forked from Mstfakts/Building-Detection-MaskRCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpaceNet_train.py
317 lines (260 loc) · 11.6 KB
/
SpaceNet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 9 20:02:23 2020
@author: MUSTAFAAKTAS
"""
import os
import sys
import random
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw
#Libraries' order is important
import geopandas as gpd
# Geoio dan önce geopandası yüklemelisin.
import geoio
import json
# Root directory of the project
ROOT_DIR = os.path.abspath("../../")
DATASET_DIR = os.path.abspath("D:/DATASET/SpaceNet/Train/AOI_2_Vegas_Train/") #Sadece bu kısmı değiştir yeter
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn.config import Config
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
from mrcnn.model import log
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
class SpaceNetConfig(Config):
"""Configuration for training on the toy shapes dataset.
Derives from the base Config class and overrides values specific
to the toy shapes dataset.
"""
# Give the configuration a recognizable name
NAME = "SpaceNet"
BACKBONE = "resnet50"
# Train on 1 GPU and 8 images per GPU. We can put multiple images on each
# GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 1 # background + 1 building
# Use small images for faster training. Set the limits of the small side
# the large side, and that determines the image shape.
IMAGE_MIN_DIM = 640
IMAGE_MAX_DIM = 640
# Use smaller anchors because our image and objects are small
RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels
RPN_ANCHOR_RATIOS = [0.25, 1, 4]
# Reduce training ROIs per image because the images are small and have
# few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
TRAIN_ROIS_PER_IMAGE = 32
USE_MINI_MASK = True
# Use a small epoch since the data is simple
STEPS_PER_EPOCH = 500
# use small validation steps since the epoch is small
VALIDATION_STEPS = 50
MAX_GT_INSTANCES=250
DETECTION_MAX_INSTANCES=350
config = SpaceNetConfig()
config.display()
def get_ax(rows=1, cols=1, size=8):
"""Return a Matplotlib Axes array to be used in
all visualizations in the notebook. Provide a
central point to control graph sizes.
Change the default size attribute to control the size
of rendered images
"""
_, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows))
return ax
def fill_between(polygon):
"""
Returns: a bool array
"""
img = Image.new('1', (650, 650), False)
ImageDraw.Draw(img).polygon(polygon, outline=True, fill=True)
mask = np.array(img)
return mask
class SpaceNetDataset(utils.Dataset):
"""Generates the shapes synthetic dataset. The dataset consists of simple
shapes (triangles, squares, circles) placed randomly on a blank surface.
The images are generated on the fly. No file access required.
"""
def load_dataset(self, dataset_dir, start=1, end=400):
"""Generate the requested number of synthetic images.
count: number of images to generate.
height, width: the size of the generated images.
"""
# Add classes
self.add_class("SpaceNetDataset", 1, "building")
# define data locations for images and annotations
images_dir = os.path.join(dataset_dir, "RGB-PanSharpen1/")
annotations_dir = os.path.join(dataset_dir, "geojson/buildings/")
# Iterate through all files in the folder to
#add class, images and annotaions
for filename in os.listdir(images_dir)[start:end]:
image_id = filename[31:-4]
image_dir = os.path.join(images_dir,str(filename))
ann_path = os.path.join(annotations_dir,"buildings_AOI_2_Vegas_imgg"+str(image_id)+".geojson")
self.add_image('SpaceNetDataset', image_id=image_id, path=image_dir, annotation=ann_path)
def load_image(self, image_id):
"""Generate an image from the specs of the given image ID.
Typically this function loads the image from a file, but
in this case it generates the image on the fly from the
specs in image_info.
"""
image_dir = os.path.join(DATASET_DIR, "RGB-PanSharpen1/RGB-PanSharpen_AOI_2_Vegas_imgg"+str(image_id)+".png")
im = Image.open(image_dir)
return np.asarray(im)
def image_reference(self, image_id):
"""Return the shapes data of the image."""
info = self.image_info[image_id]
if info["source"] == "shapes":
return info["shapes"]
else:
super(self.__class__).image_reference(self, image_id)
def load_mask(self, image_id):
"""Generate instance masks for shapes of the given image ID.
