-
Notifications
You must be signed in to change notification settings - Fork 459
/
infer.py
124 lines (112 loc) · 3.83 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import sys
import json
import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, AutoModelForCausalLM, AutoTokenizer
from utils.prompter import Prompter
if torch.cuda.is_available():
device = "cuda"
def load_instruction(instruct_dir):
input_data = []
with open(instruct_dir, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
d = json.loads(line)
input_data.append(d)
return input_data
def main(
load_8bit: bool = False,
base_model: str = "",
# the infer data, if not exists, infer the default instructions in code
instruct_dir: str = "",
use_lora: bool = True,
lora_weights: str = "tloen/alpaca-lora-7b",
# The prompt template to use, will default to med_template.
prompt_template: str = "med_template",
):
prompter = Prompter(prompt_template)
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
if use_lora:
print(f"using lora {lora_weights}")
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=256,
**kwargs,
):
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return prompter.get_response(output)
def infer_from_json(instruct_dir):
input_data = load_instruction(instruct_dir)
for d in input_data:
instruction = d["instruction"]
output = d["output"]
print("###infering###")
model_output = evaluate(instruction)
print("###instruction###")
print(instruction)
print("###golden output###")
print(output)
print("###model output###")
print(model_output)
if instruct_dir != "":
infer_from_json(instruct_dir)
else:
for instruction in [
"我感冒了,怎么治疗",
"一个患有肝衰竭综合征的病人,除了常见的临床表现外,还有哪些特殊的体征?",
"急性阑尾炎和缺血性心脏病的多发群体有何不同?",
"小李最近出现了心动过速的症状,伴有轻度胸痛。体检发现P-R间期延长,伴有T波低平和ST段异常",
]:
print("Instruction:", instruction)
print("Response:", evaluate(instruction))
print()
if __name__ == "__main__":
fire.Fire(main)