forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask082_BraTS_2020.py
751 lines (646 loc) · 32.7 KB
/
Task082_BraTS_2020.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from collections import OrderedDict
from copy import deepcopy
from multiprocessing.pool import Pool
from typing import Tuple
import SimpleITK as sitk
import numpy as np
import scipy.stats as ss
from batchgenerators.utilities.file_and_folder_operations import *
from medpy.metric import dc, hd95
from nnunet.dataset_conversion.Task032_BraTS_2018 import convert_labels_back_to_BraTS_2018_2019_convention
from nnunet.dataset_conversion.Task043_BraTS_2019 import copy_BraTS_segmentation_and_convert_labels
from nnunet.evaluation.region_based_evaluation import get_brats_regions, evaluate_regions
from nnunet.paths import nnUNet_raw_data
from nnunet.postprocessing.consolidate_postprocessing import collect_cv_niftis
def apply_brats_threshold(fname, out_dir, threshold, replace_with):
img_itk = sitk.ReadImage(fname)
img_npy = sitk.GetArrayFromImage(img_itk)
s = np.sum(img_npy == 3)
if s < threshold:
# print(s, fname)
img_npy[img_npy == 3] = replace_with
img_itk_postprocessed = sitk.GetImageFromArray(img_npy)
img_itk_postprocessed.CopyInformation(img_itk)
sitk.WriteImage(img_itk_postprocessed, join(out_dir, fname.split("/")[-1]))
def load_niftis_threshold_compute_dice(gt_file, pred_file, thresholds: Tuple[list, tuple]):
gt = sitk.GetArrayFromImage(sitk.ReadImage(gt_file))
pred = sitk.GetArrayFromImage(sitk.ReadImage(pred_file))
mask_pred = pred == 3
mask_gt = gt == 3
num_pred = np.sum(mask_pred)
num_gt = np.sum(mask_gt)
dice = dc(mask_pred, mask_gt)
res_dice = {}
res_was_smaller = {}
for t in thresholds:
was_smaller = False
if num_pred < t:
was_smaller = True
if num_gt == 0:
dice_here = 1.
else:
dice_here = 0.
else:
dice_here = deepcopy(dice)
res_dice[t] = dice_here
res_was_smaller[t] = was_smaller
return res_was_smaller, res_dice
def apply_threshold_to_folder(folder_in, folder_out, threshold, replace_with, processes=24):
maybe_mkdir_p(folder_out)
niftis = subfiles(folder_in, suffix='.nii.gz', join=True)
p = Pool(processes)
p.starmap(apply_brats_threshold, zip(niftis, [folder_out]*len(niftis), [threshold]*len(niftis), [replace_with] * len(niftis)))
p.close()
p.join()
def determine_brats_postprocessing(folder_with_preds, folder_with_gt, postprocessed_output_dir, processes=8,
thresholds=(0, 10, 50, 100, 200, 500, 750, 1000, 1500, 2500, 10000), replace_with=2):
# find pairs
nifti_gt = subfiles(folder_with_gt, suffix=".nii.gz", sort=True)
p = Pool(processes)
nifti_pred = subfiles(folder_with_preds, suffix='.nii.gz', sort=True)
results = p.starmap_async(load_niftis_threshold_compute_dice, zip(nifti_gt, nifti_pred, [thresholds] * len(nifti_pred)))
results = results.get()
all_dc_per_threshold = {}
for t in thresholds:
all_dc_per_threshold[t] = np.array([i[1][t] for i in results])
print(t, np.mean(all_dc_per_threshold[t]))
means = [np.mean(all_dc_per_threshold[t]) for t in thresholds]
best_threshold = thresholds[np.argmax(means)]
print('best', best_threshold, means[np.argmax(means)])
maybe_mkdir_p(postprocessed_output_dir)
p.starmap(apply_brats_threshold, zip(nifti_pred, [postprocessed_output_dir]*len(nifti_pred), [best_threshold]*len(nifti_pred), [replace_with] * len(nifti_pred)))
p.close()
p.join()
save_pickle((thresholds, means, best_threshold, all_dc_per_threshold), join(postprocessed_output_dir, "threshold.pkl"))
def collect_and_prepare(base_dir, num_processes = 12, clean=False):
"""
collect all cv_niftis, compute brats metrics, compute enh tumor thresholds and summarize in csv
:param base_dir:
:return:
"""
out = join(base_dir, 'cv_results')
out_pp = join(base_dir, 'cv_results_pp')
experiments = subfolders(base_dir, join=False, prefix='nnUNetTrainer')
regions = get_brats_regions()
gt_dir = join(base_dir, 'gt_niftis')
replace_with = 2
failed = []
successful = []
for e in experiments:
print(e)
try:
o = join(out, e)
o_p = join(out_pp, e)
maybe_mkdir_p(o)
maybe_mkdir_p(o_p)
collect_cv_niftis(join(base_dir, e), o)
if clean or not isfile(join(o, 'summary.csv')):
evaluate_regions(o, gt_dir, regions, num_processes)
if clean or not isfile(join(o_p, 'threshold.pkl')):
determine_brats_postprocessing(o, gt_dir, o_p, num_processes, thresholds=list(np.arange(0, 760, 10)), replace_with=replace_with)
if clean or not isfile(join(o_p, 'summary.csv')):
evaluate_regions(o_p, gt_dir, regions, num_processes)
successful.append(e)
except Exception as ex:
print("\nERROR\n", e, ex, "\n")
failed.append(e)
# we are interested in the mean (nan is 1) column
with open(join(base_dir, 'cv_summary.csv'), 'w') as f:
f.write('name,whole,core,enh,mean\n')
for e in successful:
expected_nopp = join(out, e, 'summary.csv')
expected_pp = join(out, out_pp, e, 'summary.csv')
if isfile(expected_nopp):
res = np.loadtxt(expected_nopp, dtype=str, skiprows=0, delimiter=',')[-2]
as_numeric = [float(i) for i in res[1:]]
f.write(e + '_noPP,')
f.write("%0.4f," % as_numeric[0])
f.write("%0.4f," % as_numeric[1])
f.write("%0.4f," % as_numeric[2])
f.write("%0.4f\n" % np.mean(as_numeric))
if isfile(expected_pp):
res = np.loadtxt(expected_pp, dtype=str, skiprows=0, delimiter=',')[-2]
as_numeric = [float(i) for i in res[1:]]
f.write(e + '_PP,')
f.write("%0.4f," % as_numeric[0])
f.write("%0.4f," % as_numeric[1])
f.write("%0.4f," % as_numeric[2])
f.write("%0.4f\n" % np.mean(as_numeric))
# this just crawls the folders and evaluates what it finds
with open(join(base_dir, 'cv_summary2.csv'), 'w') as f:
for folder in ['cv_results', 'cv_results_pp']:
for ex in subdirs(join(base_dir, folder), join=False):
print(folder, ex)
expected = join(base_dir, folder, ex, 'summary.csv')
if clean or not isfile(expected):
evaluate_regions(join(base_dir, folder, ex), gt_dir, regions, num_processes)
if isfile(expected):
res = np.loadtxt(expected, dtype=str, skiprows=0, delimiter=',')[-2]
as_numeric = [float(i) for i in res[1:]]
f.write('%s__%s,' % (folder, ex))
f.write("%0.4f," % as_numeric[0])
f.write("%0.4f," % as_numeric[1])
f.write("%0.4f," % as_numeric[2])
f.write("%0.4f\n" % np.mean(as_numeric))
f.write('name,whole,core,enh,mean\n')
for e in successful:
expected_nopp = join(out, e, 'summary.csv')
expected_pp = join(out, out_pp, e, 'summary.csv')
if isfile(expected_nopp):
res = np.loadtxt(expected_nopp, dtype=str, skiprows=0, delimiter=',')[-2]
as_numeric = [float(i) for i in res[1:]]
f.write(e + '_noPP,')
f.write("%0.4f," % as_numeric[0])
f.write("%0.4f," % as_numeric[1])
f.write("%0.4f," % as_numeric[2])
f.write("%0.4f\n" % np.mean(as_numeric))
if isfile(expected_pp):
res = np.loadtxt(expected_pp, dtype=str, skiprows=0, delimiter=',')[-2]
as_numeric = [float(i) for i in res[1:]]
f.write(e + '_PP,')
f.write("%0.4f," % as_numeric[0])
f.write("%0.4f," % as_numeric[1])
f.write("%0.4f," % as_numeric[2])
f.write("%0.4f\n" % np.mean(as_numeric))
# apply threshold to val set
expected_num_cases = 125
missing_valset = []
has_val_pred = []
for e in successful:
if isdir(join(base_dir, 'predVal', e)):
currdir = join(base_dir, 'predVal', e)
files = subfiles(currdir, suffix='.nii.gz', join=False)
if len(files) != expected_num_cases:
print(e, 'prediction not done, found %d files, expected %s' % (len(files), expected_num_cases))
continue
output_folder = join(base_dir, 'predVal_PP', e)
maybe_mkdir_p(output_folder)
threshold = load_pickle(join(out_pp, e, 'threshold.pkl'))[2]
if threshold > 1000: threshold = 750 # don't make it too big!
