-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_model_data_prep.py
599 lines (495 loc) · 19.9 KB
/
merge_model_data_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import json
import os
import random
import shutil
import argparse
import string
from pathlib import Path
from tqdm import tqdm
import numpy as np
from pretrain_data_prep import extract_cell_contents
HOME = os.path.expanduser('~')
class CellInfo(object):
def __init__(self, content: str, span: int = 1):
self.content = content
self.span = span
class RowInfo(object):
def __init__(self, row_id: int, header: bool = False):
self.row_id = row_id
self.header = header
self.row = []
def add_cell(self, cell: CellInfo):
self.row.append(cell)
def get_col_at_idx(self, col_idx):
offset = 0
for cell in self.row:
if offset <= col_idx < offset + cell.span:
return cell
offset += cell.span
# return dummy empty cell
return CellInfo('')
class TableInfo(object):
def __init__(self, table_name: str):
self.table_name = table_name
self.rows = []
def add_row(self, row: RowInfo):
self.rows.append(row)
def get_num_cols(self):
max_col = 0
min_col = 1000
for row in self.rows:
total = sum(cell.span for cell in row.row)
max_col = max(total, max_col)
min_col = min(total, min_col)
if min_col != max_col:
print(f"{self.table_name} min_col: {min_col} max_col: {max_col}")
return max_col
def make_homogeneous(self):
num_cols = self.get_num_cols()
for ri in self.rows:
if len(ri.row) < num_cols:
for _ in range(len(ri.row), num_cols):
ri.add_cell(CellInfo(""))
class RowStats(object):
def __init__(self, table: TableInfo):
self.num_rows = len(table.rows)
lengths = []
for row in table.rows:
lengths.append(sum(len(c.content) for c in row.row))
self.max_len = max(lengths)
self.min_len = min(lengths)
self.avg_len = np.average(lengths)
self.std_len = np.std(lengths)
self.median_len = np.median(lengths)
def __str__(self):
return f"# rows: {self.num_rows} avg: {self.avg_len} median: {self.median_len} std: {self.std_len} min: {self.min_len} max: {self.max_len}"
class ColStats(object):
def __init__(self, col_idx: int, table: TableInfo):
self.num_rows = len(table.rows)
lengths = [len(row.get_col_at_idx(col_idx).content) for row in table.rows]
self.max_len = max(lengths)
self.min_len = min(lengths)
self.avg_len = np.average(lengths)
self.std_len = np.std(lengths)
self.median_len = np.median(lengths)
def __str__(self):
return f"# rows: {self.num_rows} avg: {self.avg_len} median: {self.median_len} std: {self.std_len} min: {self.min_len} max: {self.max_len}"
class TableStats(object):
def __init__(self, table: TableInfo):
num_cols = table.get_num_cols()
self.row_stats = RowStats(table)
self.col_stats = [ColStats(col_idx, table) for col_idx in range(num_cols)]
class OFCell:
def __init__(self, content: list[str], span: int = 1):
self.content = content
self.span = span
class OFRow:
def __init__(self, row_idx: int):
self.row_idx = row_idx
self.columns = []
def add_cell(self, cell: OFCell):
self.columns.append(cell)
def has_merged_cells(self):
return any(len(col.content) > 1 for col in self.columns)
class OFTable:
def __init__(self, table_name: str):
self.table_name = table_name
self.rows = []
def add_row(self, row: OFRow):
