi4+N//PHHoqKi+Pj4rscVtOm/wPUr6XBjRUVFm/fqO3TojRw5EgAyMjI6PFdaWppOp5NKpa+//nqbf2pubmYY5t69ew4ODl1Ey7Lsrl27uNc4jg8ZMmTt2rVbtmwhCKK0tLS8vNze3v7DDz9s8y6uZqyoqCgsLEy/MSQkxHAfrotQeXk592dWVhbDMKGhoUKhsP0HNL82v4iTk5NAIJDJZG36Ael/qUf2ECksLNR/k1KpdNq0aVu2bGnT4mv4MAQALMtmZmZiGNamjVAoFA4fPjw2NjYjI2PgwIH67e0vj4iIiJiYmIyMjIULF7YPKTk5GQC0Wm2bRMudorKyUqlU6rsCCYXCNmOBuM/e5md1d3eHji5dxNKgRIgYh1gsnjp16tSpU7dt23bkyJEVK1Zcvnw5Li6Oq+LrjOHjMwBwWbNN30iu1wzbblLcNndhaL3vNDU1dXgurnqzoqJCfws25OTkpNVquwgVAAiCqKqq4l47Ojoa5niuNNnc3NzZwSmKMtzS9WdUKBT6j2Oo/RbzaN9bFcOw9hu5T9GdGQYWLVrEzfhDkqRhhyBDht1wAECj0eh0Ojs7u/bn5R4j2vzu7S8PbkvXl0deXl5nv6BKpdInQrFYbNiZC1o/e4fXc/tLF7E0KBEixvfYY49NmTLlwoULSUlJXSfCvqisrGyzhXv07mwsBHfDHTdu3KVLl3p9UsPatvYH9/LyKi4u7vXB9bjxAO1LEu23dJZ7lEpl16fg7tFt3khRlFqtbnM3NwWhUNjZN9kZsVgsEAiampqam5vb5EKuJN3md+/s8ugs73LbV65cuXfv3h4FhlgB1EaImATXi8Sw/c/obt++3WYLV7tlWANpKDw8nCTJ5ORklUpl9GC8vb3d3d1LSkru37/f96MNGTKEIIjMzEy1Wm24nfuAhrhxmW0SZF1dXVlZWden6PCNeXl5Op2u12GbGjfUMikpyXCjRqO5c+eO/l/1Ors8OhyvCQBcjev169dRAc4GoUSI9J5Cofjll1/aF0eys7OvXLkCAF0M6O67EydOZGVl6f8sLy/ft28fSZKdTfJib2+/bNkypVL5wQcftP9Xrjay1zAMe+qpp6C1I2UfD25nZzdr1qyamhqujyWHYZgdO3a02XPQoEEA0KYrx//93/898m7e2Rt7FKeZcTP2ffjhh4af7ttvv62srBw3bpyfn5/hzt999x03zpVz586ds2fPOjs7T58+vcODh4WFRUZG5uXlcb1J2+jj5YFYOFQ1ivSeWq1+8skn//73v69YsSIqKsrNza2hoeHGjRu7du1SKBTTpk1rM7rcuLy9vefNm/f//t//GzFiRHZ29muvvaZUKrdu3ert7d3ZW3bs2HH58uV//etfubm5jz/+eFBQEDdzytGjR+vq6vpSZQoA//jHP2JiYvbt28ct9RASEtLc3FxYWHjq1KnExMS8vLweHW379u3nz59/9dVXlUrl/Pnz6+vrP/74Y26wnaHo6Ghvb+9Lly5t2LBhzZo1KpXq4MGDJ06ccHFxMUwD7c2bN8/BweHgwYPe3t5Lly6tra3du3dvUlISV5S3TJs3b96zZ09MTMzq1atffPFFe3v733///b333iNJ8uOPP26zs6Oj44wZM/71r38FBQUlJSVxw1ref//9NtPEGPrmm28mTpy4adOmmzdvLliwYODAgVVVVbm5uQcOHPDy8uLGUSBWCSVCpPdkMtmaNWvOnDnz6aeffvrpp/rtQqFww4YNO3bsMOlU1K+//npcXBw3dIGzcePGrss03t7eCQkJmzZtOnjw4MGDB/XbHRwcnnvuuT7GY2dnd+nSpZdeeunAgQPnzp3Tb5dIJPrJx7tv1KhRBw8efPrpp//2t79xIxT9/PyOHz/epuOoUCg8cODA0qVL9+zZww2/8/Ly+v3335966qmuE6GTk9P+/ftXr16t/+0GDx4cExPDDQOwTHZ2dufPn1+9evUvv/yiX4LDy8tr165d0dHRbXbesWPHzp079WMhSJJ855132oycaYMbRbNx48Zdu3YZdplxc3NDc8laNwxViCN9xDDMnTt3SkpKysrKcBz39/cfO3Zsm64QjY2NFRUVrq6u+u3l5eXNzc0+Pj6GIwQUCkVlZaWjo6PheDIAKCgoEAgEvr6+3J/vvffe22+/vXv37vXr16empnJtP1FRUaGhoYbvUqlU9+/fd3BwaN/ZsrCwMDExsb6+3tHR0c/Pb8yYMW0GKrT/jEVFRdBao9i1srKya9euVVVVyeVyX1/fsWPHGnbuqKioUCqV3t7ehmUv7vhCodBwglYAaGhoiI2Nramp8ff3nzZtmkgkavNVcBobG2NjY6urq728vGbNmiUWi+/du6fT6fTR6nS6oqIimUzGjfvWq6mpiY2NbWhoCAgImD59ukAgKCoqwjBMPzZAqVRWVFQ4ODi0mcu0sLCQ+60NN1ZWVioUCi8vry5KXU1NTVVVVTKZTD+pbGf7ODk5ddihhmXZlJSU1NRUjUYTGBgYHR3d5nRVVVVNTU2enp5isTghISE9PV0kEk2ZMqVN3Wn7a1IvIyMjOTlZoVC4ubn5+fmNGjXKsLWbuxICAgIM31JdXd3Y2DhgwADD31qtVpeWltrZ2bXvwopYFJQIkf7HMBHyHQuCIP0e6iyDIAiC2DSUCBEEQRCbhjrLIP3PjBkzRCLRmDFj+A4EQRBrgNoIEQRBEJuGqkYRBEEQm4YSIYIgCGLTUCJEEARBbBpKhAiCIIhNQ4kQQRAEsWkoESIIgiA2rX8nwpqamv/+979mOx0aamJO3VnoHDEW9G2bE/q2zak79+3+nQiLiooMF2wzNZVKRdO02U5n4x65xjpiROjbNif0bZsNwzAURT1yt/6dCBEEQRCkj1AiRBAEQWwaSoQIgiCITUOJEEEQBLFpKBEiCIIgNg0lQgRBEMSmoUSIIAiC2LR+nwifC5Qrb8QCGuqOIAhiFXTlJU3nDmhyU8x2xn6/Qr2zEK/76ZPmhDOOK18SeAbwHQ6CGAFLU/UH/0PVlJMunqSrJ+nqRbp6Ea6euFjKd2gIYipU5f3m25dUKZd0ZUUAADjutPxF2cQFZjh1v0+EcZXqqIEemoK0yo9fkk9Zaj93LSYU8x0UgvQBw9Tu/UiVehkANLmphv+Cyx1IV0/SxYt08yJdPEk3L3KAP8qOSL9GVZeqbl9qTrmke1DAbcGldsKAUHXmrbqD/6HqKh0WPA0YZtIY+EmEdXV1SUlJdXV1y5cvx/EOqmePHTum1Wq5176+vuPHj+/sUIk1Wo/Xv2mM2au4eqLp/KHm5HjHZc9Lhk8wVegIYlIsW/fr56rUy7hU7rjiJUaloKtKqZoyqrqMqi5lFA1aRYO2KEu/Oy6Wur3ymWCAH48hI0gvUDXlqpRLzbcv6e7ncVtwiVwSHiWJmCwKjsAIUnkjtv7A503nDtD1VU5PvooRJsxWPCTC5OTkqKiooKCg9PR0tVotEona77Nhw4bIyEi5XA4AUVFRXSRCAMAlcsflL0gjZ9Uf/I+2JKdmz3vioZGOy58nXTxN9RkQxDQaft+tTDiDCcWuG98XBgxp8690Qw1VXcolRbq6TPsgn6q8X/v9dvdXd2LCDv4fIYilYWlKefl4c3K8tiSb24KLpeLwKOnIyaLQ0YbZThY5i7B3rvnug+Zb5+mGWpcN/8DFMhNFhZl/RQWNRoNh2P379wMDAztLhK6urtevXw8KCur6UElJSZs2bbp161bL3yyruHay8cT3jEqBCYR2s560m74CIwXGiry5uVkkEhEEYawDIl1oamqys7PjOwqzajp3oOHEdxhBujz7rjh09CP3Z7Xqyh1/0ZWXyCJnOa3+a59ObXvfNo9s+dtuOPFd07kDAICJJJKwcZKIKeLQ0ZhA2Nn+ugf51bv+STfUCDwDXDd9QDi69uh0DMPQNC0QPCIL8NBrVCQSCYWdfmy9mJiYffv2ZWVlPXLPhzBMPnGhxxvfSMfOYCldY8wPFf9+XpNjvq5HCNJryqsnG058BzjuvG5bd7IgAGBCsfPTb2JCkfJGbPONWFNHiCB9pL2X23T+EGCY8+q/en1wwHnda5LwqC6yIAAIvAPdX/5UMMBPV1ZU+dkrLf1ojI2HEiGnoKCgixJhVFRUSEiIVqs9ceLEa6+99sYbb3R4kEuXLj3++ONr167l/sRxfMmSJaNHjwYAXUGa4uhXVMU9ABCPnCx77Lm+F6tRidCcbOqpWZ1yqemXHQBgt/xF8dhZPXvvrbimgzsxodjxpY9JD9/eBWBT3zbvbPPbZmmq/j9/pcqKJJOWyBeu79F7mWZF44//0hWk42KZ/Z9eEwwe3t03MgyGYWLxI3pQWmiv0evXr3MvkpKSxo8fv27dOh8fn/a74ThOEISTk5N+i1Ao5HrfiAYPF27Z2Rx/RBl3QJ1yCUiBw+Ov9DEqvFUfj4N0h+181ZrMW4pfPweWlS94RjpuTk/fLo2cpStIUyedb9r/b+e/7OhdY6HtfNuWwDa/bWXcYaqsiHDxtJv7J6yHHx+X2zs9+37jgU/VKZcb9rxrv+pl8aipRozNQhOh3ujRo52dnXNzcztMhBKJZMCAAZ2VF0EgEM5ZLRsZXfn/XlQnnbefskToG9yXYAQCgUAgQCVC8+C+bb6jMDlNQVrDvg9ZmrKb+bjDrMd7dxCXx/9S+SBPV16iPPZ17xoLbeTbthA2+G3rSguVcb8ChjmvflUok/fmEAKB61NvNDjvbjp/qOGXHdBYYzfriUe+iWsjfORuFvRUUlJSUllZCQAMw+g3pqen19TUBAYG9vqwAg8/+ZSlwLL1h/+HJqBBLIqutLDm23dYrUY2cYHDwmd6fRzUWIhYNIau+/lTlqbk0YtEgeG9Pw6GOSz+s9MTrwCGN5z8vu7nT4F5dJLrDh4SoUajWbVq1ebNmwFgzZo1zzzT8v//hRde2LlzJwCcPn16woQJL7/88saNGydNmrRt2zY/vz4Nk7Kb9SQud9QWZaruXOl7/AhiFFTVg6ovX2eaFdJRU5xWvNTHowkG+DsufxEA6g59oSsvMUaACGIcTXEHtfdySGePvjzt6cnGz3V55k1MIFQmnqn54f/6fkDgpWqUJMmNGzcCwJYtWwBAX0Xw9ttv29vbA8DUqVMxDMvLy5NIJC+99NLw4d1tF+0MLpY6zF9X9+vOhuO7xWHjjTigAkF6h66vqvrydUZRLx461mnNVqNMnCEbN1uTd6f55rna77e7v/o5mmIJsQS68pLGM/sBw5ye2IKJJEY5piR8gtuLH1Xv+ocq9Yo685Z4yJg+HpCHREgQxMyZM9tvHzt2LPdCKpXOmzfPuCeVjZ+ruPK7rrRQEX/EbsYq4x4cQXqEUTZW/e9Nuq5SGDDE5ek3jThlhtPKl3T3cnTlxfWHv3R68lVjHRZBeoll6w58zlI62YT5ouCRRjywMGCI3cwnGo5/2xizVxw6uo+PkhbURmhaOO64dCMANMX+QjfV8R0NYrtYnbb6qzepihKBT6Drcx8Yt9z2sLEw8SxqLER413ThsLYwnXB0c1j8Z6MfXB69EJc7au/lqLNuPXrvLtlMIgQQBUeIw8Yz6ubGUz/yHQtiu5SJZ7T3cklXL7fntptiyijUWIhYCKrqQeOpvQDg9PhfTDE1PCYU281YCQCNp/f38VA2lAgBwPGxTRhBKq+f0k/ziiBmxTCKi78BgMOSP+NyRxOdRDZutjRyFqtV136/ndVqTHQWBOkKy9b9/Cmr08rGzRYPGWuik8gnLiTsnLTFWerMm305jm0lQtLVUxa9EFi2/tg3fMeC2KLm2/FUdRnp7iMZFmXSEzmteFEwwE9XXlx/+AuTnghBOqS4dExTkEbYOzss2Wi6s2BCkXzacgBojNnbl9FxtpUIAcB+zlpcZq/JTVWlJfAdC2Jzmi4cBgC76StNvb4aaixEeETVlDfE/AAAjitewqW9Gj7fbfJJiwl7Z+293L60FNpcIsSlcvs5awCg4dg3LE3xHQ5iQ9RZSbr7eYS9s3TMdDOczrCxkKouNcMZEQQAgGXrfvmU1aiko6eZYWlYTCCUT18BAI2n9vX6IDaXCAFANnEB6eFLVT1QXvmd71gQG9J0/iAAyKcsNdtIVtm42dJRU1mtWnHxiHnOiCDKazGa3FRc7ui47HnznFE+YQFh56QtyVZn9LKl0BYTIUaQjkueBYDGM/sZZSPf4SA2QfcgX5OTgoulsgnzzXleu9mrAcOUN88xaqU5z4vYJrq2sv74twDgtPJFXGZvnpNiQlFrobCXLYW2mAgBQDw0Uhw6mmlWNJ7pa79bBOmOxthfAEA2cQEuMW2TSRuCAX6iwcNZjar5Zpw5z4vYIpat+/VzVqOSjJwkGTHJnGeWRy8iHFy093LVmb1pKbTRRAgADkueBZxQXDmhq0BjrRDToqrLVHeuYgQpn7zU/GeXRy8CAMWV39Gk84hJNSddUGcl4TJ7pxUvmvnUmEDY0n30dG+GidtuIhR4Bsii5gJDN6ChFIiJKS4cBoaRjplBOLiY/+yS8CjC0Y2quKfJTTH/2RHboYg/AgAOizeYboxsF+QTFhD2TtqSHHXGjZ6+13YTIQA4zFuHS+TqjJu9K00jSHcwinrljbOAYdwTKw9wQjZxPgAoLqPeYYip6B4UaO/l4jJ76ahpvASACUXy6SsBoPHUjz2t/LDpRIjLHbilHeuP7jLWulYI0oYi/hir00qGRQkG9Gk1sb6QR83HBEJVegJVU85XDIh1U1w9AQCysTMxgZCvGOQTF7a2FPas+6hNJ0IAkE9ZSrp5UxUliuun+I4FsUKsVq24dhIA7Kav4DEMXO4gGRENDKNE1zliAqxWrUq+CADS8XN5DONhS2EPC4W2nggxgnRYtB4AGk/+wDQ38R0OYm2U12IYZaNo0DDhwKH8RiKPXgwAyuunWJ2W30gQ69OcHM+om0WDhvFY7cF5WCjsSUuhrSdCAJAMnygaHM40NzWdP8R3LIhVYWmqKf4oANjN4LM4yBEGhAp9gxllo+p2PN+xINaGq2mQRfFZHORgAiFX+9J4en/3C4UoEQIAOCzcAADNiWdRSyFiRKrkeLquUjDAXzx0HN+xAADIJrWOo0AQ49GVFmqLs3CpXDJyMt+xAADIJiwg7J2193rQfRQlQgAAYUCowDOAbqpTZyXzHQtiLVi26SI3xfYKU0+x3U3SUVNxuaO2JEdbnMV3LIj14IqD0jEzeOwmY0hfKGzodkshSoQtpKOnAUDzzXN8B4JYCXXmTd2DAsLRVTKan97k7WGkQDZuNqBCIWI8rE7bnHQeALhLy0LIJi4kHFx09/M0md0qFKJE2EI6dibguCrtOqNS8B0LYg2a4g4CgHzqMowg+Y7lIXn0QsBx1e1LdGjQJisAACAASURBVFMd37Eg1kB1O55pVggDQgXegXzH8lBPWwpRImxBOLiIg0ayOq3q9iW+Y0H6PW1xlib/Li6Ry6Pm8R3LHxBO7pKhkSyla044w3csiDVQJpwGAJmFXefQ2lKou59HVd575M4oET4kHTMDAJpvobmJkb5qivsVAOTRizCRhO9Y2pJNWgwAiqsnUdcwpI+oinuawgxMJJFaRjcZQ5hAaDdjJQBAN9adRYnwIcmIiZhIoinMoKrL+I4F6ceoqgequ9cxgZBLOZZGHBxBuvvQ9VWqtES+Y0H6N8X1U8Cy0jHTLfCBD7hCYfdm90WJ8CFMKJaOiAaWRYVCpC+azh8ClpWOnUnYO/EdS0cwrGU9isvH+Q4F6cdYnZbrXWhp9f96mEDotP4fuL3zI/dEifAPpGNnAEDzjVi0YA3SO3RTXfOtOMBxO76m2O4G2bjZuFiqyU3RlRXxHQvSX6nuXGWUjULfYIHPYL5j6ZTQN7g7S2GgRPgHosEjSGcPqrZCU5jOdyxIv6S4eITVaSXDJ5Ju3nzH0ilMJJGOmQ4Ayqsn+Y4F6a8sZzaZvkOJ8I8wTNIyoBDVjiI9xqiblddiAMBuquUWBzmySYsBw5Q3zzFqJd+xIP0PVV2myb+LCcWSUVP5jsUIUCJsSzZ2JgCobl9CcxMjPdV8K45RKURBI4QBoXzH8ggCDz/R4OGsRoWe+ZBeUF47CSwrHTUFF0v5jsUIUCJsi3T3EfqHMmql6u41vmNB+hluEKoFjqnqUEuXmUvHUIs40iMsTSlvnAMA2YT5fMdiHCgRdkA6diagAYVID9GNdZrCdEwgFA+N5DuWbpGETyCc3amqB5rcFL5jQfoT9d3rjKJe4DVQ6BfCdyzGgRJhB6SjpmCkQJ2VTDfW8h0L0m+o7lwBhhGHjuk3lUU4zhVeFZfR1KNID7R0k7GW4iCgRNghXGonHhoJDN2cdIHvWJB+Q5VyCQAkIyfxHUgPyKPmYwKhKj2BqavkOxakf6BqytU5tzGBUDrKUmaT7zuUCDv2cEAhgnQD3VSnKUjHSIE4zCKWHuwmXO4gGRENDKO9hdZdQbpFmXAaWFYSMQWXyvmOxWhQIuyYeGgkLnfQlRXpHhTwHQvSD6hSrwLDiIf0n3rRVvLoxQCgvXUOdZNGHo2hueKB3CqGD+qhRNgxjCClo6YCgBKtUIh0gyr1MgBIRvSnelGOMCBU6BvMNjdxVbsI0gVVeiLdUCMY4CccGMZ3LMaEEmGnuNpRVdIFNEk/0jW6qU6TfxcjBeJh/aleVE82YR4ANN+O5zsQxNK1zibTPwYIdR9KhJ0S+gYLPAPopjp1VjLfsSAWTXXnKjCMOHQ0LpbxHUtvSIZPBJzQ5KQw6ma+Y0EsF11fpc5KwkgBt2KdNUGJsCvSlunWUO0o0hVVymUAkFjekmzdhMvsSb8QltKpM2/yHQtiuZTXTwPDSEZMwmX2fMdiZDwkwrq6ulOnTm3fvv3LL7/sbJ+KiorXX3997dq1u3fvZvmb9kI6dibguCrtOqNS8BUDYuEYRYMmP63/1otyBEMjAUB9B82mhHSCYZQ3YsEa60WBl0S4f//+99577/Tp0/v27etwB4qipkyZUlNTs3jx4s8++2z79u1mjlCPcHARDR7B6rTcIz+CtNecehkYWhTSX+tFOYIh4wDDVBk3UN9RpEPqzJt0XSXp5i0KHMZ3LMbHQyJ86aWXrl+/vn79+s52OH78OAB8/fXXq1at2rVr186dOzUajRkD/ANZ5CxAtaNI51SpVwBAOjKa70D6BHN0FXgPYjUqTW4q37EglkiZeBa44iCG8R2L8VliG+H169cnT56MYRgAjBs3rqmpKS8vj69gJMMnYCKJpjCDqi7jKwbEYjGKBk3eXYwgxcPG8x1LX0nCJwLX8QdB/ojVadVZtwDDuG4T1ofkO4AOlJeX+/j4cK9xHHdxcSkrKwsL62DYSl1dXUFBwbJly/Rb1qxZM2fOHOPGIwgbr02+UH/tFDN+oU6nIwjCuMdHOqRUKjGLf/bU3ogDhiZCRjfTAIp+3JCsVColg0cC7G2+e10wfz3glviIbDX6xbVtSJd1i9VqCO/BKkLUv65zhmEEAoFAIOh6N0tMhGKxWKfT6f/UaDRSacezddjb2zs7Oz/xxBPcnxiGjR8/vrOde40cP7s6+QKVEi+ftlIkFqNEaB40TRv9pzS65oxEALAbPVVi8aF2jaZpO/dQlZs3VfWAqCwSDbLCdiDL0S+ubUP1uckAIB0xoX+FDQAMw3Snu6UlJkIfH5+0tDTudVNTU11dnbe3d4d7EgTh6Oi4atUqk8YjDhpJOntQtRX0vWw8JAJHD8tmgeO4hX/VjLJRW5CGEaRkWJSFh/pI3LctCY9qOn9Ik5YgGTyc74ismeVf23/AsprMmwAgDZ/Qn8JuRdOPnhHFgj7Vb7/9VlFRAQDLly8/d+4c9/rnn3+OiIjw9/fnMzIMk4yeBgBaNPUGYkCVegUYWhQyympmH5YMnwgAatRMiBjQFmXSjXWks4fAM4DvWEyFh0R48eLFwMDAbdu23b59OzAw8LnnnuO2r1u37s6dOwAwbNiwdevWjR07dsGCBW+99dbHH39s/iDbkEXOAgzT3rnCannrv4pYmuaUSwAg7VfrLnVN6B9K2DtTtRVornlET5WeCADi8Al8B2JCPFSNRkZGxsY+XN5IJmsZfZWenu7h4cG9/vzzz59//vnS0tKIiAgnJyfzB9kG6eYt9AvRFmep0xPkY6bzHQ7CP0bZaDX9RR/CMHF4lPLqSdXdawLvQXxHg1gE1d3rACCxpuu8HR5KhFKpdJABffLz9/cXi8X63UJDQ6dPn24JWZAjHTsTAFRJ5/kOBLEIqjtXgaFFwRG41I7vWIxJEj4B0CAKpBVVXUpVlOBSuXCQVS030YYFtRFaOGnEZMBxbU4Kq1HxHQvCP24cff9aj747REEjcIlcV1qIBs4iAKBKSwAA8ZCxGGGJPSuNBSXC7sJl9gK/EJam1FlJfMeC8IxRNqpzUjCClIRH8R2LkWEEKR4aCQCqu2jeUQTULfWi1nadt4ESYQ8IQkYDgDrjBt+BIDyz1npRjmR4FACo0ATcNo9RNmoKMzCCFIWO4jsW00KJsAcEoWMAQJV+A/hbEAOxBK3rLllbvShHPCQSE4q0RRl0Yy3fsSB8UqcnAkNzteV8x2JaKBH2AOHhRzp7MIp67b1cvmNBeMMoG9W5qVZZL8rBhCJRUASwrDotge9YED61NBBae70ooETYU6IhYwDVjto21d1rwNCi4JFWWS/KkQyfAKiZ0LaxlE6dnQwYJunPC212E0qEPSMaEglcjQFiq6y7XpQjGTYecEKTk4KWpLZZmpwUVqMSeAcSjm58x2JyKBH2jHDwcEwo0t7Poxtq+I4F4QHTrNDkpgJOWHc/OlxmLxoUxtKUOvMW37Eg/FClWf84ej2UCHsGEwhbmk/QDcImqe5cZWlKHDwSl9nzHYtpcfOOopH1NopluQYg637g00OJsMckYZEAoM5AtaO2SJVyCQAkIyfzHYjJSYZPBAxTZ95idVq+Y0HMTXsvl66vJpzcbWSmPZQIe0wcNg4wTJ2VjG4QtsagXtT664sIR1ehz2BWo9Lk3OY7FsTc1Pp60X61gHCvoUTYY4SDi8BrEKtVa/Lv8h0LYlaqu631onIHvmMxBzHqO2qruIm2rWpC+S6hRNgbkqFc7SgaRGFbbKG/qCFJ+ETg7onMo5c2RawGXVupKyvCxVKRzazPjBJhb4jD0CAKm8OoFJqcFKvvL2pIMMCPdPfh5tniOxbEfLg6AKufaNsQSoS9IfQPxeWOVE25rqKE71gQM1HducbSlDhohI3Ui3JaV2VCtaM2pHVCGVupFwWUCHsJw8TcFDPpqHbUVnAVAJIR0XwHYlZcIlSjZkKbwagU2oI0wAnxkLF8x2I+KBH2EmomtC0MrclJAQDuAch2CP1DCEdXqrZCdz+f71gQc1Bn3GRpShQYjkutfKJtQygR9pJoyGiMIDUF6UwzmoPK+mkKMxi1UjDAn3By5zsW88IwSdh4AFDdRSPrbQI307otDBAyhBJhL+FimXBQGDC0Ohut02v9uNWYba04yGkZRIGaCW2AfuFxm2ogBJQI+0KMakdtBjejnih0NN+B8EA0eDgulevKiqiqB3zHgpiWJjeVUSkEXgNJlwF8x2JWKBH2XkszYfoNYBi+Y0FMiFE06B7kYwKhaNAwvmPhAUaQ3DMfN8gasWK2WS8KKBH2BenhS7p6Mc1N2uIsvmNBTEideQtYVhQ0AhMI+Y6FH2gCbhvB1W/Zwkq8baBE2CfcyHoVqh21ai2tJqG22EDIEYeOwYQibXEWWn3Miunu51O1FYSDi9A3iO9YzA0lwj5BzYTWj2XV2clgqz1lOJhQJA4ZBSzLVZ0hVolbgFBsMxNtG0KJsE9EgeGYSKIrLaTrq/iOBTEJ7f1cRlFPugwg3bz5joVPLVPMoERovVqmjAgbx3cgPECJsE8wUtDypIymmLFS6kzbHThhSDRkDGCYJv8OS+n4jgUxPrqhRns/DxNJREEj+Y6FBygR9hVqJrRumixu4IStJ0LCzkngNYjVarQF6XzHghif6u41YFlx6Gjb7BGGEmFfScLGAYZpcm6zWg3fsSBGxqibtcXZGEHazno0XRCHjgIANIOEVbLZgRMclAj7Cpc7Cn2CWJ1Wk5fKdyyIkWmyk1iaEg4Kw8VSvmPhnzhkNACos5L5DgQxMlaj0uTdARznev/ZIJQIjaB1eUJUO2ptWhoIbXJCmfaEgcMwoVhXWkA31vIdC2JM6oybLKUTDQzDZfZ8x8IPlAiNoKWZMD0RWJbvWBBjahk4YfMNhByMIEWB4cCy3EIciNWwwQUI20CJ0AiEPkGEvRNdX6UrK+I7FsRodOXFdF0lYe8s8BrIdyyWAjUTWiGWVWfdAhtuIASUCI0Dw8RD0Mh6a8NNtC0OHW2D44s7IwoZBQCa7GRU+WE1tPdyGWUj6eppyyNlUSI0jtbaUZQIrYcmKwlsdcWJzggG+BOObnRjna60kO9YEOPQZCdD6yOOzUKJ0DjEIaMwUqAtzmSUjXzHghgBq9NqCtIAx8W2fYNoj/tCuNZTxAq0NITb9nWOEqFxYCKJKDAcGIarT0P6O01uKqvTCv2CbbYfXWdEIRHQWoxA+jtWq9YWZQKO2/hIWZQIjaZ1Au5EvgNBjIDrPoD6i7YnDhkFGKYpSEMzSFgBTd5dltIJ/YJxqR3fsfAJJUKjEQ8bBwDqjFssTfEdC9JXrT1lUCJsC5fZt8wgkX+X71iQvkL1ohx+EmFCQsLcuXPHjBnzxhtvaLXa9jts2LBhVatPP/3U/BH2AuniSXr4MmqltiiT71iQPqFqyqmqB7hULvQL5jsWS8TNMIBqR62AJjsJbL6nDPCSCGtqaubNm7d8+fLvvvvu8uXL77zzTvt9jh07Fh0dvXLlypUrV0ZF9ZvlkiVoeUKr0FIcDBkNOKoy6YAI9ZexCnRDja7iHiaSCP1D+Y6FZ6T5T/njjz+OHj362WefBYB///vfixYtevfddwUCQZvd5s2bFxTUzxZKFg+NbLpwWJ2e6LBoA9+xIL3XuuIEGjjRMeHAIbhYqisrouurCUdXvsNBekmdnQwsKxo8AiN4SAQWhYfPf+fOncjIlqldx44dW1tb++DBg4CAgDa7bd68WSQSRUZGvvLKKzKZzNxR9opwUBgulunKS+j6KsLRje9wbF2xgj1RwsbcY8pV4CYGVzHmIgJXMeYqBndxywsXMeYqAtKg4MfSlDo3FTAMTTHaGYwghYHD1ekJ6uxk2bjZfIdj07QM1GmgTsPWaqBO2/pCA3VatlYNdVq2TgM+MmyxPzbfF3f84wpLmuzbACAOieAndEvCQyKsrKwMDW0piZMkaWdnV1FR0SYRbt26NTw8XKPR7Nix48yZMxcvXsQ7qqSqrq5OS0sbOPDhDFivv/766tWrTRR5c3OzTqcjCKKLfYiBYUzmjYY7CcJR00wUho1QKpVYz6d0oVm4VYOfeoCdLiPS69u8vdPJUJyE7EA5PBNIPxFAk8VprEZFDPBXESJQKHoeeL/U028bGxgG6QnK9Bts2ATTRWWtendtGypTwa5cYm8BUanuznHYAwUgwOlod2aBNzPfi/aVAbCsOicZABi/IQrrvc4ZhhEIBO1rHNvgIRE6ODg0Nzdzr1mWbW5udnR0bLPPtm3buBfTp0/38PBIS0sbPryDYS6urq7BwcFHjx7Vb/H09JRIJKYJHHAcF4lEXSdCGDqmPvMGFGfIJy8yURg2gmVZuVzezZ0bdXDmPnOihD11j6lSt2x0EMJsb3yRPzbEEatWQ7WarVFDtYatVkOlCqrVbLUaajRstRrqtFhdLSTXku+nkd+p0ocDSMMiu392K9CjbxsAxCMmqE7spvLvyGUyNAVdT/X02zZ0q5r9LI35tYDRMQAAAhycReAkwpyErS9E4CwCJyH3ArMXwu1q9lgxc7mCvVCOXyjH/5ZEjnLF1tsVLmmqJxxd7QOsuUcYwzA0TT9yNx4SYUBAQE5ODve6oKAAwzBv707nuHNwcJDJZA0NDZ3tIBQKBw0aZPwoe6t13o3bwLLoBmFqxQr2aBF74h5zqYzVMi0bB9tji/ywBX745AGY4A/1CJ3+HNVqiCtlPr7D3KpmyfxbAPA/KmJZAxvsgH7BjpFu3qTLAKqmXHs/T+jbz9ry+yOahaNFzGfpzJVyFgBIHB4fhL8yDB/v/uhLdPIA7OVheK0GTt5jjhWzZ+4zydVsZFbyEoBjwoisBHqJPz7JAyNtuGcYD4lwzZo1UVFRBQUFgwYN2rlz55IlS7iHo/379w8YMGDGjBkPHjxgGMbX15dl2c8++wwARowYYf44e4d09yEc3biVKNCqBaajoWF7Cv1hastzMYnDFE9soR++0BcLdexx9nIVw+OD8McH4Vfzav3Si5px8dvVoW8eohb64X8NxycPQOmwA6KQUdS1GE12MkqEJtWghd3ZzH8zmMImFgCcRPBsCP5SGO4r69ll6SyCPw3G/zQY1DQRV8ra7UsBgBhRxO9pzOdpjK8M+180scDXRi91HhLh0KFD33rrrdGjR9vb2zs7O+srNo8cOTJ8+PAZM2YUFxcvWLBALBar1WpPT8/Dhw/b2/enaa7EIRHKxLPqnNsoEZpIQiW74RKdUc/iGKwahC/1x+b64E4iIxx5ZG1SHcuKgkc+M0S0N485XswcL2bGumF/DceXB+C2/MjcnjgkQnktRp2VZDfzcb5jsU75jex/Mpg92UyTDgAg2AF7OQx/KhiX9e22LSZg/gBdaW06i2FvLR81tAo/UsTmNLALz1DrgvDPxhNG+a/Uv/DTa3br1q2bN2+uq6vz9PTUbzx06BD3YsKECTU1NVVVVWKx2MHBgZcI+0IUHKFMPKvJvm03dRnfsVgbJQVv3aJ3pjMMCyEO2LeTiGijFte4gRMu4WO+iibeH0N8mcF8mUnfrGKfOE8H2DEvh+HPD8FFXbYR2w5RcATghLYwg9WoMJGpGuZtU34j+7dE5ngJw7AAADO8sFeGEfN9MdxIF7umII3VaQU+gyMDHCMDYPsY+DyN+UcSvTeXiX3A/G8iscTfth76ePu0YrHYMAu2geO4h4dHf8yCwHVHxjBN/h2W0vEdi1WJK2XDD1OfpTE4Bq+NwFOWkcbNgsAwaq5DeehoAHATw9uj8OInBF9HE6GOWFETuyWBnnKSuq9ES/EBAOASudAvmKUpTd4dvmOxKseLmTFHqaPFjBCH9cH4nWXkufnkQj+jZUFonRVIP0CIwODVcDzlMXLSAKysGZbG0qsv0NXqLg9hXWwr7ZsHLncUeAawWo22KIvvWKxEvRb+fJmeFUMVNrEjXbDExeT/jSXExi6ZaUtyGGUj6eZNuj58RBMTsDEUT19OHp9N+MuxxEp29FHqfCnKhQCtd1I0xYyx0Cy8fpNeGkvXa2FZAF78hGD3ZCLc2fjtduqORhAGOWAXF5A7owgZCT/nM2GHdQcLmU4OYG1QIjQJru+oJgfdIIzg5D02/DC1O5shcdg2Ak9cQo5yNUmTfsuKE0M6mGgbx2CRH570GDnHB6tUwexT1DvJNGPz2ZC7k6qzkvgOxBpUqWHeaerDVIbA4e1R+KGZhLtp6psZZaOutAATCIUBQ9v8E47B5jA8bTk50xurVMGqOHrRWaq02fovdJQITUIUPBIA1Dm3+Q6kf6tUwbqL9MIz1H0lG+WOpS4jPxxLCE12zbYuvdTphDIuIjg1l/xwLMECvJvMcE/utkzoPwSXyqnK+1RNOd+x9G83q9ixR6nYB6ybGE7PJd8ZRZiu+6Y6KwlYVjR4OCYQdrhDgB12dh75dTRhL4ATJWzYIWpXlpUXDVEiNAlR4HCMFGhLcphmq52ywdQOFBNDD+l+zGPkAtgZRVxZRA7p+biI7mOaFdqSHIwgRYHhXeyGAWwbgR+dRTgK4fcSZvwxKqPe+p+XO4XjosEjAECDnvn64LM0ZuLvVLGCneKJ3VkumOFl2jEMXANh1ytOYAAbQ/E7y8nZ3li9FjZdoZfG0mXNJo2LTygRmgQmFAkDhgDDoH4EvcACbE2kn00Q1Ghgtjd2dxm5OQw3Yk+BDqmzk4BhhIHh3ekAucgPv7mUDHfGshvYcceoXwus/Hm5C2K0EkUfNOlgVRy9JYGmGNg6HD83jxxg+u636pwU6N4ahP5y7PQ88ttJhIMQjhUzww7rrlZY52MfSoSmIgqOANRM2HMMC89foT++ywhx+GYScXoeGWBnjkG+mqwk6LJetI3B9ljCYnLNYFyhgyfO039NpCmbzIaiIWOAKxEyNvn5+yC9jo08Rh0sZByEcHgm8e9IwgwDVVuWBLB3Egzw787+GMCGEDxtOTnPF6vVwJxT1LkHVpgLUSI0lZZ+BNmoyqgHaBbWX6K/zmJEBPwwQfvnEFOXA1uxLNfjo8OeMp2RkrBvKvF1NCHAYcddZnoMZcV1R50hnT1IVy+uYpnvWPqTn/OZ8ceprHp2iCN2fTH5WICZbsUP60V7MgGkjww7MZv8cwiupGDBGeq3Imt76EGJ0FSEvsG4VE5VPaBqK/iOpX/QMrAqjv4hl5EL4OQccoG3+f6z6cqK6IYawtG1m4/JhjaG4lcXk35y7HI5O+YoZa11R10Qh3K1o6jvaLdQDLx9h1x9gVboYO1g/OZS0zZ+t8FVYouDe7wkPY7BrknEq+E49/90b65V5UKUCE0Gx0WDhwOAJjeF71D6AYUO5p+mfitiXERwfj5p6v4CbbQsSR86pnfzpI9xxRKXkJMHYKXN7PST1I95VnWPeCRRyGhoLWogXdPQsPAs9WkmKSLgq2jix6lEH+dL6xGWpjT5dwHDRL1agxAD+GQc8VYEztXc7M62nuscJUITEgWPAnSD6IY6Dcw+RcWVsp5SuLiQHOtm7pl/1T1sIGxvgATi5pNbhuFaBp6Jpw/YUvcZUdAIjCA1RVmMWsl3LBZNx8Cq8/SZ+6y7mL2yiNwUau7br7Ywk9WoBAP8CXvnXh/k/dHEh2MJmoVnL9M7063kOkeJ0IQeNhOyNldd1n2VKpgeQ12vZP3lWPwCcpiTubMgq9NqizIAw0RBfVrkhMRhx3ji/dEEzcKfLtLHi63kHvFIuFgq9A8FhtbkpvIdi+WiWVgXTx8vZhyFcHiydoxpJoXoWsvMat3oL9q1bSPw/00kMAxevk6/dvPRq/1ZPpQITYh08yadPRhlo660kO9YLFRZM0yPoVJq2BAH7PIiIoiP9f+4CYiFPoNxmREWOXkrAn9jJK5jYGUcHXPPVh6ARKGjAUCThSo/OsYCbLpC/5LPOAghdj45womfC0PdjRGE3fTcEHzvFILE4aNUxgpyIUqEpiUKGglolFUnCpvYSSeo9Do2zAm7sIDs6fpqxqLJSYHW4S5GsX0M8bdwXMvAijjqYplN5MKW/jJZt/gOxBKxAC9cpXdnMzISfp9N8lIWBG7KiPu5GEGKAocZ5YBrBuOHZxAiAj5KZZ6/2r9nHESJ0LS4RmnUX6a9zHp20gk6v5Ed64bFLyQ9pbxFws2Kws2KZyz/Hkc8NwRXUbDwDMUtKW7dhD5BuMyeqimnqsv4jsXi/D2R/iqTkZBwYg45ib9FnjW5t4FhhIOGYUKxsY652B8/MpOUkPBVJrMuvh8PpUWJ0LTEIaMAwzT5d9GSTIaSqtnJJ6gHSnaqJxY3n3ThbyFQplmhfZCPEaRoYNsJiPsCA/hyIrEhBFdSsPAslVRt7bkQx1vm10WDKP7o9Zsts0McmkFO9eRz/fcOV5zou3m+2Om5pJ0A9ucxK+JoTf+sJUWJ0LRwmb3AayCr1WgLM/iOxVJcq2CnnaSq1bDEH+f+C/FIk5sCDCMcFGbEx2QOBvDVRGL5QLxBC/NOW/+UpC0rrqBmQgNvJ9EfpjJCHA7PJOf78pkFoXtTjPbO5AHYmXmkoxCOFTMr4ih1P8yFHSfCrVu35ufnt9lYUFCwadMm04dkbVqXZEK1owAAuQ3skliqSQdrBuOHZhC8r/be2kBozHpRPRKHn6YRC3yxKjXMjKHyGq05F4pDxwCAOuc2S1N8x2IRPkxl3rvNcNfAQj+esyBVXUrVlOMye6HPYFMcP8odO7+AdBPDiRJ27cX+117YcSL88ccfKyrazodSUVGxa9cu04dkbVB/Gb1qNcw/Q1erYZEf/sMUc8ys+EjcUlniICPXF+kJcTg0k5zhhZU1w4wYuljR3+4Q3UY4upIefqxGpS3O5jsW/n2exrx+kyYw+GEKsXwg/xe6OoubUCaid1NGdEeEC3ZhAekohMOFzLYb/axU2INfqLKy0snJyXShWCtRYDhGCrT3c5nmJr5j4ZOahiWxVF4jO8oV+2kaYcL11rqNbqihqh5gIonQSOcVygAAIABJREFUL8h0ZxETcHw2OXkAVqJgZ8TQVrzMKdd3FM0gsSeH2ZJAc+3EqwP5z4JgynpRQ2FO2LHZpIiAj+8yX2T0p54zf5je59y5cwcPHgSAxsbGf//73x4eHvp/UqvV586dGzOmB1MSIxxMKBIOHKrJTdXk3ZEMn8h3OPxgATZcoq9VsN4y7NgsQs5ru6Bey7yLQSMAN20VrZSE3+eQM2Oom1XstJN0/EJzrLZjfuKQ0Yr4o+qsJPt5f+I7Ft7szWWevUwDwH8nEBvNPndMxxiaWw/O6D1l2ps8APt+MrH6Av3yddpXBov9LeMbeJQ/JMKSkpJz584BgFarvXnzplj8sPuARCKZMmXK+++/b+4ArYI4OEKTm6rJvm2zifDvifRP+YyjEM7MJXx4Gi/YXuvACZPfHQDAXgCn55LTTlJ3atl5p6nz80kn/vrKmohocDhGkNp7OYxKgUvkfIfDgwMFzPpLNMPCJ+OIF4ZaSg7QluQwKgXp7kM4uZvhdE8E4lkN7LvJzNqL9KWF2EgXS/n/3oU//FTr16/Pz8/Pz88PDAw8cuRIvoG0tLSffvopMDCQr0D7NW40odpWV/H+XybD9SA/PJMMM/sMap1iWaMPpe+aswjOziNDHLCUGnZxLNVPO5p3AROKhf6hNrse9bUK9ql4mmbhgzHEq+GWkgVBP5WuietFDb09ivjTYLxJBwvP0veV/aAtoONfKzs7OzIy0syhWDGhTxAutbPNJZlO3mM3X6MxgG8mEdPNu6ZE13QVJXRjLWHvJPDwNdtJPSQQN5/wk2NXytnnrlpdJmztf2uDfaRLFOyyc5SGhpeG4m+OtKAsCK0jCE3dQGgIA/h2MjHVE3ugZBecoZssfhB1Vz9YeXl5SkpK0h+ZLTKrol+SycZuEMnV7BPnKZqFt0cR64Is6+7wsDhosn50HfKWYcdnEzISvs9hPrnbnzoUdEfLRPM2dp0rdLD4LF2hglne2Kfj+R4S9EesRqUryQac4G5BZiPE4egscpgTdqeWXRlHWfikMx3fm+7evTthwgRPT8+IiIgxf2Tm+KxGy1xrOTbUoe6Bkl0SSyt08GQg/s9RlpUFwbwNhG2McMZ+nErgGPz9Bv17iWXfIXpI6B+Ki6VURQldX813LGbCAmy4TKfWsiEO2IHppCUMCjKkzklhaUoUEIqLzT2NoYMQfp9NeEjgzH1Lr//oeFHIJ598sra29j//+U9wcDCOW9gP2z+Jgw2WZDJvEYQXjTqYf4a+r2SneGLfTbaEsRJ/xNCavLsAIDbNUPpHeiwAf3cU/COJXnOBvrYYM//iU6aCE8JBw9QZNzS5qdKxM/iOxhzevEn/WsA4ieD4bMICO0CZZ+BEZwLssBNzyKknqN3ZTLAD9vfhFppNOkiEDQ0NGRkZR44cWbJkifkDslbckkxUbYWutEDgbeV9jnQMrDhH3allhzpiR2aSvE8f0562JIdRK0k3b8LRja8Y3ozAM+vZn/KZRWfpG0tINyNP8cYbcfBIdcYNdW6KLSTCg4XMh6kMicOv08lgPhYRe6SWMUIhvV90uo/GuGI/Tycei6Vfu0F7S2HNYEvMhR3EhGEYAHh5eZk9GCsn0hcKrRoLsPEKHfuA9ZRCzFxLfEYGAHVuCrQW0/mCAeyeTIxzx4qa2GXnKK21VJFy17nGBvpIJ1WzT8fTLMDn44mZ3paYBem6SqrqAS6Rm3TKiEda5Id/FEmwAH++TF+rsMROpB0kQnt7+wULFhw/ftz80Vi31g51Vn6DeC+Z+T6HkZJwZCbpL7fEuwMAaFr60fGZCAFATMCRmaSPDLtSzj53xaIbUbpP4BlA2DvR9dVU5X2+YzGh0mZ2SSzdTMGGENxyhgy2wQ3ZEg0ebuopIx7pr+H4S0NxNQ2Lz1I5DRaXCx9WjZaWlmZktKyQsGbNmldeeaW2tnbOnDlS6R+aWGfOnGnWAK3IwyWZdFpMIOQ7HJPYl8e8m0wTGByYTo5zt9AsyGo12qJMfVdefnlK4cgsYvIJ6rscJsIF2xxmobfUHsAw0eDhzcnx6pwUubsP39GYhJKChWfoB0p2hhf21UTLq/pvZdI55XvqsyiisIk9eY9ddJa+tpjPxdfae5gIz5w5s379esN/+/LLL7/88ss2b2BZi0vm/QUusxd4D9Ldz9cWZXAzcVuZW9Xss5dpFuDzKP6n2++CpiCNpXRC32Bcasd3LAAAY1yx7yYTT56nX02kQxyx2RZZydYjouCI5uR4Tc5tefRCvmMxPhbgqXj6dg0b5IAdnGFx3UQfYllNbipYTCIkMPhlOjn5BHW7hl15jjo7z4K+uoeJcM6cObGxsTyGYgvEwRG6+/nqnBTrS4SVKlgWS6tpeG4I/qKl1hRxNLkpYAH1ooYeH4Rn1LHv3WYej6MSlpAhFtntovvEwaMAQJObCgwDVtft/J9J9OFCxlEIv1tkN1E9XXkx3VhLOLgIPPz4jqWFXAAn5hBjjlIXytitN2jLGXP5MBF6eXmhDjKmJgqOaDp/SJOdDAue5jsWY9IxsOo8dU/JRrljn0dZysXdmZalui3jMVnvndFEdgMcKGAWn6UTFvfvmUgJZ3fSxZOqKdM+yBP6BvMdjjEdKmS232YIDPZPs/TnldaRspZ1nXtJsd9mklNPUp+lMcOdsWeCLeI5ySKCsB2iwHBMINTez7OyJZm2JNDxZaynFA7NJISWfU0xykbdg3yMFAgHhvEdyx9gAN9NJsa6YTkN7OPnLX0mjkeyyrnWkqvZp+JpFuDT8QTvK84/Eje/j9jyKp/Gu2NfRxMA8MJV+maVRbS1dTygfvbs2bW1te23u7i4BAQELFu2bM6cOSYOzDphAqEwYKgmN0WTmyoZEc13OMbxYx7zRQYjIuDITNJLaul3B01eKrCscGCYBfZXkpBwdBYReYyOfcC+mkjvtPiydRdEwSOV109pclLsZqziOxbjKGsGrpvo+mC8H/RpYmht/l3gae6kR3oqCL9Wwe7KYlbE0TeXkO58r0rW8c/p7+9fWFiYlpYmEom8vb0Jgrh9+3ZlZSVJkqdOnZo7d+4777xj3jith9i6VqK4WcVuvEwDwBcTCIvtJmqo5THZwuqL9Lyk2KEZhJiA/6QzX2f141Ihtxi6piCN1Wn5jsUIVBQsOkvdV7LTPLGvovvBA4q2OJtRN5MevoSjK9+xdOw/E4gJHliJwiLqPzpOhAMHDgwMDCwoKLh69eqxY8cSExMzMzMFAsGaNWsKCgpeeeWVf/3rX6WlpWaO1Tq0DDe2imH1FSpYdo5W0/DCUHxDiMU/IwOAfgShpSZCABjvju2aRADA5mv05XKLqDjqBVxmL/AayOq02qJMvmMxgk1X6KRqNtAeOziTFPSHK91i60X1hDgcmkF6SbGLZezfbvA8iLaDn1Sr1X744Yc7duww7DsTHBz8zjvvfPDBByRJfvjhhwRBJCQkmDFO6yH0GYxL7ajqUqqmnO9Y+kTHwMo46r6SjR6AfWYxvb+6RtdVUtWluFgm9OVzoo1H+tNg/G/huI6BVXHUg/6wnFuHWubX7f+VHzvTmR/zGLkAjs4iLGr0Wxc0ubzNKd99XK8CEQGfpzE/5vFZKuwgEVZXVzc1NTk6OrbZ7ujoWFBQAAAikcjX11ehUPTulCzL/v3vf3dxcXFxcdm6dWuHAxOPHTsWGBgol8vnzJlTXt6/E0ZbOC4KGgGtnfj7r1cS6MvlrKcUDkwn+sUzMrQ+JouC+J9o45E+iiTm+mDlKlgcS6sovqPpFevoL3O1gt2aSGMAuycR/WVudFar0RZlWciUEV2Lau04s/Eynx1nOriBubq62tnZ7dq1y3AjwzDffPPNoEGDAIBl2YqKCje3Xs5W/NNPPx09ejQ9PT0jI+P333/fv39/mx2qq6vXrl371Vdf1dbW+vv7b968uXcnslhWMNfaj3nMlxmMmICjs/pBBxk9Hpde6ikcg/3TyEF2WHK1pS9h0xlRYDhGkNp7OYyqlw/NvLunbJkG9rX/3959x0Vxpg8Af96Z2crSu4oC0lRQLCj2iKKxxRJjiS1Nc8ZEczEaL5d2KeaXHhPvUi+eJtGosXfFLoII0pQmUkVA6bB9yu+PQWJBXGB3Z8v7/SOfZTM78zCM88y+5Xn7EbMDreRxr6VkRLcgQq4QOpZHWxxMvBhGaBh4Mo65pRYmhlZGjYrF4jfffPMf//hHenr61KlTPTw8ysvLt2/fnp6evmXLFgA4efJkY2Njh9cm3Lhx4/Lly318fADg5Zdf/uWXXxYsWHD3Blu2bImKioqNjQWAt956KygoqKamxs3NrWOHs0DWviTT5SruxfMMAGwYRg72tJ74LazQxiO5SWBXLDl8H735GhvthZb1spobMQ+JpeIeodqCq9rrV2Th0UKH024tt+ZxXdEHgyy9CeFuVvTAx/t2GJldx52t4GbG0ScnU+afgtX6AdeuXfvjjz+Wl5evXr362WeffeuttziO27Vr19y5cwFg+PDhNTU1Hf5GmJeXFx4ezr+OiIjIy8t7cIOIiAj+dffu3eVyOd8k26p6/xFWV7afX5KJVTbobxYKHUu7Vahh2nFGTcNy6xkgw/ur0IaXn9CxGKqfW/PAmVcTmHiLLNvfNqteiWJZPHPpNhfoiLbFUJa3omZb+H5Zix0a/SARAX/EUF3kiG+INn8Arc8jBIAlS5YsWbJErVZXVlb6+vpKJH/1EUulUqm044un1dTUODo213h0dHSsrq6+b4Pa2lp/f/+WH52cnFqd1AgAVVVV+b6PSZ79ATb/jX/n22+/Xbx4cYdja5tardbpdCRphGdDwr8P1FTWZyZKnARbD68D9CzMPC2+oSSGebLv99E0mrIqQIc7oR9Gl3kRAIiAPo3G3rNJTfWC5SHUv/OoWXH6M7FaX9PMuDL62eYx3UIAQJ2TQpr0WjGBH6+R/8sTyUnut2FakY5rNOocEBOdbR6natSXFSCRWOvRXWc9p10B8OswYtIp8TdX2T4K7Tx/46RDlmVFIpFIJGp7s4cmQp5MJrs7JxmFh4dHQ0MD/7q+vt7Ly+u+Ddzd3Rvv+vvV1dU97Nunh4eHs3NDfb/J/35jiRlWQiFJUiKRGCURkn2iai6fhOJsx8ef7vzezOaleCbhNuvngHaNl7jJTD5+ruWBySiqirMBwLF3lNyouzWDr0dAdhN98iY8kyg7NdlUCx0b92w36z1QJZExt27IWR3p7G78/ZvGuQruH2k0AvjvKGqon0kKL5jkbAMAgPp6GnCcOKC3k5vVnHBejCNsGMYuOcesTBYN8JUN8jDC13CWZRnm0Tn1r0SYm5t78uTJ6Ojo/v37b9q0SaVStfqBZcuWdTKy0NDQjIwMfjmnjIyMkJD7SxGGhoZu376df11UVKTVagMCAh62N7f8Yw3+I15NZMLd0Cgfq2m/kIb2B4S01zM4Wo+oRzytWIj/5rLfZbNSEnaOI72FrgTRbiyju54BVtVx0oIiYFsMNWgPnXCLW5HA/GANE7qbEaQkMFyTfUmbny4fGCN0NAYpU3JPnaD1LLweQcztaU2N/7w77aLWd50DwAuhREoV9302O/M4kzzdjBVnuDt++eUXAFi3bh3HcQ9+S3tw+w7btm1bQEBAQUFBUVFRz549t27dyr8/f/789PR0juOqq6udnJx2797d2Ni4cOHCefPmPWxXycnJAwcOXH2Rhp90Xr/pihvZzofXBqVSSdO0sfZW8cnfSldO0FzLMNYOTepCJSv5