-
Notifications
You must be signed in to change notification settings - Fork 0
/
fmha_backward_test.py
200 lines (163 loc) · 6.64 KB
/
fmha_backward_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import torch
import sys
import os
from piped_subprocess import PipedSubprocess, TORCH_DTYPE_NAME
import math
parser = argparse.ArgumentParser()
parser.add_argument("example_exe", type=str, help="Path to the 41_fused_multi_head_attention_backward executable")
args = parser.parse_args()
torch.manual_seed(0)
dtype = torch.float16
B, Mq, Mkv, H, K, Kv = 2, 1024, 1024, 5, 128, 128
causal = True
repeat_count = 100
ATOL = {
torch.float: 5e-4,
torch.half: 9.5e-2,
torch.bfloat16: 7e-1,
}[dtype]
RTOL = {
torch.float: 1e-4,
torch.half: 2e-2,
torch.bfloat16: 1e-1,
}[dtype]
assert not (causal and Mq < Mkv), "causal only supports seqlenK <= seqlenQ"
fmha_bw_binary = args.example_exe
if not os.path.isfile(fmha_bw_binary):
print(f"""No such file: `{fmha_bw_binary}`\nDid you forget to run "make 41_fused_multi_head_attention"?""")
sys.exit(1)
def create_lower_triangular_mask():
return torch.triu(torch.full( # type: ignore
[1, Mq, Mkv],
dtype=dtype,
fill_value=float("-inf"),
), diagonal=1)
def ref_mha_bmk(q, k, v, mask):
# Multi-head attention with inputs/outputs in BMK format
q = q.float()
k = k.float()
v = v.float()
q = q * (1 / q.shape[-1] ** 0.5)
attn = q @ k.transpose(-2, -1)
if mask is not None:
attn += mask
attn_max = attn.max(-1, True).values
attn_norm = (attn - attn_max).exp().sum(-1, True)
attn = attn.softmax(-1)
lse = attn_max + attn_norm.log()
lse = lse.squeeze(2)
return attn @ v, lse
def bmhk2bmk(t):
return t.permute((0, 2, 1, 3)).reshape(
[t.shape[0] * t.shape[2], t.shape[1], t.shape[3]]
)
def ref_mha_bmhk(q, k, v, mask):
# Multi-head attention with inputs/outputs in BMHK format
assert q.ndim == 4
out, lse = ref_mha_bmk(bmhk2bmk(q), bmhk2bmk(k), bmhk2bmk(v), mask=mask)
out = out.reshape([q.shape[0], q.shape[2], q.shape[1], v.shape[3]])
return out.permute((0, 2, 1, 3)), lse.reshape([q.shape[0], q.shape[2], q.shape[1]])
def ref_mha_bw_bmhk(q, k, v, mask, lse, out, grad_out, delta):
lse = lse[:, :, :q.shape[1]] #BMH, unpad Q dimension
delta = delta.reshape([-1, delta.shape[-1], 1])
# bmhk -> bmk
q, k, v, out, grad_out = [bmhk2bmk(x).float() for x in (q, k, v, out, grad_out)]
attn_T = k @ q.transpose(-2, -1)
if mask is not None:
attn_T += mask.transpose(-2, -1)
attn_T = attn_T * (1 / q.shape[-1] ** 0.5)
attn_T = attn_T - lse.reshape([-1, 1, lse.shape[-1]])
attn_T = attn_T.exp()
grad_v = attn_T @ grad_out
dov = grad_out @ v.transpose(-2, -1)
tmp = (dov - delta) * attn_T.transpose(-2, -1)
tmp = tmp / (q.shape[-1] ** 0.5)
grad_q = tmp @ k
grad_k = tmp.transpose(-2, -1) @ q
return [x.reshape([B, H, x.shape[1], x.shape[-1]]).permute([0, 2, 1, 3]) for x in [grad_q, grad_k, grad_v]]
print("initializing tensors...")
query = torch.randn([B, Mq, H, K], dtype=dtype)
key = 3 * torch.randn([B, Mkv, H, K], dtype=dtype)
value = 3 * torch.randn([B, Mkv, H, Kv], dtype=dtype)
mask = create_lower_triangular_mask() if causal else None
# let PyTorch compute gradients
query.requires_grad_(True)
key.requires_grad_(True)
value.requires_grad_(True)
print("computing fw...")
