From 59f7c72eda0f591cf3411530b16581a2e989d1f5 Mon Sep 17 00:00:00 2001 From: rtvuser1 Date: Mon, 25 Nov 2024 15:56:59 -0800 Subject: [PATCH] Continued updates of observables notebooks --- .../Observables_generalized.ipynb | 86 ++- .../benchmarks-qiskit-observables.ipynb | 634 +++++++++--------- 2 files changed, 389 insertions(+), 331 deletions(-) diff --git a/hamlib/qiskit/WIP_benchmarks/Observables_generalized.ipynb b/hamlib/qiskit/WIP_benchmarks/Observables_generalized.ipynb index 4a3121be..d69e8686 100644 --- a/hamlib/qiskit/WIP_benchmarks/Observables_generalized.ipynb +++ b/hamlib/qiskit/WIP_benchmarks/Observables_generalized.ipynb @@ -554,7 +554,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Perform Test 1 - Classical Evolution" + "### Perform Test 1 - Classical Evolution - Simple Single Step Test\n", + "Here, a first order approximation is computed, along with the same first order calculation done in a quantum circuit execution\n", + "This is compared to an exact classical calculation of the evolved state energy." ] }, { @@ -566,7 +568,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "========= Classical Calculation of Energy\n", + "========= Simple Classical Calculation of Energy\n", "\n", "[((-0.2+0j), 'IIIIZZ'), ((-0.2+0j), 'IIIZZI'), ((-0.2+0j), 'IIZZII'), ((-0.2+0j), 'IZZIII'), ((-0.2+0j), 'ZZIIII'), ((-0.4592201188381077+0j), 'IIIIIZ'), ((-0.4592201188381077+0j), 'IIIIZI'), ((-0.4592201188381077+0j), 'IIIZII'), ((-0.4592201188381077+0j), 'IIZIII'), ((-0.4592201188381077+0j), 'IZIIII'), ((-0.4592201188381077+0j), 'ZIIIII'), ((-1.1086554390135441+0j), 'IIIIIX'), ((-1.1086554390135441+0j), 'IIIIXI'), ((-1.1086554390135441+0j), 'IIIXII'), ((-1.1086554390135441+0j), 'IIXIII'), ((-1.1086554390135441+0j), 'IXIIII'), ((-1.1086554390135441+0j), 'XIIIII')]\n", "[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j\n", @@ -579,7 +581,7 @@ ".\n", "For evolution time = 0.5 :\n", "\n", - " Estimated energy: (-5.496640078202655+0j)\n", + " Estimated energy: (-5.446079544823579+0j)\n", " Theoretical energy: -5.470546824238842\n", " Theoretical energy (exact): -3.7553207130286457\n", "\n" @@ -587,7 +589,7 @@ } ], "source": [ - "print(\"========= Classical Calculation of Energy\\n\")\n", + "print(\"========= Simple Classical Calculation of Energy\\n\")\n", "print(H_terms)\n", "print(initial_state)\n", "\n", @@ -623,19 +625,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Perform Test 2 - Quantum Evolution" + "### Perform Test 2 - Quantum Evolution - Calculate Exact Theoretical Energy and Time Arrays for Multiple Steps\n", + "Here, we create an array containing a series of time values for increasing longer evolution times along with the computed theoretical energy at each time step, given the initial state. Note that the energy remains constant since these are a time-independent Hamiltonians." ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "========= Quantum Simulation of Evolution and Calculation of Observables\n", + "========= Exact Classical Calculation of Energy and Time Arrays\n", "\n", "SparsePauliOp(['IIIIZZ', 'IIIZZI', 'IIZZII', 'IZZIII', 'ZZIIII', 'IIIIIZ', 'IIIIZI', 'IIIZII', 'IIZIII', 'IZIIII', 'ZIIIII', 'IIIIIX', 'IIIIXI', 'IIIXII', 'IIXIII', 'IXIIII', 'XIIIII'],\n", " coeffs=[-0.2 +0.j, -0.2 +0.j, -0.2 +0.j, -0.2 +0.j, -0.2 +0.j, -0.459+0.j,\n", @@ -652,14 +655,12 @@ "... getting exact energies\n", "............\n", "... got exact energies [-3.755 -3.755 -3.755 -3.755 -3.755 -3.755 -3.755 -3.755 -3.755 -3.755\n", - " -3.755 -3.755 -3.755]\n", - ".............\n", - "... cumulative elapsed execution time = 8.625\n" + " -3.755 -3.755 -3.755]\n" ] } ], "source": [ - "print(\"========= Quantum Simulation of Evolution and Calculation of Observables\\n\")\n", + "print(\"========= Exact Classical Calculation of Energy and Time Arrays\\n\")\n", "print(H)\n", "print(H_terms)\n", "print(initial_state)\n", @@ -675,9 +676,7 @@ "# so we will likely want to create the time_values array independent of that function.\n", "# time_values = ...\n", "\n", - "########### Obtain multiple observables for successively longer evolution times\n", - "\n", - "observables_list = []\n", + "########### Obtain exact energies and time values for successively longer evolution times\n", "\n", "print(f\"... getting exact energies\")\n", "\n", @@ -685,7 +684,54 @@ "# We compute this in an array function so that we can do the matrix conversion just once for all the steps\n", "theoretical_energies, time_values = compute_theoretical_energy2(initial_state, H, total_evolution_time, step_size)\n", "\n", - "print(f\"\\n... got exact energies {theoretical_energies}\")\n", + "print(f\"\\n... got exact energies {theoretical_energies}\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Perform Test 2 - Quantum Evolution - Compute Multiple Observables for Multiple Steps\n", + "Here, we populate arrays ot energy and other observables at increasing time steps using quantum circuit evolution and measurement." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "========= Quantum Simulation of Evolution and Calculation of Observables\n", + "\n", + "SparsePauliOp(['IIIIZZ', 'IIIZZI', 'IIZZII', 'IZZIII', 'ZZIIII', 'IIIIIZ', 'IIIIZI', 'IIIZII', 'IIZIII', 'IZIIII', 'ZIIIII', 'IIIIIX', 'IIIIXI', 'IIIXII', 'IIXIII', 'IXIIII', 'XIIIII'],\n", + " coeffs=[-0.2 +0.j, -0.2 +0.j, -0.2 +0.j, -0.2 +0.j, -0.2 +0.j, -0.459+0.j,\n", + " -0.459+0.j, -0.459+0.j, -0.459+0.j, -0.459+0.j, -0.459+0.j, -1.109+0.j,\n", + " -1.109+0.j, -1.109+0.j, -1.109+0.j, -1.109+0.j, -1.109+0.j])\n", + "[((-0.2+0j), 'IIIIZZ'), ((-0.2+0j), 'IIIZZI'), ((-0.2+0j), 'IIZZII'), ((-0.2+0j), 'IZZIII'), ((-0.2+0j), 'ZZIIII'), ((-0.4592201188381077+0j), 'IIIIIZ'), ((-0.4592201188381077+0j), 'IIIIZI'), ((-0.4592201188381077+0j), 'IIIZII'), ((-0.4592201188381077+0j), 'IIZIII'), ((-0.4592201188381077+0j), 'IZIIII'), ((-0.4592201188381077+0j), 'ZIIIII'), ((-1.1086554390135441+0j), 'IIIIIX'), ((-1.1086554390135441+0j), 'IIIIXI'), ((-1.1086554390135441+0j), 'IIIXII'), ((-1.1086554390135441+0j), 'IIXIII'), ((-1.1086554390135441+0j), 'IXIIII'), ((-1.1086554390135441+0j), 'XIIIII')]\n", + "[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j\n", + " 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j\n", + " 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j\n", + " 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j\n", + " 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j\n", + " 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j\n", + " 0.+0.j 0.+0.j 0.+0.j 0.+0.j]\n", + ".............\n", + "... cumulative elapsed execution time = 8.397\n" + ] + } + ], + "source": [ + "print(\"========= Quantum Simulation of Evolution and Calculation of Observables\\n\")\n", + "print(H)\n", + "print(H_terms)\n", + "print(initial_state)\n", + "\n", + "########### Obtain multiple observables for successively longer evolution times\n", + "\n", + "observables_list = []\n", "\n", "ts = time.time()\n", "\n", @@ -725,7 +771,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -740,7 +786,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAIjCAYAAAAwSJuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5drH8e9m03tIT0ghCS2E0CH0TiiCoIIoCgGxc6yIolIC6lEUsR0rR4qKgB0VaREE6S0QeksjBAIhvWd33j/yZg9rCCSQZLLJ/fHaS3Z2duY3M7ubvXeeeR6NoigKQgghhBBCCCEqMFM7gBBCCCGEEELUV1IwCSGEEEIIIUQlpGASQgghhBBCiEpIwSSEEEIIIYQQlZCCSQghhBBCCCEqIQWTEEIIIYQQQlRCCiYhhBBCCCGEqIQUTEIIIYQQQghRCSmYhBBCCCGEEKISUjAJIcRtSEhIQKPRsHTpUrWj3LalS5ei0WhISEhQO8oNffXVV7Rq1QoLCwucnZ1rdNlRUVHY29vX6DLrky1btqDRaPj+++9vOm9UVBSBgYG1H6oBk30oRMMgBZMQolLlX6Aru+3atUvtiFVy7Ngx5s6de1uFwIoVK3jvvfdqLNPtKCkpwc3NjV69elU6j6Io+Pn50bFjxzpMVvtOnDhBVFQUwcHBfPHFF3z++ec3fc727dsZM2YMnp6eWFlZERgYyKOPPkpSUlIdJBYNzY0+E6+9bdmyRe2oQogaYq52ACFE/Tdv3jyaNWtWYXpISIgKaarv2LFjREdH069fv1v+tXfFihUcOXKEZ555xmh6QEAABQUFWFhY3H7QKrKwsGDs2LF89tlnJCYmEhAQUGGerVu3cv78eZ599tk6y1UXtmzZgl6v5/3336/S6+/DDz/k6aefJigoiH/96194e3tz/PhxFi9ezKpVq1i7di09evSog+Siofjqq6+M7i9fvpyNGzdWmN66dWu++OIL9Hp9XcYTQtQCKZiEEDc1bNgwOnfurHaMekmj0WBtbV3n650wYQKffvop3377LS+99FKFx1esWIGZmRnjx4+v82y1KS0tDaBKTfG2b9/OM888Q69evVi3bh22traGxx5//HF69uzJPffcw9GjR3FxcamtyLektLQUvV6PpaWl2lEarby8POzs7CpMf+CBB4zu79q1i40bN1aYLoRoOKRJnhDits2ZMwczMzNiYmKMpj/yyCNYWlpy6NAh4H/XT6xatYqXX34ZLy8v7OzsGDVqFMnJyRWWu3v3boYOHYqTkxO2trb07duX7du3V5gvJSWFhx56CB8fH6ysrGjWrBmPP/44xcXFLF26lLFjxwLQv3//Cs1lfvnlF0aMGGF4bnBwMPPnz0en0xmW369fP37//XcSExMNzy8/U1XZNUx//vknvXv3xs7ODmdnZ+68806OHz9uNM/cuXPRaDScOXOGqKgonJ2dcXJyYvLkyeTn599wn/fs2ZPAwEBWrFhR4bGSkhK+//57+vfvj4+PD4cPHyYqKoqgoCCsra3x8vJiypQppKen33AdUFYQzp07t8L0wMBAoqKijKZlZmbyzDPP4Ofnh5WVFSEhIbz11ltV/oX9448/pk2bNlhZWeHj48OTTz5JZmam0TrnzJkDgLu7e6XZys2fPx+NRsOyZcuMiiWA4OBgFixYQGpqKp999lmF5547d47IyEjs7Ozw8fFh3rx5KIpiNM/KlSvp1KkTDg4OODo60rZtW95///1q75Py19A777zDe++9R3BwMFZWVhw8eBBzc3Oio6Mr5Dt58iQajYaPPvoIgKtXrzJ9+nTatm2Lvb09jo6ODBs2zPDe+yedTlel9+A/6fV63nvvPdq0aYO1tTWenp48+uijZGRkGM23b98+IiMjcXNzw8bGhmbNmjFlypSbLh9u/jqYNm0a9vb2132P3HfffXh5eRm9f//44w/De9HBwYERI0Zw9OhRo+eVX7t29uxZhg8fjoODAxMmTKhS3hv55zVM1x7r//znPwQFBWFra8uQIUNITk5GURTmz59P06ZNsbGx4c477+Tq1asVlluVbRJC1CBFCCEqsWTJEgVQNm3apFy+fNnoduXKFcN8xcXFSocOHZSAgAAlOztbURRFWbdunQIo8+fPN8y3efNmBVDatm2rhIeHK++++67y0ksvKdbW1kqLFi2U/Px8w7wxMTGKpaWl0r17d2XhwoXKokWLlPDwcMXS0lLZvXu3Yb6UlBTFx8dHsbW1VZ555hnl008/VWbNmqW0bt1aycjIUM6ePas89dRTCqC8/PLLyldffaV89dVXysWLFxVFUZTRo0cr48aNU95++23lk08+UcaOHasAyvTp0w3r2LBhg9K+fXvFzc3N8PyffvpJURRFiY+PVwBlyZIlhvk3btyomJubKy1atFAWLFigREdHK25uboqLi4sSHx9vmG/OnDkKoHTo0EG56667lI8//liZOnWqAigzZsy46fF5+eWXFUA5cuSI0fQ1a9YogPLll18qiqIo77zzjtK7d29l3rx5yueff648/fTTio2NjdK1a1dFr9dXON7XZgSUOXPmVFh3QECAMmnSJMP9vLw8JTw8XHF1dVVefvll5dNPP1UmTpyoaDQa5emnn77ptpTvi0GDBikffvihMm3aNEWr1SpdunRRiouLFUVRlJ9++kkZM2aMAiiffPKJ8tVXXymHDh267vLy8vIUc3NzpV+/fpWus7CwULGyslJ69uxpmDZp0iTF2tpaad68ufLggw8qH330kXLHHXcogDJr1izDfBs2bFAAZeDAgcp//vMf5T//+Y8ybdo0ZezYsdXeJ+WvodDQUCUoKEh58803lUWLFimJiYnKgAEDlNDQ0ArZo6OjFa1Wa3gd7927VwkODlZeeukl5bPPPlPmzZun+Pr6Kk5OTkpKSorhedV5D06aNEkJCAgwWu/UqVMVc3Nz5eGHH1Y+/fRT5cUXX1Ts7OyMjtOlS5cUFxcXpUWLFsrbb7+tfPHFF8orr7yitG7dutJjUa4qr4OtW7cqgLJ69Wqj5+bl5Sl2dnbKk08+aZi2fPlyRaPRKEOHDlU+/PBD5a233lICAwMVZ2dno9f5pEmTFCsrKyU4OFiZNGmS8umnnyrLly+/aV5FUZQnn3xSqezr1D/3Yfmxbt++vRIaGqq8++67yquvvqpYWloqERERyssvv6z06NFD+eCDD5SnnnpK0Wg0yuTJk42WWdVtEkLUHCmYhBCVKv8Cfb2blZWV0bxxcXGKpaWlMnXqVCUjI0Px9fVVOnfurJSUlBjmKf+y5uvrayisFEVRVq9erQDK+++/ryiKouj1eqV58+ZKZGSk0Rf6/Px8pVmzZsrgwYMN0yZOnKiYmZkpe/furZC//LnfffedAiibN2+uMM+1XxDLPfroo4qtra1SWFhomDZixIgKXx4V5foFU/v27RUPDw8lPT3dMO3QoUOKmZmZMnHiRMO08i+HU6ZMMVrmmDFjFFdX1wrr+qejR48qgDJz5kyj6ePHj1esra2VrKysSrfx22+/VQBl69athmm3UzDNnz9fsbOzU06dOmU030svvaRotVolKSmp0u1IS0tTLC0tlSFDhig6nc4w/aOPPjIq/BTlf/vs8uXLlS5PURQlNjZWAW5arIWHhytNmjQx3J80aZICKP/6178M0/R6vTJixAjF0tLSsN6nn35acXR0VEpLSytddlX3SflryNHRUUlLSzOa97PPPlMAJS4uzmh6aGioMmDAAMP9wsJCo31XvlwrKytl3rx5hmlVfQ+W74trX/Pbtm1TAOWbb74xWk/5jyPl03/66ScFuO578kaq+jrQ6/WKr6+vcvfddxs9v3wbyl/TOTk5irOzs/Lwww8bzXfx4kXFycnJaHr5cX/ppZeqlVlRbq1gcnd3VzIzMw3TZ86cqQBKu3btjD4z77vvPsXS0tLwWVSdbRJC1BxpkieEuKn//Oc/bNy40ej2xx9/GM0TFhZGdHQ0ixcvJjIykitXrrBs2TLMzSteKjlx4kQcHBwM9++55x68vb1Zu3YtALGxsZw+fZr777+f9PR0rly5wpUrV8jLy2PgwIFs3boVvV6PXq/n559/ZuTIkde9xkqj0dx022xsbAz/zsnJ4cqVK/Tu3Zv8/HxOnDhR5X1ULjU1ldjYWKKiomjSpIlhenh4OIMHDzZs47Uee+wxo/u9e/cmPT2d7OzsG64rNDSUDh06sHLlSsO0vLw81qxZwx133IGjo2OFbSwsLOTKlStEREQAcODAgWpv4/V899139O7dGxcXF8PxunLlCoMGDUKn07F169ZKn7tp0yaKi4t55plnMDP735+lhx9+GEdHR37//fdq58nJyQEwep1dj4ODw3X387Rp0wz/1mg0TJs2jeLiYjZt2gSUXUOVl5fHxo0bK112dffJ3Xffjbu7u9G0u+66C3Nzc1atWmWYduTIEY4dO8a9995rmGZlZWXYdzqdjvT0dOzt7WnZsuV1j/HN3oOVbY+TkxODBw822p5OnTphb2/P5s2bDfsG4LfffqOkpKTS5f1TVV8HGo2GsWPHsnbtWnJzcw3zrVq1Cl9fX0PvkRs3biQzM5P77rvPKK9Wq6Vbt26GvNd6/PHHq5z3dowdOxYnJyfD/W7dugFl10dd+5nZrVs3iouLSUlJAW5tm4QQt086fRBC3FTXrl2r1OnDCy+8wMqVK9mzZw9vvPEGoaGh152vefPmRvc1Gg0hISGGbr9Pnz4NwKRJkypdV1ZWFsXFxWRnZxMWFlbFLano6NGjvPrqq/z5558VvjhnZWVVe3mJiYkAtGzZssJjrVu3Zv369RUuJvf39zear7wDgoyMDEPRU5kJEyYwffp0duzYQY8ePfj555/Jz883uv7i6tWrREdHs3LlSkOnCeVuZRuv5/Tp0xw+fLjCF/5y/1zvtSrbZ5aWlgQFBRker47yYqC8cKpMTk5OhaLKzMyMoKAgo2ktWrQAMLxGn3jiCVavXs2wYcPw9fVlyJAhjBs3jqFDhxqeU919cr2eKN3c3Bg4cCCrV69m/vz5QFlhYG5uzl133WWYr7znwI8//pj4+Hija3hcXV0rLPdm78HrOX36NFlZWXh4eNxwe/r27cvdd99NdHQ0ixYtol+/fowePZr7778fKyurSpdfndfBvffey3vvvceaNWu4//77yc3NZe3atTz66KOGH0rKP0cGDBhw3fX9871lbm5O06ZNK81Xk/75ni8vnvz8/K47vfwasepukxCiZkjBJISoMefOnTP8QY+Li7vl5ZRfEP/222/Tvn37685jb29/3YuhqyMzM5O+ffvi6OjIvHnzCA4OxtramgMHDvDiiy/WWXfAWq32utOVf3QycD333XcfM2bMYMWKFfTo0YMVK1bg4uLC8OHDDfOMGzeOHTt28MILL9C+fXvs7e3R6/UMHTr0lrfx2i/kUHbMBg8ezIwZM647f3nBUVdCQkIwNzfn8OHDlc5TVFTEyZMnb6kHSA8PD2JjY1m/fj1//PEHf/zxB0uWLGHixIksW7YMqP4+ufZM4LXGjx/P5MmTiY2NpX379qxevZqBAwfi5uZmmOeNN95g1qxZTJkyhfnz59OkSRPMzMx45plnaux1rNfr8fDw4Jtvvrnu4+WFYfnAuLt27eLXX39l/fr1TJkyhYULF7Jr164aGRg4IiKCwMBAVq9ezf3338+vv/5KQUGB0Vm38u3+6quv8PLyqrCMf579vvYsXW2r7D1/s8+C6m6TEKJmyDtLCFEj9Ho9UVFRODo68swzz/DGG29wzz33GP0KXq68qCqnKApnzpwhPDwcKOvBDMp+LR00aFCl63R3d8fR0ZEjR47cMFtlTfO2bNlCeno6P/74I3369DFMj4+Pr/Iy/ql8TKSTJ09WeOzEiRO4ubldt6viW+Xj40P//v357rvvmDVrFhs3biQqKsrQHXVGRgYxMTFER0cze/Zsw/P+eQwq4+LiYtRDGUBxcTGpqalG04KDg8nNzb3h8arMtfvs2jM7xcXFxMfH39Iy7ezs6N+/P3/++WelY1WtXr2aoqIi7rjjDqPper2ec+fOGRU0p06dAjDq8czS0pKRI0cycuRI9Ho9TzzxBJ999hmzZs0iJCTktvbJtUaPHs2jjz5qaJZ36tQpZs6caTRPea+I//3vf42mZ2ZmGhVW5W72Hrye4OBgNm3aRM+ePSst7q4VERFBREQEr7/+OitWrGDChAmsXLmSqVOnXnf+6r4Oxo0bx/vvv092djarVq0iMDDQ0NS0PC+UFbe3ewzqi4a4TUKYArmGSQhRI95991127NjB559/zvz58+nRowePP/44V65cqTDv8uXLjZpKff/996SmpjJs2DAAOnXqRHBwMO+8847RNQrlLl++DJQ1nRo9ejS//vor+/btqzBf+a+y5QXKP7/4l/+ae+2ZnOLiYj7++OMKy7Kzs6tS8zVvb2/at2/PsmXLjNZ35MgRNmzYYHTmp6ZMmDCBtLQ0Hn30UUpKSoya411vGwHee++9Ki07ODi4wrU2n3/+eYUzTOPGjWPnzp2sX7++wjIyMzMpLS2tdB2DBg3C0tKSDz74wCjnf//7X7KyshgxYkSVsv7Tq6++iqIoREVFUVBQYPRYfHw8M2bMwNvbm0cffbTCc8u764ayfffRRx9hYWHBwIEDASp0yW5mZmYoNoqKioDb2yfXcnZ2JjIyktWrV7Ny5UosLS0ZPXq00TxarbbCMf7uu+8M1778083eg9czbtw4dDqdoWngtUpLSw2v94yMjApZys8Ul++b66nu6+Dee++lqKiIZcuWsW7dOsaNG2f0eGRkJI6OjrzxxhvXvZaq/HPElDTEbRLCFMgZJiHETf3xxx/X7QChR48eBAUFcfz4cWbNmkVUVBQjR44EYOnSpbRv395wrce1mjRpQq9evZg8eTKXLl3ivffeIyQkhIcffhgo+/K5ePFihg0bRps2bZg8eTK+vr6kpKSwefNmHB0d+fXXX4GypkgbNmygb9++PPLII7Ru3ZrU1FS+++47/v77b5ydnWnfvj1arZa33nqLrKwsrKysGDBgAD169MDFxYVJkybx1FNPodFo+Oqrr67bFK5Tp06sWrWK5557ji5dumBvb2/Y1n96++23GTZsGN27d+ehhx6ioKCADz/8ECcnpxuOG3Sr7r77bp544gl++eUX/Pz8jM6WOTo60qdPHxYsWEBJSQm+vr5s2LDhumfRrmfq1Kk89thj3H333QwePJhDhw6xfv36CmctXnjhBUNnE1FRUXTq1Im8vDzi4uL4/vvvSUhIuO6ZDig7Uzhz5kyio6MZOnQoo0aN4uTJk3z88cd06dLllgcE7dOnD++88w7PPfcc4eHhREVF4e3tzYkTJ/jiiy/Q6/WsXbu2wqC11tbWrFu3jkmTJtGtWzf++OMPfv/9d15++WVDs7OpU6dy9epVBgwYQNOmTUlMTOTDDz+kffv2tG7d+rb3yT/de++9PPDAA3z88cdERkZWGLj3jjvuYN68eUyePJkePXoQFxfHN998U+FarHI3ew9eT9++fXn00Uf597//TWxsLEOGDMHCwoLTp0/z3Xff8f7773PPPfewbNkyPv74Y8aMGUNwcDA5OTl88cUXODo63vAHg+q+Djp27EhISAivvPIKRUVFRs3xoOy1/8knn/Dggw/SsWNHxo8fj7u7O0lJSfz+++/07NnTqDA2BQ1xm4QwCWp0zSeEMA036lac/+9Ku7S0VOnSpYvStGlTo25yFUVR3n//fQVQVq1apSjK/7o0/vbbb5WZM2cqHh4eio2NjTJixAglMTGxwvoPHjyo3HXXXYqrq6tiZWWlBAQEKOPGjVNiYmKM5ktMTFQmTpyouLu7K1ZWVkpQUJDy5JNPKkVFRYZ5vvjiCyUoKEjRarVGXYxv375diYiIUGxsbBQfHx9lxowZyvr16yt0Q56bm6vcf//9irOzswIYugq+XrfiiqIomzZtUnr27KnY2Ngojo6OysiRI5Vjx44ZzVNZF9nX6977ZsrHj7re+E3nz59XxowZozg7OytOTk7K2LFjlQsXLlToMvx669XpdMqLL76ouLm5Kba2tkpkZKRy5syZCt2KK0pZl8czZ85UQkJCFEtLS8XNzU3p0aOH8s477xjG0LmRjz76SGnVqpViYWGheHp6Ko8//riSkZFhNE9VuxW/1tatW5U777xTcXNzUywsLBR/f3/l4YcfVhISEirMO2nSJMXOzk45e/asMmTIEMXW1lbx9PRU5syZY9TV9ffff68MGTJE8fDwUCwtLRV/f3/l0UcfVVJTU6u9T8pfQ2+//Xal25Cdna3Y2NgogPL1119XeLywsFB5/vnnFW9vb8XGxkbp2bOnsnPnTqVv375K3759DfNV5z14vXGYFEVRPv/8c6VTp06KjY2N4uDgoLRt21aZMWOGcuHCBUVRFOXAgQPKfffdp/j7+ytWVlaKh4eHcscddyj79u2rdPuuVZXXQblXXnlFAZSQkJBKl7d582YlMjJScXJyUqytrZXg4GAlKirKKE/5cb8Vt9Kt+D+Pdflx+e6774yml78n/9lFe1W2SQhRczSKUoWrioUQogZs2bLFcL3NPffco3YcIYQQQoibkmuYhBBCCCGEEKISUjAJIYQQQgghRCWkYBJCCCGEEEKISsg1TEIIIYQQQghRCTnDJIQQQgghhBCVkIJJCCGEEEIIISrRqAau1ev1XLhwAQcHBzQajdpxhBBCCCGEECpRFIWcnBx8fHwwM6v8PFKjKpguXLiAn5+f2jGEEEIIIYQQ9URycjJNmzat9PFGVTA5ODgAZTvF0dFR1SwlJSVs2LCBIUOGYGFhoWoWUTPkmDZMclwbHjmmDZMc14ZHjmnDU9+OaXZ2Nn5+foYaoTKNqmAqb4bn6OhYLwomW1tbHB0d68ULRtw+OaYNkxzXhkeOacMkx7XhkWPa8NTXY3qzS3Wk0wchhBBCCCGEqIQUTEIIIYQQQghRCSmYhBBCCCGEEKISjeoaJiGEEEIIcXOKolBaWopOp1MtQ0lJCebm5hQWFqqaQ9Scuj6mWq0Wc3Pz2x5OSAomIYQQQghhUFxcTGpqKvn5+armUBQFLy8vkpOTZfzMBkKNY2pra4u3tzeWlpa3vAwpmIQQQgghBAB6vZ74+Hi0Wi0+Pj5YWlqqVqzo9Xpyc3Oxt7e/4aCiwnTU5TFVFIXi4mIuX75MfHw8zZs3v+V1SsEkhBBCCCGAsrNLer0ePz8/bG1tVc2i1+spLi7G2tpaCqYGoq6PqY2NDRYWFiQmJhrWeyvk1SeEEEIIIYxIgSIaipp4Lcu7QQghhBBCCCEqIQWTEEIIIYQQQlRCrmESQgghhBA1SqdX2BN/lbScQjwcrOnarAlaM+npTpgmKZiEEEIIIUSNWXcklehfj5GaVWiY5u1kzZyRoQwN86619UZFRbFs2bIK0yMjI1m3bl2trVc0fNIkTyUbEjfwZtabbEzaqHYUIYQQQogase5IKo9/fcCoWAK4mFXI418fYN2R1Fpd/9ChQ0lNTTW6ffvtt7W2vuLi4lpbtqg/pGBSQXpBOq/teY1cJZfXdr9GekG62pGEEEIIIa5LURTyi0tvesspLGHOmqMo11vG//9/7ppj5BSWVGl5inK9Jd2YlZUVXl5eRjcXFxcANBoNixcvZsyYMdja2tK8eXPWrFlj9PwjR44wbNgw7O3t8fT05MEHH+TKlSuGx/v168e0adN45plncHNzIzIyEoA1a9bQvHlzrK2t6d+/P8uWLUOj0ZCZmUleXh6Ojo58//33Ruv6+eefsbOzIycnp9rbKeqWSTXJS0lJ4cUXX+SPP/4gPz+fkJAQlixZQufOndWOVmWKojB/13wKSgsAyC/N57Vdr7Go/yKVkwkhhBBCVFRQoiN09vrbXo4CXMwupO3cDVWa/8jcwbe9zn+Kjo5mwYIFvP3223z44YdMmDCBxMREmjRpQmZmJgMGDGDq1KksWrSIgoICXnzxRcaNG8eff/5pWMayZct4/PHH2b59OwDx8fHcc889PP3000ydOpWDBw8yffp0w/x2dnaMHz+eJUuWcM899ximl993cHCo8e0UNctkzjBlZGTQs2dPLCws+OOPPzh27BgLFy40/GpgKtYnrCcmKQadogNAp+jYlLSJdQnStlYIIYQQ4nb89ttv2NvbG93eeOMNw+NRUVHcd999hISE8MYbb5Cbm8uePXsA+Oijj+jQoQNvvPEGrVq1okOHDnz55Zds3ryZU6dOGZbRvHlzFixYQMuWLWnZsiWfffYZLVu25O2336Zly5aMHz+eqKgoo1xTp05l/fr1pKaWNUlMS0tj7dq1TJkypfZ3irhtJnOG6a233sLPz48lS5YYpjVr1kzFRNWXXpDOvJ3z0KBBueaEtQYN83bOo4tnF1xtXFVMKIQQQghhzMZCy7F5kTedb0/8VaKW7L3pfEsnd6FrsyY3nc9KqyGn8KazGenfvz+ffPKJ0bQmTf63rvDwcMO/7ezscHR0JC0tDYBDhw6xefNm7O3tKyz37NmztGjRAoBOnToZPXby5Em6dOliNK1r164V7rdp04Zly5bx0ksv8fXXXxMQEECfPn2qt4FCFSZTMK1Zs4bIyEjGjh3LX3/9ha+vL0888QQPP/xwpc8pKiqiqKjIcD87OxuAkpISSkpKaj3ztRRFIXpHNPml+SgoeBa7MjSzJyvc1lJiVkpeSR7zds7jnd7v1GkuUXPKX1N1/doStUuOa8Mjx7RhkuNaM0pKSlAUBb1ej16vN0y3Nr95o6Sewa54OVpzKbvwutcxaQAvJ2t6BrtWqYvx8muYyvNUZX5bW1uCgoIqPFb+fK1Wa7QsjUZDaWkper2enJwc7rjjDt58880Kz/f29jY8z9bW1mgZiqJUyFj+72v340MPPcTHH3/MjBkzWLJkCVFRUYbnNhbVPaY1Qa/XoygKJSUlaLVao8eq+nlhMgXTuXPn+OSTT3juued4+eWX2bt3L0899RSWlpZMmjTpus/597//TXR0dIXpGzZswNbWtrYjG7mku8TmnM0AaBQNbyU+g2epK+ctLxHjvBu9oufP5D9Z8usSPLWedZpN1KyNG6Xnw4ZIjmvDI8e0YZLjenvMzc3x8vIiNzf3lnqAe2FgINN/OoEGjIqm8vJo+oBA8nKr18lBVTtFKCkpobS01PAD+fUUFBQYPa4oCoWFhWRnZ9OmTRt+/fVXmjRpgrm58VdknU5HdnY2paWlFBcXGy0jMDCQjRs3Gk0rv74pJycHM7OyYnPUqFG8+OKLvP322xw7dowxY8bcMGtDVpcdXRQXF1NQUMDWrVspLS01eiw/P79KyzCZgkmv19O5c2dDO9QOHTpw5MgRPv3000oLppkzZ/Lcc88Z7mdnZ+Pn58eQIUNwdHSsk9zlFEXhyLYjbE3Zig4dv7tsY8rl0Yy5OoAYp91ozbT0bdqXyb0n12kuUXNKSkrYuHEjgwcPxsLCQu04oobIcW145Jg2THJca0ZhYSHJycnY29tjbW1d7eeP6eKIjY0N8347zsXs/7Wn83KyZtaI1gwN86ryshRFIScnBwcHBzSam5+RsrCwQKfTVfgSbG5ujpubGwA2NjZG3wE1Gg3W1tY4Ojry7LPP8tVXX/HYY4/xwgsv0KRJE86cOcOqVav44osv0Gq1mJubY2lpabSMf/3rX3z88ce88cYbTJkyhdjYWFauXAmAo6OjYV5HR0fGjBnD7NmzGTx4MK1bt67yvmgoqntMa0JhYSE2Njb06dOnwmu6qgWryRRM3t7ehIaGGk1r3bo1P/zwQ6XPsbKywsrKqsJ0CwsLVT5M5/SYw8ifRpJbkssfLn9z/5VhBBf50S6/BfEuF5ndfbZ8yDcAar2+RO2S49rwyDFtmOS43h6dTodGo8HMzMxwZqS6hof7EBnmzZ74q6TlFOLhYE3XZk2q1AzvWuVNtsrz3IxGo2H9+vX4+voaTW/ZsiUnTpwAuO52lU9r2rQp27dv58UXX2To0KEUFRUREBDA0KFDMTc3N3zB/2ee4OBgvv/+e55//nk++OADunfvziuvvMLjjz+OjY2N0bxTp07l22+/5aGHHrrl/WvKqntMa4KZmRkajea6nw1V/awwmYKpZ8+enDx50mjaqVOnCAgIUClR9bnauDK7+2xe2PoCudp8NjjvZFRGP8ZcHYjd8CDp8EEIIYQQDYLWTEP34Lr9XrN06VKWLl1a6ePXu1YoMzPT6H7z5s358ccfK13Gli1brjt91KhRjBo1ynD/9ddfp2nTphXOaKSkpODq6sqdd95Z6TpE/WMype2zzz7Lrl27eOONNzhz5gwrVqzg888/58knn1Q7WrVEBkYy0H8gWo2WX5psRo+ebrltaaE3rR7/hBBCCCFEmY8//pi9e/dy7tw5vvrqK95++22jS0by8/M5e/Ysb775Jo8++iiWlpYqphXVZTIFU5cuXfjpp5/49ttvCQsLY/78+bz33ntMmDBB7WjVotFomBUxCxtzGy5YXmaPwxEAzm04qHIyIYQQQghxK06fPs2dd95JaGgo8+fP5/nnn2fu3LmGxxcsWECrVq3w8vJi5syZ6gUVt8RkmuQB3HHHHdxxxx1qx7htrjauvNr1VV7b8RolnW3J+6uAw3lH6VSYgYu1aQ3EK4QQQgjR2C1atIhFixZV+vjcuXONCihhWkyqYGpIhgQMofRoKUP7DWVq4UPEZh7C7mRTHm33qNrRhBBCCCGEEP/PZJrkNVRmZmaMb3sfAN+e+JZiXfXHPBBCCCGEEELUDimY6oEhgUPwtPHEJ70J2/6WAfeEEEIIIYSoL6RJXj1gYWbBC5aP0SbJkwtXrqDvrW+UffMLIYQQQghR38i38noiov9ACsyK8Ml3I3bPTrXjCCGEEEIIIZCCqd5wcnIhsVk6ANnbzqucRgghhBBCCAFSMNUrLSO7oEdPSLoPZ08dVzuOEEIIIUSjkZCQgEajITY2Vu0oNW7p0qU4OzvXm+WYGimY6hE//yDOeKQCEL/pkMpphBBCCCFuQ8oBWHpH2f9r2eXLl3n88cfx9/fHysoKLy8vIiMj2b59e5WX4efnR2pqKmFhYbedZ/PmzQwfPhxXV1dsbW0JDQ3l+eefJyUl5baXXVcCAwN57733jKbde++9nDp1Sp1AKpKCqZ5x7x8CQFCyB1euXFI5jRBCCCHELTq0EhK2weFVtb6qu+++m4MHD7Js2TJOnTrFmjVr6NevH+np6VVehlarxcvLC3Pz2+sT7bPPPmPQoEF4eXnxww8/cOzYMT799FOysrJYuHDhLS+3uLji0DM6nQ69Xn87cavFxsYGDw+POltffSEFUz3Tpl1HkhwukWZxlQ2H/lA7jhBCCCEaO0WB4ryq3S6fhMSdkLQTjvxQ9vy478vuJ+4se7yqy1KUKsXLzMxk27ZtvPXWW/Tv35+AgAC6du3KzJkzGTVqlGE+jUbDJ598wrBhw7CxsSEoKIjvv//e8Pg/m+Rt2bIFjUZDTEwMnTt3xtbWlh49enDy5MlKs5w/f56nnnqKp556ii+//JJ+/foRGBhInz59WLx4MbNnzzbM+8MPP9CmTRusrKwIDAysUEwFBgYyf/58Jk6ciKOjI4888oihSdyaNWsIDQ3FysqKpKQkioqKmD59Or6+vtjZ2dGtWze2bNlSac6zZ89y55134unpib29PV26dGHTpk2Gx/v160diYiLPPvssGo0GjUYDXL9J3ieffEJwcDCWlpa0bNmSr776yuhxjUbD4sWLGTNmDPb29nTq1Ik1a9ZUmq0+km7F6xkzMzPyRzvw3N4XcLniwt26+7DSWqkdSwghhBCNVUk+vOFz68/PvwJfDq3+816qWidY9vb22Nvb8/PPPxMREYGVVeXfm2bNmsWbb77J+++/z1dffcX48eOJi4ujdevWlT7nlVdeYeHChbi7u/PYY48xZcqUSpv6fffddxQXFzNjxozrPl5ebOzfv59x48Yxd+5c7r33Xnbs2METTzyBq6srUVFRhvnfeecdZs+ezZw5cwDYtm0b+fn5vPXWWyxevBhXV1c8PDyYNm0ax44dY+XKlfj4+PDTTz8xdOhQ4uLiaN68eYUcubm5DB8+nNdffx0rKyuWL1/OyJEjOXnyJP7+/vz444+0a9eORx55hIcffrjSffPTTz/x9NNP89577zFo0CB+++03Jk+eTNOmTenfv79hvujoaBYsWMBbb73Fu+++y4MPPkhiYiJNmjSpdNn1iZxhqof6tR6Il70XVwuv8vu539WOI4QQQghRb5mbm7N06VKWLVuGs7MzPXv25OWXX+bw4cMV5h07dixTp06lRYsWzJ8/n86dO/Phhx/ecPmvv/46ffv2JTQ0lJdeeokdO3ZQWFh43XlPnz6No6Mj3t7eN1zmu+++y8CBA5k1axYtWrQgKiqKadOm8fbbbxvNN2DAAJ5//nmCg4MJDg4GoKSkhI8//pgePXrQsmVLrly5wpIlS/juu+/o3bs3wcHBTJ8+nV69erFkyZLrrr9du3Y8+uijhIWF0bx5c+bPn09wcLDhzE+TJk3QarU4ODjg5eWFl5fXdZfzzjvvEBUVxRNPPEGLFi147rnnuOuuu3jnnXeM5ouKiuK+++4jJCSEWbNmkZuby549e264j+oTOcNUD5mbmTOh9QTe3/MeR//aw+jg0TKQrRBCCCHUYWELL1+o+vwXD1//jNKUdeAVXvXlaK2hMKdKs959992MGDGCbdu2sWvXLv744w8WLFjA4sWLjc7YdO/e3eh53bt3v2mveOHh/8tcXgilpaXh7+9fYV5FUQzN127k+PHj3HnnnUbTevbsyXvvvYdOp0Or1QLQuXPnCs+1tLQ0yhQXF4dOp6NFixZG8xUVFeHq6nrd9efm5jJ37lx+//13UlNTKS0tpaCggKSkpJtm/+d2PPLIIxW24/333zeadm1eOzs7HB0dSUtLq9a61CQFUz01JngMoasc8C525+Cu7XTq0VvtSEIIIYRojDQasLSr+vzmNv//DzNA/7//m9tUbznV7MzA2tqawYMHM3jwYGbNmsXUqVOZM2eOUcF0KywsLAz/Li+GKutooUWLFmRlZZGamnrTs0xVYWdXcX/Z2NgYFWW5ublotVr2799vKLTK2dvbX3e506dPZ+PGjbzzzjuEhIRgY2PDPffcc92OJWrCtfsQyvZjXXZWcbvktEU95WjtSJZ/CQC526rxq44QQgghhJrs3MHeA3zawR2Lyv5v71E2vQ6FhoaSl5dnNG3Xrl0V7t/o+qXquueee7C0tGTBggXXfTwzMxOA1q1bV7gOavv27bRo0aJC0XMzHTp0QKfTkZaWRkhIiNGtsqZ027dvJyoqijFjxtC2bVu8vLxISEgwmsfS0hKdTnfDdVe2HaGhodXahvpOzjDVY62GdkP3USLBGT6cPnWU5i3aqB1JCCGEEOLGnHzhmSOgtSw7O9VpMuiKwbx2OrFKT09n7NixTJkyhfDwcBwcHNi3bx8LFiyo0Oztu+++o3PnzvTq1YtvvvmGPXv28N///rfGsvj5+bFo0SKmTZtGdnY2EydOJDAwkPPnz7N8+XLs7e1ZuHAhzz//PF26dGH+/Pnce++97Ny5k48++oiPP/642uts0aIFEyZMYOLEiSxcuJAOHTpw+fJlYmJiCA8PZ8SIERWe07x5c3788UdGjhyJRqNh1qxZFc74BAYGsnXrVsaPH4+VlRVubm4VlvPCCy8wbtw4OnTowKBBg/j111/58ccfjXrcawjkDFM91rRpIGe8ys4uJW6MUzmNEEIIIUQVmVuVFUtQ9v9aKpagrNlZt27dWLRoEX369CEsLIxZs2bx8MMP89FHHxnNGx0dzcqVKwkPD2f58uV8++23NX425IknnmDDhg2kpKQwZswYWrVqxdSpU3F0dGT69OkAdOzYkdWrV7Ny5UrCwsKYPXs28+bNu+Xmg0uWLGHixIk8//zztGzZktGjR7N3797rXmcFZZ1OuLi40KNHD0aOHElkZCQdO3Y0mmfevHkkJCQQHByMu/v1zw6OHj2a999/n3feeYc2bdrw2WefsWTJEvr163dL21FfaRSlip3cNwDZ2dk4OTmRlZWFo6OjqllKSkpYu3Ytw4cPr9Cu81pHD+/HaUU+JZpS7J9rjbv79U+tCvVV9ZgK0yLHteGRY9owyXGtGYWFhcTHx9OsWTOsra1VzaLX68nOzsbR0bFGOr/SaDT89NNPjB49+vbDiVtS08e0Km70mq5qbSBnmOq5NuGdSHC8iIVizuE//lY7jhBCCCGEEI2KFEwmwDyibFCvtNQLFJZev99/IYQQQgghRM2TTh9MQOc+fXn4wiT26Q5jfs6bsS3Gqh1JCCGEEMKkNKKrUEQNkzNMJsDc3JyBHYcBsPzocvSK6fRbL4QQQgghhCmTgslEjGk+BnsLe3LSM9gdJ9cyCSGEEEIIURekSZ6JsLOw4znrR+hyuBlJVy5CuNqJhBBCCCGEaPjkDJMJ6dltIBogKNObU8ePqB1HCCGEEEKIBk8KJhPi4+vPGe+LACRvkoJJCCGEEEKI2iYFk4nx7t8SgOAULy5dTFE5jRBCCCHE9a1LWEe/Vf1Yn7Be7ShC3BYpmExMaHgHEhwvYo6WI+t2qB1HCCGEEKKC9IJ05u2YR3phOtE7o0kvSFc7kkmZO3cu7du3r9V1JCQkoNFoiI2NrdX1NARSMJkgix6uAPiediQvL0flNEIIIYQQ/6MoCvN3zSe/NB+A/JJ8Xtv1Wq2vNyoqCo1Gw2OPPVbhsSeffBKNRkNUVFSt56gujUbDzz//bDRt+vTpxMTE1Ng6oqKiGD16tNE0Pz8/UlNTCQsLq7H1NFRSMJmgTr36kGaVgbley197N6odRwjRAEjTGSFETVmfsJ6YpBh0ig4AnaJjU9Im1iWsq/V1+/n5sXLlSgoKCgzTCgsLWbFiBf7+/rW+/ppib2+Pq6trra5Dq9Xi5eWFubl0mn0zUjCZIHNzc84PLuLB5i/zn6v/lYFshRC3RZrOCCFuRFEU8kvyq3Q7n3Oe6J3RaNAYLUODhnk75nE+53yVl6UoSrWzduzYET8/P3788UfDtB9//BF/f386dOhgmLZu3Tp69eqFs7Mzrq6u3HHHHZw9e9ZoWTt27KB9+/ZYW1vTuXNnfv75Z6MmbFu2bEGj0RATE0Pnzp2xtbWlR48enDx50mg5v/zyCx07dsTa2pqgoCCio6MpLS0FIDAwEIAxY8ag0WgM9//ZJE+j0VS4lc+r0+l46KGHaNasGTY2NrRs2ZL333/f8Ny5c+eybNkyfvnlF8Nzt2zZct0meX/99Rddu3bFysoKb29vXnrpJUNWgH79+vHUU08xY8YMmjRpgpeXF3Pnzq3OITJJUlKaqEHdRvBm8iKScpL4K/kv+vv3VzuSEMIEVdZ0ZlH/RSonE0LUFwWlBXRb0e22lqGgkFOSw7Afh1X5OTvH77yldU2ZMoUlS5YwYcIEAL788ksmT57Mli1bDPPk5eXx3HPPER4eTm5uLrNnz2bMmDHExsZiZmZGdnY2I0eOZPjw4axYsYLExESeeeaZ667vlVdeYeHChbi7u/PYY48xZcoUtm/fDsC2bduYOHEiH3zwAb179+bs2bM88sgjAMyZM4e9e/fi4eHBkiVLGDp0KFqt9rrrSE1NNco+dOhQunfvDoBer6dp06Z89913uLq6smPHDh555BG8vb0ZN24c06dP5/jx42RnZ7NkyRIAmjRpwoULF4zWkZKSwvDhw4mKimL58uWcOHGChx9+GGtra6OiaNmyZTz33HPs3r2bnTt3EhUVRc+ePRk8eHDVD5KJkYLJRNla2DK2xVi+jPuS9Xt+lYJJCHFLypvOlLu26czQwKEqJhNCiFvzwAMPMHPmTBITEwHYvn07K1euNCqY7r77bqPnfPnll7i7u3Ps2DHCwsJYsWIFGo2GL774Amtra0JDQ0lJSeHhhx+usL7XX3+dvn37AvDSSy8xYsQICgsLsba2Jjo6mpdeeolJkyYBEBQUxPz585kxYwZz5szB3d0dAGdnZ7y8vCrdpvLHFEXh7rvvxsnJic8++wwACwsLoqOjDfM2a9aMnTt3snr1asaNG4e9vT02NjYUFRXdcB0ff/wxfn5+fPTRR2g0Glq1asWFCxd48cUXmT17NmZmZQ3TwsPDmTNnDgDNmzfno48+IiYmRgomUT+NbzGe0N9caFMQzPHWh2jdpp3akYQQJiS9IJ15O+ehQYPC/5q+aNAwb+c8unh2wdWmdtvQCyHqPxtzG3bfv/um8ymKwkvbXmJbyjbD9UvXMtOY0bdpX97s/WaV1mtlZkUO1e/cyt3dnREjRrB06VIURWHEiBG4ubkZzXP69Glmz57N7t27uXLlCnp92eUNSUlJhIWFcfLkScLDw7G2tjY8p2vXrtddX3h4uOHf3t7eAKSlpeHv78+hQ4fYvn07r7/+umEenU5HYWEh+fn52NraVmvbXn75ZXbu3Mm+ffuwsbExTP/Pf/7Dl19+SVJSEgUFBRQXF1e7l73jx4/TvXt3NJr/Nafs2bMnubm5nD9/3nAN2LXbW77NaWlp1VqXqZGCyYR5O3hzzMUaCuBCzHEpmIQQVXZtU7xriyUoazojTfOEEOU0Gg22FlX7Yj+3x1xG/jSS3JLcCj/E2FvYM6f7nCovq7yIuRVTpkxh2rRpQFkx8U8jR44kICCAL774Ah8fH/R6PWFhYRQXF1d7XRYWFoZ/lxcb5dlzc3OJjo7mrrvuqvC8a4uxqvj6669ZtGgRW7ZswdfX1zB95cqVTJ8+nYULF9K9e3ccHBx4++232b375kXurbh2e6Fsm2/nWJkC6fTBxPkOCgUg+IIXqanJKqcRQpiKM5lnjHqxstZbGR4zU8wYe3kwcWcOcibjjFoRhRAmyNXGldndZ1/3h5hZ3WfV2VnroUOHUlxcTElJCZGRkUaPpaenc/LkSV599VUGDhxI69atycjIMJqnZcuWxMXFUVRUZJi2d+/eaufo2LEjJ0+eJCQkpMKtvImbhYUFOl3FM3LX2rlzJ1OnTuWzzz4jIiLC6LHt27fTo0cPnnjiCTp06EBISEiFDiwsLS1vuo7WrVuzc+dOo842tm/fjoODA02bNq3OZjc4UjCZuFah4cQ7p2KOlqPrbu3iSCFE4xPiHMJA/4FoNVqs9VasOPVv3kp8BjudDV1zw5h0eRRfno0mZfF+dm/5k5KSErUjCyFMRGRgpOHzBUCr0TLIf1CdXhep1Wo5fvw4x44dq9CRgouLC66urnz++eecOXOGP//8k+eee85onvvvvx+9Xs8jjzzC8ePHWb9+Pe+88w6AUZO1m5k9ezbLly8nOjqao0ePcvz4cVauXMmrr75qmCcwMJCYmBguXrxYoXADuHjxImPGjGH8+PFERkZy8eJFLl68yOXLl4Gy64j27dvH+vXrOXXqFLNmzapQ3AUGBnL48GFOnjzJlStXrvuZ/sQTT5CcnMy//vUvTpw4wS+//MKcOXN47rnnDMVdY9W4t76BsOrhAYDfaWfycmUgWyHEzWk0GmZFzMLW3JbOuaHYKNa4lTiTZ1ZAjjaPA3bHMcOM4HQffNdZcGLeBjYt/44LKUlqRxdC1HPXfr4A2FnY8WrEqzd5Vs1zdHTE0dGxwnQzMzNWrlzJ/v37CQsL49lnn+Xtt9+u8Nxff/2V2NhY2rdvzyuvvMLs2bOB6jWli4yM5LfffmPDhg106dKFiIgIFi1aREBAgGGehQsXsnHjRvz8/Iy6Pi934sQJLl26xLJly/D29jbcunTpAsCjjz7KXXfdxb333ku3bt1IT0/niSeeMFrGww8/TMuWLencuTPu7u6GXvyu5evry9q1a9mzZw/t2rXjscce46GHHjIq7horjXIrndybqOzsbJycnMjKyrruG6gulZSUsHbtWoYPH16hLWh16XQ6Yuf/hmdhE053vUr/u+6soZSiOmrymIr6o6Ef13Xx67j87VH6Z3flhyabWOxZNnbJ233fJlTTnJN/7sfnrANOpfYA6NDzRc+1DG4/nF6+vdCaXb8L3PqsoR/TxkqOa80oLCwkPj6eZs2aVfsam39al7CON3e/ycxuM4kMjLz5E/5Br9eTnZ2No6NjvTjD8c033zB58mSysrKMOlwQVafGMb3Ra7qqtYF0+tAAaLVactub4bkLSk5kodPrTPJLjBCi7vX37kd8blnzkh0OsWg1Wvr79Tc0nfGfHExRUSH7t26jdH8GJYVF/HJ1Lb/8uRYvOy8et5lEj4798PJu3O3bhRAVDQ0catLDEyxfvpygoCB8fX05dOgQL774IuPGjZNiqRGSgqmB6Dy4P7MuPk+M9U7eTfZlYMBAtSMJIUzA0QP78dDbclWbzXGbeBwsHCo0nbGysqbH4MEwGBKunGNS/CR+PvszOdlZhO/3omjbGTa7/41jhC/tI3pUOvCiEEKYkosXLzJ79mwuXryIt7c3Y8eONeoeXDQeUjA1EHZ29gR2bYM+bgfLjy2XgkkIUSVXD5/HAx/iPS/SxKYJM7vNvGEvVoFuQUx3m86/Ov6LrYdiSL10lWZZ3jS/7Au/Qtz6taS3LiF8UA/c3SsfIFEIIeq7GTNmMGPGDLVjiHpACqYGZHyr8Sw5uoTDlw5xJPEQYQEyLpMQonI6nQ6v8w4ANO3cki09tlT5uVZaKwZ3HA4d4dyZE5zbfIimCc64FTvjdgjyDp3gh3bfEN63OxHeEZhp1L/+QAghhLgVUjA1IB62HjxmO4mIg8FcyjpO2NNSMAkhKheXdpiv3H+he347RnV66JaXExTSiqCQVhQU5LNv81+YxebSNNudlXk/8Z+NS/Fz8GOi530MajkENzfPGtwCIYQQovZJwdTADGgzCJu9GTinOnAhJQkfX3+1Iwkh6qk/UzazwXkH5h2cucfK6uZPuAkbG1t6Dx8Gw+F0wnEGXxzGb+d+IzknGZuj+eT8doxDXptx7R5IeOeu9aLXKyGEEOJm5K9VA9O8VRjnXC6gRcuxdbvUjiOEqKcURSEmKQaAAf4Danz5zQNb80rEK8SMjWF+13m4mblioZjTMtUXtx9LODjvVzZ/9zMZ6VdqfN1CCGFqsoqyOHn1JFlFWWpHEdchZ5gaIJue3vAb+J91Jic7CwdHJ7UjCSHqmbPnTtAxMRidYxG9fXvX2npsLWwZ3XoMvAInj8WRvPUoAUmueBY2wXM/ZB6II6b5WZqN6EBHj45oNJpayyKEEPVRqb6UC7kX0Ct6LuRewM7CDnMz+Ypen8gZpgaoY/eeXLROx1Zvw74NW9SOI4SohxJ3HePRS2N5KWMqtha2dbLOlqFtGfTYeLxf7sbZHlkk26VhoZizI2c3UeuiGPPLGL499A2Zmel1kkcIIdSmKIqhWALQK3pSc1NVTiX+SQqmBkir1ZLXseyXCefDZpSUlKicSAhR39idKzuTo21d+cjmtcXe3pG+o+6g+6y7yX3AEecOTbExt+Fs1lmO/rmb9LdiifloJUdi96PX6+s8nxCi4dmyZQsajYbMzEy1oxjJLs4mpzinwrTypnkajYaff/65xtYXGBjIe++9V2PLayykYGqgug4eQI42D/diZ3bv+UvtOEKIeuR8cgJN89zRoSc0orOqWVqFtWN2nznEjI3hlW6v0K20HVaKJS3P++K8Mp+9r/3Mlp/WkJ2dqWpOIUT1FcQdIXFSFAVxR2p1PRqN5oa3uXPn1ur6b1V5UzyAz9/6jLv73W147ELuBUr1paSmpjJs2LA6yzR37tzr7sNWrVrVWYb6SBpINlA2NrYci0hj+YVvcchypReD1I4khKgnTu8+RHOakOR0id6ufdWOA4CDpQPjW41H30LP8biDpG47TbMUd3zz3WE3pO3Zxy7/y3jf3YYw97ZyrZMQJiDrl1/I372brDVrsGkbVmvrSU39XxO2VatWMXv2bE6ePGmYZm9vz759+2pt/TdSXFyMpaVlhenXNsVz1jngqLPDUrEwPF7eNM/Py68u4wLQpk0bNm3aZDTN3Lx2S4bK9lN9IWeYGrC+g4aTbHuJQ5cPEZsWq3YcIUQ9YX66CIDSFrfflXhNMzMzo027TgyaNh7XF9tzputVUm2uYK1YcfVqGvf/MYFxv41j9cnV5Obn3HyBQojbpigK+vz8Kt2Kzpwlf99+8vfvJ/v33wHI/v038vfvJ3/fforOnK3yshRFqVI+Ly8vw83JyQmNRmM0zd7e3jDv/v376dy5M7a2tvTo0cOosAL45Zdf6NixI9bW1gQFBREdHU1paanh8aSkJO68807s7e1xdHRk3LhxXLp0yfD43Llzad++PYsXL6ZZs2ZYW1sDkJmZydSpU3F3d8fR0ZH+A/qz98BeLBUL1n7zO68tepO4Y0cIcw8jzD2Mn7/9mezi7ApN8s6fP899991HkyZNsLOzo3PnzuzevRuAs2fPcuedd+Lp6Ym9vT1dunSpUPhUhbm5udH+8/Lyws3NzfB4YGAgb7zxBlOmTMHBwQF/f38+//xzo2UkJyczbtw4nJ2dadKkCXfeeScJCQmGxydPnszo0aN5/fXX8fHxoWXLlgDs2LGD9u3bY21tTefOnfn555/RaDTExsaiKAohISG88847RuuKjY1Fo9Fw5syZam9rlfdJrS1ZqM7Nxo07gu7gpzM/sfLwt7Qf1F7tSEIIlaWnp+GfVTZ4bItu7dUNcxPOzq70u+tO9KP1HI3dz/nUPCyvWnLi6gn+u/VT2se7kOSXTtO+obQKDVc7rhANllJQwMmOnW75+bqrGSROeKDaz2u+b+8tr7Myr7zyCgsXLsTd3Z3HHnuMKVOmsH37dgC2bdvGxIkT+eCDD+jduzdnz57lkUceAWDOnDno9XpDsfTXX39RWlrKk08+yb333suWLVsM6zhz5gw//PADP/74I1qtFoCxY8diY2PDH3/8gZOTE59++ikP3/0wsX/tZdzIuzly6hibNsfw28qfSba8iJ2jHY6WxteY5ubm0rdvX3x9fVmzZg1eXl4cOHDAcK1nbm4uw4cP5/XXX8fKyorly5czcuRITp48ib9/zY7LuXDhQubPn8/LL7/M999/z+OPP07fvn1p2bIlJSUlREZG0r17d7Zt24a5uTmvvfYaQ4cOJTY21rCMmJgYHB0d2bhxIwDZ2dmMHDmS4cOHs2LFChITE3nmmWcM82s0GqZMmcKSJUuYPn26YfqSJUvo06cPISEhNbqN15KCqYF7sNUDBGy1o++JTpxvGU9Tv2ZqRxJCqCj28B6CNLak2l4homntdSdek8zMzGjbsQtt6cLUwidYc3YN2ZuTsNVb0yrRF5ZnsdP+e0ra2dBpQB/s7BxuuLwNiRt4M+tNLJIsGB48vI62QghRH7z++uv07VvWFPmll15ixIgRFBYWYm1tTXR0NC+99BKTJk0CICgoiPnz5zNjxgzmzJlDTEwMcXFxxMfH4+dX1lRu+fLltGnThr1799KlSxegrHnZ8uXLcXd3B+Dvv/9mz549pKWlYfX/g4QvXLiQH3/6kV9//43JD0xC56CgNdfi4eGOzhJKzfR423sbZV+xYgWXL19m7969NGnSBMCoSGjXrh3t2rUz3J8/fz4//fQTa9asYdq0aVXeR3FxcUZn5QAeeOABPv30U8P94cOH88QTTwDw4osvsmjRIjZv3kzLli1ZtWoVer2exYsXG5pPL1myBGdnZ7Zs2UJERAQAdnZ2LF682NAU79NPP0Wj0fDFF19gbW1NaGgoKSkpPPzww4b1RkVFMXv2bPbs2UPXrl0pKSlhxYoVFc461TQpmBq45q4tuKANxFqx4vj6PTSdKgWTEI3ZT/p17Gm+i6dDniRC7TC3wNnamYltJqJvrSdu/x6u7Egg6KInfrmesB1Sdu4iKSAdvxHtaNm0dYXnpxek89qe18hVcnlt92t08+mGq42rClsihOnQ2NjQ8sD+Ks9fePz4dc8oBXzzNdatK74vK6NYWUFOzTa9DQ//39lob++ygiQtLQ1/f38OHTrE9u3bef311w3z6HQ6CgsLyc/P5/jx4/j5+RmKJYDQ0FCcnZ05fvy4oWAKCAgwFEsAhw4dIjc3F1dX48+agoICYs8fIdXiCnqNnhJNKYlWqSgoeNp6VhiLKTY2lg4dOhiKpX/Kzc1l7ty5/P7776SmplJaWkpBQQFJSUnV2kctW7ZkzZo1RtMcHY3Pdl27H8ubQKalpRm298yZMzg4GP94VVhYyNmzZw0FU9u2bY2uWzp58iTh4eGGZowAXbt2NVqGj48PI0aM4Msvv6Rr1678+uuvFBUVMXbs2GptY3VJwdQI2PfyhTUKgeeakJ2diaOjs9qRhBAqyCvJY+eFnRRri+nW1jTOLlXGzMyMdl0ioEsE6elpHNq0HadjZngWNcE30Zn7N06glWdrxrYYy5CAIdha2KIoCvN3zaegtACA/NJ8Xtv1Gov6L1J5a4So3zQaDRrbqo/Xpin/wqvRgKIY/q+xtsasGsupjWEFLCz+17FC+dmPa5u0RUdHc9ddd1V43rVf4m/Gzs7O6H5ubi7e3t6GZnsluhKScpLQ6/X4e/pjYV1WNCj//x9ATnEOrtbGBZaNjc0N1zt9+nQ2btzIO++8Q0hICDY2Ntxzzz0UFxdXOTuApaXlTZu3XbsfoWxfXrsfO3XqxDfffFPhedcWjf/cT1U1depUHnzwQRYtWsSSJUu49957sa3G6+pWSMHUCHSI6MH+jb/gXeDG/vVb6D92tNqRhBAq+Dvpb4r1xQQ4BhDsHKx2nBrj6urBgHvHoNPpOLRvFwfOnECvUzh8+TCH0w7juCIXvZcFGaGlxCTFGJ6nU3RsStrEuoR1DA0cquIWCNGwmLu6onVzw8LLC+d77iHz++8puXgRc9f6fTa3Y8eOnDx5stJioXXr1iQnJ5OcnGw4y3Ts2DEyMzMJDQ294XIvXryIubk5AQEBZKWlY+1iid4Smjk1Q6/osbS0RK/XY6Yp64/NotCMXE220XLCw8NZvHgxV69eve5Zpu3btxMVFcWYMWOAssLl2o4W6krHjh1ZtWoVHh4eFc5M6fV6srOzr/u8li1b8vXXX1NUVGRourh3b8Xr2IYPH46dnR2ffPIJ69atY+vWrTW/Ef8gveQ1AmZmZhR0KnvhNYkzl4FshWikzH+7yofnXmK81Z0NslturVZLx249mTrhGTaO3cjTHZ+mHxG0yA+g1Tkfuv/mzzsJz9E/qysW+rLfCzVomLdzHukF6SqnF6LhsPDyIuTPGAK/W43L+HsJ/G41IX/GYOHlpXa0G5o9ezbLly8nOjqao0ePcvz4cVauXMmrr74KwKBBg2jbti0TJkzgwIED7Nmzh4kTJ9K3b186d658TLtBgwbRvXt3Ro8ezc8//kjauYsk7DjH529+zoH9BzA3MyeseRgpSSlcOXsFqwxznHLt0OYY9xJ433334eXlxejRo9m+fTvnzp3jhx9+YOfOnQA0b96cH3/8kdjYWA4dOsT9999/S2fpSktLuXjxotHt2p4Ab2bChAm4ublx5513sm3bNuLj49myZQtPPfUU58+fr/R55XkfeeQRjh8/zvr16w3XJl37N0ur1RIVFcXMmTNp3rw53bt3r/Y2VpcUTI1E10H9yTLPxbXYiX3X9OQihGgciouK8LvkRkiRP+19Oqodp9a52bgxte1U3nvwUy6OhH1Ox9Cho01BCDMuRPHJuVex19mgoJBfUtY0TwhRc8wsLQ1fcjUaDWb1eIydcpGRkfz2229s2LCBLl26EBERwaJFiwgICADKtuOXX37BxcWFPn36MGjQIIKCgli1atUNl6vRaFi7di09evRg2pP/IqxvRyZOm0zK+RQ8Pct6LX1w/IMMGzqMUZGjCG7eghVrVmOuaI2WY2lpyYYNG/Dw8GD48OG0bduWN99809AT37vvvouLiws9evRg5MiRREZG0rFj9T/vjx49ire3t9GtfB9Uha2tLVu3bsXf35+77rqL1q1b89BDD1FYWFjhjNO1HB0d+fXXX4mNjaV9+/a88sorzJ49G6jYJPKhhx6iuLiYyZMnV3v7boVGqWon9w1AdnY2Tk5OZGVl3fCA1YWSkhLWrl3L8OHDK7QDrS2bvv6eVkc8Oed4gd4zxzXIX5jVpMYxFbWvoRzX/du34fkrZFhkEzp3qOEPbGNwOuM0d625iyYlTgzJ6s7oq/1x0jnwvtc3rHPZbpjvp1E/EeJSe93SitrVUN6raissLCQ+Pt5oDCG1lDffcnR0xMzMtH/j1+l0FF7KxkJvTqF5CQ6eLjf8HpaXk4NFVtl1TbhbYmWl7rGoKdU9pt988w2TJ08mKyvL6Bqubdu2MXDgQJKTkw1FZ2Vu9Jquam1g2q8+US0dhvXhG/e1vOz5HrGXY9WOI4SoQxmHUwC45JvTqIolgBDnEAb6DyTLMpeVbuv4qcmfADQvLBuXRKvRMsh/kBRLQohak5eehYXenFKNDls3h5v+aG1rb0+ReQkaNBRnVH0QX1O3fPly/v77b+Lj4/n555958cUXGTdunKFYKioq4vz588ydO5exY8fetFiqKVIwNSKurh4UdLciyzyX5UeXqx1HCFFHSktL8U5xAqBJO7+bzN3waDQaZkXMwtbcFg0a1jvv4OGgaD70/hYNGuws7Hg14lW1YwohGqjc7Gysiy3K+r9zMsfc/OZnQDUaDZYutigoWJVakJ+bW+s564OLFy/ywAMP0Lp1a5599lnGjh3L559/bnj822+/JSAggMzMTBYsWFBnuaRgamQeDH0QgJikGJIzq9cvvxDCNB2Pi8Wp1J48swLCOlZ+YXJD5mrjyuzus1FQyDTP4bxV2QXMCgqzus+SsZiEELWiRFdCQX4eAEXWJdj+Y0DYG7GysqbIurTsTrauVrpZr29mzJhBQkKCoRndokWLjLoMj4qKQqfTsX//fnx9fesslxRMjUywczD32o3mzcSnObl6p9pxhBB14NKBcwCc97qK5f931doYRQZGMtB/IFrN/5okelp7SpfiQohaoSgKKbkppJlf5Yp1FvZNnKu9DDsXJ/K0haRappFeKL15qkUKpkZoeNOhhOe3ICDBlcxMefMJ0ZApisI6zV9scdyLbTv3mz+hAStvmmdjboOtzppXzk9lUdyzFBYWqB1NiHqnsVwzU5vSC9PJK8nDTGOGq7P7LXVcodVq0TSxoEhTwpWCK5ToZGiY6qqJ17IUTI1Q+67dSbG9jI3eigPra3+wLyGEek5nnma9divv+a+gXY/aH6uivnO1ceXVrq9ipjWndWEQLqWOHN6zW+1YQtQb5T0M5ufnq5zEtBUU5GOWqUOrmOFl54WV+a2f3XeydMLWwha9oudybloNpmwcyl/Lt9N7pnlNhRGmw8zMjOLONrAV3I5YUnxXEZYWjbeZjhANWUxSDADdfbpja2F7k7kbhyEBQyg9Wkpa0zxc453JibsIfdROJUT9oNVqcXZ2Ji2t7Iu5ra2tasOQ6PV6iouLKSwsNKluxXU6HUXpeZjrzXHVO2OtWFNYWHhby2yidcEi2wz7XCsydOnY2NrVUNq6VZfHVFEU8vPzSUtLw9nZ+bZ6iJWCqZHqOrA/p3f8SZMSR/b+uYWekZFqRxJC1ILC3ZcJULwZ6DdQ7Sj1TpN2fhCvx+eCMyUlJTJ2jxD/z8vLC8BQNKlFURQKCgqwsbExqbEjC3PyMC/VotcomDtaciU7s0aWW5CTR0bpVXSpeiydTGuflFPjmDo7Oxte07fKZAumN998k5kzZ/L000/z3nvvqR3H5FhZWXMptADnww6Y7clFP1hvUr/eCCFu7nxyPGPP9ecu+uLo2kbtOPVO6/AOJP66FQedHUcP7qd91wi1IwlRL2g0Gry9vfHw8KCkRL1rZkpKSti6dSt9+vQxmR80YnftxGu7BXr0ZA+xJDg4tMaWnZ2VweUvj+CgtyGp7UW6DjG9H8Lq+phaWFjUyNiDJlkw7d27l88++4zw8HC1o5i0DpF9yIg7jF+eB3EH9tKucze1IwkhatDpXYdojitJzpfo3aSv2nHqHQsLC1J8MmmVbMeV2ESQgkkII1qtVtWBrrVaLaWlpVhbW5tEwZR6IRnnjcWY68w50eoSg7qMrdHlW1t7czx0P047rfHcZUFej2xc3TxqdB21zdSOaTmTO6WQm5vLhAkT+OKLL3BxcVE7jklr4urO4dBk3vL5ki8zv1E7jhCihlmcLvtlWNdCrlGsjGPbsmYa7sl2jWKMEyFE7SgtLeXM8p3Y62xJsr9EnwmjamU9PUcMJdkuDTu9DbGr/6yVdYiKTO4M05NPPsmIESMYNGgQr7322g3nLSoqoqioyHA/OzsbKDsdqOYp5vIM1/5fLWHDezL7t4VoUjScST9DgGOAqnlMWX05pqJmmepxTb+Shn922S+PQZ3amlz+2nTtMW3doSPb//qBPbZxKBd8aeMZpnI6catM9b0qKmdKx/TbPV/ROs+FArMiPO9riwazWsttO7wpfFdM8yRvjsQeoGWbtrWyntpQ345pVXNoFBPqaH/lypW8/vrr7N27F2tra/r160f79u0rvYZp7ty5REdHV5i+YsUKo1GDG7uvcr/iZOlJull0Y6TdSLXjCCFqQG5KKn2T2pBgfYH0DtZqx6nXVuat5EjJEfpY9WGIzRC14wghTMz50vN8nvs51jpLopT78XELqvV1ao5foVW2P1/7rKND016YaUyu0Vi9kJ+fz/33309WVhaOjo6VzmcyZ5iSk5N5+umn2bhxI9bWVfvjP3PmTJ577jnD/ezsbPz8/BgyZMgNd0pdKCkpYePGjQwePFj1NpzuqW6s+341w7J6ETItAmfnJqrmMVX16ZiKmmOqx3X7ez8CUNhcy/Dhw1VOU7/885iaJZjx8o6XSbJKkn1lwkz1vSoqZwrHNL8kn/v+uA89eno2681DPZ+sk97f0rqm8tD6h0jRXKRd6x7cEXRHra+zJtS3Y1re+uxmTKZg2r9/P2lpaXTs2NEwTafTsXXrVj766COKiooqXJhoZWWFlVXFtvsWFhb14iBB/cgS0bQ7ZnmXaFrkTtym7Qy47y5V85i6+nBMRc0zpeOak5+NW6YDAEHdwkwmd10rP6b9A/rjvN2RZsnuJKfEExTYQu1o4jaY0ntVVE19Pqa7/vsb4QXNKGlawpwec7C0tKyT9fp6+zO+8wQW7l/IB7EfMKTZEBwsHepk3TWhvhzTqmYwmYJp4MCBxMXFGU2bPHkyrVq14sUXX1S1FxdTZ2ZmRmkXW9gC7sesKC4qwvI6haYQwjRsv7SDl0NeYYCmBwuCPlQ7Tr1nb2nPvCv/ovkVX07tOCIFkxCiSnZs2kibBH9a0ZTMwbY4WTnV6fontJ7AD6d/wOWCNZu/+5lREx6s0/U3JiZTMDk4OBAWZnwxrp2dHa6urhWmi+rr2r8/J7fH4FLiyN4/N9Nz2FC1IwkhblFMUgwlZqX4hoXI+GpVpG3pAFfA5pzJXNYrhFDRhfNJuP5Z9nlxOjSNQWE124V4VVhoLZjd7CW8d+vRJes4d/oEQc1b1XmOxkD+kgoALK2suBxaCID5vnzpXlcIE1VUWsS289sAGOhveoMaqiW0e2f06PHL9eBCSpLacYQQ9VhpaSlnv9qFnd6GJIdL9LmvdroQr4ou7Xty2iMFLVrO/3hYvr/VEpMumLZs2VJpD3mi+joO7UuhpgjfPHcO7dutdhwhxC2I27WH90+8QFTWGMLc5Ox7Vbm5eZLodAmAU7ti1Q0jhKjX/lr9C82yvCkwK8TvwY5YWqh7GUPzsd0o0hQTlOHNni2bVc3SUJl0wSRqlrOLKwmB6QBkbU1UOY0Q4lZkHk7Bt8SDdlah0s1sNZWGlF2srT1dqHISIUR9dfTQfkIOuwKQ1luHn3/tdyF+M039mhEfmgGA9ZZ88vNzVU7U8MhfU2GkeWQn/nLcx0f233Au65zacYQQ1VBaWor3hbKLjpu081M5jelp3r09AP6ZnqSnp6kbRghR7+QW5/LrjrIhG056n6d7ZP0Zt63H3UO5YpmJW7EzO39Yp3acBkcKJmEkIDCE3RHxnLRJ4OtjX6sdRwhRDccPH8Sp1J5cbQFhnTqrHcfkNG0ayHm7NLSYcfjAXrXjCCHqmX/v+Tff2K7hzVbL6RI1tF51qmNra09hP1sAmh1rwvmUBHUDNTD150iLemNi6EQA1pxdQ0ZhhspphBBVdelg2VnhFK+rqrepN1XxPXN4IGQmP5j9oXYUIUQ9svbcWtacXYOZxoxHhv8LRycXtSNV0LVffw56nWGBzxLePrFI7TgNihRMooJOnp3obRvB1PNj2PdzjNpxhBBVoNfrcU2yAcAuzEPlNKarS4depFtksePCDvJK8tSOI4SoB86fT8D8m8v4F3nzaPijdPDooHak6zIzMyM0qg+7nY7w5/k/2ZGyQ+1IDYYUTKICjUbDBKd7uCOzD95HbCkqlAughajvzp46hnuRC0WaYtp27aJ2HJMV7BxMgGMAJfoSQ/fsQojGq6SkhITlewnNC+KFq5N5JPwRtSPdULBzMPe1vg+A93csorioSOVEDYMUTOK6uvTvR7pFFs6lDuz5U7qoFKK+25G2i7XO2zjhcx47Owe145gsjUbDPXYjeS1pGtpfr6odRwihsq2rfiEw24t8swJCJkRgbmaudqSberzd49yR35/ZsVP4+5e1asdpEKRgEtdlaWFFelgJAFb7CmUgNCHquTWZf/Ch97eUDnNWO4rJ6+LVhU55oQRcdKeoSM6wC9FYHTm4j5Aj7gBc7qfQ1K+ZyomqxsHSgeEBw3DS2eMXa8+lSxfUjmTypGASleo0tB8FZkX45LsRu2en2nGEEJVIzknmVMYptBot/fz6qR3H5LVq044Mi2xs9dYc3rtH7ThCCBVkZ2dS+lMqWsw46ZtCzyGRakeqlh6RQ0h0uIiN3pq41X+pHcfkScEkKuXk5EJis7KBbLO3nVc5jRCiMgf27qB1fhBdPDrjZOWkdhyTp9Vqudg0B4Dsw/LLrBCN0d6l63ArduayVQZdJw1TO061abVaXO9sgR49rVKaEndwn9qRTJoUTOKGWkZ2QY+ekHQfzp46rnYcIcR1uO4y493E6dxfOFLtKA2GW3t/ALwuOFFaWqpyGiFEXfr9xK+UZBSgQ4fFGF8cHE3zh6hWYe045Z8KQN5vSfJZdhukYBI35OcfxBHfRL51/YPvUn5UO44Q4h8uX76If3ZZN+KtunVUOU3D0aZjJ3K1+TiV2nM0dr/acYQQdSQ5J5n5B17nxYD32D0wibD2ndSOdFs63DuAXG0+TfPc2f77OrXjmCwpmMRNed/bluUev/Ld+R9JL0hXO44Q4hrHd+7HDDOS7C/h7e2ndpwGw9LCivPeZQN3Xz6YoG4YIUSdKNGVMHPbTPJK8mjv2Z67B05QO9Jtc3X1ILVTIXr0HD0bS2ZhptqRTJIUTOKm2ru3p61bW4r1xaw+uVrtOEKIaygncwEoDJaP85rmEO7JAbvj/KXfhaIoascRQtSyv1b8QrcjITTRuvDv3v9Ga6ZVO1KN6DVyOO+Er+AT11V8FPuR2nFMkvyFFTel0WiYGDqRjrmtcV+nUFhYoHYkIQSQk52F/9Wy5niB3dqonKbhadejO68FLeZn600cvyrXcArRkB3ev4fmR90Zc3Ugb/jOwsfeR+1INcbCwoIHB0wF4LtT33Hi6gmVE5keKZhElQxsOpBnLz1IRGZb9mz8U+04QgggbvceLBRzLlqnExTUUu04DY61uTU9fXoCEJMUo3IaIURtycrKQP/LJbSYcaJpCj37D1Y7Uo3r4tWFoYFD8SpyZf+3m2R8zWqSgklUiYWFBVfb6gCwOVAibzQh6oHsk5cAyAwsVjlJwzUwYCAuJY5k75PuxYVoiPR6PfuWrset2Jk0qwwiooarHanWPBf+LO8lvEjf5Hbs3LhR7Tgm5ZYLpjNnzrB+/XoKCsqaZ0n77oavc2Q/8s0K8S5w5eCu7WrHEaJRK9IVEe38Ec8HvIN3rxZqx2mwenv0ZNnZ15h0djgJ506rHUcIUcO2r1tPy1RfdOiwvtsPe3tHtSPVGm8XH1Lb5AHg+HcpubnZKicyHdUumNLT0xk0aBAtWrRg+PDhpKaW9e/+0EMP8fzzz9d4QFF/ODo6kxR0FYDcbfJrqxBq2p26m1xdHlfccmkdHK52nAbLyd6FJJc0AM7tiVM5jRCiJiUlnMXrbwsAzrS7Smh4B5UT1b6edw0nzSoDlxJHdn0n3YxXVbULpmeffRZzc3OSkpKwtbU1TL/33ntZt052fEPXamg3dOgJzvDh9KmjascRotEqv6ZmgN8AzDTSurpWtbQDwPqsNEUWoqEo0Zfw5d+fo0NHvFMqfceOUjtSnbCytkY3qGwg3uBT7sSfO6VyItNQ7b+yGzZs4K233qJp06ZG05s3b05iYmKNBRP1U9OmgZz1KjurmLhRfm0VQg2lpaUM2dCGaan3MchzgNpxGrzQ7p3Qo8c/x5OLqefVjiOEqAGfxH7CD7q1zGj5PiFR3TE3N1c7Up3p0rsvZ1xTsFDMSfzhoFyXXgXVLpjy8vKMziyVu3r1KlZWVjUSStRvnv2bE2+Vwu/6GK4UXFE7jhCNztHY/QQUetM3pxMdmnZUO06D5+7hTZJjWbO8E7sOqJxGCHG79qbuYXHcYgCm9X2mUQ763WxsZ0o0pYSk+7B3+1a149R71S6YevfuzfLlyw33NRoNer2eBQsW0L9//xoNJ+qnNu068XnX39nkuIuVJ1aqHUeIRictNgGAFO8MLC3kh6q6UBJSdp2D2clClZMIIW5HZmY6BV+co2Nua8aEjGFI4BC1I6kiIDCEU6GXWOr+C69dfIciXZHakeq1ahdMCxYs4PPPP2fYsGEUFxczY8YMwsLC2Lp1K2+99VZtZBT10MSwiQCsOrmKwlL5AiFEXdHr9bgnlZ3ltw/zUDlN4xESUdaxhm+WKxlZ6SqnEULcCr1ez4ElGwnK92Xa5ft4sdOLakdSVe/xo9jsf5CE/ESWHlmqdpx6rdoFU1hYGKdOnaJXr17ceeed5OXlcdddd3Hw4EGCg4NrI6Oohwb4DaCZTSC9UsPZvmmD2nGEaDROnziKW7EzRZpi2nbtqnacRsPPP4j/tvyVB5rPZOvlv9WOI4S4Bdv/WEeLS76UosP+nmbYWdupHUlVtha2PN+prIfrLw9/yYUrco1mZW7pCjcnJydeeeWVms4iTIjWTMuz2qk0v9SEi1np6Abr0Gq1ascSosFL3neCVniR6H6ZYFt7teM0Kh4dmpF76A82JW3izpA71Y4jhKiGxIQzeG23BOBc+6sMCOunbqB6YlizYfy970+GHe3Mia//xueZ8WpHqpeqXTBt3XrjC8P69Olzy2GEaekS2Z8L+3fhVejKgZ3b6dJLjr0Qtc0hoeyHCctQZ3WDNEID/Afw8aGP2XlhJ/kl+dhaVOwASQhR/xQXFXHh61j89J6cc06l79i71Y5Ub2g0GiaHR2F5IB3tRTMO7tlJh67d1Y5V71S7YOrXr1+FaRqNxvBvnU53W4GE6bC3dyQpJJNWp2wo+Psi9FI7kRANW3JmErusD9GttC1hEdLJTl1r4dKCcQXDibgUyuG/dxLRf6DakYQQVbB1xRpa5XqRq82n+aTu0iLmH5q3CmNTs5W0ivel5I+LFHcokg6F/qHa1zBlZGQY3dLS0li3bh1dunRhwwa5lqWxCY2MQIeOoExvTh0/onYcIRq0mPN/stjzR/7baz3Ozq5qx2l0NBoN3S070bogiLy4y2rHEUJUwZ4Lu0m6GA9A1iCLRtmFeFV0HjeYHG0ePgVubF+zTu049U61zzA5OTlVmDZ48GAsLS157rnn2L9/f40EE6bBx9efGO8dtEz1JTnmCC1ah6kdSYgGKyYpBihrGibU4dUxGE7l43fRleKiIixl/EEh6q3Mwkxmbn+ZNJ80CsLNebL/c2pHqrecXVw51K0Uhx3gs9+GK30v4ebmqXaseqPaZ5gq4+npycmTJ2tqccKE+A5sDUBQiieXLl1QOY0QDdPl9Ito44sxV7QM8JOCSS2t27Yn0zwHW701cfv3qh1HCFEJvV5P9I5o0vLTCHQMZPKQx9SOVO/1HD6UZLs07PQ2xK7arHaceqXaZ5gOHz5sdF9RFFJTU3nzzTdp3759TeUSJqRVWDu2Oq3mou4SOSdO8pCnfCgJUdOO/b2P15KncdrpPJ528qufWrRaLReb5uCc4EDGofPQQ+1EQojr+fv3P+gd24KDTfexoM8C6aSlCszNzXEYGQgr8ylOzyPu4mHaeoWrHateqHbB1L59ezQaDYqiGE2PiIjgyy+/rLFgwrSUjHdl/tb5OF5w5L6SifLBJERNO5kHOKFvJk3A1NakXVNI0OOV4khpaSnm5rc0QocQopbEnzuF7w5rgpQwZjk8R2vX1mpHMhlh7TvxQfLbfJG+nLB9YXwz4hvMNDXWIM1kVXsPxMfHc+7cOeLj44mPjycxMZH8/Hx27NhBq1ataiOjMAH9Avrh5+BHdnE2a86uUTuOEA1KdnYm/hkeAAR1lesE1RbWsTN5ZgU4lzpwPC5W7ThCiGsUFxVx6Zs4rBRLzrpcoN+YUWpHMjn3D5qMnaUdR9KP8MuZX9SOUy9Uu2AKCAgwuvn5+WFtbV0b2YQJ0ZppeaD1A3gWu5Kx8Zx0Ly9EDYrbtRsLxZxUm3SaBbVQO06jZ2llRULTy2x3iGXP5T1qxxFCXGPrN7/QNM+DHG0eraJ6Sxfit8DNxo3H2z2Orc6aC78dJSsrQ+1IqqtSO4IPPvigygt86qmnbjmMMG13Bo6i/dcuOOrs2f/3Nrr27ad2JCEahKKjGYAtWYElakcR/087wpPXtryJb44vU5THjcYjFEKo48Cu7bQ65Q1AzhBrWnv6qJzIdN3f6n78fjanRY4/e1dvYNDD96odSVVVKpgWLVpUpYVpNBopmBoxOxt7LoTk4HjSnqIdadBX7URCmL6Cgnz8LrsB0LSTnF2qL3r49MBKa0VKbgqnMk7RsklLtSMJ0ahdTb+Mxe+ZgCMnAlMY1He82pFMmoXWAucBgfCLnuZnPTlz6hghLULVjqWaKhVM8fHxtZ1DNBBthnan6ORZmmV5c/zoIVq3aad2JCFMWtyBPfjorUi3zKJtaE+144j/Z2thS0+fnpw4G8eB/TtoOVgKJiHUoigKH25/n+F0JNUmnR4T71A7UoPQsXtPNu9cSfM0XxJ/PELQjFaYmTXODiAa51aLWuPt7ccZ31QALsQcVzmNEKbvVyWGx5u9Tmyn8432D1V9dbd+KP89G03QzooDugsh6s53p77j+4xfeCb4bZweaI6trb3akRqM5mMjKNIUE5Tpze7Nf6odRzW31Bfq+fPnWbNmDUlJSRQXFxs99u6779ZIMGG6mg5sA8uzCL7gRWpqMoeKjvLm7jeZ2W0mkYGRascTwmSU6kvZcn4LmdaZtO7aUe044h/CO3Ula1McvvnuJCWcxT8wWO1IQjQ65zLO8vbetwF4tMvjtAhuo3KihqWpXyAxoftoedQT278KyYvIwc7OQe1Yda7aBVNMTAyjRo0iKCiIEydOEBYWRkJCAoqi0LGj/EEX0Co0nG3Oq2mW6U3s2m3Mt/mInJIcondG09mzM642rmpHFMIkHEw7SGZRJk5WTnT0lM/X+sbZxZVDLpcIzvDhzO7DUjAJUceKigq58J/9DLbrRnqbEh4IfUDtSA1Sj3uGc/J0DG7Fzuz4cR2DHxyrdqQ6V+32HTNnzmT69OnExcVhbW3NDz/8QHJyMn379mXs2Ma3A8X1WfXwIM+sgEOZh8gvzQcgvySf13a9pnIyIUzHlXWnmZESxVi7UZibyeCo9ZHSsmyQbquzpSonEaLx2fbVGgJzvXkg/Q5e6xQtA6zWEhsbWwr727HJaRdvlvyH5JxktSPVuWq/so4fP87EiRMBMDc3p6CgAHt7e+bNm8dbb71V4wGFaerUszfPtF3IN25r0SllYzLpFB2bkjaxLmGdyumEqP/0ej3e5xzon92VCMcuascRlWjVrQMAAdlepF26oHIaIRqPAzu30+pMWRfieZE2uLt6qZyoYevWrz/bO50iTZvOgr0L1I5T56pdMNnZ2RmuW/L29ubs2bOGx65cuVJzyYRJyyzO5LIuvcJ0DRrm7ZxHekHFx4QQ/3Pq+BHcip0p1BQR3rWb2nFEJby8m5LkcAmA4zv3q5xGiMYh/Uoalr9nAXCiWQpdess4JrVNo9Ews+tMzDXmbEnewo6z29SOVKeqXTBFRETw999/AzB8+HCef/55Xn/9daZMmUJERESNBxSmR1EU5u+aT6m+FBQIz2tBaH5Q2WMo0jRPiCo4v/8kAEnuV7CxsVU5jbiRwhAtAPrTuSonEaLh0+v1xC39E+dSBy7YXKHnxFFqR2o0gpyDmNJsErOSH8Xqq6sUFxWpHanOVLlgunr1KlDWC163bmW/dkZHRzNw4EBWrVpFYGAg//3vf2snpTApZzLPEJMUg07RMTqjP28lPcM96YMNj5c3zTuTcUbFlELUb47xZdcsWYY6qxtE3FRwz3DmNf2Mme6LyCrKUjuOEA3atl9+J+SKL8WaElzuayE/KNWxqHaTCS0MwrOwCX//vFbtOHWmygWTj48P48eP5+zZs4SHhwNlzfM+/fRTDh8+zA8//EBAQECtBRWmI8Q5hIH+A9FqtMTZngagXX5LzJWyX2G1Gi2D/AcR4hKiZkwh6q3EhDP4FLhRio6wCLl+qb4LaBrMZb888jQFbD2/Ve04QjRYZzLOsDXxL3ToSOqSQ/MW0oV4XXNwdCKzhwYAv0P2XGok125WuWD64osvuHz5MkOHDiUwMJC5c+eSkJBQi9GEqdJoNMyKmIWtuS3xVhfI0GZjq7emdX4QGjTYWdjxasSrascUot46uzsOgESXSzg7Szf8pmCg/0AAYpJiVE4iRMNUpCtixrYZrHZZz+KIdfQZPVLtSI1W98ghJDpcxEZvTdzqv9SOUyeqXDA9+OCDxMTEcObMGSZNmsSyZcsICQlh8ODBrFq1qsIAtqJxc7VxZXb32eg1eg7YHQegU14oCgqzus+SsZiEuIGDeYc5a5UMLaWpiakY6DOAB9Pu4M6tXcjPl2uZhKgJGxI38GbWm2xM2sj7+97jdMZpmlg34ZnIFzAzky7E1aLVanEd3QI9elqlNCXuwF61I9W6ar/amjVrRnR0NPHx8axbtw4PDw+mTJmCt7c3Tz31VG1kFCYqMjCSgf4DOWBfVjB1zg1lkP8ghgYOVTmZEPVXWn4aS7XfMy3o37Qa3FXtOKKKWrq3YnBOD5oX+BO3e4/acYQweekF6by25zVylVx+2biS7msDCCj05rWer8mPrvVAqzbtOBWQCkDe78mUljbssehuqzwfNGgQ33zzDcuXLwfgP//5T42EEg1DedO8E86JAAQX+fFEyKMqpxKiftuctBmAcPdwPO08VU4jqsrMzIx0/7JBunOPpKmcRgjTVt7bbkFpAc6lDkxLvpdmRb48rZ1C76a91Y4n/l+HcQPI1eZjXqzht4M/qx2nVt1ywZSYmMjcuXNp1qwZ9957Lx07duSbb76pyWyiAXC1ceXZPtM5bZ0EwKWjCeoGEqKeO3MoDmu9leGaGGE6PDo0A8D3ogvFJY2nu10hatr6hPVlve3qdTx34UFcdI7EW6VQ3Mde7WjiGq6uHpyOzOHRoPm8c/Y9Mgsz1Y5Ua6pVMBUVFbFixQoGDRpEcHAwS5YsYeLEiZw5c4aNGzcyfvz42sopTNjQwKFc7FbEM4EL+M1ms9pxhKi3srKuMuHgIFaeeouBTfqpHUdUU2i7jmSZ52Kvs+XI/n1qxxHCJKUXpDNv5zw0aBiV0Y8ueWEUaYpZ4LOE1/e/IQPf1zPDeo0mwDWQrKIsPjz4odpxak2VC6YnnngCb29vpkyZgqurK2vXriUhIYHo6GgCAwNrMaJoCJp3COekTQI7UneiV/RqxxGiXjqyay/maLlqnU2AT5DacUQ1mZubk+pbNg7T1UPJKqcRwvSUN8XLL83HTmfN5LTRACz2+JEE6wsy8H09ZG5mzsyuMzFTNOTtTuXksTi1I9WKKhdMf//9N3PmzCElJYVVq1YxZMgQNBpNbWYTDUg7j3bYWdiRUZTB8fTjascRol4qPpYBQFZgw754tiFzDvcFwPO8AzqdTuU0QpiWawe+75HTAWvFknirFH5zKRvfTAa+r5+6eHUhuvgZpl28j8s/n0Cvb3g/jFe5YDp8+DBPP/00rq7SM4moPgszC8ZYD+ep1PtJ/uuo2nGEqHcKCvLxS3MDwLdzC5XTiFvVtnMXLlmms8/2KEcuHFY7jhAm5dqB79vnlX0ObnHcB///+7wMfF9/dRs5mEJNEYHZXuzYsEHtODVOOrEXdSZC25Fhmb2wPylnJoX4p7g9e7BWrLhimUnL1m3VjiNukZWVNasG7uBdn6+IuSTXbApRHeW969qY27DAZynPBrzNRqedZY/JwPf1mre3H0nh2QA4bdeRm5utcqKaJQWTqDPBncIA8Mt2Jzs7U90wQtQz2XEXAbjily8DMpq4gQFlPRzGJMWgKIrKaYQwLa42rmW9hGrghG08GRZlX7xl4Pv6r+ddw7lkdRWXEkd2rV6ndpwaJX+VRZ1p2jSQS9ZX0aLl+P4DascRot4oKS3BN9UZAPf2AeqGEbett29vLDWWWKYpnEk6oXYcIUxOQkY8UHZWCf7XFE8Gvq/frKys0Q92ASD4tDvx506pnKjmSMEk6lSGbyEAOSdkYEchyh28fJB/Bb7JUt9fCW3fSe044jbZWtgyP/NpPkyYSeLfcs2mENWRnHSOmbse4MnU8dia2wJga24rTfFMRJdefTjjloKFYk7CDwcazFl281t5UmZmJnv27CEtLa1CTxgTJ06skWCiYXJq7Q1nwT3VHr1eL02PhKCs6dYly3SKQq2wsLBQO46oAQ7BbnABHM7JZ5wQ1XH671ha6NwJ1TRnVrdZvLbjNV7t9qo0xTMhQfd04fDyv/jc4XuUZA8G+A9QO9Jtq3bB9OuvvzJhwgRyc3NxdHQ06lpco9FIwSRuKLRDBy79vhfXYicSEk4TFNRS7UhCqEpRFP5M/hOgrN2+aBDaRHQhZ9sxfPPcOZ8cT1O/ZmpHEsIk2J8u+16pCbNnSMBgSo+WMth/sMqpRHX4Bwbz0x2/cTYumQV7F9DDpwfW5tZqx7ot1f7p6/nnn2fKlCnk5uaSmZlJRkaG4Xb16tXayCgaEDs7B5KdL5NkeZGjCdLlrhAnjh3msRNjGJzbg+4+3dWOI2pIE1d3Ep0vAXBq1yGV0whhGk6fOopPgRslmlLCe8nnoSl7uO3DeNh6kJKbwtexy9WOc9uqXTClpKTw1FNPYWtrWxt5RCOQNLSIR4Pn8bs+Ru0oQqguZd8puuW25Y7i/lhprdSOI2qQrkXZ8bQ8XaJyEiFMQ+KOYwAkuF/CyclF5TTidtha2PJCh+lMSRtN7x8DSTmfqHak21LtgikyMpJ9+/bVRhbRSET4l/1qtP/ifop0RSqnEUJdTgll1yxZtZEvBw1Nq4iOAPhne3D58kWV0whRv+n1elzPlTXbsgqX65UagiFBkXQubYud3oaT3+1UO85tqfY1TCNGjOCFF17g2LFjtG3btsIFyqNGjaqxcKJhCnEOwcPWg4zcqxxI3Ef3oJ5qRxJCFfHnTuFd4EqJppS2Ed3UjiNqmLePHzvsd+Of68mxXfvoO/IOtSMJUW8djzuIe7EzBWaFtO8hzfEaAjMzMzzHtEG39AotLvlycPcOLrhm8GbWm1gkWTA8eLjaEaus2gXTww8/DMC8efMqPKbRaNDpdLefSjRoGo2GRwrH0+lUMxL05yFI7URCqCN+zxFa4E6SSxrNHJ3VjiNqwaWuxXx85j0crDzoixRMQlQm5upfFLum08KpOc1t7dWOI2pIi1Zt2BS0ilbnfChed5F/hywkV8nltd2v0c2nm8n0fljtJnl6vb7SmxRLoqr8fAKxVqxwPG+pdhQhVGN99v+HZWhpp24QUWvadYvgkN0pdl3aRU5xjtpxhKiXSvWl/Ji2hmUea3AeLr+iNjSdxw0iW5uHb4E7/dPKxhrML83ntV2vqZys6kxmgIh///vfdOnSBQcHBzw8PBg9ejQnT55UO5a4RaGdOqJDj0+BG6kXktWOI0Sdu5h6Hv8cT/ToaR0hg9U2VEFOQQQ5BVGqL2Xr+a1qxxGiXtp7cS/phek4WzlLb6ENkLOzK4fCkgCYcHkETqX26BQdm5I2sS5hncrpquaWCqa//vqLkSNHEhISQkhICKNGjWLbtm01na3COp988kl27drFxo0bKSkpYciQIeTl5dXqekXtcHZ25bxDGgCnD8SpnEaIurc3fhdxNqdJdLyEh6e32nFELRrVZBiPXrwH/brLakcRol6K33KYrjlhDPWLxMJMBu9uaNIL0vlIv4xT1oloFTOaF/oDoEHDvJ3zSC9IVznhzVX7Gqavv/6ayZMnc9ddd/HUU08BsH37dgYOHMjSpUu5//77azwkwLp1xhXo0qVL8fDwYP/+/fTp06dW1ilqV2GABo5A6elstaMIUefW5K5nV+Aunu/wHL3VDiNqVc8m3bHPyKYws4iCgnxsbGRYDiHKFRUV0ulIM/roQ0mPkGb6DY2iKMzfNZ88XR4LfZaRZ1ZAukVW2WMo5JeUNc1b1H+RyklvrNoF0+uvv86CBQt49tlnDdOeeuop3n33XebPn19rBdM/ZWWV7ewmTZpUOk9RURFFRf/rtjo7u+yLeUlJCSUl6o6LUb5+tXOoyT3UH44U4XPFhfz8/Ao9LpoaOaYNU20c1+zibPZdLBueoXfTPvKaqWN1/V5t1rwVJyw24lrixKFdu+jUS0rk2iCfwabpwPa/8dPbkG6RRcuwQUbHT46p6TuTeYaYpLJxN5OsKg6vUN4078TlEwQ7B9d1vCq/tjSKoijVWbCVlRVHjx4lJCTEaPqZM2cICwujsLCwOou7JXq9nlGjRpGZmcnff/9d6Xxz584lOjq6wvQVK1bIwLv1gF6vp9VeWxz0tvzV6hT2Lm5qRxKiTpzJOcGPRT9hY2nPvxz/pXYcUQdKT1+i25XW7Hc5Ba3ks06IctpjV2mfFcJO92NYhnipHUfUMEVR+DbvW46XHkehYsmhQUNr89bcb183J1z+KT8/n/vvv5+srCwcHR0rna/aZ5j8/PyIiYmpUDBt2rQJPz+/6ie9BU8++SRHjhy5YbEEMHPmTJ577jnD/ezsbPz8/BgyZMgNd0pdKCkpYePGjQwePNjkz6zcjh/Tv+Rk1im8g0MYF2E6/fFfjxzThqk2juu2D/O5J+0tDnU6z7Dhpv26N0VqvFfjDuyFn3S0yG5KwODe8hlRC+Qz2PTk5mZzddchAEIHd6VF6zCjx+WYNgzdC7sz+tfR5JXkGRVNGjTYW9jzwcgPaGJdeYux2lTe+uxmql0wPf/88zz11FPExsbSo0cPoOwapqVLl/L+++9Xd3HVNm3aNH777Te2bt1K06ZNbzivlZUVVlZWFaZbWFjUmzdefcqiBsu+Hny34yPCsy/ysMXjasepEY39mDZUNXVc8/NzCbjsgRYzWrYJl9eKiuryvdq2UxdOr4nBUWfHySOH6NBVegKrLfIZbDqO7t5LoGLHJeurdAjriZnZ9fsik2Nq2jwtPJnTfQ4vbH3BaLqCwuwes/F08FQpGVV+XVW7YHr88cfx8vJi4cKFrF69GoDWrVuzatUq7rzzzuoursoUReFf//oXP/30E1u2bKFZs2a1ti5Rd3r4lBXdcVfiyCzMxNnaWd1AQtSyuD178FUsuWKZSXirnmrHEXXEwtyCCz6ZOCbbkR6bBFIwCUFpXCZgR2ZwSaXFkmgYIgMjWZewji3JW9ApOrQaLf39+jM0cKja0aqk2gUTwJgxYxgzZkxNZ7mhJ598khUrVvDLL7/g4ODAxYtlF445OTlhY2NTp1lEzfG086S9XVucL1hxKHYPfSOGqB1JiFqVeyQN8OWyf758QWhknMK9uZyawdHCEwxQ9Jhp5PiLxisjLwNNXtng3UE9w1VOI2qbRqNhVsQsdqfuJrckF1tzW16NeFXtWFVmMp/Wn3zyCVlZWfTr1w9vb2/DbdWqVWpHE7dpUtZoXrwwhZJ9V9WOIkStKi4pwjfVBQCP9oHqhhF1rm1ENx5r9TqLnb7n6JWjascRQlUbz29kWrN/8++OX9EsqIXacUQdcLVx5dWur2KvsefVbq/iauOqdqQqq9IZpiZNmnDq1Cnc3NxwcXFBo9FUOu/Vq7XzpbeanfkJE9KkjS+c1uN5yRG9Xi+/uosG6+iB/bjrbMkyz6VN+8FqxxF1zNrCmt5+vVmfsJ6YpBjaurdVO5IQqlkbvxaALqE9VE4i6tKQgCGUHi1lsL9p/Q2sUsG0aNEiHBwcDP++UcEkRHWFtu9Iyi87cClx4Ozp4zRv2UbtSELUivRDybjjQ6pPFm3Mb6lFtDBxA/0HsjF+I/FHj6PvID8QicYp9eoFjqYeATMY2sw0rmERjVuV/mJPmjTJ8O+oqKjayiIaKWtrG5KbXCYk3Zfk2FNSMIkGSVEU/mP/DcFe3tzTVZ3xJoT6enn1YtmZ13ArdSbh3CmCQlqpHUmIOndi0x6+PfUm2wLi8LKTsZdE/Vftn7a0Wi1paWkVpqenp6PVamsklGiEgss67jBPKFY5iBC142j6Uc6UxLPNPZYOHSLUjiNU4mDjQKZTHgDxe+Q6JtE4WZ/UYa1YEeTdXO0oQlRJtQumyq4lKioqwtLS8rYDicYpsH0oAH6ZHuTl5aicRoiaF5MUA0Av315YaSuODycaD7NWZU3cbc/Ktbmi8Uk4dxq/PA906Gjbq5vacYSokio3ov/ggw+Asm4BFy9ejL29veExnU7H1q1badVKmhaIW+MfGMwhyxO4FztzNO4gXSP6qB1JiBrl+6cld2r706vbQLWjCJWFdu9M3vYT+OV5knI+Ed+mAWpHEqLOnN1+mJZ4EO96iX6u/dSOI0SVVLlgWrRoEVB2hunTTz81an5naWlJYGAgn376ac0nFI2CmZkZu7udY0XqaoZp7qArUjCJhuPcuZNEXAmjk6YVrj4d1I4jVObm5slxp79oluXNqd0HpWASjYZer8f5bNlXT/O2TiqnEaLqqlwwxcfHA9C/f39+/PFHXFxcai2UaJyatw0j48pitl/YrnYUIWpUwu6jtMCdxCZpNHN0VjuOqAdKW1jCXjA/Jddtisbj1IkjeBY2oUhTTPte0p24MB3VvoZp8+bNUiyJWtHNqxvmGnMSsxNJzklWO44QNcb6bNlo9pqWdionEfVFi25lZxr9szy5cuWSymmEqBvnd50AINHzMvb2jiqnEaLqbmkgkPPnz7NmzRqSkpIoLjb+dezdd9+tkWCi8bG3tOd+7qRlkg9nNsfiN8pP7UhC3LbU1GT8cz3Roye0e2e144h6wrdpAB82+4otyi7uT5/M3W53qx1JiFqlV/QstlxFqHsgg7qOUDuOENVS7YIpJiaGUaNGERQUxIkTJwgLCyMhIQFFUejYsWNtZBSNSEeLcFrmuXP6dIraUYSoESd3HiQEF5Ic0+jl3lftOKIesYxw51RsIjHJMdzdUgom0bAdTDvIUd0pEr0v8GK3N9SOI0S1VLtJ3syZM5k+fTpxcXFYW1vzww8/kJycTN++fRk7dmxtZBSNiG+7EACaprtSXFSkchohbp/ZqUIASppbqJxE1DeDAgYBsCt1F7nFuSqnEaJ2rT23Fih73cvQCsLUVLtgOn78OBMnTgTA3NycgoIC7O3tmTdvHm+99VaNBxSNS/OWbcgyz8VGb83xwwfVjiPEbcnIz+CS7jIlmhJCuoWrHUfUM0FOQQymN9PO30vs9h1qxxGi1hSXFNHiLxf6ZXVmmP9QteMIUW3VLpjs7OwM1y15e3tz9uxZw2NXrlypuWSiUdJqtVz0yALg8lHp+EGYtq0XtjKv6ae83PUz/PyD1I4j6hmNRsNwfT+GZPWg6HC62nGEqDWH9+yhZ2Y7HksbRxevrmrHEaLaql0wRURE8PfffwMwfPhwnn/+eV5//XWmTJlCREREjQcUjY9VC2cA7JOr/fIUol6JSYoBoFczGVdMXJ9Pp+YA+F9yo7CwQOU0QtSOrANl1yWn+mdjYSHNk4XpqfY30nfffZdu3boBEB0dzcCBA1m1ahWBgYH897//rfGAovFp1bmsu92meR5cvnxR5TRC3Jr8gjzOJJR1oTvQf6DKaUR91bJNOFctsrHRWxO3d4/acYSocfkFefinugLg1TVE5TRC3Jpq95IXFPS/ZiV2dnZ8+umnNRpICDc3T7Y5bCFdn4FtYjZD3KX7UWF64nbt5vNTszjgfIKWLi3VjiPqKa1Wy6WmOTSJdyTrcCr0VjuREDXr0I6d+OmtuWKZSXh4T7XjCHFLqn2GKSgoiPT0im2tMzMzjYopIW7HgaEXmeX/H/4s2KZ2FCFuSe6RNABs3RzRaDQqpxH1mVuHAAB8LjhTUlKichohalbBobLr268EFWBmJk3thWmq9is3ISEBnU5XYXpRUREpKTJ2jqgZPX3LfoXakbIDvaJXOY0Q1VNcUoTvRRcAPDo0UzmNqO/COnQmR5uPo86OY4cOqB1HiBqTlZVB4GUPAPwj2qicRohbV+UmeWvWrDH8e/369Tg5ORnu63Q6YmJiCAwMrNFwovFq59EOOws7zHL1nEg+Sqh/W7UjCVFlR/bvw0NnS5Z5LqHtuqsdR9RzFhYWpHhfxTYti7MpGbTr3E3tSELUiB2ntmFmfRUXnOjcQprjCdNV5YJp9OjRQFk3qJMmTTJ6zMLCgsDAQBYuXFij4UTjZWFmwczMR+iU1JxTtqcJvV8KJmE60g8l44EvqT5ZtDGv9qWiohEyH+7Fo9uewqvEiweUR6QZp2gQfsr4jZ2BO3m67VN0leZ4woRV+S+5Xl/WLKpZs2bs3bsXNze3WgslBICzrwckgUViqdpRhKgynU6H13kHAJzCfVROI0xFhH93bMxtuJh3kWPpx2jjJs2XhGm7UnCF3Rd3AxAZIoPVCtNW7XI/Pj5eiiVRJ4I7ln1h8MvyIDs7U90wQlTRiaOHcClxJN+skPAuMkCjqBprc2t6+fbCUm/B7iN/qx1HiNv298E/sSuxoa1bW/wc/dSOI8RtqXbB9NRTT/HBBx9UmP7RRx/xzDPP1EQmIQBo6teMS9ZXMUfL8f1yIbQwDTEF23jDdzF7Wp7Gyspa7TjChIyyGMLKU2/R9i9PtaMIcdvct2hYcfpNHtTerXYUIW5btQumH374gZ49K16416NHD77//vsaCSVEuQyfQuD/2Lvv8KjKtI/j3zN90ntPSEIaCST03puIWLFj723XXbeorx27q2vZXQvWVddeUESQJr23QDrpvfdML+8fgyiCQmCSk4Tnc125INPObzKTybnPeZ77gY78epmTCMKJOZ1OVlevYZPPXoKmimUWhO4ZOWw8KlSEGwMpLs6XO44gnLLKylIGtYehQGLUCNH4Ruj/ul0wNTU1HdUh7yc+Pj40Nja6JZQg/MQ3NRyAwGrPI/PoBKGvKm4rprS9FLVCzeTIyXLHEfoZHx8/yv1dB4dKd2TLnEYQTl3+ZteokDK/OkJCxVxOof/rdsGUkJDAypUrj7l8xYoVYuFawe1SR4zAKtkItvhRVloodxxB+F1563dzRcPZnOU7Cy+Nl9xxhP4oxRMAXZE4QCT0X94Frn+daZ7yBhEEN+l2v9t77rmHu+66i4aGBmbOnAnA2rVreeGFF3jppZfcnU84w3l6erM+fj97jAeY3DmHOJLkjiQIv8k/S8k1nedSlNwudxShn0qdMBrj1nxiOkOpqa4gPEJMlhf6l6KCXCIMwVglG+lTxssdRxDcotsF0w033IDZbObJJ5/k8ccfByA2NpbXXnuNa665xu0BBUGa4M+GPbux1+u4nCvljiMIx1VTXUFMZyh2HKROGCV3HKGfCg4OY7PPJmLbw8jbvpfwi0TBJPQvJduySCGM0qA64vwC5Y4jCG5xSquI3X777VRWVlJXV0d7ezvFxcWiWOomqXofEw89jVS9T+4ofd7EyIkA7K7djdluljmNIBxf3nbXmP1y3zqCg8JkTiP0Z9ZENQDKAvF5J/QvTqcTvxLX+1ebLoolYeA4pYLJZrOxZs0avvrqK5xOJwDV1dV0dna6NdxAJh38jODOXKSsz+WO0ucl+iUykqGcVzeNgwd2yx1HEI7rp51ba4JG5iRCf5c4IYN3gpfyTOCbtJha5I4jCCctqzGLP0U/y5KIr8iYKIbjCQNHt4fklZWVMW/ePMrLyzGbzcyZMwdvb2+effZZzGYzr7/+ek/kHBhay8HQBEgocr4CQJH9FYxYBDjBIxD8YmSN2BdJksTVneeT0hBJ3t4qGCF3IkE4WktzI4NaQwBIGp8hcxqhv4uKiuNAYhkVLbWsr1jPhYkXyh1JEE7K9yXf06bqxDRcjaent9xxBMFtun2G6e6772b06NG0tLSg1+uPXH7hhReydu1at4YbcF4aBkumw5JpOLua2N4YTWtrJyyZ5rr8pWFyJ+yzPJJdp/Z9KtUyJxGEY2Vt34USJVUeDURFx8kdRxgAZg2aBcC68nUyJxGEk2N32FlZ6uqifE7cOTKnEQT36nbBtGnTJh588EE0mqOHncTGxlJVVeW2YAPSRW+CwnVSr6zLny0NsbxXNIp1tfEYHDrX9cJxpY4aiR0HEcYgamoq5I4jCEcpqS3EoDDSGS9aQQvuMSt6JtPbRjNpRyKdnaLrotD3Hdizk7/nXc38rqlMjJgodxxBcKtuF0wOhwO73X7M5ZWVlXh7i9Ovvyv9UrjJdRbOS2VmkGcLDhTsa4nkrUMj2frDeiyt9TKH7Jv8/AOp8m4AoHDPQZnTCMLPDFYDr2j+y+WJ9xI1K03uOMIAkeCXyPVNFzK5fQQHd+yUO44gnFDTrjKGGRKZI01BrRSjQYSBpdsF09y5c49ab0mSJDo7O3nkkUeYP3++O7MNaEE6IxfHZHFxzEFCdR1YHUq27S7nrTuvYe/r92E3GeSO2OcYD0/vshaKo61C37Glegtmu5lQnzCSwlLkjiMMEAqFguZBJgAMWQ0ypxGE32c2m4iq8gcgaFSsvGEEoQd0u2B64YUX2LJlC6mpqZhMJq688sojw/GeffbZnsg4sHgGg1cIzvDh7I++juiEOBYNrWbBuWPx09kw2lTs37IT6fUJcPALcIghPj8JHeaaGxLR4I/VapU5jSC4bC/YDE6YFTMLSZLkjiMMIGEjBwMQVReI2WySOY0g/LbM7dvxsnvQou5g6MjRcscRBLfrdpe8qKgoMjMz+eSTTzhw4ACdnZ3ceOONLFq06KgmEMJv8I2EP2Vhd0iUrVhB2tn/QK1wkqzSknCJkaz3n8S7bDmK1lL48kZsm16mKv56YuZeh6Q4pS7wA0ZyWjpFyh9ROhTkFR1gWIpYHFSQl8Vs5tIfJzFXmY5ucqzccYQBZsiw4eR8uRJ/qw8Hd+9i9KQpckcShOPq2F8LRFI3qINhqm7vWgpCn3dK72qVSsVVV13l7ixnDpUWfjpDIkmgcjXQUGr1ZNz8BFjuh+2vwuaXOZDXyI8bviLm26+YcvUthE04T8bg8lKr1Xw1fiufNy3lZtMtDEMUTIK8svbuJsShx6qwkRIr2okL7qVUKqmL6sC/xIfWA1UwSe5EgnCsrs4OBtUGARA5LlnmNILQM07plEV+fj533XUXs2bNYtasWdx1113k5eW5O9uZS+MJU/8Gd2dijpiIUnJQ3gT/e2kJy+65iJbcbXInlE1KSjo2yc6Wqi1yRxEEmjNdHRtrIttRiaOqQg8IyIgGILzKF5vNJnMaQTjW/q1b0Tm11GtbSE5LlztO/1W1F95b4PpX6HO6XTB9+eWXDB06lD179pCRkUFGRgZ79+5l2LBhfPnllz2R8czlGciE+97m+ieeJDXWA3BSUGXh3UefYM1Di+isOPOK1J9alWY1ZdFqapU3jHBGs9vthFa5OoP6p0fKnMYNxB/rPmnoqNF0Kg3UqBo4WLZP7jiCcIytbTvY5ZlNU4IZxRk+deC0ZH4CpZvgwKdyJxGOo9uHRP/+979z//33s3jx4qMuf+SRR/j73//OwoUL3RZOcPFNGMHZz37G6L1r2PzeKxTXOcgsaKNr8Y2cf/k8mPRH0PnKHbNXhHmGcYvhMsbUpJCzeRcTZ8+RO5JwhsrL2o+/1YcuhZFho6fKHef0/fKPdeRIudMIh2nUWj6etYWvKr7m6uarGTF4jNyRBOGINnMbH5m+xhZj45sFS+WO0/+0loOhCZAg+yvXZVlfQsYVgBM8AsEvRs6EwmHdPhRQU1PDNddcc8zlV111FTU1NW4JJRxf8MjZXPjKt1x26yIifB1MDCyGTc/Dy8Mxr38Jm7FT7oi9YogmiShLKIb8JrmjCGewmr1FAFSGNqHV6mROc4pay6F6H1TvP/qPdfV+1+Wt5XKm6zFS9T4mHnoaqbp/nLGZOngaAGvL1uJ0OmVOIwg/W122GpvDRrJ/MvH+g+WO0/+8NIzWf89j9WM3smR/LO8UjeLrvGB+XHw9+565gpInptJZtBfsojOw3Lp9hmn69Ols2rSJhISEoy7fvHkzU6aIDj69IWrmFVwx43LIWw5rH4PGAjZ98j4lb69k4twpDLnibygON5IYiALSIuGQg9BabxwOhxgCIPQ6h8OBf5kWAH1akMxpTsNLwwCwOyX2N4eT1z4cgPgnr2ZCsKtYcqRdzOp9XajUateXRoNKo0Gt0aHS6vALCiQmMRZUelDrqKluRqnzQKXzQu3pg8rDG5XeB5XeG6mPzPOSDn5GcGcu9qzPYdBYueOc0MTIieiUOtraW8irymFIlFggWegbKrbnEmT15+y4s+WO0m84LGZMuavxKFsFak/sZgcHWsOPXN9i8Tjq9uNeuI7JoZXgF02XRxzbKrzwDw3DNzIO/7g0fBNGovL06e2nccbp9l+v8847j3vvvZc9e/Ywfvx4ALZv387nn3/OY489xrfffnvUbYUeIkkwZAEkzcO25wNK/vUJ7RYVK7/bxu4fz2PKhRcQd84tA7IVeerwkVR9sxV/qw9FhbkkJomdB6F3FbcW8e/gj5jUOZLLx98ud5xT5rzgDYo/fIANdYOO+iMdqO068n/bwa/IKvrt9mxJ3g3ERLnmUzqd8FHebx84i/du4cKEiiPF1f8OhuFEgUr105cSlUqJWq0iKMCTURkRh2+r50BeAyhUqLR615dOj0rngUrnic7bj4CoQaDWgUqP1SGh1HujUKl/3vgvhr4ocr4GQJH9FYxYRF8f+qJX6fmL6UbGFSZTpMphyDXiM0+QX21NJQtzprKQqSgXxMkdp0+zm41UrPuYgk2rOFTaSoxHC+ce/twM9PVlfFA5kfo2FJKTVoueFouOVnU0rZ02AvU2cNqhpZSmyhYyy9MhvxXIA1YATrw1dvy8VIxICyVx+DAIiMfuE4PDJxq1T6CMz3zg6HbBdMcddwDw6quv8uqrrx73OgBJkrDb7acZTzghpQrV2Ou57vUL2ffWo+zckUdjl4qvP/yOqOXLmHLVTURMvlDulG6l0+mpCGgkoSmCiv0FomASet3ainXs9srBIyWIm7z655G9psz1/PjW/yhrGAKAh9LChKByvNVmvFQWmH4/eAYhGbuY7HcIm8WC1WrFZrFgs9pcXzY7oX4hEO0HNiN2swkfrQ2bHWwOCZtTwuH8+aCNwmkHUxvQBkBdRxROflrs1wnYDn+ZiamrZFTXz42ENuZPwOw4/p+scF07V8ZlHvn+nUNj6bRpUUoOVJITldKJCisqyUGg1sCCqEbXDQ2NtP17Ll5qC0rJCY+2ueeH2wOiomJRF6rwKekbZ+kEIXfzbhIJpMynlklh0+SO0+f8ukgy2X/63VVRa/bFMeJaFMMuAo03k96aiWuWjIMYzw7AAbf8FyKGu45EddRCczFeh/Yzbvd+WhqbaG0z0toFFoeSDouKjmYYUrgJGr8AoLrLl8/K0/FU2/DzUuLn54V/SDB+kbH4xabgnzwGjV+oPD+cfqjbn7wOh6MncginSe3px9i7XyK9sZKdbzzCvoM1VLYo+PhfbzN380cMu/EJCB446yM443XQBKoSi9xRhDPQ2vK1AMyKmSVzklNgaIb1T7P7m/WUtYailByMDKhiXGAlWqWNn/5okzQPIoajBsadZE8LFXDzry5zWMzYjB3YDG1gN4NWBTYjTouRhfn52EwGbGYjNpPR9a/ZhM1ixscjAWKng80EVhODDXWYza4izWZzYLM7sNmd2OzgpZdA6ws2I9gt2A4XaXanArsTzI6f0oFK4ThSoknAF+XD6LRpiPC1E/nc7UQOH0/4uHPQ+PatoZZDx4+hdf1BIoxBlJUWMig24cR3EoQepMt3HRS3DtHKnKQPsVuhZANkL+WrZVmUd3gdvkKFXmUjMS6ApKlnET39chSawz+3tirwCgGfSBh5Dex9H9qrwDPYdb0kgU84+IQTEDuJyb/odeV0ODDWldJauI/WsnwivUeCrRqai2k/1AxAl1VFVwtUtXRBSRdQCqxnTthfSI+0QkA8Tapo8ht0+EXE4DcoBb+EEehDYgbkKKVT5dZDVQaDAQ8PjxPfUOgxuqAopj7wNiNKD7J1yZMUlrQwuHMbvDoehi/COe0+JL8ouWOettgRQ2BXHdGtIXR1deDp6S13JOEMUVVVzoTcFPAxMz16utxxTprdbMSy7S30258HUyuTg9XYvKKYtOhm/NbdDT7Djv/H+jQpNFo0Gu0xBYgEDBo0/qQf5+wLTvKGDju3dLZiNbRjM7RjM3a6vkxd2OoOodrxryM3NduVmBwqbE4l5a1KyvdUwJ4KpLc/I8TbQUpKFKPnnwsxE8DLPT+PU+XnF0imfx2DWyIo2nFQFEyCrMpKC4nuDMGOnaFTxskdR1auM0n/o2DTGqZ57URrcTWkGqSLosGoIzEugORp84iadtnPRdIv+UbCn7JAqXEVR6OuB7sFVCcuRCWFAo/weDzC44n41WjoNGBwY6WrmCrNpbWqnNb6elpaO2ntdOCnMYKhDQxN1LSWs60mCagAXOtcahV2/DzBz9eDUaMTCE9Jh4B4HL6DkHzCTrmY+rnpTni/mEP6k24XTLNmzeL9998nMvLodUd27NjB1VdfTUFBgdvCCafOO3YYZz31CdPL9qHd9jzkfYdz7wcsXbafwLhkxt76GLqg/ls4DYpNYL3XLgpVZaRVKZmUNADaOgv9QsH2fVzSPIfR9qEE6ALkjnNSSr9/ix8/+wJ/ZSsXRLdCSBqe857mnPjDw2jSZ53SH+s+SaFE7RN4/HH71fvh4FM4kZBwolE6uCNxO03TXqSqqJiqgjwqazvpsKio61ASemgvfPYZAHb/BNbWJRKRnEbkuLn4JY3p/aOvyR6wHbSFYgFbQV6FWzJJJoTSgDqmBU2XO06vs5uNlK/5HwWbV1NY1nZkuF10hIIhEcEw5FxGJJzD6Pgpxy+Sfu2Xn7eS5LbPX11QFGFBUYSNP/eY65ymdmgphZYS/A7uYVhmAa0tnbR02ui0qDA7lNR1QF2HmaHSJ5D/OgC5rSGsrUvAT+/Ez1ePX1AAfuGR+MUk4jc4A+/o1N9t8NPfmu78pNsFk06nIz09nVdffZXLLrsMh8PB4sWLeeqpp46awyT0DdpBI2DQ/6B8BzVfPEJxnoriA3Uc+ONNjBufwvAbH0Xt6Sd3zG5TKBRsnlXE5wWfc2WLxCREwST0DlWBGQBbYt8vKJqzt7DhjWcprnMAKowqP7qmP4XnlFtB+YuP/x76Y93neAaDVwhO70gyVRmk2zJRdFQRNOosgmZGknH4Zu3FmVRtX4mfpRQMGqjPoa6qjoNl4Rws2gHf78BTbSMyRE9kQiKRo6YTPHI2CnXPdidNmTAK6/YiBnWEUVtbRVjYAFgwWeh3HA4HvoeUACiG9s85nKfEbqVt97dsX/rZUUUSqPBQ2UiMDyRw3tMw4SLXgRtZw56YpPOB8HQITycq9XyiLvv5OmtXK+2F+2kpyaK1soSQ0DgwVkBzMa0NElaHkoYuaOiyQnUdHKgD9gKfctGgfOIGBUBAPLWOMGq79PgFBeEXFo5P5OB+13TnJ90umJYvX85//vMfbrjhBr755htKS0spKyvju+++Y+7cuT2RUXCHmHGE/+l7LvjuDTYv/YbGLhUbtxSyd9flTJw1nrQr7z+5oyB9yKSISXxe8Dlbq7fKHUU4QzQ11RPT5pokmzg+4wS3lo+psYrtrz7Avux6HChQ4GBEWgjj73gSXdAZvJN9eOiL3SFRtmIFaWf/A4XCeUyB6BOfgU/8L15fYwv6fT8w5sfVVJXXUNfmmhdQUGWloCoHNuQwNfwBxoyKhZiJWMNHQfgI1N7+bo0fGhrBFp8tDGoPI2/7XsIuOINfS0E2hWV5+Ju9sUhWhk+eKHecHmU3GTBm/4BXxRrI+w5Fh4Gs4nH8skhKmjaPqOmXDajlXNSefgRmTCcwY/ox1403dTGkKJPWkixaK4pora2htbmV1nYLbSYF/qp2aKiHhjyKG2LY1jjoyH0VOPDRDGJsoJKh1MGSXzQL6cNNd+AU5zDdeeedVFZW8uyzz6JSqVi/fj0TJw7sX5qBQFIoGHze7cTNv5Hcj55jy+rNdFhUrFqxm93rz+eiW67Bd8IVriPM/cDY8LFoUKOrlaisLSMqbNCJ7yQIpyFn+27i8KbSs57xUX1w3Tm7jboVL/Plx6sx2lSAgvhQBdNuvZ+AtN9uDX5GUWnBengRSEmCk9nJ0fvjP/Fypk68HABbVxu1u1ZQtW8LVcVlVDVaidA0QFExFK2jsC2YldVJhPpCZEwokUNHEzlxAfqQ0/+Mas1w8l3BJxiVCqZz7DAbQehp3zWv5NPEj7nU9wL+4jNT7jhuZzd1Ub72I/I3raGovI0wXTsLY7IB8PYLYerIIMJGzSFy+iUDqkg6WUqdJwFpEwlIO3a/32ExI3VUQWspNBfjv2svg/OraW3ros3kmi/aavHA4ZSONN9BoYILXuvNp3BKul0wtbS0cNNNN7F27VreeOMNNmzYwNy5c3nuuefEkLx+QqHSkHbNgyQvbGf/u4+xY2s2TrsFrx/ugJx3Yc5jMKjvF8DeGm+eq/sryc3RFO04SNT5omDqNVV7YfXDMGcxRI6UO02vsee2A950xjvljnKs4g2w8n4CanNRS6PQ62HGZRcTe/ZNcicbcFSevkRNv5yo6a4CymGzINXnQuVOKNtKw5YCHCioaYOagw3sPrgCPl5BgIeNqIgAxp01C59hs11DULp5gGrYlPHc1/g4yhYlbeY2fLW+PfEU+6X+Opm8P3E4HawsWYlBaWLYqDFyx3Ebu6mL8jX/I3/zWorKjx5u12jxxjbyBlTDLoJBExmjUMqatS9TaLQQGO/6GjyTIWNgyOHrnBV76Hx9Hq0WvavhxE9uWutqn97HdbtgGjp0KHFxcezbt4+4uDhuvvlmPv30U+644w6WL1/O8uXLeyKn0ANUnj6MvusFhl5RTcfaV1AW5EDlTmxvz2etcTojr/wDwSP6eNvkKC00g6OwU+4kZ5bMT6B0Exz49IwpmDo724lpCgFg0JhUmdP8rDVvB/vff5ap6rUoJFB7+HHxVfPxmXE7Sq1e7nhnBIVKAxEZrq+xNzNloYOMon1U7fiBqtyDVFa10GxU0WxQ0VzYzgTug3UW8ImkUDmCDl0MUaNnEpgx7YRHrGN8Ykj0T+RQyyE2VG7gvMFigfif9NfJ5P1JZu1+arpq8FR7MjWqn88dtlmgeD1kf82332dT3P7TfKzDw+0GB5E87Wwip52ZZ5LcTVIq8VZb8FJbkXAeab7TX3S7YLrtttt44IEHUPyiO9Bll13GpEmTuP76690aTugdusAIdJc+A+13w4ZnObB6FVl1NrKe+SdpsW8w8Zb78Rk8Qu6YxxWRkQAH2olsCsRiNaNR9695WP1KazkYmgAJsr9yXZb1JWRcQX+ZtHk69ufvIkhhp0XVwYgE+Ye3mVtq2fGf/2NvVi12pwL/8Agy5p4L0+/D36N/dO8bqCSFAt/EUfgmjuKn0tpQW0r19u9ozN+PV0A61OyH9ioOlPtR0tUG6w6iVfyTiCA1kfGxRI6YRNiYs1F5Hjupfl7oXBKKQzGsq4LBvfrU+gynw4G1owlj8W6MtUWY2lsx711BmFKLTz+bTN6fNH1bwL+q7yM/ox6dSid3nG6zm7ooW/MhBZvWMsVrN552VwvwOH04tQYPkgYHkTR9PpFTLxZFkrsdp+mO1OG+JSx6WrcLpoceeui4l0dFRbF69erTDiTIyCcczn2J2PgtJL39AgVVFrJLDeQ98ADDU0MZd9ujbhmD705JKUPJU63C1+ZFbuZ+Mkaf2etBnA67yYDS2gHGFjA2U5mXTUtNNaaONkwd7ZjK9mG0qzHZVVgdESyKa4Cuhn41afN0rDCt44fEldwWfzOjZFzMz2GzkP3BU2xesx3D4XlKg4Iloq5/DY4zQVfoGzzCYkm44C6OrJ5kMUDVbgYt+wJHQQnVTTbMDiUl9Q5K6othezG6Je9y+0wnitgJEDMBe/golN5BTPedzPzaNMySZUCsQ+d0OLC01WOsr8DUVIOxpQ5jSwPGthaMHW3EhSiI9DKAoZnqmnaWZXtgtCmwO3/9exjHCH8NMzTFsGQajsMHrxWPDdzPpd5ktVoJr/DF1+aFd1j/KULtpi7KVn9AweZ1FFa0Yz483C4sTMPw6FBIPZ+hSQtIj50giqSedJJNd/qqky6YnnvuOf7whz+g17uGeGzZsoXRo0ej1bqeaEdHB/feey+vvvpqzyQVek1A2iTO/eckarZ+w6YP3qSiWcGe7AYO3n0bY8YkMO6Op5B0feMPtFKppDakDd9qLxqyykHGgqmvjJ93WMyYmqowNlZhbW8kLEjnKoIMzRzYl099bTNGgxGTyYLJZMdocWKySTidcHfKzx0Hd1WkUtz5y7Vswo/ajtWhQK1wAJDXHoxHxvlE22y/u/5Cf2Vz2thUvQmH5GRCinzNHirXf8KPH/yX+k4loMJfZ2PaxRcQf84tYkX2/kbjAXFTGfXHqYzC9XvbsG8tVXvWU1V4iMo6I0GaThSVB6FyO/AiHxSNRFJriYwIJERxKQGOAA7u3MX4Gb8z8b635xs6nWBqw9xURVNZAabmOowtTRjbmzF2tGPq7MJoMDI0zEK8VxMYmymrt/Nl2ZDffEhNcAmRQZUAKI2edFp/fh5KyYFeaUWvtKKQnAz2bj4ymbzS4MuyqlTi/n4Jg0eNI3bOIrQB4cfZgnAyDuzaQajNi3ZlF8PGzJA7zu+zmWnf+y1bv/ycwvIOzI6f5h2p8FTbSBwcTMRZT8H480GhPLUOaEL3nUrTnT7ipN8j999/P9ddd92Rgunss89m//79xMfHA2AwGHjjjTdEwTSAhE88n0vGn0vZD++w8fMvaehSUpW1B+nfo2D6fTDialDKv9KANskPqsGzQt4dRnePn3farJiaazA1VWFqrsPUUo+xrQmboZ30BG8wNIOxhfV7GqhssGKyODFZpV/8YQCVZD+qCCquSKXoqCLo6MmrVocStacP6AMIN/vg9FCg02vRe3ig8/JEp3KiK1t9ZOcEwOGEH2vjMVTl471mAamp0aSed/1xO+j0VxXmMrosXQR5BJEenN77AVrKcK56iM0rSqg3+qJV2Bk/KZURNy1GqfPs/TyC2yk0WkLHzSd03HxGcvisS3UONGRC+VaMRTtosniCBRoPtTE8oJAA37FYv87j++9fZfDwdJLnXAJByfDL4vk05hs6bTYchmbXmWdDE5215ZTm5GJsb8HU0Y6xsxOjwYTRZMVotjM+tJ4h+lJw2qnt8uOL8mG/+dhh1lLiDxdBeoXrPayS7OjVTnQa0OtU6HVa9J56QhLOgeTB4BFIgNKLqzoc6IPC0QfHoPLyR6o9cPSZ7sNKjaGY7Cpyy4zklq1H8dU6IgMUDB6aQvzMhfgPmdCtn8eZrmVvJaFEUh3TSmofHP5uM3bSlfk9vtVrIX8FakMXuaXjcKA8UiQlzziHiMkLUajk33cR+peTLpicTufvfi8MTJJCQezZNzFoznXkffY8QSWfQ2cdfPdnuta/StWgK0lc+CdZj24njxqOef0hortCaGisJTgorPc2/ot