self.rows.append(row)
class CellLocation:
def __init__(self, row_idx, col_idx, line_idx):
self.row_idx = row_idx
self.col_idx = col_idx
self.line_idx = line_idx
def to_json(self):
return {'ridx': self.row_idx, 'cidx': self.col_idx, 'lidx': self.line_idx}
@classmethod
def from_json(cls, js_dict):
return cls(int(js_dict['ridx']), int(js_dict['cidx']), int(js_dict['lidx']))
class MergeLocation:
def __init__(self, table_name, first: CellLocation, second: CellLocation):
self.table_name = table_name
self.first = first
self.second = second
def to_json(self):
return {'name': self.table_name, 'f': self.first.to_json(), 's': self.second.to_json()}
@classmethod
def from_json(cls, js_dict):
first = CellLocation.from_json(js_dict['f'])
second = CellLocation.from_json(js_dict['s'])
return cls(js_dict['name'], first, second)
class Instance:
def __init__(self, idx: int, line1: str, line2: str, label: int, location: MergeLocation):
self.idx = idx
self.line1 = line1
self.line2 = line2
self.label = label
self.location = location
def has_empty_line(self):
return self.line1 == '' or self.line2 == ''
def to_json(self):
return {'idx': self.idx, 'l1': self.line1, 'l2': self.line2, 'label': self.label,
'loc': self.location.to_json()}
@classmethod
def from_json(cls, js_dict):
loc = MergeLocation.from_json(js_dict['loc'])
return cls(int(js_dict['idx']), js_dict["l1"], js_dict["l2"], js_dict["label"], loc)
class TokenInfo:
def __init__(self, tok: str, start: int):
self.tok = tok
self.start = start
self.end = start + len(tok)
def __str__(self):
return f"<tok={self.tok} s:{self.start} e:{self.end}>"
def __repr__(self):
return self.__str__()
def tokenize(content: str) -> list[TokenInfo]:
ti_list = []
offset = 0
in_ws = False
for i, c in enumerate(content):
if c in string.whitespace:
if not in_ws:
tok = content[offset:i]
ti_list.append(TokenInfo(tok, offset))
in_ws = True
else:
if in_ws:
offset = i
in_ws = False
if len(ti_list) == 0:
ti_list.append(TokenInfo(content, 0))
elif offset < len(content):
tok = content[offset:]
tok = tok.rstrip()
if len(tok) > 0:
ti_list.append(TokenInfo(tok, offset))
return ti_list
def split_to_lines(content: str, col_width: int):
offset = 0
lines = []
cl = len(content)
count = 0
while True:
end = min(cl, offset + col_width)
lines.append(content[offset:end])
offset += end - offset
count += 1
if end == cl:
break
if count > 10:
break
return lines
class ColumnConfig:
def __init__(self, col_idx: int, col_width: int):
self.col_idx = col_idx
self.col_width = col_width
def to_overflowed_rows(self, content):
if len(content) < self.col_width:
return [content]
ti_list = tokenize(content)
if len(ti_list) == 1:
return split_to_lines(content, self.col_width)
else:
i = 0
lines = []
line = ""
while i < len(ti_list):
new_len = len(line) + len(ti_list[i].tok)
if new_len <= self.col_width:
line += ti_list[i].tok + ' '
else:
lines.append(line.rstrip())
line = ""
if len(ti_list[i].tok) <= self.col_width:
line = ti_list[i].tok + ' '
else:
tok_lines = split_to_lines(ti_list[i].tok, self.col_width)
lines.extend(tok_lines[:-1])
line = tok_lines[-1] + ' '
i += 1
if len(line.rstrip()) > 0:
lines.append(line.rstrip())
return [line.rstrip() for line in lines]