out, lse = ref_mha_bmhk(query, key, value, mask=mask)
out = out.to(dtype).contiguous()
grad_out = 3 * torch.randn([B, Mq, H, Kv], dtype=dtype)
print("computing bw with autograd...")
out.backward(grad_out)
scale = (1 / query.shape[-1] ** 0.5)
# Additional data needed by the kernel
delta = (grad_out.float() * out.float()).sum(-1).transpose(-2, -1).contiguous()
pad_amount = (32 - (lse.shape[2] % 32)) % 32
lse = torch.nn.functional.pad(lse, [0, pad_amount], value=math.inf)
print("computing bw with reference implem...")
gQr, gKr, gVr = ref_mha_bw_bmhk(query, key, value, mask, lse, out, grad_out, delta)
with PipedSubprocess(fmha_bw_binary) as bw_kernel:
# Send kernel arguments
bw_kernel.write(
TORCH_DTYPE_NAME[query.dtype],
"scale", scale,
"head_dim", K,
"head_dim_value", Kv,
"num_queries", Mq,
"num_keys", Mkv,
"num_heads", H,
"custom_mask_type", (1 if causal else 0),
"num_batches", B,
"repeat_count", repeat_count,
"num_splits_key", (Mkv // 128),
)
bw_kernel.writeTensor(query, "query", ["q_strideB", "q_strideM", "q_strideH"])
bw_kernel.writeTensor(key, "key", ["k_strideB", "k_strideM", "k_strideH"])
bw_kernel.writeTensor(value, "value", ["v_strideB", "v_strideM", "v_strideH"])
bw_kernel.writeTensor(lse, "logsumexp", ["lse_strideB", "lse_strideH"])
bw_kernel.writeTensor(out, "output", ["o_strideB", "o_strideM", "o_strideH"])
bw_kernel.writeTensor(grad_out, "grad_output", ["gO_strideB", "gO_strideM", "gO_strideH"])
bw_kernel.writeTensor(delta, "delta", ["delta_strideB", "delta_strideH"])
if bw_kernel.read() != "OK":
print("Got unexpected output")
print(bw_kernel.subp.communicate()[0])
sys.exit(0)
# Read kernel output
gQ = bw_kernel.readTensor("grad_query", ["gQ_strideB", "gQ_strideM", "gQ_strideH"], query.shape).float()
gK = bw_kernel.readTensor("grad_key", ["gK_strideB", "gK_strideM", "gK_strideH"], key.shape).float()
gV = bw_kernel.readTensor("grad_value", ["gV_strideB", "gV_strideM", "gV_strideH"], value.shape).float()
runtime_ms = float(bw_kernel.readNamed("runtime_ms"))
float_ops = B * H * sum([
# att = Q @ K.transpose
Mq * Mkv * K * 2,
# att @ dO
Mkv * Mq * Kv * 2,
# dov = dO @ V
Mq * Kv * Mkv * 2,
# dov @ K
Mq * K * Mkv * 2,
# dov @ Q
Mq * K * Mkv * 2,
])
if causal:
float_ops //= 2
print(f"""
Fused multi-head attention - backward
batch_size={B}
num_queries={Mq}
num_keys={Mkv}
num_heads={H}
head_dim={K}
head_dim_value={Kv}
Correctness:
grad_query: {"PASS" if torch.allclose(gQ, gQr, rtol=RTOL, atol=ATOL) else "FAIL"} (delta: {(gQ - gQr).abs().max()})
grad_key: {"PASS" if torch.allclose(gK, gKr, rtol=RTOL, atol=ATOL) else "FAIL"} (delta: {(gK - gKr).abs().max()})
grad_value: {"PASS" if torch.allclose(gV, gVr, rtol=RTOL, atol=ATOL) else "FAIL"} (delta: {(gV - gVr).abs().max()})
(atol={ATOL} / rtol={RTOL})
Runtime: {runtime_ms}ms ({(float_ops / (1024 ** 4)) / (runtime_ms / 1000):.4f} TFlops)
""")
assert torch.allclose(query.grad.float(), gQr, rtol=RTOL, atol=ATOL), "Reference implementation does not match PyTorch autograd!"
assert torch.allclose(key.grad.float(), gKr, rtol=RTOL, atol=ATOL), "Reference implementation does not match PyTorch autograd!"
assert torch.allclose(value.grad.float(), gVr, rtol=RTOL, atol=ATOL), "Reference implementation does not match PyTorch autograd!"