apply_threshold_to_folder(currdir, output_folder, threshold, replace_with, num_processes)
has_val_pred.append(e)
else:
print(e, 'has no valset predictions')
missing_valset.append(e)
# 'nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5_15fold' needs special treatment
e = 'nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5'
currdir = join(base_dir, 'predVal', 'nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5_15fold')
output_folder = join(base_dir, 'predVal_PP', 'nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5_15fold')
maybe_mkdir_p(output_folder)
threshold = load_pickle(join(out_pp, e, 'threshold.pkl'))[2]
if threshold > 1000: threshold = 750 # don't make it too big!
apply_threshold_to_folder(currdir, output_folder, threshold, replace_with, num_processes)
# 'nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5_15fold' needs special treatment
e = 'nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5'
currdir = join(base_dir, 'predVal', 'nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold')
output_folder = join(base_dir, 'predVal_PP', 'nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold')
maybe_mkdir_p(output_folder)
threshold = load_pickle(join(out_pp, e, 'threshold.pkl'))[2]
if threshold > 1000: threshold = 750 # don't make it too big!
apply_threshold_to_folder(currdir, output_folder, threshold, replace_with, num_processes)
# convert val set to brats labels for submission
output_converted = join(base_dir, 'converted_valSet')
for source in ['predVal', 'predVal_PP']:
for e in has_val_pred + ['nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5_15fold', 'nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold']:
expected_source_folder = join(base_dir, source, e)
if not isdir(expected_source_folder):
print(e, 'has no', source)
raise RuntimeError()
files = subfiles(expected_source_folder, suffix='.nii.gz', join=False)
if len(files) != expected_num_cases:
print(e, 'prediction not done, found %d files, expected %s' % (len(files), expected_num_cases))
continue
target_folder = join(output_converted, source, e)
maybe_mkdir_p(target_folder)
convert_labels_back_to_BraTS_2018_2019_convention(expected_source_folder, target_folder)
summarize_validation_set_predictions(output_converted)
def summarize_validation_set_predictions(base):
with open(join(base, 'summary.csv'), 'w') as f:
f.write('name,whole,core,enh,mean,whole,core,enh,mean\n')
for subf in subfolders(base, join=False):
for e in subfolders(join(base, subf), join=False):
expected = join(base, subf, e, 'Stats_Validation_final.csv')
if not isfile(expected):
print(subf, e, 'has missing csv')
continue
a = np.loadtxt(expected, delimiter=',', dtype=str)
assert a.shape[0] == 131, 'did not evaluate all 125 cases!'