class TableCellMergeLabeledDataGen:
def __init__(self, ti: TableInfo, table_stats: TableStats):
self.ti = ti
self.table_stats = table_stats
def load_table(table_file_path: Path) -> TableInfo:
with open(table_file_path) as f:
data = json.load(f)
table_name = table_file_path.name.replace(".json", "")
ti = TableInfo(table_name)
row_idx = 0
if "headers" in data:
headers = data['headers']
for header in headers:
ri = RowInfo(row_idx, header=True)
ti.add_row(ri)
row_idx += 1
for col in header['columns']:
span = int(col['colspan'])
content = col['content']
ri.add_cell(CellInfo(content, span))
for row in data['rows']:
ri = RowInfo(row_idx, header=False)
ti.add_row(ri)
row_idx += 1
for col in row:
span = int(col['colspan'])
content = col['content']
ri.add_cell(CellInfo(content, span))
return ti
def load_tables(in_dir: Path, max_tables=None) -> list[TableInfo]:
table_paths = in_dir.glob("*.json")
ti_list = []
for i, table_path in enumerate(table_paths):
ti = load_table(table_path)
ti_list.append(ti)
if max_tables and 0 < max_tables <= i:
break
return ti_list
def calc_stats(ti_list: list[TableInfo]) -> list[TableStats]:
ts_list = []
count = 0
for ti in ti_list:
ts = TableStats(ti)
ts_list.append(ts)
print(ti.table_name)
print(ts.row_stats)
for cs in ts.col_stats:
print(f"\t{cs}")
print('-' * 80)
count += 1
return ts_list
def prep_col_configs(table_stats: TableStats, max_table_width=80) -> list[ColumnConfig]:
raw_col_lengths = [cs.avg_len + cs.std_len for cs in table_stats.col_stats]
raw_total = sum(raw_col_lengths)
col_lengths = [int(max_table_width * rcl / raw_total) for rcl in raw_col_lengths]
if sum(col_lengths) > max_table_width:
col_lengths[-1] -= sum(col_lengths) - max_table_width
return [ColumnConfig(i, cw) for i, cw in enumerate(col_lengths)]
def prep_overflow_table_data(table_info: TableInfo, table_stats: TableStats) -> OFTable:
max_row_len = table_stats.row_stats.max_len
max_table_width = 90 if max_row_len >= 100 else 80
cc_list = prep_col_configs(table_stats, max_table_width)
has_zero_width_col = any(cc.col_width == 0 for cc in cc_list)
if has_zero_width_col:
print(f"Table {table_info.table_name} has at least one 0 width column. Skipping")
return None
of_table = OFTable(table_name=table_info.table_name)
for ri in table_info.rows:
of_row = OFRow(row_idx=ri.row_id)
of_table.add_row(of_row)
for i, cc in enumerate(cc_list):
ci = ri.get_col_at_idx(i)
if len(ci.content) > 0:
content_lines = cc.to_overflowed_rows(ci.content)
of_row.add_cell(OFCell(content_lines))
else:
of_row.add_cell(OFCell([""]))
return of_table
def idx_generator(init_val=0):
idx = init_val
while True:
yield idx
idx += 1
def prep_instances_4_adj_rows(first: OFRow, second: OFRow, table_name: str, idx_gen) -> list[Instance]:
instances = []
for i, of_cell in enumerate(first.columns):
fc = CellLocation(first.row_idx, i, 0)
sc = CellLocation(second.row_idx, i, 0)
ml = MergeLocation(table_name, fc, sc)
inst_idx = next(idx_gen)
instances.append(Instance(inst_idx, of_cell.content[0], second.columns[i].content[9], 0, ml))
return instances
def prep_instances_4_overflow_rows(first: OFRow, second: OFRow, table_name: str, idx_gen) -> list[Instance]:
instances = []