5Pb+5GJtvNJjaaK8qxtBQiam1HmNLE6b2VowdbZi6OnFaTcwa4jgyHO6rgz6UtHsBx3bQUkoOhlVuOdJcq7U+lbqjiiAXrcKOTu3EFjYClWcA6P1JClQSbFSg9/ZF5+OH3i8InV8wuoAw9EGRqAIiQOkqosYf7/lW74clHwEK1/NDwuJQkBDtRX65kQ6Lih37a9ix/ynCfR2kjRlJ8oW3oQuKOu0ftVxWla3Cs8TMB51PcjCjCoXUe+91S1sjbPs3ml2vItnNTA/z4aBqCpPufAKP8PheyyH0PkmhQBs1FKKGwohF6IHbqg5Rvf17KrP20libC4wlUpvIN+UrUbZ9S/KhF0DvjyMknT2NwUQOSSc060uUgOPgF5iipmNqaUDvoUXv5Q2GJpqrK8jKLDpc/JgxmiwYzQ5MVjDZlMwOKyTdvxaApi4/fjhuESQBKto7zaCzA+ChVeGjsaHXSuh0KvSHD7zovb3QefsSGX8uxCeBRyDBWl/+qPY5qXWr1EDob1z30yTyn/6d/Lf/EF9URNHW1RQXVtNsVFHRDBUb81i/8UmuGdFA8IjZkDQPYsb3iQOAfZXRaCCm2vV3JnR035k4ZzN2UrbqfQq2/EhhRSeB2i6ujM0EQO8bxoxxEQSNnEPk5IUDcvSD0HvEu0c4KZJKxZAr7wPbPbDnXdjwHNsLHezftY6wVauZctmVxMy+WpZswcFhvBz/Jlvsu7m65SbODeqhtUmcTmyGNlS/mOdT+uq1tFr1mOwqjHZvTPYATHYVpv/7AxJweewBkJTgtPN9aTpVxuO3AFZKDmaqfi6CFI5UfiqW1Ao7epUTnUZCp1Oi0+lxjLoBpVcg6P0Z02RjmEOD3j8EXUAYuoBwdIGRx12I+LR7ux2etIlPJIy8Bva+j669ijk3/4sZKm+KvltC9uaNlNbbqWlTULNmP837zmfG9DTIuBISZvWrnZImYxNP7niS1zv+jwC7L4NCe+eoqtNmI+fjZ9j8w2ZSvGuYFmqGuKmEnfU0YWFDeyWD0Pd4RiaSuPBuEheCzWYj79FV+OFNaloqyR4OMFeBsYX6vD1sLB0Bu1ejkpJQKRJcbZL3/AeAOWGHjhRBHV1+7DqqCFIc/nIx2lWg8QYPf7z9gog1Sug9dD8XPz5+6H0D0PsH4x8dDxHxoA8gWK3j5pN8Xkdv8VR+MMefTK7wiyRq5liiZl7BNKAldzslP35JUVYure0mgox5sC0Ptv2bdY1DMOgiGTxyDLGzr0Qf0n/m6PSGzG3biHLoaNK0MXR4740eON5Q918XSZYjoyqUdNg8sIy8GU3GQogex3AxVFlwE1EwCd2j0sC4W2H4lXj+617Ue0qobVfy+ZufErv0M6ZceychY+b1eiznKG9ys4rZWruVcxNPXDDZzUZMjZWYGquwdTYTGqg9PMStmb07c2lsbMNkMGEyWTCa7ZgsYLIp0Cqt3Ja488jjbG/8/SLI6QQJ1xFXL40db7sNnVpCp1Wi16vR6fWuoW5e3jgnXo7kGQj6AGZbFMzxCEAXGHHCIVeR3fg5nbbDkzZRalzjj0ddD3YLqLSogOTL/kryZX+lq7KA3KVvkLM3m1TvGsgphJxvqHLEUKAcRdr8y2V5n3SH0+nk8e2PE9MeQoDdl06Fga8sK5jC3B7dbvXGL/nxg7eobXfNUyo2hjH54sUo087rN4tKCz1PpVJRG9mOX5k3ipDhxN72DNitUHMAaeUrJDQWUGX0wWhXY7P/PPRWq7DhUHtDZCToA/B3+jLK247Oywu9jx96v0D0fiHoA8PQBUWiD44CnRcAAcBCmZ7v7zrJyeT+Q8bjP2Q8IwF7ZxNS2UYo+AFHwSrymn0x2s3kV2xG+mYTEf4wODWR+OkXEjB0yhk/R9CQ2QBE0hBrQKnsvXWIjgx1P/AxGBshZykrf8gmv/Wns5FKvNQ2EhNCSJqxgMhJF4kzSUKP6Na76q233sLLy/XBabPZeO+99wgKCgJcTR+EM4jWm/F/fZVhVYfYvmQxB/KaKG1QUPr8vxkS8xaTbr4X36TDi9r14KRjp92OuaWWkdYglrZqOLR7C9nlTyNZukiN9Tgyz2f1jgbqWqyuBgdW6RdHpMBTaeG2pB1Hvi846kyQa6jJz9tT45TUSJ4BoA8gyuyNvgt0plr0Kis6hQ2d0opeaUM35XaY8JxrWJ7enwXqk2/B6nW6P5ie9MudEEk6bocbz6gkRt/1AqMBZ3UmHPgEDnzGwUId2W2N7M35N8GeL5E6Mo0hF96GZ2Ri7+U/ST+U/sDa8rXc2HEhALu8slhTtZaVpSuZF+v+Yq+95ACbXl1MXrkJUKJR2Bk3PpmRtzyBUt+n3xGCTPwzIrGV2Wlua8ThdKBQqiFqFKE3/Zfz5+/H+cY0Wq067E4FeqUVndKG8tb1Ry0S6QNMlym/W3VzMrnSKxDSLoS0C5FsVi7Y+i1FW1ZSfKiCxi4VVS1QtaWQjVv+Qbz/Yi48f7Rr6N6gSf1qoro7dFo6+US7nGneoxgzYXbPb7C1HEdbDS2ludRvWElJaxITLB/jv+cdAAZ7BFPV5U1SQihJMxYQMelCUSQJPe6k32ExMTG8+eabR74PCwvjgw8+OOY2wpnFMzKRWY99wKj8HWx58x/kVZjILTehf/E2Zpw7C6b+7eQnHVsMdNaUYmysxNhch6m1AWNbM6aONoydnagcJiYnOsHYDIZmPtnvTXWnB87DQ9du0U8iwiOBbXv2YnVUk/qLIqi5MZ06w6/PBDnRKe3oNBJEjga9P3gEkOYPg6xqdN4+6H390fkFofcPRRcYgT4oEnyCjkyqngyH5/VMO2b8POPmgBg+hfTTgp5zFpOy8l2sa1dQVG2moUvFhk35bNz0J2JDlKRNnkriBbej0MrfxKDJ2MTibYuRnBITOzIA2OqdiYTE4m2LGRM6hkD9sfPGTonFQOH/HmH5D1nYnErAydDB3ky+YzGeUUnu2YYwIA0bPZZzCs+m1tlAcsNkhocMP+p6SQJ/jQVw8PO8Q+HXJJWaiKkLiZi6kClA26G9FK/7nOKDWVQ02glSNMCO12HH61hVPvzQMpq4jFHEzb4Cj4i+M5+np6yrWMc2z/3URrRxZcrd7t9AVyMdBdso2LqBhooKGmpqaTJ7Hm4bHwtAoNbAuMNNQpJ9Gkj5R54okoReddLvttLS0h6MIfR3fsnjOOf5Lxi983u2/+81xnmXwc43YO/7NFt0VLeHYvrhB4w7K1xD3cw2jGYHWoWF8+MrXEWQzcSXxSNpNB9/h9lDaWGy8+ciSHKkHymWVJKdON90ovXJmDSt2FXtMPoG0AeARwAT6i1YJd3heT7h6IMi0QaGH3fNhd/u6/Qb+vlibL1GqSb2nFuIPecWTA0V5C99g+xde6lpU1BS76D1u+9JKn4Fhl4Ew6+EqDGyDEH7aSiewWZgkDmcCGsIFsnKbq8cnDgxWA08sf0JXpzx4uluyLXw7+pHCGuqR2I0kX5OZtxwJ6Hj5rvnyQgDmkajZWTsGL4v+Z41ZWuOLpiOM9+QdvG5dDJ8E0cyInEkI3A1XrEXrofK9VDwA+W1NvIrreRXbofl2wj3dTI4ZTDx084jaMSsATl07/vi7wE4O+5spNP4TLabumjK3kJj7m4aSg8Ro28mzpkLnXV0GLxZXzb88C1dy5aoJTtBui4i9O3EebW4rlKoUFzwGohiSehl4h0nuFXo2PmcP3Y+PHr4bI7NyNrKwZR3HR5vXNN+1O09lEBH9c/fq6x42G3o1KDXKtHp1K621l4eeHj7wuQrXWeC9AGcbZJQeAaiC4xE5enDhqXLYDt4hQ5h8v0PH7WdHj332c8XY5ODLjiajJufIONmaM7eQs6y/+LdcgDJ3AZ73sW26z0+rRpLfGoSaRfciM/gEb2WrbC1kLXlawGY3u4aVrrHMweTwgyA3WlnTfkaClsKSfBP+M3H+T21276l6NvXmKR1tXz3Coph0dxLCZhy7YDc4RJ6zqyYWXxf8j27irbjGOVA8dP753fmGwonT+MbBKMudn05HAQeXMv4H76kOL+M+k4lNW0SNTtK2LzjZbw1L3DW1FgGTV8IsVOgG8Ow+6qmpnoGZwZQ7hPG/LiTPJDjdEJHLcaSPRxcv4bGykoamjpp7lLg+EV7D7t/FXFhdQAEhQWTYFUTHBFO8OAUgsOC8P3h9mOPmd209qghpYLQW0TBJPSMi96EpbdjtLhmAcV6Nrvm9Sit6FR29NHp6GLS8fAPgmHPgIdrTtAlWu+TPqvg86vv40emwfYqotqC6Whvw9vn+M0YekQ/XoxNbgFpk5icNgkcDtfQzcyPKdq6kdpODbU7S9m68yGiAyB1/DiSzr8NjV/PHiFP8EtgVsws1lesZ73PbjROFfs8845cr5SUzIiecUrFUmd5Lpv+8wg5pQZASXR8KDFn3wwT7iJQrXffkxDOGJMiJvFs+Z8Y2pVA4fBcklLSfr7yJOYbCt2gUOCXMYdJGXOYBHSUZlO85hOKDxygvN5Kh0WFd/FSqPoY1B6Ue0+h1WsI8XOuwCs6Re70p+Tgph1c0Xg2k02jGOQz6JjrrV2tNB3cTEPeHhpLiwlUNpGuyQZjM06bmk2HflqgwrW7qVXaCPZREhTiz6C0iTBxDoQMQaP14vxfPnD1fpCObRUvCHIRBZPQM9IvhaAk9EumcXFM1tHX3bKhR44QRcfEs0d3kFBTADl79zBu+ky3b0PoQQoFxE+D+GnEzWxk3jevk719OxVNuNZO+X4Ha1dsJTHGi/ELryBgzAVHL9DpJpIk8dD4h9havZVSXRVLdF/+fB0SnmpPHhz/YLce09rVyp43HmTnriKshxuOpMZ64H/bUhh02s3ehTOYp8YTvYcnii4F5bt/VTAJPco7No2Mmx4nA7B2tFC16Qv8bYPh0CroqCbzQBkFHQb4YQ+h3nbik+MYPPUcQsac3W/OJKtyTACYkpXQWo696gC7flhJQ1U1jU0GWozKI0PjAeI8m0mPaQZJgUdYPMNsOnxDwglKSCV46ES8Y4ed3HMXQ92FPkYUTEIvUPDzpGNHj26pJcJEaDF05DUMkNZPZyaNbxBp1zxI2jXQXrSfnG/eIiezkBaTitwyI+OX3gFbHoL0S7GlXYoqfIhbtx+oDyQ1MJU9dXuOutyJk4cmPHTSDR+cDgeHvnyJDd+uot2iApSE+zqYce2thE86/4T3F4SToRriCw3gXdw/dsIHIrW3P7HzD6885XRC7UEiPn+LjoOHqGlXUNehpG53Odt2v4aX+l/ED/Jn9lVXIw2eDhoPWbP/mqW1nsaDmyg5sJ/Y9rk4cDCk8FHILkHhhN0FEzA7VPy0C6lX2Qj2VREcFkhE4iSY9ioEJ4Naf+qLMIih7kIfIwomoefIMOnYNzUciiGw2gOH4xfj+YV+y2fwcMbf82/GORzUbFlKxZZvCEAD7ZWw+Z+s+OR7OqRAUseOIPn8W92y4GRXVwfTMtOwe3dywOMQDslxZCjeSbcUr8nEtvx+1v9oocOmw0ttY+r8GaRc/rd+c3RZ6B+Gjh9D+8YsIg3BVJQVEz0oXu5IZzZJgvB0Rv3xFUYBXZUFlKz5mOLMfZTWmum0qmioqkL69ApQ6SBuKoekdEInnI9PXHrv5XQ4oKUE6rLZseIHaiuqaGg20WZ27Rqm+I5lUADUW8oZbS4BhRopOJlRKn9UvmEEJ6YRNHQynpFJPfOZJoa6C31ItwumvXv3olarGTbM1Uvsm2++4d133yU1NZVHH30UjaZn39D/+c9/+Mc//kFtbS0ZGRn861//YuzYsT26TeEUyTDpOHXECOqX78aMmfK6EmLDB37L1zOFpFAQMeUiIqZcBFYTFKzAuudjSvI6sDoV1KzJZP3a24gP15I2fQ6x865HqT21eUH7N29lTst4MrqSuDP5GTptnXioPE5qKJ6huhDdzpdQ7P8QNU6mR4TTEDyDsbc9gdrHTa3IBeEX/AOCOOhXT3xrOId2ZIqCqY/xjEpi6HWPMBSwGTqo3PAZVO6GzhZoK8eUt5bvCrpwfLODYC878YkxDJ5yNmHjFhy/dfYprG1oaqyk8cAmGgoO0FBRiq2zhfkhmWA1AFBQMpx6kzc/7RZ6qW1E+rrmXbWE18E1WyEwEVQaJrjjhyII/Uy3C6Zbb72V++67j2HDhlFcXMzll1/OhRdeyOeff47BYOCll17qgZgun376Kffccw+vv/4648aN46WXXuKss84iPz+fkJCQHtuucBp6edKxp6c3L0/8krXNG7iv9T5RMA1Uah2kXYg67UJunHWIvKVvkL0nm4YuJYeqrRz66Hv0n33LuBFRjFr0BwhL71aLcltmK+BBS6KVB8c9yBNbn+DBcQ/+7lA8m7GTvW8+xI5teUwLKSLd3wlDLyZpzmMk+Uad/nMWhN/hSNLBTtAU2uSOIvwOlYc3sWffCNzoGrpXn0vXji8Jq99GTauThk4lDfuq2LHvLTxUrxMX7cuw6bOInHEFaF3ttn93bUO7DZqLoC6LvWvXUlZURUOLmQ7L0bt7ChSc5WdEqdZBcArDvWOx6kMISkwnaNhkajstaN6qx4ad0TdeBwFBvfLzEYS+qtsFU0FBAcOHDwfg888/Z+rUqXz00Uds2bKFyy+/vEcLpn/+85/cfPPNXH/99QC8/vrrLF++nHfeeYf77ruvx7Yr9C8ZcaNY27yBLVVbWDRkkdxxhB7mGZnIqDufZxRQv2cVOcs/Jje/BoNNBWVb4I3PISQNa9qlmOPPxis6+Xcfr66umtjmMACSpo4kLCIaW7aNOTFzjnt7p8NB4dL/sPGb5bSaXPOUCq3xpN/wAcSMc/OzFYTjS54wAvvOUmLaQ6ivryEkJFzuSMKJSBKEphJ4XipXnAeG2lJK13xE0b7dlFYbMdhUZJd0EW58gcid/wcRGZhCx2LetxRfwLD3Kxq6/GgsK6ahromWVgOXR+1FcriWQKiqTKG4I5ifdvV8NDaCArQEh4cSHJeEc8rzEJoEStUx6w/uW/Y+aYpQagNamB4wvTd/KoLQJ3W7YHI6nTgcron7a9asYcGCBQBER0fT2Njo3nS/YLFY2LNnD/fff/+RyxQKBbNnz2bbtm3HvY/ZbMZsNh/5vr3dtQaQ1WrF+tO4WJn8tH25cwxEY0NcQzT3Ve+lo6sDnaZ31sIQr6n8/NNnMCl9BhOsZspXvU94+1acZY1I9dnkF/yHVTWrGRSsZMikScTNvwmVx6+b00PW+u0kE0ypTw3jIsb/7uvauH8dm979FxVNACo81TYmzplIymV/w6pU/Tz+XuhTBuLvalBQGJ9EfsVu5wEm1szhIv+Fckfqdf39dVUHRpJ42d9IvAzsZgM1m7+iZMePxOm9wFALlbvJO1DF2rokdIo4TA41HNjyi0dQ0RYk4evpiTNkCENCY4mUQghMSicwbSLagIijtucErA4nOI7+eTmdTt62fEJtYg1PDH9M1p9nf39NhWP1tdf0ZHNITqezW43tZ86cSXR0NLNnz+bGG28kJyeHhIQENmzYwLXXXktpaemp5D2h6upqIiMj2bp1KxMm/DyC9u9//zsbNmxgx44dx9zn0Ucf5bHHHjvm8o8++ggPj77VlUZwH6fTSUteIZPaM9iZUIp3oBiueSZT27qIaN1B9f4D5NZ7Hrlco7AREaxGn5CBJXrUkUnLwXstxJjD2BCdjVfU8Y/Sa6ztqPZ8zsFiO04klJKDuGg90ugLceq8e+V5CcKvbTBtYLVpNQmqBK7zuk7uOIK7OJ0Mrl9BWvWnbKofxO6mqMOtvJ34qU0E6brQ+fpiD0lCETUEs2c4SKfehKHKVsVrna+hRs19vvehlURnOmHgMhgMXHnllbS1teHjc+xB1J90+wzTSy+9xKJFi1i6dCkPPPAACQmuxRu/+OILJk6ceOqJe8D999/PPffcc+T79vZ2oqOjmTt37u/+UHqD1Wpl9erVzJkzB7VaLWuWgWh95Rd4tOoIcfowY/5Jrk5+msRr2pddQto1MDp3G/nLPyQ3p5wOi4rSOifU7cdft4tFi6ZQ7DcBb7MGq2TjrMsuwtfXH3v5Ljq+vgfvC/+JMjIDxe63UWz6B7UOBwcYQWKkmok334dvwslNvhbkN1B/V1PbU1n93WpK7aVMmT0Fb82ZVbwP1NfV5RxsNTcz9Z1ZjA2spM2qxV9jRKNwYL1hLYRnuG1Lr235N3TAjEEzuHDyhW573FMxsF/TM1Nfe01/Gn12It0umNLT0zl48OAxl//jH/9AqVR29+FOWlBQEEqlkrq6uqMur6urIyws7Lj30Wq1aLXHHhlRq9V94kWCvpVlIPFKDoJK8KvU9PrPV7ymfVdI+lRC0qcy2WajYv3H5KxeRkF5B96KTrRb/8Fuj8kkqW/AqG5loioNtVqNIvcrgjtzKfrmBdoa6hmpPQBAeFw61y28hcCx58n8rIRTNdB+VxMDExmrHUF0dSAHdu9g+rSz5Y4ki4H2uh5xuGOeTulAp+zCtbYhqFUqcNPztdlsTF+bxHgexTzCv8/8HAfsa3oG6yuv6clmOKV1mFpbW/niiy8oKirib3/7GwEBAeTk5BAaGkpkZOSpPOQJaTQaRo0axdq1a7ngggsAcDgcrF27lrvuuqtHtin0XymjRtCxNpsIYxC1NZWEhYsuZcLPJJWKmNlXEzP7ama1N9G19ytsZd/yjq2ILp/HWbQ+jszbviAxQs1gdRFZDWmUdplRSt7EDwnBb9adMPEPBCp67iCRIJyKK8znklIfRsGeKpgmdxrBrXphbcPs/XsItPrQqVQRl9K3Rg0Jgpy6XTAdOHCAWbNm4efnR2lpKTfffDMBAQF89dVXlJeX8/777/dETgDuuecerr32WkaPHs3YsWN56aWX6OrqOtI1TxB+4h8QRK53AzEdoRzae4Cwc0TBJByf2icQv+k3s7lqCI1rbieuS4+Xuo1Wiwe5VQ5yiQNAKTkYGVCF3tYEax6ByX+SN7ggHEfk6CTIbSemIQiDsQsPveeJ7yT0D72wtmHDrhICiaQyooUUbe80TBKE/qDbswLvuecerr/+eg4dOoRO9/Mv0/z589m4caNbw/3aZZddxvPPP8/DDz/M8OHD2b9/PytXriQ0NLRHtyv0T4YY17/WQyc3PlU4s+3cswm1Q8X4cedyw19u4crYA2T4VeOrNpLo3ch18XuYGlKKVi3BRW/KHVcQjit5yDAaNa3onFoO7jy2GZLQz6m0P68p5+a1DS1mM5GV/gAEjo5x2+MKwkDQ7TNMu3bt4o033jjm8sjISGpra90S6vfcddddYgiecFLChsVBtoGIBn9sNhuq462YLghAZ0c7528by3xpJLapYUiDMwgPSSF8yXHGNN20FiKG93pGQTgZCoWCxmgDQUV+dB6sF8PyhJOWuXM74XYPWlUdDBs1V+44gtCndPsMk1arPW5HiYKCAoKD3TeOVhBOV3JaOvu88/kiYDXZ9VlyxxH6sH2btqB1aujQGEmNO3oJR1f73p//FYS+LnhELACRNf5YrObfv7EgHNa+rwaA2kEd4gCjIPxKtwum8847j8WLFx9Z6EmSJMrLy7n33ntZuPDMWyhP6LvUajU/Tsrh06Af2Fp//MWNBQHAeaADgPZkB4rD6zH9NMHaGT6c/dHX4Qwf7ppw7cYJ1oLQE9KGj6JN1YmX3YOv1nzE9E+n80PpD3LHEvowg6GTmNogAMLHJsicRhD6nm4XTC+88AKdnZ2EhIRgNBqZNm0aCQkJeHt78+STT/ZERkE4ZZMjJwOwuXqzzEmEvqq6spz4VtcCtSlTRv18xeEJ1vbrV1EWNBP79atcE659e6YTqCC4i0qloiaiDZNkIbNgN02mJh7b9hhNxia5owl91MaazSyOep2VYdsYMmyE3HEEoc/p9jlXX19fVq9ezebNmzlw4ACdnZ2MHDmS2bNn90Q+QTgtEyMm4m3zJKBIS2trE35+gXJHEvqYvE27SSKYEr8apkRNOfpKlRYOn013TbDW9H5AQTgFulnhXL71z5gVrvevwWrgie1P8OKMF2VOJvRFy8uWs98znzHjp/58ll0QhCNOeZDq5MmTmTx5sjuzCILbhXmG8VLl34kwBpOzey8TZ8+RO5LQhzgcDnzyD+8cDPOSN4wguFGLqv1IsQRgd9pZU76GlaUrmRc7T8ZkQl/TZm5jc5VrFMbZcWfmYseCcCInVTC98sorJ/2Af/zjH085jCD0hPYoKxGHwJDfBOJEqPAL+fkHCTMFYpYsDJ8ySe44guAWTcYmnt7x9JHvPew6DEoTEhKLty1mTOgYAvXibLvgsnfDJm6svoC86EoS/RPljiMIfdJJFUwvvnhyp/AlSRIFk9DnBKRGwSEHobXeOBwOMdxAOGJp+/dsiF/DQp9zudlnltxxBOG0OZ1OHt/+OAabgRhzOPdV3YDOoeWmwY/gkJxiaJ5wDOW+Li5omUlBTIPcUQShzzqpgqmkpKSncwhCj0kdMZKqb7fhb/WhuDCPhKRUuSMJfYDVYWVFyQpatC2kTB514jsIQj9Q2FrI2vK1ANSpmwi0+eJj92JK+yg2+O4+MjSvsKWQBH/RDe1MV19XQ2xLGABJk0WzB0H4Lad1qN3pdOJ0Ot2VRRB6hE6npyLAdeSsIrNA5jRCX7Glcgst5hYCdYFMiJggdxxBcIsEvwRmxcxCKSkxKyx8HbAOgMub5iE5JZSSktkxs0WxJACQvXknChSUedcSFR0ndxxB6LNOqWB6++23GTp0KDqdDp1Ox9ChQ3nrrbfcnU0Q3CdOB4CiWCziKLhYllbxQOVNXBl4MSqFWKRRGBgkSeKh8Q/hofJAQmKZ/wa6FEZizRFM6EjHU+3Jg+MflDum0Edo81yNQaxDRAdQQfg93d5LePjhh/nnP//JH/7wByZMcB2V3bZtG3/+858pLy9n8eLFbg8pCKcrZmQK7K4nujWYLkMnnh6iI9qZrLW1iYSacDTOGAyR/nLHEQS3CtQH8vCEh/nbxr/RpTTyrf96rmg6m8ubzsZ8TqBo+CAAUFFeTExHKHYcpE0ZJ3ccQejTun2G6bXXXuPNN9/k6aef5rzzzuO8887j6aefZsmSJbz66qs9kVEQTltsbCJL4r7mxsGPsKd5r9xxBJllbtyGxqmmyqOBhGQxp00YeM6KPevI0LylAeswSiYSTTEE1njIHU3oIwo27wOg1L+W4OAwmdMIQt/W7YLJarUyevToYy4fNWoUNpvNLaEEwd0UCgXKdF8a1a1srd4qdxxBZsosIwBdyZLomigMSL8cmteu6mJlgOtzr2pnvph7LACQ3ZZDk6oVxVBvuaMIQp/X7T2Fq6++mtdee+2Yy5csWcKiRYvcEkoQesKkCNc6O1uqtsicRJBTRVkxse1hrmEo08UwFGHgCtQH8vDEhwnUBRIzZxhPxrzFQ/6vsKN2h9zRBJkVtBTwpsdn3Jj0KOkzJsodRxD6vJOaw3TPPfcc+b8kSbz11lusWrWK8ePHA7Bjxw7Ky8u55ppreialILjBuPBxnNcyndHlaVSOKSUqKlbuSIIMCjbtJZlQSgNqmRY6Te44gtCj5sXOY17sPAByzPmQt5clB5YwPny8zMkEOa0oWQHApKjJ+Hr4yRtGEPqBkyqY9u3bd9T3o0a51iwpKioCICgoiKCgILKzs90cTxDcx1vjzdmGqcR2hVG0J0sUTGcgh8OB/yFXNyhluq/MaQShd10/9Ho+K/iMg9UH2H9oN8MTjx1eLwx8DoeD4sxsFJLE2fFnyx1HEPqFkyqYfvzxx57OIQi9whyrgANgL+qUO4oggwN1mXztu5apnaOYOOVCueMIQq8K8wzjLu8bGb9rMI0NRfB3UTCdiXIO7ONv+VezSDOPoVdOlTuOIPQLYrazcEaJTHct1hjVGIjFKtZkOtN8W7qMpYHrWD8zH09PMdFZOPPMHTkfL7uewc0R5B7cL3ccQQa1OwsB6Aiy4KERXRMF4WSc0mqNu3fv5rPPPqO8vByLxXLUdV999ZVbgglCT0gcMpR85Wp87J7kHthPxigx6f9MYbFbWFm6EoBzB58rcxpBkEd0TDxro3aSXBlJ7ao8hgwbLnckoRdZrVbCy30A8BkZIXMaQeg/un2G6ZNPPmHixInk5uby9ddfY7Vayc7OZt26dfj6ijkBQt+mVCqpCW0FoCGrXN4wQq/auXMj4+rTGKSNZkzoGLnjCIJs4uaPwIGDxIZICvLE3OMzycE9O/G1edGh7CJjnDhgKAgnq9sF01NPPcWLL77IsmXL0Gg0vPzyy+Tl5XHppZcSExPTExkFwa20iX4AeFaIEalnEuvWRv5Scw13m65DqVDKHUcQZBMfn0xhWA0AlSsPypxG6E3NeyoAqIpuRaPWypxGEPqPbu8xFhUVcc455wCg0Wjo6upCkiT+/Oc/s2TJErcHFAR3Sx49HItkpcHZRGNno9xxhF7Q3NRAXINrJfv4icNkTiMI8oua5/o9SKgNp7g4X+Y0Qm8wm01EVwUAEDw6TuY0gtC/dLtg8vf3p6OjA4DIyEiysrIAaG1txWAwuDedIPSA4OAwHhi/hAdi/sX2+u1yxxF6wYEN21ChpMKzjsFJQ+SOIwiyS0pJ41BwFQDbt4hOuGeCfTu34unQ06xuZ+gI0SFRELqj2wXT1KlTWb16NQCXXHIJd999NzfffDNXXHEFs2bNcntAQegJY6NcY7e3VG2ROYnQGzQ5ruY0plS1zEkEoe8IOzeV2+Kf4Dnn61S0V8gdR+hhn9uWc3fss2SNrkGpFMOSBaE7ul0w/fvf/+byyy8H4IEHHuCee+6hrq6OhQsX8vbbb7s9oCD0hMmRkwHILjuA3W6XOY3Qk4qL84npDMWOnWHTxssdRxD6jCFJ6cTED8butPN2lvj7PZB1WbvYULWBAn0ZGZMnyB1HEPqdbrcVDwgIOPJ/hULBfffd59ZAgtAbMoIyeKHsr6Qa4jmUn01KarrckYQeUrzpACmEURxUy4yg6XLHEYQ+5db0W9lStYXtuZupjq8gIixa7khCD1hXvg6z3cwgn0GkBqTKHUcQ+p1un2GaPXs27733Hu3t7T2RRxB6hUalQe3p6hBUnVkocxqhpzicDprq63DgQDs8UO44gtDnjAgZwZ8s1/PGoQfJ+Xar3HGEHqJe1sqfq6/i4qDzkSRJ7jiC0O90u2BKS0vj/vvvJywsjEsuuYRvvvkGq9XaE9kEoUdJgz0BUJfaZE4i9JQ9dXt4IuQN7kh5mhGTJskdRxD6pJEZE1CiJL4kmIaGWrnjCG7W3NRASm00c9smMjVyqtxxBKFf6nbB9PLLL1NVVcXSpUvx9PTkmmuuITQ0lFtuuYUNGzb0REZB6BGDR6YBEN0WQkd7m8xphJ6wrGgZAKOTxqPXe8icRhD6pozR4yjzqUXjVLP/W/F3fKA5uHkHKpRUetYTH58sdxxB6JdOaeVOhULB3Llzee+996irq+ONN95g586dzJw50935BKHHRMfEU6dtRoWSnH175Y4juJnB2MXOwm0AnDv4XJnTCELfpVAo0E51rVMWWxRIc1ODzIkEd1LkuJZ8MSSJxdoF4VSd1m9PbW0tr7/+Os8++ywHDhxgzJgx7solCL2iOcIIQHtuncxJBHfbv2kLb+Q+yH2NNzMiZITccQShTxs5cRIVnvXoHVr2frde7jiCm9RUVzCoLRSAlMmjZE4jCP1Xtwum9vZ23n33XebMmUN0dDSvvfYa5513HocOHWL7drEIqNC/+KWGAxBU44HD4ZA5jeBO1swWlCgIDQ5HIYkjq4LwexQKBYrJ/gDE5PvS1tYicyLBHXI370aBghLfGiIiY+SOIwj9Vrf3IkJDQ3nggQcYOnQo27ZtIz8/n4cffpjBgwf3RD5B6FGpI0ayzncn7wYupby9TO44gps0NNQS2+QaYpQ4VZxdEoSTMXrqNKr1jTiBVTuWyR1HcAN9vutAoGOIXuYkgtC/dWsdJqfTySuvvMKiRYvw8BATqIX+z9PLm40jc9lRu4txNVuJ9YuTO5LgBlnrt5NIIGXetUyKnSJ3HEHoF5RKJZ0LPPhj5oOomjXMty7EU+0pdyzhFJW2lLBRv4sp1pEMnTJd7jiC0K916wyT0+nkzjvvpKqqqqfyCEKvmxg5EYCt1WINkoFCn+c6qmpL08mcRBD6l2kjZhPsH0qbuY1P8z+VO45wGlaUreTD4OW8P3UdgYEhcscRhH6tWwWTQqEgMTGRpqamnsojCL1uUvhE4kyRRB70wmwyyR1HOE2HCrKJ6grGKtlInzpB7jiC0K8oFUpuGnYTOGHPts0YDJ1yRxJOgdPp5PuS7wE4J+4cmdMIQv/X7TlMzzzzDH/729/IysrqiTyC0OsS/ZN4quKPXFO7gJxM0V68vyvbnA1ASXAd/gFBMqcRhP5nfvx8Ftfdxf1F17NzxTq54winIL8oi4hKX7wkT2bGiCVfBOF0dWsOE8A111yDwWAgIyMDjUaDXn/0RMLm5ma3hROE3qBQKKgNa8ev0pum7EoYJ3ci4VTZHXZe1v2XlLBoLhx3qdxxBKFfUivUBKREwjYI3K/EvMCEViuGt/YnlRtzeajqVnKc5WIemiC4QbcLppdeeqkHYgiCvDySA6ESvCu7/Ssh9CE7andQai2nJayNJ8e+InccQei3xs+bTf7utQRYfdi+cg3Tzl8gdyThJNntdoJLXI25fIaFy5xGEAaGbu8dXnvttT2RQxBkNWTUCDrWZhNpCKa2ppKw8Ci5IwmnYFmRqxXyvNh5aJQamdMIQv+l1epoHmEjYCf47HFimW9Go9bKHUs4CVn7dhNo9cWgMDJ8gugSKgjucEqrORYVFfHggw9yxRVXUF9fD8CKFSvIzs52azhB6C3+AUFUejcAcGjvAZnTCKeiq7OD6euTOa95OufGiqPhgnC6xs6bRZuqk2CLHztWi7lM/UXD7hIAyiOa0enE+kuC4A7dLpg2bNjAsGHD2LFjB1999RWdna4OOpmZmTzyyCNuDygIvcUQ7QTAUtgucxLhVOzbtIW0rsFc1DabYSHpcscRhH7Pw8OLumGuzqEeOy3YbDaZEwknYrGaiazwAyBgVLS8YQRhAOl2wXTffffxxBNPsHr1ajSan4e8zJw5k+3bt7s1nCD0ptBhrkVrAxs9sdnFjkF/4zjQBkBrog2F4pROnguC8Ctjz5lFh9KA2WFmfc4aueMIJ3Bg50687Z60qToZNnqs3HEEYcDo9l7FwYMHufDCC4+5PCQkhMbGRreEEgQ5pAzNYHHcEm6If5ic5hy54wjdUFNTQWxLGADJU0fJnEYQBg4vLx92z6vitvgn+E/JGzicDrkjCb+jMrcQgJqYdtRqtcxpBGHg6HbB5OfnR01NzTGX79u3j8jISLeEEgYOu8PJtqImvtlfxbaiJuwOp9yRfpNarcYrORirwsaWqi1yxxG6IXfDLhQoKPGtISo6Vu44gjCgnD/uYjw1nhS2FvJj+Y9yxxF+g9Fm5Gn969wc/xghMxLljiMIA0q3C6bLL7+ce++9l9raWiRJwuFwsGXLFv76179yzTXX9ERGoZ9amVXD5GfXccWb27n7k/1c8eZ2Jj+7jpVZxxbcfcWkiEkAbKkWBVN/4XA48M6XAHAOFeuNCIK7+Wh8uCLlCjQONbvXrMfhEGeZ+qKNlRsx2Aw4ApQMSxghdxxBGFC6XTA99dRTpKSkEB0dTWdnJ6mpqUydOpWJEyfy4IMP9kRGoR9amVXD7R/upabNdNTltW0mbv9wb58tmiaGT+SWuoXctuNcWlub5I4jnISCvCzCjUFYJCvDp02SO44gDEhXJV/F6yUPsejQXPZuEweU+qJVRT8AMC9uHpIkyZxGEAaWbhdMGo2GN998k+LiYr777js+/PBD8vLy+OCDD1AqlT2RUehn7A4njy3L4XiD73667LFlOX1yeF64dzjjjcOJNUeQu2ef3HGEk7CxcgNbvTIpCq/Fx8dP7jiCMCAFeAbQFmsFwLyhVpxl6mPa2lq4ee1ZPFB5E/Mjz5Y7jiAMOKfcSio6Opr58+ezcOFCurq6aGlpcWcuoR/bWdJ8zJklTweMN6lQOF1FU02biZ0lzfIEPIG2SDMAXfmiiUlfZ3VY+V/LFzwe/QbaC8Viw4LQkzLOnYpFsjKoPYzM3TvkjiP8woHN2/ByeDDYFkNiSJLccQRhwOl2wfSnP/2Jt99+GwC73c60adMYOXIk0dHRrF+/3t35hH6ovsNVLGl+OoHkhDlGDVNMaq7p0BJmk466XV/jn+pqXhJc4yWOovZx26q30WxqJkAXwITICXLHEYQBLTg4jOI41wLfHesqZE4j/JIjqwOA9gSHWFZBEHpAt3+rvvjiCzIyMgBYtmwZxcXF5OXl8ec//5kHHnjA7QGF/ifEW4faCdd2aDnLoEYD5KrtdElOgh0KFnVqmWZU4aPum0M4U0eMxCxZCLT6UlKYL3cc4XfkbN5FmCWQ+XHzUStEC11B6GlpCyZilWzEt4ZzcN9uueMIQEND7ZFlFRInDZc3jCAMUN0umBobGwkLc/1ifv/991x66aUkJSVxww03cPDgQbcHFPqfsXEBTLdo8HMoGGRV4ATyNXbe9TaRo7ahQGKsWc2O13JYs6FM7rjH0Os9qPR3DccryxQFU1/V1tbC3MwRvFv0OOf7zZc7jiCcEcIjoimKqQOgaU2hzGkEgKxNO1CioNy7jpjYwXLHEYQBqdsFU2hoKDk5OdjtdlauXMmcOXMAMBgMoumDAMC2XdWkG11vrVUeVqyHm/UYFfC9p5UvPc10Kpx42yD/4yKeeH03HSarjImP5YjXAaAsMcucRPgtmRu3onGqqdY3kpSQJnccQThjJJ8zFht26s2NZNdmyR3njKfJswBgThZn2QWhp3S7YLr++uu59NJLGTp0KJIkMXv2bAB27NhBSkqK2wMK/YvZYmPjR/kokKjzV2AO0hx1fZivjr9fP5wbn5xIZ6SOVoWD/5bUcdaLG1mfXy9T6mMNGp5Cg6qFPIow2oxyxxGOQ8rqAqAz2SnG7AtCL4qOieejWRt5PPoN3shZInecM1plRSmD2sNw4CB1yhi54wjCgKXq7h0effRRhg4dSkVFBZdccglarRYApVLJfffd5/aAQv/y1tsH8DWDSXJyyx9H8UioFztLmqnvMBHirWNsXABKheuU070PTWRTdh0/LM+hvNnAde/s4obAAG69Pp3QYHkXII2NT+SsjLuoNdSSWjuFKVFTZM0jHK2yooS4tnAcOBgyTewkCEJvu3zsVXyy9At+rPiR/OZ8kgOS5Y50Rlpbt46SkIOkq4dwUeg0ueMIwoDV7YIJ4OKLLz7msmuvvfa0wwj9W3Z+E7bMFlRIhEwNIyrcG4AJgwN/8z5T0kJZmRjIC6sK2Lu2nMBiIx88sp1Bc6K45EL5/gArFAomRU7iy0NfsrV6qyiY+pj8jXtJJoQS/1qmhYudBEHobfG+8cyNncveQzvZuuIHkheJgkkO31R/x6HAQwydIBbtFoSedErjWNauXcuCBQsYPHgwgwcPZsGCBaxZs8bd2YR+xOl08u/v8jBL0OqtYNFlQ076vh4aFQ8tSOVPlw6lXQN6h0T9D1U89cBGyqvaezD175sUOQmFU6K0oEC2DMKxHA4H/gWuYz3KdF+Z0wjCmeuW2Bt4u+hRZh3MoLhYNMjpbYUthRxqOYRKoWLOoDlyxxGEAa3bBdOrr77KvHnz8Pb25u677+buu+/Gx8eH+fPn85///KcnMgr9wOd7KlnR0Mr/AixcfHvGKc0pmTYhirufnYIt2RsHTnybbHz+xC4+/DhblvWQxgaP4cNDT/NA1nVUVpb2+vaF48suzsTL6oFJMjNiijiqKghySRqUSmlQPQoUFH+/T+44Z5yDP25jVus4ZoZMx1crDh4JQk/q9l7tU089xYsvvsjHH3/MH//4R/74xz/y0Ucf8eKLL/LUU0/1REahj2voMPPk8lwA7pibRHK8/yk/lodezd1/HsOYW1Jp04HOKdG2oY5HHttCVWvvNl/w9fCjzdMAQNEe0Qmqr/imcTlXJt7LdxP24OnlLXccQTijhc91jSZIrAyjorxY5jRnhpWlK5n+yXRi9vvw15prWSidLXckQRjwul0wtba2Mm/evGMunzt3Lm1tbW4JJfQvb7y4m/A2B2nh3tw4Oc4tjzl+ZDh/eW4qpPtiwcmqrg7m/nMDH2wvw+FwumUbJ8M8yPUrYi/q7LVtCr/NYrewsnQlZoWVsaPFvDJBkFvKsAyKAqtRoiRv+U654wx4TcYmFm9dTFCrN6GWAEySmYxJE+SOJQgDXrcLpvPOO4+vv/76mMu/+eYbFixY4JZQQv/xzYpC/KvNnGNQ8/D0ZFRK97V31mpU3HnHKM66bxTRg/3osth5aGkWf3x2M1l5TW7bzu+JSHctAhjZGIDFKtZkktvmkk20mdoI0YcwLmyc3HEEQQACZrs+JxPKQ6mpqZA5zcDldDp5fPvjGGwGpreNBmCfXwGenuJMuyD0tJPqkvfKK68c+X9qaipPPvkk69evZ8IE11GN7du3s2XLFv7yl7/0TEqhT2ppM5H/XRmeSFjiPRmXEdoj20mN9eOzWyfw/rZS3lpeQFKZhbUv7WfTCH9uvD4djeaUmj2elMQhQzmkXIO33ZO8A5mkjxrbY9sSTkz6toHXWx+keHw7SoVYKFsQ+oJhI0az6YfPiGsNJ3vZVsJvuUzuSAPSD6U/sLZ8LQqnxNT2Ua7LPDfjXRrPvNhjR/4IguA+J7Wn+eKLLx71vb+/Pzk5OeTk5By5zM/Pj3feeYcHH3zQvQmFPuut1/bhaZfoVMFtt4/o0W0pFBLXTYpjQpgfX7yeiV+HA8e+Vp7P28Tc64YwOiOsR7arUqmoDmklucaT+qwyEAWTbFqaG4ltCEXtVBGaMEzuOIIg/IL3jGiMSzvZ33GQ4cZZBOmD5I40oDQZm1i8bTESEsMMiQTYfelQdLHXK5ecbYsZEzqGQP1vL+EhCMLpOamCqaSkpKdzCP3Mxm2V6EsNgMTQ82Lx9db2ynaTB/tz/7NT+eDjHJo21+FrhK2vZbN1SAU33zoCvc79Z5s0ib5QA54V7htuKHRf5sZtJDj9qPSsZ3ySmL8kCCdidzh/c+Fwd0sfM45ba29ie+supGx//jJajDhxl18OxXM6nSxomQrAZp99WCUbDquBJ7Y/wYszXjzBIwmCcKpOeQ+wsbGRxsZGd2YR+gmzxcaWTwqQkOgI1XDO3Phe3b5CoeDaRUO56P/G0BagQomEMreDF+7byP7yFrdvL3n0cD4OXMFLge/TZOyduVPCsdTZJgCMKWIoniCcyMqsGiY/u44r3tzO3Z/s54o3tzP52XWszKrpke0pFAquHnUdAJ/mf0qLyf2fxWeqwtZC1pavxe60A9CoasWBg1W+2wCwO+2sKV9DYUuhnDEFYUDrVsHU2trKnXfeSVBQEKGhoYSGhhIUFMRdd91Fa2trD0UU+pq3Ps/FxwxGhZNr7+jZoXi/Jzbah/uemEzgnAiMCieZWLnota089X0uJqvdbdsJCQlnR3IBOR7FbKvZ5rbHFU5eafEhBnWEYcfO0Onj5Y4jCH3ayqwabv9wLzVtpqMur20zcfuHe3usaJoSOYUh/kNIaItiw/fLe2QbZ6IEvwRmxcxCQgIJ3gj9gj/FPkeeh2v0j1JSMjtmNgn+CTInFYSB66THLzU3NzNhwgSqqqpYtGgRQ4a41l7IycnhvffeY+3atWzduhV//1Nfg0fo+4obOnk5t5JQT7hjchzhoZ6y5lEoFFy+MIWaKdFUrMln14EalmwsZveeGu6YMpjZ0we5ZTuTIieR35LP1qqtLIgX3SB7W+Hm/aQQRklgLdODp8sdRxD6LLvDyWPLcjje4gtOQAIeW5bDnNQwtw/PkySJPwfeRvRWNYZKI22zWvD1FfsEp0uSJM6SprHRsQGrwgYSHNKXu65DwlPtyYPjxfxxQehJJ32GafHixWg0GoqKinjjjTf405/+xJ/+9CeWLFlCYWEharWaxYsX92RWQWZOp5P/+/ogFpuDuLRALr8gWe5IR4SHePLylSN5+9rRRHjrGF7jIP+TIp57civNvzrKeiomhU5kXMcwBu3yxm5339kr4cTsdjuBhToANMPFpGZB+D07S5qpbzURaD9+MeQEatpM7Cxp7pHtjx0/jWp9Ix4OPbu/W9cj2zjT7Nq8kSEr/Xm08nY0DvVR1zlx8tCEh0TDB0HoYSddMC1dupTnn3+e0NBjW0eHhYXx3HPPHXd9JncoLS3lxhtvJC4uDr1ez+DBg3nkkUewWCw9sj3h+D5cmkdOYQt6tZInLxiKJPXM5OHTMWtIKMvumoQ2wgMAzwoTb/3fFpatLDqtxx0ePJx7q2/gnPrJFObnnPgOgtvsq9/LS6EfsM5/FyMmT5I7jiD0OeVV7XzxTT4vPLedVa9k8sc2HVd1aJF+cZpphlHNOJMK9eHL6jtO/0DS8SiVSmwTvQCIyPGis7O9R7Zzpji4bzcBy62oUOLh683kQVNQSq55nD8NxRMtxQWh5530kLyamhrS0tJ+8/qhQ4dSW1vrllC/lpeXh8Ph4I033iAhIYGsrCxuvvlmurq6eP7553tkm8LRyqvaaVhVzfVOLR7zIogO8JA70m8K9NVx74MT+WFdKfu/KsbLJlG+tIxnttdw/Z0jCA3u/jBCjVZLZUAjiY2RVB44RHKqaGvdW74rWc5er1wGDU9Br++77ztB6A12h5P82g72lLdQvKkaXZkRL5vrOt3hL5Dokpx4OyTalU787RIjzUoUSIw0q9iqsxKgU//2Rk7T2BkzyNyynFBTADuXr2XmZRf22LYGsoK8bNRfNKF1enAoqIqpt1/ECNtczv36XDqsHWIoniD0opMumIKCgigtLSUqKuq415eUlBAQEOC2YL80b9485s37+QhKfHw8+fn5vPbaa6Jg6iUfvpaJr1OiTSdx5/xEueOclLNmxjJ+TDhvvroPXUkX3rUWPnhkO0mLEjlvUky3H08a7AGNoC619UBa4XhMNhM/lP4AwLmDz5U5jSD0vsYWIzt21VCU20RHZRdLtWYabK7PoAkmFZNtapw4addKqEJ0hMf78m5+DSVGM87DgwBaFE6+97Ay2aTCz6FgrlHDln9nUTUjgkvOT0Kpcu+SCSqVCsNYDWyE0IM6jOcZxMGObqooL8byYRl+dm9KfWoZd8cCNGotgWotD098mGd2PMP94+4XQ/EEoZecdMF01lln8cADD7B69Wo0Gs1R15nNZh566KGjipqe1tbWdsICzWw2Yzabj3zf3u4aGmC1WrFarT2a70R+2r7cOU7GtyuK8W204sDJ1CsSkSRnv8gN4KFTcPc9o9i0rYodXxTT5HDw728PsryojkcWDCG4G+tHxaSnwI46YlpDaGlpwsvL56jr+9Nr2l/s3LSByyrnsDfsEOkB6bL8bMXrOvD01dfU6XRyqLydPTtrqSluw1FvxtviREJCCfgBfnYHBm8lw6P8GBXgSbSnjrEjQwn01x95HP9sX/7wSSYSrjlLSJCrsVOgtpNuUTLRrMbbJtG0uppnN1Yz4pJ4Zo2NcOsw65HTp3Jo+zqCLH5sW76KKeef47bH/i199XXtrvqGGhreziLE5k+VRwMpt05DrdYeeV6zImcx66JZQP9/ricyUF5T4Wd97TU92RyS0+k8XjOdY1RWVjJ69Gi0Wi133nknKSkpOJ1OcnNzefXVVzGbzezevZvo6OjTCn4yCgsLGTVqFM8//zw333zzb97u0Ucf5bHHHjvm8o8++ggPD3G062QYTFC+wRMvh4LaQAujx5pPfKc+ymqDteUKfqiXcDgl/CQnF/spSEuyojjJA6yRe5yEWQJZn5CLd/Cx8/kE99JltZHWEceW0Gx08eFyxxEEt7JYoapOQbkVDpmhpFMipkvFOYajD0p2KB10eThQ+9oIjLAREeDkRA3uMpskvipV0Gr5+YZ+GicXxTpI9nKSna3Br16DA1jiYyLG18G5MQ5ivd33/Dora0ioDebT0FVMipqLSnL/wuIDjdFh5Mf6FdxTtohOpYGioUa0OrG/IgwMDicUtUu0W8FHDYN9TvxZ1tMMBgNXXnklbW1t+Pj4/ObtTrpgAtewuzvuuINVq1bx090kSWLOnDn8+9//JiGhe2sA3HfffTz77LO/e5vc3FxSUlKOfF9VVcW0adOYPn06b7311u/e93hnmKKjo2lsbPzdH0pvsFqtrF69mjlz5qBW99xY8tP14j924VluolMFNz8+Dm8vzYnv1Mfl1LRz/9fZRBWZyLCoaPVVsvCmVAbH+p3wvuvf/pIhpZHkxlYx/caFR13XX17T/qKxsQ7Ly4UoUWK6MYhBsfKsMSJe14FHrte0orqD3XvqKD/UirnOhJfBgQqJH3VWdutcw+wCUXCRRYc2VEdMkh+jR4QSHXlqVYzd4WR3WQv1HWZCvLWMHuR/VCvxmvouPlxVzHtFdVhsDnDC1V6+nHfuYIanBZ328zVbzFzw3QXUmep4YOwDLExYeOI7nYb+/rtqtBm588c72d+wn1GOoTwybTFR0bFyx5JVf39NhZ/9kF3HE9/nUdv+8355mI+WB+encFaafAeg29vbCQoKOmHB1K3DPXFxcaxYsYKWlhYOHToEQEJCwinPXfrLX/7Cdddd97u3iY+PP/L/6upqZsyYwcSJE1myZMkJH1+r1aLVHjvkSq1W95lfvL6U5dc2bKvEo9wISKRfEEeAv7xrLrlLRkwgS++cxJtvZmLLbMGvzc6Kfx7AZ1ww11019HfH8/umhkEp0GRBpVIddwhLX35N+5O8rXtIJIBy7zomJk6RO454XQegnnxNf9mc4WBuI4F72o40Z9Af/gIJo8JJSqgXcyeFMWqQP2kRvujUSrdkUAOTk357RyQm0o//u34k17YaeXlNAfu2VRNWZWH76zmsDdex8No0Ek/iQNJvbl+t5rph1/Hsrmd5L+c9FiYvRK3o+d+h/vi7arGaeXb1E+xv2Y+32pv75z1KXED/mC/cG/rjayr8bGVWDX/4JPOY9eHq2s384ZNMXrtqJPOGyjOK5GTfV6d0ftzf35+xY8eeyl2PEhwcTHBw8EndtqqqihkzZjBq1CjeffddFCc7hko4JRabg6e3FhKktZEW4MXZs+PkjuRWGpWSO28fyf7sBpa/nYWfAUzbG3kmayPn3zSMoSnHn0ibNno0lxRcSIW6lu86pjHIxz0L4wrH0uW49i7Nqf3/rKYw8P26OUOJ3coajWvpC6UT/mjT4YQjzRkiBvsxcmQoKQn+sv89i/TT89zFGWSmhrP8wzx8m21415j5/pk9WOM9WXTtsFNepHxh0kLezXyH9IpYtqxbzfTZ892cvv+z2+1seu1rrqqdRVlsCffMu5/kgL6zzqEgnA45F9N2p34xoLiqqorp06czaNAgnn/+eRoaGo5cFxYWJmOygeuNDUXkNXQRGKThlT+PljtOjxmeFkzac9N4978H6NrVhF+ng7Uv7WfztFBuviztmF9eTw8vwqNjqKitZUvVFlEw9ZCiglyiu0KwYSdj6gS54wjCUZxOJ2VNXWxeU051YSv2BhPe5qObM0QoJby8VYyI8WNkjD/Jai2jM0II+kVzhr4mIzWEjKdC2Litkk1fFuLX6UBVbOCTR7ejSvXl2hvS8fHs3gEMvUrP/eq7SKkNpq61Gdt0GypVv9j16BUOh4Mf3/6ClOpIbNi5O/UPjAwdKXcsQXCbnSXN1LQdXvfNCWlWJYfUdn6aXvnLxbQnDO67XR/7xafW6tWrKSwspLCw8Ji25t2YgiWcpNzSFv69thCAh89NJcDr5DvJ9UdqlYJbbhxO/vRmvnj9AOpOO6/vK2NFUyvPXZxBctjR8wcmRkxkZ+1OtlRt4cohV8qUemAr2XKQFMIpCa5lRuB0ueMIA4jd4WRHSTN7GiUCS5qZkBBywqOanQYru/bWkFfSyj6nhb3lLTR2Wri5XYuf46ezQxKdKnAEagiJ8+Hc4SE8kh7ap4+Y/papE6KYPC6CFWtKyfy+FF+TRENuK7P+uYE7ZyZw5bhBaLrRinz8vNlU7tvmWpfpxx+ZOGdOD6bvX9Z9/BUpxREAVM00M2nyWTInEgT3OrJIthNmG9WMsKgoVtn5ytNyZOmDo27XR/WLgum666474VwnwT3sNgdf/SuTS0xqGlK9OC8jQu5IvSZ5cAD3PzuVT9aXoNpYSGZlGwte2cRdCRHccuVQ9DrXr8vkwIl4VRoYcigO8xQTWq1O5uQDi91hJ7sjl3ClF/oRJzdkVxBOxsqsGh5blnP4aKeS9w/tJtxXxyPnph41fr68qp2du2soy2/BXGvEy+BAiYRJcrLKxwQSaJQKmkM06D21xCT5M3Z0GDGR8jYTcieFQsE5c+OZNzOWz78pYENWNQ1dRh5dlsO7G0u4NSGMSy9MQXUShZOXlw9VqZ0kH/RAtbUT+0w7SqV75mn1Z+u//paUg645ZofGNjNj7vkyJxIE9wvxPryPJIFFcuLESZnKccwQvSO366P6RcEk9J73P8rGr8uBJxJXz0ty67oc/YFCoeDKmYOZNTqSB77OoiKzEdXOZl7K3MiUK5OZPC6SxLBkrMYS/Gze5GTuZcTYiXLHHlB21e3iLd8v+CJoNWsmr5E7jjBArMyq4fYP9x7zR7q21cRtH+7l8rHRmK0O1LuaGdTpuk53+Oun5gwWPzX3z4xhdGKgW5sz9GVKlYLLF6aw8IIkPttdwctrDhFSZ6WlrJbnNteSNi+Gc8+KP+E8rNELZlKXvYsIYxC7N21g3PSZvfQM+qatq1aRsMMfgPy0OmZddLHMiQShZ4T56FAqJOwOJxt1Ng6p7dSofv4kloAwXx1j406tgVxvEQWTcERZZTst2+rRIqEbGUDy4L795u1JoT463rxmFJ99U0DFqkp8zBL73s1j58ZKbrljBHVh7fhVetOUVQmn3/9E+IVlRcsAmBM3F62mbx9xEvqHX0869rVLpFmURNoVhNsUvOlj4pOdFQBMsqqIQdUnmzPISa1UsGjcIC4aEcU77x3AvK8ZX7NE5TflPL2mgokXDmbG5JjfvL+vrz+7kttIydXj2NSMY6rjjP15bqrYRPOOUmIYQl58NTMXXSJ3JEHoEes2lbPiywLQOl2VkcQxxRLAI+em9vnhy6JgEo7432v78XVKtOkl/nZDhtxxZCdJEpddkEz1hEj++5/9+NRb0BZ18e/7NpOU4ZrX5F0pfoXcqaurg6rsIiStxHmDz5M7jjBA/HLSsc4Bizq1eP5i8Hy4XUGxwsHCkZEsSA4lPcaPwD7cnEFOeo2SO28ZQV1DF//7bxbKwk78uiDnw0K2LS9h7uXJjM44fjOmkQum05yXSXRXKHu3bWH0JPmXC+ht++v3c8+Ge7BH2fiL8hYuX3TLGVs4CgPbh5/m0PRjDbEoOM/bk3HnxvPy2kM/N4DAdWbp10Oi+yqxtycA8NWyQ/g22XDgZPbVqai7MaF3oIsI9eL+xZNZuryQgu/L8LZKNO3R4/B1EmkIpq6umqDg8G5PJBeOtW/TFp4ouZNcn1IygkXRLrjHLycTTzOp8XRKtCgc7NLaqFY5aFS4jnhOTQpmRkbf/8PdF4QGe3LPX8dRXNbG5+9n41FlxLfFzgdvHeSjybX8eU4S0QEeR90nIDCYvQnNdFQ3s60ql1HOyWfUsO+Cqjzu2HAHJruJydGTuXTGTWIulzDg2G0O/vWvPajzO1Ah0Rag4tG/j8PXW8slo6PZVljPqk07mDtlXL/aVxIFk0BTq5HCleV4ImFL9GbsSNGq/XguOCeBhgmRvPPqPrwqTZQqm4i3B/HlNxv5oCn4hBPJhROzZ7YBnihi9GfUjpTQs36aTBxlU5Bucf3ZW+FhpUrlOO7thJMXP8iXex+aSGZOA8s/ymOz2UTTviqWHajmquHR3Dg5lqjwnzuNpl82nbO/PhuL0cLFtbsYG35mjGmuKC/GsqSYS31msyethH9O/ydqpViIVRhYOrssvPLMDnwbrABYEr249+7RKA8fhFcqJMbFBdCU62RcXEC/KZYAxGkEgX99X0AbTjrUcPNtw+WO06cFB+i598GJDLk+id2eTQB41RhQN1rQ/WLfq7bNxO0f7mVlVo1MSfuf2ppKYltcxXrSVLEOieA+Y+MCiPDWMtfg2kHN1NiOKpYkILwfTDruyzJSg/m/J6bw7t0TmZIYhNXupHpTDV8s3snLL++iqdUIQIhXCAuTFgLwxoE35Izcaxoaaml4Ows/mzcTTMP515SX0avEkE9hYCmvauflB7fg22DFjhPvqSH8+S9jjxRL/d3AeBbCKdtT1sx/D1bykZeZ8den4NXNRQnPVDPHRTFlzjCy9UWUaou5sEvDDR06kiwKcHJkcvljy3KwO8RaYScjZ+MulCgo9aklOiZe7jjCAKJUSIyO9Wef1kaLwsFGnfXIdf1p0nF/kB7lxwc3juPD68cSo1Sjdkqocjt49/+28sab++k0WLk+7XqC7QGkZ0ZxcP9uuSP3qLa2Fopf20qI2Z96bQtxt07Az0cU5sLAklvTzi3v7EZrcmCSnAy5PIFrrhwqdyy3EkPyzmBmm537vjyI0wmXjI5i+sgzZ80ldzD7x/KX6LsINAUwSzmJQLuW8w1aKpV2NultVKoc/WL16r7A4XDglef6v32oOPIquFdpYxcrc+uxaB2U+iow/WJ9xP406bg/mZwczMQXpvHlN4coWleFt1XCtqeZV/dvImxSKPebbmNIcxSFq4tg+Gi54/YIg6GTg/9ZQ6whjFZVB8E3DCUkVLzPhIFlXV4df/hoH10WO94RHjxySTpDUwbePo8omM5gb7y2n/AyE+2BGh44Z4jccfqdpk4btq7BNPtk83HsGkZWzmWMWUWUXckVnUpKVXY266x9fvXqvqAwP4cIYxAWyUrG1AlyxxEGEIfDwUNfHcRiczAlMYh3rxvD9qKGfjnpuL9RKBRccmEylnMG89GnudRvr8fTLtGxsY6cIF+ScJDQFEFeViYpQwdWkxeL1czOV5eT0B5Bl8KI5qpBRA8SZ86FgcPhcPDWOwf4OK+GLpWDCfGBvHbVSPw8BuZIJTEk7wy1P7seZ3Yr48xq/jwsZsC+wXtSiLcOe1cyXnY9I5UmtuhtvOVjYp/Ghh0nsTYll3Vq+d+GErKr2+SO26cV7jwAQGlIPX5+A+/IlCCfT77IJ2V/JwkOJY+fPxSVUsG4uABGBfW/Scf9lUaj4rqrh3HHc1NQDPejTenka4uTdfoiAMqX58ic0L0cTgdLvnuF+MYwzJIFy8X+JKWkyR1LENzGYrHx/DPbse5u5txODVcOjeC/N4wd0PuS4gzTGchuc7D87Wz8kGj1U3L7+YlyR+qXxsYFEEcGbxa4VqxfIDXQodCzxsPKTq2NCWYVJsnJzhoT57yymfnDwrht9CDSk4NkTt632Bw2ntMuIXSQL3eP+7PccYQBpK6hi+r11fg5FFwQE0xskKfckc5oXp4abr9tJC1dFtSbi/l4WxuzcJDaEsW/713F6MuGMX5k/x6y5nQ6eXbns3zU/hEFkXlcPeJaxowcI3csQXCbhmYjS57ZiV+7HSdO9CP8eeLKjAG/ntjAfnbCcb33YRZ+BidWycmltw38N3lPUSok7lkwgUp1E0oUjNW2HLmuQ+lklYeV6Zcmcv7wCCQJ9u2rY8OLmTz9yGZyCppkTN63bKveRpO5iRr/FsYMnyR3HGEAee/1/egdEu0auPGmgTXkqz/z99Twt7NS+PCei8j0dHUSHW3VsmdJLk8/vIns/P77+fjmviV8lPcRAHPPuZAxk6fKnEgQ3CfvUDNvPboNv3Y7VpyEz4/m9ltHnhH7kQP/GQpHKSlvo21HAwAeowJJjPWTN1A/N29oOHUhBgDG/WLdoDBfHa9dNZLrJ8Xz8uUjWHn3VGYH+KJAwqfOwtp/7ufZx7dwqLRVpuR9x7LCZQCcHXc2aoVYl0Rwj3WbyvGqMgMw9uIE9DoxoKKvCfHRkXKJq5NWpEbCSwE+9VbWvrif557aSnlVu8wJu2f90mWkfuNHoNWX+8bex4L4BXJHEgS3+XFzBd+9uA8fCxiUTsbdlMrC85LkjtVrxF+QM8zHr2fi65Ro1Uv8/bp0ueMMCINGxUKVk7HWUIKSn+DqlD9z17j5R82NSA7z5vH/m8TWXdX8+OUh/FrteFWZ+f6ZPVgGeXDp1WkMivKR70nIpKO9jSvXTCHey5cpc8+VO44wQBhNNnZ8XogP0BmpZdbUGLkjCb8hMWUoq8P+R765kLphOnQHxuPXZsez3MRXj+/CNiOEW85PwUfXtw+mbF21ivjtPijw417vP3D2kMvkjiQIbrN0XxUrPs8j3aGkTQdX3DOauBhfuWP1KnGG6QyybGs5+mbXgmJnXTcE9QBZTExuqSNGYpYsBNn8CLV68WnJS7Sam49724ljInjgmWmkXZ1Iq7cCFRIeZUY+eHonTy3PobnL0svp5bV/0xaCbH6MMqcyJDRV7jjCAPHO25n4WMCocHKdWIy7zwtflM4bYV+wzP4x1zwYT+Jlg2n1kGhTOPnP3nKmPvcjSzYWYbLa5Y56XHu2biJinQYFCnLjqjjrkkvkjiQIbuF0Ovnnqnz+9Ol+Vuss1EZrufPxSWdcsQSiYDpjtJusPP5jAe/4mLGN9md0RpjckQYMnU5PvlcZAKM6UzHYDDyx/Ynfvc/0SdE88I/pJFwaT5uHxE6NjSWbSpjy7Dpe+CGPhmZjb0SX38FOADqSnGfEGGih55U2dlKQ7zpgET4tnNBg0eihrxsaPIxJEZOwO+28k/UOc2cM4v7npzHm+hQSQr1oNVh5dnkeT/9lPe99mIXFYpM78hFZ+/fgt8yCCiX54ZXMvOkS8VkmDAidXRYe+cc2/rW2EICbp8fz2P0T8fXWypxMHuK3+gzx7Io86jvMBIV4cMe1YvKzO/1Q+gPb9JkAjOpKxe60s6Z8DStLV57wvmfNjOW+56fxp1tHMDTShy6LnXU/lPLBA1v5z3/20No2cNdwqqosI641HAcOUqYOzIUrhd7ldDp56JtsvtFbyErScsUlKXJHEk7SLem3kGKII21dMDXVFSgUCuaPiWLln6byj4vTmaLUEWKR6Npczz//spHPl+bjcDiO3N/ucLKjpJk9jRI7SpqxO5w9nvlQQTaqzxvROjUUBlYx5baLUCqVPb5dQehpFdUdvPzgFkKLTcwwq3luYTr3nz0ExRm8DIOYw3QG+HFLBZs3V4IanrpwGDq1+EB3lyZjE4u3LcbDW4NJYWaPl2s9EQmJxdsWMyZ0DIH6319XSKFQMDMllBnJIfyQXcfmd3PQOoGDbbx1/xa8hgdw1aI0vDwH1voGeRt3k0wIpX61TI2cJnccYQD4NrOaTYca0agV/P2a4eJIfz8yMnQkf2y7iriOcLK/20r4La45QEqFxCWjozk7NYwP/5dF175mvK0S9SureGZDNSPPjYMQLY8ty6GmzQQoef/QbsJ9dTxybirzhvZMm/KK9nIqPt1Pkj2GUp9axtyxAI32zDzyLgwsuzNrWbckBz87mCQnl5+fzNwx0XLHkp34azLAGYxWtn9yiEu7tNwQEcyEwWJRUHdxOp08vv1xDDYDdZomVvpvoUHtai3uxInBeuKheb8kSRLzhobxyLPTCZgVToca9A4J+94WXvvbJt5+NxOD0dpTT6dXORwO/Apcx2uk9DOv2YXgfvWNBlZ9kIveAXfNSCBOrLnU73jNiAIgriSIhobao6/zUHPbzSO47qmJ2IZ4Y5Wc+BqdFH1WzNrXs6hvPfpsfG2bids/3MvKrBq352w0NnLrmttYHP4aewLzGHrHTDw9vdy+HUHobd+uKGLT69l42qFDDXP/mM7cGYPkjtUniIJpgHtzyX58rGBQOLntyqFyxxlQClsLWVu+Frvz6InIwVZ//lJ9LTqbhjXlayhsKezW46pVCq64ZAj3vDAV76khdCrBwyFh2tHEow9s4rNdFdjsjhM/UB+Wl5VJqCkAs2RhxFSx9pJw+t59fT+pXQout+i5dVq83HGEU5AxZjxl3rVonRoyl2087m0C/fTcffcYFj40FsMgPXacWAH7r0YK/TQg77FlOW4dntdmbuO21bdR0VGBzt+LCXeej5+fOBAp9H9vvr2fsm9K0TglWr0UXP/wOIYNCZY7Vp8hCqYBbO/BeqRc1zoWg2ZHERLkIXOigSXBL4FZMbNQSr8Y4uiEv1ddz+y2cbxU+ncW+JxFgn/CKT2+RqPimiuH8scXpqIbH4RB6WSrwszfvzzA7H9uYOnuCqy2/lk4rWpayyeBK8mOrcDLS5xhEk7P+i0VeFW6zjBMunAwWpUYdtwfKRQKNNNCARhUGEBzU8Nv3jY6wpvJlybxtreZH/U/n3nXO2CEWYnkdBVNNW0mdpYcv2tpdxkMnex/cQVhpV4E6gJZMmcJIR4hbnlsQZCLze7g0U8y6dzVhAKJzggt9zwxWTTM+RVRMA1QdpuDFe9mo0SizV/JxRckyh1pwJEkiYfGP4SHygOJw4c3JXg99HPqVE1EWUK5YddZ7Fi37rS2o9epuPG6dO74x1SuOz+ZQE8NpU0Gvvwgh+fvWc8XS/Nx9KMzTla7lS/rvuG/Id8SuEC8L4XTY7bY2PbpIQA6I7TMniaGj/RnoyZOptKzHr1Dy97l63/3tvUdJtqUTtqUP59BmmlUM9uoYVGnluDDp53qO06/eY7Fambnq98xuDWSu+qu4I0prxHjI9b3Evq3dpOVG/67m/f2V/K9pwUpw4+/PThBLPR9HKJgGqDe++AgfgYnFsnJpbdmiMnPPSRQH8jDEx7Gyc9/sIv0Fdwd9yz5PuXoHToiV6lZ897n2Gyn1wrX00PNTVPi2fj3GfxtThJpVhU+FqhbWcUzf1nPtyuKjuoa1VdtqtpEq7mVIH0Q48LHyR1H6OfeeuvnNZeuFWsu9XsKhQIm+wMQk+dLW1vLb942xFt39AVOqFA5MOEk3K7g6g4tk4wqfDSnd8bRbrez6fWvSWiMxCxZsC4MIDliyGk9piDILb+omRv+uYWNBQ3o1Ar+cv0I7rh9pNhf/A3ipzIAlVa1076zEQCvMUEkxPrJG2iAOyv2rKOG5iklJWPixzP1b5eSm1gNQEpeGFte/JLW1tMfGuKpVXHnrERufMI1+dkiOfE1QcU3ZTzz1w38sLbktLfRk6rX5TKmYygLBi1ApRBHsYRTl3uoGduBVgDCpoQTFiKGkAwEY6ZOI9uvmLdDlvJZ0ee/ebuxcQGE++o4Mn1JggNaO+/4mChQ21Ei+u4+iQAARWhJREFUMdGsZvtrOazdVH5KWRwOBz++8wXJVZHYsdN8jpphI8ec0mMJQl+xfksFy17Yx5gKO/EeWj6/dSLzhor1OX+PKJgGGKfTyZNr8lmht1Dvo+C6a4bJHWnA+2lonl6lB8BD5cGD4x9ErVYz58bLKJtpwCxZcHbauHbVtRS0FLhlu8EBrsnPlz86HnOCJ1ac+BqcFH5ewl8f38TuUveM23en1pYmJuWnsrjyDs71nSd3HKEfczqdfPZeFipcE5SvvEysuTRQKJVK7JcG873/Jv5b8D4Gq+H4t1NIPHJuKgC/7PnQpYBvPS38f3v3HR5FtT5w/Du7m91Nsuk9JCGhEwgdQpdeVNSL7SoooKIgFq5YwItgx3p/4lWxKxYuVlBQmtJraAFCJyQQIIUkpCdb5/dHIIIQSCDJpryf5+Exm5ydecezc3bfnXfO+cXNTKFGxdMKB749wssfbCW/pHIzja763wJaJYYCkNK/hK69+17VMQlRW/zvh/3s+vpQ6Sy8BoXPxnYlJszL2WHVepIw1TNLE9JYsT+DJFeVu5/ojItOurgm+Ln6Mb3bdEyKiemx0y9Ye6nXkKHYxwTxSctfOVqczOjfR7M06cqL2lZUSJA7TzwZy8jnulIU6YpZUVmWn89tH25i7Bdx7DqWU2X7ula71m7CRdVx0u00LVq1cXY4og5bvDuVedZ8dhnsjLivjZSR1DNDI4fS2LMxueZcvj/4fbnthrUNYc7oTgR7XVieF+xl5In7OjD2xR4UhBrIV1S+Ts5g8H/W8se+9ArFsHTVAlruKZ3U4Ui3bHoPlS95RN3lcDiYPXsb2X+mokMh11fHwy/2IipCkqWKkHqYeuR0VjGvLNgLwITrmtIy2MPJETUsQxoPwbbXxuCIwRf9rUWrtrwf+RFPr32aTamb2PnTSnR+efS7ZyQ6XdWchhGNPHlqag+OpRdwekMSP2xLYfXB03jtyCXIw8CQO1vQpb1zL7lr9xYDXhS1lg+34urlFlt5YdE+zBpoMyKSdtEy9W19o9VoeaDNA6xZspiwBVqKmxbh6nrpmV6HtQ1hcHQwm45ksHzdFob0iaVHs0C0mtLrTs/M6MXahHR+/30fx7OLeGDuNsb4+DB+TAxhIZd+n1yStIRnjs3kPt9baBsSw6CRt1fbsQpR3QqKrPz3tc14ZpReYTU3deeZf3VFK1+qV5j8n6pHPp+zk5tTFXq5ujGp/9VNZS2qj7fRmw8GfcBjERMZlXkDrQ6GsOHtnziTnVml+2kcZGLWyBj+nHIdd0QH08yqwSvbxuY5e5k1Yx179pc/VW91Op6cSGReMHYctOkrkz2Iq/d/8/eQmW+mSYA7E/rJmkv11fVRwxmTdTOtCiPZvGTFZdtqNQqxUb509leJjfItS5bO6ds2iGWT+/JQ3ya0tWoJTC7huxfj+Pp/+y6aLGf9yfU8u+5ZVEWloK+eAaNurfJjE6KmnM438/xrG/HMsGJHxb13IE88FSvJUiXJ/616YsWaY5hOlOCmKozr1wSji6xDUhvpNDrG93+YE4MslChmmp4JJXn2Rg4fSKjyfTX2c+eNezvT55EYcv1dUFDwzLCyevZuXnthAweO1Ow9TofX7QQg2TeNwKCQGt23qD9WbzhBwJYcbi/U89KINrLmUj2mdzGQ27k08fHbqcNsvrbpwV31WqZd35pn72pPrgGMqkLemjRmTV3HwcTS8TAhfjvHvt6GYofhkcN5NvZZKfcUddbBtHxueX8Dv5gLOKl30PKOpowd3dbZYdVJMgrUAwVFVrb/mFj6c5hR1iGpA3oOGow6LoQMwxkCzD5o5qazYfmyatlXh7aBPPtyH7o8GE2Ojw4NCh6pZpa/tZMXP91OWu61r1FyJQ6HA58jegB07b2rfX+ifjJbbGz6vnTSFL8AN3q1kFK8+q770EGcccnD1+rJ5mV/VMk2e3YNYcqbfaGdFzZUvPPsLHlzJ5/OXonuhyyuy+nMU+bxvNL7FTSKfEwSddPS9ce49YONnMwpppG/G/dPj2XogEhnh1VnyUhQD3z2UTweVijSqNz3cEdnhyMqqHmLNjSZ3ItE31MYVD2NV7qx7Iv52BzXtl5TeWI7BfPvWX1pN7YlOZ5aihX46nAafd9cxUuL93E6r/oSp93JOyikiGJNCR1696y2/Yj67bPPduNphhJZc6nBMBiNZHYoHRM9t6lYrOaq2a5ex6SHOzPg8XbkmDR4aRT6ndRhsruSZErjpnvuwUXrUiX7EqKmffL5Lg5/c4Q2eaXT7y94uBdNA+W+9mshCVMdt31XOsrBPAAih4QR4Ovq5IhEZXj7+NHriVs50DoNgGV5fzJhxQSyS6qvXK5P90b8+43r6PVwGzpF+WKxOfh8XRLvPrue/3s7jvTThVW+z1/Sf+PhJq/wY//NuLvLoC0q78CRbCy7ShcxDegdTEiQrLnUUMQOH0iuroAAizdxf6yq0m3HtA7ggSkt6eRtwahRSNFm81ixhg83nMJss1fpvoSobhaLjTdf3YQlLgsNCh19THx9Xzd83PXODq3Ok4SpDrPaHCybuw/t2ekhb72pubNDEldBp9MxaMztHL2thPX+u9iStoV/Lv4n+07vrdb99o4J5ruHuvP1/d0Y4O1BsE2D/nAB387YzLvvbiMrp7hK9mO2m1mWVFpuOKDtkCrZpmhYHA4HP326B5ezay6N/mdrZ4ckapCbm4n0mNIr4K5bzNhsVXcVPjf3DMmfbMLP4c5pfQ7fRrlxxm7kvyuPMOGltay6ygVvhahpWTnFvPncBtyOn33vbu/N08/1wCD3tFcJSZjqsG83JpNss2JWVO6a0F5uTK3j+nYZzLzr59HYszGFuXnkvref9Uurbr2mS1EUhT7NA/jkmd40ujGcPAMYVAXtvjy+nLaRD+bsIDf/whIYu0NlU2IWv8SfZFNiFnaHetl9bNy3FqvZQrB7MF2Du1bn4Yh66seFh/HOsWND5YZxsuZSQ9TthoFs9dzLfwK/4o/jVXMvU4mthO0fLqFRUQA5unz87ovmv/cPYs6oTkQZDbRPd7Dv2yO88eqmKvsCSYjqcDAxm49nbMI7144VlaDhjZg0sZOMlVVI1mGqo07lFPPmH4codLPTa0hTWXisnmjm04x5N8zjty+/JdwcBKvhj5Tv6Dv2FvQuhmrbr0aj4ZYbmzNiWFN++vUwR1edxMOqoO7K4ZM96/G5OZxRA5qy+mAGLyzaR+p5E0WEeBmZOSKaYW3LmfluWRbzsmaxK/aU3EAtKi2vxMrc+BRiNeDd0osObWSih4bIZPIk7QaV3fGH+GjPRwyJGnJN44nVYeXJNU+S4ZnC1IL7MI1qSkRkUwCGx4TQOcSLLz7YicspM+7Hi/ns3xtpeWNjbh4uS3aI2iXuSBar/y8eT7tCkUal59hW9OrWyNlh1Tvy6aUOcjgcPLdgD4UWO50b+3CPrENSr3jqPbnj/gc5EF16X1OrxFC2vPULmZkVW53+Wmh1Gu4Y2ZIp/7kOr37BFOjgjKLy0srDdJ/1JxO+2XFBsgSQllvCxG92sDQh9aLtZWVlEJUZjKtqpFNbWXtJVN6bSw+y12JmbZSW+8d3cHY4wolGtR6FycXEkZwjrDp+9fcyOVQHMzbMYM2JNRz1OIk6sREtWl041XKgvxvPzOhF09ujKNCBu13hxC/HeXXGOk6kFVzroQhRJX7ddYrRX8axXm8l1wAjn+ksyVI1kYSpDvph4SF8t+fih4bXRsag+dsCfaLu02q1DLr3dk4Os1KkKSEqN4STs7dyYM+uGtm/i4uW0f+MZvJ/+hJ9WxOCvQzkFFnRqzA630AbixblbCXeuYK8Fxbtu6g8b/eaTejQkmJKp0mzVjUSu6g/dhzL5pstxwB4cWQM7m4ya1lD5qn35N4moxmbcTOaeekXLThbEQ6Hg6Vz57N/XzxaRcvb171N59Au5bYfNjCKh1/rjbmpOw5UvDKszHtxCz/FHUdVL1+OLER1cTgcvLN4P4/9bycWm4PADv488mpvmjb2dnZo9ZYkTHVMRmYRx/84SaRNy72hATQPkhnH6rPYfgPQ3RdBmjELP6sX+nlZrFz9W43t36DXMap/E16/rR0AHc06Quwari/SMybfgJ+9NFlXgdTcEuKSLpzdz7jPCoA5Wj7oisoxW2z89k48XYt1jOwQSs+m/s4OSdQCdzS/nZuz+9E8N5ydmzdU+vmr5i+g3YFwZh2bzKudX+a68Ouu+BwPk54nnoql8/2tyTXATr2NKT/vYcwXW0nJLrqawxDiqhUUWXn9+Y0U/H4SVweM7xPFR/d0xlNmwqtWkjDVMV98sBM3h0KeHsaPb+/scEQNaNKsJS2e6MfhgJNk6s7w76Mv8MrmV7DarTUWQ05R6b52GGysNlopVlQCHBpG5xtobflrBp6M/L/K9Y4eOUh4QRA27LTt273GYhX1w+df7Ma3GGLNOqb0kxlARSk/v0CSm5V+MVO8Oq1SV5nWLFxEy92BAKR1LuH6NjdWat89u4Yy5c2+9L6xCXqdhrWHTjP6zXV8/Ek8Vlvlr3YJUVknUvOZPX09nhkWPB0KU7s14d83RKOVSqNqJwlTHbJ81TFMp0pnLIu9vRlurvKtfUPh6elN38m3k3BDNgXaYuYfnM8Dyx7g9Jnqv68JINDDCIBVga1GG597lHBMZ0ePwo1FegYXuaBV/2oHcHT9bgCS/NPw9w+qkThF/XAwMRvzzrNrLvUJolGwyckRidqk3Y19sChWIvOC2b0trkLP2bhiBVGbPQE40CaN/rfefFX7Nuh1TBrUnKWP9yE20od+uVqs27N546k1bN9VM+OxaJh27Mng21e24l2kYlZUWtzehDG3yRILNUUSpjqioNDCjp8TASgMNzKgT4STIxI1TavVcl/38fx3wH8xuZgIOWgi7T/b2Lt7R7Xvu1uULyFeRs59h1WkgR/cLWw0WFFR6WDR0c/sQrBnacJkd9jxP1r6s7GjlFKJinM4HPz4yflrLkU7OyRRywQGhXA0MgOAvJVXXidp+8b1hKzUoUHD/qiTDBh16zXH0CTAxLwHutM4NhCzouJdrLJhTgKzZ2+lqLjmrv6LhmHx8qOs/mAPJhvk62DAI+0YNjDK2WE1KJIw1RGffhSPhxWKtCr3PdzR2eEIJ+oX3o95w7/llvwB+Fg9cftfLmsX/16t+9RqFGaOKP3gei5pUhXY4GrjR3cLaVoHG/RWbnp/Pcv2prE9fTtTwt9iXvASOvbqVa2xifrlp19L11yyo3LDuGhZR0RcUvSNPbEqNprkhJAQv73cdgkJO/BaVIKLquNgyAn6339blb2mtDoN941pxz+mdSHXV4cWBd3+fGY/s47VG1KqZB9CfD5/L0k/J2FQFXLcNYx5LlaWV3ACeSeqA/aeyCE3MQ+AqCHh+Pu4Ojki4WxRPk1o+6/BHA48iYuqo8l6D/74cD4Ws/nKT75Kw9qGMGd0J4K9jBf83uyvp9U9zYiO9Ca/xMZDX2/n0x/+JFOXQ1E3PUajvF5FxWSeKSZ5+QkA1FaedGgT6OSIRG0V2iiCxPDSErjTfxy+ZJvDZw7zWPwU9rkdJdH3FH0mjESnq/rlJ6MivJj6cm8ChjSiWKPiaYGErw/x8hc7KDDbqnx/omGw2R08/+te3tyRTK5GJT/YwL9e7kVIkLuzQ2uQZOHaWs7uUHn2l70kmMzcFuTLpJtbODskUUuYPDzp+/jtrPnuF5rt9qNVciPi3v6VFvf3IjAotFr2OaxtCIOjg4lLyiYjv4RADyPdonzRahTu6BrBa0sOsGXlUdrviyXQI4BunaScSlTcRz/uw8MB+S7wyIMdnB2OqOVa3tCN3+fP5zuvZQRmxZB8JpnXcl/D5bgL7QLb8dCKhzhtz+THjuuY0/8D9IbqXfz7jpEtSe8TxhcfxJOTUcT8A6n8/p8zvPKPGPq3kuRflM/uUC94X20R4M6Un3az+uBp0IDPiHAmDm0uV9ydSBKmWm7uxmR2peTgYdTxxANSiicupNVqGXD3SLZGrMXz92Ii84JJe28Hpx5Kp0NY9bxetBqFHk39Lvq9i1bDczdG892xRKKS4FhxU/Z9VIz6j6PcMFgWVxaXF5+Sw6dH0/DxUHjtpraYZM0lcQXhjZuQ3LOAjKPZvL/zfXZm7KRALeDd9f9H/8JYTrudpplPM/47+D3cDTWzBEdQgDtTZ/Zi7f4MNixKICW7mAe/2MoYkzfjxreXCUzERZYmpPLCon1li8J7OhRGFurJ1tswmjT8544OXB8T4uQohaSqtdihpDP8sfAwigpTr29FkKfxyk8SDVLX3n1xfbApp1wzWeCzknGr7uP7g987ZWHF4MIiQnUuGI0WXB0KST8lMXv2Vpl2V5TLZnfw7M97UFW4rksoQ2RSG1FBD8Q8AMC6k+sosZbgZjcy7eg4Rh0fyoP5d/DhoA/xMnjVeFx9WweybHJfxveJok+JCz4nzcx/cQvffrfvqhbcFfXT0oRUJn6zoyxZCrEpjM43EGDX0KNEx+PXNZNkqZaQhKmWcjgc/PDRbnoV6LhbZ+KurvIBQlxeRGRT2jw5mNyOYHPYeGnzS7y58jXM5pIrP7mKZKSnEpkdDECL8ZEUhBlRzt4I/ca0tZxIza+xWETd8dm8BLJS8vFydeHfN8g0uaLimng3YYBbH55LeZBnTozj+RMTaWoO54w2j9CuzQlyd96SBm56Hf++IZr77m5DrgGMDoWcVWnMmraOQ0fPOC0uUTvYHSovLNrHua81W1q0/LPAgLuqkKFxMM/Dwldbj2N31PwXn+JikjDVUt//fAjvHDs2VG6/OxqNLEomKsDd3cTb/d5mcqfJuDqM9FzbhO1vLSYt9USN7H/v2i1o0ZDsmUbLli15ZnpPvPsHY0XFK9/OI3O2EJeUXSOxiLrh0NEzFG84zegCA091boy/qfruMxH1T1ZxFqm5p+hZ0IHe+R2JKWpOoaaY6RHv8XbSu2QVZzk7RHrHNmLKm30hxgsbKt65dn5/cwcffyoL3jZkcUnZpOaWoKjQu1jHTUV6dCgc0dmZ52EmX6OSmlsi75m1hCRMtVD66UJOrDwJgBLtJdNHikpRFIX7Y+7n/Q7/h7/Nm4j8IDLf383u7RVb4PFauO0vffO3t/lrZrxRd0bTd1IM8YEa4i1m7vpkMx+uSXRKuaCoXRwOBz9+vBsXFPLdtdw1rLmzQxJ1iKqqvLT5JQ7pk9lk2gWAWbHwfPgcjhpPUGQt4uXNLzs5ylIGvY5JkzrT77F25LhrcFEVrNuymfbiOg6ly5X3higjvwRU+Eehnh7m0ns2txqsLHS3YFX+1k44nSRMtdAXH8Tj6lDI08N4mSlKXKWuHXvj/lBzTrqdxtvmgecPRaxe8Gu11c8fPpBAo6IArIqN9n17XPC3TjGBzP53H27uEIrdofLh4oO8/Nx6MjKLqiUWUTf8vOgwXmfXXBo+NhqtTt6SRMUdyTnCn8f/xK7a+SToZzaadvFC2IckuB0BwK7a+eP4Hxw5c8TJkf6lfXQAU1/vi7GHP/kalSUlBdzw7jr+b8UhzDa7s8MTNajEagcFTugcWFFZ7GZhtasN9W8FRYEecv96bSDvTrXMsj+T8Eg1o6LS487muBplIkNx9cIjmtB2ymAOhpxEh5ZmW3xYOed7SkqKq3xfxzbsAyApMB1vn4tn0XM36Hjnzg68dHMbbijW45tp5YvnN7Nh66kqj0XUflk5xSSdXXPJ0dKTjjEy7bKonGbezRgYMRCtoiVVf5qXwj9ip+lA2d+1ipZBEYNo5tPMiVFeTKvTcP+Ydtzzcnd6tAnEaleZ/edhnpqxVha8bSAWbjvBzF/2AhBnsPGlh5n9+gsTZgUI8SpdukM4nyRMtUix2cb2hUkAFEW40a9XuJMjEvWBu7sH/R+9g8Ods7DjoFVKIxZ9+CVphWlVtg+bw8ZK63r2uR7FvVP5N1krisI9PSK5cWw0BTow2WDbZ/v57ItdMnNUA/P5h/G42RXydfDAg+2dHY6ogxRF4bnuz+Gmc0Phwq/lFRTcXdyZ3n26k6K7ska+7nxybxfeu7sjHbR6WmarJHx9iLdmbeJMrpRh1UcWi42339hM/OcHsFsdtA7xQFEgV3thifq5V/PMEdFo5R72WkESplrk3VVH+MlYwjFXlfsf7uDscEQ9otFo6H/7LWTdouO4MY33TN9y5+I72Zq2tUq2vyV1C4tcV/FSy0/p2KvXFdv36BLKuBe6k+urQ4dCyZYsXp+5QT4kNBAbt6fimlxajtnu5khM7nonRyTqKj9XP2b0mIHKhR84VVSe6/Ecfq4XX+2uTRRF4cZ2oXz4eE/yQwwoKLgeK+aTZzfy69JEZ4cnqtDJtALefHY9xqNFBDg0TGgeyuJH+zBndCeCvS4suwv2MjJndCeGtZUpxWsLSZhqib2ncvl47VGytCqDHmiDn7frlZ8kRCV16t6LiCk9CAwKIbskm/HLx/Pr6h+u+erOoqOLABgWOQy9rmIffgP93Jj6cm+0HX1woOJ52spH0zey60DmNcUiajeb3cEr6w+zwtVKTqiB62VRY3GNhkYOLSvNg79K8YZFDnNyZBUXHFi64G3UrZEU6MDdDikLjzFrxnpOphWUtbM7VDYlZvFL/Ek2JWbJlNN1xIa4k3z70ha8CxxYFJXAYY2Y8kBHtBqFYW1DWP/MAP43vjuz/9mB/43vzvpnBkiyVMvIDTK1gNXm4JV5u7A7VK6PCWZIm2BnhyTqsTCPML4a/hUvbHqBvPhUOi0NZtWe7+n5wE24urpVensFBXnodhRj8nDjpqY3Veq5Go2GCQ91ZNX642z932EKHCp3fbOVl/4Rw62dwyodi6j95m46xt7UfDy9dHz6ry7ODkfUA+dK87akbqHAWoCbzq1Wl+JdzvWDm9CreyM+nbMT/dFCPDMsfPbKFmLGtcToouXFxfvKFjmF0ntcZo6Ilg/XtdhX8xI4szYddxTyXWDogzEX3bOp1Sj0aFq7r4Y2dHKFqRb47Itd9DhipZ9Nz/Mj2jg7HNEAuOpcmdV7Frc2+gd27LQ82Yhdby3h5Iljld7WzrUbmJB6G/+X8jRt/dteVTz9e0cw6rlYUtu4U2RzMOWHXTzz/S4KCi1XtT1ROyWdyGP2soMATLu+NQEesuaSqBp+rn5M7zYdk2Jieuz0Wl+KdzleHgamPN2dDuNakWuANXoL//p+FxO/3XFBsgSQllvCxG92sDQh1UnRivJYbA5mvRNH/toMdCjk+mh54MUeMsFNHSUJk5MdOppDyfZsNChc1z6YQE+ZPlLUDEVRGDjyFs6MNJKnLSSsMJC8OfvZGbepUttRd5euIVLYvHSbV6tRsImPJ3TnX4NaoChwakMa7z67noQDzl94UlSN/30Qzz8zdQz08+LOLjKpjahaQxoPYarXVAZHDHZ2KFWiT2wjprx1HTdf37Tsd9EWLR3NWpSzlXjnCvJeWLRPyvNqkYy8Eu7+ZDPfnjpNgaJij/bkmZf64O8jt1vUVZIwOYHdobIlKZttGQo/fJKACwo5Jg333iVXl0TN69CtO94PR5Pino6H3R3fny2s/GFhhe5rOnXyOJE5pbPitezb+Zpj0WoUHh/UnC/v7kI7qw4vM6yYHc8PCw9e87aFc/306yG8sm2YVIVJw1qgkZmfhLgig4uWrpGlV8tcHTCw2IVBxXruKtDjby89h1QgNbeEuKRsJ0Yqztm4J40b/7uebcfOoLjp6PhQax57rIusM1fHSe/VsKUJqfR+fSUvvL2ApgvXElCgYkMlZGBIvT2ZivckcGzMWIr3JDg7lGpVsncvYR9/TMnevc4OpdJCG0XQ4cnrORh2Ei0aWmz3Y/avr1Nsu/R6Tef69OjCVWjQcNQ7lbCwyCqL57qYIG6b2oUcdwW9qpCx9CRvvbaZ4hJble2joupyv1ZGdZ6nZ3JLSFxWur6MvYUHnZxcktJQ+hQazvgL9bdfM/JLy/CKFVhntGJV7TSyaxmTZ+C6Yh0u6oXt6pO61KcOh4PPvtzN1vf34p1lpXmgiV8f6c2QDqEVen5DOVfrUp+er35+Qq+lliakMvGb0hrkQSf3YAnqA8Amo42X1hyptzXIub/8QtGWLeT++quzQ6lW+b8uwi3xKPmLFjk7lKvi6upG/4fv4Ei3M/zgt4LPc+dxz+/3cCL/xEVtz/Wpf5I7AEqMqcrjiYrw4slZfTA3K92Ha3IR//fsOg4n51T5vi6nrvdrRVXnefrZh/G42xUKdPDAgx2qfPuV1VD6FBrO+Av1t18DPc6W6isQb7BjPrWIgNM70SgK3cwu3JdnoJlFQ4Cp/t0TWFf6tKDIypsvb6JkcyY6FPp6mFg4qRdR/u4V3kZDOVfrSp/+ncySV0PsDpX3/reepjnZqKpKhL4xWQY3DIUnKXDk0KZQ5ZOvs+jzzAi0GgWNRoNO91f3WCzl3/yuKAouLi5X1dZqtaKql657vpa2RcdTsOXkgALZS5di12rJXroE46CBoIKrvz8uoSFX3C6AXv/XNNU2m+2ypWKVaevi4lJ2z83VtrWmpWHPyQUFzixfjkOrJe/3JXhff31pnYSHB5qg8r9NP3+7drsdu91ebludTodGo6n2tt0H9MXY1oulm9aSknqYx+c/yNPNphAd0gglLx+NVkPmogVofRpj0PlTRDFN3d3IP3AAl+C/ZnjUarVotaXT/DocDmy28q8OXa7tww+05Lc/jpH8ZzqexQo/vRFHtwda0K9VYKW2q6oqVqu1Qm0tJ09RkpV1Qb+eWbYctyFDQAUXHx9cw8MqtN3zz+XKtIXLn8tVMUac//otO0+X/I7nsKGggtbbGwL8r2mMiNuVgT45DxWFNsPCcNfYcBTZKnXeV8UYce5Y9S468pcsASBn6bKyPtV6e13w+oWqGSOu1PZK5+fVjBHWU6lYsrOxq45Ljr9aby9cw8KqfTy5lvO+om0vNQbnLFlaNgYrnp4ogQEV2m5lxojqOu8v1badj4bOahbm7BwcQN9jG/G2rOBYYGd2Rd+FB3puLtYy/7c9BN/SmtCza/rU1c8R1lOp2HNysDrslxx/z52rVT1GXE1bFxcXjqbk8+OHe/EoUbErDnTRJp4Y1QpNcQElxRe2/fsYcckxeOkSPIYOQUFB6+2NJiiwyseImm57/nHmLl0KQMGSpRSPHAkq6Hy8cWnUqNzt1waKerlXWD2Tl5eHl5cXubm5eHp61ui+NyVm4X1D77LHJ0N7s75v+S+OkFOn6Lt2XdnjH2+7Fbvu0vltQEYGA1auKnu88JabMRsvPXmET1Y2Q1asKHu8aMSNFLlf+hsQz9xchi9ZWvZ4yfBh5Hl5XbKtW2EhIxYtLnu8fPBgzvj5XrKtoaSEWxb+UvZ45YD+nA68dFKhtdm47cefyh6v7duH1NDyL2/fOf+7sp839OzJiYjybyy/9Ycf0Z09qbfEdiM5KqrctjcvWIjRbAZge+dOHGnevNy2Ny5ahHth6aKc8e3bc7B1q3LbDvt9CV55eQAktG3D3rblzzI3aPkK/LJLa9QPtGrJrg4dym3bf+VKAjNOA3C4WTN2dCn//qI+a9YSmlp6dTMpKpK42Nhy2/bcsIHwlNIrTqc6DWFdC59y23bbsoWopOTStiEhrLuub7ltO23bTvMjRwDICAxg1YAB5bZtciSLrtv+ACDL15c/hpR/g3ebhATaJpRe9s/19GTp9cPLbdty/wE67NoFQKG7G4tHjCi3bbPDh+m8fQcAJQYDv/zjlnLbRiYlEbslDgCbVstPt99Wbtuw4yn02rix7PF3/7yz3LZ1bYxwsSiM/Hl+2WMZI+r/GJESHsbGyyxkXV1jRPv4eFodKL3vUcaIujNG1MXPEQNWxHOg5Tiseg8KPBIodi//PjIZI0qdP0acr/WB/eU+pzpVNDeQkrwakpFfwhud78amlP4vb3RqvZMjEqLyXJoMAm3pt2/20/ucEoNHQUrZz0WuQU6JQVSezlro7BCEaFCsuoqXg4mrsydmAla9B6b8FPyz6ve9R9VGqyX0zTecHcUVyRWmGrIpMYu7PtlM05wTvLf6HaD0m6RzpvZ6kCTPUD66pzNdG/vU2Uvp57ctPnCAlPvuv6ht+Oef4RkTU6HtQu0uyQMoOXjwguPU2u0oQONvv8GlRYs6fynd4XCwecUqwnd6Y0CHmnuK4i1zsBdn4jj7vLRZE+nTd9QFz6uqkrxLtV26L4NXF+zl5lxXtIpKzIgw+vW4+BvDaym3yU9IKPf169a6dZWV25TXFqq/JA8ufv0C6Ox2Gn/7DcbWra96jEjPN3PbnA0UWhxM69+CO3o3rvB4AlVfknfuWFPHjC17bNdoUBWF8M8/w9iy5UXt62pJHkDh3r0kjx13UZtzx1oT40lNlOTBxa9hRVXROhw0/vYb9C1bVkvZbk2W5J1TcvAgJ8bdh/a815ZNqy3rU1VV+W1PGnE/JRNh0YGqUBSk5+5xrQkNdK9TnyNK9u8n8d4xF7U5/1x1VklesdXBy7/tZUlCOj3NrjT3NjHh0fa4GjVXNUZcagzW2u1Enh2Dq2uMqOm2545T43CgOa+vIn/6Edc2zpsluqK5gdzDVEO6RfkS4mVEySl97EBBZ7fjQEGDilljwMvPh54xkWgvMd2u0c2twvuqTNvK3CJa2bYOk6m0nEVRQFXL/mswmdCcF2Nltqu/cpMab6uWc5yK0YiLhwcul9zKxTRQa9sOuPNWNkeuxnNhPp5eYZiGvELR2jewZh9BA3x2ZC6dBv+z3MUiNVR8sKlI2xGxHjT28uK3D3bjZoHDv6SSeLSYCQ91vOxsk9py/3Ixw2Vev/q/DaqV2W5l2lbXeX9+20u+fgHFaETj5nbVY8Sri7Zx2mGgUxNvRg2PuWga8eoaey53Lqums5OTnD1WraqCw4HBZMLo7X3V272WttV1Luvc3Mp9/f79WKtzPKnK8768tpd7DetMpkp90Kmuc7kq2qomU2mydN5x6uz2C/r0tr4+9GkdwZcf7cJ0ogT3dBvfvb4bv56B3HNXmwrPxuvszxGK0Vjh129lY7iWc3n/4Wym/rKHXZkFaPVu9Ly5FWN7RZYlC1ez3SuNwbX5s0Fl2l5wnPDX8dYRUpJXQ7QahZkjoskxmMg2eHDYO4x329/KYe8wsg0e5BhMzBwRfclkqa7S+fmh9ffH2KYNwc8/j7FNG7T+/uj86u4K7Jdy7jgN0dGk/+MfGKKj691xqqrK/KKFTA9+HXNOIgDZvf9BcpgrZ9whQ2/m5c0v12hM7Vr58/ArvcgP1qNBgT25vDZ9HWkZVVP61RD6FarnPP150WF0cdl4ovDqyIuTJWdpKH0KDWf8hYbTrxXt06AAd56Z3pO2Y1qQawCjqlC44TSvPb2GbbvSnBR95dTGPl28/Ci//2cn0UkWAt31fPtALPf1aVLpZOnvGsq5Whv7tDKkJK+GLU1I5ZWFu0jJt5Vl1+EeOv59S3uGtQ1xSkzVyWGxoJy9XKyqKqrVikZfme936gaHxYINWLJkCcOHD0cH9eo4D585zMhfRwJgtGi5I+d6bIqNeX6/o3OATVf6gXjBTQto5tOsRmNzOBx8PW8fOevT0aFQqIUe97SkT/drn3GnvvfrOVV5nubkmfl42nrc7QqWlib+9a9uVRzttWkofQoNZ/yFhtOvle1Ti8XG51/uoXhnNnpVYZ2rlXaDI3h8YHPcDbW7yKi29KnD4WDOnJ2oe3JQUMh1Vbj7yc5ENqq6z5EN5VytLX16PinJq6WGtQ1hcHQwm45ksHzdFob0iaVHs8B6dWXpfOefCIqioNTDAQBKj1M5W3euKAoal4pevK4bmnk3Y2DEQFanrKZEb+erwHPrJyjYNKBVtPQP71/jyRKU1v+PGd2WuGh/Vn6xDw8rfD9vH4l2C2N6RpbVdl/Vtut5v55TlefpZx/uLFtz6eHxHaoguqrVUPoUGs74Cw2nXyvbp3q9jgkPdiTxWA7fzE0grrCYzWuPsnjXKaYPacWwjiHXfIWkutSGPj2TW8KcN+LwyrKhoFDQyMDkJ7vh5lq1sTSUc7U29OnVqp1nyWWYzWY6dOiAoijEx8c7O5yrotUoxEb50tlfJTbKt94mS6L+UBSF57o/h5vODYULX68KCu4u7kzvPt1J0ZXq1imYB17sQWaonmWuFp5ftI9H5u0kv6T8m61F1dq0LRX90dKSyNY3NsbDVD/f9IWoa5o29mbmjN58Nq4r4b6upOWUsPWz/bz27DoOJpY/FXZDtmvfaT58biNeWTZsqLj1DOCZ53pVebIk6oY6lzA9/fTThF5m/nwhRPXwc/VjRo8ZqFxYxaui8lyP58qd8KEm+fu4MuO5Xky7KRqdRuG33alMf34dcTvrRt1+XWa1OVj17QE0KOQGuHDTsKbODkkI8Tf9WwWyfPJ1TGoXho9DwSvHzpI3d/LBBzsoLil/NsGGZvneNH6cswtPCxRqVTqMacm4e2Ou/ERRb9WphGnJkiUsX76ct956y9mhCNEgDY0cysCIgWiV0nmctIqWQRGDGBY5zMmR/UVRFMb1iuL7CT3oozXSIgc2fbSXud/KGhnV6cu5u/EqVjErKqMeau/scIQQ5XDVa5kyqj19H40hx6TBBQV1dw7vPL2WP9Ycc3Z4TuVwqPxnxSEe/Ho7i40Wsjw1/PPZrlzXI8zZoQknqzP3MKWnpzN+/HgWLlyIWwWnuzSbzZjPrqoMpTd2Qel8/ZdbE6EmnNu/s+MQVaeh9Om0LtPYkrqFAmsBbjo3pnaZWiuPOSbExKuPdOar2bvwzrVTsC6DWYfX89DjHStVKtZQ+vVapOYUk74jCx8UPLr6ERrkWqv/f0mf1k/Sr5XTpoUPrV/pwXc/HSZjfTqeFoWD/0tk66oU7p3UnkBvo7NDrNE+zcwu5vVv9rDwdA4AN/YMY8qwluh1GnlNVaHadp5WNI46MUueqqpcf/319OrVi+nTp5OcnExUVBQ7d+6kQ4cO5T7v+eef54UXXrjo9/Pmzatw0iWEuNgeyx5+K/6NG11vpK2+rbPDuSy7A3bF6/FPL51+/IzOQUCnIoL9av3QV2d8flDD/iwN/dAyrLsZbZ2qXRBC5BfBwXgjwbkuHNPZWexl5qbGDmIDVRrCbdYnT2vI3emKya7ws8lMz1Y2ugXIe0RDUFRUxN13333FWfKcmjBNnTqV119//bJt9u/fz/Lly/n+++9Zs2YNWq22wgnTpa4whYeHk5mZ6bRpxc+xWq2sWLGCwYMHX7AKtqi7pE9rtz/WpJDwcxJuDgWLohIyOJRbR1x5Vj/p18v780AGE76NR6tRWDixO62CPZwd0hVJn9ZP0q/Xbt2WU7y/MZnt2QUAdG3kxZQeUXRuH+iUeGqiT3/65TBpf6bioioUaFV63duC2E7B1bIvUfvO07y8PPz9/Wv3tOJTpkxh7Nixl23TpEkTVq5cyaZNmzAYLlzLuUuXLowaNYq5c+de8rkGg+Gi5wC4uLjUik6C2hWLqBrSp7XT8EFNiG7lzzfv7MCzwM5/NyazX2vn2RtaY9Bpr/h86deL5eSZ+fq7g6DCA32iiAn3dXZIlSJ9Wj9Jv169Ab0b07dHOF9uTOb/VhzC83ARW/ceYEOTFO6f0BFvz4s/U9WE6uhTi8XGe+9ux3CkEBcUcjw03PdkV0KC3Kt0P+LSast5WtEYnJowBQQEEBAQcMV27777Li+//HLZ41OnTjF06FC+++47YmNjqzNEIUQ90jjMk6de7c1/f9jLyT0nmLvpGPEpObx7RwcaB5qcHV6d89mHO+mZCSEmVx4f2NzZ4QghqoBOq+GBPk24vm0wX769HU2mFePRIj6etp6mQ8P5x43Nau3aTRWVml7I529txTvfAYC5mTtPPdYZvb7O3NovalideMVHRETQtm3bsn8tWrQAoGnTpoSFycwlQoiK0+t1TBnVni/GdsXbzYUTx/KY//wWfvntiLNDq1M27/hrzaW+AxvjJh80hKhXQn3cePblPoTf3JgCHbjbFdJ+P1Hn125KOJnLM+9uwTvfgQUV/yGhPPFkrCRL4rLqRMIkhBBVrX+rQBY/2pthWjdMDoUTi47zn7fisFhkLZIrsdocrPz67JpL/i7cNFzWXBKivrppeFMefq031hYm7Khlaze9P28PFpvD2eFVys87TnDrnI2stRWz3xv6TmzLnSNbOTssUQfUyYQpMjISVVUvO+GDEEJcSZiPG9Of701RY1cADEcKeHPaepJTSpcgsDtUtiRlsz1TYUtSNnaHzJoEMPfrPWVrLt0tay4JUe95mPRMfqJb2dpNNgXejz/ODe+uY8vRLGeHd0Vmi4033t7C1O92YbY56N8qgFdm9KFz+yBnhybqCLn+KIRo0FyNOp6a1oPvfz7IyRUn8C508OOsrbj0DGB+ymlSc0sALV8d3kaIl5GZI6IZ1jbE2WE7TXJKHvlxmehR8OrmT2S4c2ccFULUnA5tAmn3hj8/rknGdX0ihzMKuPPjzdwX6Mf9d7elUXDtuxc05VQ+X729He9CB9fr9ESMCGfy4JZoGsJ86aLK1MkrTEIIUdXuGNmSQY+1I9cArg4F7frTuGRaLmiTllvCxG92sDQh1UlROt+8j3ahVxVyXRXuvSfG2eEIIWqYRqPhjv5NWDmlH3fHRtDMqsHvUBHzX9jCl1/vwV6LyvTWbDrB/Ffi8C50YFFU+g6N5ImhrSRZEpUmCZMQQpwV0zqASS/3Yq/RTorWQYru7Bu/WvrvXEHeC4v2NcjyvJUH0llcUkCG1sGAe1rhopO3ECEaKi83F179Rwwzbo8h1wBGVaFww2lee3oNW+PTnB0eX3y9h/i5B3GzK+S5wIBH2zFyhMzmKa6OlOQJIcR59mUU8LvRgs4A6tkvIf0dCrcVGDips3NC5+BEtpnNiZn0an7lZRHqiyKLjecW7uWUzoHh+lC6d2q4ZYlCiL/07R5G907BfDE3gaIdWXgXweYP97K2SbJT1m4qKrby37fiMJ00o0Mh10/HxKe74eNlrNE4RP0iCZMQQpwnI78EANt5FRthNg0eqkIrq45W1tLfbfnPbtZ46fCO8KB9zxC6tA2s0AK4ddXsJQc5mVNMI29XJg9u4exwhBC1iF6v46HxHTh6PIf5H+/GK9OG8WgR/3luPT3Ht2FomyAUpfrL4NJyS3j0y210OlWCioIS483UiR3r/LpRwvkkYRJCiPMEelz8LWSC3k6WxkyYXUOYTUOoTYNBVTDk2FFzcvh3YjqprtA+3JtYXw9aerrRIzYEP29XJxxB1YvbmYZxSRrdjToeuCla1lwSQlxSkwhvnn25L78uSWT/b8dYp7Pw1TfbGdAqkBduakO4r1u17TsuKZuHv91BZoGZM74uPN63KSOGypIHomrIu54QQpynW5QvIV5G0nJLyu5ZsimQ4uIgxcWBAoR4Gnl9YEv27T5NVnIexXo75mILcUnZuO7Lw2h2IWlBEvlGBX2wK41b+tI9NpTwUA9nHtpVsdscrPhqP94otHN3ZVB0sLNDEkLUcjcNb8qA6yLQrjvKR2sTWXkgg5yEbAZG+XPf/e1xNVbdx0+Hw8GnX+xm0b40Ml3stAr24ON7uhDhV33JmWh4JGESQojzaDUKM0dEM/GbHSj8NdEDwLmCkhk3RdOnbQh9YhsBME1VOZpZyNakbA6tPknB8WJMNgWvEiC5mIzkk/y67CT5LpDTw4fOLfzpFuVLhK9bjZSpXIsvv0nAu1jFoqjcJWsuCSEqyOTmwpNDW3JLx0a88MNuOu4phj25vPP0WrqMbMrgfo2veR8FhRbeeyMOj3QLA3GhRTd/XhrdQa6CiyonryghhPibYW1DmDO6Ey8s2nd2HaZSweWsw6QoCk0DTDQNMEG3CACSjueyJS6VlENnsKYX42lW0dhg/q5TzN99CoARNiMhRj0BUZ7EdAykc7ugWjXz3LETeeRuOY0BBVNXf6IivJwdkhCijmkWaGLuxO7874cDpK5JxdOicGh+IttXn+CeCe2veu2mg4nZ/PTfeLxKwIGKsZMvb45tL/criWohCZMQQlzCsLYhDI4OZtORDJav28KQPrH0aBaItoLrd0RFeF2QYGRkFbE1IYMJRSVsS85md0ou4YXgXmDFkpnF9q1ZbFT2UeypwzvCROsOgfSKDXXqRBLffrQLr7NrLj11r6y5JIS4OhqNhlF3RpMxMJIvP4rHLaUYjzQz81/Ygm/PQO69qw3aSnxZtOSPJPb9fBQvh0KxRiXm9qYM7R9ZfQcgGjxJmIQQohxajUJslC9Z+1Vio3wrnCxdSqCfGzdcF8kNZx8Xm21s2HySA3syyU0pwC3PVjqRRK4d9uTy574zTFiSQIcwb7pG+RDtYiC2UzD+NTSRxK9LE/E6bcWByoDRrWvVlS8hRN0U6O/G0//uydpNJ1g//xBeZoWCDRmMPZ3Ds3e1p3WIZ1lbu0NlS1I22zMV/JKy6dEsEI0CH360E1v8GYyUfplz++OdaB7p7byDEg2CJExCCOEErgYdg65rzKDrSuv4LRYb23efZk98OplJeaRaLVhsDuKSs9mZlM1juUaOfn+UfIOCS9lEEiFENPK8wp4qr9hi5+d1x+iIiq2JO907y5pLQoiq07dHGN07l67dtHn/adZl5HHjf9dzX69IHhvQnA2JmeeVRGv56vA2gjwNNPJ2xfVgAT1xIT/EwGNPdcPk5uLswxENgCRMQghRC+j1Onp0CaFHl9LkRFVVkrOK2JqUzc6EDAq35+JhAy8zcKyY08dOsmh56UQSlibutOoTStdIXyL9rn0iidl/Hma1vZjUUCPfTehYBUcnhBAXOrd20825Jby4eC+/70nj59XJaH5PZaXBQqqL46+ZdlRIzzOTnmdG5wYDe4Uz8bZWcr+SqDGSMAkhRC2kKApR/u5E+btzR9dwGAfJKXls2XqK4wfPYE0rnUjCw6rwx/EzfP5jJgBNjAYG2fT4R3oS0yGILh2uPJGE3aESl5RNRn4JJVY7n6xNBOCp29ri7Wmo9mMVQjRcwV5GPhjVmVUHM/j94z142hVuKTKQqLPzp6sVP4dCZ7OOn90t2BXwctcz5rbWaK6hRFqIypKESQgh6ojIcE8iw/8qwTudXcymuFP0LC5Bl57LrpRcTLk2vIo1WDOz2bEtm03nTSTRsq0/3buGXlDCsjQh9a/SFxWGFrsQpNcQGOXBoOggZxymEKIB6t8yEO5rw6cf7yLWrKOpTUtEvgYdoKDQxaxji9FGVkHpmnc9mvo5O2TRgEjCJIQQdVSArys3DftrJfsSq50t8ekkxKWSc7wA179NJHFwTy5vLD6AZxMPukb5orHY+XRDMuazX9S2t2hpZ9HR0qLlw+O5LE1IvWgKdSGEqC55VjsbXG3s19sZVOxCY1vpLKE79Ta2Gmxl7TLyS8rbhBDVQhImIYSoJ4wuWq7rGsp1XUMBsNocbN+Vzp6d6ZxOzkd3xsIxxYb52Bm2HTtD72Idj5qNnNaonNA5iLaUfjhZ72rFqsALi/YxODr4mmYHFEKIigr0MAKQrVX53t1CU5sGFTjq4rhkOyFqiiRMQghRT7noNHTvHFI2y53D4eCO7GLikrP5bfcpTDtzUVAIdCgEWkrvc0rTOtipt6MCqbklUvoihKgx3aJ8CfEykpZbgqpA4t8SJYXSe566Rfk6J0DRYEnCJIQQDYRGoyHS351If3cMOg2PH8pktcNKI5uGMJsWL4fCGlcr6nkXlKT0RQhRU7QahZkjopn4zQ4UQD3vb+eGpZkjouWqt6hxMh+jEEI0QOdKWgo1cEjvYKWblQUmC9la9ZLthBCiJgxrG8Kc0Z0I9rpw7An2MjJndCe5r1I4hVxhEkKIBuiC0pdL/F1KX4QQzjKsbQiDo4PZdCSD5eu2MKRPLD2aBcqVJeE0coVJCCEaoHOlL/BXqcs5UvoihHA2rUYhNsqXzv4qsVG+MhYJp5KESQghGigpfRFCCCGuTEryhBCiATtX+hKXlE1GfgmBHqVlePJtrhBCCFFKEiYhhGjgtBpFpg4XQgghyiEleUIIIYQQQghRDkmYhBBCCCGEEKIckjAJIYQQQgghRDkkYRJCCCGEEEKIckjCJIQQQgghhBDlkIRJCCGEEEIIIcohCZMQQgghhBBClEMSJiGEEEIIIYQohyRMQgghhBBCCFEOSZiEEEIIIYQQohySMAkhhBBCCCFEOSRhEkIIIYQQQohySMIkhBBCCCGEEOXQOTuAmqSqKgB5eXlOjgSsVitFRUXk5eXh4uLi7HBEFZA+rZ+kX+sf6dP6Sfq1/pE+rX9qW5+eywnO5QjlaVAJU35+PgDh4eFOjkQIIYQQQghRG+Tn5+Pl5VXu3xX1SilVPeJwODh16hQeHh4oiuLUWPLy8ggPDyclJQVPT0+nxiKqhvRp/ST9Wv9In9ZP0q/1j/Rp/VPb+lRVVfLz8wkNDUWjKf9OpQZ1hUmj0RAWFubsMC7g6elZK14woupIn9ZP0q/1j/Rp/ST9Wv9In9Y/talPL3dl6RyZ9EEIIYQQQgghyiEJkxBCCCGEEEKUQxImJzEYDMycORODweDsUEQVkT6tn6Rf6x/p0/pJ+rX+kT6tf+pqnzaoSR+EEEIIIYQQojLkCpMQQgghhBBClEMSJiGEEEIIIYQohyRMQgghhBBCCFEOSZiEEEIIIYQQohySMDnB+++/T2RkJEajkdjYWOLi4pwdkrgGa9euZcSIEYSGhqIoCgsXLnR2SOIazZo1i65du+Lh4UFgYCC33HILBw8edHZY4hrNmTOHdu3alS2Y2KNHD5YsWeLssEQVeu2111AUhcmTJzs7FHENnn/+eRRFueBfq1atnB2WuEYnT55k9OjR+Pn54erqSkxMDNu2bXN2WBUiCVMN++6773jiiSeYOXMmO3bsoH379gwdOpSMjAxnhyauUmFhIe3bt+f99993diiiiqxZs4ZJkyaxefNmVqxYgdVqZciQIRQWFjo7NHENwsLCeO2119i+fTvbtm1jwIAB3Hzzzezdu9fZoYkqsHXrVj766CPatWvn7FBEFWjTpg2pqall/9avX+/skMQ1OHPmDL169cLFxYUlS5awb98+3n77bXx8fJwdWoXItOI1LDY2lq5du/Lee+8B4HA4CA8P59FHH2Xq1KlOjk5cK0VRWLBgAbfccouzQxFV6PTp0wQGBrJmzRr69u3r7HBEFfL19eXNN9/k/vvvd3Yo4hoUFBTQqVMnPvjgA15++WU6dOjAO++84+ywxFV6/vnnWbhwIfHx8c4ORVSRqVOnsmHDBtatW+fsUK6KXGGqQRaLhe3btzNo0KCy32k0GgYNGsSmTZucGJkQ4nJyc3OB0g/Xon6w2+3Mnz+fwsJCevTo4exwxDWaNGkSN9xwwwXvr6JuO3z4MKGhoTRp0oRRo0Zx/PhxZ4ckrsGvv/5Kly5duP322wkMDKRjx4588sknzg6rwiRhqkGZmZnY7XaCgoIu+H1QUBBpaWlOikoIcTkOh4PJkyfTq1cv2rZt6+xwxDXas2cPJpMJg8HAhAkTWLBgAdHR0c4OS1yD+fPns2PHDmbNmuXsUEQViY2N5csvv2Tp0qXMmTOHpKQk+vTpQ35+vrNDE1fp6NGjzJkzh+bNm7Ns2TImTpzIY489xty5c50dWoXonB2AEELUZpMmTSIhIUHq5+uJli1bEh8fT25uLj/++CNjxoxhzZo1kjTVUSkpKTz++OOsWLECo9Ho7HBEFRk+fHjZz+3atSM2NpbGjRvz/fffS/lsHeVwOOjSpQuvvvoqAB07diQhIYEPP/yQMWPGODm6K5MrTDXI398frVZLenr6Bb9PT08nODjYSVEJIcrzyCOPsHjxYlatWkVYWJizwxFVQK/X06xZMzp37sysWbNo3749s2fPdnZY4ipt376djIwMOnXqhE6nQ6fTsWbNGt599110Oh12u93ZIYoq4O3tTYsWLThy5IizQxFXKSQk5KIvplq3bl1nSi0lYapBer2ezp078+eff5b9zuFw8Oeff0oNvRC1iKqqPPLIIyxYsICVK1cSFRXl7JBENXE4HJjNZmeHIa7SwIED2bNnD/Hx8WX/unTpwqhRo4iPj0er1To7RFEFCgoKSExMJCQkxNmhiKvUq1evi5bnOHToEI0bN3ZSRJUjJXk17IknnmDMmDF06dKFbt268c4771BYWMi4ceOcHZq4SgUFBRd865WUlER8fDy+vr5EREQ4MTJxtSZNmsS8efP45Zdf8PDwKLvH0MvLC1dXVydHJ67WtGnTGD58OBEREeTn5zNv3jxWr17NsmXLnB2auEoeHh4X3Vvo7u6On5+f3HNYhz355JOMGDGCxo0bc+rUKWbOnIlWq+Wuu+5ydmjiKv3rX/+iZ8+evPrqq9xxxx3ExcXx8ccf8/HHHzs7tAqRhKmG3XnnnZw+fZoZM2aQlpZGhw4dWLp06UUTQYi6Y9u2bfTv37/s8RNPPAHAmDFj+PLLL50UlbgWc+bMAaBfv34X/P6LL75g7NixNR+QqBIZGRnce++9pKam4uXlRbt27Vi2bBmDBw92dmhCiPOcOHGCu+66i6ysLAICAujduzebN28mICDA2aGJq9S1a1cWLFjAtGnTePHFF4mKiuKdd95h1KhRzg6tQmQdJiGEEEIIIYQoh9zDJIQQQgghhBDlkIRJCCGEEEIIIcohCZMQQgghhBBClEMSJiGEEEIIIYQohyRMQgghhBBCCFEOSZiEEEIIIYQQohySMAkhhBBCCCFEOSRhEkIIIYQQQohySMIkhBCi3hk7diy33HKLs8MQQghRD+icHYAQQghRGYqiXPbvM2fOZPbs2aiqWkMRCSGEqM8kYRJCCFGnpKamlv383XffMWPGDA4ePFj2O5PJhMlkckZoQggh6iEpyRNCCFGnBAcHl/3z8vJCUZQLfmcymS4qyevXrx+PPvookydPxsfHh6CgID755BMKCwsZN24cHh4eNGvWjCVLllywr4SEBIYPH47JZCIoKIh77rmHzMzMGj5iIYQQziQJkxBCiAZh7ty5+Pv7ExcXx6OPPsrEiRO5/fbb6dmzJzt27GDIkCHcc889FBUVAZCTk8OAAQPo2LEj27ZtY+nSpaSnp3PHHXc4+UiEEELUJEmYhBBCNAjt27dn+vTpNG/enGnTpmE0GvH392f8+PE0b96cGTNmkJWVxe7duwF477336NixI6+++iqtWrWiY8eOfP7556xatYpDhw45+WiEEELUFLmHSQghRIPQrl27sp+1Wi1+fn7ExMSU/S4oKAiAjIwMAHbt2sWqVasueT9UYmIiLVq0qOaIhRBC1AaSMAkhhGgQXFxcLnisKMoFvzs3+57D4QCgoKCAESNG8Prrr1+0rZCQkGqMVAghRG0iCZMQQghxCZ06deKnn34iMjISnU7eLoUQoqGSe5iEEEKIS5g0aRLZ2dncddddbN26lcTERJYtW8a4ceOw2+3ODk8IIUQNkYRJCCGEuITQ0FA2bNiA3W5nyJAhxMTEMHnyZLy9vdFo5O1TCCEaCkWVpdCFEEIIIYQQ4pLkKzIhhBBCCCGEKIckTEIIIYQQQghRDkmYhBBCCCGEEKIckjAJIYQQQgghRDkkYRJCCCGEEEKIckjCJIQQQgghhBDlkIRJCCGEEEIIIcohCZMQQgghhBBClEMSJiGEEEIIIYQohyRMQgghhBBCCFEOSZiEEEIIIYQQohz/D+pgH4Tlh88TAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAIjCAYAAAAwSJuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hTZ//H8XcS9ggbGSLTjXvjnjjqatUOW0Wr3bvWalsH2vbXYWv3fmrV1mp3beusde+9xYWAiCLI3iTn9wcPeUwRBQUPge/runJJTs74nJwk5ptz3/fRKIqiIIQQQgghhBCiDK3aAYQQQgghhBCippKCSQghhBBCCCHKIQWTEEIIIYQQQpRDCiYhhBBCCCGEKIcUTEIIIYQQQghRDimYhBBCCCGEEKIcUjAJIYQQQgghRDmkYBJCCCGEEEKIckjBJIQQQgghhBDlkIJJCCFuwblz59BoNHzzzTdqR7ll33zzDRqNhnPnzqkd5boWL15MkyZNsLa2xtXVtUrXHRUVhZOTU5WusybZsGEDGo2Gn3766YbzRkVFERQUVP2hajF5DoWoHaRgEkKUq/QLdHm3HTt2qB2xQo4dO8bs2bNvqRBYsmQJ7733XpVluhVFRUV4enrSrVu3cudRFIWAgADatm17G5NVvxMnThAVFUVoaChffvklX3zxxQ2X2bp1KyNHjqRevXrY2toSFBTEww8/THx8/G1ILGqb630mXn3bsGGD2lGFEFXESu0AQoiab86cOQQHB5eZHhYWpkKayjt27BjR0dH06tXrpn/tXbJkCUeOHOGZZ54xmx4YGEheXh7W1ta3HrSCrK2tGT16NJ9//jlxcXEEBgaWmWfTpk2cP3+eZ5999rbluh02bNiA0Wjk/fffr9Dr78MPP+Tpp58mJCSEJ598El9fX44fP85XX33FsmXLWLFiBREREbchuagtFi9ebHZ/0aJFrF27tsz0pk2b8uWXX2I0Gm9nPCFENZCCSQhxQ4MGDaJ9+/Zqx6iRNBoNdnZ2t327Y8eO5bPPPuP7779n2rRpZR5fsmQJWq2We+6557Znq07JyckAFWqKt3XrVp555hm6devGqlWrcHBwMD326KOP0rVrV0aNGsXRo0dxc3Orrsg3pbi4GKPRiI2NjdpR6qycnBwcHR3LTL///vvN7u/YsYO1a9eWmS6EqD2kSZ4Q4pbNmjULrVbLunXrzKY/9NBD2NjYcPDgQeB//SeWLVvGSy+9hI+PD46OjgwbNoyEhIQy6925cycDBw7ExcUFBwcHevbsydatW8vMl5iYyIMPPoifnx+2trYEBwfz6KOPUlhYyDfffMPo0aMB6N27d5nmMr///jtDhgwxLRsaGsrcuXMxGAym9ffq1Yu//vqLuLg40/KlZ6rK68P0zz//0L17dxwdHXF1dWX48OEcP37cbJ7Zs2ej0Wg4ffo0UVFRuLq64uLiwoQJE8jNzb3uc961a1eCgoJYsmRJmceKior46aef6N27N35+fhw6dIioqChCQkKws7PDx8eHiRMnkpqaet1tQElBOHv27DLTg4KCiIqKMpuWnp7OM888Q0BAALa2toSFhfHmm29W+Bf2Tz75hObNm2Nra4ufnx+PP/446enpZtucNWsWAF5eXuVmKzV37lw0Gg0LFy40K5YAQkNDeeutt0hKSuLzzz8vs+zZs2eJjIzE0dERPz8/5syZg6IoZvMsXbqUdu3a4ezsjF6vp0WLFrz//vuVfk5KX0Pz5s3jvffeIzQ0FFtbW/bv34+VlRXR0dFl8sXExKDRaPjoo48AuHLlClOmTKFFixY4OTmh1+sZNGiQ6b33bwaDoULvwX8zGo289957NG/eHDs7O+rVq8fDDz9MWlqa2Xx79uwhMjIST09P7O3tCQ4OZuLEiTdcP9z4dfDEE0/g5OR0zffIvffei4+Pj9n7d+XKlab3orOzM0OGDOHo0aNmy5X2XTtz5gyDBw/G2dmZsWPHVijv9fy7D9PVx/rjjz8mJCQEBwcHBgwYQEJCAoqiMHfuXOrXr4+9vT3Dhw/nypUrZdZbkX0SQlQhRQghyrFgwQIFUP7++2/l8uXLZreUlBTTfIWFhUqbNm2UwMBAJTMzU1EURVm1apUCKHPnzjXNt379egVQWrRoobRs2VJ59913lWnTpil2dnZKo0aNlNzcXNO869atU2xsbJQuXboo77zzjjJ//nylZcuWio2NjbJz507TfImJiYqfn5/i4OCgPPPMM8pnn32mzJgxQ2natKmSlpamnDlzRnnqqacUQHnppZeUxYsXK4sXL1YuXryoKIqijBgxQhkzZozy9ttvK59++qkyevRoBVCmTJli2saaNWuU1q1bK56enqblf/31V0VRFCU2NlYBlAULFpjmX7t2rWJlZaU0atRIeeutt5To6GjF09NTcXNzU2JjY03zzZo1SwGUNm3aKHfeeafyySefKJMmTVIAZerUqTc8Pi+99JICKEeOHDGbvnz5cgVQvv76a0VRFGXevHlK9+7dlTlz5ihffPGF8vTTTyv29vZKx44dFaPRWOZ4X50RUGbNmlVm24GBgcr48eNN93NycpSWLVsqHh4eyksvvaR89tlnyrhx4xSNRqM8/fTTN9yX0ueiX79+yocffqg88cQTik6nUzp06KAUFhYqiqIov/76qzJy5EgFUD799FNl8eLFysGDB6+5vpycHMXKykrp1atXudvMz89XbG1tla5du5qmjR8/XrGzs1MaNmyoPPDAA8pHH32k3HHHHQqgzJgxwzTfmjVrFEDp27ev8vHHHysff/yx8sQTTyijR4+u9HNS+hpq1qyZEhISorzxxhvK/Pnzlbi4OKVPnz5Ks2bNymSPjo5WdDqd6XW8e/duJTQ0VJk2bZry+eefK3PmzFH8/f0VFxcXJTEx0bRcZd6D48ePVwIDA822O2nSJMXKykqZPHmy8tlnnykvvvii4ujoaHacLl26pLi5uSmNGjVS3n77beXLL79UXn75ZaVp06blHotSFXkdbNq0SQGUH374wWzZnJwcxdHRUXn88cdN0xYtWqRoNBpl4MCByocffqi8+eabSlBQkOLq6mr2Oh8/frxia2urhIaGKuPHj1c+++wzZdGiRTfMqyiK8vjjjyvlfZ3693NYeqxbt26tNGvWTHn33XeVV155RbGxsVE6d+6svPTSS0pERITywQcfKE899ZSi0WiUCRMmmK2zovskhKg6UjAJIcpV+gX6WjdbW1uzeQ8fPqzY2NgokyZNUtLS0hR/f3+lffv2SlFRkWme0i9r/v7+psJKURTlhx9+UADl/fffVxRFUYxGo9KwYUMlMjLS7At9bm6uEhwcrPTv3980bdy4cYpWq1V2795dJn/psj/++KMCKOvXry8zz9VfEEs9/PDDioODg5Kfn2+aNmTIkDJfHhXl2gVT69atFW9vbyU1NdU07eDBg4pWq1XGjRtnmlb65XDixIlm6xw5cqTi4eFRZlv/dvToUQVQpk+fbjb9nnvuUezs7JSMjIxy9/H7779XAGXTpk2mabdSMM2dO1dxdHRUTp48aTbftGnTFJ1Op8THx5e7H8nJyYqNjY0yYMAAxWAwmKZ/9NFHZoWfovzvObt8+XK561MURTlw4IAC3LBYa9mypeLu7m66P378eAVQnnzySdM0o9GoDBkyRLGxsTFt9+mnn1b0er1SXFxc7ror+pyUvob0er2SnJxsNu/nn3+uAMrhw4fNpjdr1kzp06eP6X5+fr7Zc1e6XltbW2XOnDmmaRV9D5Y+F1e/5jdv3qwAynfffWe2ndIfR0qn//rrrwpwzffk9VT0dWA0GhV/f3/lrrvuMlu+dB9KX9NZWVmKq6urMnnyZLP5Ll68qLi4uJhNLz3u06ZNq1RmRbm5gsnLy0tJT083TZ8+fboCKK1atTL7zLz33nsVGxsb02dRZfZJCFF1pEmeEOKGPv74Y9auXWt2W7lypdk84eHhREdH89VXXxEZGUlKSgoLFy7EyqpsV8lx48bh7Oxsuj9q1Ch8fX1ZsWIFAAcOHODUqVPcd999pKamkpKSQkpKCjk5OfTt25dNmzZhNBoxGo389ttvDB069Jp9rDQazQ33zd7e3vR3VlYWKSkpdO/endzcXE6cOFHh56hUUlISBw4cICoqCnd3d9P0li1b0r9/f9M+Xu2RRx4xu9+9e3dSU1PJzMy87raaNWtGmzZtWLp0qWlaTk4Oy5cv54477kCv15fZx/z8fFJSUujcuTMA+/btq/Q+XsuPP/5I9+7dcXNzMx2vlJQU+vXrh8FgYNOmTeUu+/fff1NYWMgzzzyDVvu//5YmT56MXq/nr7/+qnSerKwsALPX2bU4Oztf83l+4oknTH9rNBqeeOIJCgsL+fvvv4GSPlQ5OTmsXbu23HVX9jm566678PLyMpt25513YmVlxbJly0zTjhw5wrFjx7j77rtN02xtbU3PncFgIDU1FScnJxo3bnzNY3yj92B5++Pi4kL//v3N9qddu3Y4OTmxfv1603MD8Oeff1JUVFTu+v6toq8DjUbD6NGjWbFiBdnZ2ab5li1bhr+/v2n0yLVr15Kens69995rllen09GpUydT3qs9+uijFc57K0aPHo2Li4vpfqdOnYCS/lFXf2Z26tSJwsJCEhMTgZvbJyHErZNBH4QQN9SxY8cKDfrwwgsvsHTpUnbt2sXrr79Os2bNrjlfw4YNze5rNBrCwsJMw36fOnUKgPHjx5e7rYyMDAoLC8nMzCQ8PLyCe1LW0aNHeeWVV/jnn3/KfHHOyMio9Pri4uIAaNy4cZnHmjZtyurVq8t0Jm/QoIHZfKUDEKSlpZmKnvKMHTuWKVOmsG3bNiIiIvjtt9/Izc01639x5coVoqOjWbp0qWnQhFI3s4/XcurUKQ4dOlTmC3+pf2/3auU9ZzY2NoSEhJger4zSYqC0cCpPVlZWmaJKq9USEhJiNq1Ro0YAptfoY489xg8//MCgQYPw9/dnwIABjBkzhoEDB5qWqexzcq2RKD09Penbty8//PADc+fOBUoKAysrK+68807TfKUjB37yySfExsaa9eHx8PAos94bvQev5dSpU2RkZODt7X3d/enZsyd33XUX0dHRzJ8/n169ejFixAjuu+8+bG1ty11/ZV4Hd999N++99x7Lly/nvvvuIzs7mxUrVvDwww+bfigp/Rzp06fPNbf37/eWlZUV9evXLzdfVfr3e760eAoICLjm9NI+YpXdJyFE1ZCCSQhRZc6ePWv6D/3w4cM3vZ7SDvFvv/02rVu3vuY8Tk5O1+wMXRnp6en07NkTvV7PnDlzCA0Nxc7Ojn379vHiiy/etuGAdTrdNacr/xpk4Fruvfdepk6dypIlS4iIiGDJkiW4ubkxePBg0zxjxoxh27ZtvPDCC7Ru3RonJyeMRiMDBw686X28+gs5lByz/v37M3Xq1GvOX1pw3C5hYWFYWVlx6NChcucpKCggJibmpkaA9Pb25sCBA6xevZqVK1eycuVKFixYwLhx41i4cCFQ+efk6jOBV7vnnnuYMGECBw4coHXr1vzwww/07dsXT09P0zyvv/46M2bMYOLEicydOxd3d3e0Wi3PPPNMlb2OjUYj3t7efPfdd9d8vLQwLL0w7o4dO/jjjz9YvXo1EydO5J133mHHjh1VcmHgzp07ExQUxA8//MB9993HH3/8QV5entlZt9L9Xrx4MT4+PmXW8e+z31efpatu5b3nb/RZUNl9EkJUDXlnCSGqhNFoJCoqCr1ezzPPPMPrr7/OqFGjzH4FL1VaVJVSFIXTp0/TsmVLoGQEMyj5tbRfv37lbtPLywu9Xs+RI0eum628pnkbNmwgNTWVX375hR49epimx8bGVngd/1Z6TaSYmJgyj504cQJPT89rDlV8s/z8/Ojduzc//vgjM2bMYO3atURFRZmGo05LS2PdunVER0czc+ZM03L/PgblcXNzMxuhDKCwsJCkpCSzaaGhoWRnZ1/3eJXn6ufs6jM7hYWFxMbG3tQ6HR0d6d27N//880+516r64YcfKCgo4I477jCbbjQaOXv2rFlBc/LkSQCzEc9sbGwYOnQoQ4cOxWg08thjj/H5558zY8YMwsLCbuk5udqIESN4+OGHTc3yTp48yfTp083mKR0V8T//+Y/Z9PT0dLPCqtSN3oPXEhoayt9//03Xrl3LLe6u1rlzZzp37sxrr73GkiVLGDt2LEuXLmXSpEnXnL+yr4MxY8bw/vvvk5mZybJlywgKCjI1NS3NCyXF7a0eg5qiNu6TEJZA+jAJIarEu+++y7Zt2/jiiy+YO3cuERERPProo6SkpJSZd9GiRWZNpX766SeSkpIYNGgQAO3atSM0NJR58+aZ9VEodfnyZaCk6dSIESP4448/2LNnT5n5Sn+VLS1Q/v3Fv/TX3KvP5BQWFvLJJ5+UWZejo2OFmq/5+vrSunVrFi5caLa9I0eOsGbNGrMzP1Vl7NixJCcn8/DDD1NUVGTWHO9a+wjw3nvvVWjdoaGhZfrafPHFF2XOMI0ZM4bt27ezevXqMutIT0+nuLi43G3069cPGxsbPvjgA7Oc//nPf8jIyGDIkCEVyvpvr7zyCoqiEBUVRV5entljsbGxTJ06FV9fXx5++OEyy5YO1w0lz91HH32EtbU1ffv2BSgzJLtWqzUVGwUFBcCtPSdXc3V1JTIykh9++IGlS5diY2PDiBEjzObR6XRljvGPP/5o6vvybzd6D17LmDFjMBgMpqaBVysuLja93tPS0spkKT1TXPrcXEtlXwd33303BQUFLFy4kFWrVjFmzBizxyMjI9Hr9bz++uvX7EtV+jliSWrjPglhCeQMkxDihlauXHnNARAiIiIICQnh+PHjzJgxg6ioKIYOHQrAN998Q+vWrU19Pa7m7u5Ot27dmDBhApcuXeK9994jLCyMyZMnAyVfPr/66isGDRpE8+bNmTBhAv7+/iQmJrJ+/Xr0ej1//PEHUNIUac2aNfTs2ZOHHnqIpk2bkpSUxI8//siWLVtwdXWldevW6HQ63nzzTTIyMrC1taVPnz5ERETg5ubG+PHjeeqpp9BoNCxevPiaTeHatWvHsmXLeO655+jQoQNOTk6mff23t99+m0GDBtGlSxcefPBB8vLy+PDDD3FxcbnudYNu1l133cVjjz3G77//TkBAgNnZMr1eT48ePXjrrbcoKirC39+fNWvWXPMs2rVMmjSJRx55hLvuuov+/ftz8OBBVq9eXeasxQsvvGAabCIqKop27dqRk5PD4cOH+emnnzh37tw1z3RAyZnC6dOnEx0dzcCBAxk2bBgxMTF88skndOjQ4aYvCNqjRw/mzZvHc889R8uWLYmKisLX15cTJ07w5ZdfYjQaWbFiRZmL1trZ2bFq1SrGjx9Pp06dWLlyJX/99RcvvfSSqdnZpEmTuHLlCn369KF+/frExcXx4Ycf0rp1a5o2bXrLz8m/3X333dx///188sknREZGlrlw7x133MGcOXOYMGECERERHD58mO+++65MX6xSN3oPXkvPnj15+OGH+b//+z8OHDjAgAEDsLa25tSpU/z444+8//77jBo1ioULF/LJJ58wcuRIQkNDycrK4ssvv0Sv11/3B4PKvg7atm1LWFgYL7/8MgUFBWbN8aDktf/pp5/ywAMP0LZtW+655x68vLyIj4/nr7/+omvXrmaFsSWojfskhEVQY2g+IYRluN6w4vx3KO3i4mKlQ4cOSv369c2GyVUURXn//fcVQFm2bJmiKP8b0vj7779Xpk+frnh7eyv29vbKkCFDlLi4uDLb379/v3LnnXcqHh4eiq2trRIYGKiMGTNGWbdundl8cXFxyrhx4xQvLy/F1tZWCQkJUR5//HGloKDANM+XX36phISEKDqdzmyI8a1btyqdO3dW7O3tFT8/P2Xq1KnK6tWrywxDnp2drdx3332Kq6urApiGCr7WsOKKoih///230rVrV8Xe3l7R6/XK0KFDlWPHjpnNU94Q2dca3vtGSq8fda3rN50/f14ZOXKk4urqqri4uCijR49WLly4UGbI8Gtt12AwKC+++KLi6empODg4KJGRkcrp06fLDCuuKCVDHk+fPl0JCwtTbGxsFE9PTyUiIkKZN2+e6Ro61/PRRx8pTZo0UaytrZV69eopjz76qJKWlmY2T0WHFb/apk2blOHDhyuenp6KtbW10qBBA2Xy5MnKuXPnysw7fvx4xdHRUTlz5owyYMAAxcHBQalXr54ya9Yss6Guf/rpJ2XAgAGKt7e3YmNjozRo0EB5+OGHlaSkpEo/J6WvobfffrvcfcjMzFTs7e0VQPn222/LPJ6fn688//zziq+vr2Jvb6907dpV2b59u9KzZ0+lZ8+epvkq8x681nWYFEVRvvjiC6Vdu3aKvb294uzsrLRo0UKZOnWqcuHCBUVRFGXfvn3KvffeqzRo0ECxtbVVvL29lTvuuEPZs2dPuft3tYq8Dkq9/PLLCqCEhYWVu77169crkZGRiouLi2JnZ6eEhoYqUVFRZnlKj/vNuJlhxf99rEuPy48//mg2vfQ9+e8h2iuyT0KIqqNRlAr0KhZCiCqwYcMGU3+bUaNGqR1HCCGEEOKGpA+TEEIIIYQQQpRDCiYhhBBCCCGEKIcUTEIIIYQQQghRDunDJIQQQgghhBDlkDNMQgghhBBCCFEOKZiEEEIIIYQQohx16sK1RqORCxcu4OzsjEajUTuOEEIIIYQQQiWKopCVlYWfnx9abfnnkepUwXThwgUCAgLUjiGEEEIIIYSoIRISEqhfv365j9epgsnZ2RkoeVL0er2qWYqKilizZg0DBgzA2tpa1SyiasgxrZ3kuNY+ckxrJzmutY8c09qnph3TzMxMAgICTDVCeepUwVTaDE+v19eIgsnBwQG9Xl8jXjDi1skxrZ3kuNY+ckxrJzmutY8c09qnph7TG3XVkUEfhBBCCCGEEKIcUjAJIYQQQgghRDmkYBJCCCGEEEKIctSpPkxCCCGEEOLGFEWhuLgYg8GgWoaioiKsrKzIz89XNYeoOrf7mOp0OqysrG75ckJSMAkhhBBCCJPCwkKSkpLIzc1VNYeiKPj4+JCQkCDXz6wl1DimDg4O+Pr6YmNjc9PrkIJJCCGEEEIAYDQaiY2NRafT4efnh42NjWrFitFoJDs7Gycnp+teVFRYjtt5TBVFobCwkMuXLxMbG0vDhg1veptSMAkhhBBCCKDk7JLRaCQgIAAHBwdVsxiNRgoLC7Gzs5OCqZa43cfU3t4ea2tr4uLiTNu9GfLqE0IIIYQQZqRAEbVFVbyW5d0ghBBCCCGEEOWQgkkIIYQQQgghyiF9mIQQQgghRJUyGBV2xV4hOSsfb2c7Oga7o9PKSHfCMknBJIQQQgghqsyqI0lE/3GMpIx80zRfFztmDW3GwHDfattuVFQUCxcuLDM9MjKSVatWVdt2Re0nTfJUsiZuDW9kvMHa+LVqRxFCCCGEqBKrjiTx6Lf7zIolgIsZ+Tz67T5WHUmq1u0PHDiQpKQks9v3339fbdsrLCystnWLmkMKJhWk5qXy6q5XyVayeXXnq6TmpaodSQghhBDimhRFIbew+Ia3rPwiZi0/inKtdfz339nLj5GVX1Sh9SnKtdZ0fba2tvj4+Jjd3NzcANBoNHz11VeMHDkSBwcHGjZsyPLly82WP3LkCIMGDcLJyYl69erxwAMPkJKSYnq8V69ePPHEEzzzzDN4enoSGRkJwPLly2nYsCF2dnb07t2bhQsXotFoSE9PJycnB71ez08//WS2rd9++w1HR0eysrIqvZ/i9rKoJnmJiYm8+OKLrFy5ktzcXMLCwliwYAHt27dXO1qFKYrC3B1zySvOAyC3OJdXd7zK/N7zVU4mhBBCCFFWXpGBZjNX3/J6FOBiZj4tZq+p0PxHZve/5W3+W3R0NG+99RZvv/02H374IWPHjiUuLg53d3fS09Pp06cPkyZNYv78+eTl5fHiiy8yZswY/vnnH9M6Fi5cyKOPPsrWrVsBiI2NZdSoUTz99NNMmjSJ/fv3M2XKFNP8jo6O3HPPPSxYsIBRo0aZppfed3Z2rvL9FFXLYs4wpaWl0bVrV6ytrVm5ciXHjh3jnXfeMf1qYClWn1vNuvh1GBQDAAbFwN/xf7PqnLStFUIIIYS4FX/++SdOTk5mt9dff930eFRUFPfeey9hYWG8/vrrZGdns2vXLgA++ugj2rRpw+uvv06TJk1o06YNX3/9NevXr+fkyZOmdTRs2JC33nqLxo0b07hxYz7//HMaN27M22+/TePGjbnnnnuIiooyyzVp0iRWr15NUlJJk8Tk5GRWrFjBxIkTq/9JEbfMYs4wvfnmmwQEBLBgwQLTtODgYBUTVV5qXipzts9BgwblqhPWGjTM2T6HDvU64GHvoWJCIYQQQghz9tY6js2JvOF8u2KvELVg9w3n+2ZCBzoGu99wPludhqz8G85mpnfv3nz66adm09zd/7etli1bmv52dHREr9eTnJwMwMGDB1m/fj1OTk5l1nvmzBkaNWoEQLt27cwei4mJoUOHDmbTOnbsWOZ+8+bNWbhwIdOmTePbb78lMDCQHj16VG4HhSospmBavnw5kZGRjB49mo0bN+Lv789jjz3G5MmTy12moKCAgoIC0/3MzEwAioqKKCoqqvbMV1MUheht0eQW56Kg4F3ozsD0rizxWkGxxkBOUQ5zts9hXvd5tzWXqDqlr6nb/doS1UuOa+0jx7R2kuNaNYqKilAUBaPRiNFoNE23s7pxo6SuoR746O24lJl/zX5MGsDHxY6uoR4VGmK8tA9TaZ6KzO/g4EBISEiZx0qX1+l0ZuvSaDQUFxdjNBrJysrijjvu4I033iizvK+vr2k5BwcHs3UoilImY+nfVz+PDz74IJ988glTp05lwYIFREVFmZatKyp7TKuC0WhEURSKiorQ6XRmj1X088JiCqazZ8/y6aef8txzz/HSSy+xe/dunnrqKWxsbBg/fvw1l/m///s/oqOjy0xfs2YNDg4O1R3ZzCXDJdZnrQdAo2iYF/c8XsVunLe9xD8uuzAqRv5J+IcFfyygnq7ebc0mqtbatTLyYW0kx7X2kWNaO8lxvTVWVlb4+PiQnZ19UyPAvdA3iCm/nkADZkVTaXk0pU8QOdmVG+SgooMiFBUVUVxcbPqB/Fry8vLMHlcUhfz8fDIzM2nevDl//PEH7u7uWFmZf0U2GAxkZmZSXFxMYWGh2TqCgoJYu3at2bTS/k1ZWVlotSXF5rBhw3jxxRd5++23OXbsGCNHjrxu1trsdg50UVhYSF5eHps2baK4uNjssdzc3Aqtw2IKJqPRSPv27U3tUNu0acORI0f47LPPyi2Ypk+fznPPPWe6n5mZSUBAAAMGDECv19+W3KUUReHI5iNsStyEAQMr3DYz/vIwRqb24R/9LnRaHT3r92RC9wm3NZeoOkVFRaxdu5b+/ftjbW2tdhxRReS41j5yTGsnOa5VIz8/n4SEBJycnLCzs6v08iM76LG3t2fOn8e5mPm/9nQ+LnbMGNKUgeE+FV6XoihkZWXh7OyMRnPjM1LW1tYYDIYyX4KtrKzw9PQEwN7e3uw7oEajwc7ODr1ez7PPPsvixYt55JFHeOGFF3B3d+f06dMsW7aML7/8Ep1Oh5WVFTY2NmbrePLJJ/nkk094/fXXmThxIgcOHGDp0qUA6PV607x6vZ6RI0cyc+ZM+vfvT9OmTSv8XNQWlT2mVSE/Px97e3t69OhR5jVd0YLVYgomX19fmjVrZjatadOm/Pzzz+UuY2tri62tbZnp1tbWqnyYzoqYxdBfh5JdlM0K183ckzKQsIIGtMhtSJzbJWZ2mSkf8rWAWq8vUb3kuNY+ckxrJzmut8ZgMKDRaNBqtaYzI5U1uKUfkeG+7Iq9QnJWPt7OdnQMdq9QM7yrlTbZKs1zIxqNhtWrV+Pv7282vXHjxpw4cQLgmvtVOq1+/fps3bqVF198kYEDB1JQUEBgYCADBw7EysrK9AX/33lCQ0P56aefeP755/nggw/o0qULL7/8Mo8++ij29vZm806aNInvv/+eBx988KafX0tW2WNaFbRaLRqN5pqfDRX9rLCYgqlr167ExMSYTTt58iSBgYEqJao8D3sPZnaZyQubXiDTKod1LjsZnN6dEVf6oB8cJgM+CCGEEKJW0Gk1dAm9vd9rvvnmG7755ptyH79WX6H09HSz+w0bNuSXX34pdx0bNmy45vRhw4YxbNgw0/3XXnuN+vXrlzmjkZiYiIeHB8OHDy93G6LmsZjS9tlnn2XHjh28/vrrnD59miVLlvDFF1/w+OOPqx2tUiKDIunboC86jY7f3Ev6NHXObkEzGqqcTAghhBBC3IxPPvmE3bt3c/bsWRYvXszbb79t1mUkNzeXM2fO8MYbb/Dwww9jY2OjYlpRWRZTMHXo0IFff/2V77//nvDwcObOnct7773H2LFj1Y5WKRqNhhmdZ2BvZU+C7UX2OB5Di5aTa/aoHU0IIYQQQtyEU6dOMXz4cJo1a8bcuXN5/vnnmT17tunxt956iyZNmuDj48P06dPVCypuisU0yQO44447uOOOO9SOccs87D14peMrvLrtVfLaWJOzLY+D2UfoWDgIvc3tHYxCCCGEEELcmvnz5zN//vxyH589e7ZZASUsi0UVTLXJgMABFB8tZmD/gYwvfICjWcdxPxnChHAZJU8IIYQQQoiawmKa5NVWWq2WMS3uAWDJiSUUG4tvsIQQQgghhBDidpGCqQYYEjIEd1t3vJP1bNvxj9pxhBBCCCGEEP8lTfJqAFudLS9qH6VlvD9xaRchQu1EQgghhBBCCJAzTDVGh969KNIUE5jlw5EDe9WOI4QQQgghhEAKphrDy8uHM/6XALi04aTKaYQQQgghhBAgBVONEtgvHICwi74kJsapnEYIIYQQou44d+4cGo2GAwcOqB2lyn3zzTe4urrWmPVYGimYapCGTcI565qEDh3HVu1QO44QQgghxM1L3Aff3FHybzW7fPkyjz76KA0aNMDW1hYfHx8iIyPZunVrhdcREBBAUlIS4eHht5xn/fr1DB48GA8PDxwcHGjWrBnPP/88iYmJt7zu2yUoKIj33nvPbNrdd9/NyZN1ryWUFEw1jH3XegA0OONGdnamymmEEEIIIW7SwaVwbjMcWlbtm7rrrrvYv38/Cxcu5OTJkyxfvpxevXqRmppa4XXodDp8fHywsrq1MdE+//xz+vXrh4+PDz///DPHjh3js88+IyMjg3feeeem11tYWFhmmsFgwGg03krcSrG3t8fb2/u2ba+mkIKphmkb0Y1LdldIs8rk70Or1I4jhBBCiLpOUaAwp2K3yzEQtx3it8ORn0uWP/xTyf247SWPV3RdilKheOnp6WzevJk333yT3r17ExgYSMeOHZk+fTrDhg0zzafRaPj0008ZNGgQ9vb2hISE8NNPP5ke/3eTvA0bNqDRaFi3bh3t27fHwcGBiIgIYmJiys1y/vx5nnrqKZ566im+/vprevXqRVBQED169OCrr75i5syZpnl//vlnmjdvjq2tLUFBQWWKqaCgIObOncu4cePQ6/U89NBDpiZxy5cvp1mzZtja2hIfH09BQQFTpkzB398fR0dHOnXqxIYNG8rNeebMGYYPH069evVwcnKiQ4cO/P3336bHe/XqRVxcHM8++ywajQaNRgNcu0nep59+SmhoKDY2NjRu3JjFixebPa7RaPjqq68YOXIkTk5OtGvXjuXLl5ebrSaSYcVrGJ1OR/zQQmYdnot/kj9DjXeh0+rUjiWEEEKIuqooF173u/nlc1Pg64GVX27a+QrN5uTkhJOTE7/99hudO3fG1ta23HlnzJjBG2+8wfvvv8/ixYu55557OHz4ME2bNi13mZdffpl33nkHLy8vHnnkESZOnFhuU78ff/yRwsJCpk6des3HS4uNvXv3MmbMGGbPns3dd9/Ntm3beOyxx/Dw8CAqKso0/7x585g5cyazZs0CYPPmzeTm5vLmm2/y1Vdf4eHhgbe3N0888QTHjh1j6dKl+Pn58euvvzJw4EAOHz5Mw4YNy+TIzs5m8ODBvPbaa9ja2rJo0SKGDh1KTEwMDRo04JdffqFVq1Y89NBDTJ48udzn5tdff+Xpp5/mvffeo1+/fvz5559MmDCB+vXr07t3b9N80dHRvPXWW7z55pu8++67PPDAA8TFxeHu7l7uumsSOcNUA0W2HIKzrTPns8+z4fwGteMIIYQQQtRYVlZWfPPNNyxcuBBXV1e6du3KSy+9xKFDh8rMO3r0aCZNmkSjRo2YO3cu7du358MPP7zu+l977TV69uxJs2bNmDZtGtu2bSM/P/+a8546dQq9Xo+vr+911/nuu+/St29fZsyYQaNGjYiKiuKJJ57g7bffNpuvT58+PP/884SGhhIaGgpAUVERn3zyCRERETRu3JiUlBQWLFjAjz/+SPfu3QkNDWXKlCl069aNBQsWXHP7rVq14uGHHyY8PJyGDRsyd+5cQkNDTWd+3N3d0el0ODs74+Pjg4+PzzXXM2/ePKKionjsscdo1KgRzz33HHfeeSfz5s0zmy8qKop7772XsLAwZsyYQXZ2Nrt27bruc1STyBmmGsjB2oHRjUaz+NAidm/aSN/7+6odSQghhBB1lbUDvHSh4vNfPHTtM0oTV4FPy4qvR2cH+VkVmvWuu+5iyJAhbN68mR07drBy5UreeustvvrqK7MzNl26dDFbrkuXLjccFa9ly/9lLi2EkpOTadCgQZl5FUUxNV+7nuPHjzN8+HCzaV27duW9997DYDCg05W0Lmrfvn2ZZW1sbMwyHT58GIPBQKNGjczmKygowMPD45rbz87OZvbs2fz1118kJSVRXFxMXl4e8fHxN8z+7/146KGHyuzH+++/bzbt6ryOjo7o9XqSk5MrtS01ScFUQ90Teje9fw3Fo9iVE8cO0aRZJT5ghBBCCCGqikYDNo4Vn9/K/r9/aAHj//61sq/ceio5mIGdnR39+/enf//+zJgxg0mTJjFr1iyzgulmWFtbm/4uLYbKG2ihUaNGZGRkkJSUdMOzTBXh6Fj2+bK3tzcryrKzs9HpdOzdu9dUaJVycnK65nqnTJnC2rVrmTdvHmFhYdjb2zNq1KhrDixRFa5+DqHkebydg1XcKmmSV0P5uPqS4p0DQOK6YyqnEUIIIYSoIEcvcPIGv1Zwx/ySf528S6bfRs2aNSMnJ8ds2o4dO8rcv17/pcoaNWoUNjY2vPXWW9d8PD09HYCmTZuW6Qe1detWGjVqVKbouZE2bdpgMBhITk4mLCzM7FZeU7qtW7cSFRXFyJEjadGiBT4+Ppw7d85sHhsbGwwGw3W3Xd5+NGvWrFL7UNPJGaYazL9PU/g2k9BEHy5dukC9erfQ4VIIIYQQ4nZw8YdnjoDOpuTsVLsJYCgEq/IHY7gVqampjB49mokTJ9KyZUucnZ3Zs2cPb731Vplmbz/++CPt27enW7dufPfdd+zatYv//Oc/VZYlICCA+fPn88QTT5CZmcm4ceMICgri/PnzLFq0CCcnJ9555x2ef/55OnTowNy5c7n77rvZvn07H330EZ988kmlt9moUSPGjh3LuHHjeOedd2jTpg2XL19m3bp1tGzZkiFDhpRZpmHDhvzyyy8MHToUjUbDjBkzypzxCQoKYtOmTdxzzz3Y2tri6elZZj0vvPACY8aMoU2bNvTr148//viDX375xWzEvdpAzjDVYE3CW3FOfxErdBxeVfELrwkhhBBCqMrKtqRYgpJ/q6lYgpJmZ506dWL+/Pn06NGD8PBwZsyYweTJk/noo4/M5o2Ojmbp0qW0bNmSRYsW8f3331f52ZDHHnuMNWvWkJiYyMiRI2nSpAmTJk1Cr9czZcoUANq2bcsPP/zA0qVLCQ8PZ+bMmcyZM+emmw8uWLCAcePG8fzzz9O4cWNGjBjB7t27r9nPCkoGnXBzcyMiIoKhQ4cSGRlJ27ZtzeaZM2cO586dIzQ0FC+va58dHDFiBO+//z7z5s2jefPmfP755yxYsIBevXrd1H7UVBpFqeAg97VAZmYmLi4uZGRkoNfrVc1SVFTEihUrGDx4cJl2nVfbsf4f6q+2JkuXS+DLXXFwuHZbVKG+ih5TYVnkuNY+ckxrJzmuVSM/P5/Y2FiCg4Oxs7NTNYvRaCQzMxO9Xo9We+u/8Ws0Gn799VdGjBhx6+HETanqY1oR13tNV7Q2kDNMNVz77j24bJuGs8GB3Ws3qB1HCCGEEEKIOkUKphrOysqK9BYlJwETzp7BqFjOiCJCCCGEEEJYOhn0wQK0j+zFhMwHiNHFEpjYlu71u6sdSQghhBDCotShXiiiiskZJgvg7OxCxxbdAFh8bLHKaYQQQgghhKg7pGCyEGObjkWr0XIy/hin4k6oHUcIIYQQQog6QQomC+Hv5M/zymS+Of0qcX8dUDuOEEIIIYQQdYIUTBakTcvOWKEjJMGblJRLascRQgghhBCi1pOCyYI0b9WWeKdL2CjWHFi9We04QgghhBBC1HpSMFkQrVYLHUsuquVz3IH8gjyVEwkhhBBCXNuqc6votawXq8+tVjuKELdECiYL0753T1KtM3AtdmbX3+vVjiOEEEIIUUZqXipzts0hNT+V6O3RpOalqh3JosyePZvWrVtX6zbOnTuHRqPhwIED1bqd2kAKJgtjY21LavNCAGz35mM0yoVshRBCCFFzKIrC3B1zyS3OBSC3KJdXd7xa7duNiopCo9HwyCOPlHns8ccfR6PREBUVVe05Kkuj0fDbb7+ZTZsyZQrr1q2rsm1ERUUxYsQIs2kBAQEkJSURHh5eZdupraRgskBtB/YkX1OAR56efSd2qh1HCCGEEMJk9bnVrItfh0ExAGBQDPwd/zerzq2q9m0HBASwdOlS8vL+120hPz+fJUuW0KBBg2rfflVxcnLCw8OjWreh0+nw8fHBysqqWrdTG0jBZIFcXT3Y2CWGBxq+xIKkb9WOI4SoBaSvgRCiPIqikFuUW6Hb+azzRG+PRoPGbB0aNMzZNofzWecrvC5FUSqdtW3btgQEBPDLL7+Ypv3yyy80aNCANm3amKatWrWKbt264erqioeHB3fccQdnzpwxW9e2bdto3bo1dnZ2tG/fnt9++82sCduGDRvQaDSsW7eO9u3b4+DgQEREBDExMWbr+f3332nbti12dnaEhIQQHR1NcXExAEFBQQCMHDkSjUZjuv/vJnkajabMrXReg8HAgw8+SHBwMPb29jRu3Jj333/ftOzs2bNZuHAhv//+u2nZDRs2XLNJ3saNG+nYsSO2trb4+voybdo0U1aAXr168dRTTzF16lTc3d3x8fFh9uzZlTlEFklKSgvVt+cQ3vvtMzad30RsRizBLsFqRxJCWKjSvgZZRVlEb4+mfb32eNhX7y+bQgjLkVecR6clnW5pHQoKWUVZDPplUIWX2X7P9pva1sSJE1mwYAFjx44F4Ouvv2bChAls2LDBNE9OTg7PPfccLVu2JDs7m5kzZzJy5EgOHDiAVqslMzOToUOHMnjwYJYsWUJcXBzPPPPMNbf38ssv88477+Dl5cUjjzzCxIkT2bp1KwCbN29m3LhxfPDBB3Tv3p0zZ87w0EMPATBr1ix2796Nt7c3CxYsYODAgeh0umtuIykpySz7wIED6dKlCwBGo5H69evz448/4uHhwbZt23jooYfw9fVlzJgxTJkyhePHj5OZmcmCBQsAcHd358KFC2bbSExMZPDgwURFRbFo0SJOnDjB5MmTsbOzMyuKFi5cyHPPPcfOnTvZvn07UVFRdO3alf79+1f8IFkYKZgsVJBLED3r92Tj+Y38tvcnnu3zgtqRhBAWqLy+BvN7z1c5mRBC3Jz777+f6dOnExcXB8DWrVtZunSpWcF01113mS3z9ddf4+XlxbFjxwgPD2fJkiVoNBq+/PJL7OzsaNasGYmJiUyePLnM9l577TV69uwJwLRp0xgyZAj5+fnY2dkRHR3NtGnTGD9+PAAhISHMnTuXqVOnMmvWLLy8vABwdXXFx8en3H0qfUxRFO666y5cXFz4/PPPAbC2tiY6Oto0b3BwMNu3b+eHH35gzJgxODk5YW9vT0FBwXW38cknnxAQEMBHH32ERqOhSZMmXLhwgRdffJGZM2eWjNYMtGzZklmzZgHQsGFDPvroI9atWycFk6iZxgffz4jNHQk64Ud6m1Rc3eQXYSFE5ZT2NSh1dV+DgUEDVUwmhKgp7K3s2XnfjftMK4rCtM3T2Jy42dR/6WpajZae9XvyRvc3KrRdW60tWWRVOq+XlxdDhgzhm2++QVEUhgwZgqenp9k8p06dYubMmezcuZOUlBTTIFrx8fGEh4cTExNDy5YtsbOzMy3TsWPHa26vZcuWpr99fX0BSE5OpkGDBhw8eJCtW7fy2muvmeYxGAzk5+eTm5uLg4NDpfbtpZdeYvv27ezZswd7e3vT9I8//pivv/6a+Ph48vLyKCwsrPQoe8ePH6dLly5oNP9rTtm1a1eys7M5f/68qQ/Y1ftbus/JycmV2palkYLJgrUL6shu7QXsFFv2rt5I33vuVDuSEMKCpOalMmf7HDRo0ChQr8iTS9YpKBqYs30OHep1kKZ5Qgg0Gg0O1hX7Yj87YjZDfx1KdlE2Cv/rg6RBg5O1E7O6zKrwum5lJOCJEyfyxBNPACXFxL8NHTqUwMBAvvzyS/z8/DAajYSHh1NYWFjpbVlbW5v+Li02SrNnZ2cTHR3NnXeW/Y52dTFWEd9++y3z589nw4YN+Pv7m6YvXbqUKVOm8M4779ClSxecnZ15++232bmzegYGu3p/oWSfa/uozVIwWTCtVkthe3vYBF5HbSksKsDG2lbtWEIIC3B1UzwFhbtTBzL+8jBSrdLZoN/DKrdt0jRPCFFpHvYezOwykxc2mXcVUFCY0WXGbfsRZuDAgRQWFqLRaIiMjDR7LDU1lZiYGL788ku6d+8OwJYtW8zmady4Md9++y0FBQXY2pZ8t9q9e3elc7Rt25aYmBjCwsLKncfa2hqDoewZuatt376dSZMm8fnnn9O5c2ezx7Zu3UpERASPPfaYadq/B7CwsbG54TaaNm3Kzz//jKIopsJv69atODs7U79+/esuW9vJKHkWrmPf3qRbZeFepGf3+g1qxxFCWIjT6af/N+yvApHpEQB4FLty15V+NMprwN/xfzNv9zwu5VxSOa0QwpJEBkXSt0FfdJqSAQx0Gh39GvS7rc18dTodx48f59ixY2UGUnBzc8PDw4MvvviC06dP888///Dcc8+ZzXPfffdhNBp56KGHOH78OKtXr2bevHkAZk3WbmTmzJksWrSI6Ohojh49yvHjx1m6dCmvvPKKaZ6goCDWrVvHxYsXSUtLK7OOixcvMnLkSO655x4iIyO5ePEiFy9e5PLly0BJP6I9e/awevVqTp48yYwZM8oUd0FBQRw6dIiYmBhSUlIoKioqs53HHnuMhIQEnnzySU6cOMHvv//OrFmzeO6550z9l+qqur33tYCtrR2XmpZca0CzK6vWnxIVQlSNMNcw0xea4AJ/fIo8ydcU8pr/l2zU72Gb80EAFh5byCdfvMHGN5exZdUqcrIr359ACFG3aDQaZnSegYNVSdM7R2tHXun8yg2Wqnp6vR69Xl9mularZenSpezdu5fw8HCeffZZ3n777TLL/vHHHxw4cIDWrVvz8ssvM3PmTKByTekiIyP5888/WbNmDR06dKBz587Mnz+fwMBA0zzvvPMOa9euJSAgwGzo81InTpzg0qVLLFy4EF9fX9OtQ4cOADz88MPceeed3H333XTq1InU1FSzs00AkydPpnHjxrRv3x4vLy/TKH5X8/f3Z8WKFezatYtWrVrxyCOP8OCDD5oVd3WVRrmZQe4tVGZmJi4uLmRkZFzzDXQ7FRUVsWLFCgYPHlymLWhlpaYmkzHvCDaKNWlj7GjRtkMVpRSVUZXHVNQctfm4pualMvTXoQy70IP7U4awzekAcwO+QIMGR2tHHmr5EOsT1jNpxyBCCkqaY+RpC4j3TcGtfQAtO3SyyAse1uZjWpfJca0a+fn5xMbGEhwcXOk+Nv+26twq3tj5BtM7TScyKPLGC/yL0WgkMzMTvV5fI85wfPfdd0yYMIGMjAyzARdExalxTK/3mq5obWB5/9OJMjw8vNkfkEyTeH/itx2TgkkIUSGlfQ0cvilpArL9v2eVFBRmRcxiYNBAJoRPIKH5WU5s3ofbSWvqFbjTONEfEo0cX7GaC6FZBA1rQ2P3xmruihCiBhoYNNCiR9tctGgRISEh+Pv7c/DgQV588UXGjBkjxVIdJAVTLREc2ZpXV7zGTucjtMrqS33nut05TwhRMc08mvGo/4NEZLVmp9MRdBodvQN6m33JCWgQQsDYEIxGI8cP7+fCjlPUj3fDrUjPoQsnmfLHazRya8TQkKEMqjeAel5+Ku6REEJUjYsXLzJz5kwuXryIr68vo0ePNhseXNQdUjDVEqGhTVCaOFB8oZjvjn/Hix1fVDuSEMICrE9YT7ztRRLt1mJQDOit9eX2NdBqtTRv1Y7mrdpRWFDA/h1bSUjLxDrLmpNpJ/lx23f0PhvMRrfN6Fq50KZbVxydnG/zHgkhRNWYOnUqU6dOVTuGqAGkYKpFHmj2ANsubOOPk8t5rPmjODuq209LCFHz/RP/DwBDQ4ayOXEz0ztNr9Cwvza2tnTq2YdO9OHRgmdYfW41lzefQYeW0DQ/2AAXNu20+P5OQgghhPzvVYt09evKfQXDGBzfmT0r/qH36BFqRxJC1GCXL18kcl8bnPQaHmv9GHO7zb2p9bjYujCm8RhoDAnxZ4kpp7/T9l7n6Nmmn/R3EkIIYVGkYKpFNBoNET5d8DjrgvFwOsUji+UXXSFEuY5v30uPrHYEKwH4OvlWyTrL6+9kZdDxWfxXfHj+Mxq6NeR+p9F0bdaDej7+N16pEELUchkFGVzMuYiPow8uti5qxxH/ov4YjaJKdezXmyxdLl6FruzZtFHtOEKIGswYkw1AXmjFL8JYUaX9nfo/fA+hM3uROsqGXsG9sdZac+rKKQLW21Lw3mk2vfkDW1fK9Z2EEHVXsbGYC9kXzP4VNYucfqhl7B0cSWyUSZPjDhTvuAJ91E4khKiJsjIzCLziDUBQh+bVui0bW1u6te1DN/qQUZDBuhNrKLhgQFukJSTNFzZC0qadxPlJfychRN2iKAoXsi9gVIwAGBUjSdlJBOgDVE4mriZnmGqhlgO7UqQpJijTh+OHD6gdRwhRAx3euQtrxYpLdlcIDm1027brYuvCna1G0+2l0SiP+XOixSUu2V7BTrGlcaI/3r8bWfj+u8zbPY+YKzG3LZcQQqghszCTrMKsMtMyCjJUSiSuRQqmWsi7nh9n/S4BcOGf4yqnEULURPlHUwFICyxEo6n6JnkVEdAghH5jR9Fm1lAy7nXgeHAiWbpc1tnvYOGxhYz6YxRPfP8Q/yz7lYtJ51XJKISoHTZs2IBGoyE9PV3tKCalTfAA/v0pXNo0T6PR8Ntvv1XZNoOCgnjvvfeqbH11hRRMtVT9viVNbEKTfElKli8aQoj/KcjPJyC5ZOhwv3ZhKqcp299p0pAn6B/YH2utNc3iA2i035PC98+w8c1lbJH+TkJYjLzDR4gbH0Xe4SPVuh2NRnPd2+zZs6t1+zfj6qZ49kZblrz+LXf3HGN6vLRpXlJSEoMGDbptuWbPnn3N57BJkya3LUNNJI3Ea6nGzVqwIHg+v7GGXgkDeNb7WbUjCSFqiL1ndpFvcwlPgxvNm0eoHceMja0tfQL70CewpL/Tvn82cW7/RYIyfUqu71Ta36n0+k4dpb+TEDVVxu+/k7tzJxnLl2PfIrzatpOUlGT6e9myZcycOZOYmP816XVycmLPnj3Vtv3rKSwsxMbGpsz0AkMBWYVZaNHiW+SFBjBqFLN5MgszCfUMxdbK9jalLdG8eXP+/vtvs2nV/Tlb3vNUU8gZploscFArztqd56eTP5FblKt2HCFEDbEm4x+eDn6TlQMOodPp1I5TLhdbF3oPGmrq7xTTIvl//Z0u+KNdcYXInyMr3d9pTdwa3sh4g7Xxa6sxvRC1h6IoGHNzK3QrOH2G3D17yd27l8y//gIg868/yd27l9w9eyk4fabC61IU5QbJSvj4+JhuLi4uaDQas2lOTk6meffu3Uv79u1xcHAgIiLCrLAC+P3332nbti12dnaEhIQQHR1NcfH/Rq2Lj49n+PDhODk5odfrGTNmDJcuXTI9Pnv2bFq3bs1XX31FcHAwdnZ2AKSnpzNp0iS8vLzQ6/UMHjCYhJgE6hW5892y73l1/hscP3qccK9wwr3C+e3739Db6LG3tjdrknf+/Hnuvfde3N3dcXR0pH379uzcuROAM2fOMHz4cOrVq4eTkxMdOnQoU/hUhJWVldnz5+Pjg6enp+nxoKAgXn/9dSZOnIizszMNGjTgiy++MFtHQkICY8aMwdXVFXd3d4YPH865c+dMj0+YMIERI0bw2muv4efnR+PGJdfn27ZtG61bt8bOzo727dvz22+/odFoOHDgAIqiEBYWxrx588y2deDAATQaDadPn670vlb4Oam2NQvV9azfkwDnABKyElh+ajn3NLtH7UhCCJUZjAbWJ6wHoEdoL3XDVMK1ru90MO8IyfnJLDy2kMVHF/Nu0lQ0IQ4069EBH9/611xPal4qr+56lWwlm1d3vkonv0542Hvc5r0RwrIoeXnEtG1308sbrqQRN/b+Si/XcM/um95meV5++WXeeecdvLy8eOSRR5g4cSJbt24FYPPmzYwbN44PPviA7t27c+bMGR566CEAZs2ahdFoNBVLGzdupLi4mMcff5y7776bDRs2mLZx+vRpfv75Z3755RfTj1KjR4/G3t6elStX4uLiwueff87YYWM5umEfo4beyY7Tu9m4fhNf/fQVWkWLs6tzmevjZWdn07NnT/z9/Vm+fDk+Pj7s27cPo9Foenzw4MG89tpr2NrasmjRIoYOHUpMTAwNGjSo0ufxnXfeYe7cubz00kv89NNPPProo/Ts2ZPGjRtTVFREZGQkXbp0YfPmzVhZWfHqq68ycOBADhw4YFrHunXr0Ov1rF1b8uNVZmYmQ4cOZfDgwSxZsoS4uDieeeYZ0/wajYaJEyeyYMECpkyZYpq+YMECevToQVhY9TUxl4KpFtNpdUQFPUD26niCfrTG8IqhRv+aLISofgfj9pOfk4veXk97n/Zqx6m00v5OzVu1o5ehiLaJffjz7J9kHrtI44wGsB8K959ho9tWdC1daNO9K45OzkDJr+Rzd8wlrzgPgNziXF7d8Srze89Xc5eEELfRa6+9Rs+ePQGYNm0aQ4YMIT8/Hzs7O6Kjo5k2bRrjx48HICQkhLlz5zJ16lRmzZrFunXrOHz4MLGxsQQElAz7vWjRIpo3b87u3bvp0KEDUNK8bNGiRXh5eQGwZcsWdu3aRXJyMra2tv/N8Sq//vQLv6z4nRHjR2LjZItOp6OFexPsDXYUuBux0pp/TV+yZAmXL19m9+7duLu7A5gVCa1ataJVq1am+3PnzuXXX39l+fLlPPHEExV+jg4fPmx2Vg7g/vvv57PPPjPdHzx4MI899hgAL774IvPnz2f9+vU0btyYZcuWYTQa+eqrr0yDCi1YsABXV1c2bNhA586dAXB0dOSrr74yNcX77LPP0Gg0fPnll9jZ2dGsWTMSExOZPHmyabtRUVHMnDmTXbt20bFjR4qKiliyZEmZs05VTQqmWm5Iozs4/9N2HI327Nu2hQ7de6odSQihoivrzrL0zJvsbnwGa6212nFuibXOmj4N+tCnQR/SW1/h4KZt6I7kXbO/k3Ov+qQ4ZbIufp1peYNi4O/4v1l1bhUDgwaquCdC1Gwae3sa79tb4fnzjx+/5hmlwO++xa5p0wqvR7G1hayqHeSlZcuWpr99fUvO4CQnJ9OgQQMOHjzI1q1bee2110zzGAwG8vPzyc3N5fjx4wQEBJiKJYBmzZrh6urK8ePHTQVTYGCgqVgCOHjwINnZ2Xh4XHU2W4G8/DxOxZ+m2OF/TQ+tjVbo0KLNNoCDefYDBw7Qpk0bU7H0b9nZ2cyePZu//vqLpKQkiouLycvLIz4+vlLPUePGjVm+fLnZNL1eb3b/6uextAlkcnKyaX9Pnz6Ns7Oz2TL5+fmcOXPGVDC1aNHCrN9STEwMLVu2NDVjBOjYsaPZOvz8/BgyZAhff/01HTt25I8//qCgoIDRo0dXah8rSwqmWs7RyZmEsHSanLQnb+tF6K52IiGEWoxGIx7x9lgr1gQGhqodp0q5urrTc9gdMAzOJ8QSs2kfrqesqJfvTuML/jy57XXO2JeMGGpttKJIW9InQYOGOdvn0KFeB2maJ0Q5NBoNGgeHG89YOn/pF16NBhTF9K/Gzg5tJdZT2tSsKllb/++HotKzH1c3aYuOjubOO+8ss9zVX+JvxNHR0ex+dnY2vr6+pmZ7qTmp2GRrsVascA/xxtupHpr/DiyeYpOOf4E3toXW5OWZ9z+3t7e/7nanTJnC2rVrmTdvHmFhYdjb2zNq1CgKCwsrnB3Axsbmhs3brn4eoeS5vPp5bNeuHd99912Z5a4uGv/9PFXUpEmTeOCBB5g/fz4LFizg7rvvxqESr6ubIQVTHdAssjNFJ88Sku7HyRNHaNSk+kaqEULUXGdOHsOr0JUCTREtOnW88QIWqn5AMPXHBpf0dzpygLN7j3JOm4RCya+4T1y8F+8iN2YHfEqBtojcImmaJ0RVsvLwQOfpibWPD66jRpH+008UXbyIlUfN/lGibdu2xMTElFssNG3alISEBBISEkxnmY4dO0Z6ejrNmjW77novXryIlZUVXv5eFGQUoAEC7Ovj7OgCgIeTB0ajEXe9J/nphdgV2WBIzzdbT8uWLfnqq6+4cuXKNc8ybd26laioKEaOHAmUFC5XD7Rwu7Rt25Zly5bh7e1d5syU0WgkMzPzmss1btyYb7/9loKCAlPTxd27y/ZjGzx4MI6Ojnz66aesWrWKTZs2Vf1O/IuMklcH+Pk34IzPRQDi/z6schohhFrid58o+dczGQcHpxvMbfm0Wi3NW7alyYjOFFNyRkmraBmQ0YXWuU3oklXS1r+0ad7ptOobYUmIusTax4ewf9YR9OMPuN1zN0E//kDYP+uw9vFRO9p1zZw5k0WLFhEdHc3Ro0c5fvw4S5cu5ZVXXgGgX79+tGjRgrFjx7Jv3z527drFuHHj6NmzJ+3bl98ntF+/fnTp0oURI0awbPkyEuMTOXXgNG+8/pZpuPMmYU24EH+B2OOx5BgKyCvIx8Zgfhbn3nvvxcfHhxEjRrB161bOnj3Lzz//zPbt2wFo2LAhv/zyCwcOHODgwYPcd999N3WWrri4mIsXL5rdrh4J8EbGjh2Lp6cnw4cPZ/PmzcTGxrJhwwaeeuopzp8v/9qgpXkfeughjh8/zurVq019k66+wLpOpyMqKorp06fTsGFDunTpUul9rCwpmOqIer0bAhCa6MPlyxdVTiOEUINTbMlHvlVTF5WT3F5hrmH0bdAXnUaHUWPkR/eSEZkisloDoNPo6NegH2Fu6l/EV4jaQmtjY/qSq9Fo0Nbga+yUioyM5M8//2TNmjV06NCBzp07M3/+fAIDA4GS/fj9999xc3OjR48e9OvXj5CQEJYtW3bd9Wo0GlasWEHn9h15+YmXuKPzHTw58Uni4uKoV68eAHfddRcDBw6kd+/e+Pn7s2TlD6blS4seGxsb1qxZg7e3N4MHD6ZFixa88cYbpgG93n33Xdzc3IiIiGDo0KFERkbStm3bSj8PR48exdfX1+xW+hxUhIODA5s2baJBgwbceeedNG3alAcffJD8/PwyZ5yuptfr+eOPPzhw4ACtW7fm5ZdfZubMmUDZJpEPPvgghYWFTJgwodL7dzM0SkUHua8FMjMzcXFxISMj47oH7HYoKipixYoVDB48uEw70Oqy9bUfCczy4UTzi/R7oHo7x9VFahxTUf1qy3FNiD+L5pNEDBhwebEFrm41u2lMVUvNS2Xor0PJLsomLC+AD85NI0+Tz72NpmFrZ8fyEculD5OFqy3vVbXl5+cTGxtrdg0htZQ239Lr9Wi1lv0bf1ZGBrZZWhTA4K7FweH6/XeMRiN5FzNLBodwLsRT7317glazyh7T7777jgkTJpCRkWHWh2vz5s307duXhIQEU9FZnuu9pitaG1j2q09UitLNlcWef/AeX5NfnH/jBYQQtcbpnYcAiHdNrnPFEoCHvQczu8xEQeGUXTyXrdKwV+xondOYGV1mSLEkhKg2hYUFWP93sL8C+6IbFktQ0qRYcdURZ3uB5KIUCooLqjllzbBo0SK2bNlCbGwsv/32Gy+++CJjxowxFUsFBQWcP3+e2bNnM3r06BsWS1VFCqY6pHP33qwPOkCc8Tx/nf1L7ThCiNvoF+vVfFrvB3Lb1N1f3iODIkua5ml1bHc+CEC/vC4ypLgQotoYFSMFqTlo0VKoK8LJzbXCyzo5OONk44SiKFzMvUhdaBR28eJF7r//fpo2bcqzzz7L6NGj+eKLL0yPf//99wQGBpKens5bb71123JJwVSHWGmtuK/JfQB8e/zbOvHGE0JASl4KGzO2stx9A626VX/n2JpKo9Ewo/MM7K3s2eZ8AICW6Q0pKipSN5gQotbKvpKBrcEaIwo27o6VblpYz7FkyHFtHuRkZ1dTyppj6tSpnDt3ztSMbv78+WZDhkdFRWEwGNi7dy/+/v63LZcUTHXMnY3upGtuGyYfvIP9O7apHUcIcRtsSNiAgkJzj+b4ONbsUaqqm4e9B690fIVYx4scczjLn24bOZi0X+1YQohaKC83F9u8kiv4FDkr2Px3qOzKsNXZ4qetR70idzSZhmq5NpW4MbkOUx2jt9Fzl9UQmub6cXrLeai7PzYLUWcUrk9mUF5XmjbvoHaUGmFA4ACKjxazIXgnf8T+iXLRlfYNau91qYS4GdIK5dYYjAau5KTigQsF1sU4691uel3OLq4U5GVhrejITstA73Hz66qLquK1LGeY6qAmAzpgxEhYqh9nT8eoHUcIUY2yMjPocq4pT10cS0/XbmrHqVF6B/QGYF38OvlyKMR/lY4wmJubq3ISy3Yx9yLpmkwu2F/GwUNvdh2hytLpdBidS76y2+TpKCwsrKqYdULpa/lWRs+UM0x1UEBgCOu9d9Ew2Z+za/cTEtZY7UhCiGpyZOcuAhQ7LtldoW2oFExX6+zTGRetnuAkb06cOULTsBZqRxJCdTqdDldXV5KTk4GSa+rcypf9W2E0GiksLCQ/P9+ihhXPKsziSs4VAFyd3CguLqa4uPiW1qmztibLmIG10ZrC5FycPF2rIOntdzuPqaIo5ObmkpycjKurq+l6VTdDCqY6yr1HMPxUSHC8F1dSL+Pu4aV2JCFENcg9lgr4kxZYqNqXnprKzsqO2amP0+RiACe2nZCCSYj/8vEp6etYWjSpRVEU8vLysLe3t5jPL4OhmKKsArJ0Odja2nEp/VKVrbuoqBBNdkkfJmPKxZvqE6U2NY6pq6ur6TV9syy2YHrjjTeYPn06Tz/9NO+9957acSxOi7Yd2LnyVwJyvNm/ehN977tL7UhCiCpWUJBPwKWS6wv5tgtVOU3NZNfEHS6CPtZi/zsUosppNBp8fX3x9vZWdRTJoqIiNm3aRI8ePSziYsQGg4F9/1lNQJY3eY5pNJ3UBxsrmyrdxrZlfxFyvh6X7K4Q8khvrHU1/3m52u0+ptbW1rd0ZqmURf4PsXv3bj7//HNatmypdhSLpdVqMXRwhA3gfdyOwoICi/ylQghRvkO7d+FrtCPNOpNmzSPUjlMjhXfuQPqGw/jleRJ37jSBQWFqRxKixtDpdFXyZfNWtl9cXIydnZ1FFEz//PArjS54ka/Jx+/e5uid9FW+jbbDerH5k1/5xvE37ozPYmzTsVW+jepkace0lOU0CP2v7Oxsxo4dy5dffombm4wScis69u7NAX0MX3j9xOr4NWrHEUJUsYxDFwC4WD9L1S89NZmrqwdxbiVNZs7sPKxyGiGEpTpx7BDB+10BSIwoICikYbVsx9XNg7xRek7ax/HxgY+5kn+lWrYjzFncGabHH3+cIUOG0K9fP1599dXrzltQUEBBQYHpfmZmJlByOlDtCxWWbl/NHBqtlvODi9lwcA8Xj2cTGRhpMW2Ea6KacExF1bPU42owGkjPvIIBX9xa+Ftc/ur072NqaGgHu8D2dLE8TxbMUt+ronyWckxz83LI+uEsTooHJ70S6TpgZLVmHhY0jB9jfuRE2gk+3fYxU7tPq7ZtVbWadkwrmkOjWNBYqkuXLuW1115j9+7d2NnZ0atXL1q3bl1uH6bZs2cTHR1dZvqSJUvMrhpcl+Uac3k7822KKOJBpwcJtgpWO5IQogqcKz7HV9lf4W3w5AnXJ9HKGaZy5efn0HV/AABb2yRgZ+eociIhhCUxnEymY2oTrlhlcqJlFra29tW+zbiiOApjLzHySh92NI3HycW92rdZG+Xm5nLfffeRkZGBXl9+E0qLOcOUkJDA008/zdq1a7Gzs6vQMtOnT+e5554z3c/MzCQgIIABAwZc90m5HYqKili7di39+/dXvQ3n2a2nKdyXSnC2nsEPDVY1iyWrScdUVB1LPa7v7nsXTkCH0E7cETFU7Tg1yrWO6a7TvxGY5YOHowM9I+Vz0BJZ6ntVlM8SjunG+I2kHCm5zk/BID0jOw64fdv+9CdsFRuCEpxpNybSIppe17RjWtr67EYspmDau3cvycnJtG3b1jTNYDCwadMmPvroIwoKCsq8UGxtbbG9xkAG1tbWNeIgQc3Icm+DMdisSsaIkaQL8TQIlNG0bkVNOKai6lnScTUajeyJ3QlAv6B+FpP7drv6mCZFFBJ9ehbBtg3pZz1C3WDilljSe1VUTE09pil5KczZPYc0/zSe9X2MiV0fva3bb3l3LzLeP0JgVj12/7Oe7oMH3dbt34qackwrmsFiBn3o27cvhw8f5sCBA6Zb+/btGTt2LAcOHLCIqrqmCglpzGmPC2jRErNmj9pxhBC36MzJY7xz4Gn+L/5puvh2UTuORWjftitJNpfZlbSLzMKK/eIohKi7DEYDr2x+hbSCNBq5N+L+fg/e9gze9XxJaJUNgNs2hczM9Nueoa6wmILJ2dmZ8PBws5ujoyMeHh6Eh4erHc/i6bvXByAo1oOMjDSV0wghbkX87hNo0eLo4ISjjfTHqYgglyBCXUIpVorZlLBJ7ThCiBpu029/0n13E9xx5c3ub2Kjq9rrLVVUtxGDuWR3BddiZ3b9KCMeVxeLKZhE9WrdsQsX7FOwN9qyd/UGteMIIW6BU2zJR7t1UxeVk1iWkc5DmJHwMDZ/ZagdRQhRg506eYzA3c70zGrHLLcphLmpd/02G1tbGFAy4EPYKW/Ono5RLUttZtEF04YNG8odIU9UjlarJb9dSX8v9yNWNWa4RyFE5ZyPj8U/1wsDBsK7dFQ7jkXp6NuRiOxWhCTVIy8vV+04QogaKD8/jytLT2CjWHPKM5Fed6g/qE67iO6c8kqkWGNg+fafsKABsC2GRRdMomp17NebDKtsPAtd2b1xg9pxhBA34eTOgwDEuybj6uahchrL0rhJC1Js0rFTbDm8a5facYQQNdDmb5fjn+tFhlU24eN7odXWjK/SYXd34vGGr/Mf41L+SfhH7Ti1Ts04yqJGsLOz50LTbDbq9/DLlT/UjiOEuAk2p0rODhc3KjtCqLg+rVZLSkDJmaWswxdVTiOEqGn2bttC09N+AOQOdMTLy0flRP8TUD+YIa2HA/D27rfJL85XOVHtIgWTMNPmzt68E7CY1XnrOXj5oNpxhBCVcPnyRRpkegPQpHPbG8wtrsWrdSAAfklu0jRZCGGSmpqM7YqSETSPByfSoVsPlROVNanFJOo51MP9kgN/L/9N7Ti1ihRMwoynvSeDg0su2rj42GKV0wghKmNz8lbm+37LRr8D+PoFqB3HIjVr3Y4sXQ7OBgeO7t+rdhwhRA2gKAqfbv6QYopJsk+h27hhake6JgdrB2bUn8pb8c/SdLcXiefj1I5Ua0jBJMp4oNkD+Bd403CHm7zZhLAgfyet42/XHeT2slM7isWytrYm0S8dgJQD8vknhIAfT/7IsozfeCr0LfRjG2Jv76B2pHJ179SPWNckbBUbYn7crnacWkMKJlFGY/fGvJT2EEPSenBs9Q614wghKiC7MJsdSSXv174N+qqcxrI5t/DhqP0Zthn2yGhTQtRxZ9PP8PbutwF4sONkGofV7Gt/arVafO5sjgEDjS75s3/nNrUj1QpSMIlrso8o6cjY4Iwb2dly1Xsharr9u7Yx9HIP2tq2JNglWO04Fq1VRGdmhH3Cjw6rOJZ6TO04QgiVFBYUEP/JLrqltqazT2ceaPaA2pEqpGGj5pwMKRm4pnjVJQqLClROZPmkYBLX1DaiG5fsruBotGf3mvVqxxFC3EDh3itMTr6LB/KGo9Fo1I5j0eys7Ojm3w2AdfHrVE4jhFDLxiW/E5ZZn8nJd/FquzloNZbztbnDmP5k6nLwzfNk2++r1I5j8SznyIvbSqfTkdW65OXhchCKi4tVTiSEKE9BQT4Bl0quueTbVr0rztcmfRr0wcngQOr+eLWjCCFUcGDXDhrH1AMgq78N9Tx9VU5UOa6uHqR0NgDgt8+BlNRLKieybFIwiXJ16N+LbF0u3gXu7N26Se04QohyHNq9CwejHWnWWTQJb6V2nFqhe71uLD71GpNPDSf27Em14wghbqP0tFS0f6SiRcuJwEQ69eqjdqSbEjEokiPuZ/nQZwkfHP9Y7TgWTQomUS5HR2fOh2UAULgtReU0QojyZBy6AMCl+pnodDqV09QOLo6unHdLBSB21xGV0wghbhej0ci+b9biXqTnol0qXcYNUTvSTbOyssInqhUbXPbw65lfOXz5sNqRLJYUTOK6mg/sQpouk51WBzl2+ajacYQQ/1JcXIzvBRcA3FvJtZeqkqaxIwB2Z4wqJxFC3C5bV62m0SV/ijHgOCoIR0dntSPdktberRkWWnLdqHe3zcNgMKicyDJJwSSuy9c3gG/7b2Kh93IWn/hW7ThCiH85fmg/LsVOZOtyCW/XXu04tUrTLu0wYqRBVj0uJp1XO44QoprFZ8az48QWjBg50/oKTcNbqx2pSjzT9hkGZHfl2V2j2bZqtdpxLJIUTOKGHggvGUZzVewqknOTVU4jhLjayTNHKdAUkuiTho21rdpxahVvb18S9CWfeTE79qucRghRnYqMRUzfPJ1FHsv5vO0f9Bw1TO1IVcbLwYshXpG4G1xw364hMzNd7UgWRwomcUPhnuG09WpLq6xGbFu1Ru04Qoj/UhSFL7VLuafRi+j6eqodp1YqCLUCQHMyT+UkQojq9PmBzzmUcghna2eeGPw8VlZWakeqUt2GD+aiXSouxU7s+kHOMlWWFEyiQh5xGs+rCU/QeK8XubnZascRQgAn006SmJ2IYg0dG0aoHadWCuvUEoCAdC/SM6+onEYIUR0O79tN4z+c8Sv0YmaXmfg6WdYQ4hVhY2uLNtILgIan63H29AmVE1kWKZhEhXSI6MFlm3ScDQ7sXrtB7ThCCGDjmQ0ARPhF4GDtoG6YWqpBUCjfNPyL8WGvsPnyVrXjCCGqWGZmOsW/XaRpXgjPFT7IwOCBakeqNm27dOWkdyI6dJz/+SBGowxoU1E3XTCdPn2a1atXk5dX0kxBUZQqCyVqHisrK9JblryxHPcXyygrQtQArVZ68fHZl7jDcYDaUWo117b1SbPKZF38OrWjCCGq2O6Fq/AqdOWybRoRD9yhdpxq13BURwo1RYSk+bFrw3q141iMShdMqamp9OvXj0aNGjF48GCSkpIAePDBB3n++eerPKCoOdoP6EWuNh+ffA/279imdhwh6rTzCbH453oRWOBLh4ad1Y5Tq/VpUHLRyq2JW8krlr5MQtQWW9espnGiPwYMWI/0x1nvonakahfQIISzTUuuMXfw0G75TKugShdMzz77LFZWVsTHx+Pg8L8mIHfffTerVq2q0nCiZnHWuxAfUtKGP2fLBZXTCFG3ndxxEIA410u4ucuAD9WpqXtTRuT3Z+bZhzi4bbvacYQQVeD8+XN4bdAAcCo8hfDW7VROdPtEjBrE3Cb/4SO371hwZIHacSxCpQumNWvW8Oabb1K/fn2z6Q0bNiQuLq7KgomaqUlkJwwYCU3z4/TJY2rHEaLOsjlVBIChkZ3KSWo/jUZDD10n2uQ2IeeQXFpBCEtXXFzMuUW7cTDaE6e/SM+7h6sd6bZycHDizl73AvD1ka9JzE5UOVHNV+mCKScnx+zMUqkrV65gayvXAKnt6gcEcaZeErG2iayJkTOKQqjhcspFGmR6A9Ckc1uV09QN3q2DAPBPcqOwqEDdMEKIW/LtvoUUFhaQq82nwf3tsLa2VjvSbTcgcAAdfTrimufEhh9+VztOjVfpgql79+4sWrTIdF+j0WA0Gnnrrbfo3bt3lYYTNZP7qEY8Fvwa/0n/jtS8VLXjCFHnHN++Fy1aEpwu4esXoHacOqF563ZkWGXjZHDg2L59ascRQtykw5cP896JD3ku6G3ihhcS0CBE7Uiq0Gg0TGsxlU9iX6bnyRbs2yGjgF5PpQumt956iy+++IJBgwZRWFjI1KlTCQ8PZ9OmTbz55pvVkVHUMK3qtyHcM5xCYyE/nPxB7ThC1DnGE1kA5IZqVE5Sd1hZWZHklwFAysF4ldMIIW5GTmEO0zZPw6AY6B88gH4dB6sdSVUN/RoTH1zSN92w+rKcPb+OShdM4eHhnDx5km7dujF8+HBycnK488472b9/P6GhodWRUdQwGo2GB5o9gJ3RlstbzlJQkK92JCHqjOzCbJY6rGCdfifBHZurHadOcWlRcjFL7wQnjAa5fokQlmbbf5bT+0xr/O39eKXzK2g08qNThzEDyLDKxjfPg62/rVQ7To1ldTMLubi48PLLL1d1FmFB+gX2wy0+l4C8euxat57ugwepHUmIOmFL4ha2Ou0n0S+NcSFyKYfbqUWHjiSs3IJ7kZ6YY4do2qK12pGEEBW04591NI2rT2P86NdvGC62tX8I8YpwcXHjYGcFly3gv9+Ry70u4uXlo3asGqfSBdOmTZuu+3iPHj1uOoywHDY6G/Iaa+EA2OzJwzjQiFZ709dBFkJUUOnFU/s06CO/jt5mdnb2nKt3mZzMTDIv6qRgEsJCJCUl4LquGLDhZJNL9GszRu1INUrXQZHsOvArAdn1OLhsA/2euEftSDVOpQumXr16lZl29X/aBoPhlgIJy9F2YE9SDu7HP9eLg3t20qZjF7UjCVGrFRTkU2+fLcEO/vQN6KN2nDqp6A5XZmz5P4JzghnHZLXjCCFuwGAwcGrhdkIMvsQ7XaLHvXVrCPGK0Ol06IeFwJIcmpz35+ihfTRvKSOwXq3SpwTS0tLMbsnJyaxatYoOHTqwZs2a6sgoaihXVw9ig1IAyNgk1+ASorod3rObey5F8tr5J2nuEa52nDqpe0B3rLRWxGbEcjbjrNpxhBA3sPHn5YSk+5KvKcD3vpbYyCVwrql5y7YcCYznW8+/eCP2XYyK9NO8WqULJhcXF7Obp6cn/fv3580332Tq1KnVkVHUYA37l1wZOyzFn3NnT6mcRojaLf1QycUFL9bPQqfTqZymbnK2caaTbyc8i1zZs1+G4RWiJos5dpjg/a4AXIgoIDikkbqBarj2UZH85reBA+kH+e30b2rHqVGqrNNJvXr1iImJqarVCQsRFNKQ054lX+JOrd2rchohaq/i4mJ8E0s6KXu0kmsvqWm0cTCLT79O/S32akcRQpQjrziP73Z8QzHFnPJOpNsQGZzqRjztPXm01aMAfLD3AzJy0tUNVINUug/ToUOHzO4rikJSUhJvvPEGrVu3rqpcwoK49AjE+EshyWkXSc9Px9XOVe1IQtQ6xw/tx63YiWxdLuHteqkdp05r2aYjef/E0CC7HklJCfj6SgErRE3zzp53+FW3hlNN4/h4yKcyMFUF3df0Pvbs38adJ3qwO2s1/SbfrXakGqHSBVPr1q3RaDQoimI2vXPnznz99ddVFkxYjlbtO/HwuQfZkbeHvFNOTGoxSe1IQtQ6l/afxQ0/En3SaGItbfDV5OXlwxb9ZoIyfYjZvh/fO6VgEqIm2Ri/kWUxywB4st9zuHt4qZzIclhrrZkQNg7vI0YMZwycPnmMsEbN1I6lukqX27GxsZw9e5bY2FhiY2OJi4sjNzeXbdu20aRJk+rIKGo4rVbLkLYlo858f+J7ioxFKicSonYxGo24x5c0/3IM91Y5jQAoDCv5vVF7Ui7cLURNcvnyRbQLkmiZ04gHmj1AhF+E2pEsTtvOXTnpnYgOHRd+OYLRKANAVLpgCgwMNLsFBARgZ2dXHdmEBRkcPBgPOw806QY27/5b7ThC1CqnE07gUGRLgaaQFh07qB1HAA07tQIgMN2btCspKqcRQkDJj0tHv9lIcJ4/T6bex1Otn1I7ksVqNKYzBZpCQtJ92bn+H7XjqK5CTfI++OCDCq/wqafkxVkX2ehseMZhMm321+fCpcsYO8iFbIWoKuvSNvJFo8+503UoMxz7qh1HAAGBIex0OIB/rhdHduym+2DpUC6E2jb+9gcNU/0o0BTidXcz7KzlB/2bVb9+EOua7aHx0Xo4bMwnt0s2Dg5OasdSTYUKpvnz51doZRqNRgqmOqxbl35kbjtKQHY9jh7YS4u28ku4EFVhXfw6ijUGWoS3UzuKuEpWsBGOQtGJDBisdhoh6rbTJ48RuNsZgPiOOfRu1FTlRJavy6hBnDz1D56Frmz7aSX9xo1WO5JqKlQwxcbGVncOUQt4etbjQMB6msT7c3nDGZCCSYhbdj49gZgrMei0OnrV76V2HHGVgIimvJE2j8Mup+lSPBx7KxlmXAg15Ofnkbr0BP6KF6c9Euk5fIzakWoFB3tH8ns7wGoojMskITOeAH0DtWOpQtpMiSoV1K8lAKHJvpxPkEJbiFt1cu1evj4zh4eL75Uh+2uYRiHNOO2fxBXS2Za4Te04QtRZm79djn+uFxlW2TSP6iVdAqpQx569+bbV30wLeJ95e95RO45qKj2sOMD58+dZvnw58fHxFBYWmj327rvvVkkwYZnCGjVjo/syQq/4cXz1LupPClY7khAWzfp0Ib5FvjRxlS8ANY1Go6FPgz4sPraYdfHr6Bso/cuEuN22JWwl+VISTfEjd6AjXl4+akeqVbRaLaMGPsDSP37nn4R/2Ja4jQj/ujfyYKULpnXr1jFs2DBCQkI4ceIE4eHhnDt3DkVRaNu2bXVkFBbGsasf/AGBZ93JyszAWe+idiQhLFJKyiUCM+oB0LhTG5XTiGvp69eHgk3JtE9oSGHnAmzkGllC3DZp+Wm8vP0VUvxTyPbW8nA36UdfHcLcwri3yb38dPRH9v62jvaT2mFjW7c+6yr9k+X06dOZMmUKhw8fxs7Ojp9//pmEhAR69uzJ6NF1tzOY+J82XSJIsk9BQWH9ntWsOreKXst6sfrcarWjCWFRjm3fgxYt8U6X8POvm+3Ga7pW9VpzZ1pfWmSHcWTvHrXjCFFnGI1GZm2dRUpeCiGuIYwf8JDakWq1R1s9yrvxLzAyoRdbfl+hdpzbrtIF0/Hjxxk3bhwAVlZW5OXl4eTkxJw5c3jzzTerPKCwPDqtjksD4YGwl/gw9UvmbJtDan4q0dujSc1LVTueEBbDeCILgLwQjcpJRHmsrKxI8ssAIPVggspphKg7Nv+5gogdobga9bzZ403srGQI8eqkt9VD+5JRCAMOOJF8KUnlRLdXpQsmR0dHU78lX19fzpw5Y3osJUUu3idK9Gs3CBt7Oy7mXiSnKAeA3KJcXt3xqsrJhLAMWZkZBF4paY4X3LG5ymnE9bi09APA57wzBoNB5TRC1H5nz8ZQf7s93bLaMls/hSbuTdSOVCdEDIwk3vkS9kY7Dv+4Ue04t1WlC6bOnTuzZcsWAAYPHszzzz/Pa6+9xsSJE+ncuXOVBxSWyc7Kjnb12oECoXn1ATAoBv6O/5tV51apnE6Imu/wrl1YK1ZcsrtCUEgjteOI62jZoSO52nzcivScOHpQ7ThC1GqFBQVc+u4ItooNZ90u0GvEMLUj1Rk6nQ7XoaEAND7vz5EDe1VOdPtUuGC6cuUKUDIKXqdOnQCIjo6mb9++LFu2jKCgIP7zn/9UT0phcVLzUtmdtJv5517gg3PTaJQXCIAGDXO2z5GmeULcwJa8nfzpuomLjXJkiNwaztbWjoR6JS0skvaeVjmNELXbpiW/E5DjTZYul0bjuqLT6dSOVKc0a9mGEwGJAGT9eY7i4mKVE90eFf5f2M/Pj3vuuYczZ87QsmXJtXYcHR357LPPOHToED///DOBgYHVFlRYDkVRmLtjLrmGXM7bJgMwOK17yWMo0jRPiBsoNBTyS9affOy7lPr9pTmeJbBv5gmAW5wtRqNR5TRC1E4Hd++gUUxJU+XMftb4+NZXOVHd1OruXuRo8wjI9mbbyroxoFeFC6Yvv/ySy5cvM3DgQIKCgpg9ezbnzp2rxmjCUp1OP826+HUYFAPrXHYA0CG7ORqlpON6adO802nyS6wQ17IzaSc5RTl42XvRwrOF2nFEBbTo1JFMXQ4nrc8Rm3LmxgsIISolPS0VzfJUtGg50SCRTr37qB2pzvLy9CGxXS7r9bt5N+1TMgoy1I5U7SpcMD3wwAOsW7eO06dPM378eBYuXEhYWBj9+/dn2bJlZS5gK+quMNcw+jboi06j46j9GfI0+bgbXAgp8AdAp9HRr0E/wtzCVE4qRM10dsdhmueG0jegD1qNNMezBM56Fz7quZzX63/Fuovr1Y4jRK2wJm4Nb2S8wZq4NXy65SOKlWIu2V2hy7ghaker87qNGMzPzTZxRonj4wMfqx2n2lX6f+Lg4GCio6OJjY1l1apVeHt7M3HiRHx9fXnqKblgmACNRsOMzjNwsHKgWGvgoONJANplN0eDBkdrR17p/IrKKYWomYqLi2l/IJh5cc8zUNNb7TiiEvoElfzi/U/8PyonEcLypeal8uquV8lWspm9YzZLrvzEU6FvYn9vEI5OzmrHq/NsdDZM6zQNgGUxyzh5OUblRNXrln667NevH9999x2LFi0C4OOPa3+FKSrGw96DmV1moqCwx+koAO2zm6GgMKPLDDzsPVROKETNdPzQflyKncjW5dKiXXu144hK6BXQCw0aMi+kknQ5Ue04Qlis0r7QecV5oEC+IR+A8e0m0KxxK5XTiVKdfTszot5QXkyYwMX/HKzV/TdvumCKi4tj9uzZBAcHc/fdd9O2bVu+++67qswmLFxkUCR9G/Rln9MJAJrlhTCgXj8GBg1UOZkQNdel/bEAJPqkYWNtq3IaURme9p68lvoMX5ydSczmPWrHEcJirT63mnXx68Co8Hr8U0SmRYAC/k7+akcT//JI+MN0ym5JSLovO9atUztOtalUwVRQUMCSJUvo168foaGhLFiwgHHjxnH69GnWrl3LPffcU105hQUqbZqX7ZDPIs8/mBnwCV0Du6kdS4gay2g04h5fcrV6x+ZeKqcRN8MxwB0A3ckClZMIYZlS81KZs30OGjTcmzKINrlNmJR8J24GPa/ufFUuS1LD+NcP5FzzkksPOW4qICcnS+VE1aPCBdNjjz2Gr68vEydOxMPDgxUrVnDu3Dmio6MJCgqqxojCknnYezAzYia/+qxnn9NxDlyRizoKUZ7TJ4/jXeBGgaaQFp06qh1H3IRGnUuaCzVIr0daaorKaYSwLKbLkhTn4lLsxN0pJS1SPvL5njSrTLksSQ0VcddgLtuk41HkwvafVqkdp1pUuGDasmULs2bNIjExkWXLljFgwAA0Gk11ZhO1xMCggbzf+30AtiZuRVEUlRMJUTMl7DkOQLznZRwdpVOzJaofEEyiw2V0aDmyc7facYSwKFdflqR7Zlus0HHSLo6NLnsBuSxJTWVv70Bhb0cAQk94khB3VuVEVa/CBdOhQ4d4+umn8fCQzvqi8tr5tKNdQXOGnevGqdPH1I4jRI2knC/p2GzV1EXlJOJWZIeUdHwuPl77r00iRFW6+rIkvTI7ALDeZZfpcbksSc3VoWcvzrhdwFqx4vRPu268gIWRC3yI28JWZ0tU5gjuutKP83tr99CTQtyM81nnec7nLZ4Lmkd4F2mOZ8kC2jcFIDDFm5zs2tmeX4jqUNr3uYHRl2Z5IRgxstG55OySXJakZtNqtQSMak0xBtzSHNh6crPakaqUFEzi9gl1AMA6tljlIELUPP/E/4OiUXAK9sDNTc7kW7KwRk1Jtk3DRrHm8K7a90urENXJw96D+40jATjkcJI060wAuSyJBQgJbcyWrqeYFBrNG0ffoshQpHakKiMFk7htQtuFAxCQ4U1WpjRVEeJq6+JKhmPt26CvyknErdJqtZxqncKs+p/wh7b2DrMrRHXZZrOfla5bWO26DfhfUzy5LEnNNyLyXpwcnDmXeY7FxxerHafKSMEkbpuABiFctEvFCh1H9+5VO44QNUZKyiWe2zaKJ5Pupbd/b7XjiCrQMKI1u5yPsP7Chlr1K6sQ1e1U2inWGbbwsd8y9niWXMfRwcpBmuJZCCcbJ55p9wwaRcPJ9fu4dOmC2pGqhNXNLJSens6uXbtITk4uc1XfcePGVUkwUTul+RfgcwayjyeDfC8UAoBj2/cQUuxKi+LG+On91I4jqkArr1a427lzJf8Kuy/uJsI/Qu1IQliElbErAehRvweRDSJ5ddurvNLpFWmKZ0GGhQ6j+K+LdE5qzpEfNlHvScu/TmulC6Y//viDsWPHkp2djV6vNxtaXKPRSMEkrsu9uR+cAe8kZ4xGI1qtnOQUwhCTBejJDVE7iagqOq2O4W6DMR7M5PLfp2C8FExC3IjRaMR6SzaNbYIYHDSYvgF9KT5aTP8G/dWOJipBq9HSvE9njN9l0DjRn8P799CiTXu1Y92SSn9bff7555k4cSLZ2dmkp6eTlpZmul25cqU6MopapFmbdhRoClEUI2fOn1Q7jhCqy8rKICi1HgDBHZurnEZUpR6OEdyTOpCQ054YDAa14whR4x0/vJ+hF7rzf/FP0cOnm9pxxC1o2qI1JxskAZDzZxzFxZY94FelC6bExESeeuopHBwcqiOPqOXs7R34qstK7g97iS2Z29WOI4TqDu/chbVixSW7KwSFNFI7jqhCLdp3IEebh1uRnhNHDqgdR4gaL2lnyQVp43xTcHBwUjmNuFWtx/QmR5tH/Rxvtv61Su04t6TSBVNkZCR79uypjiyijghv2AY0sCVxi9pRhFBd3tFUANICC6SJai1ja2vH+Xolxzdp3xmV0whRsxUVFeEbrwfApY2/ymlEVfD0rEdS+zwAvHdZkZ6WqnKim1fpPkxDhgzhhRde4NixY7Ro0QJra2uzx4cNG1Zl4UTt1M2/5DT7/kv7yc7PxslOfkUSdVNBQT4Bl0o6Mvu2DVU5jagO9uGekATu52yl36YQ13F47y68i53I0uXQqpOMClVbdB06iP2H/8Ivz5PdP6ylsK8zb2S8gXW8NYNDB6sdr8IqXTBNnjwZgDlz5pR5TKPRSDttcUOB+kCeTL+fLsnhHN25i049+6gdSQhV7Dm/m11um2hR0Ije4fepHUdUg5adOpH89x68C9yJPR1DaKOmakcSoka6sicBb/xJDEinqbWt2nFEFbG2tsFmkC8nV5zmC+UH4ndeIlfJ5dWdr9LJr5PFjH5Y6Z+6jEZjubfqLJb+7//+jw4