selected_row = a[-5]
values = [float(i) for i in selected_row[1:4]]
f.write(e + "_" + subf + ',')
f.write("%0.4f," % values[1])
f.write("%0.4f," % values[2])
f.write("%0.4f," % values[0])
f.write("%0.4f," % np.mean(values))
values = [float(i) for i in selected_row[-3:]]
f.write("%0.4f," % values[1])
f.write("%0.4f," % values[2])
f.write("%0.4f," % values[0])
f.write("%0.4f\n" % np.mean(values))
def compute_BraTS_dice(ref, pred):
"""
ref and gt are binary integer numpy.ndarray s
:param ref:
:param gt:
:return:
"""
num_ref = np.sum(ref)
num_pred = np.sum(pred)
if num_ref == 0:
if num_pred == 0:
return 1
else:
return 0
else:
return dc(pred, ref)
def convert_all_to_BraTS(input_folder, output_folder, expected_num_cases=125):
for s in subdirs(input_folder, join=False):
nii = subfiles(join(input_folder, s), suffix='.nii.gz', join=False)
if len(nii) != expected_num_cases:
print(s)
else:
target_dir = join(output_folder, s)
convert_labels_back_to_BraTS_2018_2019_convention(join(input_folder, s), target_dir, num_processes=6)
def compute_BraTS_HD95(ref, pred):
"""
ref and gt are binary integer numpy.ndarray s
spacing is assumed to be (1, 1, 1)
:param ref:
:param pred:
:return:
"""
num_ref = np.sum(ref)
num_pred = np.sum(pred)
if num_ref == 0:
if num_pred == 0:
return 0
else:
return 373.12866
elif num_pred == 0 and num_ref != 0:
return 373.12866
else:
return hd95(pred, ref, (1, 1, 1))
def evaluate_BraTS_case(arr: np.ndarray, arr_gt: np.ndarray):
"""
attempting to reimplement the brats evaluation scheme
assumes edema=1, non_enh=2, enh=3
:param arr:
:param arr_gt:
:return:
"""
# whole tumor
mask_gt = (arr_gt != 0).astype(int)
mask_pred = (arr != 0).astype(int)
dc_whole = compute_BraTS_dice(mask_gt, mask_pred)
hd95_whole = compute_BraTS_HD95(mask_gt, mask_pred)
del mask_gt, mask_pred
# tumor core
mask_gt = (arr_gt > 1).astype(int)
mask_pred = (arr > 1).astype(int)
dc_core = compute_BraTS_dice(mask_gt, mask_pred)
hd95_core = compute_BraTS_HD95(mask_gt, mask_pred)
del mask_gt, mask_pred
# enhancing
mask_gt = (arr_gt == 3).astype(int)
mask_pred = (arr == 3).astype(int)
dc_enh = compute_BraTS_dice(mask_gt, mask_pred)
hd95_enh = compute_BraTS_HD95(mask_gt, mask_pred)
del mask_gt, mask_pred
return dc_whole, dc_core, dc_enh, hd95_whole, hd95_core, hd95_enh
def load_evaluate(filename_gt: str, filename_pred: str):
arr_pred = sitk.GetArrayFromImage(sitk.ReadImage(filename_pred))
arr_gt = sitk.GetArrayFromImage(sitk.ReadImage(filename_gt))
return evaluate_BraTS_case(arr_pred, arr_gt)
def evaluate_BraTS_folder(folder_pred, folder_gt, num_processes: int = 24, strict=False):
nii_pred = subfiles(folder_pred, suffix='.nii.gz', join=False)
if len(nii_pred) == 0:
return
nii_gt = subfiles(folder_gt, suffix='.nii.gz', join=False)
assert all([i in nii_gt for i in nii_pred]), 'not all predicted niftis have a reference file!'
if strict:
assert all([i in nii_pred for i in nii_gt]), 'not all gt niftis have a predicted file!'
p = Pool(num_processes)
nii_pred_fullpath = [join(folder_pred, i) for i in nii_pred]
nii_gt_fullpath = [join(folder_gt, i) for i in nii_pred]
results = p.starmap(load_evaluate, zip(nii_gt_fullpath, nii_pred_fullpath))
# now write to output file
with open(join(folder_pred, 'results.csv'), 'w') as f:
f.write("name,dc_whole,dc_core,dc_enh,hd95_whole,hd95_core,hd95_enh\n")
for fname, r in zip(nii_pred, results):
f.write(fname)
f.write(",%0.4f,%0.4f,%0.4f,%3.3f,%3.3f,%3.3f\n" % r)
def load_csv_for_ranking(csv_file: str):
res = np.loadtxt(csv_file, dtype='str', delimiter=',')
scores = res[1:, [1, 2, 3, -3, -2, -1]].astype(float)
scores[:, -3:] *= -1
scores[:, -3:] += 373.129
assert np.all(scores <= 373.129)
assert np.all(scores >= 0)
return scores
def rank_algorithms(data:np.ndarray):
"""
data is (metrics x experiments x cases)
:param data:
:return:
"""
num_metrics, num_experiments, num_cases = data.shape
ranks = np.zeros((num_metrics, num_experiments))
for m in range(6):
r = np.apply_along_axis(ss.rankdata, 0, -data[m], 'min')
ranks[m] = r.mean(1)
average_rank = np.mean(ranks, 0)
final_ranks = ss.rankdata(average_rank, 'min')
return final_ranks, average_rank, ranks
def score_and_postprocess_model_based_on_rank_then_aggregate():
"""
Similarly to BraTS 2017 - BraTS 2019, each participant will be ranked for each of the X test cases. Each case
includes 3 regions of evaluation, and the metrics used to produce the rankings will be the Dice Similarity
Coefficient and the 95% Hausdorff distance. Thus, for X number of cases included in the BraTS 2020, each
participant ends up having X*3*2 rankings. The final ranking score is the average of all these rankings normalized
by the number of teams.
https://zenodo.org/record/3718904
-> let's optimize for this.
