-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_k_fold_cross_val.py
301 lines (258 loc) · 13.5 KB
/
train_k_fold_cross_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# -*- coding: utf-8 -*-
# file: train.py
# author: songyouwei <[email protected]>
# modified: thamolwan <[email protected]>
# Copyright (C) 2020. All Rights Reserved.
import logging
import argparse
import math
import os
import sys
from time import strftime, localtime
import random
import numpy
from pytorch_transformers import BertModel
from sklearn import metrics
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split, ConcatDataset
from data_utils import build_tokenizer, build_embedding_matrix, Tokenizer4Bert, ABSADataset
from models import AOA_CLS_BERT
from torchsampler import ImbalancedDatasetSampler
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stdout))
class Instructor:
def __init__(self, opt):
self.opt = opt
self.best_acc = 0
if 'bert' in opt.model_name:
tokenizer = Tokenizer4Bert(opt.max_seq_len, opt.pretrained_bert_name)
bert = BertModel.from_pretrained(opt.pretrained_bert_name)
self.pretrained_bert_state_dict = bert.state_dict()
self.model = opt.model_class(bert, opt).to(opt.device)
else:
tokenizer = build_tokenizer(
fnames=[opt.dataset_file['train'], opt.dataset_file['test']],
max_seq_len=opt.max_seq_len,
dat_fname='{0}_tokenizer.dat'.format(opt.dataset))
embedding_matrix = build_embedding_matrix(
word2idx=tokenizer.word2idx,
embed_dim=opt.embed_dim,
dat_fname='{0}_{1}_embedding_matrix.dat'.format(str(opt.embed_dim), opt.dataset))
self.model = opt.model_class(embedding_matrix, opt).to(opt.device)
self.trainset = ABSADataset(opt.dataset_file['train'], tokenizer)
self.testset = ABSADataset(opt.dataset_file['test'], tokenizer)
if opt.device.type == 'cuda':
logger.info('cuda memory allocated: {}'.format(torch.cuda.memory_allocated(device=opt.device.index)))
self._print_args()
def _print_args(self):
n_trainable_params, n_nontrainable_params = 0, 0
for p in self.model.parameters():
n_params = torch.prod(torch.tensor(p.shape))
if p.requires_grad:
n_trainable_params += n_params
else:
n_nontrainable_params += n_params
logger.info('n_trainable_params: {0}, n_nontrainable_params: {1}'.format(n_trainable_params, n_nontrainable_params))
logger.info('> training arguments:')
for arg in vars(self.opt):
logger.info('>>> {0}: {1}'.format(arg, getattr(self.opt, arg)))
def _reset_params(self):
for child in self.model.children():
if type(child) != BertModel: # skip bert params
for p in child.parameters():
if p.requires_grad:
if len(p.shape) > 1:
self.opt.initializer(p)
else:
stdv = 1. / math.sqrt(p.shape[0])
torch.nn.init.uniform_(p, a=-stdv, b=stdv)
else:
if 'lcf' in self.opt.model_name:
self.model.bert_spc.load_state_dict(self.pretrained_bert_state_dict)
self.model.bert_local.load_state_dict(self.pretrained_bert_state_dict)
else:
self.model.bert.load_state_dict(self.pretrained_bert_state_dict)
def _train(self, criterion, optimizer, train_data_loader, val_data_loader):
max_val_acc = 0
max_val_f1 = 0
global_step = 0
path = None
for epoch in range(self.opt.num_epoch):
logger.info('epoch: {}'.format(epoch))
n_correct, n_total, loss_total = 0, 0, 0
# switch model to training mode
self.model.train()
for i_batch, sample_batched in enumerate(train_data_loader):
global_step += 1
# clear gradient accumulators
optimizer.zero_grad()
inputs = [sample_batched[col].to(self.opt.device) for col in self.opt.inputs_cols]
outputs = self.model(inputs)
targets = sample_batched['polarity'].to(self.opt.device)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
n_correct += (torch.argmax(outputs, -1) == targets).sum().item()
n_total += len(outputs)
loss_total += loss.item() * len(outputs)
if global_step % self.opt.log_step == 0:
train_acc = n_correct / n_total
