forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Task089_Fluo-N2DH-SIM.py
298 lines (253 loc) · 12.2 KB
/
Task089_Fluo-N2DH-SIM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from multiprocessing import Pool
import SimpleITK as sitk
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from skimage.io import imread
from skimage.io import imsave
from skimage.morphology import disk
from skimage.morphology import erosion
from skimage.transform import resize
from nnunet.paths import nnUNet_raw_data
from argparse import ArgumentParser
def load_bmp_convert_to_nifti_borders_2d(img_file, lab_file, img_out_base, anno_out, spacing, border_thickness=0.7):
img = imread(img_file)
img_itk = sitk.GetImageFromArray(img.astype(np.float32)[None])
img_itk.SetSpacing(list(spacing)[::-1] + [999])
sitk.WriteImage(img_itk, join(img_out_base + "_0000.nii.gz"))
if lab_file is not None:
l = imread(lab_file)
borders = generate_border_as_suggested_by_twollmann_2d(l, spacing, border_thickness)
l[l > 0] = 1
l[borders == 1] = 2
l_itk = sitk.GetImageFromArray(l.astype(np.uint8)[None])
l_itk.SetSpacing(list(spacing)[::-1] + [999])
sitk.WriteImage(l_itk, anno_out)
def generate_disk(spacing, radius, dtype=int):
radius_in_voxels = np.round(radius / np.array(spacing)).astype(int)
n = 2 * radius_in_voxels + 1
disk_iso = disk(max(n) * 2, dtype=np.float64)
disk_resampled = resize(disk_iso, n, 1, 'constant', 0, clip=True, anti_aliasing=False, preserve_range=True)
disk_resampled[disk_resampled > 0.5] = 1
disk_resampled[disk_resampled <= 0.5] = 0
return disk_resampled.astype(dtype)
def generate_border_as_suggested_by_twollmann_2d(label_img: np.ndarray, spacing,
border_thickness: float = 2) -> np.ndarray:
border = np.zeros_like(label_img)
selem = generate_disk(spacing, border_thickness)
for l in np.unique(label_img):
if l == 0: continue
mask = (label_img == l).astype(int)
eroded = erosion(mask, selem)
border[(eroded == 0) & (mask != 0)] = 1
return border
def convert_to_instance_seg(arr: np.ndarray, spacing: tuple = (0.125, 0.125), small_center_threshold: int = 30,
isolated_border_as_separate_instance_threshold=15):
from skimage.morphology import label, dilation
# we first identify centers that are too small and set them to be border. This should remove false positive instances
objects = label((arr == 1).astype(int))
for o in np.unique(objects):
if o > 0 and np.sum(objects == o) <= small_center_threshold:
arr[objects == o] = 2
# 1 is core, 2 is border
objects = label((arr == 1).astype(int))
final = np.copy(objects)
remaining_border = arr == 2
current = np.copy(objects)
dilated_mm = np.array((0, 0))
spacing = np.array(spacing)
while np.sum(remaining_border) > 0:
strel_size = [0, 0]
maximum_dilation = max(dilated_mm)
for i in range(2):
if spacing[i] == min(spacing):
strel_size[i] = 1
continue
if dilated_mm[i] + spacing[i] / 2 < maximum_dilation:
strel_size[i] = 1
ball_here = disk(1)
if strel_size[0] == 0: ball_here = ball_here[1:2]
if strel_size[1] == 0: ball_here = ball_here[:, 1:2]
#print(1)
dilated = dilation(current, ball_here)
diff = (current == 0) & (dilated != current)
final[diff & remaining_border] = dilated[diff & remaining_border]
remaining_border[diff] = 0
current = dilated
dilated_mm = [dilated_mm[i] + spacing[i] if strel_size[i] == 1 else dilated_mm[i] for i in range(2)]
# what can happen is that a cell is so small that the network only predicted border and no core. This cell will be
# fused with the nearest other instance, which we don't want. Therefore we identify isolated border predictions and
# give them a separate instance id
# we identify isolated border predictions by checking each foreground object in arr and see whether this object
# also contains label 1
max_label = np.max(final)
foreground_objects = label((arr != 0).astype(int))
for i in np.unique(foreground_objects):
if i > 0 and (1 not in np.unique(arr[foreground_objects==i])):
size_of_object = np.sum(foreground_objects==i)
if size_of_object >= isolated_border_as_separate_instance_threshold:
final[foreground_objects == i] = max_label + 1
max_label += 1
#print('yeah boi')
return final.astype(np.uint32)
def load_convert_to_instance_save(file_in: str, file_out: str, spacing):
img = sitk.ReadImage(file_in)
img_npy = sitk.GetArrayFromImage(img)
out = convert_to_instance_seg(img_npy[0], spacing)[None]
out_itk = sitk.GetImageFromArray(out.astype(np.int16))
out_itk.CopyInformation(img)
sitk.WriteImage(out_itk, file_out)
def convert_folder_to_instanceseg(folder_in: str, folder_out: str, spacing, processes: int = 12):
input_files = subfiles(folder_in, suffix=".nii.gz", join=False)
maybe_mkdir_p(folder_out)
output_files = [join(folder_out, i) for i in input_files]
input_files = [join(folder_in, i) for i in input_files]
p = Pool(processes)
r = []
for i, o in zip(input_files, output_files):
r.append(
p.starmap_async(
load_convert_to_instance_save,
((i, o, spacing),)
)
)
_ = [i.get() for i in r]
p.close()
p.join()
def convert_to_tiff(nifti_image: str, output_name: str):
