-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_model_train.py
162 lines (135 loc) · 5.93 KB
/
merge_model_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import json
import argparse
import numpy as np
import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from pathlib import Path
from model import GPTConfig
from table_cell_merge_model import TableCellMergeModel
from data.table_llm_char.prepare import Vocabulary
batch_size = 64
class CellMergeDataset(Dataset):
def __init__(self, instances, vocab: Vocabulary):
self.vocab = vocab
n_instances = len(instances)
xs = np.zeros((n_instances, 256), dtype=np.int32)
ys = [int(inst['label']) for inst in instances]
print(f"ys: {len(ys)}")
for i, inst in enumerate(instances):
el = []
el.extend(vocab.encode(inst['l1']))
el.append(vocab.get_eos_encoded())
el.extend(vocab.encode(inst['l2']))
xs[i, :len(el)] = el
self.X = torch.tensor(xs, dtype=torch.int32)
ys = np.asarray(ys, dtype=np.float32)
self.y = torch.tensor(ys, dtype=torch.float32).reshape(-1, 1)
print(f"X: {self.X.shape}")
print(f"y: {self.y.shape}")
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
features = self.X[idx]
target = self.y[idx]
return features, target
def create_model(char_llm_model_path, vocab: Vocabulary, device):
model_args = dict(n_layer=6, n_head=6, n_embd=384, block_size=256,
bias=False, vocab_size=vocab.vocab_size, dropout=0.1)
gpt_conf = GPTConfig(**model_args)
checkpoint = torch.load(char_llm_model_path)
state_dict = checkpoint['model']
model = TableCellMergeModel(gpt_conf, state_dict)
model = model.to(device)
return model
def model_train(model, loss_fn, train_dataloader, device):
size = len(train_dataloader.dataset)
optimizer = optim.Adam(model.parameters(), lr=0.00002)
n_epochs = 2
model.train()
for epoch in range(n_epochs):
print(f"Epoch {epoch + 1}\n-------------------------------")
for batch, (X, y) in enumerate(train_dataloader):
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
# backprop
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), batch * batch_size + len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def model_eval(model, loss_fn, test_dataloader, device):
model.eval()
size = len(test_dataloader.dataset)
num_batches = len(test_dataloader)
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in test_dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.round() == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
def train_test(model, train_dataset, test_dataset, device, model_output_path: Path):
loss_fn = torch.nn.BCELoss()
tr_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
tst_dataloader = DataLoader(test_dataset, batch_size=batch_size)
model_train(model, loss_fn, tr_dataloader, device)
model_eval(model, loss_fn, tst_dataloader, device)
torch.save(model.state_dict(), model_output_path)
def load_instances(json_path: Path):
with open(json_path) as f:
data = json.load(f)
return data['instances']
def cli():
parser = argparse.ArgumentParser(description="training row merging model")
parser.add_argument("-d", metavar="<data-dir>", required=True)
parser.add_argument("-p", metavar="<table-lm-checkpoint-file>", required=True)
parser.add_argument("-v", metavar="<vocabulary-meta-file>", required=True)
parser.add_argument("-o", metavar="<model-output-dir>", required=True)
args = parser.parse_args()
llm_cpkt_path = args.p
data_dir = args.d
meta_path = args.v
model_out_path = args.o
vocabulary = Vocabulary(Path(meta_path))
print(f"vocab size: {vocabulary.vocab_size}")
tr_instances = load_instances(data_dir / "cell_merge_tr_instances.json")
tr_dataset = CellMergeDataset(tr_instances, vocabulary)
print(f"training dataset size:{len(tr_dataset)}")
tr_instances = None
tst_instances = load_instances(data_dir / "cell_merge_test_instances.json")
tst_dataset = CellMergeDataset(tst_instances, vocabulary)
tst_instances = None
print(f"test dataset size:{len(tst_dataset)}")
_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cm_model = create_model(llm_cpkt_path, vocabulary, _device)
model_out_path.parent.mkdir(parents=True, exist_ok=True)
train_test(cm_model, tr_dataset, tst_dataset, _device, model_out_path)
def test_driver():
HOME = os.path.expanduser('~')
meta_path = "data/table_llm_char/meta.pkl"
vocabulary = Vocabulary(Path(meta_path))
print(f"vocab size: {vocabulary.vocab_size}")
data_dir = Path(HOME, "data/table_llm/cell_merge")
tr_instances = load_instances(data_dir / "cell_merge_tr_instances.json")
tr_dataset = CellMergeDataset(tr_instances, vocabulary)
print(f"training dataset size:{len(tr_dataset)}")
tr_instances = None
tst_instances = load_instances(data_dir / "cell_merge_test_instances.json")
tst_dataset = CellMergeDataset(tst_instances, vocabulary)
tst_instances = None
print(f"test dataset size:{len(tst_dataset)}")
llm_cpkt_path = Path("out/ckpt.pt")
_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cm_model = create_model(llm_cpkt_path, vocabulary, _device)
model_out_path = Path(HOME, "models/tc_merge/model.pth")
model_out_path.parent.mkdir(parents=True, exist_ok=True)
train_test(cm_model, tr_dataset, tst_dataset, _device, model_out_path)
if __name__ == '__main__':
cli()