Important: the outcome very much depends on the competing models. We need some references. We only got our own,
so let's hope this still works
:return:
"""
base = "/media/fabian/Results/nnUNet/3d_fullres/Task082_BraTS2020"
replace_with = 2
num_processes = 24
expected_num_cases_val = 125
# use a separate output folder from the previous experiments to ensure we are not messing things up
output_base_here = join(base, 'use_brats_ranking')
maybe_mkdir_p(output_base_here)
# collect cv niftis and compute metrics with evaluate_BraTS_folder to ensure we work with the same metrics as brats
out = join(output_base_here, 'cv_results')
experiments = subfolders(base, join=False, prefix='nnUNetTrainer')
gt_dir = join(base, 'gt_niftis')
experiments_with_full_cv = []
for e in experiments:
print(e)
o = join(out, e)
maybe_mkdir_p(o)
try:
collect_cv_niftis(join(base, e), o)
if not isfile(join(o, 'results.csv')):
evaluate_BraTS_folder(o, gt_dir, num_processes, strict=True)
experiments_with_full_cv.append(e)
except Exception as ex:
print("\nERROR\n", e, ex, "\n")
if isfile(join(o, 'results.csv')):
os.remove(join(o, 'results.csv'))
# rank the non-postprocessed models
tmp = np.loadtxt(join(out, experiments_with_full_cv[0], 'results.csv'), dtype='str', delimiter=',')
num_cases = len(tmp) - 1
data_for_ranking = np.zeros((6, len(experiments_with_full_cv), num_cases))
for i, e in enumerate(experiments_with_full_cv):
scores = load_csv_for_ranking(join(out, e, 'results.csv'))
for metric in range(6):
data_for_ranking[metric, i] = scores[:, metric]
final_ranks, average_rank, ranks = rank_algorithms(data_for_ranking)
for t in np.argsort(final_ranks):
print(final_ranks[t], average_rank[t], experiments_with_full_cv[t])
# for each model, create output directories with different thresholds. evaluate ALL OF THEM (might take a while lol)
thresholds = np.arange(25, 751, 25)
output_pp_tmp = join(output_base_here, 'cv_determine_pp_thresholds')
for e in experiments_with_full_cv:
input_folder = join(out, e)
for t in thresholds:
output_directory = join(output_pp_tmp, e, str(t))
maybe_mkdir_p(output_directory)
if not isfile(join(output_directory, 'results.csv')):
apply_threshold_to_folder(input_folder, output_directory, t, replace_with, processes=16)
evaluate_BraTS_folder(output_directory, gt_dir, num_processes)
# load ALL the results!
results = []
experiment_names = []
for e in experiments_with_full_cv:
for t in thresholds:
output_directory = join(output_pp_tmp, e, str(t))
expected_file = join(output_directory, 'results.csv')
if not isfile(expected_file):
print(e, 'does not have a results file for threshold', t)
continue
results.append(load_csv_for_ranking(expected_file))
experiment_names.append("%s___%d" % (e, t))
all_results = np.concatenate([i[None] for i in results], 0).transpose((2, 0, 1))
# concatenate with non postprocessed models
all_results = np.concatenate((data_for_ranking, all_results), 1)
experiment_names += experiments_with_full_cv
final_ranks, average_rank, ranks = rank_algorithms(all_results)
for t in np.argsort(final_ranks):
print(final_ranks[t], average_rank[t], experiment_names[t])
# for each model, print the non postprocessed model as well as the best postprocessed model. If there are
# validation set predictions, apply the best threshold to the validation set
pred_val_base = join(base, 'predVal_PP_rank')
has_val_pred = []
for e in experiments_with_full_cv:
rank_nonpp = final_ranks[experiment_names.index(e)]
avg_rank_nonpp = average_rank[experiment_names.index(e)]
print(e, avg_rank_nonpp, rank_nonpp)
predicted_val = join(base, 'predVal', e)
pp_models = [j for j, i in enumerate(experiment_names) if i.split("___")[0] == e and i != e]
if len(pp_models) > 0:
ranks = [final_ranks[i] for i in pp_models]
best_idx = np.argmin(ranks)
best = experiment_names[pp_models[best_idx]]
best_avg_rank = average_rank[pp_models[best_idx]]
print(best, best_avg_rank, min(ranks))
print('')
# apply threshold to validation set
best_threshold = int(best.split('___')[-1])
if not isdir(predicted_val):