train_loss = loss_total / n_total
logger.info('loss: {:.4f}, acc: {:.4f}'.format(train_loss, train_acc))
val_acc, val_f1 = self._evaluate_acc_f1(val_data_loader)
logger.info('> val_acc: {:.4f}, val_f1: {:.4f}'.format(val_acc, val_f1))
if val_acc > max_val_acc:
max_val_acc = val_acc
if not os.path.exists('state_dict'):
os.mkdir('state_dict')
path = 'state_dict/{0}_{1}_val_temp'.format(self.opt.model_name, self.opt.dataset)
torch.save(self.model.state_dict(), path)
logger.info('>> saved: {}'.format(path))
if val_f1 > max_val_f1:
max_val_f1 = val_f1
return path
def _evaluate_acc_f1(self, data_loader, save_file=None, fid=0):
n_correct, n_total = 0, 0
t_targets_all, t_outputs_all = None, None
# switch model to evaluation mode
self.model.eval()
with torch.no_grad():
for t_batch, t_sample_batched in enumerate(data_loader):
t_inputs = [t_sample_batched[col].to(self.opt.device) for col in self.opt.inputs_cols]
t_targets = t_sample_batched['polarity'].to(self.opt.device)
t_outputs = self.model(t_inputs)
n_correct += (torch.argmax(t_outputs, -1) == t_targets).sum().item()
n_total += len(t_outputs)
if t_targets_all is None:
t_targets_all = t_targets
t_outputs_all = t_outputs
else:
t_targets_all = torch.cat((t_targets_all, t_targets), dim=0)
t_outputs_all = torch.cat((t_outputs_all, t_outputs), dim=0)
acc = n_correct / n_total
# for voting
if save_file:
targets_data = t_targets_all.cpu().numpy()
predicts_data = torch.argmax(t_outputs_all, -1).cpu().numpy()
if not os.path.exists('ensemble'):
os.mkdir('ensemble')
numpy.save('ensemble/data-fold-{}.npy'.format(fid), targets_data)
logger.info('>> targets data saved')
numpy.save('ensemble/sci-{0}-fold-{1}.npy'.format(self.opt.model_name, fid), predicts_data)
logger.info('>> targets data saved')
f1 = metrics.f1_score(t_targets_all.cpu(), torch.argmax(t_outputs_all, -1).cpu(), labels=[0, 1, 2], average='weighted')
if f1 > self.best_acc:
self.best_acc = f1
path = 'state_dict/{0}_{1}_best_val_temp'.format(self.opt.model_name, self.opt.dataset)
torch.save(self.model.state_dict(), path)
logger.info('>> saved best model: {}'.format(path))
f1 = metrics.f1_score(t_targets_all.cpu(), torch.argmax(t_outputs_all, -1).cpu(), labels=[0, 1, 2], average='weighted')
logger.info(metrics.classification_report(t_targets_all.cpu(), torch.argmax(t_outputs_all, -1).cpu(), labels=[0, 1, 2], target_names=['neg', 'neu', 'pos']))
return acc, f1
def _get_label_callback(self, dataset, idx):
return dataset[idx]['polarity']
def run(self):
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
_params = filter(lambda p: p.requires_grad, self.model.parameters())
optimizer = self.opt.optimizer(_params, lr=self.opt.learning_rate, weight_decay=self.opt.l2reg)
test_data_loader = DataLoader(dataset=self.testset, batch_size=self.opt.batch_size, shuffle=False)
valset_len = len(self.trainset) // self.opt.cross_val_fold
splitedsets = random_split(self.trainset, tuple([valset_len] * (self.opt.cross_val_fold - 1) + [len(self.trainset) - valset_len * (self.opt.cross_val_fold - 1)]))
all_test_acc, all_test_f1 = [], []
for fid in range(self.opt.cross_val_fold):
logger.info('fold : {}'.format(fid))
logger.info('>' * 100)
trainset = ConcatDataset([x for i, x in enumerate(splitedsets) if i != fid])
valset = splitedsets[fid]
train_data_loader = DataLoader(dataset=trainset, batch_size=self.opt.batch_size,
sampler=ImbalancedDatasetSampler(trainset, callback_get_label=self._get_label_callback))
val_data_loader = DataLoader(dataset=valset, batch_size=self.opt.batch_size, shuffle=False)
self._reset_params()
best_model_path = self._train(criterion, optimizer, train_data_loader, val_data_loader)
self.model.load_state_dict(torch.load(best_model_path))
test_acc, test_f1 = self._evaluate_acc_f1(val_data_loader, save_file=True, fid=fid)