npy = sitk.GetArrayFromImage(sitk.ReadImage(nifti_image))
imsave(output_name, npy[0].astype(np.uint16), compress=6)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--source_train")
parser.add_argument("--source_test")
args = parser.parse_args()
source_train = args.source_train
source_test = args.source_test
# source_train = "/home/fabian/Downloads/Fluo-N2DH-SIM+_train"
# source_test = "/home/fabian/Downloads/Fluo-N2DH-SIM+_test"
spacing = (0.125, 0.125)
# adding the time information is a hassle, bear with us. We first create a dummy task under id 999, then copy it and finally put the time information in
border_thickness = 0.7
p = Pool(16)
# now add the time information and make this a real task
task_id = 89
additional_time_steps = 4
task_name = 'Fluo-N2DH-SIM_thickborder_time'
foldername = 'Task%03.0d_' % task_id + task_name
out_base = join(nnUNet_raw_data, foldername)
imagestr = join(out_base, "imagesTr")
imagests = join(out_base, "imagesTs")
labelstr = join(out_base, "labelsTr")
maybe_mkdir_p(imagestr)
maybe_mkdir_p(imagests)
maybe_mkdir_p(labelstr)
train_patient_names = []
test_patient_names = []
res = []
for train_sequence in ['01', '02']:
train_cases = subfiles(join(source_train, train_sequence), suffix=".tif", join=False)
for t in train_cases:
casename = train_sequence + "_" + t[:-4]
img_file = join(source_train, train_sequence, t)
lab_file = join(source_train, train_sequence + "_GT", "SEG", "man_seg" + t[1:])
img_out_base = join(imagestr, casename)
anno_out = join(labelstr, casename + ".nii.gz")
res.append(
p.starmap_async(load_bmp_convert_to_nifti_borders_2d,
((img_file, lab_file, img_out_base, anno_out, spacing, border_thickness),)))
train_patient_names.append(casename)
for test_sequence in ['01', '02']:
test_cases = subfiles(join(source_test, test_sequence), suffix=".tif", join=False)
for t in test_cases:
casename = test_sequence + "_" + t[:-4]
img_file = join(source_test, test_sequence, t)
lab_file = None
img_out_base = join(imagests, casename)
anno_out = None
res.append(
p.starmap_async(load_bmp_convert_to_nifti_borders_2d,
((img_file, lab_file, img_out_base, anno_out, spacing, border_thickness),)))
test_patient_names.append(casename)
_ = [i.get() for i in res]
p.close()
p.join()
# generate dataset.json
json_dict = {}
json_dict['name'] = task_name
json_dict['description'] = ""
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = ""
json_dict['licence'] = ""
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "BF",
}
json_dict['labels'] = {
"0": "background",
"1": "cell",
"2": "border",
}
json_dict['numTraining'] = len(train_patient_names)
json_dict['numTest'] = len(test_patient_names)
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
train_patient_names]
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i for i in test_patient_names]
save_json(json_dict, os.path.join(out_base, "dataset.json"))
# now add additional time information
for fld in ['imagesTr', 'imagesTs']:
curr = join(out_base, fld)
for seq in ['01', '02']:
images = subfiles(curr, prefix=seq, join=False)
for i in images:
current_timestep = int(i.split('_')[1][1:])
renamed = join(curr, i.replace("_0000", "_%04.0d" % additional_time_steps))
shutil.move(join(curr, i), renamed)
for previous_timestep in range(-additional_time_steps, 0):
# previous time steps will already have been processed and renamed!
expected_filename = join(curr, seq + "_t%03.0d" % (
current_timestep + previous_timestep) + "_%04.0d" % additional_time_steps + ".nii.gz")
if not isfile(expected_filename):
# create empty image
img = sitk.ReadImage(renamed)
empty = sitk.GetImageFromArray(np.zeros_like(sitk.GetArrayFromImage(img)))
empty.CopyInformation(img)
sitk.WriteImage(empty, join(curr, i.replace("_0000", "_%04.0d" % (
additional_time_steps + previous_timestep))))
else:
shutil.copy(expected_filename, join(curr, i.replace("_0000", "_%04.0d" % (
additional_time_steps + previous_timestep))))
dataset = load_json(join(out_base, 'dataset.json'))
dataset['modality'] = {
'0': 't_minus 4',
'1': 't_minus 3',
'2': 't_minus 2',
'3': 't_minus 1',
'4': 'frame of interest',
}
save_json(dataset, join(out_base, 'dataset.json'))
# we do not need custom splits since we train on all training cases
# test set predictions are converted to instance seg with convert_folder_to_instanceseg
# convert_folder_to_instanceseg('/home/fabian/temp/OUTPUT_DIRECTORY_2D', '/home/fabian/temp/OUTPUT_DIRECTORY_2D_instance',
# spacing, 12)
# test set predictions are converted to tiff with convert_to_tiff
# input_files = nifti_files('/home/fabian/temp/OUTPUT_DIRECTORY_2D_instance', join=False)
# output_folder = '/home/fabian/temp/OUTPUT_DIRECTORY_2D_instance_tiff'
# maybe_mkdir_p(output_folder)
# output_files = [join(output_folder, i[:-7] + '.tif') for i in input_files]
# input_files = [join('/home/fabian/temp/OUTPUT_DIRECTORY_2D_instance', i) for i in input_files]
# for i, o in zip(input_files, output_files):
# convert_to_tiff(i, o)