-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathStep1_RawDataProcessng.R
111 lines (95 loc) · 3.62 KB
/
Step1_RawDataProcessng.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Task: Load the rawdata and standardize the data.
# 加载原始数据,对原始数据进行初步处理
# 1. 读取建模参数加载必要工具库。
# 2. 处理建模边界,包括:去孔洞、投影、生成缓冲区等。
# 3. 处理DEM数据,包括:剪切(从原始数据中提取研究区范围内数据),栅格数据重投影为PCS。
# 4. 河网数据处理,包括:数据重投影、河道线段简化、去除重复点、去除重复线段、河流流向一致性检查/修复等。
# 5. 湖泊数据处理,包括:数据重投影、去除孔洞、边界简化等
# 6. 绘图,对以上数据处理过程中的原始空间数据和结果数据进行绘图,方便用户检查和确认数据对象和处理结果。
# Notice:
# 1. The DEM data is merged before this step. The country-wide DEM should be merged.
# 2. Te wbd and stm data must be ready before this step.
rm(list=ls())
source('GetReady.R')
prefix ='S1'
# ================= Boundary =================
wbd0 = readOGR(xfg$fsp.wbd) # Read data
wbd0 = gBuffer(wbd0, width=0) # Remove error from irregular polygon.
# ---- disolve ----
wbd.dis = removeholes(gUnaryUnion(wbd0))
# wbd in pcs
wb.p = spTransform(wbd0, xfg$crs.pcs)
writeshape(wb.p, pd.pcs$wbd)
# buffer of wbd in pcs
buf.p = gBuffer(wb.p, width = xfg$para$DistBuffer)
writeshape(buf.p, pd.pcs$wbd.buf)
buf.g = spTransform(buf.p, xfg$crs.gcs)
writeshape(buf.g, pd.gcs$wbd.buf)
wb.g=spTransform(wb.p, CRSobj = xfg$crs.gcs )
writeshape(wb.g, pd.gcs$wbd)
# ================= DEM =================
if(!file.exists(xfg$fr.dem)){
source('Rfunction/getDEM.R')
# debug(getDEM_ASTER)
fn.dem.tmp = getDEM_ASTER(fn.wbd = pd.gcs$wbd.buf,
dir.fig = xfg$dir$fig,
dir.out = xfg$dir$out,
fn.out = xfg$fr.dem,
crop=TRUE)
}
dem0=raster(xfg$fr.dem)
# -------CROP DEM -----------------
# Crop the dem AND conver the dem to PCS.
fun.gdalwarp(f1=xfg$fr.dem, f2=pd.pcs$dem, t_srs = xfg$crs.pcs, s_srs = crs(dem0),
opt = paste0('-cutline ', pd.pcs$wbd.buf) )
# Crop the dem, output is in GCS
fun.gdalwarp(f1=xfg$fr.dem, f2=pd.gcs$dem, t_srs = xfg$crs.gcs, s_srs = crs(dem0),
opt = paste0('-cutline ', pd.pcs$wbd.buf) )
# =========Stream Network===========================
stm0 = readOGR(xfg$fsp.stm) # data 0: raw data
stm1 = spTransform(stm0, xfg$crs.pcs) # data 1: PCS
fun.simplifyRiver <- function(rmDUP=TRUE){
riv.xy = extractCoords(stm1)
npoint = nrow(riv.xy)
mlen = gLength(stm1) / npoint
r.dem = raster(pd.pcs$dem)
dx = mean(res(r.dem))
if( mlen < dx){
stm1 = gSimplify(stm1, tol = dx)
}
if(rmDUP){
res = rmDuplicatedLines(stm1)
}else{
res = stm1
}
res
}
# debug(sp.RiverDown)
if(xfg$para$flowpath){
stm1 = fun.simplifyRiver(rmDUP = FALSE)
stm.p= sp.RiverPath(stm1, tol.simplify = 30)$sp # clean data with flowpath.
stm.p = stm1
}else{
stm.p = stm1
}
writeshape(stm.p, file=pd.pcs$stm)
#' ==========================================
if(LAKEON){
spl0 = readOGR(xfg$fsp.lake) # data 0: raw data
spl1 = removeholes(spl0)
spl.gcs = spTransform(spl1, CRSobj = xfg$crs.gcs)
writeshape(spl.gcs, pd.gcs$lake)
spl.pcs = spTransform(spl.gcs, CRSobj = xfg$crs.pcs) # data 1: PCS
writeshape(spl.pcs, pd.pcs$lake)
}
#' ==== PLOT FIGURE ================
dem.p = raster(pd.pcs$dem)
png(filename = file.path(xfg$dir$fig, paste0(prefix, '_Rawdata_Elevation.png')), type='cairo',
width = 7, height=7, res=300, unit='in')
plot(dem.p)
plot(wb.p, add=T, border=2)
if(LAKEON){
plot(spl.pcs, add=TRUE, border='darkblue', lwd=1.5)
}
plot(stm.p, add=T, col=4)
dev.off()