diff --git a/doc/examples.md b/doc/examples.md index 2abf47a6..fc9e7a81 100644 --- a/doc/examples.md +++ b/doc/examples.md @@ -1,3 +1,175 @@ # Examples -Examples can be found under the `examples/` directory. +For template scripts utilizing the API in socket mode and via FileIO mode, see the `examples/` directory in the [github repo](https://github.com/SPARC-X/SPARC-X-API/tree/master/examples). + +## Training Machine Learned Force Fields using SPARC and the SPARC-X-API + +The SPARC source code has the ability to train MLFF on-the-fly using the SOAP descriptor and Bayesian Linear Regression. This feature can be accessed via the API by passing the appropriate sparc flags to the `SPARC` calculator object. An exhaustive list of MLFF parameters are available in the [SPARC documentation](https://github.com/SPARC-X/SPARC/tree/master/doc). + +The primary flag of interest is the `MLFF_FLAG` which must be set to `1` to train a MLFF from scratch. This needs to be included in a parameter dictionary that will later be passed to a SPARC calculator instance: + +```python +calc_params = { + "EXCHANGE_CORRELATION": "GGA_PBE", + "KPOINT_GRID": [1,1,1], + "MESH_SPACING": 0.35, + "TOL_SCF": 0.0001, + "MAXIT_SCF": 100, + "ELEC_TEMP_TYPE": "fermi-dirac", + "ELEC_TEMP": 116, + "PRINT_RESTART_FQ": 10, + "PRINT_ATOMS": 1, + "PRINT_FORCES": 1, + "SPIN_TYP": 0, + "MLFF_FLAG": 1, + "MLFF_INITIAL_STEPS_TRAIN": 3, +} +``` +This parameter dictionary primes an on-the-fly simulation. The `MLFF_INITIAL_STEPS_TRAIN` keyword specifies the number of reference structures that will be added to the training set before the model is first trained. References structures can be generated using the SPARC calculator in FileIO mode with C SPARC's internal relaxation or MD algorithms. Adding + +```python +calc_params['RELAX_FLAG'] = 1 +``` + +or + +```python +calc_params['MD_FLAG'] = 1 +``` + +to the parameter dictionary will train an ML model on-the-fly during relaxation or MD. Additional MD related parameters will be necessary such as the timestep and method. See the SPARC documentation for details. The simulations can be triggered by calling the familiar property functions on an `ASE` `Atoms` object. Here, we use a water molecule: + +```python +from sparc.calculator import SPARC +from ase.build import molecule + +water = molecule('H2O', vacuum=7) +water.pbc = [False,False,False] +water.calc = SPARC(**calc_params) +energy = water.get_potential_energy() +``` + +This triggers an on-the-fly relaxation or MD simulation. Additional details are available in the SPARC documentation regarding hyperparameters and recommended settings. + +## Pairing SPARC and the SPARC-X-API with external algorithms via iPI socket communication + +The iPI communication protocol embedded in SPARC and accessed via the SPARC-X-API allows users to treat SPARC as a DFT backend for many additional python libraries. For example, the reference structures for training MLFF on-the-fly can be generated via external algorithms such as `ASE` optimizers or MD engines. The DFT energies, forces, and stresses are computed by SPARC and parsed by the API to allow positions to be updated externally. The code from the previous section can be modified to use the `ASE` implementation of the BFGS algorithm: + +```python +from sparc.calculator import SPARC +from ase.build import molecule +from ase.optimize import BFGS + +water = molecule('H2O', vacuum=7) +water.pbc = [False,False,False] + +calc_params = { + "EXCHANGE_CORRELATION": "GGA_PBE", + "KPOINT_GRID": [1,1,1], + "MESH_SPACING": 0.35, + "TOL_SCF": 0.0001, + "MAXIT_SCF": 