all_test_acc.append(test_acc)
all_test_f1.append(test_f1)
logger.info('>> test_acc: {:.4f}, test_f1: {:.4f}'.format(test_acc, test_f1))
mean_test_acc, mean_test_f1 = numpy.mean(all_test_acc), numpy.mean(all_test_f1)
logger.info('>' * 100)
logger.info('>>> mean_test_acc: {:.4f}, mean_test_f1: {:.4f}'.format(mean_test_acc, mean_test_f1))
def main():
# Hyper Parameters
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='aoa_cls_bert', type=str)
parser.add_argument('--dataset', default='antibody_specificity', type=str, help='try absa-antibody, absa-specific or bert')
parser.add_argument('--optimizer', default='adam', type=str)
parser.add_argument('--initializer', default='xavier_uniform_', type=str)
parser.add_argument('--learning_rate', default=2e-5, type=float, help='try 5e-5, 2e-5 for BERT, 1e-3 for others')
parser.add_argument('--dropout', default=0.1, type=float)
parser.add_argument('--l2reg', default=0.01, type=float)
parser.add_argument('--num_epoch', default=10, type=int, help='try larger number for non-BERT models')
parser.add_argument('--batch_size', default=8, type=int, help='try 16, 32, 64 for BERT models')
parser.add_argument('--log_step', default=10, type=int)
parser.add_argument('--embed_dim', default=300, type=int)
parser.add_argument('--hidden_dim', default=300, type=int)
parser.add_argument('--bert_dim', default=768, type=int)
parser.add_argument('--pretrained_bert_name', default='bert-base-uncased', type=str)
parser.add_argument('--max_seq_len', default=128, type=int)
parser.add_argument('--polarities_dim', default=3, type=int)
parser.add_argument('--hops', default=3, type=int)
parser.add_argument('--device', default=None, type=str, help='e.g. cuda:0')
parser.add_argument('--seed', default=2020, type=int, help='set seed for reproducibility')
parser.add_argument('--cross_val_fold', default=5, type=int, help='k-fold cross validation')
# The following parameters are only valid for the lcf-bert model
parser.add_argument('--local_context_focus', default='cdm', type=str, help='local context focus mode, cdw or cdm')
# semantic-relative-distance, see the paper of LCF-BERT model
parser.add_argument('--SRD', default=3, type=int, help='set SRD')
opt = parser.parse_args()
if opt.seed is not None:
random.seed(opt.seed)
numpy.random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
model_classes = {
'aoa_cls_bert': AOA_CLS_BERT,
}
dataset_files = {
'antibody_specificity': {
'train': '../datasets/antibody_specificity/dataset-train_seq.txt',
'test': '../datasets/antibody_specificity/dataset-test_seq.txt'
}
}
input_colses = {
'aoa_cls_bert': ['text_shared_bert_indices', 'bert_shared_segments_ids'],
}
initializers = {
'xavier_uniform_': torch.nn.init.xavier_uniform_,
'xavier_normal_': torch.nn.init.xavier_normal,
'orthogonal_': torch.nn.init.orthogonal_,
}
optimizers = {
'adadelta': torch.optim.Adadelta, # default lr=1.0
'adagrad': torch.optim.Adagrad, # default lr=0.01
'adam': torch.optim.Adam, # default lr=0.001
'adamax': torch.optim.Adamax, # default lr=0.002
'asgd': torch.optim.ASGD, # default lr=0.01
'rmsprop': torch.optim.RMSprop, # default lr=0.01
'sgd': torch.optim.SGD,
}
opt.model_class = model_classes[opt.model_name]
opt.dataset_file = dataset_files[opt.dataset]
opt.inputs_cols = input_colses[opt.model_name]
opt.initializer = initializers[opt.initializer]
opt.optimizer = optimizers[opt.optimizer]
opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') \
if opt.device is None else torch.device(opt.device)
if not os.path.exists('logs'):
os.mkdir('logs')
log_file = 'logs/{}-{}-{}.log'.format(opt.model_name, opt.dataset, strftime("%y%m%d-%H%M", localtime()))
logger.addHandler(logging.FileHandler(log_file))
ins = Instructor(opt)
ins.run()
if __name__ == '__main__':
main()