-
Notifications
You must be signed in to change notification settings - Fork 60
/
evaluate_hotpot_qa.py
172 lines (145 loc) · 5.45 KB
/
evaluate_hotpot_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import json
import os
import re
import string
from collections import Counter
from typing import List
import joblib
import numpy as np
import requests
from tqdm import tqdm
from SearchActions import WikipediaSearch
from hotpotagents import WikiSearchAgent
from agentlite.actions import BaseAction, FinishAct, ThinkAct
from agentlite.actions.InnerActions import INNER_ACT_KEY
from agentlite.agents import BaseAgent
from agentlite.commons import AgentAct, TaskPackage
from agentlite.llm.agent_llms import BaseLLM, get_llm_backend
from agentlite.llm.LLMConfig import LLMConfig
from agentlite.logging.terminal_logger import AgentLogger
def download_file(url, filename):
"""
Download a file from a URL and save it locally.
"""
response = requests.get(url)
response.raise_for_status() # Check if the download was successful
with open(filename, "wb") as f:
f.write(response.content)
print(f"Downloaded {filename}")
def load_hotpot_qa_data(level):
"""
Load HotpotQA data for a given level. If data doesn't exist, download it.
"""
file_path = f"./data/{level}.joblib"
data_url = (
f"https://github.com/salesforce/BOLAA/raw/main/hotpotqa_run/data/{level}.joblib"
)
if not os.path.exists(file_path):
print(f"{level} data not found, downloading...")
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(file_path), exist_ok=True)
download_file(data_url, file_path)
# joblib requires python 3.10 or higher
return joblib.load(file_path)
def normalize_answer(s):
"""
Normalize answers for evaluation.
"""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
"""
Compute the F1 score between prediction and ground truth answers.
"""
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0, 0, 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1, precision, recall
def run_hotpot_qa_agent(level="easy", llm_name="gpt-3.5-turbo-16k-0613", agent_arch="react", PROMPT_DEBUG_FLAG=False):
"""
Test the WikiSearchAgent with a specified dataset level and LLM.
"""
# build the search agent
llm_config = LLMConfig({"llm_name": llm_name, "temperature": 0.0})
# running xlam
if llm_name in ["xlam", "xlam_v2"]:
llm_config = LLMConfig(
{
"llm_name": llm_name,
"temperature": 0.0,
"base_url": "http://localhost:8000/v1",
"api_key": "EMPTY"
}
)
llm = get_llm_backend(llm_config)
agent = WikiSearchAgent(llm=llm, agent_arch=agent_arch, PROMPT_DEBUG_FLAG=PROMPT_DEBUG_FLAG)
# add several demo trajectories to the search agent for the HotPotQA benchmark
hotpot_data = load_hotpot_qa_data(level)
hotpot_data = hotpot_data.reset_index(drop=True)
task_instructions = [
(row["question"], row["answer"]) for _, row in hotpot_data.iterrows()
]
f1_list, correct, results = [], 0, {}
for test_task, answer in tqdm(task_instructions, desc="Processing"):
test_task_pack = TaskPackage(instruction=test_task)
response = agent(test_task_pack)
execution = agent.short_term_memory.get_action_chain(task=test_task_pack)
f1, _, _ = f1_score(response, answer)
f1_list.append(f1)
correct += int(response == answer)
results[test_task] = (response, answer)
avg_f1 = np.mean(f1_list)
acc = correct / len(task_instructions)
dump_str = f"{test_task}\t{answer}\t{response}\t{f1:.4f}\t{acc:.4f}\t{execution}\n"
with open(f"data/{agent_arch}_{llm_name}_results_{level}.csv", "a") as f:
f.write(dump_str)
return avg_f1, acc
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Test Search Agent on the HotPotQA Benchmark"
)
parser.add_argument(
"--level",
type=str,
choices=["easy", "medium", "hard"],
default="medium",
help="Difficulty level of the dataset.",
)
parser.add_argument(
"--llm",
type=str,
default="gpt-3.5-turbo-16k-0613",
help="Name of the language model",
)
parser.add_argument(
"--agent_arch",
type=str,
choices=["react", "act", "planact", "planreact", "zs", "zst"],
default="react",
help="agent reasoning type",
)
parser.add_argument(
"--debug",
action='store_true',
help="debug flag",
)
args = parser.parse_args()
f1, acc = run_hotpot_qa_agent(level=args.level, llm_name=args.llm, agent_arch=args.agent_arch, PROMPT_DEBUG_FLAG=args.debug)
print(
f"{'+'*100}\nLLM model: {args.llm}, Dataset: {args.level}, Result: F1-Score = {f1:.4f}, Accuracy = {acc:.4f}"
)