Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AssertionError: len(in_keep_idxes): 2048, module.weight.shape[1]: 128 #11

Open
GeneralJing opened this issue Nov 24, 2021 · 0 comments
Open

Comments

@GeneralJing
Copy link

Traceback (most recent call last):
File "gen_schema.py", line 77, in
pruner.run(0.6)
File "/root/anaconda3/envs/slim/lib/python3.8/site-packages/pns-0.1.0-py3.8.egg/pns/pns.py", line 307, in run
conv2d.prune(
File "/root/anaconda3/envs/slim/lib/python3.8/site-packages/pns-0.1.0-py3.8.egg/pns/pns.py", line 50, in prune
self.in_channels_keep_idxes, self.out_channels_keep_idxes = prune_conv2d(
File "/root/anaconda3/envs/slim/lib/python3.8/site-packages/pns-0.1.0-py3.8.egg/pns/functional.py", line 75, in prune_conv2d
assert (
AssertionError: len(in_keep_idxes): 2048, module.weight.shape[1]: 128
报错如上。
模型结构:
model: Net(
(backbone): ResNetWrapper(
(model): ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
)
(out): Conv2d(2048, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(xxx): xxx(
(conv_d0): Conv2d(128, 128, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(conv_u0): Conv2d(128, 128, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(conv_r0): Conv2d(128, 128, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(conv_l0): Conv2d(128, 128, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(conv_d1): Conv2d(128, 128, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(conv_u1): Conv2d(128, 128, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(conv_r1): Conv2d(128, 128, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(conv_l1): Conv2d(128, 128, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(conv_d2): Conv2d(128, 128, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(conv_u2): Conv2d(128, 128, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(conv_r2): Conv2d(128, 128, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(conv_l2): Conv2d(128, 128, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(conv_d3): Conv2d(128, 128, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(conv_u3): Conv2d(128, 128, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(conv_r3): Conv2d(128, 128, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(conv_l3): Conv2d(128, 128, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
)
(decoder): BUSD(
(layers): ModuleList(
(0): UpsamplerBlock(
(conv): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(follows): ModuleList(
(0): non_bottleneck_1d(
(conv3x1_1): Conv2d(64, 64, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_1): Conv2d(64, 64, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn1): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(conv3x1_2): Conv2d(64, 64, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_2): Conv2d(64, 64, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn2): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout2d(p=0, inplace=False)
)
(1): non_bottleneck_1d(
(conv3x1_1): Conv2d(64, 64, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_1): Conv2d(64, 64, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn1): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(conv3x1_2): Conv2d(64, 64, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_2): Conv2d(64, 64, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn2): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout2d(p=0, inplace=False)
)
)
(interpolate_conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(interpolate_bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
)
(1): UpsamplerBlock(
(conv): ConvTranspose2d(64, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(follows): ModuleList(
(0): non_bottleneck_1d(
(conv3x1_1): Conv2d(32, 32, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_1): Conv2d(32, 32, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn1): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(conv3x1_2): Conv2d(32, 32, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_2): Conv2d(32, 32, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn2): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout2d(p=0, inplace=False)
)
(1): non_bottleneck_1d(
(conv3x1_1): Conv2d(32, 32, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_1): Conv2d(32, 32, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn1): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(conv3x1_2): Conv2d(32, 32, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_2): Conv2d(32, 32, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn2): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout2d(p=0, inplace=False)
)
)
(interpolate_conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(interpolate_bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
)
(2): UpsamplerBlock(
(conv): ConvTranspose2d(32, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(bn): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(follows): ModuleList(
(0): non_bottleneck_1d(
(conv3x1_1): Conv2d(16, 16, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_1): Conv2d(16, 16, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn1): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(conv3x1_2): Conv2d(16, 16, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_2): Conv2d(16, 16, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn2): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout2d(p=0, inplace=False)
)
(1): non_bottleneck_1d(
(conv3x1_1): Conv2d(16, 16, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_1): Conv2d(16, 16, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn1): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(conv3x1_2): Conv2d(16, 16, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0))
(conv1x3_2): Conv2d(16, 16, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1))
(bn2): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
(dropout): Dropout2d(p=0, inplace=False)
)
)
(interpolate_conv): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(interpolate_bn): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
)
)
(output_conv): Conv2d(16, 6, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(heads): ExistHead(
(dropout): Dropout2d(p=0.1, inplace=False)
(conv8): Conv2d(128, 6, kernel_size=(1, 1), stride=(1, 1))
(fc9): Linear(in_features=5280, out_features=128, bias=True)
(fc10): Linear(in_features=128, out_features=5, bias=True)
)
)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant