-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
146 lines (114 loc) · 5.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt
# show_targets - a simple function that draw a list of keypoints on an image.
# @exist_list: list of keypoints (list of lists, each sublist represent a lane).
# @img: the image i want to display the keypoints on.
def show_targets(exist_list, img):
for j in range(0, exist_list.__len__()):
for i in range(0, exist_list[j].__len__(), 2):
img = cv2.circle(img, (exist_list[j][i], exist_list[j][i + 1]), radius=0, color=(0, 255, 0), thickness=10)
plt.figure(figsize=(16, 18))
plt.imshow(img)
plt.show()
# normalize_img_keypoints - a simple function that
# unifies a list of lanes for an image to one structure (4, 50), 4 lanes nd 50 ints that
# represent 50 keypoitns au max.
# @img_keypoints: a list of lists, each sublist represent a lane, initially each image
# has its own structure for this set.
def normalize_img_keypoints(img_keypoints):
N = 25 # nombre de points maximal that represent a lane.
if (len(img_keypoints) < 4): # fill an image with 4 lanes.
img_keypoints += [[]] * (4 - len(img_keypoints))
for lane in img_keypoints: # fill a lane with 25 points.
if len(lane) / 2 != N:
lane += [-1] * (2 * N - len(lane)) # fill the rest of lane with zeros.
# print(len(lane))
# or np.nan or -1. -100
def normalize_convert_images_to_tensor(batch_images):
batch_images = np.array(batch_images)
batch_images = batch_images / 255 # normalized
#TODO: modify image size.
batch_images = torch.tensor(batch_images)
return batch_images
def generate_batch_targets(batch_img_paths, BATCH_SIZE):
# iterate over a batch, and aggregate all 8 image keypoints in one set.
batch_targets = []
for image_id in range(BATCH_SIZE):
img_path = batch_img_paths[image_id]
anno_path = img_path[:-3] + 'lines.txt'
img_keypoints = [] # image ground truth
with open(anno_path) as f:
for line in f:
line = line.strip()
l = line.split(" ")
img_keypoints.append([int(eval(x)) for x in l[2:]])
normalize_img_keypoints(img_keypoints)
# print(len(img_keypoints)) # 4.
batch_targets.append(img_keypoints)
# checks - debugging
# print(len(batch_targets))
# for i in range(BATCH_SIZE):
# print(len(batch_targets[i])) #....4
# for j in range(4):
# print(len(batch_targets[i][j]))#....50
# print(batch_targets)
batch_targets = np.array(batch_targets, dtype=int)
return torch.tensor(batch_targets)
#set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#HyperParams
learning_rate = 0.001
def train(model, dataloader, BATCH_SIZE, NUM_EPOCHS = 1):
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# train a model
for epoch in range(NUM_EPOCHS):
num_correct = 0
num_samples = 0
for batch_id, batch in enumerate(dataloader):
#each batch is a CULANE_sample (a dict with a list of images, images_paths, that's all what we need from him. )
# in one batch there are :
# batch['img']: a list of 32 images(590x1640)
# batch['img_name']:a list of SIZE image paths.
batch_images = normalize_convert_images_to_tensor(batch['img'])
# batch_images = batch_images.reshape(batch_images.shape[0], -1)
# print(batch_images)
batch_images = torch.movedim(batch_images, 1, -1)
batch_images = torch.movedim(batch_images, 1, -1)
new_img_size = (300, 800)
# new_img_size = (224, 224)
batch_images = F.interpolate(batch_images, size=new_img_size, mode='bilinear', align_corners=False)
#input of our model : ( 3, 300, 800 )
# print(batch_images.shape) # (32, 3, 590, 1640) => (32, 3, 300, 800)
batch_targets = generate_batch_targets(batch['img_name'], BATCH_SIZE)
# break
batch_targets= batch_targets.reshape(batch_targets.shape[0], -1)
# print('y target: '+str(batch_targets.shape))
# ouput of our model (32, 200)
batch_images = batch_images.to(device=device)
batch_targets = batch_targets.to(device=device)
# print(batch_images)
scores = model(batch_images.float())
# print('scores: '+str(scores.shape)) #[32, 200]?
loss = criterion(scores, batch_targets.float())
#MAX OF ITRATTION IN TRAINING = 18000/ batch_size(7) = 2572
print(f'----------in iteration : {batch_id}---------------- ')
print("Loss :"+str(loss))
num_correct += (scores == batch_targets).sum()
num_samples += batch_targets.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}')
print('------------------')
# backward
optimizer.zero_grad()
loss.backward()
# Sg or adam step ( updating weights )
optimizer.step()
# # testing the targets after reshaping em
# img = np.ones((590, 1640, 3), dtype=np.uint8)
# img = 255 * img
# show_targets(batch_targets[0], img)