dOuDs7Iy3tzcjRowgJiam2rYnqleIfRBuBj2Zx5PVjiKEatZeWsfX3r+xo18cOp1O7TiiGjg56Yn3KPmcO7f7mMpphKiZ8vPzaHDBHQDvDjJcaG3TumNn/uyxjxP2seQW5wKQW5zLqzteVTlZxVlM24CNGzfy+OOPs2PHDtauXUtRUREDBgwgJydH7WjiJrg08wXA64JjmWt5CVEXGIwG1iesB6BPAznLWptpm+jJ0GVxJkP6MQlxLbuPbSNXW0CqdQbNW7dTO46oBh18O5j+tlJ0GBQDf8f/zapzljEYxE0VTBs3bmTo0KGEhYURFhbGsGHD2Lx5c1VnM7Nq1SqioqJo3rw5rVq14ptvviE+Pp69e/dW63ZF9Wjeti2FmiI8C105d1aGFxd1z9GTBwhN8cVN50qHeh1uvICwWM17deT+Ri/zoeNiLmTXjqveC1GVfs38i/FhL7Oj3zk5214Lpeal8uH+D7ExWvNA8h18fmYGdkZbNGiYs30OqXk1fzCISvdh+vbbb5kwYQJ33nknTz31FABbt26lb9++fPPNN9x33+1ph5+RkQGAu7t7ufMUFBRQUFBgup+ZmQmUjMRSVFRUvQFvoHT7audQi7W1LQlulwm94kfs3mMEBFp+h/e6fkxrq+o6rpe2nGZOwuMcNcaDEYqM8rq5XW73e1Vv60JL75bsS97H2ti13NdE+qtVB/kMtkzZRdlsTNiIUaMQ0aSn2fGTY2r5FEUhels0ucW5aNHQO7MDx+1jsTFaka8tIKcohznb5zCv+zxV8lX0taVRFEWpzIqbNm3KQw89xLPPPms2/d133+XLL7/k+PHjlVndTTEajQwbNoz09HS2bCl/aOrZs2cTHR1dZvqSJUvkOlI1QE58Ej0Sm3PCMY6cls5qxxHitlGMCgH7oF6RBxtCjuFcz0ftSKKabcvfxoq8FXQubssdXneqHUeIGuNEzlGWFC7DQ+fBU85PodFo1I4kqtAlwyU+zPrQdN/BYEeuLr/MfE86P0k9Xb3bGQ2A3Nxc7rvvPjIyMtDr9eXOV+mCydbWlqNHjxIWFmY2/fTp04SHh5OfX/ZJqGqPPvooK1euZMuWLdSvX7/c+a51hikgIICUlJTrPim3Q1FREWvXrqV///5lhmavK+LOncbuPykUaYpxe7EVjo6WXTTJMa2dquO4nj55DOfFmRRoCvGc1lYu0HibqfFevZB6nisfHca92AW7Zxri7uF1W7Zbl8hnsGXaOv9n3DOciIlIZcQA87Ovckwtn6IoTNk8hU2JmzAoZQeH02l09KzfU7UzTJmZmXh6et6wYKp0k7yAgADWrVtXpmD6+++/CQgIqHzSSnriiSf4888/2bRp03WLJSgp7mxtyw5NaW1tXWPeeDUpy+0WEtqYlS7bibE6S7tk6Nmodlx3oS4f09qsKo9r4v5TNKEe8Z6XCXVxq5J1isq7ne/VQJ9gkmz3oSvWcnLvAboPsZzrj1ga+Qy2HCkplwi+4oMOHR2bNyn3uMkxtWyzImYx9NehZBdlo/C/8zQaNDhaOzKzy0zVjm9Ft1vpgun555/nqaee4sCBA0RERAAlfZi++eYb3n///cqursIUReHJJ5/k119/ZcOGDQQHB1fbtsTtodVq2d/7Astificn1Zae1I6CSYgbcYotaXKia6LumW5xe2WHKHAYDMczYYjaaYRQ35HNOwnDjXinS0QEdVc7jqgmHvYezOwykxc2vWA2XUFhRpcZFnEtpkoXTI8++ig+Pj688847/PDDD0BJv6Zly5YxfPjwKg9Y6vHHH2fJkiX8/vvvODs7c/HiRQBcXFywt7evtu2K6tXdvzvLYpax9cJWFEWRtsui1jufEEv9HG8MGAnvLKPj1SWBHZrB4VQapHqTnZ2Jk5MUzKJuszpe0m0iv0mlv44KCxMZFMmqc6vYkLABg2JAp9HRO6A3A4MGqh2tQm5qWPGRI0eyZcsWUlNTSU1NZcuWLdVaLAF8+umnZGRk0KtXL3x9fU23ZcuWVet2RfXq4NMBRxzwS3Ij9vxpteMIUe1O7D0AQLzrJenHUseEhjXhku0VbBRrDu/cpXYcIVR1/vw5gjJ9MGKkefeOascR1Uyj0TCj8wzsrUpOcjhYOfBK51dUTlVxFnPhWkVRrnmLiopSO5q4BQ7WDvxf8jPMOf8YcTuOqh1HiGq32OY3Hg6ZS1qEnE2ta7RaLVcCS35Rzz2SonIaIdQVs2UfAOdcL1Kvnp/KacTt4GHvwSsdX8FJ48QrnV6xiKZ4pSp0DtTd3Z2TJ0/i6emJm5vbdZtNXblypcrCibpBCbKHVNCeLbjxzEJYsNS8VPZf3o9iq9ChbTe14wgV+LYNhZO5BFzyoLCgAJtrDEwkRF3gVHrN+uYySmhdMiBwAMVHi+nfoL/aUSqlQgXT/PnzcXZ2Nv0t/UxEVQpq0xT2JtMg3ZucnCyLH15ciPJsSNiAgkIzj2b4OvmqHUeooGmL1ny+/g222O7l8WR7ugZI4SzqntNpp3nT+z/0zurIA92fUDuOEDdUoYJp/Pjxpr+lCZyoakEhDTlkcxLPQleO7dtHh+491Y4kRLVw+iuXaXkTIViGEq+rdDodKZ0NHD55inXn/5GCSdRJK2JXcMo+Hv9GIbi6Wk6zLFF3VboPk06nIzk5ucz01NRUdDpdlYQSdYtWqyXFLweAjGNJKqcRonpkZ2fSKLk+PTPb09mnk9pxhIr6NugLwPqE9RgVo8pphLi9FEVhRewKAAYHy/XIhGWodMGkKMo1pxcUFGBjY3PLgUTdpG/qA4D7BQeMRvkCIWqfQzt2Yq1YccnuCsFhjdWOI1TU0acjHQpbMDq2D8cO71c7jhC31dEj+xlzsg8d8sPpWV9alAjLUOGB7z/44AOgZFjAr776Cien/3XSMxgMbNq0iSZNmlR9QlEnNGvXlsur9uJd4EZ83BmCghuqHUmIKpV3NBXwJy2wAK3WYgYoFdXAWmfNfXlDaZJWnxN7zhDesp3akYS4bS7uOMWAjC4EOjbAwdpB7ThCVEiFC6b58+cDJWeYPvvsM7PmdzY2NgQFBfHZZ59VfUJRJzg56fmi2RbW5m1kbG4UQUjBJGqPgoJ8Ai6VtNP3bRuqchpREzg294IL4B5nh9FolCJa1AlFRUX4xJUM7KRvK0OJC8tR4YIpNjYWgN69e/PLL7/g5iadlkXVcm8TwPm9l9hyYQv3N79f7ThCVJnDe3bjY7QjzTqTZuERascRNUDLTp249PduvAvcOHP6OA0bNVc7khDV7vDeXXgXO5Oly6FVp95qxxGiwir9k9b69eulWBLVopt/yWhRuy/uJq84T+U0QlSd9EOJAFzyz5LBcQQAjk7OxHmUDKAUt/u4ymmEuD2u7E0AIDEgHRtruQaZsBwVPsN0tfPnz7N8+XLi4+MpLCw0e+zdd9+tkmCi7gl1DWVIYS9aJodyZM8eOnTurnYkIW6ZwWhgp2E/Wrti3FsFqx1H1CBWTfWwGZzOSnM8Ufvl5+cRkOgOgFd7+SwUlqXSBdO6desYNmwYISEhnDhxgvDwcM6dO4eiKLRt27Y6Moo6QqPR0K+4K02y/Dlx6AJ0VjuRELfuUMohljqv4C/3zWzsuFHtOKIGada5Pdmbj1M/x4vzCbHUD5AvkaL2Orh9O/5Ge1KtMwhvM0jtOEJUSqV/1po+fTpTpkzh8OHD2NnZ8fPPP5OQkEDPnj0ZPXp0dWQUdYhzE28A3BLtVE4iRNVYF7cOgB4BPbDWWaucRtQkHh7exLle4pJ1KvtP7VE7jhDVav+l/Zy3ucTl4FxpmiwsTqULpuPHjzNu3DgArKysyMvLw8nJiTlz5vDmm29WeUBRtzRr145iDNQrcCc+7ozacYS4JUajkdSDCTgY7EwXKxXiahcii4kKncHPhX+pHUWIapNdmM1Xxd8zOSQavyEywImwPJUumBwdHU39lnx9fTlz5n9falNSUqoumaiTnPUuJLiWdIQ+s/eIymmEuDWnTx3n8dOjWHT6NSK8u6gdR9RAPRr2Ag3sT97PlfwrascRolr8k/APBYYCglyCaOrdTO04QlRapQumzp07s2XLFgAGDx7M888/z2uvvcbEiRPp3Fk6nYhbVxRc0mxJc0ZGyhOWLX5PyehnF9yv4GjvdIO5RV3k5+RHU/emaIywNUb6uIna6fC+3VgbrRgcMhiNRqN2HCEqrdKDPrz77rtkZ2cDEB0dTXZ2NsuWLaNhw4YyQp6oEgGtG8H+KwRc8SIvLxd7e7kSuLBMpaOfWTXVq5xE1GT3aYfT+KQHl1IyoJXaaYSoWqmpydy/ty+jtN2xGxSmdhwhbkqlC6aQkBDT346Ojnz22WdVGkiI0IZNOWy9gsu6K6TE7qNTs25qRxKi0s4nxFI/xwsDRpp37qB2HFGDtWjYFtvNKdil2pKdlYmTsxTYovY4vHknYbhyxSGTLj4hN15AiBqo0k3yQkJCSE1NLTM9PT3drJgS4mZptVp+H7CXZ4PfZkP2VrXjCHFTTu04CEC86yXcPbxUTiNqsuCwxlyyu4K1YsWhnTvVjiNElbI6lg9AXuObuvSnEDVCpQumc+fOYTAYykwvKCggMTGxSkIJ0aVBBABbEreonESIm2N1umRwHEMjuZq9uD6tVktaYAEAeUfL/iAphKVKPB9HUKYPRow06y5n2oXlqnC5v3z5ctPfq1evxsXFxXTfYDCwbt06goKCqjScqLs6+3bGSmNFctpFElLiCPAMVDuSEBWWciWZBhn1AGjYsbW6YYRF8G0bCjG5BFzyoKAgH1tbuRadsHwxW/bSCC/OuV6ih09PteMIcdMqXDCNGDECAI1Gw/jx480es7a2JigoiHfeeadKw4m6y9nGmekZD9EpsSlnNh8kYKQUTMJybErdwkdh7xGp6cmL9eeqHUdYgCbhrTlmvQq3Ij2H9+ymfdfuakcS4pY5nvzvH80dVc0hxK2qcMFkNBoBCA4OZvfu3Xh6elZbKCEAPLzqoUvUwZlctaMIUSnr4tdx2ToN19b11Y4iLIROp+OSfzZu5/SkH0qErmonEuLWnDl7Av9cL4o0xbTsJpedEZat0n2YYmNjpVgSt0WD1o0AqJ/qSX6+XJNJWIacohy2X9gOQN8GfVVOIyyJa/v6LPFYwTf2v2Awlu0rLIQl+St9DZNCZrOy+R5c3TzUjiPELal0wfTUU0/xwQcflJn+0Ucf8cwzz1RFJiEACG3UjCvWmdgpthw7sE/tOEJUyIEt25hxbjIjivsT6hqqdhxhQVq16chv/hs5qDnOwcsH1Y4jxE1TFIWVsStJtE0muGu42nGEuGWVLph+/vlnunYt21YgIiKCn376qUpCCQElI0cl+2QCcOXIeZXTCFEx+YdS6JATTk9tZ7mivagUa501PQJ6ACXNOoWwVIdTDnM++zz2Vvb0rC+DPQjLV+lB8VNTU81GyCul1+tJSUmpklBClHJs4gUJ4HpehmYWNV9BQT71L5U0PfFpI2eXROX19e9L2oHzeG7RYmxnRKut9O+aQqgu6Y9jvJw0mQstcnCwdvh/9u46PKoz7eP494xP3N0TkhAhQBLcHdpSd+/WZdvt7lbeum9tK7tVWirb7VZpqUGLFHcCgUCUJMTdZXzeP4ZSKLQQmOREns91cUFGzvlNhkzOfc7z3I/ccQThtPX4kzguLo7ly5cfc/uyZcvEwrWC0yVlpGPFSpDBl4qKUrnjCMIfytm5HVebnmZ1G8NTR8odRxiAJgSO456qa5ldO4YDBfvljiMIPWYxWwgt9mBS+ygme0+QO44gOEWPrzDdfffd3H777dTX1zNjxgwAVq1axYsvvsjLL7/s7HzCEOfp6c134XvZY84ls3EaF4RFyR1JEH5Xc3YlgYRSG9pOqlIpdxxhAHJ1dafMr55h9aGUbc9nWKKY/yEMLHuztuFvcadd2UXamGlyxxEEp+hxwXTddddhNBp56qmneOIJx/oiUVFRvPHGG1x11VVODygIXZN1/LBrPV2NSi7gIrnjCMJxWSwWgio9APBJC5c5jTCQqYZ7Qj24lYg5cMLA07ijDH9CqQhvZrhWDKcXBodTGhx9yy23UFFRQW1tLW1tbRQXF4tiqYekql1MKHwGqWqX3FH6vYmhjiYjW6u3YrKaZE4jCMeXu3c3XhZ3OhXdpIzOkDuOMICljMvEipXQLn8qykrkjiMIJ81oNBBe6QNAQEa0zGkEwXlOqWCyWCysXLmSJUuWYLfbAaiqqqKjo8Op4QYzae9n+HfkIuV8LneUfi/RJ5EEKZYZdZns3bdT7jiCcFxZNTvJdimgPLgRjTirKpwGbx8/DnrVAVC4VbQXFwaO3Zs34WrT06RuI2WUOHEkDB49HpJ38OBB5s2bR1lZGUajkdmzZ+Pu7s6zzz6L0WjkzTff7I2cg0NLGXQ1AhKK7I8xWFVo9y2BUZcDdnDxBa8IuVP2OwpJwc1tl5BYG0ru9jIYMV7uSIJwFLvdziddX1MRWcGLU16UO44wCFjjtbAN1IVmuaMIwknr3F0HhFIb1cEIMY9TGER6XDDdeeedZGRkkJ2dja/vrys3n3vuudxwww1ODTfovJx6+J/dFjWLD2QQ597IhNdm46E+NNTs0VaZwvVvLgm+UAGeFRq5owjCMQpbCqnoqECj0DApbJLccYRBIHHcaKzbSrEZLdS31+HvHiB3JEH4Q53mTn6WNoMuk/DxI+SOIwhO1eMheevXr+fBBx9Eozn6wDUqKorKykqnBRuUzlsECkeNWtzhg9GmZl9rEIsPZLKuLhrDrOdkDth/JWWMxoqNkG4/qirL5I4jCEfZvnsjXhZ3JoRMEGuOCE4RHBLOkxkfcFvM06ytXid3HEE4odVlq/naazUvpX1KwvDUEz9BEAaQHhdMNpsNq9V6zO0VFRW4u7s7JdSgNeIiuN6xenuKVy2XRe0izKUFq13B9sYw3n39K3b8624snW0yB+1/vLx9Kfc4NKZ/5x6Z0wjC0WI3ePLfwmc4l3lyRxEGkfT4sQCsKlslcxJBOLEfSn4AYEH0AiRJdHgUBpceF0xz5sw5ar0lSZLo6OjgkUceYcGCBc7MNqjZkQjWd3BhRA7nhuXgpzdhsKpYu6GAD265EMuOj8B2bGE6lBkiHR/AtiLRXEToPyrKSwjr9McOjBw5Ru44wiAyI8Kx1uGuyizau8SJNKH/amysw2W/DRerjvnR8+WOIwhO1+OC6cUXX2Tjxo0kJSVhMBi47LLLDg/He/bZZ3sj4+Di6g9uAdiDR7I7/BoIGUlMsJor//k2cxeMwU1jIdKlHtV3t8FbU6BwBRzqRDjUhaYNc/zd4IvJaJQ5jSA4FG5xdDEr86zFx9df5jTCYBLjGcPfmq/jo7yn2btxq9xxBOF35azfyl+qruCF6r8T5RkldxxBcLoeN30ICwsjOzubTz75hD179tDR0cGf/vQnLr/8cvR6fW9kHFw8Q+GuHKw2iYPLlpE8/3kUCjsKlZaUqx8m4YIWbFsWwbZ/QW0Ode9ezdq20Uy+6iaCxp0ld3pZxQ9PIU/1E64WPfvydjEqbZzckQQBVZGjYYslXrQSF5xLkiRCPUPR1Wgw7KuE2XInEoTjU+43AGCOF42ZhMGpxwUTgEql4oorrnB2lqFDpQXzoVaxkgSqXz9g1K5eMPPvMP5PsP5FNn2+hrJ2+O9Lb5EQ/j6TbrgXr4ShOexHqVTy09hsPqn/kovNlzIKUTAJ8mpoqCWyNRCA+LEj5Q0jDErB6XGQ30l4nS9GgwGtTid3JEE4SlVFGVFtQdiwMXySWHvplFVmwYqHYfbjEDpa7jTCb5zSwrX5+fncfvvtzJw5k5kzZ3L77beTl5fn7GxDm4sPzH2KGff/m6RIPWAnv9zIe488yupHr6KruljuhLJISB5Bl9LA+sr1ckcRBPZv2YkCBeWudYSGRcodRxiEEpPTaFa3obfp2LNjm9xxBOEYeRsdC8of9KolODhM5jQDWPYnULoe9nwqdxLhOHpcMH355ZekpKSwc+dO0tLSSEtLIysri9TUVL788sveyDikecSOYv5zn3Pl3/9MlL+Eza5gV24T7959G7v+fReYOuWO2KcmhExAQqKopYiazhq54whDnDXPMRG/K0bmIM5QmQXvn+n4W+g3lEolNWHtALTtqZI5jSAcyzXfMc/aliSWVOixljKo2gVVu2HfEsdtOV86vq7a5bhf6Bd6PCTvnnvu4f777+fxxx8/6vZHHnmEe+65h/PPP99p4YRfBWTM5fyMuRz86QPWffYJde1K7AU/wqvLYNp9MOpKUJ7SCMsBxUvnxbWWC0gtj6Lg550EnXmG3JGEIarT3Mmjvq+Rrk7ktvF/lTvO6Tvy7KYYDtKv+KaFQ4mNoCpPLBYLKtXg/6wXBobiojxCu/wxSxZGTBLD5Hvs5VSsdomDHV6UdPqgVrjirenG++Wz8NF0o1eakR5rlTulwCkUTNXV1Vx11VXH3H7FFVfw/PPPOyWU8Psi51zNFTMup3DJy8RWlEHbQfjuLkp/WIQ55RLizrkdSXFKIy0HjFRtEomGQAoKxELJgnzWV66nSdFCfngVMdEJcsc5NS1l0NUISJj3LKGq0wvWf4ueUAJCAsEtEHyi6TbaUOhcULt4odAM/OYWUtUuJhQ+g1QVDJH9f05oSnoGxd+uwdPixv7sLEak9//MwtCQs3snIwnjoG8t0T7T5Y4zcFjNULIWIidiPLCVryuSsXPs2lVahYX4u+cxZ1IE+A4D31gaLR54xKajdveWIfjQ1eOCadq0aaxfv564uLijbt+wYQOTJ092WjDh90kqFfEX/Q0sd8COxVjXPMfqfTqa9/1EyI/LmXLZtYROvVDumL0mZEQs5HQQ1uCDyWxEox74B3DCwLP64GoAZkbMHLiLNL6cit0OeW3+rKuLpsPi+FkKrvqCy6KyDz/sw8Ixh+9TYEOlsB/6A/5uFs5JM4JaDyodK/cr6DYrUKlVh/6oUWk0qDUaXNxcGTFqGKh0oNZTXtGEFRUqvQsqnSsqvRsqnRsqF3fULh5oPX1BqXE0x3Eiae9n+HfkYs35fEAUTBq1lpy4cnKa9+HbGcEI+n9mYfCz2+28qfgvXXFtPDT6Qbnj9Hs2i4mKnz8hf81yuuorODvE8RnrooIkzzpUCisK7DSZXGg26WkzazHaVNg6amDPZgAsNon38ycCEu4aC97uKrx9PfEJDsU7chh+iem4R6eBQinjKx2celwwLVy4kHvvvZedO3cybpzj8uuWLVv4/PPPeeyxx/jmm2+OeqzQi1RaGHcLtqQLiH/9AXbuLqeqRcknr39A3Ff/ZdKf7sY3dYrcKZ0uIXkE+coVeFhdyc3eTVrGWLkjCUOM0Whg8vp4dC5GZoQM3LOqVQm38vPyjdQYPABwUZpwUZnx1nQ7HqB2AbsNi/3Xq9Y2FJhsYLI5vnbp6oaaPYfvL67IpN2iA0zH7M9H08WI6rcOf72qeDSNRtfjZnNTGblp2DZAArWeL0vjaTDoUStApQSVUoFK5fij1ymZP84P1DpQ6dlb3EF7tx2VRotKq0Ol0aKWrKgkG2q9nsjizwBQ7FsCoy4H7ODiC14Rp/7N7GXeM6L5cs0rhNaHcrv9roFbpAuDRk5DDuXt5ej1esYPwmMNZ7BZzFSt+4K8Nd9TeKCBLssvh90etEcE4T5yAQSNYN53d+FoK2A7/Lf5yu9paTOibK8AqQEaiuisKEJXZMVgVdFuUtHeCGWNrVDQCuwnyfNt5oeXgk8MVu9YNpbo8Q6NwCc6Ce/4dPSBUYN+FFJv6XHBdOuttwLw+uuv8/rrrx/3PnCsH2G1Wk8znnAy1B7+TLrvbUaW5bLprcfJKWqjqNrCgSefJTXuDcbf9DBuEcPljuk0SqWS6sAWPKpcqcs5CKJgEvpYzs7tjOpIIMoYTFLgCLnj9FxLGVv/9Xc25HQCHqgVFsb6VjDapxK14lAldONaCBkJwK0WCxZjB5bONixdbVi6Oxx/DB0o7RYI8ARzN1gMTN6dR3dXFxajAYvJhMVkxGI2YzGbcdW4QeJCsBjA3I1PoxVFpxWL1Y7ZBhar4wyqxa5Arfjl94cdzF10GiU6TMf7lWXDVdUNe1cfviWndARV3Z7HfelqhYU/JxyaE9DVQNY/LsVoVRHi0kbwA9vReAU45VvsbBNCJ6BT6qjsqCS/OZ9En0S5IwlD3PKiZQBMC5+Gi1o0fDjMZoOK7ez96l02bi+j0/zL55YKndLCsCgvEqbOw3X6paDRQmsluAWARyiMvgqyPoS2StR+0fjHhh61aU/gtjugu+4gzfk7aCreT3NVGc11DTS1dOOnM4LVBPV5tFYcZHtxBuypBbYDH6BTWvB2VeDt7cqwpBjiMsc5hvr5xIBGvId/pMcFk81m640cghO4RQxnzlP/I33vOta/808O1FjYU9RO3Gtn4zbnSph4J+g85I7pFLoEb6gCjzIx+Vnoe83ZlQQSSm1oO6nKATT0wdgBG16Czf8mqkPJRkaRHKFmomYLbmorR57dPJKkUqFWeTnWiTuB4T2oHxdec/zb7TYbNpMB7KbDxdVZVeUYO1qxGDqxdHdhMXZhMTgKM4XdAvELwWwASzfD3Mrxa+nEYrZgsViwmK1YjN1YjN2opF9fmwTsaQ6i0eS4yiXddC1+rjZCQn0JSUwhJHMWXsPSnT4k8FToVXqm+0/FlNdC7oYdJC4UBZMgH4vFwpwfkkjQ3IH3mHi548jObrNRs+VbPOo24lr8PbRVoGz1p9OciFZhJS7Sg4TJs4mYdTlKrf7oJ3uGwl05vw4/Tr/WUfSofn+6gT4gEn1AJCGTf9NozWaF1gpoLERZvJeR6p00N7bS3GamzaTEYFVR3QbVbd14dv5AXOmbALSYdHxWPgpvDxU+vl54B4fiEzkM72EjcY8egUIlFiR26tFmV1cXLi6iQpWbb+oUznllCpVrP6Pwu8VE6Wph/Quw8z1q4m/Ef94dKHXHHwYzUCRmjKLz51xCu/ypra0iMDBE7kjCEGGxWAiqdJx48BkRLnOak2OzmNn30TN07fmBsR65AAQOn8z1V/8dj9A4WDTtmLObuPrLlldSKFDqXIBff594+0Sf9PMzZv7OHVW74e2ph7+022GkdzWVqniqGky0GVXUdyqpL2ghu2AD3st/4rq0CggfA+FjaVBH45U8FZWL+6m9sNO00DaLqGpXKlvrQYx4F2S0N2s7/mZPtDY1MTHj5Y4jC7vNRt325eSv/JKC/ApajWomB5QwxrcCNO7EjpvGOfp0ImdfiUrv9scbO7I4kqQ/LJb+kEIJ3pHgHYln3Cxmzvn1LnNnCy0FO2g+sJfmsmLC3f1BCoSGQpo7JMcQvwYoa2iB/BZgH/A1SsnGlJguRo8IBb9hGN0iaTC54ZMwBn1ARI9PKA20pju/6HHBNHPmTD788ENCQ4++TLh161auvPJKCgoKnBZOOD2hUy8idMqFkPcdrHyMrtoSPv90Dfola5i0YAYJF9yNNEDb0/r6BrDbawW11nq8yptYEHi23JGEISJ37268Le50KrpJSZ964ifIrHz1x6z573+o61CiwIf4gDi8z34MEs/A45dfdD08uznQ2ZGQsIMkMdKnmpE3fgIhI+koy6Vq249U7c+mqqIWf0U7dNRC7rfY9n/LxwXjsdlfJ8ADQsIDCU0eRciYebiG9c0Z9pRxmbSu3Utolz/lB4sJjxwMC4AJA1HjjoP4E0pFWDOJ2sH7WfFbdpuNhl2ryF/xOfm5ZbQYfjmGUqNWWDH7JsPFz0LcLLRqHbGypj2a2tUL/1Gz8B816+g77HZCm6q4ZN8mmktyaa4so6mugeZWAy3dCqx2BbruSsjbBUB1hxdflqdyeIifmwIfbze8AwPxjoghZMQ43KJHOhoBHcdAa7rzix4fLet0OkaMGMHrr7/OxRdfjM1m4/HHH+fpp58+ag6T0E9IEgw/C+Ln0/zdy6hLV9JqVPH9V+vYsfJnJl90CZFzrpY75SnJm9fCm9nvMrtjNgsQBZPQN2qzivEmmIqgJhL68YFCS/5W1r35DwqrzIASrcLKuIlJuP/pM/jt2U5nnd3s71z9wS0Au3so2ao0Rliykdp/vZrmFjGc+Ijh/FL+2E3dUJMN5Vtpz9uCqqiZbouC6laobq1nZ85P8OlPeGotpCX6kDl7BoSPhYCkXulS5eXtyx6vOmJagincmi0KJkEWRqOB8AofAPwzT/7K74BWnw85S7DsWcLHm/2w2JWACpVkJSZER/z4ycTMu3ZgtvqWJDS+oYROuZDQ3/TusFlMtJfsQdtdA12OoX7mfYW415poN6kcQ/xaobq1C0pLYGsJcze8QYpXHXiGU6eKYW+9O97+PvgE+OMdGY/7vq+AgdV0B06hYPr+++957bXXuO6661i6dCmlpaUcPHiQ7777jjlz5px4A4I8lCpCz/4bf5p+LTsXPcL2HQeobVfyxbufE/XNF0y+9g4C0gfW+zcpdBJvZr/JlqotWGwWVIqBebVMGDhsNhs+ZToAXJL9ZE5zfMbmara89gC7cmqw2hVI2BkR78WEW5/AJXiIH2AfmitgtUkcXLaM5PnPo1DYf7dAlDR6iBgHEePwnHgnt1xro6VgO1U7VlGVl0NVVRMNnUpajSoslXvg++8B6JS8+KE2lZCoMEJTMwjKnI/OL/S4++gpW7wOtoGmyOKU7QlCT+3esplQm54mdRvJI+fKHafXNOduJv+H/1Jfks9ZftsAUAPxnkpM+iDix04gdsF1aDz75+8CZ1CoNHgOyzjqtmFnwDDA3N5MS8F2mopzaC4rprmuluamTvzcJcAOrWVUN5vYXTPs0BC/YmArSimeSf5a0qk8aog0j/bvBXpP6Qjztttuo6KigmeffRaVSsWaNWuYMGGCs7MJvUDt4cu4v/6bEdUH2PLmY2TnN1Bar6D8+Ze5ceFnuCx4uN9X+b9I8U3BS+OFe7uOvcW7GBWXKXckYZArqiugWF2Oi1nLiLH97DPPaoGsDzD/9BzZOTFY7Uqi/CWm3vBX/NIGbutzp1NpwWx2/FuSoAeTmSWFAu/EsXgnjiX50G3Gpmqqty3D03gQ2vZA+XaqGpSUNUJZYwXsrID3v8LP1UpIsA8hCUlETlyAW8yoU2omkTB+FNZtpUS0BVBfX4O/f1CPtzFYDdS5EQNN565aIJTaqA5GDNBh/b+nJX87+cv+Q8HeAuo6fnltWho93fFNngjJ5zIvfj6S/vhdOIcStbs3/ulz8P/tyXa73bEgekMhAXu3kpm9l+aqCprbTLSY9VjtSrRKy6/L9CpUcM4bfR2/x3r8P725uZnrr7+eVatW8dZbb7F27VrmzJnDc889J4bkDSAuwbHMeOxDRudvZcPbz6HrLMGlYCMcWApjbsQ89g7UXv37F7FSoeS+lhtIOxhNnqYURMHUdyqzYMXDMPtxCB0td5o+s6r2Z14Pf5MZITN4xa3/nFmtXfsxgTmvQn0ubsD0uADcxl1J9Bk39IsOb4OZ1ieYqHnX/XqDzUpQwRZmbVhGVWE+VTVttBjUNHSqaChqY0/RFhbsep/hwTYIH0ub1wja9NEEZs47qS6EwcHhbHLbSkRHIPs372DqwjN778UNMAN1bsRA0tHRRmSto/V+2PhB0qmxpZzi799m85od1LT9MpRWhYSdSH8FCZmZuJ31Nvg4mkuJT9QTkCRw9QNXP4IjxxP8y0dU1W5sb02lzaxDpzziCvn1qw4vYdGf9bhgSklJITo6ml27dhEdHc0NN9zAp59+yq233sr333/P94eGJAgDg1fCWM588Uvs5dth1WNQup76nxfz2Qc7yRybyKjrHz2pX+Jy8YwOgIPgVi4WYutT2Z9A6XrY8+mQKphWlznW+pkWNU3eIIc07l3PukXPU1xr44KIaiL9vGHa/aRmXAdKtdzxhiaFEvfEiaQlTiTt0E2dlYVUbV1O1f5dVJXXEOJmgK52yP+B/MZs1tXFoHjjQwI87ISEBRCSlEbImLm4RyYfdxeGWAW2bBv1FVV997r6q5Yyx9lsJBT7B+bciIFkTeVa1gR+x1hLGucn3ix3nFPWfnAfisKfcC39ASq2YWv3oaYtGQk74b4SCRmjiTvjT7gERsoddVBRSOCpMSJh/7X5zgDR44Lp5ptv5oEHHkBxxErBF198MRMnTuTaa691ajih70jhmXD1t1C0kj2vP4vBqmL9piJ27biEibMmkHT5ff2yD39CxkiMawoJ6xTDU3qTpbMNQ1kWhupiDO3NSNuXEqoCcr6EtEsZCgcmlfVltNTUo9AqmBoub3e87rqDbH7tIbLzGrChQIGNhqA5RN7yLLj4yJpNOJZr6DCGnTeMYecdusFihOo9UL4VVq3FtbmdTrOKmjao2d9I1v7V8MVq3DUWLpwRgHfSREdr88BUUKqImpbKFV3X0K7pYq7pUtw18rQ57y2W7g4MDRUYmqoxNNehsnYT5KOG7mbobmbV2ny6u7oxGEwY2tswWB2Tz822BMJcgzg/PAdpAM2NGEh+KF/Geu9NxKSlHXUcOBB0VhRQ8P175O/aQ2UzjPUtZ1LAQUAiKimJmYlpDFtwLa6hcXJHHZxO0HSnv+txwfTQQw8d9/awsDBWrFhx2oEEGUkSDJvN9OenEvS/59n403raTSp+/GEbO9cuZPJ55xK94AakfvQh6e8XxCa3DUR0BJK3fRf+C+bLHan/sprpqis/fBBibG3A0NqIoa0VQ2cbOsnEqGgVGFqgu5lPt9hp7pIwWhRY7Ee/537aEK6OqYHOenh7KkarEq3SOqgPTIo37OG9A0+wIygfH508RYnV2E32u4+wecMeDFYVoCAmSMnUG+/HJ3miLJmEU6DSQngmhGeSOeF2Mmw22g7spmr7Cqry9lJV2Uh9h4IuswL3km/g4FIA1tYPo9YWREhECDEuLux16WB9xXoWxCz4/X3JNHzWbrNhbmvA0FhJd1MNhuY6x+dNazOG9lbctVaSQiXobsbe1cJ/NljpNoHBIh3qQParCNdmLozIOfx1XuE4DLZfrqAeXSxqFFYUR4yZ2mSZQsiydwibdsmJ18IR/lCzoZnNVZsBmB89MH7XdlUXU/j9YvJ37qaiyXFV45dBdW2aMJh/GwxfiMojmJGyJh0Ceth0p7856YLpueee44477kCvd/RV37hxIxkZGWgPtdVtb2/n3nvv5fXXX++dpEKfUag0JF/5AAnntbFr8aNs27yfhk4VX/3nW+J/+oaz7nkMwjJOvKE+0hVhh/1gLmiFPzhu6G19MeHYZjFhbW9Ebe+G7hbobqZg1266WxwHIYauDgxd3Ri6jRgNZjw1RuZGVTvOzJo6+KBgLF3W418p9NN2Mqot6/DXXd3pdJp/XThUwo5WaUGnsOChNvyayQ7vHcjA0wWSFj1I/Nk3OhazG2TUBxyNAjzDZTgbZrdDwY98/c8XKG3RASr8XC1Mu/gSIude0/d5BKeSFAo8h43Gc9hohh+6zdRST1P2KlRMd1yJqtjGwXY36o1Q3lRFKlpSCWff5tdQBn5ISPxwUhZcjOQfD0ee1DrN4bN2ixnJ2Abdzdi6mji4NxtDayPdbS2OqzudHRi7ujEYjAS4mJgY2nDoSlAL/9o/jt+b8RHh2kxSnaMIkoD27iOLoF8+b6zo1eDm4Q5xs0HvBXpvxnl1I2lc0Hl4ofX0QWc3oNv8DxSSHZv91/01m3RsPmCHwq9Rf/glUUFaYkaOJmb2ZbiEiKsIPbVj3ToWNE6iOqKNaM9+3E68qwnyvsO290s++LH7iN95EsEeNuJHJhG/4Co8okfIGnNIOo2mO3I76YLp/vvv55prrjlcMM2fP5/du3cTE+NoU9vV1cVbb70lCqZBROXqQeYd/yT10gq2vvkwu3JqCKEE3pkJSWfDzEfAV/5l2YJGxMD+LkLqvTGbzajV8szdONkJx3abDVNrHYbGagzNtRhb6lDZDIT4aR0HGoYWVq0rpKvj0JATkxWjyY7BImG0KghzaePiyD2Ht7fqD4qgbq0FvMsPf61TWhwdatR2dGoJnVaJTqdGq9fh6RUC4xeCzgv0XsxvNCJpPdD5BKLzDUHj4Y9Ul3N0G1Cg1uBGl1VNZ7tE1crd/LzqZmKCtQyfPIOYBdeh1Lme3je2HzAZu4loDQYgfuzIvt157T748f+geA0prn7Udgxj0oxMUq5+qF8OkxWcQ+PlT9DUS369wWbjjL3rqNz5M1UFeVTWGknzOB8fTRDflLxGefk6Ug/+E/TeEJhKbnsQbqHDCMpfghqwZH+JIWA8htZGlEoF3gH+YGjB2tHIpg05GLu6fh3mZrRiMNkxmCWiXJs4KywPAMkOX+VNOnSW/lgW13bQFToeC+gUFsx2JTqVDZ0ax+eNVo1Or8XfPwQyz3Hk1Xtzdk0nancfdD5BaL2D0XoF/u7C6um/PTFWtRuyHjk8J+Lw3IjJfyNVyqL4YDOdZhWFVRYKq7bBD1sJ9rQzbtIIYuZcAYHJojnKSdDtNHJL60UUhjXKHeUYhsYqDny/mPLsbcz12Ihkt6AAYtyGUW/zJ35EIgnzr8Rz2NCZcys410kXTHa7/Q+/FgYvnV8YUx9czKjibFyy3oCcT2D/Uoq2beKgyzjG3/yorGfrElJGcEC5GjerC3k52aSO6purX3abDXNFNl0VeXQ319O5YRkGQwCGFSsw7rwCN42ZtAgJbGbobuaDTWo6jBJGq/KYA44wl9ajiqCCoiOLoKOHpxisKlC7Os626ryIalVjsqvQ6rToXF3Qubqic/NA6+6Fm18ADH/h8JnZa9RuSOqTO8j+49lgCsAGKAjWd3DjPTeQt2kd+3ftp75TRWGVmcJPf0T3xffMnhhO/MIbICxzwB6UGBtaUBJKuWsd48Mm98k+u6oOsPG1hwjszGKEVzUoNcTPu4zozNvQeIu5ekOOQoFv2jR806YxAseaYDkP/4DGoiMhIQEf615Q6RxD3ErWsapgPEZbNRIJKKVhjmFuu94BIN69/nARpLDD9mOKoF8/cxxDPwGtB5LeizAvK5JShU6nQeeiO/R5447OzQPPwCBISjlcBN2odEHl4ol0Ej/3YSmn8b35nbkR3hMuY878v2O3Wqndvozidd9zoKCUunYl1a0StuxPofgN8AynJXg6ze5phE+7CJWrx2mEGZyqKsuIbg3Gho3ESel9tt8/GrlhaqnjwA+Lydu6mYO1ZqyHho6nRekIjoqGlHOZlXAWyoD4421aEHpkcDXQF3qVR0waxLwJk27HtuIR1v3UTLOphX1/vYPM9GjSb3hclgXc1Co1m5Ly2dCyiXTLJFI5xYLJbsduaKWlNI/uhkq6Gmvoaqqju7WZ7vY2ujo68daaGB/a5OjK1NHAa/sysPHL8JcjhihUtxCqbyXN8GsR1GUci8H669UvpWQ7fObVw9Md4ucdurrjzTjfLuwqPToPL3Qe3ug8/dF6B6D3DUbrEwxHXLXpyUjy0y5XDh2Y4BEKo6+CrA+hrRK3uEwy0s8hA6jfuYL9yz4mN6+aTrMKz7Lv4d3PwCeGlsiFkHgmXgkDpwX8Twd/wqXJcYKoqw/WfbV0d5D19oNs3ZKPyaZEr4xg+NhM1HMfR/KJRlxTEgAUCgV1EZ34FHuiDhjF2NueBYsJavdiXP8GkZV7qer2oMOiPTwnSMKOTmlBpdE4TmDovZF0XmSoTKh0LujcPByfOZ6+6Lz80HkHovcLBb/Qw10XL+pBxj671n+CuRGSUknQuDMJGncmE3B0SCte8QmRGlcoWwut5eQUrmVrYwnqj74kMlBLzMhRxMy+DNfQYX31Kvq1vA07icePg561TA7uu6Y3x4zcMHVSs+Yjti1bTkm18Yj5tQp8XSwkJMfgds4jh5cZUf7+pgWhR0TBJPRcUAqKK79kdvBHrPv0v9S0Kdm0vYzdu65g/LR0Uq96EKVW36eRfMZGsH3jIjpr7dzG7Y4b7XYwtGBvr6cqN5uuxhq6m+vpam2iu62drs5OuruM+Om7mRZc4SiCLCbez5t4RBF0tFB9K+OVjiJIAvQqM0arCr3SjIvKjF5pRqe0oFNa8NF2Q+qFEDMd9F6c29CNyu3QkBOfENSunr97xWVUb3yTnOHQgQlKjSN7+rVgNR01adM/fTZT02cz2WKias0nBLQGQ9530FTMlpwf2PfxTkK8bCRljibhnJvR+YXJ+IL+WGN3Iy9sfp7FnQ8D4JPWe1ntNhuFS15l3TfLaTWqACUB7lamX34d6umXnPD5wtDjOzICii2EVHkdGo6sgdB0dJe8w1lTdsPbU2k3a7DZJXRKCxqFFemmtceseTLlfFniO1cP5ka4RyaTdv0Tji9MXVCyDvWSj3Frq6PDrKKo2kJR9XZYtp0gDyuxibGkX3At6ojRA/Yq+elyKXCcNLIl98Hv9t+0ijfbFJizPsOlsRDKNmNu1VJYNQJQ4K2zkJAUScLcS/AbKRboFnpPjwqmd955Bzc3R5cZi8XC+++/j5+f44pCe3u789MJ/Vr4rCu4bMZlFHz+Tzb8sJIWg4pVK7PJ2nguMy9YSOQZtzh+uTirS5PN5ujg1tmAvaOeoqwddDXX09XajLq1hSltfuhMDSxeMo9QfSdzA/eDzQJ2+Dx/4uHL9b9l1hvBrRpwxPXUmLBJSvRaBS56NXoXPXo3V1w8PPEKDIJRDzoWZXPx43q1B6q2g8fM6wHgxqMPTAbNIKojO9pI0u92uFGoNITNugq4CowdkPcdpsX/RWq1UdWioGrFbn5eeSMxwVqSpswgen7/mu9kt9t5YssTJLVEobarqVTX8b+69YxirNP31bDzR1YtepWKZglQ4aq2MHnOJJIuu+9353EIQsqoDIqWrsbD6sr+7CzSMo79v+mutvDL8FnhODQukDCPsffPY4zNRt325RxY9x3F+SXUtiupaVPSsrOQMW0zwDMM4ufS6D0Gz5ELhszQveKifMI6/bFgZcSk8b26L5vJSPOzY2gwutJgdKXe4E9Z1zCSPeuYaf0ZgFAXA+NHhxA383z8R8/uV517hcHrpH8TR0REsGjRosNfBwUF8Z///OeYxwhDi6RQkHDx34g7+xb2vP8km9fvorlbhW3Nc1D9paNI2r/0uF2a7BYzlrY61JZ26GrA1l7Hni076W5tpqutje7OLrq6THQbLXQZHVd3FobtP/Rk+P43RVC6JpZw1wTqbeU0de5yFEuApHUn0M2MXVKj16vRu+pwcXPDxdMLvacPnkGhkDTCMdzM1Y/r1Cd/Bk0F0HbwUCRpQC7G1ie0bpB2CQtfuYSOslxyly4i98j5Tp/8SPC3X3HZ+aNgxCWOLowyn8n9sfRHVpWtQuem5cnQt1HZlawt38ny0uXMi5rnnJ20VcPqJ7Bs/oaK5pGoJBsZo8LJvPkpWYa3CgOLWq2mMriZxAoX6neVwpEF0+8Mnx0oa57IQVIoCBy7gMCxC5gAdJTlUrzyf5gr96GQ9NBWgX37u3xRtBeD9QMiA7XEjhzpGLoXNnjnyRRv2kMiQZT41TDdZ5pTtmm32TA3lqFpLYLa/dhq9vHxsoM0dCiw2o8dVl/bfaglvKREce4bTEi72Ck5BOFknXTBVFpa2osxhIFOqXNl1M3PkHRxDQX/e5qoxu1QuQPeX0BuezCVnbF0L1lH99fz6DLa6TJLGCxKYtyaOCfcUQRJdlhz3CtBjv+mHZZDI+K1nkiuvkT52UGpOlwAGUxJDDdkonL1IXXBGRCX4lhMVa3j0t588QN8Mba+5hYxnMw7/kkmULfzJ/b/8D/y8quJ1tfB9ndg+ztYvGLZYR1P4pnXyDLfqbG7kcc3P46EhEFhZKPHbgAkJB7f/DiZgZn46n1Pefvmzhaqvn6OyNL3wdxJkB5mp3sSdcG9eMSIVrfCyXNPDYAK8Ct3wWaz/bqY6EkMnxX+mFvEcEZc97jjC3M3lKyjc9e3cKAIi13JgRoLB5bvgOU7CPKwEpMYw7Dp5+A3apbsJ3ycxW63U9VYQSx+aEZ4n9I2TC31NOxdT0PBburLSmioa6ah1YKPppNLoxxD3BWAyZiO1e6CSrLi52bDT9GIv66TYH07QbpDo5huWH3MkFJB6AtirIfgVFrvIFJvfRUe/QCAbouKVVVRGG3H/6/WZVU7Gh24+iG5+DG8W4uk1uHi5o7e0wsXL1/0PgG4+AbjGhQJwTGHf+Gf85tt7c3aDp8ZCDKE4ZU2E/pqKNMAX4xNTgHpcwhIn8MUiwlrwWrIWwK533KgrJWNlQfZuO0xQrzsh+Y73dQn851+GYrXZenC/psrhXbsdJm7eHLLk7w0/aWeb9tmI+/TF1j/w2o6TQquibXiHZMJ8/7BiH60tpkwcKRmjmH5hv+wxXUPmoYYkgKSf73zJIfPCidBrYf4ubjFz+XGC23U7fyR4rXfciDv16F7NdsOYii8h+nxRoifiy12LtaIcahdveROf8r2Ne7jeZ/FLPbx5vtJP/zhY20mIx3FWXhYqqB2P9Tt55NV9VS2647zaBWNRlfsvvFIgUkQmMz8ib7oI1LwjE0/vITFkSM3ECM3BBmJgknoHectgq9vwWJXkOZdjQI7epUZF6UZvcqKy/hr0GdejD4gEo5oEDH3NHaZmDqSA1+uxt3qQv6+bJLT+q716UBejK0/UKg0KJLmQdI8MHagX76IiJ9WUdZgp6pFomrFrl/nO02dSfS8a3ttvlNRSxGrylYB8Kfac+lWGFnmtYFmdRsAVruVlWUrKWouIs775NvpV234ijUfLqK6VQGocNdY6JzwEN5n3DZozkYLfc/FxY11E/JZVbaBiMrkowsmoVdICgWBmfMJzJzPeKCjPI/iFf+jODubOJcOaKuDHYspX7uEr8uTHF330tKImX0pbuGJcsfvkR9KHEXSmKhxuLo4hsXZbTY6ynNpyNlMw4F91FdU0NDYQVOnhFZh4Zb4rYefr7ElAzpc1Rb8vNT4BfrhHxmLX+JofJInIrl6Hn5s8JE7FiM3hH5GFExC7xhxEfjF4/72VCYHlB59343HdmlyBrVaTaV/Ewk1LlTvKenbgklwHq0bEWf/hYiz/0L7wX3kLX2H/btzafhlvtP/lnNt9r/wyTgL0i6B0HSnFhxxXnHMjJjJttItLGyehsauZrtbzuGCSSkpmR4+/aSLpbbibNa/8QR5ZQZAgVphZUxGLOk3PzmgzzwL/cfMiJmsKlvFqrJV3D7qdrnjDDlu4YmMuO4xRsChoXvroWA55au2/jp0r2Yn/LiTQHcrsYnRxEw9i4D0uf26YYHFYmH33k34tmtYYFPD93+Duv18vamD4rbfNrxwNPA225UYAjPRhTquGs1UhaAOG4FLYGTPdi5Gbgj9jCiYhD7w6yKnjr97j2aYJ9SAy8Fe3Y3QR9wjk8n880tk2u2O+U7LPqGlogQfew1sXwTbF7GmdRTasGSSFl6L57DTH9YmSRIPjXuIF/c+isau5qCmikJdmeM+JFzVrjw47sETb8jYgXntP/no/Y10W9WAneRoNybd+ihuEcNPO6cg/GJK2BQCLX4MLw6lrKyYiIg+WDBMOD61HuLnQPwcJi6wEb/zJw6s+5bivGJq2pTUtiup3V7Gpu2vcWXyfQSMmg4J8yF6iuO5MrEau2nO20JD7nYaSgqpr6nD2BnEc35/parrAEkNd4PSCoCnMgYJd7z1Vvx8XfAPCcEvdjh+SWPxjBl5VGdPz9/b4ckQIzeEfmTAFUyvvfYazz//PDU1NaSlpfGvf/2LMWPGnPiJQt+ToUtTfMZIzOsPENbhT2NjHb6+Ab22L6EPSRIBGXMJyJgLVguUrIHsTzHkLGN3tQvWqoNs2vYooV52ksamE7/wJnR+oae8O1+9L3PaJgCw0mvr4RV/7dh5aPxDf9jwwW61Iu35BFY9jrqjhtE+4Ry0RDLt2tsIHLvglDMJwu/x1HryUMPNxDaHULA5WxRM/YSkUBCQOY+AzHmMBzorCihe8TEHsnfT1NSBv7UUdr4HO99jZW0CHZpgx9C9WZf22kkVu81G+8EcGvZtIcK9HVVDHtTtZ3W2iT3NgUc9NsMvFYAuexvGkKm4xaZAYDIT3KKZEjR8yLRVFwQ4hYIpKysLtVpNaqrjB2np0qW89957JCUl8eijj6LR9N4ZgE8//ZS7776bN998k7Fjx/Lyyy8zd+5c8vPzCQgQB8b9jgxdmgIDQ9jqsgUXo5ai/B3MmCAOUAcdpQriZkHcLJRzGpn99Rvs37yFskY7lS0SlT9msfqnG4gN0TJqzhmOtaB6eGayrPQAcR1hWLGxxnOHY7eHhuL9UUvxip8/Yc1/P2CK9z4iXFvBO4oxFzzG2KSF/XrojTDw2RNcYAtoi6xyRxF+h2tYPKnXPkoqYDd2IZVthILl2PKWk1/gjcFq5UBNFvyYRaC7lZiEaGKnnEFA5vyjPz9Ocm1DY3M1DXs2UF+wm4ayUhrqWmhot2K0Og79rojOIlDXCYCvJgSNwg9fdwl/fy+8QiPxLI8HO3hdNQbfzD8f3u7xWjgIwmDX44Lppptu4r777iM1NZXi4mIuueQSzj33XD7//HO6urp4+eWXeyGmwz//+U9uuOEGrr32WgDefPNNvv/+exYvXsx9993Xa/sVToMMXZqyZlbxRuHbzLfMZwaiYBrM1O6+JF/5IMlXQntpDrlL3yE3O4+GThUFlWZCvn+RsOynIOV8bKkXI4Wln1ThUrAui0SCKPauwqA3gxlcVC6/OxSvJX876958msIqM6Bksy2GiHPOhbE3oxBj7oU+kDh2FJYtJUS2B1JXW0VAYIjckYQ/IGldYNhsGDYbaf7zXLhrJcVrv6E4t5jqNskxdG9HGZt3vEGkx4tcsDAV4g8N3cv+5Ki1Da2GTppyN9OQu5MItzZc2wuhbj/ZxXbW10UfuVdAhYQdHxcr5sgZkDwSApNJ84lnlG/04c/HbWvX4FKmpFndRsqo02nHJAiDQ48LpoKCAkaOHAnA559/zpQpU/j444/ZuHEjl1xySa8VTCaTiZ07d3L//fcfvk2hUDBr1iw2b9583OcYjUaMRuPhr9vaHJO2zWYz5l/Gxcrkl/3LnWMwGhWVgb3oLTZVbcJgNKBUKPtkv+I9lZcuNIFRtz7PSJuNhl0ryf/pMxJURdDdBNsXsX/FN2xrjiExNYaEM6/BI3bUcbdjtVrxLXIUOeo0b+6Pvp9ntj7D/en346HyOOr9NTbXsuOth9i9rxarXYGEndRhnoy56UXMQTGOLrji/0O/Mxh/Vn39AtnmvpnI9iD2b9qB95nz5Y7U5wby++o9YjrpI6aTDnRVFVG66hNK9mRTVmskSN0AO9+Hne9jkvT8UB5DgDaCpq/W0fDpHMdi8TgKnTNDc0nwaADAX+uNm9qCn5cG3yA//CJj8UkYjXfiOFR6R8e7I79TNqsVrI4rlO27qoEwaiLaSbTbZfueDuT3VDi+/vaenmwOyW6396ixvYeHBzt37mTYsGHMnj2bM888kzvvvJOysjISEhLo7u4+pcAnUlVVRWhoKJs2bWL8+PGHb7/nnntYu3YtW7duPeY5jz76KI899tgxt3/88ce4uLj0Sk5Bfla7ladbn8ZoN3Kr6y2EaE59LoswsEl2K/7t+whr2sjW7A4Odnodvi/AzYRPRCjW+KnYXX5dkLHMUIpLsYH0zuEcGG1CpVQfd7vafd9zYF/FoYYOEOxhxjNzGpbApF5/XYJwPF0Hq5lclUyuWyldqWJ+yaBg7sanLZfJZS8DUNTuw9KKY1vHaxQWvPQ2YiL1uIVG0KYPp00bikXt1vNdWkyM2uGD1q5hbVIRbp4+p/sqBKHf6urq4rLLLqO1tRUPj9//3OzxFaaMjAyefPJJZs2axdq1a3njjTcAKCkpITAw8ATP7lv3338/d9999+Gv29raCA8PZ86cOX/4TekLZrOZFStWMHv2bNTqYw/IhNPT+t9y0gtjqU3sZto5fTMsT7yn/dVZAMxvqePAD++St3Ub5Y126jo01O2vR5n7GbGhOuZeczXSsNk8sv1JvjV8y3kx5/LguIewlm2n/au7cT/3nygjMpGK16Bc+RB5DQ3kWBPx1luYfM5CIuf/ScxTGiAG689qWekBeLeeYR3huE9KxsPDS+5IfWqwvq8AlpwElN/egb+2k4n+pbSYdHhruvHTduGnM+By3guO5TycYMuKlWjtGmq1TVxw8WUoZPxcG8zv6VDV397TX0afnUiPC6aXX36Zyy+/nK+//poHHniAuDjHWiRffPEFEyZM6OnmTpqfnx9KpZLa2tqjbq+trSUoKOi4z9FqtWi1x84fUKvV/eJNgv6VZTCJ9YvDJ8+DjjJDn39/xXvaP6n9Qxlx9cOMuPqX+U6L2L87n8YuFYamOjRfXkWXiy+rgjzw6FCxMG4harUaRe4S/DtyqV+3iM7WF4lqWQlAYoAXpI0i/tL/Q6mVrx2wcOoG289q7LBEtutz8e/2Zu++HUybMvSG5cHge18BGHUZBCbh+fZUxvmVH32fk9c2/EK1DEtoG7MjZpF+nGMoOQzK93SI6y/v6clm6HHBNGLECPbu3XvM7c8//zxKZe/NFdFoNKSnp7Nq1SrOOeccAGw2G6tWreL228VCfcLRhqWnYd1QQli7P02N9fj4itXBhV+5R6Uw5s5XyLTZqNv5I7a8H6Gmls2WQGJavEnfaCN72wOYE4OIMWxhX20Mu3Nr0SktXBenQTv6QqQ5TzLcRQxVEfqXfZPrebP0GSbYJjGNoVkwDX69t7Zhs6GZdTXrsXhY+Ou0h526bUEYyE7pOmtLSwvvvPMO999/P01NTQDs37+furo6p4b7rbvvvptFixbxwQcfkJubyy233EJnZ+fhrnmC8Ivg4DAqXepRoCB3Z5bccYR+SlIoCMycT/CVL8Pduai4meer7iHeczTNBjUbdzfyn7xhZDWHYkNBkL4dsxXY/V8QxZLQD2WOmEinspsNlRswWAxyxxGc6Ze1DUPS4MyXHH+7BTh1bcMVB1dgsVsY7jOcGE+xnpcg/KLHV5j27NnDzJkz8fLyorS0lBtuuAEfHx+WLFlCWVkZH374YW/kBODiiy+mvr6ehx9+mJqaGkaOHMny5cv73dwpoX9oD7dAPhjym2GO3GmE/q66tpro1nAAUs8JIGZFIbkt/pR1eeKn7WJqQDFRbi2gUME5i+QNKwi/I8k3iSDXIGo6a9hcsZnpUdPljiQ4Sx+sbahd1sYl1nlEJac6bZuCMBj0uGC6++67ufbaa3nuuedwd3c/fPuCBQu47LLLnBrueG6//XYxBE84KX4pEZBvJqjWE6vV2qtDRoWBL3ftduLxp8SzmskL7oCRk0l5eypWu4RSOqKZ6PWrnDpfQBCcSZIkLteeR3iOG9aOWrhN7kSCU/Xi2obVVeWk1yQwimGoQ8XVJUE4Uo+H5G3fvp2bbrrpmNtDQ0OpqalxSihBcIaktFF0KQx4WtwozM2RO47Qj9lsNjzyD30cjji6Da9CcvxtR+rjVIJwakYGjiLBEEVolVe/WetE6P/y1u8E4KBnLcHB4TKnEYT+pccFk1arPW4LvoKCAvz9xcR6of/QaLTsCy/jc58VbGvdIXccoR/LzdlNkMEXo2Ri5OSJjhsPzRewB49kd/g12INHOn2+gCD0huRR6bQrO3G3urJk9X+Z9uk0fiz9Ue5YQj+nL3AsWmtLEutUCsJv9bhgWrhwIY8//vjhs1aSJFFWVsa9997L+eef7/SAgnA6LDM9WBz4FT+1/ix3FKEfq95cAEBpcD3uHp6OGw/NF7Be+xMH/WZgvfYnx/wBT7EQstC/qdVqKoNbAGjKrqDR0Mhjmx+jsbtR3mBCv1VcnE9YZwAWrKROHit3HEHod3pcML344ot0dHQQEBBAd3c3U6dOJS4uDnd3d5566qneyCgIp2xy6GQA9jbspdXYKnMaoT8yWoy4VDvmt3mP+c0wFJXWMU8AnD5fQBB6k3uKoxnS2LZUsEOXuYsntzwpcyqhvyre6FgupsSvBh8fcRVdEH6rx00fPD09WbFiBRs2bGDPnj10dHQwevRoZs2a1Rv5BOG0BLkGMdw9EZdqBVnZW5g+Zq7ckYR+Zm3FWv4e9STTrGN5MeN1ueMIglPUBbXjI+kJsPgwzBBBob6MlWUrWV66nHlR8+SOJ/QjNpsNnyLH4p3qEd4ypxGE/qnHBdMvJk2axKRJk5yZRRB6xQ0tFzC8PIQ8eyWMkTuN0N98c+AbbJKN6JFJqFSn/JEoCP1GY3cjz2T9gz+7Xcyk9tFMaB9Job4MCYnHNz9OZmAmvnpfuWMK/URuzX5ytEWMtgxn1ITJcscRhH7ppI4OXn311ZPe4J///OdTDiMIvcEvORwKrATVeIj24sJR6tvr2FSxEYCFcQtlTiMIp89ut/PElifosnSxxmMHdmCfS5HjPuyHh+a9NP0leYMK/cb3lT/wn9D/MD9iPs+5LZA7jiD0SydVML300sl9sEqSJAomod9JGjmasqUb8LK4U5i/j8SkEXJHEvqJnOWbeK/wcdZG7hGr2guDQlFLEavKVgGw0WM3Gz12H3W/1W5lZdlKipqLiPOOkyGh0J9YbVZ+LHF0UJwfO1/mNILQf51UwVRSUtLbOQSh12i1Oip8GxhWH0pldqEomITDXPJs+Fp8SfMT/yeEwSHOK46ZETNZU74Gq916zP1KScn08OmiWBIA2J23HddmNe7u7kwMnSh3HEHot3rcJe9Idrsdu93urCyC0GsUcY7FSLUlNpmTCP1FYV4OoZ3+mCULI6aOlzuOIDiFJEk8NO4hXFQuSIcWW/Yxe3JTzQWMbU/FVe3Kg+MelDml0F80rynl9ZIHuN9wMxqlRu44gtBvnVLB9O6775KSkoJOp0On05GSksI777zj7GyC4DSx6SkAhLf509LSJHMaoT84uHEfACX+tXj7+MmcRhCcx1fvy8PjH8aO44TmGS2TOad5BlfWn8lDYx8SDR8EAExGI2GVjq54YSnDZE4jCP1bjwumhx9+mDvvvJOzzjqLzz//nM8//5yzzjqLv/zlLzz88MO9kVEQTltYWBTV+gaUKNm/K0vuOILMzGYzQSXuALilB8mcRhCcb27UXGZGzEQpKfnKZzVdim5ijeF4l4m1xASH3Vs342Z1oUndRuroTLnjCEK/1uOC6Y033mDRokU888wzLFy4kIULF/LMM8/w9ttv8/rrYg0Tof/al1nLTTFPsEy9Vu4ogsx2b92Ml8WdVlUHIyeI4XjC4HPk0LwOZRff+6wHwL6+CZtNDE0WoGNXDQB1kR1iSQVBOIEeF0xms5mMjIxjbk9PT8disTgllCD0hviRIyjTVrOxaqOYezfEte2oBKA6sg2NWpxxFwYnX70vD094GF+dL7FzR9OtMBLWGcCODevkjibIrLOjncgafwBCxybInEYQ+r8eF0xXXnklb7zxxjG3v/3221x++eVOCSUIvSEjMAO9Sk99dz35zflyxxFk0mps5U2X/7HU+2fCJyXJHUcQetW8qHmsuXgNC1PPpXSYY/6mdV2juMo0xO3euAmtXUOttomEZNElVBBO5KSuwd59992H/y1JEu+88w4//fQT48aNA2Dr1q2UlZVx1VVX9U5KQXACjVLDBZozCTnoRtnqHBIvSJQ7kiCDH0t/JE9bgnW4ilsTH5I7jiD0mdELp9H8wh7COwLYuWkDmZOmyB1JkEnn/nogkuZYEwrFaTVMFoQh4aQKpl27dh31dXp6OgAHDhwAwM/PDz8/P/bt2+fkeILgXGPUo4hr86KksFruKIJMlh5YCsDZsWcjSZLMaQSh7/j6BrA9sYGC2jz21VeQYZ8sfgaGoBZDC//n8xKpmjgemvqE3HEEYUA4qYLp559/7u0cgtAnYtOTYUslEa0BtLW14OHhJXckoQ+VlBQwM3sEeBk4I+YMueMIQp/LuGgWD335IoY2AxurNjIpdJLckYQ+9tPBnzBioiPCRkxkvNxxBGFAENdhhSElPDyGGl2jo734jp1yxxH62IF12cxpncANHRfipxdrLwlDj5/ej4sSLgLgjew3RAOcIWhZ8TIAFkQvkDmJIAwcp9RHcseOHXz22WeUlZVhMpmOum/JkiVOCSYIvaU5zEhQEXTk1cMMudMIfcVqteJ3QAeAZpRYuFMYuq5NuZZdu7Zw4c7J7PLexOjxE+WOJPSR6qpybt90Nms9QpkbOVfuOIIwYPT4CtMnn3zChAkTyM3N5auvvsJsNrNv3z5Wr16Np6dnb2QUBKfySQoFIKDaXXSKGkL27NyGn8mLTkU3oyeJYUjC0OWn9+NaxUVkdCbT9XOV+BwcQvI27CTQ7EumZQQh7iFyxxGEAaPHBdPTTz/NSy+9xLfffotGo+GVV14hLy+Piy66iIiIiN7IKAhOlTw6HaNkwsfsQVFBrtxxhD7StO0gAOXhTeh0epnTCIK8Rpw1GaNkIqotiOztW+SOI/QRXb4VAFuSi8xJBGFg6XHBdODAAc44wzFZWqPR0NnZiSRJ/OUvf+Htt992ekBBcDadTk+Zbz0FuoPsrcyWO47QBzo72omocsxZCho/TOY0giC/wMAQimMaAOhcVSmuMg0BJcUFhHcGYMFK6qSxcscRhAGlxwWTt7c37e3tAISGhpKTkwNAS0sLXV1dzk0nCL2kar6VO6Of5XvLSrmjCH0ga90G9DYttbomkkaMkjuOIPQLqWdNwiSZiWoLYs+ObXLHEXpZ8cY9AJT61uDj6y9zGkEYWHpcME2ZMoUVK1YAcOGFF3LnnXdyww03cOmllzJz5kynBxSE3jA5fDIAu2p30WHqkDmN0Nuy6rOoVtfTMswiFmkUhEOCgkI5EFUHQPuqMpnTCL3JZrPhdUANgGqEl7xhBGEA6vGRw7///W8uueQSAB544AHuvvtuamtrOf/883n33XedHlAQekOERwQR7hGoLUp2FG2VO47Qi6o6qniHT7gu9hESzxgndxxB6FdSFk7ELFmIbg0me4f4LBysCnL3EmjwwSiZGDlxgtxxBGHA6XFbcR8fn8P/VigU3HfffU4NJAh95XrDhYwqiKLQWANJcqcResu3B74FYEzwGEK9QmVOIwj9S3BwON8k/MyGls201Ft4GzG3ZTD6uXYdklcb4R7hxLqJ0UCC0FM9vsI0a9Ys3n//fdra2nojjyD0mfDIWFQoCahyExOeBymbzUbpzv2obSoWxi6UO44g9EuZF8xmhe8WNtdtYWetWNB7sLHarHzR8DWvBX+C/swwueMIwoDU44IpOTmZ+++/n6CgIC688EKWLl2K2WzujWyC0Kt+aS/ua/akuChP7jhCL9i/Zxe3FVzAu8WPMStsltxxBKFfCnYL5py4cwB4a/db8oYRnC6rLou67jrcNe5MChVr0AnCqehxwfTKK69QWVnJ119/jaurK1dddRWBgYHceOONrF27tjcyCkKv0OtdKPdxtNUt250vcxqhN9RsKQSgKaALV52rzGkEof+6PvV6ZrWO4/oNc8nZLa4yDSZ563eS3BXL7IjZaJQaueMIwoB0Su2iFAoFc+bM4f3336e2tpa33nqLbdu2MWPGDGfnE4ReZY/RAaAqFldJBxuDoZuwcm8AfMaIRbUF4Y+EuoVyhmomIeYAGn8qkjuO4CQmo5HM3dG8cPCvnKOZJ3ccQRiwTqu/bk1NDW+++SbPPvsse/bsITMz01m5BKFPRI9ydHsIb/Wno0PMyxtMsjZswM3qQqOmlREZYiK7IJxI4lljsWAltimEfdniKtNgkL11C25WF5rVbaSOEsdognCqelwwtbW18d577zF79mzCw8N54403WLhwIYWFhWzZsqU3MgpCr4mIiqVO24zarmLfTnGAMJiYdjUCUB/bjVKplDmNIPR/YeHRFIXXAFAvrjINCm27qgGoiexApepxY2RBEA7p8U9PYGAg3t7eXHzxxTzzzDNkZGT0Ri5B6BMKhYKi4fV8Xv0jPtZwxjJd7kiCE9TX1xDdGARA7OQ0mdMIwsCRcOYYrG+UEdcYwv49u0gaMUruSMIp6uxsJ7LGD4DQsfEypxGEga1HV5jsdjuvvvoqRUVFvPTSS6JYEgaFoEnD+M5nHSuaVmO32+WOIzhB1uaNKFFS5l5LdIw4UBCEkxUeGUNhmOOqRN1PohnOQJa9cTM6u5Y6bTOJyeLEkSCcjh4XTLfddhuVlZW9lUcQ+lxGYAZqhZrqzmqKW4vljiOcJrvdzlv8lxtjHqdlihiKJwg9NezMTKxYiWsIJTdvj9xxhFNk2tMEQFOsEYXitKasC8KQ16OfIIVCwbBhw2hsbOytPILQ51zULkz3msz85knkbcmSO45wmvKa8ihsLqRW38TEMaJzpyD0VGRUHFsTC7kn4iVer1wkdxzhFDR3NuPSpgYgZsIImdMIwsDX41MO//jHP/j73/9OTk5Ob+QRBFmcYZzOn2suwy3bJncU4TR9W/gtANPCp+Gp9ZQ5jSAMTGPOnc0+twOsqVjD/sb9cscRemhl5Uquj3mMF0f8j5i4BLnjCMKA1+OC6aqrrmLbtm2kpaWh1+vx8fE56o8gDERRo4cDENESQGdHu8xphFNlMhuZ8/1w7qv4E+eGni13HEEYsKI8o5gfPR+Ad3eKq0wDzbKSZdglO6kjxFxzQXCGHnfJe/nll3shhiDIKypqGNmaAvxNXuzL2smYKdPkjiScgt2bNxNi9mKkPYFhUWLtJUE4HTem3IDfFiUL86dSEJ5D/PAUuSMJJ6GmpZpd1Vkgwfyo+XLHEYRBoccF09VXX90bOQRBVgqFgsbQTvxLvGjLrYEpcicSTkXHzhoglOqoNpLVWrnjCMKAFuMdyyhNKi42PQXLRME0UOSu2MpHhc+wPmovwW7BcscRhEHhlNqmHDhwgAcffJBLL72Uuro6AJYtW8a+ffucGk4Q+pLHcMe6Pb6VrthsYi7TQNPS3Eh0XSAAkZOSZU4jCIND9BkjsWEjvi6UgjzxO34g0OVZ8bS6Mdx/uNxRBGHQ6HHBtHbtWlJTU9m6dStLliyho6MDgOzsbB555BGnBxQGNqvNzuYDjSzdXcnmA41Ybf13naPk9HTMkgV/kxcHS8Uq9wPN7rWbUNtVVLrUMyxRnAkXBGeIiUukKMixLlPFsr0ypxFOpLS4kPDOACxYSZkshiULgrP0uGC67777ePLJJ1mxYgUajebw7TNmzGDLli1ODScMbMtzqpn07GouXbSFOz/ZzaWLtjDp2dUsz6mWO9pxubq6U+ZVhxUrBbmiC+RAo9lnBKBruFhvRBCcKWKBoy11fG0oRQWiY15/dmCjY92sUt9afH0DZE4jCINHj48s9u7dy7nnnnvM7QEBATQ0NDgllDDwLc+p5paPsqhuNRx1e02rgVs+yuq3RVPtFAsXx9/DEs2PckcReqC4OJ+I9kCsWEmZNk7uOIIwqMTFJ1EQ6FiwvuwHsZBtf2Wz2fA64JiarkoVSyoIgjP1uGDy8vKiuvrYg91du3YRGhrqlFDCwGa12Xns2/0cb/DdL7c99u3+fjk8L334ODqV3eyo2UG3pVvuOMJJWl7zE4sCvmRnRBH+/kFyxxGEQSdsfioAUbUBHKgskDmNcDwFuTkEGnwwSiZGTpogdxxBGFR6XDBdcskl3HvvvdTU1CBJEjabjY0bN/K3v/2Nq666qjcyCgPMtpKmY64spRmVaA7VR3agutXAtpKmvg93AjGeMQS7BmOymdhevV3uOMJJsNqsfFn5NUt8V+G2IELuOIIwKMUnJvNTUhbXxz7KWwfekTuOcBwVW/IAKA2sw83NQ+Y0gjC49Lhgevrpp0lMTCQ8PJyOjg6SkpKYMmUKEyZM4MEHH+yNjMIAU9d+dLGUZFIyp1vD1e1aQiyK331cfyBJEpcoF/LP0r9hWFYpdxzhJGyr2UZdVx0eGg+mhU+TO44gDFoTzpxLvbqZ5SXLKW4tljuOcASb3caH6iV85vsjLpmBcscRhEGnxwWTRqNh0aJFFBcX89133/HRRx+Rl5fHf/7zH5RKZW9kFAaYAHed4x+Hrii1Kuy0KGx42RRc2qFhQrcKyX7E4/qZZO8khnfH4FfpKncU4SSU/5TDzJaxnBV+Bhql5sRPEAThlCT6JDI9fDp27Hy89UO54whH2Fm7k132fXwRupr0cZPkjiMIg06PF679RXh4OOHh4VitVvbu3UtzczPe3t7OzCYMUGOifUhUaUhrhhUuZipVNj5wNzKrS02yWcVEo5poqxIPi9xJjy85I4P6H3cSYPTmYGkRkVFxckcSfkdHRxvp+TFMsCfS6u4idxxBGPRuTrmJSZuGMTY3ldK4QqJihskdSQCWlSwDYFbkLHHiSBB6QY+vMN111128++67AFitVqZOncro0aMJDw9nzZo1zs4nDEAmk5VJrQoirEoyjY6a3CTBD65mvnUxYcBOiEXBTy/v5r+f52K396/mD25uHpR71gNQnCUWauzPdq3dgNauoVbXxPDUUXLHEYRBLykgGX+dP0qUHPh+p9xxBMBkNBK53pXMjmQWRM2XO44gDEo9Lpi++OIL0tLSAPj2228pLi4mLy+Pv/zlLzzwwANODygMPIvfzcbbLNEt2cn1O/q/WKu/moALImlxVaCxS7y9pZQ7/reL1i6zTGmPzxKtBkA6IDrl9Wt7HAtntyRYUSjE+kuC0BeC5w0HIK4ymLLSAzKnEbK3bmFm0xjurr6KjMBMueMIwqDU4yF5DQ0NBAU52vb+8MMPXHTRRcTHx3PdddfxyiuvOD2gMLDk5DVi2duCCongacH8fOFwtpU0UdduIMBdx5hoH5QKCfO0GN7+fD+Ve8s4uKearIPNPHtWCpNT+sdk1YhRCbCrkfAmf7q7u9DrxXCv/qaivITo1mBs2EiaKg4SBKGvJKakscb3E+IaQ8n/bjsRt8fKHWlIa9tVTTCh1ES2k6I65ZkWgiD8gR6fkg0MDGT//v1YrVaWL1/O7NmzAejq6hJNH4Y4m83G0nf3okKixUPBpRcmolRIjI/15eyRoYyP9UWpkABQqxTcdmkKX9wygShfF7qajGx7LYeXXtxGt0H+yU0xcYk0qlvR2jXsyxLDTvqjvHWO96XUu4bgkHCZ0wjC0BIwNwGAuIogyg+Kjnly6exsJ7LGD4DgsWI+mSD0lh4XTNdeey0XXXQRKSkpSJLErFmzANi6dSuJiYlODygMHB9/modXuw0Lds69PvWkhkiNDPfi+z9P5oIgH3R2CU1hBy/dt57s/fV9kPj3KRQKKiNa2OCexe42sbJ9f2Oz2fApcExsVo4QK9oLQl9LGjGKIt8qlCjJ/26b3HGGrOxNW9DZtdRpmxieMlLuOIIwaPW4YHr00Ud55513uPHGG9m4cSNarRYApVLJfffd5/SAwsDQ2GFk/+YqAFRp3iTF+570c121Kh786zgC54VikOx4Guz8/Ooe3vvPXmw2W29FPiHNnCCeCnuHrw3LZMsgHF922S6qlHV0KQyMnDxR7jiCMCT5z3F0EPWt1lPRVCZzmqHJmN0IQFOMSczjFIRedEo/XRdccAF/+ctfCAsLO3zb1Vdfzdlnn+20YMLA8tQPuXyiN5IdpOD6P404pW1ccE4C592fQYu7AjUSXRvreebBDVTXdjo57ckZFzwOlaTiYNtBytvKZckgHN/Sqm+5P/IVPpm1EVc3d7njCMKQlJyWzuepa7k+9jHeyVssd5whp6W5kahGx7zfmImpMqcRhMHtlAqmVatWceaZZxIbG0tsbCxnnnkmK1eudHY2YYDYWNTAkqxK7Aq45bo0tJpTn3QaHeHJfc9MQTnKGyt2vJosPPTiZtYV9P0QPTeNGyP9RxJqDCBr75Y+379wfAaLgR9LfwRgftIZMqcRhKFt+uwzMSnMLC1aSlVHldxxhpRNeeupUtdR6VJPTJyYEiEIvanHBdPrr7/OvHnzcHd358477+TOO+/Ew8ODBQsW8Nprr/VGRqEf6+g08f57e1Da4cpxkYyKOP3Fi5UqBTffNIoxNyRR7i7xs2TkqsXbeOK7/RjMViekPnmXdp7BO8WP4rG5b/cr/L5Ne9ag6pYIcQ0hPTBd7jiCMKSNDBjJ2OCxWG1Wvlr/idxxhoTlpcuZ9uk0FtV9wM0xT5K3oFXuSIIw6PX4UsDTTz/NSy+9xO233374tj//+c9MnDiRp59+mttuu82pAYX+7Z23djOyEQJ0Ov5+qGuSs4xLDyYtNQDNslw+3HyQ99aX0LG+losvT2L0iL5pPx6VMhx2NBHR6I/B0I1Op++T/Qq/T7GqlY8an2bXmAoUkhizLwhyuzXhZq7dMJuQ/ACqRpQREhohd6RBq7G7kcc3PU67uZ1GQyNIMDtxrtyxBGHQ6/HRRktLC/PmzTvm9jlz5tDaKs5yDCU7smtQFLQDMGp6OO46tdP3odcoefzsFN69OoOpdi0RrXbWv57Dond390lDiLj44TSp2xztxXeJ9uJyq62tIroxCCVKRo0eJ3ccQRCA0ZEZWF0k1HYV+7/bJHecQctut/PElifosnQRagxAa1PjqfEkxC1E7miCMOj1uGBauHAhX3311TG3L126lDPPPNMpoYT+z2qx8eMHuSiRaPVRccHZ8b26v5nDA3n8rrG0eCpRIWHa3sQz96+nrLKtV/erUCioC3YUhU37Knt1X8KJ7VuzFSUKSj1qiIyKkzuOIAiHeM6KBCC2NJDqatEkpzf8WPojq8pWYbVbuafqWj4ufJaYpmCWly6XO5ogDHonNSTv1VdfPfzvpKQknnrqKdasWcP48eMB2LJlCxs3buSvf/1r76QU+p33P8rBq8uOSbJz8U2n1hWvp8JD3Ln/mcm8+/5eurY14NVq5bOnthN3RiTnnNF7B8+uCX5QBt4V2l7bh3BiNpsNtzzHv60pYmikIPQnaRljWb/iM6Jbg9n3zUaCb7pE7kiDSmN3I49vfhwJiWCTH/GGSKxYKdZV8vjmx8kMzMRXf/LLeQiC0DMnVTC99NJLR33t7e3N/v372b9//+HbvLy8WLx4MQ8++KBzEwr9Tml5G61b69Ei4ZbhS2ykV5/tW6FQcMN1aWRl1rH8nRw8jRKV35bxTEEjd92WgV6jdPo+kzLSaVmRTZDBl4ryEsLCo52+D+HE8nP3EtLth0kyM3KqWHtJEPob95kRsMRMbGkgNdUVBAWHnfhJwgkdORTPjp3prWMAyHLNo1XVjtKs5MktT/LS9JdOsCVBEE7VSQ3JKykpOak/xcXFvZ1X6Af++3Y2WrtEq17imqv75urSb41ODeCuf0zGEOOCCTufVTVy5r/Wk1Pp/Hl0np7elHnWAVC0M8fp2xdOTuVGx+WlkqA6PD1PvxujIAx2VpudzQcaWbq7ks0HGrHa7L26vxEZYyj1qEFtV5Hz3cZe3ddQUtRSdHgo3sjOBC5qnAPAz57bAbDarawsW0lRc5GcMQVhUDvlBXMaGhoA8PPzc1oYof9bsb+Wzw3tzFKrueiqVNQq+bqUuejV/PWecazeXYX6+/0cqO/k3Nc38tdRkdxwznCUTszWMMrCB0Vv4K4PYBpnOW27wskxmU34l7sC4JkRKnMaQej/ludU89i3+6luNRy+LdhTxyNnJTEvJbhX9qlQKHCZEQJf27BUd1HXWUeAa0Cv7GsoifOKY2bETOryynik/BY0djUb3Xez1mMHAEpJyfTw6cR5i3mdgtBbenRE2dLSwm233Yafnx+BgYEEBgbi5+fH7bffTktLSy9FFPqLDqOFh5fm0KK047cgnDGjguSOBMCMkSEsv2sKc5MDCTBKmFfW8I/711F80HlXmxIzR7HVfS8bGzZhtBqdtl3h5Gyo3sDN0U/wbsRS0saI7niC8EeW51Rzy0dZRxVLADWtBm75KIvlOdW9tu+RY8bzZtpS/h7xT97b916v7WcokSSJi0LO59Hym9HZNWx3zeHZkMXYJBsSEq5qVx4cJ6ZDCEJvOumCqampibFjx/LBBx9w/vnn8+KLL/Liiy9y3nnn8f777zN+/Hiam5t7M6sgs5e+dpytDPfRc+fMYXLHOYqPq4Y3r0jnxowIrIBXu42v/rGDz7/Od8r2E30S8dP70W3pJqs2yynbFE7eNwe+oUPZhduYYNRq57evF4TBwmqz89i3+zne4Ltfbnvs2/29NjxPoVCwYMp5IMHnBZ/T0N3QK/sZSnIbc/lb1r2857+ULNdcngxbhFlhAcCOnYfGPyQaPghCLzvpgunxxx9Ho9Fw4MAB3nrrLe666y7uuusu3n77bYqKilCr1Tz++OO9ErK0tJQ//elPREdHo9friY2N5ZFHHsFkMvXK/oRjbdhaidfP9czuUvPkwpReaa5wuiRJ4upLkpl55wha9RI6u0Td8kqefXwjLW2nd1VIkiTO8JjD1XULqVsrxon3pebuZtZWrAXgrFgxHFIQ/sjmAw1UtxrQ2uDMTjXXt2k5r0ODn1UCHEVTdauBbSVNvZZhfMh4RviPQGVSsGzVkl7bz1BQ1FzEjStupN3UTkVCGyvH52BVOtYgVEpKZkXMYl7UsWtjCoLgXCc9h+nrr7/mrbfeIjAw8Jj7goKCeO6557j55puP6ajnDHl5edhsNt566y3i4uLIycnhhhtuoLOzkxdeeMHp+xOOZjRZWPdxPp5IxHi5MDWxf49JTx3uT/yzk3nj31moCtpxqzLy1v9tZMIVCUwed+rzXyaoMoho1FHdJc6Y9qXsZet5/sBf2ByVS7x37673JQgDTW19J1u2V1OS10Rlh4GvjR0AGCWINivRIeFtg+h2Bbs0VjbqzBgVUNduOMGWT50kSdwRdTNeG7pQF6poGFuLn/+xxw7CHystLmT/J2uwBJlICUjhjVlvYLQaOeurs2g3t4uheILQh066YKquriY5Ofl3709JSaGmpsYpoX5r3rx5zJv36xmUmJgY8vPzeeONN0TB1AcWL96DpxEMkp0rb0mTO85J0WpU3HX3GFasOciuz4tws0i88FkOuzu7uHV6HEqF1ONtJmWMpnVlDsHdflRWHiQ0NLIXkgu/pd1vIs4QjdLdU+4ogiArm83OntwGsnfVUlPciq3eiIfZcZ8a8FLYMHscGmonwUoXM0bJTqpJRbxZSbpJxXCzkg06M74uml7NOiZxIltclxDRHsjub9cy67qLenV/g01FeQmt7+Uz2pzIvZrrmX75Rbhp3HDDjYcnPMw/tv6D+8feL4biCUIfOemCyc/Pj9LSUsLCjr+uQklJCT4+Pk4LdiKtra0n3J/RaMRo/HUoVltbGwBmsxmz2dyr+U7kl/3LneNE8oubMe5uRo2E78QAAv10/T7zkaZNDCFluDevf5BDdmM32SsKWFtQx3PnphDu69Kjbbm6epDjUUdUWxAF27MJCAg56v6B8p4OJCUHCgjvCMSClaSJmbJ8b8X7OvgMlPe0rd3Izn0N5BmNZJW1sLu8lbNrFQTYFLgd+Tg14KchONqDb6eFcsNHu6htM5KrsQJQrDYRYVYwo1uNv03BnG4N//5iH9KFwxkT1Xu/t5WTfGEZRBX6UFtThY+vf6/tCwbO+3oitTWV1C/ai7/Zm2pdA+OuWICLwuXw65oZOpOZ580EBv5rPZHB8p4Kv+pv7+nJ5pDsdvtJzfy87rrrOHDgACtWrECjOfrMlNFoZO7cucTExLB48eKep+2hoqIi0tPTeeGFF7jhhht+93GPPvoojz322DG3f/zxx7i49OxgeSiy2WD3Wj0BBhX1Witp07pQyNdF/LTY7bCjQeLzEgWYJS7r1KKKMJGS2LMf2O7SaiZVJ7PX4wCmZLEWUG8zHahhfF0Se92LMaV4yR1HEHqN3Q5NbRI1NSq6m5VoOhR4mRXYgFc9DRyagsQMg4oIuwKruxU3XyshgRY8XI/eVnajxOKCXz6sf72aLtntjDSpCLQpWK53fPaN8rVxVpiNHp4/OrnXZLPju8dIdHcImwL2o43tH51V+zOjoZPofXqCTX7UaBo5kNyFTud64icKwgBgs8OBNok2M3ioIdbDzikM+HGqrq4uLrvsMlpbW/Hw8Pjdx510wVRRUUFGRgZarZbbbruNxMRE7HY7ubm5vP766xiNRnbs2EF4ePhJh7zvvvt49tln//Axubm5JCYmHv66srKSqVOnMm3aNN55550/fO7xrjCFh4fT0NDwh9+UvmA2m1mxYgWzZ8/ut12/PltSQMvPtViwM/m2ZFITB/6l//LmLl77925i6hxnXlv91Vx3Rxq+3vqTen5+7l68Pu6kW2Eg5P/Go9FqD983EN7TgcRisVD49Gp8zB6UzTaQOWWaLDnE+zr49If31Gy1kVvdTlZ5C2WbanEvN+BqPfbIoVNpp2qkG8kJvowO92J4sDtq5YnPXP24r5Ynf8ij5oiGN8GeWh6Yn0hmlDcvryri0x0VuFjhmnYd6gQPrrwmCXdX5w7V27lhPWE/qulWGPG4Mwkfn967ytQf3tfT0dRUz8E3txLS7UeDpgWfPyUTHHLyx1SD0UB/T4VfHe8zKchDy4MLEpmbLN8cx7a2Nvz8/E5YMJ30kLywsDA2b97Mrbfeyv33388vdZYkScyePZt///vfPSqWAP76179yzTXX/OFjYmJiDv+7qqqK6dOnM2HCBN5+++0Tbl+r1aI94oD2F2q1ut/84PWnLEdq6TLxVXYVYyUFuiRPRqcOjjODMQGePPPgRN56azfsa8Wz3swHj+0g85I4ZkyOOOHzhyenkaf6CU+LGwX79zJqzPhjHtNf39OBZs+OrQSaPehQdpE+aars31Pxvg4+ffmeVtd2snWHozlDV3UXSzXd1Nkc3c4yDSqmWdXYsNOuV6AO1BE+zJuM9CDiorxOaX9njgxj/ohQtpU0UdduIMBdx5hon8PzN585P40rxkfx3qJs9G0WyGvnnQe2EjUzlAvOGYbCScMJxkydxtYNXxHeGcDeZRuZdc2FTtnuHxmIP6ttpjZ2v7+S5O5omtVt+P4pmfDImBM/cYgYiO+p8KvlOdXc8Un2Mcsd1LYZueOTbN64YnSvLah9Iif7/+qkCyaA6Oholi1bRnNzM4WFhQDExcWd8twlf39//P1P7mxTZWUl06dPJz09nffee89pH+bC8T3zQx47bCa6ol358vqRcsdxKo1GxR13ZLB2UwVbPi7AzQL7/lvI3h213HzbKLSa3/+xUCqV1AS1QrWdoora4xZMgnM0by8nkDAqIlpI1OrkjiMIJ81ms7O/uIkdm6uoKW6DBiPuh0b/ag798XWRMHqqSY/0Jt3PnWFuesamB+HpfuxJvlOlVEiMj/39kQHJIZ4899AkPv+6gIOrKnG1StT/VMkzm6qZc0UimSNP/0SZQqFAMcUH6zIrJXUHaDW24qkVDVyO1Gnu5JaVt9DgU83/GW8g/IrRolgSBo3frg2ntHN4iLEdx6Dhx77dz+ykoFNqyNVXelQw/cLb25sxY8Y4O8vvqqysZNq0aURGRvLCCy9QX19/+L6goMFx5aM/2VrcyKc7ygF47KIR6PWn9N+k35s6IYwRyX689fJO3KuNKPLb+b8nNnLHnRlE+f3+mHHLLE8u23IvMcpYLuTaPkw8dHSYOlii+pGZbmNImjBB7jiC8Ida241s2VFNYXs3OxvbySprIbDVytldWtyPeFybBiQ/LcGxnjw/NoSkGG8UMh8gKBQKLj4vkfY5MSx+Nxty2/DqsLHlzX2sjizhxj+n432aw/QyJ0/l5trr2dy9HcN+V+4YdYeT0g983ZZublt1G3vq9+Dp7knQeaOI8U2QO5YgOM22kiaqWx3LGHhZJS7o1LBOZ6ZA47jCfuTacH90gkduA+JIeMWKFRQVFVFUVHRMl76TnIIlnKSubjM//CubYZKCjImhZPZiB6X+wNtTx32PTOSzJfnkra7ge2MHy15dz6NnJXNhRhiSdOzBzNio8bBNoqiliJrOGoJcRdHubD8d/In1rjupDGnm65Rb5I4jDCJWm52tJU3sbJDwLWlifFxAj85q2mw2DhxsY8fOGioLmzHVduNusKNAYqPOzGadBQClTkGLQoFriAvRw30YmxFMkH//nbzv7qbhzjszKShu5ovFOXg2mNlX08a0F9Zw9+x4Lh8bgeok5k4dj0Kh4KKxl7F5zXY+zv2Yq5KuEleZAIOhm03//gpJ342btxtvzXqLBN/EEz9REAaQX9Z8C7JInN+pxcUuMdGgplBtxC4d+7j+akAUTNdcc80J5zoJzvHO27sJ6IY5Cg3Xzhg6i4RedF4CldPC2f9FNluKm7jniz3sWV3OHdelEfibgxwvnRcpfinsqdvDppINnJdygUypB6+lRUsBOCv2rOMWrYJwKpbnVPPYt/sPne1U8mHhDoI9dTxyVtLvjp83WWzsr25j58Fm9uY3EprVisuh8ST6Q39AolNpJz7YnTmTgsmI9CHxJJsz9DfxMd7835OT+WnNQX7YWUprfQePfLOP79Ye5PqxkcydEXVK250RMYNh3sMw1LSz6qdvOO+sK50bfIAxGY1s+fdSEhrCuUd5LaaFgST7/f5al4IwUAW46wiwSFzcoUWDRI3SxpeuRxdLvzyuPxsQBZPQN3bvq8Oe2wZIRMwKxc+7f//ndbZQHxf+e/04Fq0v5odvCgkuMfDBo1tIOz/2mIOE85nP34suoampE1LkyTtYlZcXk7AvkEovX86MOVPuOMIgsTynmls+yjpm0nFNq4FbPso6POm4qraTbdurKMlvpquqizKrmR91JgAkO/zZqsOKnQ69Ak2gnvB4LzLSg4iN9Orz19Sb5kyLZMbkcP63vZwXf8xnWIWJooPF7FxVxvnXpZAQ27PRBwpJwV8CbyFykwZDqYnWKU14eg7uEQy/x2w2s+H1r4hvCMUomTCe48XI8FFyxxKEXnGwsZMGpZ0KlQ0JWOpqwnxEsSQBQZ6OpjT9mSiYBACsFhvfL96PFxItXkpuOWfoXF06klIhcfPUWEa46Fn3YR7uZomiz4rZt7OWm28fjYve0U1leEQK7uvacWnQYTIaj2ovLpyegjVZXNVwFhOt6WK4o+AUv510fCS7HVJNSr5blMNuW+4xzRlsCgkvHzXpEd6MjvQmSa8jIyUAdzfntt/uj1RKBVeOi2TB8EAWv74L28EuPBstLH9+F8sTPLjm+hE9alIxIWMGO5d/Q0i3Hzu+Xc3MK4be1Xmr1cq6N78koTYUs2Sh+SwNGZnj5I4lCE5ns9l4bXURL64sBAm+cTVh49eGD/DrKnGPnJXUrxs+AAy88QJCr/jP//bh1WnDjJ0Lbxwx5LsQTsgM4ZanJ9IZ5rjKpj3Qycv3rWf3vjoA4oen0qrqwMWmI3fPLjmjDipWqxWfIseBqGqkl7xhhEHjyEnHx5Agw6hiuFF5uFhq00BHqBb3KQEsvD2NXQ/N5t1rMrltehzTx4UNiWLpSL6eOv5+/3jG35JMi5sCFRKq/Hbeum8D//siF9uh9ugnolQqsUx0AyA01522tpZeTN3/2Kw2fn7rcxIqQ7FgpW4eZEyYLHcsQXA6s8XGC89sYc83pWCHW6fF8uoVownwOnrkUpCnTtaW4j0hrjAJlFe107SpDi0SutE+xMd4yx2pX/B013LPgxP46ttCipeV4WmUWPuvveycHMh1lyVTE9iKZ6Ub9TllIM4QOkXOrh34G73pUhgYNXmi3HGEQeLIycTeVomZ3WpW6800KR3XnPZqrOjsVtJGBnDVmfHHzFsUHDLSghidGsCX3xRSvKISN6tE08pqbitq4LYrR5ASeuJGDmOnzyBr4zcEd/ux/dtVzLz8/D5ILj+73c4XS95jQlk8VmxUzTIzYepsuWMJgtN1dJp45akteDVZSEPJ+FkRXDfP0cxkTnIQm4vq+Gn9VuZMHtvjpjtyGtqXEQQA3v7fPrR2iVYdXHdNqtxx+p1zzxrGBf+XSYuHEiXwflY513+wA3u0Y0Vo93Jx3sFZ6reWAFAW2oiLi5vMaYTB4vBkYjvM7lYTbVEytfvXxQp36Cxs0FuYNCVCFEsnoFAouPCcBG57bhK2ZA+qVDaWN7dx1r83cP+SPTS0/XGnK6VSiXnCoatM+91ob2vti9iystvtvJz1Mk91vsKPnpsom9rFhFmiWBIGn9r6Tl55aCNeTRYs2AmcF8Z1C3/t/KhUSIyN9iHdz87YIxbSHghEwTTE/Zxfx3/qG/nCzcj0K4aj+YNFW4eyyDAP7nt6Mrq5IdTqYVVeHU/uNmHDRmiXP5WV5YdbFW8tacJqE+3ue6qrq4OISscaDP5jo2VOIwwmY6J9CPbUkWRWEmlRYsbOar358P0SEDwAJh33J26uGu64I4NbH5/AmSNDsNvh863lvPZ/G3lr0W6MJsvvPnfM9OnU6Bpxs7qw/btVfZhaHm9mv8ninMXYJDvu50Uzef58uSMJgtMVFDez+PGteHXZMUp2Ui4bxoXnDJ41xUTBNIR1mSw8+FUOADOmRTI+o/+PIZWTUqXg+nOH883tE0kIdKelVUOzxVEY/fv9n7hi8Q4+LFRyxeIdTHp2NctzqmVOPLBkbdiIi01HvbaZlFEZcscRBhGlQuLuKbFMO3RVabPOQuuh4XgDadJxfxTq48K/Lh3FZzeNZ7bOFT+LhGVnE//82zq+/6n4uM9RqVQYx+tpVXawsXEznebOPk7dd1Z/+hX6ZR0o7AruybyHixIukjuSIDjdtqwalr6QhYcZOpV2pt2ayswpEXLHcipRMA1hr72XTWtTN6Feeu6ePTS74p2KxCAPlt4+kUvD/Sk32SkyWAmt98X/iNYvv7QqFkXTySso30+3ZKApzoRSqZQ7jjDIFK+uxNUu0ai0sV3769WPgTTpuD8bE+3Dqw9NwWWCP90KOx4mKF1SylP3r2N/QeMxjx87cyaPjHqHzzyW87+8/8mQuPetWfIN8bv8mNU6jsf97+PKpKG99pQwOG060MBjn+1BZ3M0zDn/nnRGpwbIHcvpRME0RG3eUY1uVwvXtel4eGY8rloxFK8ndGolf7s9gze9q9hmbUYyeHBFu5YMgwqFncPtix/7dr8YnncSajtreUX9PpfF30/8PHF1SXCuVevKcKs0AjDh4mF8+KcMrhpm5aPrMthw7wxRLDmJWqXg2qtSuerx8XRHuWDDjlezhRX/3M1L/9xGR/evwyBVKhVXj7oGgA/2fUCXuUum1L1j3bffE7fN0UApL6mGs8+4VOZEguB832ZXcc3i7ezDzP4YLdc/On7QrUn3C1EwDUFmi42f/5uHAgmDn4a5mWFyRxqQtpU0kWP04NPkf1HivRcVEtMNam5s05FqVGIHqlsNbCtpkjtqv/dd8XfY7DaSgpIJ94+SO44wiJgsNlZ+cwBwtAqfNSVywE46HigC/Fz4233jmHRbKi0ejjbkB0tamfnSWr7aVYHd7jiJND96PhFuESQ0hLN2+fcyp3aejT/+SNRGR2OL3GFVzLhiaHQCFIaWt97dzYMf7cZktbEgNYiX/jIefx+93LF6jSiYhqD33t+DZ7djUt7lN6fJHWfAcrQqVmAyhlMftpFqv2I6JDvudgnNEReV9lYO/i5Qp8Nms7Fj7yaww8LYhXLHEQaZReuL+VTZxVZPG9fcPFLuOEPKqNQA7v/HFILPCCc/SEltm5G/fJrNpa9uZOO2SlQKFfd43MajFbcQsdWNzs52uSOfti2rVxH2sw4FCvKiK5l57YVDfl1DYXCxWmy8+NwWLNubuLBTw7VjIvjXpaPRqQf3UHrxUzzEFJa20LXTMZ7ca5w/kWEeMicauH5pVTypeSJPld/BLIU7H41+hOU+B9irtR5+3FdfF/DUvWv5YUXxSS/wOJTk79vDA3uu4ZWD9zI7QrTaFZznYGMnr64qxCbBuZckipbhMlAoFJx31jC+umcqf5+bgItGiXdRF7sW5/Hs4xuJTBhPnbYZT4sb274f2B3zNhSuw3eFHSUK8sIrmX69KJaEwaXbYOG5xzehK3YMofVJ9eGhc5KHxJV68ZM8hNhsNj5/Kxu1XaLFReLqy1PkjjSg/dKqeKvJMU49zhSCt2SnJO5tzKoOALQqBelGFV6tVkq+LOXZu9bw/n/20tFpkjN6v1K5KQ8Au5cSD50o4AXnsNlsvPzubixmGxPjfDlnZKjckYY0nVrJbdPjWPWXqUT4uiAh4VZlZMkzWeQdGsUTsEdLV1eHvEFP0eaqzdy55S88FbaIfaFlTLvpAtG8RhhUGlu6+edDG/CoM2HFjue0IG69ZfSQOSkwNF6lAMCSb4vwbLZixc6Ca5NRqsTbfzqUColHzkqi2aanQFsGQEZnEihM6IK+RgJeuWQkl/55FF1RekySo3NU58Z63vz7el55aTsHK9vkfREyMxoNhJY5Ck6vzHCZ0wiDyWdLCogrNnJFh5YnFqYgSYP/DOhAEOyt5/5HJ5F85TBadRJau0RLqRvtNgueFje2fr9S7og9tqNqO39e/WdMNhNeScHMuO0iVCrRSEkYPA5WtPHWI5vxardhluzEnhfNFZckyR2rT4kj5iGizWDmn3vK2KY1YxvuwahB2PJRDvNSgrlpQTs73B3rWWV0JCNJNlQeOdy8oJ15KcEkJ/jy9/vGc8VTE1CO8qZDCXqbhCq/ndf+sZW7P9vNvqqhOc9p16ZNuFtdaFa3kzZmnNxxhEGivqmb8tWVAPgmeBET4CZzIuG3pk0M594XpuI2OYAuhZ0ig+P2oCxX8irr5Q3XA/v2ZGF+qxSfbncmhU7iuSnPoVao5Y4lCE5zoL6D1/+5A08jdCvsjLluOGfMiZE7Vp8TBdMQ8dzyPKo6jZSFa7n51tFyxxk0Grsb+abiX2x33QfAqM7hKOwKJCSWVr5KY/ev64/4++i5+aZR/OWlKQTMDaXFRWKnxsKSrErOeHUDV762ia++LcRsGTrznLqy6gCojekQZ2QFp3nvjV242CTa1HD9DaKxTX+lVCm4+vIUrnlqAoWhWjpsVtztOj549yue+SGXdoP5xBuRUf7+vSg/rSfcGMRd7Vfz0rSX0Cg1cscSBKfZebCZ89/YxDeqbqpd4Iy7RjEhM0TuWLIQBdMQsHlfLR9tdgwZe+rclEHfyaSv2O12ntjyBF2WLgr0pbQrOnG3uTCjdQx27HSZu3hyy5PHPE+jUXHhuQk88M/pvHDnOM5KC0GpkLAVtFP1fTkv3rWGRe/upqXNKMOr6juNjXXE1AcBEDNphMxphMFi7aYKXMq7AUg/PxYXvTjb39/5eeu5+94JFI1u4YC2nCrPzby1Lp/H7l/Hhx/vw9oPTyIdKMjF9t9K3KwulHrUMOWm89CpdHLHEgSn+X5TGZe/s4WWLjPxkV785fGJDI/3kTuWbETBNMh1GyyseWsfl3VouDQpmAmxfnJHGjSKWopYVbYKq92KTbKzynMrABq74wDNareysmwlRc1Fv7uNURHe/OvSUWy4dzrpsT4YJDvuFjBtb2LxvRv45/NbKShu7pPX09ey121GhZJytzpihiXKHUcYBIwmC5s+LUBCoj1Yy5xpkXJHEnpgzvkLeDL5PbK8dpDhUUF0t0T7ulqe/fta1m2ukDveYaXFhXR/WIK71ZUyt1pG3D4bV1d3uWMJgtO895+9FH9YSFyHxPQEf/53w1h83bRyx5KVKJgGucXvZuNhAh+7gjvnJcgdZ1CJ84pjZsRMlJLjit2iwCU8Gfo2P3ivP/yY6eHTifOOO+G2gj313P3nTK5/bhK6sb60q0Frl9Ae6OTH57J46uH17CgdXAvgvq38mIfC/03LODEZX3COxYv34GEEg8LO1WLNpQFHo9Zw/YjrAWiJWQppHpgkO57ddvZ+UMAzj27gYIW8jXIqyktofS8fL4s7lS71JN02HQ8PL1kzCYKz2Gw2XnllB10b61EgMcnHnUVXZeCiEUPmRcE0iOXkNWLZ2wJA8LRgggLEGiTOJEkSD417CBeVo0WuTbKx0WP34fvdrC7M2Z5GRXnJSW/T013Ln65N4+8vTSPs7Aha3BUokDjY0s0Fb27mnNc28k12FUaz9cQb68cKmwvZ17yf3R4FjJs0Xe44wiBQ3tTFB2V1lKqs+E8KIjhQfN4NROcOO5cIbRiTqlIYHl7J+Q9m0h7sOLPtUWNiyVPbef2NLLqNR89vstrsbC1pYmeDxNaSJqw2+/E2f1pqOmvI+u8qfM2eVOsbib11Il7evk7fjyDIwWSy8PxTm1HlOk5KWBLdueeB8aiUolQAUTANWjabjaXv7kWFRIuHkksvEEOeeoOv3peHxz+MnWN/Of+57nJGNsfT9mY+2Tu29mi7SpWCs+fH8cDz0xhzcxK+GX5olAp2l7fw1H9288pda3j9jSzqGrqc9VL61DcHvgFgSugUvHXeMqcRBjq73c4j3+yjxmblYIorV1wyXO5IwinSKDX8TXcL19edh+9WJYF+Gu57ZCKp18TTopfQ2CVq9zYx/5X1rNxfi91uZ3lONZOeXc0Vi3fwYaGSKxbvYNKzq1meU+20XA3dDdzw0w08E7CI7T77ibh5DH5+gU7bviDIqb3DxPOPbMSt0ogNO/rxftx5V+aQWWPpZIjvxCD130/z8Gq3YcHOudeniP/0vWhu1NyjhuYpJSWzImYx7epzKXerw8PqiucX3az9+ttT2n7myCCeuWo0G++bwV2zhjHGrsHVKmHPbuHjBzfz3NOb2Zs7cNrwms1mMn8I5dq6szknfKHccYRB4IesSlbn1aFWSjx93gjxeTfAjZ83m2Z1G75mT7Ysd6zLNGVcGPc9PxWPqUHs8IPSpm6u/3AHZ728nvs/2EV1q+GobdS0GrjloyynFE1NHY3c8NMNlLaV4u7hybhbFxIYODQ7hQmDT32rgVcf3ohXsxULdkLOiOC6q0Ujpt8Sv1UGoeraTurWO35JqNO8SYoXQwZ60y9D8/Qqx3L1LioXHhz3IMHB4aT9dR75wRWoUBK7xYsVb36CyXxq3e/83bXcNSueZ56YivuUAFq1oEbCtaybda/s5en71vLjqhJstv7XUepI2du2ENMVyvyWSUyMmCR3HGGAa2zpZt/ifGZ3qbllQjRxYs2lAU+n09MwygKA5047JqPjM1OpUnDlpUl8+sA0bpoag0oBrge7ubZdy7RuFZojLvT/8s/Hvt1/WsPzWlubyH9pDUnFYQToA3h3zrsEuwWf8vYEoT8pb+ri4kVbyLGZMEh2RlwRz/lnDZM7Vr8kCqZB6OVlebRIdlq18Kc/ibMEfcFX78uDYx7ETXLjwbEP4qt3FKkuelem33Ex+SPrsWFjeGkoW15cSlPjqV8RcnNRc9VlKdz30jTiLoqh1ctxZcuzxcquL4o545X1fLajHEM/nefUusOxoGhlZCsa7dDuuiOcvsVv7MbVKhFrV3Hj9BM3WBEGhvEL5tCsbsPP5MWWH1cedZ+bVsX984fz/AVp+FsllEhkGtVc36Yjxag8XC3ZgepWA9tKTq1hTkdHG/v+vZrwzgAua1zAoilvEe4RfpqvTBD6h70VLZz3xiaKGzopC1Qz968jmT5J/P/+PaJgGmQ2FDbwaV4N/3U3MuPGZLSis0mfmRM5h/s872N2xOyjblcoFMy85DxqzrDTpTDg0qnmxhU3kd+Uf1r7UygUzJ0Rxf/9YypT7kylK0LPLhcrubUd3PPFHib/YzWvvraT8qr209qPM7W2NhNdEwBA6EQxr044PRu2VqI/6JjHl3Z2NG4uYs2lwUKn09OQ5rjK5LHDhsl07JV5hULiO1czn7saaVTYcLVLzO/WcHmHEuc6mwAARDhJREFUlkDLr90369oNxzz3RLq6Otj1r+VEtAfSruxCfUUEMUGiIBcGh2UrS/j4uR20tBlJDHJnyW0TSIkTo5H+iCiYBhGD2coDX+8F4MrxkYxLFhNS+5Mxk6ehui6ctxK+Jt9YyJXLrmTVwVVO2XbqcH/+/n/jefuJ6dw3P5FgTx3ezRaUe1tZ8vg2/vHYRnZk1zhlX6dj99qNaOxqqvQNJAxPlTuOMICZTBbW/S8fCYm2AA3zZ0XLHUlwsnFnzKZF1Y6fyYutPx37WRng7lgotlRt4313Iz/rzJiwE2JVcGWHlpFG5VGPO1kGQzfb//U90a3BdCm64dIg4hOTT/8FCUI/8PFnuRR+UUyYScF5enc+u3k8gR5i0eUTEQXTIPLGa1mEVZgIcdfxt7lizaX+KCYukRcufJWxwWPptnTzw9efsuq/X2KzOmfekaeLmpunxrLunulcPzOOVr2ECgn3aiNb39jPU39fw9JlRVgt8sxzUuV0A9CRiJiYL5yW9z7I4f/bu+/4KMr8geOf2ZreKyQhofcaCKH3onJynqiIivUsqIfYG8XDduiJ/vRAPbEiYkNEpSkdAqEYIJTQAgnppLfd7O7M748IwkEoIcmmfN+vF8omz858h2fn2fnOPMXbAhZF47YHuzk7HFELXF3dyO5uZb3nThYUfIlNPXcq8T5RfoR6u6AAqgI7XOz818vCfqMdB3DcoKIocDi7+LLHMVVYrWx9dymt8ptRrrNScZM/HTrL50s0fKqqMu/9XeSvyUCPQmGgkRlPx+LlIk/mL4dcsTQSO3ZnoT9YRD+rkSe6ReApJ0C95W32Zv6I+fw94m4ezryFdnuDWPfO15SW1lzXOaNex03XtuHZfw+h0+1tKQwwoqLhU6xycmkKcx5bx2frjlJWYa+xfV5KyvGjtCgKwYFK5yF962y/ovE5cryA8l25APj1CyI81NPJEYna0vf60XzQegk7HLv5+djP5/xOr1OYMa4jAKc74JXq4Gd3G//1slKg19A0mL50H4/NXM+6zScvui+7amfB9+/S+lRzrEoFpX/1oHP3XrVxWELUKYdd5d9z4lF/LwDAEuXG0zP64+Yq14qXSxKmRsBhV1n56f7KOwZ+Bm64TmY4qe8MOgOPDH2M1H7l2BQ7bbOak/jmatJOnqjR/SiKwpD+YTw3eyCjn+qJtZU7VkWjSHUwfcVBYl9dw2vLD5KSXVKj+72Q1Sd/ZZnveg6EnCAoWGaZEtX3nx8PYgcK3BTumChdpRozN6Mbd3W6C4AP9nyAXT33Js+YzqHMu60nId7ndiny8DXz3q09mDmuI610RtpmO9j3+SFem7X5guM6VU3lxc0v8l7FJ3wSvJT8cSa695YbO6LhKyu38fqszbgmV4731Pfw5fGn+6I3SApwJWRGgEbgk88T8SnTqFA0br5fZsVrSAaNu5a9zbej+/4UzcsCKZi/n7wbsunSs3eN76ttS1+mPRlDfqGFJVtSaJGYxoncMj5ZexTTj2lYA0wMuLYlA/s2r/F9q5rK15nfkx6SzusDX6/x7YumY9W+TL5Pz8XTW+GzO3rLl34TcFO7m/hp5xLGJvUjbvWvDBw95pzfj+kcysiOIcQdyWbVxm2MGhhDbOsg9LrK504jWgaw8MM9eKRb8cyw8s0/4/Ho5c+dd3TGZDKgqiovb57NT8d+Qq/o6fe3a4iOGOiMQxWiRhVZbDzy33g6narAAQQOb8bECbKwd3XIN00Dl5xaRGF85RTVHr0DaNXCx7kBiSvWpWdvfB/sxEn3HLztHnh8U8L6ZT9f+o3V5Ovtwt1j27Lm8SF8eEc0o3y9MGsKXjk29nySxMvT1vL1kiQqarC73s6snaSXpuNh9GBYxLAa265oWkqtdmb+uA+A24a0pEfHQCdHJOqCm9GNh8yTGV3YD/ctVmw223ll9DqFmCg/egVoxET5nUmWAMJCPXl6en86T25LoQuYNQXbjjzefGIDq9Yms+ajb4heG4a76sprA1+TNko0CpmFFm6aH8f6tAJ+8bXTdkJLSZaugiRMDdyi+QmYNYUCV4U775BZxxqqZs0j6DJtJIdC0jBqBjYnreeVba+cN8i5Jul1CiM7BvPOswPpeW8HikNMONDwKdPIWZnGW49tYP77v5NbUH7O+xyqRtzRXJYmpBF3NPeyBlMfXLudTmWtGN1iNC4GmY1HVM+8ebtwz6kg3NeVR4dJ1+OmJOa6kRTrSwmy+rHtt+rNLjo4Nown3xiCa2wAFkXDqwL48RjtjzajS1kbXouYyZioMZfcjhD1XcK+bKa8uZmDmcUEepp57+G+jBkuM4leDemS14D9EpeKa64NBzBqckeM0jWlQXN392TIozex7OevWJS7HA7CsYJjvDH4DXxcfGp137HRocRGh3LiZBE/fJuE7VARHg6Fit/zGJOynmtjwrmrfyQHMoqYtWw/GYV/rmsS6u3CjHEdGdP5wuOSSkuL6bu3DUPVLuT1lWRJVE/cjgzMB4sZj5movi1xNemdHZKoQ+4enmR0LsNztzuuW63YR9gxGK78EsZo0HH35K5kji1lyztr6Gj3AeBt9wO00g+jr9WOi1kujUTDtWZTCr8vPMxADQh3Y+6DMYT7uTk7rAZPrrAbqBKrnX+uO8THnlYqevjSu3uIs0MSNUCn03H9uFuZO2wurgZXEtJ3sf7tbzh66ECd7L9FmBf/mNqbB+YMxL1/IEf8deQ4HHyy5TiD56zj0//uQZ9bAWc9VMostPDgF7tYkZhxwW3+vnEzrqoLOeZ8OneTGafElbPZVdYuPIjuj6lwrxkc6eyQhBP0GTeCYn0ZwRY/4tesuapt7V+7ij5/JEuf+x/mm9LmfP/jYd56YgPLf02ugWiFqHvf/XiIvV8cxkVTKHXT8e69fSRZqiGSMDVQb6xMIqPQgnegC1PukjUiGpvhEcP54povmFIwiV757VE/OUn8hnV1tn8PdxN33t6Ft2cP4fN7+jC4bQD+DoUBFiMTS8zcUWKmbUVl83E6d5q1bP8Fu+c5dhcCkNemQtZeEtXyyWd78S7XsCoak+6X9q6p8vDwIr1T5Yyepi1l2O3VG2e59vultP09AICkbtk8/fhd/OtvXehnM+Flg2PfJvPK8xs4fLygpkIXotZ99Mke0n9JxYBCoa+eR1/qT2iwu7PDajTk6qUB2rQ9nd82pADw8vgu0jWlkWrr25br77iDZJ8MXFUXQn5R+G3Rd6hq3S06qygKA9sE8sDg1tgUSDDZsaER7NBxfZmZYWVGFK0yacootBCfnHfO+zPSU4nKr3z62W5wdJ3FLRqP46mFlGw/BYB3nwBahHk5OSLhTH2uG0GJvowQiz/b16694vf/sPd7gnZWrj1zsGMmwyf+DZ1O4abeEUyZ1Y+ySFdUNLxz7fz82k7efXcnZeW1N5ZUiKulqipz39qOZespdCiUNDfzxKz+eHqYnB1aoyIJUwNjrbCz4YuD3FJi5o5gfwa1lVmiGjM//0BiHr+eA1Fp6NDRbncQa/9vMWVltb9u0tmyiy0U6TRWu9mY72Vhq7nyAqJXhYEbS02Y1T/Lne3A+u3o0JHsnUFYeGSdxiwah0Xv78H0x8Q2d9wuE9s0dZ5e3pzoWsSXAb/wbuECVO3ybyAtO7qM6btm8nTEXPZ0TGXYbX875/eBfq48+UwsfR/oRIG7DiMKSmIh7zy1kZ9WH6vpQxHiqtkcKi+9uwNjUuXaYo6OXjz5fCwmk4zDq2mSMDUwCxbswdsKFkXj7xM7OzscUQdMRjMj77+Fo7GF2HHQLiOM3W+uJCMjtc5iCPL8c7IGiw42utr5wc1KBRqRdj03lppBO7ecqqp4Jf3RxHT1qLNYRePxy4YTeJ2yoaIx8vYOMrGNACD2r6P5odl69pQmsvrE6st6z6+HVvHC5hfQ0OjbbRBjb59YZRfh3t1DeHbOIPyGh1Km0/C0wZwVSdz76XZScstq8lCEqLayCjv3fbaDT9NyOGR04N4/kEcfjZau77VE/lUbkINH8rAm5AMQODCYsBC5CG1KBl9/HYU3ulKkL8XD4sLDvz5MQnZCney7T5Qfod4uKGf97LBJZZGHlQKdymYXG4oC5Wet3bQvZQ84NKxKBT0GDaiTOEXjUVZh5+UtR/nG3Yq1oxd9esrENqKSl8mL2zreBsD8hPk4VMdFy2/fuJ5mn6p0KmnF+NbjeS7mORRFueh7dDodEyd04J5X+lHWw5s0s8avB7IZ8dZ63vpqLyWlFTV2PEJcqbSsEm59P451STmYTTrGPdiFO+UJfK2ShKmBUFWV7z7cixGFAg8dt93S0dkhCSfoFh2D14PtWdDxZw6px7h75d0sObyk1ver1ynMGFf5mTv7MiPboPGRp5XjRhUNuPezHXy4/BCqqrI08yfubjWDbwZtwcNTxp2IK/P2b4dJKyjHFmjmwft7ODscUc9M6jCJvtZuPLD7eravX19luZ1bN+P/iwMvhzuTHX9jZuxMdMrlX/r4+bjy5P29WDF1IP1b+2OsUGFdNu89vYnvlh2u0zGlQgDsP5TL57PjCT5cjq+rkS/v68uIjnJDqbZJwtRALP4uCZ9CB3Y0/nJPJ3nk2oSFhUXy8k1vMCJiBDbVxvKV3/Hrfxdjs9XuwOQxnUOZd1tPQrzPXUsp2MeF/5vYnZuiw/CyKxT9mMrr/9zMyqOr0BSNQd2G12pcovHZtS+br9ZXTu086y+dcJd1ccT/8DZ7c7PL9XQqb4WysQCHw8GqE6t4rfA1VqdUdtPbvWMbPkstmDQjh4LSGPrAjeh11ZskqXWQJ1/cE8M/R3bApgcPO2T+nMqrz25k78FTNXloQlRp8/Z0fpmbgKcNWqoGFt7Rm54Rvs4Oq0mQb6EGICevjLS16biioOvkTZcOMtFDU+dmdOPNIW+yIP5DBi2Nwk11Zctb39Pt7yPw8fGvtf2O6RzKyI4hxCfnkV1sIcjThT5Rfuh1Ctd1bUbrMgXrlhy8M20MK7mDbV1/JCYkptbiEY2Pw66y4qN9TC4zk97RnREdg50dkqinoscNI/vgLpqXBbJx7QpmZ8+mRCth9rbZBOR74vu9BbPmwhH/dPpPGY/JaL6q/SmKwg0jW1LYtzkff7gb5VAxPoUO1szdza9tPbnr3m74eF3dPoSoyk+rjnFkSTKumkKhGSY9GS2zhtYheUzRALzx22F+c7GR4wr33tfd2eGIekKn6Lg35n7yRuixKFZa5TXj6FubOHYkqVb3q9cpxLby5/ruzYlt5Y9eV9lJT1EU/n5HV6JuiKKrm8IdSltu2/kQ23/PrtV4ROPy6cJEvMs0FAUevL69s8MR9ZiPrz8p7QoA0G0qptxWDkBwsS9e35fhqrpwzCeDmIfHYTa7XGRLV8bb08zUaX0YPrU7Bd56DCiYDpUw/7lNLNt1Ek07fz06Ia7GF1/t59j3yRg1hQJPHffPipVkqY5JwlTPbT2Wy+KdJzlgcnDNo91wdZGHguJcfYcNR5scwilTAcFWP+wLTrB90wanxRPTw41gow6zTsFRYWLrh/v55ofaTeJE45CSVkTB1hwA3Hv506qFj3MDEvVer3FDKddZaGlpTnRx5TjLv+QNxkN144jHSXo9MhZXV7da2Xfn9v48++pAml0XTokBDujtPPL1bm79cBuHsoprZZ+iadE0jffe30Xhukz0KBQFmZj2zwH4+7g6O7QmRxKmeqys3MaMb/cAMLFPBH2iaq+rlWjY2rTvTNijfUj2zsBNdSX4J401i5c4ZUBy4rqt6NGR4p7NSQ89RhSyV6Tx9me7UVW58yqqtvD93Zg1hUIXhbvu7OrscEQDoLoq/Oy3CYBJp64FDd4J/ZIv/X/hny0+wKKr3dnsdDodf72uDVNeH0CPsS0wG3TEHctl8pubePNfW8ktKK/V/YvGy6FqzPhxH98cysKBhrWVO09N7yc3zp1EEqZ67L8fJDA8WaWnwcwzY6Vriri4gIBgYqZdz8EWlYvc7j++l+c2P4fFbrn0m2uQ28HKJK2ii4knZ/enPMqNNL2Dd/ad5OFFuyg7a+pxIU77edUxvLIr11waMqmdrLkkLknTNP659Z9857eacsVCG0sEPUs7YFccfB70E7laPrO3zq6TWDzcTUwd055fpw1mVIcghpQacDlWxoLntrBw8X6ZTU9clEPViDuay9KENOKO5lJqtfPwl7v4LO4EJ0wqbuPCmPZkDHppF51G0tR6KmFfNtqBItxRuLlnc7xdjc4OSTQAJrOZYfffxG+rf2RB5g/Yjtk4UXiCuUPnEuxe+4PnDx9MpHlpIDbFTvfB/TCZDDzxdF8Wx53gm5/28cveTE6cKuWdG7rRKty71uMRDUNJaQWJPx7HA7BGutOvdzNnhyQagCMFR/gt5TfQwydBP1KkLyHB/eCZ3zs0B7+m/MqR/CO09m1dJzGF+7nxweTeLAs+yr6fT+BpUyhYm8mr8VmMnNRB1hMT51mRmMGsZfvJKKy8uWlW4RqLia1mGyaTjn/f3I3rukqb6GySqtZDDrvKzwv2Y0ChwEfPhPFtnR2SaEB0Oh0jR49n3qh5eJu9OXBqPxve/Y59e3bV+r5PbN4HQHJQFj6+f3YhvTm2BV/e1xd/dxP+x8pZ8uoO1m1OrfV4RMMwf91R9uttlOg17nmwu7PDEQ1Ea5/WDI8Yjl7R86PfOtZ570BV/uz2q1f0jIgYUWfJ0tnGjWnFo/8aCF28saHhU6qx7YN9zHk1jpxc6aYnKq1IzODBL3adSZY8VYWJJWZaV+gZV2ZiypBWkizVE5Iw1UOfLdqHT6mKDY0Jf+8qay6JaokJjWHRtYu4v/QWYvO74LqogM3LV9Ta/mx2GyHJngB49Dr/LmrvSD++vz+W9hhxVRV2f36Iz77cV2vxiIbhcFYx729JZr2rnS73dsDXu+ZmMxONm6IovNj3RdwMbijnLKkNCgruRnde6PuCk6IDN1cjU6b04rpnelEYYESHgtuJcv4xZzNfb0+VMZ1NnEPVmLVsP6c/BQEOhUnFZgJVHcWKxnK3Cr7akYpDPif1glyJ1zMpaUXkb6mchtmlpx9tW8qCZKL6wj3DuX3yFA4FpmHSjLRY786vC77Gbq/5cURxmXE8HTGXJcFr6R4be8EyLYI8eOif/Sn0M2BAoXhDFm/+ays2u/Tvb4ocDpXnv9+LzaExokMQY7uHOjsk0cD4u/ozPXY6GudeVGpovBj7Iv6uzp8sqXWkD8/NHkirCVGc9FSI06w89d0e/jpvC78n5zk7POEk8cl5Z54stbLpmFhixlNTOKVTWehpJUevkVFoIV4+I/WCJEz1zML5p2eJgrvv7OLscEQj4OHhxeCpEzjYMROA9odC2fTWdxQW5tfofpYeWUqKOYOy/uaLLhDp42Xm6ZcGYG9f+TTK5VgZ/3p+I6fypZtKU/PFV/tpnVhKmGJg5l86oSjKpd8kxP8YHTn6TNc8+LMr3pjIMU6O7Fxjhkfx0muDef66DniYDSSmFPDznF28PnsLGVmlzg5P1LHsYgs6DYaWGbmh1IyLpnBS72CRh5VinXZOOeF8kjDVI2sOZHGisBwVjaG3dcBkkjk5RM3Q6/WMuGMCKcMtWJUKWuc248hbGzh+7HCNbL/QWsja1LUA/KXVXy4dj0HHP6b2JmBUs8r+/YUO5s+M41h2SY3EI+q/tMwSTm3KorlDz22RQYT51s5aOaLxO901z9VQuTaNm8HNqV3xLsao13HvwJaseXwwE8MD8VV1eJy08OXMrXz0yR552t6EqGrlc9FAtfJG0Q6zncUeFVj+58o8yFO6KdcHkjDVE2UVdl5cuo8VbjaKhwYSGy1dU0TN6zdyJLbbA8k1FuJZ4cqT655kc9rmq97u76s3MC31NkbpB9Pe7/KnwL/5hvbE3NuBUr3GRn0Ff523hU2HT111PKL++3x+Ai6aQqEZ7r5LnqaLq+Pv6s8LfV7AQ/HghZgX6kVXvIsJ8nJh9sN9aH9rawrN4KIpWLaeYs4T61i3+aSzwxO17PudqTy/ZC+aAj+7VfCdu5W1rjbUsx6yK0Cotwt9ovycFqf4kyRM9cRbqw+RVlBOcx9X/jG+o7PDEY1Y+45dafZoNJ93Xs1B/VEe+u0hPt33KZpW/YGlxt0WhhT15jrTiCvuVhUb3YzbXuqLW2tPCsttTP44no9/PSLrljRiK9ccxzOzAg2NAbe0lafpokaMajGKZ7yfYWTESGeHctmGD4rgiTmDMPXxx6poeFtg3+eHeG3mZjKlm3KjU1Bk5bWZm/nl0wOU2VTaBHlQqoNk47nfd6e/RWeM64heJ12V6wNJmOqBuB0ZnFqRhpeq8M/xnXA3y8WDqF2BgSG8ePPL/LX1X1E1lZXrl/LrfxZhsVz5F3TysUO0KA7BgUrnITHViqeZvzuL7uvLDT2b42LXyP7uBHNe2Uq5RRa5bWzKym38vuRY5d8j3BgUG+bkiIRwLpPJwH13d+Om6X0oaVY5/jPrVBkj525gwaZk7I4/L6b/d4FTmUGt4Yjflcn85zfjmWmlW4WeqX0iWTF1EPNv60nI/8wOGuLtwrzbejKms/Q2qi/kytzJbHaVtV8cpLVNT4CvC8Pa1/7iokIAmPQmZvWbRQev9nRa7IWf3Zudb/5Em3sHEBR8+Y300Y27aU8Iyf6ZDAkaXO14XIx63pzQjbYWHfYtOSgnLfz7hU3c+UQ0zUM8qr1dUb/898PdeNqgTKdxt6y5JMQZYaGePD29PxviTrJ+SzLFOUW89NN+lsSl8GifSBz+pnMWOIXKLlszxnWUC+t6TFVVFny6l9Jtp/BEoVSv0WNCa0YOaQHAmM6hjOwYQnxyHtnFFoI8K7vhyZOl+kWeMDmBQ9XYlpzHzlMKc+cn4G3RsCoat9/fzdmhiSZGURQmdrkV+3W+lOjLaFEcQua7uziYuPuy3u9wOAg4WnlnzNTj6vtZK4rCA3d0JeL6SKyKhk+Jyhez49mxO/Oqty2c70hWMVmHCgCIGNGcAF9X5wYkRD00KDaMRY8N4JW/dsHHzUjzVCuHFh1l2ft7Kco/d8a0zEILD36xixWJGU6KVlxM1qkyXn1hE9ZtuRhQKPTRc/v0vmeSpdP0OoXYVv5c3705sa38JVmqhyRhqmMrEjMY8PoabluwgyVJBlyTKmcFK+vgSURzLydHJ5qqnn3743pfKzJcc/GzeWFceIotq1Zd8n17dsYTUOFDqa6cngMG1Fg8fxnbiqEPdaHYAB522Dh/H98vq5kZ/YRzaJrGi0v38aW7lcOtXZgwvq2zQxKi3tLrFG6NiWDNY4OJCvZAQ6OjzcC9RS70thg4Pev06Q55s5btl+559cz25Fw+eGkrPnl2HGgYo/145pWBhAa7Ozs0UQ2SMNWhFYkZPPjFLjIKLbTJT+WRk2mYqJx3/6O0nEZ7h6h8byInJt9J+d5EZ4dSqyz79hH2wQdY9u1zdijV0iKyNe0fG8qRgDTMmomINa78+smFF7k9XaclayqTmNTwPFxcavZpQY8uQdw5PYYCTx0mTSHj51Te+2zPVU1OUR0NvV4vV22fp9/vSiPuWC5mk47H7+6OTue8r5+mUqfQdNpfaJz16udpZtAt7fjMw0q6XsWEwhCLkSezyuifnwtUJk2NdYHThlinDlXjvbVHuOXDbaw3Wik2QvQ9Hfj7vRdv95rKudoQ6xQkYaozDlVj1rL9Z+4GjT6Vhc2rFZrmYJWbDZTGe4eocOlSyrZto/DHH50dSq0q/nEZbkePUbxsmbNDqTZPL28GTL2Rg+0rk/f09FSmrptKScW56yPt+fwdyrZto+B4PCdM6YTEtqmVeEKC3Hni5QGURbiSo1OZuy+Vf3yVgMXmqJX9XUhjqNfLUZvnaWZ2KT9/dRC9Bo8Ob0O4n3PXXGoqdQpNp/2Fxluv2cUWsg0aCz2s/OJageqwoLr4008Jo6tVf065xqah1WlKWhFT3t7CnJVJOFSNTr1DeODV/vTr3eyS720q52pDq9PTZNKHOhKfnIcjI53WFWVomkagqTnFioPgtLWEaCGEalBU5MqWvS3p3cIXnU6HwfBn9VRUVFS5bUVRMBqN1Sprs9mqvGN/NWXLUlKxFxSAAnkrVuDQ68lbsRyXEcNBA9eAAIzNQi+5XQCTyXTm73a7/aLTTV9JWaPReGYK7OqWtWVm4igoBAXyV61C1esp+mU5PtdcU3nbz9MTXXDQZW3X4XDgcFSdCBgMhjN3p2q77IDxo9gat55PUr+n9GgJd52axMttptHM4UaxowR+3YSqKPjuXMcXNx/g5fLZFB88iDEk5Mx29Xo9en3ll7mqqhd8UnW5ZR95qAPfxqfi+msSq3ceZVJGHm+O70pYkOtlb1fTNGw222WVrUhLx5Kbe0695q9chduoUaCB0dcX1/Cwy9ru2efylZSFi5/LNdFGnP35PXOeLv8FrzGjQQO9jw8EBlx1G/Hpe7/Ts1gjzM2Fe3qFoJaVXdF5XxNtxOljNRkNFC9fDkDBipVn6lTv433O5xdqpo24VNlLnZ/VaSNs6RlU5OXh0NQLtr96H29cw8JqvT252vP+cspeqA0uWL7iTBuseHmhBAVe1navpI2orfP+QmX9lAoiitLxspWjAt13fE1+s8FkBkWjqGl0LlEpMrribmuLpaDggtuFhnMdYUvPwFFQgE11XLD9PX2u1nQbUZ2yZ5+fP/16jKQV6bTSNMK9KnjkmnaM6xqKYi/HUlB+wTbigm3wiuV4jh6FgoLexwddcFCNtxF1Xfbs4yxcsQKAkuUrKL/hBtDA4OuDsXnzKrdfHyhaXfdvcaKioiK8vb0pLCzEy6tuxwstTUij7S0jzrx26Ix8e9MNVZYPTU9n0IaNZ15/e+PfcBgunN8GZmczbM3aM69/GH89VpcLrwztm5vHqNWrz7xeNu46ytwv3J/Wq7CQsctXnHm9fOwYiry9L1jWrbSUcct+OvN61ciR5PtfeBIAs8XC+B+Wnnm9ZthQcoIunFTo7XZu/Pa7M683DBpIRrOq79Tc/NXiM3/f3K8fJyPCqyz7t2++xfDHSb0tpg/Ho6KqLHv9kh9wsVoB2NmrJ0faVP1E5bply3AvLQMgoVs3kjpUvZDrmF+W411UBEBi507s69y5yrIjVq3GP6+yy8XB9u3Y3b17lWWHrllDUHYOAIdbt2ZXdK8qyw5cv4FmGZVPlJKjIomPqXpq8AF7T9B831YAUsPD2NK/f5Vl+2zbRlTycQDSQ0PZOHhQlWV77thJmyNHAMgOCmTtsGFVlu2WkIBraTipYUOJSF1I3ICqFz3tlJhI58TKx/6FXl6suGZslWXbHThI992Vk12Uurvx07hxVZZtffgwvXbuAsBiNrP0r+OrLBuZnEzMtngA7Ho93024scqyYSmp9N+y5czrxbfcXGXZhtZG6BxmRq7chE9R5ZTi0kY0zjai3+bNhKdWLrzqzDai/cEkAHL9/Ph1VNXrMjXkNkKuI+pHG6FTNY5FjSOxSwusrllVlpU2otLZbcTZOhw8UOV7atPl5gbSJa+OBHm68K9et2JXKv/J9WrVd5uEqK9MbcdibDkMxcUHnV/tdMO7FA0dWcG9qTD7kNTuVqfEIK6c3m49kywJIa6eXEc4X7mLH7t6TCMlYpSzQ2m49HqazfmXs6O4JHnCVEccqsaA19fgfuII/7duLlB5J+m0Z/v/ndLmUfz0yAD0OqXBPko/u2z5wYOk3n3PeWXDF3yEV5cu55R19qP0qylrSUo65zj1DgcK0GLhFxjbtm3wj9IBLBVWti5cQcesSHToUEuywCMQa1Yilvh5zLndg9fvWoSv2ffPf4ca7JL3v2WLSu188FYCnoUqKCq2SDN/v7czer3uvLLV7W5TnJhY5efXrUOHGutuU1VZqP0ueXD+5xfA4HDQYuEXuHTocFVtxH8/ToRD5VgUjZue7EJYsHeVZf9XbXS3sSQlkTH5zjOvHTodmqIQvuAjXNq1O698Q+2SB1C6bx/H77zrvDKnj7Uu2pO66JIH53+GFU1Dr6q0WPgFpnbtaqXbbl12yTtt48o4Qmc9gf6sz5Zdrydz+hyih/Rh0ddJWPaXYKLy81ISoOem2zsRGeYJNKzrCMuBAxy9Y/J5Zc4+V53dJW/p8mRObsjFRdNhVTTCh/gzbnRkldutqo24UBusdziI/KMNrq02os6vI/44Tp2qojurriK/+xbXTp2q3HZtu9zcQMYw1RG9TmHGuI688W5llwIVBYPDgYqCDg2LzszTf4vG3c/3gu93cbv8QdJXUtZ82SWvvKzq4VHZnUVRQNPO/N/s4YHurBivZLumSxep87JaFcepuLhg9PTEeMGtnE8H9basWdNY0e13kjbu4oayG9B5VC6wrJ3cicHhoEhXxr/2v8NbQ9+qcruX29hcTll/T3jq5cG8884OTIdKMCXbefuNvdz/dB/8faqerU9f5W/OZ77I59f0P43qlWz3SsrW1nl/dtkLfn4BxcUFnZtbtduIfUm5OJKsGNDTbGgoEVGhVZa9ku1eysXOZc3jjwWQ/zhWvaaBqmL28MDFx6fa272asrV1Lhvc3Kr8/P7vsdZme1KT531VZS/2GTZ4eFzRhU5tncs1UXZA5wiOqyqaoqBoGppSeR0xoHMErsH+PPRIP1LSiln00R7c0y145sDSfydi7OzDXfd0xd2n4VxHKC4ul/35vdIYrvZcttgcvPTTfk7F5dBNM1DgpjDh4R60bXnh67dLbfdSbXB9vja4krLnHCf8ebwNhCRMdWhM51D0E2Mp2LqALBdvVrbow+gT8QRbCnl6YiwjG9lK3QZ/f/QBARhDQvC58UYKvv0WW2YmBn9/Z4dWo04fpyE4mJS2bYk4dAh7VlajOs4jBUf4LfU3/Pw0Bm4+iV/Xv2PV2zii7sLXHfJdVY6m/MqR/CO09m1dJzHpDToem9aHRd8cIPu3dLzzHbw/I45bn+9DZJDHVW+/KdQr1M55qmka33+ciB8KBZ46Hrzx/Kc3ztBU6hSaTvsLTadeL6dOI5p78vT0/myOT2PdV4fwKYOc/fmMeXsjz1/XgdGdQs48jajP6mudJmUW8eiiBJKyijG6Qfu2fjzx9+6YTdW/nG4q52p9rdPLJV3ynMBmsbLtRD6rNsUzakAfYlr4YnS5kvsjDYdaUYHyx+NiTdPQbDZ0piu5v9MwqBUV2IHly5czduxYDNCojlPTNB5b9xjrUteh2OyYcUVRFEp0ZRgcoBkNDA0fWuUTptq2cWsaWz87yGazjRO+Ov4zqRexra6+EW7s9XpaTZ+nSxPSmL5wN8OsRu59qCed2tefL8SmUqfQdNpfaDr1eiV1qqoqi79LYtHedPZUVE453j/Kj8diWxLdNbguw66W+lSnqqry2Zf72RufwXeuFQR4mnnr5m4MbFP1DIxXtP0mcq7Wpzo9TSZ9qMeMLmZiWvrTK0AjpqV/o02WoPJEOH03S1EUp58YtaWxH6eiKLzY90XcDG44DDpKDRZK9OWgKDgMOtyN7rzQ9wWnxTewb3Nunh6D2sqD/DIbt3+0jc/XX/0EA429Xk+ryeMsLLPxz58OUKjXiLo+sl4lS9B06hTkWBujKzlOnU7HxAkd+OqFwTwyrDUmgw7bgSLi/pPInFfiyMwurauwq6W+1OmpgnJem7GZ0k3ZtKzQM97fh+X/GFhjyRLUn2OtbQ35OBtcwmS1WunevTuKopCQkODscIRoMvxd/ZkeOx2Ncx9Ka2i8GPsi/q7OvTCOCPHg6/tj+Uu3ZujtGscXH+Nfr8Rhrah6wLeoeW8s2cepEiutAt25f3BLZ4cjRJPnZjLw+Kh2/DZtMF293NCh4JZSzsIZW/lwwW4qpI2s0qZtaXz0QhzeOTZUNJRuPrw5LZZAz8Z7o1tcWINLmJ566imaXWT+fCFE7RkdOZrhEcPRK5XDkvWKnhERIxgTOcbJkVVyMep5+5buPNopDD9Vh3tKOW88v6ne30ltLNZtPknQxlxGlxmZPb4zZsOVDHUXQtSmcD83XnhpIK1vbkmRGVw0hYr4XN58YgMr1hx3dnj1isOuMv/939n18UE87FBigK53tOOhB3uiNzS4S2dRAxpUrS9fvpxVq1bxxhtvODsUIZqks7vmAU7vinchiqIwZXI3ml0bToWi4VOs8slL2/h9b7azQ2vUrBV24hYfQodClL87sa0CnB2SEOICRg+N5PE5g3DpG4BF0fCqgKNfH+OFVzeTklvm7PCcLrfEyqx/bsbxez56FAr9Ddz9UiyD+4U5OzThRA1mlrysrCzuu+8+fvjhB9wuc7pLq9WK9Y9VlaFyYBdUztd/sTUR6sLp/Ts7DlFzmkqdehm8eL7P88zZOYenop/Cy+BVL4/5ujGR7GzmxvqPD+JpV1j3n70cvzac60ZHXdF2mkq9Xq3//ncPXhVQrtO49d5O9frfS+q0cZJ6vXyKAndM6kDW6Ei+/HgfppQyfs4r5Ou31nNPvxbcPygKd7PzLxHruk63Hsvj8W/3QmkFtyhmvPr48/itHdDpdPK5qiH17Ty93DgaxCx5mqZxzTXX0L9/f1544QWOHz9OVFQUv//+O927d6/yfTNnzmTWrFnn/fzLL7+87KRLCNGwFZUqHNvmSoBVj4ZGRoSV3h1tZ5aCEFcvJ1+hZKs7RhTyIy106VA/vgiFEJcnvVBhSZrCocLKjkfDKwy0DHbQoa0NfYPqi1Q9dgdsOmzgh3wNDYVgV43JUQ6ae1/6vaJhKysr49Zbb73kLHlOTZieeeYZXn/99YuWOXDgAKtWreLrr79m/fr16PX6y06YLvSEKTw8nFOnTjl1WnGozGhXr17NyJEjz1kFWzRcUqf1V7nFzry5u3Ckl/O5p5XRPUKZfX1HzMZLj7GRer04VVV5Y/pWfAodFHjoeOLl2DMrvtdXUqeNk9Tr1dE0jd8O5vCfH5IYna6hoFDgqtB/Qiv693bOOpF1UafHThTy7by9eJaqLPSwMiimGS9c0w63q1hbSVStvp2nRUVFBAQEXDJhcuqn4fHHH+fOO++8aJmWLVuyZs0a4uLiMJvPnZUkOjqaSZMm8emnn17wvWaz+bz3ABiNxnpRSVC/YhE1Q+q0/jEajTz5fCyfr0+mYnUSP+zO4HheOe9N6E7zIPfL3obU6/m+WZKET6EDOxrX3tXpgm1ufSV12jhJvVbf2K7NGdQ6iE8+2YNtbwE+5bDvsyNsXZ3Krfd2IaK5c24211adLll2mGO/pOCjKVQo8NiAVtwyvn4stN3Y1Zfz9HJjcGrCFBgYSGDgpeexf+edd5g9e/aZ1+np6YwePZrFixcTExNTmyEKIRoJnU7H5KGtaB3uzUMLd2E/UszCWVsZcGcH+vWWmTero8hiY/GOVPooCub2XnTvVHPrkgghnMPdzciUh3pxPLWIrz7ag2dmBZ4ZVr6bvR1zV1/uvLMLbq7Ov9C9GmXlNt6buwO3E+W4oFDoqjD+wW50bFu/1o0T9UeDeN4YERFxzmsPDw8AWrVqRViYzFoihLh8/VsH8P0D/fjq5XjcHRD/0QFSUoq45W/tnR1ag/PmyiR2OKwURbrx/X3dnR2OEKIGRYZ78czMAayPO