if second is None:
for i, of_cell in enumerate(first.columns):
if len(of_cell.content) > 0:
for j in range(1, len(of_cell.content)):
fc = CellLocation(first.row_idx, i, j - 1)
sc = CellLocation(first.row_idx, i, j)
ml = MergeLocation(table_name, fc, sc)
inst_idx = next(idx_gen)
inst = Instance(inst_idx, of_cell.content[j - 1], of_cell.content[j], 1, ml)
instances.append(inst)
else:
for i, of_cell in enumerate(first.columns):
if len(of_cell.content) > 0:
for j in range(1, len(of_cell.content)):
fc = CellLocation(first.row_idx, i, j - 1)
sc = CellLocation(first.row_idx, i, j)
ml = MergeLocation(table_name, fc, sc)
inst_idx = next(idx_gen)
inst = Instance(inst_idx, of_cell.content[j - 1], of_cell.content[j], 1, ml)
instances.append(inst)
# last
last_idx = len(of_cell.content) - 1
fc = CellLocation(first.row_idx, i, last_idx)
sc = CellLocation(second.row_idx, i, 0)
ml = MergeLocation(table_name, fc, sc)
inst_idx = next(idx_gen)
sec_of_cell = second.columns[i]
instances.append(Instance(inst_idx, of_cell.content[last_idx], sec_of_cell.content[0], 0, ml))
else:
fc = CellLocation(first.row_idx, i, 0)
sc = CellLocation(second.row_idx, i, 0)
ml = MergeLocation(table_name, fc, sc)
inst_idx = next(idx_gen)
sec_of_cell = second.columns[i]
inst = Instance(inst_idx, of_cell.content[0], sec_of_cell.cotent[0], 0, ml)
instances.append(inst)
return instances
def prep_instances(of_table: OFTable, idx_gen) -> list[Instance]:
tbl_name = of_table.table_name
instances = []
for i in range(1, len(of_table.rows)):
prev_row = of_table.rows[i - 1]
cur_row = of_table.rows[i]
if prev_row.has_merged_cells:
row_instances = prep_instances_4_overflow_rows(prev_row, cur_row, tbl_name, idx_gen)
instances.extend(row_instances)
else:
row_instances = prep_instances_4_adj_rows(prev_row, cur_row, tbl_name, idx_gen)
instances.extend(row_instances)
return instances
def do_prep_instances(ti_list: list[TableInfo], ts_list: list[TableStats]) -> list[Instance]:
instances = []
id_gen = idx_generator(0)
for ti, ts in tqdm(zip(ti_list, ts_list), total=len(ti_list)):
of_table = prep_overflow_table_data(ti, ts)
if of_table:
table_instances = prep_instances(of_table, id_gen)
instances.extend(table_instances)
instances = list(filter(lambda inst: not inst.has_empty_line(), instances))
return instances
def save_instances(inst_list: list[Instance], out_json_path):
js_dict = {'instances': [inst.to_json() for inst in inst_list]}
with open(out_json_path, 'w') as f:
json.dump(js_dict, f, indent=2)
print(f'wrote {out_json_path}')
def prep_tr_test_instances(ti_list: list[TableInfo], out_dir: Path, test_frac=0.1):
random.seed(43)
random.shuffle(ti_list)
test_size = int(len(ti_list) * test_frac)
test_ti_list = ti_list[:test_size]
tr_ti_list = ti_list[test_size:]
out_dir.mkdir(parents=True, exist_ok=True)
test_ts_list = calc_stats(test_ti_list)
tr_ts_list = calc_stats(tr_ti_list)
train_instances = do_prep_instances(tr_ti_list, tr_ts_list)
print(f"created {len(train_instances)} training instances.")
save_instances(train_instances, out_dir / "cell_merge_tr_instances.json")
test_instances = do_prep_instances(test_ti_list, test_ts_list)
print(f"created {len(test_instances)} testing instances.")