RQc/6TbmMuY5YkNDgxH3pi24WrpyQvlHzxtxn2aWcpuVbdTBT7ofso3/JzDu2b5nzyf/LF05oWbLFybav3FpaG7IXj38pBt3SE+b7HZiurPNcVz5B8+WrpygLc4x3SFMSstww/fp4Sfd6AN6XaevdIZhdDrdIzf763lnwYIF9fX1q1atAoDr16/XP0TnU+/s2bOfffbZUaNGjRgxYtGiRXPmzOHfLy0t1Wg0AODm5rZjx4533303ICBApVJ98803be/w4yhyQjd0Sw0z4qxpxlXzOIJrVjCO4IaSm3mc1jKwMpx4xjKqxbfXncpqVvmYzBvg0TzjakUCk3DLagbONI+RzkkROhCDLL/AXLzF+TuiP6xtgAyvuWSETCHuZtElI9ogJmDHWKqrAzpTzq1MMNPAmb+aRu/uUVQoTDv75O2333777bfve/PMmTMtr8ePHz9+/HgD90Yi2DqGGryXvlzFvXCO+X2MdTQcSUMim07v0uSlOU1cJHQsbeEHkVeoYVxX9Plg6zi3D7KKQhuPtDCISKni1l9hZx6nk6dTXR2s4FYt6hJAKJyZ+mr6dhnl2VXocNrynyz2v7msjII/x1pNBZn78O2ikqC+Vr0MpK8c9o8nR+ynv8tm+7qhv5l+4tBDD8AwzPHjx7/88st169bx72RnZ5eWlpo6oI5xlcD+8aSzGLZcZ7/ItI7pFJKgvoikdMW5rEYpdCwPxQE8f5ZJus0FOKKtYyxoRel2uavQRoTQsXTW54PJMb6oQg1PnWC0VjHPHiG+lJKF11pLuMX9PZEBgO+GkwONMUxDEHwdH2uZKduG/u7of6NJBLAigTlVbvL2j9ZvbBUVFVFRUePHj1+7du1//vMf/s0ff/xx3rx5pg6ow8Jc0KbRJIFgTRJzuNQKGo6QWCruEQYso83PFDqWh/oknd1ynXUUwb7xpEfHp8wI7K5CG1Y2XvRBFAE7xlEBjqjlxm35+NLPllxrjX+w0LGwKoJYHGydj3vAl4yw+i6AFk8FEKv7EnoWnoqjrzeY9pbe+p98yZIl9fX1CQkJR48ebXlzzpw5CQkJRukmNJFpPYi3+xMsBwtOm/zEGYWF11o7VMr9M5khEPz2mNVUWWyV1RXaaJu7BLaPJaUkfJfN/jfXCto/JKF8d3g6tFZYWHBaBmYep8uUXEwX9H9R1tr4D80lI2pJZ3fK22pKRrRtXRQ5yQ9Va2FmHNOkN+GBWkmESqXy8OHDX3/9dXR0NHFXQ3NISAjLsjdu3DBhOJ32Tn9yWg+iRgvTj5v2xBnFnboblviknFPHPX2KZjl4fyD5RA+rfUYGACsfUN6qQR7Nq+Itv2AFFWcod1/K3YdVNepu5Asdy/04gCXnmIQ7A2SstPGfZ2MPfABAItgyhgpzQRk13OIzjOku9Fb+7PX19QzDBAUF3fc+Py1Rq9WaLBgjIBD8+hjZ2wVdqTXtiTMKiX8YIZXrK4qZ+vvL6wirTgfTjjP1OpgdSLwZac33BgBW2cAX2hAH9BY6FmNaHEys6ENoGZhxnC5otPArHSSW2jq6Lu2vJZY8rbbxn2fhi053jLMY9saSrhLYVcT+67Kp+gJaX31CLpdfunTpvvdPnDhBkmTPnj1NFIqxOIrgwATSXQK7itgPUy274YggxT0jwMJuECwH80/RefVcpDv6ZZQ1jiG/B98iJw7ojUQmKREioC+jyandidsamHyUqbPsdeCbewEsbOmxnYXsOynNjf/93Kz8SmcZ3fVMuPPMYUtCnNG2GIoi4P3L7PYCk9zSW0mEYrF43rx5a9euPXXqFEIIADiOO3r06N///veZM2c6OzubIg7jCnBEW2MoEsG7KczOQovOhfzjm8aSbhCrk5hDpZy7BHaNIx0eUYPPCtheu2gLEsHvY8i+biinjptxnLbk6vPSkEhAiB+1JHQszVKquEVnGJaDzwaT06y88R8AdMW5rEZFefuRLh5Cx2J8sV3RJ1EkB/DMWSalyvjtH63/+b/88suePXvGxMRMnDjx1q1b7u7ujz/+uKen54YNG4wegYnEdkUfDSI5gGfPMldrLbfhqLmbMPey0IE0+zWf/TKTFRGwcxwV4Gjlz8gAYEMDylvlKIJDE8iuDuh0OfeSBS9bSChcRL7+nE6rK8oWOhYAgJsqbtpxRkXDcyHEaxFWnwWhpV3U5r4OtngtgnghlFDTJlm2sPUrwMnJ6fTp0zt27Jg3b97jjz8+ZcqUn3/++dKlS22UXrNAa/oRc3sSjXqYGWe5DUcinx6kkytTX62vLBE6Fki6zS0917zQ4GhfW8iCdE0lXXWTkFtxoY1H6uqAdo4lZRT8N5f96orlfiu0nCWZmvQw6QhTpuTGdmkec2QDbKNkRNs2DCOjvVBxEzf7JK036pX+0EchkiRnzZr1888/79u3b/Pmzc8///zdKzFZBQTw35FkpDvKq2+uEGaJEJIEW8TY0ZsqbsZxRsPA8t7E0jBbeEaGO1+1JcGRVl1o45GGeKH/jSIRwOqLzP4SC82Fzb0AQl/nDAdPn2LSa7hQZ7RjLCWyievirpIRfYWOxYQkJOwa11x9bYVRq6/ZxFXwcHIK9sSSXeToVDm3+AzDWmQT6Z3ZhELeIDQMzIxjbqq4Mb7oq2gbeUYGAE3uZQCQhg4QOhCTmx1IfDCI5O/yadWWeKFLekYgktKV5AlbSmlNErO/hHWXwIEJpKuVPds/lPZ65p2SEaatjik4XznsHkfKKPg+m/0u22jPfPeMhZg+fXp5eXnbH7h48aKxjm0ePRTo0OPkqP30tgLWVw4WeJeXhg0EfnAjywryxYUDWHqOuXiLC3BE223lGRmAL7SRDncmdNu8NyOJ3Dru13x26jEmaRrlKxc6oHshiUzUPVRXeFV3PVPaJ1qQGH7MYb/MZMUE7IqlgpxsofGfxw/Hte120RZRnuinEeSC08zKBKa3CzJKJ8499zy1Wq26S1JSUnl5uepenT+k+fVzQ7tjKTEBX1+xxEqkpLM75dmV1Sh1pXmCBLA2iWmZSmW9ddQepCu9xiobKDdvyt1X6FjMAQH8NJIc6YNuKLknjtEqy1uJRdjW0RM3uZcvMADwwwjSitYuNYQND41u1fwgYk1fQs/Ck3F0Vp0R2j/u+UZ4d0E1lmVJkvz000/nzp3b+cMILqYL2jSanH+aWX2R8ZXD0xa23qY0tH/T7TJNXqq4R5iZD/1ZBvtpBisiYHsM1dfap1Ldq7mDsNcgoQMxH74TJXofnVzFLTzN7BhLEpb0J5WERMLR3wXpBcipa15ud20/a11K7GFstWRE29ZFkTn1sK+YnXCYOTeF9O/cEHebuiDaNrcn8e1QkgN45gxzrMyyOlGEqrW2+Rr7RhLDf5OY6GdJt0xjsJ8Owrt5SOHghOZKHP9MtqwRYmL/Xkgi01cUMw015jxujRaeOM7UamGmP/HRIIvrHOkkGy4Z0QYSwR9jyNG+6IaSG3eYqejchAo7SoQA8FJv4rUIQs/CrDg61ZIGFEiC+wFB6AqucjqN2Q66t5h9/hzDAXwZTVpxxf2HaJ6yZuvj6FoV6oz2xFJiAv4vnf0hx4L6AhBJSQL7tPTdmgf/7/1aPTfAA21+zLK+IhuFvbWLtpBRsG88NdADXW/gxh+maztR/dPWbn+P9PkQclEw0aiHyUfpIoup0EjIFOJuQRxDawuumueIp8q5uScZmoX3B5KvhtvgZaC9nsHRerFfiA0svdQBo3zQdyNIAHjlAnPipqVc5yBE0dHlF5hT5VwXOdobawuVkh50p9a2zU6lb4OTCI48TvVyQZk13KSjtLKj/eI2eAdsG98MGNMFlavg8SNMtcWUEG9uHTVLrbXkKm7aMVrDwCt9iLf72+Y1oMlNBQCpfYwXbdVzIcTrEYSehdknaMsprsR/cTHbIr1vJDE/5bAOFByYQHZzsLkvgwBM7S26qpyQ2XLJiLZ5SOHI46SfA0q8xc0+0cGJ9vc8IB08eFCpbJ7iw3EcACQmJhL3DuifPXt2B+O1GGICdsdSo/bT6TXc1KN03CRKbgHPidLQ/o1x2zS5qc5TTXugnDpu4hG6UQ8LgoivLW8yibE0j5QJsa8Owvt8MpjMb4A9xWzMIfrEJMoSFpUUdQ0kFM5M7S36dhnl2dWkx3ojifk0gxUTsDWG7O8u/O9uCvwjhSSor22XjGhbdwU6PokcuZ8+VMotPsP81v4G8HsywEsvvVRSck+hr/Xr169fv/7ud2wgEQKAkwgOP04N208n3OJmn6D3xAq/DpnYvzcSifVl11llA+HgZKKj3FByjx9hqjQwpTv6ZZQN9pfwmIZafUUxEkvF/uYehWtRCATbxpKz4mB/CRtzkI6bZAEDgxGShkSqLp/R5KQoTJkI30pm+OHQ28aSU7sL/c/bZLS5qWA3M2XbEOqM4iZRow/QW6+zzmL4bnj7HvHvSYS//fabWm3saqaWylcOxyeSw/fTB0u5ZfHMTyMF/m6ERGJxQB9tXqr2WroscqQpDlGlgfGHmeImLtoL/RFjQxPnH6DNTQGOkwT1RZRI6FgEJibgz3HkUydgXzH72EH62ERqkIfAuVASOlB1+Yw297Ji5BMmOsQ/k5l1aayIgO1jyenWv7LEQ3GcNj8dbLrWtuH6uqGDE6jxh+nvs1l3CXzYnuHB9yTCkSNNcv+1WEFOaP94KuYg/XMu280BvTtA4H8w0pBIbV6qJi/VFImwUQ8Tj9DZdVyEGzo0gbLJUQMt7HPixMOICdgxlpx9AvYWs+MPC58LpWEDASFNXhpH603xpGIvWRBAX1HMNNSSzu6Ut5/QsViEYd5oawz5ZBzzURrrIkGvG7yuiC1fJYYY7Il+H0OSCN67zPw7S+CB5nz7hinK82sYmH6cTq7igpzQsYmUzZRYbB3HNS+9FIYTYTMxAdvHkk/0IGq18PhhgecOkc7uIu/unE6jK8ox+s7XJDHr0lg+99t2FoS/xovae7vo3aZ2J/47iiQQrLnIbMwz9JZu4xeKIab1IP49nASAly8w76QwAt4hxN2CCQcnuqqcrq4w4m75Qswnb3Jd5OjYRNJHZsR9WyJ+vjZ/txU6FgvC54ZpPYhqLYw7RJtidVPD8fV1Nbkpxt3tmiTmswyWz/o2sNbuIzWvQWiXEyfasDCI+Dqa5ACWnGP2FBt0ndv+tWKIF8OIn0eSFAEfpLIvnGXBhjcUAAAgAElEQVRoob4ZIsTP/jbiJAqWg6XnmN1FrKsEjk4kbWOt3bbhdtGH4XPhDH+iRguxh+lk4XKhhC80n2PM9ajtLQsCy+iuZ8KdqZnY3V7pQ7w3gGQ4ePo0W2LAYid2cLkY5vlQYvc4yoGCX/LYacc7PjGzk6TNC9Ybp3VUScNTJ5hf8lgHCg5OsIjR82bQPHHC7sfRtUpEwLYY8skAolYLsYfoS7eFyYWSnhFIJNbduMY21Rtlh3aXBQF0xbmsRkV5+5EuHkLHYoneHUCs6ENoGTCk4oxdXDEGmtIdnZhEeUrhUCkXc5C+bb5iZ3/hb9+aa2nAdfYOdUPJjTpA7ypiXSWwfwI11MsusiBH67XXMwEh3HHyMCICto4hnwog6nQQe5i+eEuAXIhEYknPCOA4o8ysX33R7rIgAGhyUgC3fLTp66Hksl5IYsDoUXu5aAw0xAslTqOCnVHSbS56L32t3tz3CMqjC+XmzTbV628WdGY/adXcsH3M5SqupxOKn0qNMcaSXVZBV3iV02lFXQJIR1ehY7FcIgK2xpALgoh6HYw/TCcIkQubSynldrZ19J/JzOeZrJiAbfaUBQFAk50Md3pbsVYhgA1DiTDnR29pR9eNgQId0bkp1EAPVNDIDd0nwD2Cb/HvzJptfxayw/fTpUpuhA9KeILq5WIvWRD+qqyGH5MfgUTwv9HkgiCiQQ+xh+jzt8x9K2geL5OT0pnGjzcvNY8R3WYHY0TvxiobdKV5iKQkPSOEjsUW2NGlYzhvGZyaTI3viqq1MP4wffSGWXMhXzy3Y1WJOYAPUtnZJxgVDUvCiJOTKE8bWmjXEHc6CHEifDQ+Fz7dk1DSMPuc6Ih5r3ORrz/p7M7UV+srijvw8UY9LDrNfJxuLzMl7qPJvQwcJ+4ZgSS2PgrcLOzr6jGcowgOTKAWBhFNeph6jN50zXwDSaWh/QEhfvGEdn1Qw8D8U8w7KQyB4Mto8scRpA3XjmkVq2zQ3chHIrEkMFzoWKwDiWDzY+SCIKKJRpOO0H9PZDRmW8EQIf55RdP+1tFLt7kBu+lf81k5BX+OI5+wsywILR2EuF3USOzuAjKciIBNj5Fr+xF6Fp49w3ycbqZcSChcRL7+nE7brunGFWoYc5Deep11FMHe8dTfbXFlpUfS5qUBx4kD+tjVCqWdRCLYNJr8V1+aIuDrK+yQveZbqoJvwdbmtGM2IcvBpxns8P10fgMX6Y6Sp1M2XEf0oTiOb/mQ9hokdCg2wv6uofZAAB9Hkd8OIxGCNy8xL10kzTPFsHkSxTVDB9Rl1nDRe+nEW1w3B3RmCjXZ5taaNxCeQdgxBIK/96ITnqBCnVFGDTdoD/1JOsuaPhvytda01zM5vc6Q7SvVMOUY/UYSQ7OwNIy4MNW++r9b6G8WMvXVpLO7yKeH0LHYCJwIH+3l3sT2GFJKwqbrxNTjrBmGkkqa12wzqJtwXzE7bD9d3MQN80Yp0ylbXW7GEHwhApwIO2agB0qZQS0JIzQMrL3ETD1G3zJxBX7CwUnUtSen12kLrjxy4wMlXMRO/eFSzksGByZQP4wgZTZdL7cNmhx+vOggQPb7j924cCI0yJMBxNGJlKuYO34TwnfSay8xTe3rv2sfSVAEIildcS6reURRhM8y2BlxTJMeFgYRJydRXnbccU7fLqOrKwgHJ1HXQKFjsVYOFPw4gtw1jnSXwKFSru8u/aFS0z728b1cbU+i0DDwygXmiWP0bQ2M74rSZ4om2WubBw93EBodToSGGuWDUqcwz4UgmoNP0tnQHfSv+aZqPUJiqbhHGLCMNj/zYdvElXHR++g1SQzHwUeDyE2PkYbMG7Vhfy1Jjx+TO2eGP5E+kxrbBVWqYcpRekWCCUfQNE+iyE5+2AZXa7nBe+kNWayIgM+HkEcmUjZfLLdtnFatK7gKBIFrJxkRToTt4CnlfhyOLk6jor3QTRW36DQzYr+pihfzA+q0rd0g4iu5MQdpviaIjwx2jiPfjLTVFXbbAU+cMKKuDujYROqzIaSIgG+vslF76Mwak1zn4oDeSCLTVxQz9dUP/t/vs9movXRmDRfijC48Qa2KwNc5aPPTOYYWdw8l5I5Cx2I7cCJst0Ee6MIT1KbRpK8cLlRyg/fSS88zRq/Hxo8HU2cl3f3m5Spu8lF6xH76dDnnJoH/iyLz54hm+OM/IgDLaK+lA+4gNB4CwesRROI0KswFXanlBu+l118xfhMIIilJUN+WYZAtKtUw4zizLJ5R0/BsCJEynRoo9HrCFgIXlDEFwe6hNTU1169fZ1mBlwDsGASwKJjIfUq0pi9BIfgphw3Zrl9/hTXimFKxXzDp6MrU3tJXlgBAVh036wQzaA99qJRzEsG7A4jCuaI3+hG2vb6u4fj+VMrbj3TxFDoWm9LfHaVMp14MIzQMvJrIhP9Jf5rBlimNmRCld80mZDg4WMrNOsF036rfU8y6iOGPGPKXUaTC+Mv3WqvmDkI8ccKohEmE7733XlBQ0NSpU8PCwvLz8x/cwMPDA90xZ84c80doCEcRfDKYzHySmuSH6nTwaiITuZuOKzPSPQIhfqmasstJi04zETvpnYWsjILVfYmCuaL3BpBO+NZwFzxxwnTkFHw/gtwTS3Z1QFl13BtJTI8/6AmH6d/zWZUxFmnhv9wos1P+kUR330pPOUrvLGRZgBn+ROoMak4gbvD4C111k64qJ+QKsV+I0LHYFAEusoyMjPXr16enp2dlZU2fPn316tWtbpaXl8dxHMdx27ZtM3OE7RLijA5OoA5MoIKd0dVaLvYwPfYQ/UEqe+Im18mRpcrAgQBwMf7Sr/ksheDl3kT+bNGng0l3215fvkP+GimDmca0HkTRHGr/eOqpAEJEwLEybsFpxud3/XNnmTPlHa8W2qCH/9V2uS3zRqqGg0n5N1VcmAv6ZDBZMle0axzpbwfLZ7ZLc7to6EAg8POBMQnQsrZ169YpU6b4+fkBwLJly0JCQhobGx0d7+/41el0arVaJrOOIWKT/VBsV+qrTPbDNObkTe7kTQYASAQRbmi4NxrqhYZ5o7YXxdWxkN/A5dRxefWQW8/l1HEFlZEXgRysvPpST+2aKIceCnxTaB2nVetLcoEgxT37Ch2LLaMImNIdTelO1mrJbQXsr/nshUpuYx67MY/1d0QLg9DCICLY2aCrlAM4W879ksfuLGSVNHwijXxaffR1aWrwE6F2sl5Yx/DtohLcQWhsAiTCoqKi0NBQ/rW/vz9C6MaNG7169bpvs5EjR2o0muDg4O+//37o0KGt7orjOJVKlZLyV4mm4OBgJycnE0XeNjEBb/QjloQRcWXshVtcQiWXWs2lVXNp1dy/swAAfGQw1Jvg86K/I+TVQ149l1fPZddxufVQ1Mgx9z5Xk4Tihluof03W5x6ZMkXrZwADAE1eGsfQksA+hFQudCx2wVUCf+tF/K0Xca2e25zP/nqNK2rkPkjlPkhlh3mjKE+kbrPJVMNAfCV3vYEDAAQwxhf18xsIh49O1KR6es0z0+9ghTiG1uZnAEJ4pIzRmSQRlpWVrVu37sH3V61aFRgY2NTU1PI9DyEklUobGxvv2zI+Pj40NJRl2Y8//nj69On5+fkPfmUEgJqamuLi4iVLlrS8s2LFilmzZhnvV7mHSqXS6/Uk2dZ8PTHAJC+Y5AUQDmoaLtcSF6uIi1UoqQpVqNHuInZ3UesfpAgIdOCCHdlQZwh25IIcud4unDyhn+Z4VmPGBSbA7hZbUSqVyLAZgeorFwEABYQ3NTWZOCibZfjZvpsvCW+EwuoQiL9N/F5I7C0lLlTChUqDGkr9HGC+Pz0/kPV34DhNaP1RUleY1VRTBWLbXzClY2ebvp7JadWkTw81KQF8qRuGZVmRSCQSPWJIhUkSoVQq7du3lUYquVwOAF5eXnV1dfw7er2+qanJ29v7vi35r4wEQfzzn//84osv0tPTR4wY8eAO3d3de/XqlZz80Nm4xkUQhEQiaTsR3k0BMMEFJgQ0/5hXzyXc4i5Ucgm3uEo1F+iIermgEGcU6gxhLqinExI/0Oyv7zdcc3wrcy1VoVAY7/ewDhzHGfhbNxVkAoBTxFCx/Z0lYzH8bLdqoiNMDAQVDQdK2JsqkLd5X5GS0EOBRvogAt25PSkU6u4huqJsqvy6tM+QDodhLTp2tuuLrwKAvM9gO7wbdBjLsgzz6HoQJkmE7u7uL7744sP+b//+/Xfu3Mm/vnjxoqenZ9euXR+2cVNTk1qtto0/fIgzCnFGi4Pb8RFR156ksztTV6UvLxL5+psqMmvG1FXRt8sImULcvT1nFjMBOQWzOzrIUxo2UFeUrcm9bA+JsGNwZTXTEWDo0YIFCzIyMr7++uvExMRVq1YtW7aMoigAWLZs2fr16wEgJSXl888/P3v27NGjR2fMmBEZGRkRYXcNg83u9Ae0UYPKzjUPHwjuC4R9l5izcs2zCduzJJNdYRpq9eVFSCwVB/QROhYbJEAidHFxOXHixIULF9asWTNt2rS33nqLfz80NJQfSurq6pqTk/P2229/9dVXw4cPP3z4sOGtkbZH2isKADTZl4QOxELhymq2QdwjjJAr6Fs36OoKoWOxRJrsS8BxkuB+iMIziI1PmMIkkZGR27dvv+/NV199lX8RGBj4888/mz0oCyUJG4BISldwldUoCamD0OFYGI7T4KWXbANBSIL6qTPitbmXqWGThI7G4mhxu6gp4VmZlo6QOoh7hHEMrTVseUK7oruRzzbVk25elEcXoWPBOqu5F6DNJZnsFMtq8lIBV1YzGZwIrYC0dxQAaLJw6+j9tM2V1fBjsi3g54lr89KANdmyT9ZJV5LHKhsodx/8wGciOBFageZuwqwk6HgpK9t0p7Iabhe1BZSbN+XZlVU36UryhI7FsjQvSd8rSuhAbBZOhFZA1CWAdHZnGmr0NwuFjsWCcDqtrigLEJIE9xM6Fsw4mltH8djRe+HKaqaGE6E1QIjvG8BjR++mvZbK6XVivxDCQZiiepjRScPwJIr7saomXUkuIikpfuAzGZwIrcOdSRR4NuFf1JmJACCNiBY6EMxoJMGRiBLpSnJZ1f1lF+2WNvcysKw4sA+SWMcKBNYIJ0LrIAkdgEhKW5jFqnGNQQAA4DhN1kUAkIXjcuS2A4mlYv8wYFnttXShY7EUuKCMGeBEaB0IqVwc0BtYRpuXKnQsFkFXnMs01JJuXrjynI3hxwDjSRQtmhedDsMTJ0wIJ0KrcWfsKG4dBQBQX0kAAFnEMKEDwYxMEjYA7swfx/TlRUzdbdLJVdQl4NFbYx2FE6HVaJ5NmI0nUQAAaK4kAoCsD+4gtDXibsGEwoWuqaRvlwkdi/D4YQGSsEHQ/mWbMMPhRGg1RL7+pKsX01CrLysQOhaB0dXl+opiQuog7hkudCyYsSEkDYkEPHYUAHAHobngRGhN8CQKniYzAQCkvaMQKUyxXMykJM2zCe29m5DTaXUFVwAhaUh/oWOxcTgRWhOcCHnqqxcBQBqO20VtkzRsECCkvZbG0XqhYxGSNj+do/VivxBC4Sx0LDYOJ0JrIg3pj0hKW5Rtz7OsWHWTruAqIik8js5WkU6uIp8enE6jK7wqdCxCam4X7YXbRU0OJ0JrgiQycWA4sKw9Dy7XZCVxDC3uGU7IFULHgpkKv069OjNB6ECExI+UwQ98ZoAToZW50zpqv5MoNFcuAh4vautkfYcDgDr9vN2OkebHzRIyhbhHqNCx2D6cCK2MtPdgsOOVKDiGbm4vwh2ENk3sF0y6ejH11bpSO12Jgh8KIAnpDwQpdCy2DydCKyPy6U65ebNN9bob14SORQDa/AxW3STy9afcfYSOBTMlhGQRQwFAnXFB6FCEocUdhGaEE6H1kfCto3ZZYkZzFdcXtRd/tY7aH46h+WqreK1N88CJ0PrcWYnCHidRaJonTgwROhDM5CSB4YTCmb5dpq8oEToWc9MVZrEalcinB+nqJXQsdgEnQusjDbmzVI2yQehYzEpfXkRXV5BOruLuePiAHSAIfkiUOjNe6FDMTZOVBHdGxmFmgBOh9UFiqaRnBLCsvdWg4ruLpH2icd1FOyHrOwwA1Ol2lwj5X5lvHMbMACdCq2SfJWY0VxMBQIbbRe2GJHQAIZXrb+TT1RVCx2I+upI8urqcdHYX+/cSOhZ7gROhVfprwXq7mUTB1FfrSq8hkVgSjOsu2gtEiZqHhl2xo5n16vRzACCLHIlbPswGJ0KrRHn7UR6+rLLBfmZZaa5eBI6Thg1EYonQsWDmwy85aVeTKPiBsrJ+I4QOxI7gRGit+MJLmix7aR1VX0kEvoMQsyeyPkOQSKwtuMI01Aodiznob+TTVeWkk6vEv7fQsdgRnAitVfM6vfaRCDmdVpufDgjxhXUw+4EkMklwJHCcJuui0LGYgyrtHADI+o0EAt+czQefa2slCY5EIrGuNI9tqhM6FpPT5KRwOq24Rxjp5Cp0LJi5Nc+sz7CLsaP8rynrN1LoQOwLToTWConEkp4RwHH2sH7pnfGiuF3UHskihgJBavPSWI1K6FhMS19WQN+6QTq6SgL7CB2LfcGJ0Irx7YTqTFsfR8Bx6qtJcGdpHszeEA5OksDeHK3np5nbMHXGeQCQ9h2G20XNDJ9uKyaLHAkEoclKYjVKoWMxIV1RFttUR7n7inz9hY4FE4Yswi5aR1Vp5wFAHonbRc0NJ0IrRjq5SQLDOb1OY9ODy9VXLgKANAIX2rZfsn4jACFNdjKn1wkdi6noy4voyhLCwUnSM0LoWOwOToTWTT7gMQBQXT4tcBymxE+ckOF2UTtGuniIuwVxWrU2z2Z7xP+aPogXIDQ7nAitmyxyFCIpTV4a02ibs6zoqnK6soSQKcR4+IB9k/a18Zn16rSzgOfRCwQnQutGyBWSsIHAMrZamJgfCiTtPRiRlNCxYEJqnkRxJRFYRuhYjI++dUNfUUI4OEmD+wkdiz3CidDq8a2j6sunhA7EJPiJE3gBQkzk3Z3y9mOVDdrrV4SOxfhUqWfgzkQRoWOxRzgRWj1ZxFAklmoLs+iaSqFjMTJW1agtyEIkJQ0bKHQsmPCa647a4nwhdUtBGUwIOBFaPSSWysKHAMepU88KHYuRaa4mActIgvoSMoXQsWDCa24dTT9vY4uu0LfL9OVFhEwhCYkUOhY7JUwiZFk2Nzc3JyenjW2Sk5P37NlTXl5utqisl2zAGLDFsaNqvl0UjxfFAABA7BdMunox9dU2tuiKih8m03cY7ggXigCJcNOmTS4uLv3793/uuecets0LL7wwb968LVu2REREHD9+3JzhWSNpr0GE3FFfdl1fUSx0LEbDMbQ2JwVwIsRaICSLGAo2N3ZUnYbXXRKYAIkwJiYmOzv73//+98M2SEtL27VrV2Ji4vbt2z///PM1a9aYMzxrhEhKxg8uTz0jdCxGwxReZTUqUddAyt1H6FgwS9HcTZh+XuhAjIauLteXXSdkCkkIXnFaMAIkQj8/v65du7axwe7du8ePH+/u7g4ATz31VGZmZlFRkZmCs1pyvnU05ZTNdJ/QOcmAC21j95L0jCAUzvTtMn1FidCxGAfftS8Nj0aUSOhY7JclNkmXlZX5+fnxrx0cHNzc3G7cuOHv7//glnq9vra2dtu2bS3vDBo0qNUtjYJhGIax0DlMVGA46exOV5VrSnJF3YKFDscI9LkpACDuNdhiz7ktseRr+z7S3kNUSceU6eccPecKHUsH3X22+QUIpX2HWcv5ty4sy3IGfDcwSSLcuXPnt99+e9+bJEmeOHHCkI/rdDqK+iswsVis1Wpb3VKlUtXW1m7fvr3lHYVC4evr2/6QDcKHQZIWOtFHFD6UiT+gvHRS5tld6Fg6iykvZOtuE46urKffw/76mBHpdDprOc9k2CBIOqbJuCAeOUPoWDqo5WwzNZX6sutIIuO697aW829dWJY15I5tkkQ4dOhQb2/v+95ECBn4cV9f36qqKv41y7LV1dUPy23Ozs6BgYE7d+7scKjtJZFILDYRUoPHaeIP6DLj3Z9cBgafbctUlxkPAPJ+w+UODkLHYhcYhpHL5UJHYRAuIrpJIqNvFkg0TaSbl9DhdETL2W5MTAGOk4VHOzi7CB2UbWJZ1pCv2iZJhF26dOnSpUt7P8UwDEEQCKHhw4evWrWKZVmCIOLj411cXIKDbaGtz9TEPcIoz6707TLt9UxJUF+hw+k4jqFVyScAwCH6caFjwSwOEomlvaPUqWfVmfGK0db6pZDXXF8Ur7skNAEGy+Tm5q5du/bPP/8sLi5eu3bt5s2b+fednZ3j4uIAYPLkyTKZbNGiRb/88ssLL7zw2muviUS4G9kg8shRYP0TCtUZ8WxTPdklUNQtSOhYMEvUPHbUyidRMHW3daXXkEQmDRskdCz2ToBEKBKJXF1dR40atWLFCldXV4WiuWjIRx99FBISAgAkSZ4+fTosLCw5Ofn9999fvXq1+YO0UrJBYwBAnXaWY2ihY+k4ZcIRABANjBE6EMxCyfoMQSKxtuAK02DFi66oUs8Cx8n6DEYisdCx2DsBRo0GBga+8cYbD76/cuXKltdubm5vvfWWGYOyESLv7iJff315kTYnxUrnodPVFdpraUgkFvfF84ux1iGJTBLcT5N1SZN10Xrbz9XpuL6opcC1Rm2NfKB1l1tTJR4FjpP3H42keJgM9lDNdUczrHX1MaauSleci8QSaS/cLio8nAhtjXzgGEBInZnA6TRCx9J+LKNMOgYADkOt9TEfMw9ZxDAgSG1eGqtRCR1LR6jTzwHHSXsPRmKp0LFgOBHaHNLVS9wjjNNp1FcShY6l3TTZl5j6asq7uzgAr0ePtYVwcJIE9uZoPb9ipdXhq8Th+qIWAidCG9S8VK8V1h3lh8k4RE8QOhDMCsj7PwYAyvhDQgfSbmxDjbYwC4nEst6DhY4FA8CJ0CbJB4wGgtRkXWJVjULH0g5MQ60mOxmRlEPUWKFjwayAfFAMIXXQFlzRlV4TOpb2obMuNreLSmRCx4IB4ERokwiFizS4H8fQ1jXRSnnxCMfQ0r7DCAWusoE9GpLI5EPGA4Dy/AGhY2kf/dVEwO2ilgQnQtskG/AYAKgunxI6EINxnOriccDVZLD2UIx8AhBSpZxkm+qEjsVQTEMtXZKDRGIpbhe1GDgR2iZZ32GIEmnzM5iGGqFjMYj2WjpddZNy85biVdkwg1EevtJegzhar7x4TOhYDKXOjAeWlYYNJKTWUdzVHuBEaJsImULaOwpYll/tzPIpEw8DgHzIBGsvF46ZmWLkNABoij8ALCt0LAZRJhwGXF/UwljieoSm1tDQ0LK6Rbuo1WqxWCz46hMURXXr1o0gHvEQI+//mDrjguryacXo6eYJrMNYZYM6MwEIwmHwOKFjwayMNGwg5dWNvnVDfSVR1neY0OE8gjYvVX/jOqFwkeHCSZbEHhPhvHnzUlNTZbJ2j9fiOM7wxaRM5/bt2xs2bFi0aFHbm0nDowmpXFecQ98uozy7mie2jlFdiuP0OmmfIaSrVa6qgwkJIcWIqXW7vms6t9fyE2HjyT8BQDx0Eq4valHsMRHqdLrNmzePG2etXz6WLl1qyBqeSCSWhkerkk+q0s46xc4zQ2Adpkw8CniYDNZRDkPGNxzapL2Wrr9ZKOoSIHQ4D6UvL9LkXkZiqXiQtd58bBXuI7Rl8gFjAECVbNFjR3VF2fqKYtLJVdo7SuhYMKuEJDL5oLEA0HR+v9CxtKXxxHbgOIehE5HcUehYsHvgRGjLpGEDCIULXVmiLy8SOpaH4qvJyAePR6Q9tk9gRqEYPR0QUiWfsNgiEkxdlTr1LBCko5UvJmyTcCK0aQQp6zccAFQpFvqlkNOqVWlnASFcVg3rDMqzqzR0AKfTWuw8iqYzuzmGlkeOJN1wR7jFwYnQxvGrMikTj1rmYhSqlFOcVi0J6kt5dBE6Fsy6KUZOBb7KDMcJHcv9WI2SnzXhGDNL6FiwVuBEaOMkgeGSwHC2qa7p3D6hY2mFMvEIADgMnSh0IJjVk/YeQnl2pavLNVkXhY7lfsr4Q6xGJQnpL+oWJHQsWCtwIhReSUnJ4sWLY2JivvjiC9YEk4IdJzwNAI0n/+S0aqPvvDP0Nwt1JXmE3FEWYemj3jErgJDD8MkA0HTWsp75OIbmH0Px10GLhROhwBiGmTBhQr9+/b755pt9+/Z99tlnRj+ENHSAJCiCVTY0nt1j9J13Bt9YJI8ai+dUYUbhMGQ8Eks1uZctanSYKuUUU3db5OsvDR0gdCxY63AiFNjBgwednZ1fe+218PDw9evXf/PNNzRNG/0oTpOeAYCmkztZVZPRd94xnF6nSjkJAA6DxwsdC2YjCJlCPigGAJTxB4WO5Q6OazqzGwAcY57C5QMtFk6EAouPj4+OjuZf9+3bt6amprCw0OhHkQT2kQRHsuqmJov5UqhOO8eqmsT+YaKugULHgtkOxajpgJDyUhyrUQodCwCAJjtZX1ZAOrvLBowWOhbsofDMLQCAJj3ozVKwlyTASXTPOxUVFXFxcefPn+d/ZFm2vLw8ODjY6Id2nrTo1vq0ptO7FaOmERYwn1d5kV+MHleTwYxJ5NNdEtRXey1ddfG4JVTZbTy5AwAUj83E02QtGf7bwMmb3PjDNGOWEdcI4Pcx5Lyef30Rl0qlkydPfvHFF/kfJ06cKJVKTXFocUBvadhATU5K06ldTpMXm+IQhqNvl2mvX0ESmbw/fkzGjEwxcpr2WnrTuX2KUdOEbY3UlV7T5mcQUrnDUPzAZ9FwIgQPKXRXoDqdOTKhowj5yO/5l9mtW7fi4uKBAwcCgE6nq62t7datm4mO7jR5sSb3cuPZPYrR04RdBV6ZeAQ4Tj7gMSRpd+lzDGubLDyacvehq25qcpKlvYSs29d08k8AcBg+mZA6CBgG9kg4EUJfN1QwR9TI/ksAABQ3SURBVLDzMGPGjEmTJmk0GqlUevDgwUGDBnXpYqqp5WK/EGmvKE1WUuOpXc5TnzPRUR6NZVSXTgAAfkzGTIIgHIZNrt//36az+wRMhHRNpSr9PCIpxcgnhIoBMxAeLCOw8PDwmJiYiRMnvvfee6+88sqHH35o0sM5TVwICDWd28c01pr0QG1Qp8czDTUiX39x91ChYsBsm0P0BCQSa3KS6dtlQsXQdHoXsIxswGOki6dQMWAGwolQeBs3bly1apWnp+epU6fGjh1r0mOJ/YJl4UM5nabxxA6THuhhOK26bv/PAKAYMVWQADB7QDg4yQeOAY4Taj0KVtWoTDwKCOFJ9FYBJ0LhIYSmTJmyfPlyUwwWfZDTpEWAkDL+AFNfbYbD3af+4P+Ymluirj1xuyhmUorRMwBAmXiU1ajMf/Sm8wc4nUYaNkjk62/+o2PthROh3RH5+sv6juD0usYT2818aF1xTtP5/UCQbvNeA4I089ExuyLy9ZcEhnNatSr5pJkPzdF65XlcU82a4ERoWYqKivjKMrm5uZcvXzZF6VEAcJq4ABBSXjjE1N02xf5bxTF07davgGWdxs4WdetptuNidksxahoANJ3Zbeb1KFRJx5mGWrFfsCS4nzmPi3UYToSWJTIysqSkZMGCBXPmzHnttdeGDh3a0NBg9KOIfHrI+4/maH3D8T+MvvOHaTz+h76imPL2cxw/z2wHxeyZrO8w0sWDvl2myUs131E5rvHMbgBQjHnSfAfFOgcnQotz+vTp7OzsS5cunT59OiQk5OuvvzbFUZwmzAeCUCUeZWpumWL/99GXFzUe/wMQcp3zKi6xjZkJQSqGTwGA+r0/cTqteY6pvnqRriyl3LzlkSPNc0Ss83AiFF58fPyMGTMmTpx49OhRANi9e/fTTz8tEokAYOHChb/99pspDkp5+8kHjuEYuuHYFlPs/x4sW/vH1xxDK4ZPlgT2MfnhMOwOxahplLef/mZh7Y5vzXPEJr6m2ugZuBfciuBEKLCCgoIpU6bMnTv3s88++/7771UqVWlpaVNTU1xcXFxcXGVlZVFRkal6CifMB4JUXYqjq8pNsf8WTWf36IpzSGd3pynPmvRAGHYfJJF5PP8ukshUl+KUFw6Z+nC6klxtwVVCrnCInmDqY2FGhCvLAKtRNp3axdF6MxwLEaTDyKmkk1vLOxs3bpw1a9acOXMA4KuvvtqzZ09jY+O+ffv4Mtx6vV6v16tUKoVCYfRgKI8uDlHjlBePNhzb4vb0KqPvn0dXV9Qf2gwArrNX4EJTmPlRXt1cZ6+o+fWTut3fi/yCxX4mm6TEcQ2HNgOAw/ApuHagdcGJEDRXkxqO/m62wyG5wvGuXvTi4uKIiAj+tb+/v0Qi8fDwWLVq1ezZswEgLy9v4MCBpsiCPMfx81TJJ1TJJ51i51KeXY1/AI6r2/4Np9PIBzwm7TPE+PvHMAPIB47RFV5tOn+g5n8fea361kSrr9Tt/I8mJ4WQO/KjVTErghMhyPqNcNWqWbU5VqxFEpl80D21Yzw9PSsrK/nXtbW1Wq02LCzsypUrfCLMzMxsSZOmQLn7yIeMV1441HD0d7cFa4y+f+WlOE3uZcLByWXm34y+cwwznPOMv+nKCnWFV2t++9RjyftGX5Wi4djWpvP7kUjs/sK7pKOrcXeOmRpOhIAokcOwSUIdfebMmbNmzXr55Zd79Ojx0UcfIYTmzZu3ZMmS559/3s3N7bPPPnvppZdMGoBT7FxV0nHV5dOOsXNF3t2NuGdW2VC/9ycAcJn5N2EXu8AwRFLui9dWfrZck3WpIe4Pp1hjzuFRJZ9sOLwZCMJtwRpJYLgR94yZhzCDZaqqqo4dO7Zjx46HDQPZu3fvjjsSExPNHJ45DR8+fO3atcOHD+/Ro4ebm1vfvn3Dw8M/+OCDmJiYsLCwcePGLVy40KQBkK5eDtGPA8s2HNho3HnHtX9uYJUN0l5R8oExRtwthnUM6eLptvANQKjh8K/avDRj7VZz9WLNli+A41xnvSzrN8JYu8XMSYBvhCkpKSNGjAgODs7MzNRoNBKJ5MFtnn/++XHjxjk7OwPAwIEDo6OjzR6m+axcuXLlypX86zfffBMAnnnmmWeeecZsATjGzlUmHVNnJlRv/MBtwRokNsLKwOrMBHXqWSSRuc5+pfN7wzCjkIYNdJowv+HIb9Wb/8/79Q2ki0cnd6gryq7etA5YxunxBQI2LGGdJEAijIiIaGhoKC0t7dmzrTpbH3zwgXmKUGOks7vHkn9Vb/xQnXHh1jeveyz5F+ns3pkdshpl3Z8bAMB58jOkq5eRwsQwI3CaMF9XlK3JSanetM7z5U8R2fF7oL6ypOqndzmd1mHYJKfHFxgxSMzMBGgaFYvF/Gzxth04cGDz5s1ZWVlmCAmTBEd6vfYN5e2nv5F/64tXdCV5ndlb/b7/MvXV4h5heK0lzOIg5LZoLeXuoyvMqt/3c4d3w9RXV/3wFqtskPaJdp213IgBYuZnoYNlwsLCrl69qtFoXn755TVr1rz11lutbqZUKsvKylavXt3yzhNPPDF48OC2d86ZtwKvKdA0rdUau2SUo7vz3z5u+O0T/fXM29++rpj1ijRyVAd2oy+4qkw4jEjK4cnlWn3HZ2dqtVqxGBdjMxP7OtukWDFvVf33bzad2UP4Bkr6j27vDliNsv6Ht5iaW1T3EMXc17R6GoA2/OP2dbYFxbIsQuiRX71MkgivXLkyZsyYB98/cODAkCEGTSbjp5MDQFpa2qBBgxYvXuzn5/fgZgRBkCTp6vrXYGW5XE4Qtl8uByFkil+TUDi7Lf2gcc+PqoRDjX98yVWXO7RzcB1H6xt3/wc4Tj52jrhzK7ERBGEPf0oLYW9nW9IjTDH1+cbd3zfu/k7ULYjybuX28jCcXtf4v4/om4WUt5/r8+8R0nbPnbe3s235TJIIe/Xqde3atQffd3Rs9zzWyMhId3f3a9eutZoIZTKZj48PP8DEcMjYU4jMjyRJQ5qXO0TkNmeFyLNL/f7/Nh3bwtXddpmz0pB+FE6nVaefb7pwkLl1Q+Tr7zJhXmd6XwBAJBKZ7HfE7meHZ9t59HSmJFeVcqrht0+8Xltv6Bgxlq3+9Utd4VXSxdNz2ceks9ujP/IAOzzbQmFZlmGYR25mkkRIkqSLS7vnjRUWFvKJjWXZlselK1euVFdX41EzZuYYM4vy7FLz66fKpON0dYX7c28TDk6tb8px2sIsVdIxddo5filwJJG5Pv1aJ7MghpmB65yV+rLr+ori2m3r3Ra+YchHanf+W50RT8gdPf72UecHnWIWQoC7lVarXbhwoVKpBID58+c7Ojpu3LgRAF555ZXIyMgPP/zwyJEj//rXv6KiotRq9a5du958881Wvw5iJiWLGOa14ouqn9/VXs+89dVKjyXv39d8xNTeUl46oUo6Tlfd5N8R+/dyGBwrGzAa1xTFrAISS92ffbvyyxWqlFPAspRPd9LZg3RyJZ3dCUc30tHlvgI0DUd/V8YfRCKxx5L3RD7GrD6BCQuZf+QIwzCnTp1q+VEkEo0ePRoAkpOTnZycQkJC1Gr1uXPnrl27JpPJBg8eHB7+0EoNKSkpL774YnJycrsCiI2NdXd39/f37+hvILAjR44sX758yZIlZjgWU19d/fO/dKV5hEzh/uw/JSH9OZ1WnRGvTDquvZbGT8Annd3lUeMcBsdSXt2MeOjGxsYOtKVjHWPPZ1uderZ688etVJMgSNLRpTk1unhwHKeMPwgE4f7cO7LwTs1stuezbWZ80+gjG6IFSIRG1LFEePTo0bS0jtSV0Ov1JElaQi/33Llze/ToYZ5jcTptze+fqdPPA0HKIoZqcy83N4GKxLKIYfLBsdKQ/mCCc4JvFuZk52dbW3BVX3adbaxl6qqYO/9lm+of3NJ1zkqHoRM7eTg7P9vmhBOh8alUKolEQpL2t94mx9Uf/F9j3Db+J7F/mMPg8bL+owiZqZbFAHyzMC98th/E0fq7UyPbVEf59JAPeKzze8Zn22wMTIR4RANmAIScpzwr9gvS3yyUDxjTrrHmGGalECUiXb1waSR7gBMhZihZv5GyfiOFjgLDMMzIhO/uwjAMwzAB4UTYDikpKS2L6GKmdurUKY1GI3QU9uLIkSNCh2Av9Hr9iRMnhI7CXlRXVxuykB9OhO2wYcOGuyd+YCb19ttv5+TkCB2FvZg/f76+E4VhMcMVFRW9/vrrQkdhL+Lj4z///PNHboYTYftY9SBbDMMwu2LgHRsnQgzDMMyu4USIYRiG2TXrnj5RX1+fn58fGxtrnsNduXIlKytr06ZN5jmcnSsoKFi2bJlCYcI5+1gLhmEmTpxoAwuzWD61Wl1eXm62u5adu337tiGbWXdlGY1Gs3XrVrOV5K6oqHB2dpbJ2r38GNYBxcXFfn5+llDQzh4UFhYGBAQIHYVd4DiuuLjYemsdWxetViuXy1tdH/du1p0IMQzDMKyT8OM2hmEYZtdwIsQwDMPsGk6EGIZhmF3DiRDDMAyza9Y9fcKcWJY9c+ZMYWGhv7//8OHDJRKJ0BHZrJSUlNraWv61g4PD0KFDhY3HHmi12nPnzoWEhHTv3l3oWGwWTdOZmZnZ2dkAEBUVFRwcLHRENi4vL+/y5csikWjEiBHe3t5tbEm+99575orKijU2NsbGxu7du5em6b179/r7+wcGBgodlM1asGDBnj170tLS4uPj8/Pzp02bJnREtu+dd9556aWX/Pz8oqOjhY7FZiUmJi5durSxsTE3N3f16tUSiQQ/5JnOF198sWzZMpVKlZqaumrVqkGDBrVx08bTJwyyYsWKoqKi3bt32+Py9GYXExOzfPnyJ598UuhA7EVaWtrSpUsVCsUTTzzx6quvCh2OXdi/f/9zzz1n4HRvrANKSkp8fX35tek//PDDw4cPx8fHP2xj3EdokK1bt7722muZmZnnz59Xq9VCh2P78vLyjh49WlxcLHQgto+m6RdffPGHH37gbxmYeSiVSg8PD6GjsGXdu3dvuaR9fX21Wm0bG+M+wkerr6+vqqp6//33ZTKZWq0uLi4+ceIELgxhOjKZLC4u7syZMxcuXFi6dKkhq6hgHfbRRx+NHTu2f//+QgdiL8aPH69SqW7durVz506hY7ELSqXyiy++WLFiRRvb4KbRR6usrPTx8Vm7du3HH38MAIsXLyZJ8pdffhE6LpvFMAzfBJ2fnz9gwIADBw6MGjVK6KBsU3Z29uzZs5OSkmQy2YQJEyZOnIibRk0tLi6uoaFhw4YNXl5ef/zxh9Dh2Di9Xj9r1iypVLp169Y26jXib4SP5unpKRKJRo8ezf84ZsyY//znP8KGZNtaOmKDgoIGDx6cmpqKE6GJfPHFF46Ojnzyy8rKamxslMvlS5cuFTouWzZu3DgAiImJcXNzW7duHR52Zzo0Tc+fP5/juN9++63tqsU4ET4aQRCPPfZYfn4+/+O1a9e6desmbEh2QqVS5eTkLF++XOhAbNaLL75YVFTEv05MTAwNDY2IiBA0IntRXV3NcZyTk5PQgdgshmGeffbZ+vr6vXv3PrL/GydCg7z11ltPPfWUUqlUq9Xff//9oUOHhI7IZpWVlS1atGjUqFEikWjHjh09evSYMmWK0EHZrKioqKioKP71zz//3K9fPzyg33TWr1+fnp4eFhbW0NDw22+/LVu2DI+XMZ3PPvtsy5YtCxYsWLlyJQDI5fKvvvrqYRvjPkJDZWRk7Nq1SyaTPfnkk0FBQUKHY7N0Ot2ePXuuXr0KAH369Jk5cyZF4cc1czh06JCfnx/+Rmg65eXlBw8eLCws5MtEPHJtIKwzEhISMjMzW36USCSLFy9+2MY4EWIYhmF2Dc8jxDAMw+waToQYhmGYXcOJEMMwDLNrOBFiGIZhdg0nQgzDMMyu4USIYRiG2TWcCDHM+lRWVm7atKmqqkroQDDMFuCpyhhmcc6cOfPss88+7P9GRUUtW7bsmWeeSUxMxKVJMKzzcCLEMIvTrVu35557jn+tVqvXrVs3fPjwxx9/nH+ne/fuAQEBH3zwgZ+fn3AxYpjtwJVlMMyi1dTUuLu7r1q1ypB1GWma5rdvWcFDp9MplUpXV9cHN2ZZ9vbt21Kp1NnZ2chBY5hVwX2EGGZ9EhISfH19U1NT+R8nTJgwf/787777ztvb29vb28fH588//9TpdCtWrHBycnJzc4uIiMjOzm75OMdxn3zySZcuXXx8fFxcXAYPHpySkiLQr4JhwsOJEMOsj1arraio0Ol0/I+NjY1xcXEbN27csmVLfHx8nz59Fi1a9Nxzz9XU1MTFxR08eLChoaGlrRUA3njjjXfeeWfFihWpqannzp1TKBSxsbFlZWUC/TYYJjDcR4hhtkClUh04cMDLywsAvvnmm379+uXk5Fy6dAkhBABr16596aWXKioqfHx8SktLv/rqq3fffffNN9/kP7t79+6AgICffvrpvffeE/BXwDCh4ESIYbagf//+fBYEgJCQEACIjY3ls2DLOyUlJT4+PidOnKBp2svLKy4uruXjfn5+V65cMXvUGGYRcCLEMFtw93AYsVgMAC4uLve9wzelVlZWAsAbb7zRkiZ5vr6+5gkVwywNToQYZl/4MaLx8fG9e/cWOhYMswh4sAyG2ZdRo0YhhHbs2CF0IBhmKfA3QgyzL7179160aNG6devkcvncuXM9PDwKCgoOHTrUs2fPmTNnCh0dhgkAJ0IMszs//vijp6fnu+++u2bNGv6dkJCQDRs2CBsVhgkFV5bBMEvHMAxBEPeNbWEYpqV8TMdoNJrc3Fy9Xt+tWzcfH5/OxYhhVgwnQgzDMMyu4cEyGIZhmF3DiRDDMAyzazgRYhiGYXYNJ0IMwzDMruFEiGEYhtk1nAgxDMMwu/b/CnVfkNuIOv8AAAAASUVORK5CYII=",
+ "image/svg+xml": [
+ "\n",
+ "\n"
+ ],
+ "text/html": [
+ "\n",
+ "\n"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tspan = (6.3, 2.)\n",
+ "\n",
+ "dt0=1/10\n",
+ "#Pass to solvers\n",
+ "prob = ODEProblem(simplependulum, u₀, tspan)\n",
+ "sol = solve(prob, IRKGL16(), dt=dt0, adaptive=false)\n",
+ "\n",
+ "#Plot\n",
+ "plot(sol, linewidth = 2, title = \"Simple Pendulum Problem\", xaxis = \"Time\",\n",
+ " yaxis = \"Height\", label = [\"\\\\theta\" \"d\\\\theta\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "id": "bc9fefd2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(sol.retcode, sol.t[1], sol.t[end]) = (SciMLBase.ReturnCode.Success, 6.3, 2.0)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "44-element Vector{Float64}:\n",
+ " 6.3\n",
+ " 6.2\n",
+ " 6.1\n",
+ " 6.0\n",
+ " 5.8999999999999995\n",
+ " 5.8\n",
+ " 5.7\n",
+ " 5.6\n",
+ " 5.5\n",
+ " 5.3999999999999995\n",
+ " 5.3\n",
+ " 5.2\n",
+ " 5.1\n",
+ " ⋮\n",
+ " 3.0999999999999996\n",
+ " 2.9999999999999996\n",