8nmrw/jXQ6le/K5/u2NPP2XTgzvEHRmEdKGZO+BHJa9vxdvS+VrS0s3Hns0GleXBnFJLJykfnc0F0KIWtAq2IP7Z8VS4K3HiELu6nTefms7Drvq7NAajITUAj7begKAGX/rgodbw77jLIS4sMGxYTw9ZzDeg0PY4atxuKCcez/bwR0fbWP3wVPODu+KfL/rJK989DvelsoZPcOvb8HjT/WVZElcUoNMmCIjI9E07aITPgghxMUE+Lry1MsDsbaqHMNkSCrm9embKCiyXuKdoqLCzpK5v9PWquev3ZvRv7WsuSREY6Y36LhtYkc+mjGEB4e0wqTXkbk/nw1zd/PGa1vJyS13dogXVWq18/jXu5n29W7i9DZSQgz87Zlo/jK2lbNDEw1Eg0yYhBCiJhgNOqY9GYPX4GDsaHjn2fnPi5s5kVMCgEPV2Jacx85TCtuS83Co9X4Vhjqx4JO9BJVqjCo38uSwts4ORwhRRzzMBp4e055Vjw2iv5cHOhRcj5fx6YtbWPDpHmz18Cn91l0ZvPLcBn7ceRKdAtNGteWV6QOJipA5w8Xlk2eQQogm7/aJnVgX4c32hUkkKnZumB/HXf0jWbgthYxCC6Dns8M7CPV2Yca4jozp7JwpduuDw8cLsPyehxEF/35BNLvMWQaFEI1HZIA7M2cO5JfVx9i97DheFQrlcaeYs2sdvW9oxcjBLZwdIqqq8tEneymLP0UzFEZ5unDH/d2JaSkTO4grJ0+YhBACGNI/jBuf601hlCu5pRW8seoQOQWWc8pkFlp48ItdrEjMcFKUzvfNB3swagoF7gq3T+zk7HCEEE50zciWTHtjEKZoP6yKhrcVDi06yqzZmzmZX+a0uLJySnnthU1UxOdiQKHQV8+LT/aVZElUmyRMQgjxh6gwL766PxYXow6DBhNLzAwtM6L80RPvdIe8Wcv2N8nued/9eAjvPDsONMbe2Qm9Qb5ChGjqzCYD993bnYkz+1Ia7oKKxtr8Ioa/uZ5/rz5EeYWjTuNZuymFT2duxTvPjh0NY7Qfz7w8kBB5Gi6ugnTJE0KIsySmFWGxqbSx6QhxVP7pYNOTZlBJ06ucNDjIKrAQn5xHbKumc7cyv9DC0ZWpuKPgaOtJzy5Bzg5JCFGPhAa789Tz/di1P4fNm45w/Fge7/x2mF1rU7muZ3NuuqEtOl3t3WRxqBrzPtuDtvUU7igUG2Hw5I7ERjfdLtSi5kjCJIQQZ8kuruyGd9ikshQro8tMuGsKbW162tr0gBEbGm8v2ktcn1CiI/3oHu6Nl6vJuYHXsvcX7cPToVBigIf+3t3Z4Qgh6qmeHQNZ1CGAFYmZvPHjAXqmauT+ms6rcRkMm9i+VhKY7CILUxcnsPtwLpMVFxyBJh54PBpfb5ca35domiRhEkKIswR5/vkFe8ikctRoIdihI8yuo7ldR3OHDldNYU9RKVvXHAEg1mKgC0aMwa5EtPWlT+/QRjUDU2JaIR+cyKS5u45nr2mPp0fjTg6FEFdHURTGdgllYEt/Pl6wB9u+QnxKYed/97Nh+TEm3duVsFDPGtnXii0pPP9bErmlFbia9bS4rhUTBkTU6tMs0fRIwiSEEGfpE+VHqLcLmYUWNMChQLpBJd1QOV2uokGUi5nnxnZm14l8tp/IIyzFgbcdOFHOqRPl/LI6nRIDqP4mglt6ETu8Be2aeaHTKU49tupwqBrPLdmLqkG3XsFcMzzK2SEJIRoID3cTjzwSzdETBXz9USJe2RV4pFn5+qV43Hr4MfmOLtVeNLbcYmfe/+3EfLQUfzc7QS28ePfWHrQK9KjhoxBCEiYhhDiHXqcwY1xHHvxiFwp/TvQAoPzxn6cmdGJM51Bu61s5de7x1CLit2dw4lAetsxyPC0aHnYFsiooyMrhmv2peLkZiW7hSy+TCx0ivInpFYqbq9EJR3hlPv52P8kpRXi6GZh+XUdnhyOEaIBatfDh2ZcGsHZTCnHfHsHbolCxK4+bczfy2A2dGNruysZEHjicx5L/7Ma7vLKFHhHiy6MP9cbFqK+N8IWQhEkIIf7XmM6hzLutJ7OW7f9jHaZKIVWswxQZ7kVkuNeZ1/mFFuLi0zm8P5ecvHJcVBuF5TZ+O5hNVJGZ/WoOe744TIm7Drdm7rTs6Eds72YEBbjV2TFejuSUQorXZnK3ZsZ3SDhBXjIeQAhRfUMHRDCwbxgLv9rPhj2Z7Cks466PtzOsfRBPDWlN+0jfM2XPXjjcPzmP2NZB6HUKX3+fxMnVJ/HWFKyKRsSYcG68XhbQFrVLEiYhhLiAMZ1DGdkxhLgj2azauI1RA2POfGFfiq+3C9eMbAkjWwLwkkNlf3oR8UdzyVmdRnm+DVdVwadUg8MlnDxcwjdLU8jwUND6B9A70o/oSF+a+7iiKM7rxrfo/d14awoFrgqPjmrttDiEEI2HwaBj8m2d+aulHe+uOcLHm5PZuy+HlVuL+LmlO5Pv68aOtIKzblhVLhze3MPMcIuJ4FN2zCgUuClMeLgHbVv6XnKfQlwtSZiEEKIKep1CTJQfuQc0YqL8LitZuhCjXke3cB+6hfvAkFaoqsr+w/ns2plJ+pECyLHiaYOsChurt6WwcFsKOg3uK3VB8zURGOVFl+5B9OoajLGO1j5a+ssRvHPtqGiMmtxR1lwSQtQoLxcjz13TgVt6h7NgfgKG4goMx8r4+PktbDDbyDQ5/ugHXcmYbyO4VIeGhr2tJ08+3BOTSS5jRd2QT5oQQtQxnU5H53b+dG735zpOJzOKaXG8gMi8YrYfz+fUiSK87Ark2KjIyWVnfC5xyn7KPA14hbvTMTqEfr1CcTXVfJ/9wmIrST+n4A7YWnnQu3tIje9DCCEAWgZ6MPvFAfy44ij7fz6Bp01hTLmJ7hUqa1xtpP0x4c5xo8pmFxtF7jqWTu1d7RtYQlSHJExCCFEPhIV6EhbqyXV/vC4uqSBuewZJiTkUnSzFrciOSVMwFTlgXxHvH83l/mV76Nzcmz6h3rQzmOjbO5TmNTBV70fzE3B3QKke7n+g+1VvTwghLuUvY1rh3cKD/3s/gX4WAyEOHbeWmPnMw0KWoXJyhy0udnDQ5BYOF84nCZMQQtRDnh4mRg1twaihlTPx2ewqu/ZksSchm5zkIkp0KnarnYTUAixHi/EuM/HDLycpNoISaCa0tTc9e4bSsa3vJdcjcaga8cl5ZBdbKMkqw3i0BFBod00E3p7mOjhaIYSAAqudHS529pvsDLAY6VqhZ7DFyNfuFed0zzu9wLgQdUUSJiGEaACMBh0xPUOJ6Vk5Q5+maZzML2fHiTwS4zIoOliMVwV42oB0K8Xp2azfkM0KnUZ6Jw86dg2kd6QfHZt5YdT/mUCtSMw4ZzZAgwaxZgORLmamXCsTPQgh6s7phcPLdLDKzcZ2s71yaQflwuWEqCuSMAkhRAOkKArhfm6E+7nx1x5hAGTllLJ1RwbH9udRll6KR6mKq6qw6sQpvk89BUBfm5EuOhMezd1RA0zM33sS61kXI3YFNrra2ajZ6Z+Ycd4U6kIIUVv+d+HwfL12zu8VKpd36BPl55T4RNMlCZMQQjQSwYHuXD+2NYytfF1SZmNHQiZTKirYcTyPHSfyaVai4GNX4WAxAA/jQo5eI1uvEm+2k/fHBYqiwKxl+xnZMUQGVwsh6sQlFw4HZozrKG2SqHOSMAkhRCPl4WZkSL9whgDQClXV2L0/h993ZZGSlI8xvwIfVUewQyHYoSPAoWOFWwWn9BoakFFokcHVQog6daULhwtRFyRhEkKIJkKnU+jROYgenYNYmpDGP75KwEOF5nY9ze06vFUF9X/eI4OrhRB17WoWDheiNkjCJIQQTdDpQdMlOkgyOUgyOS5aTggh6lJNLRwuRE2QpduFEKIJOj24uqpLEAUIlcHVQgghhCRMQgjRFJ0eXA3nzdgrg6uFEEKIs0jCJIQQTdTpwdUh3ud2uwvxdmHebT1lcLUQQgiBjGESQogm7fTg6vjkPLKLLQR5VnbDkydLQgghRCVJmIQQoonT6xSZOlwIIYSognTJE0IIIYQQQogqSMIkhBBCCCGEEFWQhEkIIYQQQgghqiAJkxBCCCGEEEJUQRImIYQQQgghhKiCJExCCCGEEEIIUQVJmIQQQgghhBCiCpIwCSGEEEIIIUQVJGESQgghhBBCiCpIwiSEEEIIIYQQVZCESQghhBBCCCGqIAmTEEIIIYQQQlRBEiYhhBBCCCGEqILB2QHUJU3TACgqKnJyJGCz2SgrK6OoqAij0ejscEQNkDptnKReGx+p08ZJ6rXxkTptfOpbnZ7OCU7nCFVpUglTcXExAOHh4U6ORAghhBBCCFEfFBcX4+3tXeXvFe1SKVUjoqoq6enpeHp6oiiKU2MpKioiPDyc1NRUvLy8nBqLqBlSp42T1GvjI3XaOEm9Nj5Sp41PfatTTdMoLi6mWbNm6HRVj1RqUk+YdDodYWFhzg7jHF5eXvXiAyNqjtRp4yT12vhInTZOUq+Nj9Rp41Of6vRiT5ZOk0kfhBBCCCGEEKIKkjAJIYQQQgghRBUkYXISs9nMjBkzMJvNzg5F1BCp08ZJ6rXxkTptnKReGx+p08anodZpk5r0QQghhBBCCCGuhDxhEkIIIYQQQogqSMIkhBBCCCGEEFWQhEkIIYQQQgghqiAJkxBCCCGEEEJUQRImJ3jvvfeIjIzExcWFmJgY4uPjnR2SuAobNmxg3LhxNGvWDEVR+OGHH5wdkrhKr776Kr1798bT05OgoCDGjx9PUlKSs8MSV2nevHl07dr1zIKJsbGxLF++3NlhiRr02muvoSgKU6dOdXYo4irMnDkTRVHO+dO+fXtnhyWuUlpaGrfddhv+/v64urrSpUsXduzY4eywLoskTHVs8eLFTJs2jRkzZrBr1y66devG6NGjyc7OdnZooppKS0vp1q0b7733nrNDETVk/fr1TJkyha1bt7J69WpsNhujRo2itLTU2aGJqxAWFsZrr73Gzp072bFjB8OGDeP6669n3759zg5N1IDt27fz/vvv07VrV2eHImpAp06dyMjIOPNn06ZNzg5JXIX8/Hz69++P0Whk+fLl7N+/nzfffBNfX19nh3ZZZFrxOhYTE0Pv3r159913AVBVlfDwcB555BGeeeYZJ0cnrpaiKCxZsoTx48c7OxRRg3JycggKCmL9+vUMGjTI2eGIGuTn58ecOXO45557nB2KuAolJSX07NmT//znP8yePZvu3bszd+5cZ4clqmnmzJn88MMPJCQkODsUUUOeeeYZNm/ezMaNG50dSrXIE6Y6VFFRwc6dOxkxYsSZn+l0OkaMGEFcXJwTIxNCXExhYSFQeXEtGgeHw8FXX31FaWkpsbGxzg5HXKUpU6Zw7bXXnvP9Khq2w4cP06xZM1q2bMmkSZNISUlxdkjiKvz4449ER0czYcIEgoKC6NGjBx9++KGzw7pskjDVoVOnTuFwOAgODj7n58HBwWRmZjopKiHExaiqytSpU+nfvz+dO3d2djjiKu3duxcPDw/MZjMPPPAAS5YsoWPHjs4OS1yFr776il27dvHqq686OxRRQ2JiYvjkk09YsWIF8+bNIzk5mYEDB1JcXOzs0EQ1HTt2jHnz5tGmTRtWrlzJgw8+yKOPPsqnn37q7NAui8HZAQghRH02ZcoUEhMTpf98I9GuXTsSEhIoLCzk22+/ZfLkyaxfv16SpgYqNTWVf/zjH6xevRoXFxdnhyNqyNixY8/8vWvXrsTExNCiRQu+/vpr6T7bQKmqSnR0NK+88goAPXr0IDExkfnz5zN58mQnR3dp8oSpDgUEBKDX68nKyjrn51lZWYSEhDgpKiFEVR5++GF++ukn1q5dS1hYmLPDETXAZDLRunVrevXqxauvvkq3bt14++23nR2WqKadO3eSnZ1Nz549MRgMGAwG1q9fzzvvvIPBYMDhcDg7RFEDfHx8aNu2LUeOHHF2KKKaQkNDz7sx1aFDhwbT1VISpjpkMpno1asXv/3225mfqarKb7/9Jn3ohahHNE3j4YcfZsmSJaxZs4aoqChnhyRqiaqqWK1WZ4chqmn48OHs3buXhISEM3+io6OZNGkSCQkJ6PV6Z4coakBJSQlHjx4lNDTU2aGIaurfv/95y3McOnSIFi1aOCmiKyNd8urYtGnTmDx5MtHR0fTp04e5c+dSWlrKXXfd5ezQRDWVlJScc9crOTmZhIQE/Pz8iIiIcGJkorqmTJnCl19+ydKlS/H09DwzxtDb2xtXV1cnRyeq69lnn2Xs2LFERERQXFzMl19+ybp161i5cqWzQxPV5Onped7YQnd3d/z9/WXMYQP2xBNPMG7cOFq0aEF6ejozZsxAr9czceJEZ4cmqumxxx6jX79+vPLKK9x0003Ex8fzwQcf8MEHHzg7tMsiCVMdu/nmm8nJyWH69OlkZmbSvXt3VqxYcd5EEKLh2LFjB0OHDj3zetq0aQBMnjyZTz75xElRiasxb948AIYMGXLOzz/++GPuvPPOug9I1Ijs7GzuuOMOMjIy8Pb2pmvXrqxcuZKRI0c6OzQhxFlOnjzJxIkTyc3NJTAwkAEDBrB161YCAwOdHZqopt69e7NkyRKeffZZXnrpJaKiopg7dy6TJk1ydmiXRdZhEkIIIYQQQogqyBgmIYQQQgghhKiCJExCCCGEEEIIUQVJmIQQQgghhBCiCpIwCSGEEEIIIUQVJGESQgghhBBCiCpIwiSEEEIIIYQQVZCESQghhBBCCCGqIAmTEEIIIYQQQlRBEiYhhBCNzp133sn48eOdHYYQQohGwODsAIQQQogroSjKRX8/Y8YM3n77bTRNq6OIhBBCNGaSMAkhhGhQMjIyzvx98eLFTJ8+naSkpDM/8/DwwMPDwxmhCSGEaISkS54QQogGJSQk5Mwfb29vFEU552ceHh7ndckbMmQIjzzyCFOnTsXX15fg4GA+/PBDSktLueuuu/D09KR169YsX778nH0lJiYyduxYPDw8CA4O5vbbb+fUqVN1fMRCCCGcSRImIYQQTcKnn35KQEAA8fHxPPLIIzz44INMmDCBfv36sWvXLkaNGsXtt99OWVkZAAUFBQwbNowePXqwY8cOVqxYQVZWFjfddJOTj0QIIURdkoRJCCFEk9CtWzdeeOEF2rRpw7PPPouLiwsBAQHcd999tGnThunTp5Obm8uePXsAePfdd+nRowevvPIK7du3p0ePHixYsIC1a9dy6NAhJx+NEEKIuiJjmIQQQjQJXbt2PfN3vV6Pv78/Xbp0OfOz4OBgALKzswHYvXs3a9euveB4qKNHj9K2bdtajlgIIUR9IAmTEEKIJsFoNJ7zWlGUc352evY9VVUBKCkpYdy4cbz++uvnbSs0NLQWIxVCCFGfSMIkhBBCXEDPnj357rvviIyMxGCQr0shhGiqZAyTEEIIcQFTpkwhLy+PiRMnsn37do4ePcrKlSu56667cDgczg5PCCFEHZGESQghhLiAZs2asXnzZhwOB6NGjaJLly5MnToVHx8fdDr5+hRCiKZC0WQpdCGEEEIIIYS4ILlFJoQQQgghhBBVkIRJCCGEEEIIIaogCZMQQgghhBBCVEESJiGEEEIIIYSogiRMQgghhBBCCFEFSZiEEEIIIYQQogqSMAkhhBBCCCFEFSRhEkIIIYQQQogqSMIkhBBCCCGEEFWQhEkIIYQQQgghqiAJkxBCCCGEEEJU4f8BYaHCIGrgugcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -810,15 +856,15 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "... elapsed time = 0.598\n", - "[(-2.3988654574224566+0j), (0.31308+0j), (-2.6422+0j)]\n", + "... elapsed time = 0.602\n", + "[(-2.4166206894513875+0j), (0.31108+0j), (-2.6296+0j)]\n", "\n", " ============= H_terms:\n", "[((-0.2+0j), 'IIIIZZ'), ((-0.2+0j), 'IIIZZI'), ((-0.2+0j), 'IIZZII'), ((-0.2+0j), 'IZZIII'), ((-0.2+0j), 'ZZIIII'), ((-0.4592201188381077+0j), 'IIIIIZ'), ((-0.4592201188381077+0j), 'IIIIZI'), ((-0.4592201188381077+0j), 'IIIZII'), ((-0.4592201188381077+0j), 'IIZIII'), ((-0.4592201188381077+0j), 'IZIIII'), ((-0.4592201188381077+0j), 'ZIIIII'), ((-1.1086554390135441+0j), 'IIIIIX'), ((-1.1086554390135441+0j), 'IIIIXI'), ((-1.1086554390135441+0j), 'IIIXII'), ((-1.1086554390135441+0j), 'IIXIII'), ((-1.1086554390135441+0j), 'IXIIII'), ((-1.1086554390135441+0j), 'XIIIII')]\n", diff --git a/hamlib/qiskit/benchmarks-qiskit-observables.ipynb b/hamlib/qiskit/benchmarks-qiskit-observables.ipynb index 508e1efc..ddfe662a 100644 --- a/hamlib/qiskit/benchmarks-qiskit-observables.ipynb +++ b/hamlib/qiskit/benchmarks-qiskit-observables.ipynb @@ -161,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 13, "id": "8ec99e2e-2e87-4555-85a1-d2aeedf0e604", "metadata": {}, "outputs": [ @@ -170,6 +170,8 @@ "output_type": "stream", "text": [ "[('XIIIII', (-0.5+0j)), ('XYYIII', (-0.5+0j)), ('XZIIII', (0.5+0j)), ('YYXIII', (0.5+0j)), ('ZYYIII', (-0.5+0j)), ('IXXIII', (-0.5+0j)), ('IZZYYX', (-0.5+0j)), ('IZZYIY', (-0.5+0j)), ('IIIXXX', (-0.5+0j)), ('IIIXZX', (-0.5+0j)), ('IIIIXI', (-0.5+0j)), ('IIIIXZ', (0.5+0j))]\n", + "************ The test Hamiltonian\n", + "[('IIIIZZ', (-0.2+0j)), ('IIIZZI', (-0.2+0j)), ('IIZZII', (-0.2+0j)), ('IZZIII', (-0.2+0j)), ('ZZIIII', (-0.2+0j)), ('IIIIIZ', (-0.4592201188381077+0j)), ('IIIIZI', (-0.4592201188381077+0j)), ('IIIZII', (-0.4592201188381077+0j)), ('IIZIII', (-0.4592201188381077+0j)), ('IZIIII', (-0.4592201188381077+0j)), ('ZIIIII', (-0.4592201188381077+0j)), ('IIIIIX', (-1.1086554390135441+0j)), ('IIIIXI', (-1.1086554390135441+0j)), ('IIIXII', (-1.1086554390135441+0j)), ('IIXIII', (-1.1086554390135441+0j)), ('IXIIII', (-1.1086554390135441+0j)), ('XIIIII', (-1.1086554390135441+0j))]\n", "global phase: 0.125\n", " ┌───────────┐ ░ ┌─────────┐ »\n", " q_0: ┤ U3(π,0,π) ├─░──┤ U2(0,π) ├─────────────────────────────────────────»\n", @@ -337,16 +339,6 @@ "«meas: 6/════════════╩══╩══╩══╩══╩══╩═\n", "« 0 1 2 3 4 5 \n" ] - }, - { - "data": { - "text/plain": [ - "'\\n###########################################\\n\\n# classical simple Ising is ZZ\\n# TFIM ZZ + X is transverse field\\n# + longitudinal field -> ZZ, X, and Z\\ndef get_ising_hamiltonian(L, J, h, alpha=0):\\n\\n # List of Hamiltonian terms as 3-tuples containing\\n # (1) the Pauli string,\\n # (2) the qubit indices corresponding to the Pauli string,\\n # (3) the coefficient.\\n ZZ_tuples = [(\"ZZ\", [i, i + 1], -J) for i in range(0, L - 1)]\\n Z_tuples = [(\"Z\", [i], -h * sin(alpha)) for i in range(0, L)]\\n X_tuples = [(\"X\", [i], -h * cos(alpha)) for i in range(0, L)]\\n\\n # We create the Hamiltonian as a SparsePauliOp, via the method\\n # `from_sparse_list`, and multiply by the interaction term.\\n hamiltonian = SparsePauliOp.from_sparse_list([*ZZ_tuples, *Z_tuples, *X_tuples], num_qubits=L)\\n return hamiltonian.simplify()\\n \\nH = get_ising_hamiltonian(L=num_qubits, J=0.2, h=1.2, alpha=pi / 8)\\nH_terms = H.to_list()\\n\\nhamiltonian = H_terms\\n\\nprint(f\"************ The test Hamiltonian\")\\nprint(hamiltonian)\\n\\nham_terms = hamiltonian\\n\\nprint(qc)\\n'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -371,29 +363,10 @@ "hamlib_simulation_kernel.global_enc = 'gray'\n", "'''\n", "\n", - "init_state = \"checkerboard\"\n", - "\n", - "get_hamiltonian_info(hamiltonian_name=hamiltonian_name, init_state=init_state)\n", - "\n", - "# Parameters of simulation\n", - "num_qubits = 6\n", - "K = 1\n", - "t = 0.05\n", - " \n", - "qc, bitstring, ham_op = HamiltonianSimulation(\n", - " num_qubits, \n", - " K=K, t=t,\n", - " hamiltonian = hamiltonian_name, \n", - " init_state = init_state,\n", - " method = 1, \n", - ")\n", - "\n", "# convert SparsePauliOp to list form\n", "ham_terms = ham_op.to_list()\n", "print(ham_terms)\n", "\n", - "print(qc)\n", - "\n", "'''\n", "###########################################\n", "\n", @@ -424,9 +397,26 @@ "print(hamiltonian)\n", "\n", "ham_terms = hamiltonian\n", + "'''\n", + "\n", + "init_state = \"checkerboard\"\n", + "\n", + "get_hamiltonian_info(hamiltonian_name=hamiltonian_name, init_state=init_state)\n", + "\n", + "# Parameters of simulation\n", + "num_qubits = 6\n", + "K = 1\n", + "t = 0.05\n", + " \n", + "qc, bitstring, ham_op = HamiltonianSimulation(\n", + " num_qubits, \n", + " K=K, t=t,\n", + " hamiltonian = hamiltonian_name, \n", + " init_state = init_state,\n", + " method = 1, \n", + ")\n", "\n", - "print(qc)\n", - "'''" + "print(qc)\n" ] }, { @@ -442,7 +432,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 8, "id": "0607c377-aa64-4fd7-bf3a-9353a823413b", "metadata": {}, "outputs": [ @@ -452,24 +442,205 @@ "text": [ "\n", "******** creating circuits from Hamiltonian:\n", - " ... XIIIII, (-0.5+0j)\n", - " ... XYYIII, (-0.5+0j)\n", - " ... XZIIII, (0.5+0j)\n", - " ... YYXIII, (0.5+0j)\n", - " ... ZYYIII, (-0.5+0j)\n", - " ... IXXIII, (-0.5+0j)\n", - " ... IZZYYX, (-0.5+0j)\n", - " ... IZZYIY, (-0.5+0j)\n", - " ... IIIXXX, (-0.5+0j)\n", - " ... IIIXZX, (-0.5+0j)\n", - " ... IIIIXI, (-0.5+0j)\n", - " ... IIIIXZ, (0.5+0j)\n", + " ... IIIIZZ, (-0.2+0j)\n", + " ... IIIZZI, (-0.2+0j)\n", + " ... IIZZII, (-0.2+0j)\n", + " ... IZZIII, (-0.2+0j)\n", + " ... ZZIIII, (-0.2+0j)\n", + " ... IIIIIZ, (-0.4592201188381077+0j)\n", + " ... IIIIZI, (-0.4592201188381077+0j)\n", + " ... IIIZII, (-0.4592201188381077+0j)\n", + " ... IIZIII, (-0.4592201188381077+0j)\n", + " ... IZIIII, (-0.4592201188381077+0j)\n", + " ... ZIIIII, (-0.4592201188381077+0j)\n", + " ... IIIIIX, (-1.1086554390135441+0j)\n", + " ... IIIIXI, (-1.1086554390135441+0j)\n", + " ... IIIXII, (-1.1086554390135441+0j)\n", + " ... IIXIII, (-1.1086554390135441+0j)\n", + " ... IXIIII, (-1.1086554390135441+0j)\n", + " ... XIIIII, (-1.1086554390135441+0j)\n", "\n", - "... constructed 12 circuits for this Hamiltonian.\n", - "(, [('XIIIII', (-0.5+0j))])\n", - " ┌───┐ ░ ┌─┐ \n", - " q_0: ┤ H ├─░─┤M├───────────────\n", - " └───┘ ░ └╥┘┌─┐ \n", + "... constructed 17 circuits for this Hamiltonian.\n", + "(, [('IIIIZZ', (-0.2+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IIIZZI', (-0.2+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IIZZII', (-0.2+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IZZIII', (-0.2+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('ZZIIII', (-0.2+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IIIIIZ', (-0.4592201188381077+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IIIIZI', (-0.4592201188381077+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IIIZII', (-0.4592201188381077+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IIZIII', (-0.4592201188381077+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IZIIII', (-0.4592201188381077+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('ZIIIII', (-0.4592201188381077+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IIIIIX', (-1.1086554390135441+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ──────░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", " q_1: ──────░──╫─┤M├────────────\n", " ░ ║ └╥┘┌─┐ \n", " q_2: ──────░──╫──╫─┤M├─────────\n", @@ -477,124 +648,28 @@ " q_3: ──────░──╫──╫──╫─┤M├──────\n", " ░ ║ ║ ║ └╥┘┌─┐ \n", " q_4: ──────░──╫──╫──╫──╫─┤M├───\n", - " ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ──────░──╫──╫──╫──╫──╫─┤M├\n", - " ░ ║ ║ ║ ║ ║ └╥┘\n", + " ┌───┐ ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ┤ H ├─░──╫──╫──╫──╫──╫─┤M├\n", + " └───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", "meas: 6/═════════╩══╩══╩══╩══╩══╩═\n", " 0 1 2 3 4 5 \n", - "(, [('XYYIII', (-0.5+0j))])\n", - " ┌───┐ ░ ┌─┐ \n", - " q_0: ─┤ H ├───────░─┤M├───────────────\n", - " ┌┴───┴┐┌───┐ ░ └╥┘┌─┐ \n", - " q_1: ┤ Sdg ├┤ H ├─░──╫─┤M├────────────\n", - " ├─────┤├───┤ ░ ║ └╥┘┌─┐ \n", - " q_2: ┤ Sdg ├┤ H ├─░──╫──╫─┤M├─────────\n", - " └─────┘└───┘ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ─────────────░──╫──╫──╫─┤M├──────\n", - " ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ─────────────░──╫──╫──╫──╫─┤M├───\n", - " ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ─────────────░──╫──╫──╫──╫──╫─┤M├\n", - " ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('XZIIII', (0.5+0j))])\n", - " ┌───┐ ░ ┌─┐ \n", - " q_0: ┤ H ├─░─┤M├───────────────\n", - " └───┘ ░ └╥┘┌─┐ \n", + "(, [('IIIIXI', (-1.1086554390135441+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ──────░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", " q_1: ──────░──╫─┤M├────────────\n", " ░ ║ └╥┘┌─┐ \n", " q_2: ──────░──╫──╫─┤M├─────────\n", " ░ ║ ║ └╥┘┌─┐ \n", " q_3: ──────░──╫──╫──╫─┤M├──────\n", - " ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ──────░──╫──╫──╫──╫─┤M├───\n", - " ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ──────░──╫──╫──╫──╫──╫─┤M├\n", - " ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/═════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('YYXIII', (0.5+0j))])\n", - " ┌─────┐┌───┐ ░ ┌─┐ \n", - " q_0: ┤ Sdg ├┤ H ├─░─┤M├───────────────\n", - " ├─────┤├───┤ ░ └╥┘┌─┐ \n", - " q_1: ┤ Sdg ├┤ H ├─░──╫─┤M├────────────\n", - " └┬───┬┘└───┘ ░ ║ └╥┘┌─┐ \n", - " q_2: ─┤ H ├───────░──╫──╫─┤M├─────────\n", - " └───┘ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ─────────────░──╫──╫──╫─┤M├──────\n", - " ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ─────────────░──╫──╫──╫──╫─┤M├───\n", - " ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ─────────────░──╫──╫──╫──╫──╫─┤M├\n", - " ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('ZYYIII', (-0.5+0j))])\n", - " ░ ┌─┐ \n", - " q_0: ─────────────░─┤M├───────────────\n", - " ┌─────┐┌───┐ ░ └╥┘┌─┐ \n", - " q_1: ┤ Sdg ├┤ H ├─░──╫─┤M├────────────\n", - " ├─────┤├───┤ ░ ║ └╥┘┌─┐ \n", - " q_2: ┤ Sdg ├┤ H ├─░──╫──╫─┤M├─────────\n", - " └─────┘└───┘ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ─────────────░──╫──╫──╫─┤M├──────\n", - " ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ─────────────░──╫──╫──╫──╫─┤M├───\n", - " ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ─────────────░──╫──╫──╫──╫──╫─┤M├\n", - " ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('IXXIII', (-0.5+0j))])\n", - " ░ ┌─┐ \n", - " q_0: ──────░─┤M├───────────────\n", - " ┌───┐ ░ └╥┘┌─┐ \n", - " q_1: ┤ H ├─░──╫─┤M├────────────\n", - " ├───┤ ░ ║ └╥┘┌─┐ \n", - " q_2: ┤ H ├─░──╫──╫─┤M├─────────\n", - " └───┘ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ──────░──╫──╫──╫─┤M├──────\n", - " ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ──────░──╫──╫──╫──╫─┤M├───\n", - " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " ┌───┐ ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ┤ H ├─░──╫──╫──╫──╫─┤M├───\n", + " └───┘ ░ ║ ║ ║ ║ └╥┘┌─┐\n", " q_5: ──────░──╫──╫──╫──╫──╫─┤M├\n", " ░ ║ ║ ║ ║ ║ └╥┘\n", "meas: 6/═════════╩══╩══╩══╩══╩══╩═\n", " 0 1 2 3 4 5 \n", - "(, [('IZZYYX', (-0.5+0j))])\n", - " ░ ┌─┐ \n", - " q_0: ─────────────░─┤M├───────────────\n", - " ░ └╥┘┌─┐ \n", - " q_1: ─────────────░──╫─┤M├────────────\n", - " ░ ║ └╥┘┌─┐ \n", - " q_2: ─────────────░──╫──╫─┤M├─────────\n", - " ┌─────┐┌───┐ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ┤ Sdg ├┤ H ├─░──╫──╫──╫─┤M├──────\n", - " ├─────┤├───┤ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ┤ Sdg ├┤ H ├─░──╫──╫──╫──╫─┤M├───\n", - " └┬───┬┘└───┘ ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ─┤ H ├───────░──╫──╫──╫──╫──╫─┤M├\n", - " └───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('IZZYIY', (-0.5+0j))])\n", - " ░ ┌─┐ \n", - " q_0: ─────────────░─┤M├───────────────\n", - " ░ └╥┘┌─┐ \n", - " q_1: ─────────────░──╫─┤M├────────────\n", - " ░ ║ └╥┘┌─┐ \n", - " q_2: ─────────────░──╫──╫─┤M├─────────\n", - " ┌─────┐┌───┐ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ┤ Sdg ├┤ H ├─░──╫──╫──╫─┤M├──────\n", - " └─────┘└───┘ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ─────────────░──╫──╫──╫──╫─┤M├───\n", - " ┌─────┐┌───┐ ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ┤ Sdg ├┤ H ├─░──╫──╫──╫──╫──╫─┤M├\n", - " └─────┘└───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('IIIXXX', (-0.5+0j))])\n", + "(, [('IIIXII', (-1.1086554390135441+0j))])\n", " ░ ┌─┐ \n", " q_0: ──────░─┤M├───────────────\n", " ░ └╥┘┌─┐ \n", @@ -603,57 +678,57 @@ " q_2: ──────░──╫──╫─┤M├─────────\n", " ┌───┐ ░ ║ ║ └╥┘┌─┐ \n", " q_3: ┤ H ├─░──╫──╫──╫─┤M├──────\n", - " ├───┤ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ┤ H ├─░──╫──╫──╫──╫─┤M├───\n", - " ├───┤ ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ┤ H ├─░──╫──╫──╫──╫──╫─┤M├\n", - " └───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", + " └───┘ ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ──────░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ──────░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", "meas: 6/═════════╩══╩══╩══╩══╩══╩═\n", " 0 1 2 3 4 5 \n", - "(, [('IIIXZX', (-0.5+0j))])\n", + "(, [('IIXIII', (-1.1086554390135441+0j))])\n", " ░ ┌─┐ \n", " q_0: ──────░─┤M├───────────────\n", " ░ └╥┘┌─┐ \n", " q_1: ──────░──╫─┤M├────────────\n", - " ░ ║ └╥┘┌─┐ \n", - " q_2: ──────░──╫──╫─┤M├─────────\n", - " ┌───┐ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ┤ H ├─░──╫──╫──╫─┤M├──────\n", - " └───┘ ░ ║ ║ ║ └╥┘┌─┐ \n", + " ┌───┐ ░ ║ └╥┘┌─┐ \n", + " q_2: ┤ H ├─░──╫──╫─┤M├─────────\n", + " └───┘ ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ──────░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", " q_4: ──────░──╫──╫──╫──╫─┤M├───\n", - " ┌───┐ ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ┤ H ├─░──╫──╫──╫──╫──╫─┤M├\n", - " └───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ──────░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", "meas: 6/═════════╩══╩══╩══╩══╩══╩═\n", " 0 1 2 3 4 5 \n", - "(, [('IIIIXI', (-0.5+0j))])\n", + "(, [('IXIIII', (-1.1086554390135441+0j))])\n", " ░ ┌─┐ \n", " q_0: ──────░─┤M├───────────────\n", - " ░ └╥┘┌─┐ \n", - " q_1: ──────░──╫─┤M├────────────\n", - " ░ ║ └╥┘┌─┐ \n", + " ┌───┐ ░ └╥┘┌─┐ \n", + " q_1: ┤ H ├─░──╫─┤M├────────────\n", + " └───┘ ░ ║ └╥┘┌─┐ \n", " q_2: ──────░──╫──╫─┤M├─────────\n", " ░ ║ ║ └╥┘┌─┐ \n", " q_3: ──────░──╫──╫──╫─┤M├──────\n", - " ┌───┐ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ┤ H ├─░──╫──╫──╫──╫─┤M├───\n", - " └───┘ ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ──────░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", " q_5: ──────░──╫──╫──╫──╫──╫─┤M├\n", " ░ ║ ║ ║ ║ ║ └╥┘\n", "meas: 6/═════════╩══╩══╩══╩══╩══╩═\n", " 0 1 2 3 4 5 \n", - "(, [('IIIIXZ', (0.5+0j))])\n", - " ░ ┌─┐ \n", - " q_0: ──────░─┤M├───────────────\n", - " ░ └╥┘┌─┐ \n", + "(, [('XIIIII', (-1.1086554390135441+0j))])\n", + " ┌───┐ ░ ┌─┐ \n", + " q_0: ┤ H ├─░─┤M├───────────────\n", + " └───┘ ░ └╥┘┌─┐ \n", " q_1: ──────░──╫─┤M├────────────\n", " ░ ║ └╥┘┌─┐ \n", " q_2: ──────░──╫──╫─┤M├─────────\n", " ░ ║ ║ └╥┘┌─┐ \n", " q_3: ──────░──╫──╫──╫─┤M├──────\n", - " ┌───┐ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ┤ H ├─░──╫──╫──╫──╫─┤M├───\n", - " └───┘ ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ──────░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", " q_5: ──────░──╫──╫──╫──╫──╫─┤M├\n", " ░ ║ ║ ║ ║ ║ └╥┘\n", "meas: 6/═════════╩══╩══╩══╩══╩══╩═\n", @@ -661,17 +736,17 @@ "\n", "************ Compute energy of the Hamiltonian 3 times\n", "\n", - "... transpilation time = 0.755\n", - "... total execution time = 0.818\n", - "Total Energy: (-0.01171875+0j)\n", + "... transpilation time = 0.027\n", + "... total execution time = 0.12\n", + "Total Energy: (-3.634061524386539+0j)\n", "\n", - "... transpilation time = 0.034\n", - "... total execution time = 0.103\n", - "Total Energy: (-0.107421875+0j)\n", + "... transpilation time = 0.032\n", + "... total execution time = 0.137\n", + "Total Energy: (-3.6578802935840957+0j)\n", "\n", - "... transpilation time = 0.094\n", - "... total execution time = 0.155\n", - "Total Energy: (0.033203125+0j)\n", + "... transpilation time = 0.035\n", + "... total execution time = 0.113\n", + "Total Energy: (-3.789966195497819+0j)\n", "\n" ] } @@ -726,7 +801,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "id": "52024111-be70-4d48-8e96-8318de5a0b9a", "metadata": {}, "outputs": [ @@ -737,135 +812,72 @@ "\n", "******** creating commuting groups for the Hamiltonian and circuits from the groups:\n", "Group 1:\n", - " XIIIII: (-0.5+0j)\n", - " XYYIII: (-0.5+0j)\n", - " IIIXXX: (-0.5+0j)\n", - " IIIIXI: (-0.5+0j)\n", + " IIIIZZ: (-0.2+0j)\n", + " IIIZZI: (-0.2+0j)\n", + " IIZZII: (-0.2+0j)\n", + " IZZIII: (-0.2+0j)\n", + " ZZIIII: (-0.2+0j)\n", + " IIIIIZ: (-0.4592201188381077+0j)\n", + " IIIIZI: (-0.4592201188381077+0j)\n", + " IIIZII: (-0.4592201188381077+0j)\n", + " IIZIII: (-0.4592201188381077+0j)\n", + " IZIIII: (-0.4592201188381077+0j)\n", + " ZIIIII: (-0.4592201188381077+0j)\n", "Group 2:\n", - " XZIIII: (0.5+0j)\n", - " IZZYYX: (-0.5+0j)\n", - "Group 3:\n", - " YYXIII: (0.5+0j)\n", - " IIIXZX: (-0.5+0j)\n", - "Group 4:\n", - " ZYYIII: (-0.5+0j)\n", - " IIIIXZ: (0.5+0j)\n", - "Group 5:\n", - " IXXIII: (-0.5+0j)\n", - "Group 6:\n", - " IZZYIY: (-0.5+0j)\n", + " IIIIIX: (-1.1086554390135441+0j)\n", + " XIIIII: (-1.1086554390135441+0j)\n", + " IIIIXI: (-1.1086554390135441+0j)\n", + " IIIXII: (-1.1086554390135441+0j)\n", + " IIXIII: (-1.1086554390135441+0j)\n", + " IXIIII: (-1.1086554390135441+0j)\n", "\n", - "... constructed 6 circuits for this Hamiltonian.\n", - "(, [('XIIIII', (-0.5+0j)), ('XYYIII', (-0.5+0j)), ('IIIXXX', (-0.5+0j)), ('IIIIXI', (-0.5+0j))])\n", - " ┌───┐ ░ ┌─┐ \n", - " q_0: ─┤ H ├───────░─┤M├───────────────\n", - " ┌┴───┴┐┌───┐ ░ └╥┘┌─┐ \n", - " q_1: ┤ Sdg ├┤ H ├─░──╫─┤M├────────────\n", - " ├─────┤├───┤ ░ ║ └╥┘┌─┐ \n", - " q_2: ┤ Sdg ├┤ H ├─░──╫──╫─┤M├─────────\n", - " └┬───┬┘└───┘ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ─┤ H ├───────░──╫──╫──╫─┤M├──────\n", - " ├───┤ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ─┤ H ├───────░──╫──╫──╫──╫─┤M├───\n", - " ├───┤ ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ─┤ H ├───────░──╫──╫──╫──╫──╫─┤M├\n", - " └───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('XZIIII', (0.5+0j)), ('IZZYYX', (-0.5+0j))])\n", - " ┌───┐ ░ ┌─┐ \n", - " q_0: ─┤ H ├───────░─┤M├───────────────\n", - " └───┘ ░ └╥┘┌─┐ \n", - " q_1: ─────────────░──╫─┤M├────────────\n", - " ░ ║ └╥┘┌─┐ \n", - " q_2: ─────────────░──╫──╫─┤M├─────────\n", - " ┌─────┐┌───┐ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ┤ Sdg ├┤ H ├─░──╫──╫──╫─┤M├──────\n", - " ├─────┤├───┤ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ┤ Sdg ├┤ H ├─░──╫──╫──╫──╫─┤M├───\n", - " └┬───┬┘└───┘ ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ─┤ H ├───────░──╫──╫──╫──╫──╫─┤M├\n", - " └───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('YYXIII', (0.5+0j)), ('IIIXZX', (-0.5+0j))])\n", - " ┌─────┐┌───┐ ░ ┌─┐ \n", - " q_0: ┤ Sdg ├┤ H ├─░─┤M├───────────────\n", - " ├─────┤├───┤ ░ └╥┘┌─┐ \n", - " q_1: ┤ Sdg ├┤ H ├─░──╫─┤M├────────────\n", - " └┬───┬┘└───┘ ░ ║ └╥┘┌─┐ \n", - " q_2: ─┤ H ├───────░──╫──╫─┤M├─────────\n", - " ├───┤ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ─┤ H ├───────░──╫──╫──╫─┤M├──────\n", - " └───┘ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ─────────────░──╫──╫──╫──╫─┤M├───\n", - " ┌───┐ ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ─┤ H ├───────░──╫──╫──╫──╫──╫─┤M├\n", - " └───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('ZYYIII', (-0.5+0j)), ('IIIIXZ', (0.5+0j))])\n", - " ░ ┌─┐ \n", - " q_0: ─────────────░─┤M├───────────────\n", - " ┌─────┐┌───┐ ░ └╥┘┌─┐ \n", - " q_1: ┤ Sdg ├┤ H ├─░──╫─┤M├────────────\n", - " ├─────┤├───┤ ░ ║ └╥┘┌─┐ \n", - " q_2: ┤ Sdg ├┤ H ├─░──╫──╫─┤M├─────────\n", - " └─────┘└───┘ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ─────────────░──╫──╫──╫─┤M├──────\n", - " ┌───┐ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ─┤ H ├───────░──╫──╫──╫──╫─┤M├───\n", - " └───┘ ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ─────────────░──╫──╫──╫──╫──╫─┤M├\n", - " ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", - "(, [('IXXIII', (-0.5+0j))])\n", - " ░ ┌─┐ \n", - " q_0: ──────░─┤M├───────────────\n", - " ┌───┐ ░ └╥┘┌─┐ \n", + "... constructed 2 circuits for this Hamiltonian.\n", + "(, [('IIIIZZ', (-0.2+0j)), ('IIIZZI', (-0.2+0j)), ('IIZZII', (-0.2+0j)), ('IZZIII', (-0.2+0j)), ('ZZIIII', (-0.2+0j)), ('IIIIIZ', (-0.4592201188381077+0j)), ('IIIIZI', (-0.4592201188381077+0j)), ('IIIZII', (-0.4592201188381077+0j)), ('IIZIII', (-0.4592201188381077+0j)), ('IZIIII', (-0.4592201188381077+0j)), ('ZIIIII', (-0.4592201188381077+0j))])\n", + " ░ ┌─┐ \n", + " q_0: ─░─┤M├───────────────\n", + " ░ └╥┘┌─┐ \n", + " q_1: ─░──╫─┤M├────────────\n", + " ░ ║ └╥┘┌─┐ \n", + " q_2: ─░──╫──╫─┤M├─────────\n", + " ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ─░──╫──╫──╫─┤M├──────\n", + " ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ─░──╫──╫──╫──╫─┤M├───\n", + " ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ─░──╫──╫──╫──╫──╫─┤M├\n", + " ░ ║ ║ ║ ║ ║ └╥┘\n", + "meas: 6/════╩══╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 5 \n", + "(, [('IIIIIX', (-1.1086554390135441+0j)), ('XIIIII', (-1.1086554390135441+0j)), ('IIIIXI', (-1.1086554390135441+0j)), ('IIIXII', (-1.1086554390135441+0j)), ('IIXIII', (-1.1086554390135441+0j)), ('IXIIII', (-1.1086554390135441+0j))])\n", + " ┌───┐ ░ ┌─┐ \n", + " q_0: ┤ H ├─░─┤M├───────────────\n", + " ├───┤ ░ └╥┘┌─┐ \n", " q_1: ┤ H ├─░──╫─┤M├────────────\n", " ├───┤ ░ ║ └╥┘┌─┐ \n", " q_2: ┤ H ├─░──╫──╫─┤M├─────────\n", - " └───┘ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ──────░──╫──╫──╫─┤M├──────\n", - " ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ──────░──╫──╫──╫──╫─┤M├───\n", - " ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ──────░──╫──╫──╫──╫──╫─┤M├\n", - " ░ ║ ║ ║ ║ ║ └╥┘\n", + " ├───┤ ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ┤ H ├─░──╫──╫──╫─┤M├──────\n", + " ├───┤ ░ ║ ║ ║ └╥┘┌─┐ \n", + " q_4: ┤ H ├─░──╫──╫──╫──╫─┤M├───\n", + " ├───┤ ░ ║ ║ ║ ║ └╥┘┌─┐\n", + " q_5: ┤ H ├─░──╫──╫──╫──╫──╫─┤M├\n", + " └───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", "meas: 6/═════════╩══╩══╩══╩══╩══╩═\n", " 0 1 2 3 4 5 \n", - "(, [('IZZYIY', (-0.5+0j))])\n", - " ░ ┌─┐ \n", - " q_0: ─────────────░─┤M├───────────────\n", - " ░ └╥┘┌─┐ \n", - " q_1: ─────────────░──╫─┤M├────────────\n", - " ░ ║ └╥┘┌─┐ \n", - " q_2: ─────────────░──╫──╫─┤M├─────────\n", - " ┌─────┐┌───┐ ░ ║ ║ └╥┘┌─┐ \n", - " q_3: ┤ Sdg ├┤ H ├─░──╫──╫──╫─┤M├──────\n", - " └─────┘└───┘ ░ ║ ║ ║ └╥┘┌─┐ \n", - " q_4: ─────────────░──╫──╫──╫──╫─┤M├───\n", - " ┌─────┐┌───┐ ░ ║ ║ ║ ║ └╥┘┌─┐\n", - " q_5: ┤ Sdg ├┤ H ├─░──╫──╫──╫──╫──╫─┤M├\n", - " └─────┘└───┘ ░ ║ ║ ║ ║ ║ └╥┘\n", - "meas: 6/════════════════╩══╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 5 \n", "\n", "************ Compute energy of the Hamiltonian 3 times\n", "\n", - "... transpilation time = 0.02\n", - "... total execution time = 0.057\n", - "Total Energy: (-0.046875+0j)\n", + "... transpilation time = 0.011\n", + "... total execution time = 0.035\n", + "Total Energy: (-3.8311077059299623+0j)\n", "\n", - "... transpilation time = 0.032\n", - "... total execution time = 0.057\n", - "Total Energy: (-0.0146484375+0j)\n", + "... transpilation time = 0.031\n", + "... total execution time = 0.043\n", + "Total Energy: (-3.8592571604361656+0j)\n", "\n", "... transpilation time = 0.03\n", - "... total execution time = 0.048\n", - "Total Energy: (0.087890625+0j)\n", + "... total execution time = 0.039\n", + "Total Energy: (-3.8635878457448123+0j)\n", "\n" ] }