100, + "ELEC_TEMP_TYPE": "fermi-dirac", + "ELEC_TEMP": 116, + "PRINT_RESTART_FQ": 10, + "PRINT_ATOMS": 1, + "PRINT_FORCES": 1, + "SPIN_TYP": 0, + "MLFF_FLAG": 1, + "MLFF_INITIAL_STEPS_TRAIN": 3, +} + +with SPARC(use_socket=True, **calc_params) as calc: + water.calc = calc + dyn = BFGS(water, trajectory = 'water-bfgs-opt.traj') + dyn.run(fmax=0.05) +``` + +A MLFF is still trained on-the-fly using SPARC DFT energies, forces, and stresses; but the structures are generated from the `ASE` optimization algorithm. + +## Advanced Usage: Training MLFF on-the-fly during metadynamics simulation + +The socket makes porting SPARC to external codes with python interfaces trivial. The PLUMED pacakge's existing `ASE` interface can be coupled with the SPARC-X-API to train MLFF on-the-fly during metadynamics simulations. The setup on the SPARC side remains unchanged from other socket examples: + +```python +from sparc.calculator import SPARC +from ase import units +from ase import Atoms +from ase.calculators.plumed import Plumed +from ase.md.nvtberendsen import NVTBerendsen + +calc_params = { + "EXCHANGE_CORRELATION": "GGA_PBE", + "KPOINT_GRID": [1,1,1], + "MESH_SPACING": 0.35, + "TOL_SCF": 0.0001, + "MAXIT_SCF": 100, + "PRINT_RESTART_FQ": 10, + "PRINT_ATOMS": 1, + "PRINT_FORCES": 1, + "SPIN_TYP": 0, + "MLFF_FLAG": 1, + "MLFF_INITIAL_STEPS_TRAIN": 5, +} + +# MD parameters +timestep = 2 * units.fs # the units module contains the conversion factor to go from units. to ASE units via multiplication +ps = 1000 * units.fs +``` + +Here, we will consider a 5 atom Ag cluster. + +```python +Ag_cluster = Atoms('Ag5', positions = [(0.0, 2.6579, 0.9366), (0.0, -1.3587, -1.4045), (0.0, 0.0, 0.9358), (0.0, -2.6579, 0.9366), + (0.0, 1.3587, -1.4045)], + pbc = (0,0,0)) +Ag_cluster.set_cell([20., 24., 24.]) +Ag_cluster.center() +``` + +We include PLUMED specific parameters to initialize the metadynamics simulations, taking care to be consistent with native `ASE` and PLUMED units. + +```python +setup = [ + f"UNITS LENGTH=A TIME={1/ps} ENERGY={units.mol/units.kJ}", # Set units to match desired properties + + # Calculate the center of mass of atoms 1-5 + "com: COM ATOMS=1-5", + + # Define the coordination number (C) + "c: COORDINATION GROUPA=1-5 SWITCH={RATIONAL R_0=3.0 NN=8 MM=16} NOPBC", + + # Define the radius of gyration (R) + "r: GYRATION TYPE=RADIUS ATOMS=1-5 NOPBC", + + # Compute CV1 and CV2 as orthogonal linear combinations of C and R + "cv1: COMBINE ARG=c,r COEFFICIENTS=0.99715,-0.07534 PERIODIC=NO", + "cv2: COMBINE ARG=c,r COEFFICIENTS=0.07534,0.99715 PERIODIC=NO", + + # Apply lower wall on CV1 at 5.0 with harmonic constant 10 eV + f"LOWER_WALLS ARG=cv1 AT=5.0 KAPPA=10.0", + + # Apply lower wall on CV2 at 3.0 with harmonic constant 50 eV + f"UPPER_WALLS ARG=cv2 AT=3.0 KAPPA=50.0", + + # Perform well-tempered metadynamics on CV1 and CV2 + f"METAD ARG=cv1,cv2 HEIGHT=0.3 PACE=500 SIGMA=0.3,0.03 GRID_MIN=0.0,0.0 GRID_MAX=10.0,5.0 GRID_BIN=500,500 BIASFACTOR=100 FILE=HILLS", + + # Print out the collective variables for monitoring + "PRINT ARG=cv1,cv2,c,r FILE=COLVAR STRIDE=1" +] +``` + +And finally we run a brief simulation in socket mode: + +```python +with SPARC(use_socket=True, **calc_params) as calc: + Ag_cluster.calc = Plumed(calc=calc, + input=setup, + timestep=timestep, + atoms=Ag_cluster, + kT=0.00861733) # 10 K in eV thermal energy units + dyn = NVTBerendsen(Ag_cluster, timestep, temperature_K=0.00861733/units.kB, taut=50*units.fs, + fixcm=False, trajectory='Ag-cluster-metadynamics.traj') + dyn.run(10) +``` \ No newline at end of file