+ " 2.8999999999999995\n",
+ " 2.8\n",
+ " 2.6999999999999997\n",
+ " 2.5999999999999996\n",
+ " 2.4999999999999996\n",
+ " 2.3999999999999995\n",
+ " 2.3\n",
+ " 2.1999999999999997\n",
+ " 2.0999999999999996\n",
+ " 2.0"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "@show (sol.retcode, sol.t[1], sol.t[end]);\n",
+ "sol.t"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "65ca7d23",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Julia 1.9.1",
+ "language": "julia",
+ "name": "julia-1.9"
+ },
+ "language_info": {
+ "file_extension": ".jl",
+ "mimetype": "application/julia",
+ "name": "julia",
+ "version": "1.9.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/src/IRKCoefficients.jl b/src/IRKCoefficients.jl
index cca7946..88d78a6 100644
--- a/src/IRKCoefficients.jl
+++ b/src/IRKCoefficients.jl
@@ -6,8 +6,8 @@
# EstimateCoeffs!
function PolInterp(X::AbstractVector{ctype},
- Y::AbstractMatrix{ctype},
- Z::AbstractVector{ctype}) where {ctype}
+ Y::AbstractMatrix{ctype},
+ Z::AbstractVector{ctype}) where {ctype}
N = length(X)
M = length(Z)
K = size(Y, 1)
diff --git a/src/IRKGL16Solver.jl b/src/IRKGL16Solver.jl
index a2a84d6..005fc5a 100644
--- a/src/IRKGL16Solver.jl
+++ b/src/IRKGL16Solver.jl
@@ -80,14 +80,14 @@ struct IRKGL16{
nrmbits,
} end
function IRKGL16(;
- mstep = 1,
- maxtrials = 5,
- initial_interp = true,
- myoutputs = false,
- threading = false,
- mixed_precision = false,
- low_prec_type = Float64,
- nrmbits = 6)
+ mstep = 1,
+ maxtrials = 5,
+ initial_interp = true,
+ myoutputs = false,
+ threading = false,
+ mixed_precision = false,
+ low_prec_type = Float64,
+ nrmbits = 6)
IRKGL16{
mstep,
maxtrials,
@@ -100,8 +100,32 @@ function IRKGL16(;
}()
end
-function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, isinplace},
- alg::IRKGL16{
+function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{
+ uType,
+ tspanType,
+ isinplace,
+ },
+ alg::IRKGL16{
+ mstep,
+ maxtrials,
+ initial_interp,
+ myoutputs,
+ threading,
+ mixed_precision,
+ low_prec_type,
+ nrmbits,
+ },
+ args...;
+ dt = 0.0,
+ maxiters = 100,
+ save_everystep = true,
+ adaptive = true,
+ reltol = 1e-6,
+ abstol = 1e-6,
+ kwargs...) where {
+ uType,
+ tspanType,
+ isinplace,
mstep,
maxtrials,
initial_interp,
@@ -110,27 +134,7 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
mixed_precision,
low_prec_type,
nrmbits,
- },
- args...;
- dt = 0.0,
- maxiters = 100,
- save_everystep = true,
- adaptive = true,
- reltol = 1e-6,
- abstol = 1e-6,
- kwargs...) where {
- uType,
- tType,
- isinplace,
- mstep,
- maxtrials,
- initial_interp,
- myoutputs,
- threading,
- mixed_precision,
- low_prec_type,
- nrmbits,
-}
+ }
s = 8
stats = DiffEqBase.Stats(0)
@@ -149,9 +153,12 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
return (sol)
end
- t0 = tspan[1]
- tf = tspan[2]
- tType2 = eltype(tspan)
+ signdt = sign(tspan[2] - tspan[1])
+
+ t0 = prob.tspan[1]
+ tf = prob.tspan[2]
+
+ tType = eltype(tspanType)
uiType = eltype(u0)
realuType = typeof(real(u0))
realuiType = real(uiType)
@@ -189,28 +196,29 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
end
d1 = MyNorm(du0, Tabstol, Treltol)
if (d0 < 1e-5 || d1 < 1e-5)
- dt = convert(tType2, 1e-6)
+ dt = convert(tType, 1e-6)
else
- dt = convert(tType2, 0.01 * (d0 / d1))
+ dt = convert(tType, 0.01 * (d0 / d1))
end
end
- dt = min(dt, tf - t0)
+ # dt = min(dt, tf - t0)
+ dt = min(abs(dt), abs(tf - t0))
EstimateCoeffs!(alpha, realuiType)
MuCoefficients!(mu, realuiType)
- dts = Array{tType2}(undef, 1)
+ dts = Array{tType}(undef, 1)
if (adaptive == false)
dtprev = dt
else
- dtprev = zero(tType2)
+ dtprev = zero(tType)
end
- dts = [dt, dtprev]
- sdt = sign(dt)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ dts = [dt, dtprev, signdt]
+ # signdt = sign(dt)
+ HCoefficients!(mu, hc, hb, nu, signdt * dt, signdt * dtprev, realuiType)
# m: output saved at every m steps
# n: Number of macro-steps (Output is saved for n+1 time values)
@@ -334,7 +342,7 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
# initialization output variables
uu = uType[]
- tt = tType2[]
+ tt = tType[]
iters = Int[]
steps = Int[]
@@ -362,6 +370,7 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
(status, it) = IRKStep_par!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -392,7 +401,13 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
end
end
- cont = (sdt * (tj[1] + tj[2]) < sdt * tf) && (j < n * m)
+ # cont = (signdt * (tj[1] + tj[2]) < signdt * tf) && (j < n * m)
+
+ if signdt == 1
+ cont = ((tj[1] + tj[2]) < tf) && (j < n * m)
+ else
+ cont = ((tj[1] + tj[2]) > tf) && (j < n * m)
+ end
if (save_everystep == true) || (cont == false)
push!(tt, tj[1] + tj[2])
@@ -400,7 +415,8 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
if (myoutputs == true)
push!(iters, convert(Int64, round(tit / k)))
- push!(steps, dts[2])
+ # push!(steps, dts[2])
+ push!(steps, signdt * dts[2])
end
end
end
@@ -418,6 +434,7 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
(status, it) = IRKStep_seq!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -448,7 +465,13 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
end
end
- cont = (sdt * (tj[1] + tj[2]) < sdt * tf) && (j < n * m)
+ # cont = (signdt * (tj[1] + tj[2]) < signdt * tf) && (j < n * m)
+
+ if signdt == 1
+ cont = ((tj[1] + tj[2]) < tf) && (j < n * m)
+ else
+ cont = ((tj[1] + tj[2]) > tf) && (j < n * m)
+ end
if (save_everystep == true) || (cont == false)
push!(tt, tj[1] + tj[2])
@@ -456,7 +479,7 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
if (myoutputs == true)
push!(iters, convert(Int64, round(tit / k)))
- push!(steps, dts[2])
+ push!(steps, signdt * dts[2])
end
end
end
@@ -478,29 +501,31 @@ function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tType, is
end
function IRKStep_seq!(s,
- j,
- tj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- maxtrials,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading,
- mixed_precision,
- low_prec_type)
+ j,
+ tj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ maxtrials,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading,
+ mixed_precision,
+ low_prec_type)
if (prob.f isa ODEFunction)
if (adaptive == true)
if (mixed_precision == true)
(status, it) = IRKstep_adaptive_Mix!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -520,6 +545,7 @@ function IRKStep_seq!(s,
(status, it) = IRKstep_adaptive!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -539,6 +565,7 @@ function IRKStep_seq!(s,
(status, it) = IRKstep_fixed_Mix!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -557,6 +584,7 @@ function IRKStep_seq!(s,
(status, it) = IRKstep_fixed!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -577,6 +605,7 @@ function IRKStep_seq!(s,
(status, it) = IRKstepDynODE_adaptive!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -594,6 +623,7 @@ function IRKStep_seq!(s,
(status, it) = IRKstepDynODE_fixed!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -613,29 +643,31 @@ function IRKStep_seq!(s,
end
function IRKStep_par!(s,
- j,
- tj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- maxtrials,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading,
- mixed_precision,
- low_prec_type)
+ j,
+ tj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ maxtrials,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading,
+ mixed_precision,
+ low_prec_type)
if (prob.f isa ODEFunction)
if (adaptive == true)
if (mixed_precision == true)
(status, it) = IRKstep_par_adaptive_Mix!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -655,6 +687,7 @@ function IRKStep_par!(s,
(status, it) = IRKstep_par_adaptive!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -674,6 +707,7 @@ function IRKStep_par!(s,
(status, it) = IRKstep_par_fixed_Mix!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -692,6 +726,7 @@ function IRKStep_par!(s,
(status, it) = IRKstep_par_fixed!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -712,6 +747,7 @@ function IRKStep_par!(s,
(status, it) = IRKstepDynODE_par_adaptive!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
@@ -729,6 +765,7 @@ function IRKStep_par!(s,
(status, it) = IRKstepDynODE_par_fixed!(s,
j,
tj,
+ tf,
uj,
ej,
prob,
diff --git a/src/IRKGL16step_adaptive_par.jl b/src/IRKGL16step_adaptive_par.jl
index ff0decd..4ee37e6 100644
--- a/src/IRKGL16step_adaptive_par.jl
+++ b/src/IRKGL16step_adaptive_par.jl
@@ -5,21 +5,22 @@
# IRKstepDynODE_par_adaptive!
function IRKstep_par_adaptive!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- maxtrials,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ maxtrials,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack f, u0, p, tspan = prob
@unpack U, Uz, L, Lz, F, Dmin, Eval, DY, rejects, nfcn, lambdas, nrmdigits = cache
@@ -32,7 +33,9 @@ function IRKstep_par_adaptive!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ signdt = dts[3]
+ sdt = signdt * dt
+ # tf = tspan[2]
elems = s * length(uj)
pow = realuiType(1 / (2 * s))
@@ -58,7 +61,7 @@ function IRKstep_par_adaptive!(s,
while (!accept && ntrials < maxtrialsj)
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, signdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
end
@@ -159,6 +162,7 @@ function IRKstep_par_adaptive!(s,
else
rejects[1] += 1
dt = dt / lambda
+ sdt = signdt * dt
end
end # while accept
@@ -189,16 +193,16 @@ function IRKstep_par_adaptive!(s,
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
if (j == 1)
- dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), abs(tf - (ttj[1] + ttj[2])))
else
hath1 = dt / lambda
hath2 = dtprev / lambdaprev
@@ -206,7 +210,7 @@ function IRKstep_par_adaptive!(s,
barlamb1 = (dt + tildeh) / (hath1 + tildeh)
barlamb2 = (dtprev + dt) / (hath2 + hath1)
barh = hath1 * (hath1 / hath2)^(barlamb1 / barlamb2)
- dts[1] = min(max(dt / 2, min(2 * dt, barh)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, barh)), abs(tf - (ttj[1] + ttj[2])))
end
dts[2] = dt
@@ -216,23 +220,24 @@ function IRKstep_par_adaptive!(s,
end
function IRKstep_par_adaptive_Mix!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- maxtrials,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading,
- mixed_precision,
- low_prec_type)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ maxtrials,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading,
+ mixed_precision,
+ low_prec_type)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack f, u0, p, tspan, kwargs = prob
@@ -268,7 +273,9 @@ function IRKstep_par_adaptive_Mix!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ signdt = dts[3]
+ sdt = signdt * dt
+ # tf = tspan[2]
elems = s * length(uj)
pow = realuiType(1 / (2 * s))
@@ -294,7 +301,7 @@ function IRKstep_par_adaptive_Mix!(s,
while (!accept && ntrials < maxtrialsj)
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, signdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
lhb .= hb
end
@@ -442,6 +449,7 @@ function IRKstep_par_adaptive_Mix!(s,
else
rejects[1] += 1
dt = dt / lambda
+ sdt = signdt * dt
end
end # while accept
@@ -473,17 +481,17 @@ function IRKstep_par_adaptive_Mix!(s,
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
if (j == 1)
- dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), abs(tf - (ttj[1] + ttj[2])))
else
hath1 = dt / lambda
hath2 = dtprev / lambdaprev
@@ -491,7 +499,7 @@ function IRKstep_par_adaptive_Mix!(s,
barlamb1 = (dt + tildeh) / (hath1 + tildeh)
barlamb2 = (dtprev + dt) / (hath2 + hath1)
barh = hath1 * (hath1 / hath2)^(barlamb1 / barlamb2)
- dts[1] = min(max(dt / 2, min(2 * dt, barh)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, barh)), abs(tf - (ttj[1] + ttj[2])))
end
dts[2] = dt
@@ -501,21 +509,22 @@ function IRKstep_par_adaptive_Mix!(s,
end
function IRKstepDynODE_par_adaptive!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- maxtrials,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ maxtrials,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack tspan, p = prob
f1 = prob.f.f1
@@ -530,7 +539,9 @@ function IRKstepDynODE_par_adaptive!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ signdt = dts[3]
+ sdt = signdt * dt
+ # tf = tspan[2]
elems = s * length(uj)
pow = realuiType(1 / (2 * s))
@@ -556,7 +567,7 @@ function IRKstepDynODE_par_adaptive!(s,
while (!accept && ntrials < maxtrialsj)
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, signdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
end
@@ -689,6 +700,7 @@ function IRKstepDynODE_par_adaptive!(s,
else
rejects[1] += 1
dt = dt / lambda
+ sdt = signdt * dt
end
end # while accept
@@ -717,17 +729,17 @@ function IRKstepDynODE_par_adaptive!(s,
ej[k] = res.lo
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
if (j == 1)
- dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), abs(tf - (ttj[1] + ttj[2])))
else
hath1 = dt / lambda
hath2 = dtprev / lambdaprev
@@ -735,7 +747,7 @@ function IRKstepDynODE_par_adaptive!(s,
barlamb1 = (dt + tildeh) / (hath1 + tildeh)
barlamb2 = (dtprev + dt) / (hath2 + hath1)
barh = hath1 * (hath1 / hath2)^(barlamb1 / barlamb2)
- dts[1] = min(max(dt / 2, min(2 * dt, barh)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, barh)), abs(tf - (ttj[1] + ttj[2])))
end
dts[2] = dt
lambdas[2] = lambda
diff --git a/src/IRKGL16step_adaptive_seq.jl b/src/IRKGL16step_adaptive_seq.jl
index 2fed519..ce3d208 100644
--- a/src/IRKGL16step_adaptive_seq.jl
+++ b/src/IRKGL16step_adaptive_seq.jl
@@ -5,21 +5,22 @@
# IRKstepDynODE_adaptive!
function IRKstep_adaptive!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- maxtrials,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ maxtrials,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack f, u0, p, tspan = prob
@unpack U, Uz, L, Lz, F, Dmin, Eval, DY, rejects, nfcn, lambdas, nrmdigits = cache
@@ -32,7 +33,10 @@ function IRKstep_adaptive!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ signdt = dts[3]
+ sdt = signdt * dt
+
+ # tf = tspan[2]
elems = s * length(uj)
pow = realuiType(1 / (2 * s))
@@ -58,7 +62,7 @@ function IRKstep_adaptive!(s,
while (!accept && ntrials < maxtrialsj)
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, signdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
end
@@ -160,6 +164,7 @@ function IRKstep_adaptive!(s,
else
rejects[1] += 1
dt = dt / lambda
+ sdt = signdt * dt
end
end # while accept
@@ -190,16 +195,16 @@ function IRKstep_adaptive!(s,
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
if (j == 1)
- dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), abs(tf - (ttj[1] + ttj[2])))
else
hath1 = dt / lambda
hath2 = dtprev / lambdaprev
@@ -207,7 +212,7 @@ function IRKstep_adaptive!(s,
barlamb1 = (dt + tildeh) / (hath1 + tildeh)
barlamb2 = (dtprev + dt) / (hath2 + hath1)
barh = hath1 * (hath1 / hath2)^(barlamb1 / barlamb2)
- dts[1] = min(max(dt / 2, min(2 * dt, barh)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, barh)), abs(tf - (ttj[1] + ttj[2])))
end
dts[2] = dt
@@ -217,23 +222,24 @@ function IRKstep_adaptive!(s,
end
function IRKstep_adaptive_Mix!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- maxtrials,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading,
- mixed_precision,
- low_prec_type)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ maxtrials,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading,
+ mixed_precision,
+ low_prec_type)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack f, u0, p, tspan, kwargs = prob
@@ -269,7 +275,9 @@ function IRKstep_adaptive_Mix!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ signdt = dts[3]
+ sdt = signdt * dt
+ # tf = tspan[2]
elems = s * length(uj)
pow = realuiType(1 / (2 * s))
@@ -295,7 +303,7 @@ function IRKstep_adaptive_Mix!(s,
while (!accept && ntrials < maxtrialsj)
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, signdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
lhb .= hb
end
@@ -443,6 +451,7 @@ function IRKstep_adaptive_Mix!(s,
else
rejects[1] += 1
dt = dt / lambda
+ sdt = signdt * dt
end
end # while accept
@@ -474,17 +483,17 @@ function IRKstep_adaptive_Mix!(s,
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
if (j == 1)
- dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), abs(tf - (ttj[1] + ttj[2])))
else
hath1 = dt / lambda
hath2 = dtprev / lambdaprev
@@ -492,7 +501,7 @@ function IRKstep_adaptive_Mix!(s,
barlamb1 = (dt + tildeh) / (hath1 + tildeh)
barlamb2 = (dtprev + dt) / (hath2 + hath1)
barh = hath1 * (hath1 / hath2)^(barlamb1 / barlamb2)
- dts[1] = min(max(dt / 2, min(2 * dt, barh)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, barh)), abs(tf - (ttj[1] + ttj[2])))
end
dts[2] = dt
@@ -502,21 +511,22 @@ function IRKstep_adaptive_Mix!(s,
end
function IRKstepDynODE_adaptive!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- maxtrials,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ maxtrials,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack tspan, p = prob
f1 = prob.f.f1
@@ -531,7 +541,9 @@ function IRKstepDynODE_adaptive!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ signdt = dts[3]
+ sdt = signdt * dt
+ # tf = tspan[2]
elems = s * length(uj)
pow = realuiType(1 / (2 * s))
@@ -557,7 +569,7 @@ function IRKstepDynODE_adaptive!(s,
while (!accept && ntrials < maxtrialsj)
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, signdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
end
@@ -691,6 +703,7 @@ function IRKstepDynODE_adaptive!(s,
else
rejects[1] += 1
dt = dt / lambda
+ sdt = signdt * dt
end
end # while accept
@@ -719,17 +732,17 @@ function IRKstepDynODE_adaptive!(s,
ej[k] = res.lo
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
if (j == 1)
- dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, dt / lambda)), abs(tf - (ttj[1] + ttj[2])))
else
hath1 = dt / lambda
hath2 = dtprev / lambdaprev
@@ -737,7 +750,7 @@ function IRKstepDynODE_adaptive!(s,
barlamb1 = (dt + tildeh) / (hath1 + tildeh)
barlamb2 = (dtprev + dt) / (hath2 + hath1)
barh = hath1 * (hath1 / hath2)^(barlamb1 / barlamb2)
- dts[1] = min(max(dt / 2, min(2 * dt, barh)), tf - (ttj[1] + ttj[2]))
+ dts[1] = min(max(dt / 2, min(2 * dt, barh)), abs(tf - (ttj[1] + ttj[2])))
end
dts[2] = dt
lambdas[2] = lambda
diff --git a/src/IRKGL16step_fixed_par.jl b/src/IRKGL16step_fixed_par.jl
index 94517ce..9e6be68 100644
--- a/src/IRKGL16step_fixed_par.jl
+++ b/src/IRKGL16step_fixed_par.jl
@@ -5,20 +5,21 @@
# IRKstepDynODE_par_fixed!
function IRKstep_par_fixed!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack f, u0, p, tspan = prob
@unpack U, Uz, L, Lz, F, Dmin, Eval, DY, rejects, nfcn, lambdas, nrmdigits = cache
@@ -28,7 +29,9 @@ function IRKstep_par_fixed!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ singdt = dts[3]
+ sdt = signdt * dt
+ # tf = tspan[2]
elems = s * length(uj)
@@ -38,7 +41,7 @@ function IRKstep_par_fixed!(s,
nit = 0
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, singdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
end
@@ -156,37 +159,38 @@ function IRKstep_par_fixed!(s,
ej[k] = res.lo
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
- dts[1] = min(dt, tf - (ttj[1] + ttj[2]))
+ dts[1] = min(dt, abs(tf - (ttj[1] + ttj[2])))
dts[2] = dt
return ("Success", nit)
end
function IRKstep_par_fixed_Mix!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading,
- mixed_precision,
- low_prec_type)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading,
+ mixed_precision,
+ low_prec_type)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack f, u0, p, tspan, kwargs = prob
@@ -219,7 +223,9 @@ function IRKstep_par_fixed_Mix!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ singdt = dts[3]
+ sdt = signdt * dt
+ # tf = tspan[2]
elems = s * length(uj)
@@ -229,7 +235,7 @@ function IRKstep_par_fixed_Mix!(s,
nit = 0
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, singdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
lhb .= hb
end
@@ -396,15 +402,15 @@ function IRKstep_par_fixed_Mix!(s,
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
- dts[1] = min(dt, tf - (ttj[1] + ttj[2]))
+ dts[1] = min(dt, abs(tf - (ttj[1] + ttj[2])))
dts[2] = dt
return ("Success", nit)
@@ -415,20 +421,21 @@ end
#
function IRKstepDynODE_par_fixed!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack tspan, p = prob
f1 = prob.f.f1
@@ -440,7 +447,10 @@ function IRKstepDynODE_par_fixed!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ singdt = dts[3]
+ sdt = signdt * dt
+
+ # tf = tspan[2]
elems = s * length(uj)
@@ -450,7 +460,7 @@ function IRKstepDynODE_par_fixed!(s,
nit = 0
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, singdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
end
@@ -609,16 +619,16 @@ function IRKstepDynODE_par_fixed!(s,
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
- dts[1] = min(dt, tf - (ttj[1] + ttj[2]))
+ dts[1] = min(dt, abs(tf - (ttj[1] + ttj[2])))
dts[2] = dt
return ("Success", nit)
diff --git a/src/IRKGL16step_fixed_seq.jl b/src/IRKGL16step_fixed_seq.jl
index 9dc1a8d..6fd05a8 100644
--- a/src/IRKGL16step_fixed_seq.jl
+++ b/src/IRKGL16step_fixed_seq.jl
@@ -5,20 +5,21 @@
# IRKstepDynODE_fixed!
function IRKstep_fixed!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack f, u0, p, tspan = prob
@unpack U, Uz, L, Lz, F, Dmin, Eval, DY, rejects, nfcn, lambdas, nrmdigits = cache
@@ -28,7 +29,10 @@ function IRKstep_fixed!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ signdt = dts[3]
+ sdt = signdt * dt
+
+ # tf = tspan[2]
elems = s * length(uj)
@@ -38,7 +42,7 @@ function IRKstep_fixed!(s,
nit = 0
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, signdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
end
@@ -156,37 +160,38 @@ function IRKstep_fixed!(s,
ej[k] = res.lo
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
- dts[1] = min(dt, tf - (ttj[1] + ttj[2]))
+ dts[1] = min(dt, abs(tf - (ttj[1] + ttj[2])))
dts[2] = dt
return ("Success", nit)
end
function IRKstep_fixed_Mix!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading,
- mixed_precision,
- low_prec_type)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading,
+ mixed_precision,
+ low_prec_type)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack f, u0, p, tspan, kwargs = prob
@@ -219,7 +224,9 @@ function IRKstep_fixed_Mix!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ signdt = dts[3]
+ sdt = signdt * dt
+ # tf = tspan[2]
elems = s * length(uj)
@@ -229,7 +236,7 @@ function IRKstep_fixed_Mix!(s,
nit = 0
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, signdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
lhb .= hb
end
@@ -396,15 +403,15 @@ function IRKstep_fixed_Mix!(s,
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
- dts[1] = min(dt, tf - (ttj[1] + ttj[2]))
+ dts[1] = min(dt, abs(tf - (ttj[1] + ttj[2])))
dts[2] = dt
return ("Success", nit)
@@ -415,20 +422,21 @@ end
#
function IRKstepDynODE_fixed!(s,
- j,
- ttj,
- uj,
- ej,
- prob,
- dts,
- coeffs,
- cache,
- maxiters,
- initial_interp,
- abstol,
- reltol,
- adaptive,
- threading)
+ j,
+ ttj,
+ tf,
+ uj,
+ ej,
+ prob,
+ dts,
+ coeffs,
+ cache,
+ maxiters,
+ initial_interp,
+ abstol,
+ reltol,
+ adaptive,
+ threading)
@unpack mu, hc, hb, nu, alpha = coeffs
@unpack tspan, p = prob
f1 = prob.f.f1
@@ -440,7 +448,10 @@ function IRKstepDynODE_fixed!(s,
dt = dts[1]
dtprev = dts[2]
- tf = tspan[2]
+ signdt = dts[3]
+ sdt = signdt * dt
+
+ # tf = tspan[2]
elems = s * length(uj)
@@ -450,7 +461,7 @@ function IRKstepDynODE_fixed!(s,
nit = 0
if (dt != dtprev)
- HCoefficients!(mu, hc, hb, nu, dt, dtprev, realuiType)
+ HCoefficients!(mu, hc, hb, nu, sdt, signdt * dtprev, realuiType)
@unpack mu, hc, hb, nu, alpha = coeffs
end
@@ -609,16 +620,16 @@ function IRKstepDynODE_fixed!(s,
end
end
- res = Base.TwicePrecision(tj, te) + dt
+ res = Base.TwicePrecision(tj, te) + sdt
ttj[1] = res.hi
ttj[2] = res.lo
else
@. uj += L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7] + L[8]
- ttj[1] = tj + dt
+ ttj[1] = tj + sdt
end
- dts[1] = min(dt, tf - (ttj[1] + ttj[2]))
+ dts[1] = min(dt, abs(tf - (ttj[1] + ttj[2])))
dts[2] = dt
return ("Success", nit)
diff --git a/test/runtests.jl b/test/runtests.jl
index c830a1b..fb28d5c 100644
--- a/test/runtests.jl
+++ b/test/runtests.jl
@@ -42,3 +42,34 @@ sol = solve(prob_ode_2Dlinear, IRKGL16())
dts = (1 // 2) .^ (4:-1:2)
sim = test_convergence(dts, prob_ode_bigfloat2Dlinear, IRKGL16())
@test abs(sim.𝒪est[:final] - 16) < 0.5
+
+# Backward integrations tests
+
+
+#Define the problem
+const g = 9.81
+L = 1.0
+u0 = [0, pi / 2]
+function simplependulum(du, u, p, t)
+ θ = u[1]
+ dθ = u[2]
+ du[1] = dθ
+ du[2] = -(g / L) * sin(θ)
+end
+
+# adaptive=true
+
+tspan = (6.3, 2.0)
+prob = ODEProblem(simplependulum, u0, tspan)
+sol = solve(prob, IRKGL16(), reltol = 1e-14, abstol = 1e-14)
+
+@test sol.t[end] == tspan[2]
+
+# adaptive=false
+
+tspan = (6.3, 2.0)
+dt0 = -0.1
+prob = ODEProblem(simplependulum, u0, tspan)
+sol = solve(prob, IRKGL16(), dt = dt0, adaptive = false)
+
+@test sol.t[end] == tspan[2]