"""
masks = np.zeros((650,650))
ResimPATH = 'D:/DATASET/SpaceNet/Train/AOI_2_Vegas_Train/RGB-PanSharpen/RGB-PanSharpen_AOI_2_Vegas_imgg'+str(image_id)+'.tif'
RGBTIFResmi = geoio.GeoImage(ResimPATH)
with open(DATASET_DIR+"/geojson/buildings/buildings_AOI_2_Vegas_imgg"+str(image_id)+".geojson") as f:
data = json.load(f)
allBuildings = data['features']
for building in allBuildings:
veri = building['geometry']['coordinates'][0]
tip = str(building['geometry']['type'])
coordinates = list()
if tip == ('Point'):
continue
elif tip == ('MultiPolygon'):
if isinstance(veri,float): continue
kucukBinalar = (building['geometry']['coordinates'])
for b in range(len(kucukBinalar)):
veri = kucukBinalar[b][0]
for i in veri:
xPixel, yPixel = RGBTIFResmi.proj_to_raster(i[0], i[1])
xPixel = 649 if xPixel > 649 else xPixel
yPixel = 649 if yPixel > 649 else yPixel
coordinates.append((xPixel,yPixel))
else:
if isinstance(veri,float): continue
for i in veri:
xPixel, yPixel = RGBTIFResmi.proj_to_raster(i[0], i[1])
xPixel = 649 if xPixel > 649 else xPixel
yPixel = 649 if yPixel > 649 else yPixel
coordinates.append((xPixel,yPixel))
maske = fill_between(coordinates)
masks = np.dstack((masks,maske))
if masks.shape != (650,650):
masks = masks[:,:,1:]
class_ids = np.asarray([1]*masks.shape[2])
else:
class_ids=np.ones((1))
masks = masks.reshape((650,650,1))
return masks.astype(np.bool), class_ids.astype(np.int32)
# Training dataset
dataset_train = SpaceNetDataset()
dataset_train.load_dataset(DATASET_DIR,0,3080)
dataset_train.prepare()
# Validation dataset
dataset_val = SpaceNetDataset()
dataset_val.load_dataset(DATASET_DIR,3081,3850)
dataset_val.prepare()
"""
# Load and display random samples
image_ids = np.random.choice(dataset_train.image_ids,4)
for image_id in image_ids:
print(image_id)
image = dataset_train.load_image(image_id)
mask, class_ids = dataset_train.load_mask(image_id)
visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names)
"""
"""
# Create model in training mode
model = modellib.MaskRCNN(mode="training", config=config,
model_dir=MODEL_DIR)
# Which weights to start with?
init_with = "last" # imagenet, coco, or last
if init_with == "imagenet":
model.load_weights(model.get_imagenet_weights(), by_name=True)
elif init_with == "coco":
# Load weights trained on MS COCO, but skip layers that
# are different due to the different number of classes
# See README for instructions to download the COCO weights
model.load_weights(COCO_MODEL_PATH, by_name=True,
exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",
"mrcnn_bbox", "mrcnn_mask"])
elif init_with == "last":
# Load the last model you trained and continue training
#model.load_weights(model.find_last(), by_name=True)
model.load_weights(model.find_last(), by_name=True)
# Train the head branches
# Passing layers="heads" freezes all layers except the head
# layers. You can also pass a regular expression to select
# which layers to train by name pattern.
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=200,
layers='all')
"""
#########################################################DETECTION
class InferenceConfig(SpaceNetConfig):
GPU_COUNT = 1
IMAGES_PER_GPU = 1
inference_config = InferenceConfig()
# Recreate the model in inference mode
model = modellib.MaskRCNN(mode="inference",
config=inference_config,
model_dir=MODEL_DIR)
# Get path to saved weights
# Either set a specific path or find last trained weights
# model_path = os.path.join(ROOT_DIR, ".h5 file name here")
model_path = model.find_last()
# Load trained weights
print("Loading weights from ", model_path)
model.load_weights(model_path, by_name=True)
# Test on a random image
image_id = random.choice(dataset_val.image_ids)
original_image, image_meta, gt_class_id, gt_bbox, gt_mask =\
modellib.load_image_gt(dataset_val, inference_config,
image_id, use_mini_mask=False)
log("original_image", original_image)
log("image_meta", image_meta)
log("gt_class_id", gt_class_id)
log("gt_bbox", gt_bbox)
log("gt_mask", gt_mask)
visualize.display_instances(original_image, gt_bbox, gt_mask, gt_class_id,
dataset_train.class_names, figsize=(8, 8))
results = model.detect([original_image], verbose=1)
r = results[0]
visualize.display_instances(original_image, r['rois'], r['masks'], r['class_ids'],
dataset_val.class_names, r['scores'], ax=get_ax())
"""
# Compute VOC-Style mAP @ IoU=0.5
# Running on 10 images. Increase for better accuracy.
image_ids = np.random.choice(dataset_val.image_ids, 6)
APs = []
for image_id in image_ids:
# Load image and ground truth data
image, image_meta, gt_class_id, gt_bbox, gt_mask =\
modellib.load_image_gt(dataset_val, inference_config,
image_id, use_mini_mask=False)
molded_images = np.expand_dims(modellib.mold_image(image, inference_config), 0)
# Run object detection
results = model.detect([image], verbose=0)
r = results[0]
# Compute AP
AP, precisions, recalls, overlaps =\
utils.compute_ap(gt_bbox, gt_class_id, gt_mask,
r["rois"], r["class_ids"], r["scores"], r['masks'])
APs.append(AP)
print("mAP: ", np.mean(APs))
"""