-
Notifications
You must be signed in to change notification settings - Fork 0
/
file.py
39 lines (30 loc) · 1.52 KB
/
file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#it is a supervised learning model
import tensorflow as tf
import keras
import numpy as np
import matplotlib.pyplot as plt
data = keras.datasets.fashion_mnist#dataset contains fashion images in grayscale format
(train_images, train_labels), (test_images, test_labels) = data.load_data() #dividing the complete data into two sets
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images = train_images/255.0 #images are in grayscale so the pixle will be between 0 and 255
test_images = test_images/255.0
"""training model :
flatten: converts the matrix into in an array like structure to reduce complexity"""
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy",metrics=["accuracy"])
#this model using loss to check the progress where system will learn from the mistakes it make
model.fit(train_images,train_labels, epochs=5) #epochs tell how many times the model is to be trained
test_loss, test_acc =model.evaluate(test_images, test_labels)
print("Tested accuracy =", test_acc)
"""prediction = model.predict(test_images)
for i in range(5):
plt.grid(False)
plt.imshow(test_images[i], cmap=plt.cm.binary)
plt.xlabel("Actual:" + class_names[test_labels[i]])
plt.title("Prediction" + class_names[np.argmax(prediction[i])])
plt.show()"""