save_instances(test_instances, out_dir / "cell_merge_test_instances.json")
def filter_dir(in_dir: Path, out_dir: Path, keyword_set: set):
table_paths = list(in_dir.glob("*.json"))
out_dir.mkdir(parents=True, exist_ok=True)
num_selected = 0
for table_path in tqdm(table_paths, desc="Filter"):
cells = extract_cell_contents(table_path)
content = '\n'.join(cells)
content = content.lower()
for kw in keyword_set:
if content.find(kw) != -1:
out_path = out_dir / table_path.name
shutil.copyfile(table_path, out_path)
num_selected += 1
break
print(f"# of selected tables: {num_selected}")
def filter_dirs(in_root_dir: Path, out_dir: Path, keyword_set: set):
sub_dirs = [Path(f.path) for f in os.scandir(in_root_dir) if f.is_dir()]
for sub_dir in sub_dirs:
filter_dir(sub_dir, out_dir, keyword_set)
def is_empty_row(_row: list[str]) -> bool:
for item in _row:
if item.strip() != '':
return False
return True
def to_table_infos_from_extracted_tables(tables_json_path: Path) -> list[TableInfo]:
with open(tables_json_path) as f:
data = json.load(f)
tables = []
paper_id = data["paper_id"]
table_idx = 1
for page in data['result']['pages']:
page_id = page['page']
for tbl_dict in page["tables"]:
tbl_name = "{}_page_{}_table_{}".format(paper_id, page_id, table_idx)
ti = TableInfo(tbl_name)
tables.append(ti)
table_idx += 1
row_idx = 0
for row_lst in tbl_dict["rows"]:
if is_empty_row(row_lst):
continue
ri = RowInfo(row_idx)
ti.add_row(ri)
row_idx += 1
for col in row_lst:
ri.add_cell(CellInfo(col))
return tables
def prep_instances_4_row_pair(first: RowInfo, second: RowInfo, table_name: str, idx_gen) -> list[Instance]:
instances = []
for i, cell in enumerate(first.row):
fc = CellLocation(first.row_id, i, 0)
sc = CellLocation(second.row_id, i, 0)
ml = MergeLocation(table_name, fc, sc)
inst_idx = next(idx_gen)
sec_cell = second.row[i]
instances.append(Instance(inst_idx, cell.content, sec_cell.content, -1, ml))
return instances
def prep_pred_instances(ti: TableInfo, idx_gen) -> list[Instance]:
tbl_name = ti.table_name
instances = []
for i in range(1, len(ti.rows)):
prev_row = ti.rows[i-1]
cur_row = ti.rows[i]
row_instances = prep_instances_4_row_pair(prev_row, cur_row, tbl_name, idx_gen)
instances.extend(row_instances)
return instances
def do_prep_pred_instances(ti_list: list[TableInfo]) -> list[Instance]:
instances = []
id_gen = idx_generator(0)
for ti in tqdm(ti_list, total=len(ti_list)):
table_instances = prep_pred_instances(ti, id_gen)
instances.extend(table_instances)
instances = list(filter(lambda inst: not inst.has_empty_line(), instances))
return instances
def prep_pred_instances_4dir(in_dir: Path, out_dir: Path):
out_dir.mkdir(parents=True, exist_ok=True)
json_paths = list(in_dir.glob("*.json"))
for json_path in json_paths:
ti_list = to_table_infos_from_extracted_tables(json_path)
out_path = out_dir / "{}_instances.json".format(json_path.name.replace(".json", ""))
instances = do_prep_pred_instances(ti_list)
print(f"created {len(instances)} instances.")
save_instances(instances, out_path)
print("done.")
def cli():
parser = argparse.ArgumentParser(description="prepares training data for table cell merge classification")
parser.add_argument("-c", metavar="<command (one of filter, prep, prediction)>", required=True)
parser.add_argument("-i", metavar="<input-dir>", required=True)
parser.add_argument("-o", metavar="<output-dir>", required=True)
parser.add_argument('-m', metavar="<max-num-of-tables>", type=int)
args = parser.parse_args()
cmd = args.c
in_root = Path(args.i)
output_dir = Path(args.o)
if cmd == 'filter':
kw_set = set(['antibod', 'cell line', "key resource", "software", "rrid", "oligo"])
filter_dirs(in_root, output_dir, kw_set)
elif cmd == 'prep':
max_tables = -1
if args.m:
max_tables = args.m
ti_list = load_tables(in_root, max_tables=max_tables)
prep_tr_test_instances(ti_list, output_dir)
elif cmd == "prediction":
prep_pred_instances_4dir(in_root, output_dir)
if __name__ == '__main__':
cli()