-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet-10.py
76 lines (69 loc) · 2.6 KB
/
resnet-10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
'''
import os
os.environ["CUDA_VISIBLE_DEVICES"]="1"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
'''
class ResBlock(nn.Module):
def __init__(self, inchannel, outchannel, stride=1):
super(ResBlock, self).__init__()
self.left = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(outchannel),
nn.ReLU(inplace=True),
nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(outchannel)
)
self.shortcut = nn.Sequential()
if stride != 1 or inchannel != outchannel:
self.shortcut = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outchannel)
)
def forward(self, x):
out = self.left(x)
out = out + self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
self.inchannel = 64
self.conv1 = nn.Sequential(
nn.Conv2d(33, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU()
)
self.layer1 = self.make_layer(ResBlock, 64, 1, stride=1)
self.layer2 = self.make_layer(ResBlock, 128, 1, stride=2)
self.layer3 = self.make_layer(ResBlock, 256, 1, stride=2)
self.layer4 = self.make_layer(ResBlock, 128, 1, stride=2)
self.outlayer = nn.Conv2d(128,1, kernel_size=1, stride=1, padding=0, bias = False)
#self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.inchannel, channels, stride))
self.inchannel = channels
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = torch.nn.functional.interpolate(out, size = (x.size(dim=2), x.size(dim=3)))
out = self.outlayer(out)
out = nn.Sigmoid()(out)
#out = F.avg_pool2d(out, 4)
#out = out.view(out.size(0), -1)
#out = self.fc(out)
return out
'''
model = ResNet().to(device)
summary(model, (33, 121, 281))
'''