print(e, 'has not valset predictions')
else:
files = subfiles(predicted_val, suffix='.nii.gz')
if len(files) != expected_num_cases_val:
print(e, 'has missing val cases. found: %d expected: %d' % (len(files), expected_num_cases_val))
else:
apply_threshold_to_folder(predicted_val, join(pred_val_base, e), best_threshold, replace_with, num_processes)
has_val_pred.append(e)
else:
print(e, 'not found in ranking')
# apply nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5 to nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5_15fold
e = 'nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5'
pp_models = [j for j, i in enumerate(experiment_names) if i.split("___")[0] == e and i != e]
ranks = [final_ranks[i] for i in pp_models]
best_idx = np.argmin(ranks)
best = experiment_names[pp_models[best_idx]]
best_avg_rank = average_rank[pp_models[best_idx]]
best_threshold = int(best.split('___')[-1])
predicted_val = join(base, 'predVal', 'nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5_15fold')
apply_threshold_to_folder(predicted_val, join(pred_val_base, 'nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5_15fold'), best_threshold, replace_with, num_processes)
has_val_pred.append('nnUNetTrainerV2BraTSRegions_DA3_BN__nnUNetPlansv2.1_bs5_15fold')
# apply nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5 to nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold
e = 'nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5'
pp_models = [j for j, i in enumerate(experiment_names) if i.split("___")[0] == e and i != e]
ranks = [final_ranks[i] for i in pp_models]
best_idx = np.argmin(ranks)
best = experiment_names[pp_models[best_idx]]
best_avg_rank = average_rank[pp_models[best_idx]]
best_threshold = int(best.split('___')[-1])
predicted_val = join(base, 'predVal', 'nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold')
apply_threshold_to_folder(predicted_val, join(pred_val_base, 'nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold'), best_threshold, replace_with, num_processes)
has_val_pred.append('nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold')
# convert valsets
output_converted = join(base, 'converted_valSet')
for e in has_val_pred:
expected_source_folder = join(base, 'predVal_PP_rank', e)
if not isdir(expected_source_folder):
print(e, 'has no predVal_PP_rank')
raise RuntimeError()
files = subfiles(expected_source_folder, suffix='.nii.gz', join=False)
if len(files) != expected_num_cases_val:
print(e, 'prediction not done, found %d files, expected %s' % (len(files), expected_num_cases_val))
continue
target_folder = join(output_converted, 'predVal_PP_rank', e)
maybe_mkdir_p(target_folder)
convert_labels_back_to_BraTS_2018_2019_convention(expected_source_folder, target_folder)
# now load all the csvs for the validation set (obtained from evaluation platform) and rank our models on the
# validation set
flds = subdirs(output_converted, join=False)
results_valset = []
names_valset = []
for f in flds:
curr = join(output_converted, f)
experiments = subdirs(curr, join=False)
for e in experiments:
currr = join(curr, e)
expected_file = join(currr, 'Stats_Validation_final.csv')
if not isfile(expected_file):
print(f, e, "has not been evaluated yet!")
else:
res = load_csv_for_ranking(expected_file)[:-5]
assert res.shape[0] == expected_num_cases_val
results_valset.append(res[None])
names_valset.append("%s___%s" % (f, e))
results_valset = np.concatenate(results_valset, 0) # experiments x cases x metrics
# convert to metrics x experiments x cases
results_valset = results_valset.transpose((2, 0, 1))
final_ranks, average_rank, ranks = rank_algorithms(results_valset)
for t in np.argsort(final_ranks):
print(final_ranks[t], average_rank[t], names_valset[t])
if __name__ == "__main__":
"""
THIS CODE IS A MESS. IT IS PROVIDED AS IS WITH NO GUARANTEES. YOU HAVE TO DIG THROUGH IT YOURSELF. GOOD LUCK ;-)
REMEMBER TO CONVERT LABELS BACK TO BRATS CONVENTION AFTER PREDICTION!
"""
task_name = "Task082_BraTS2020"
downloaded_data_dir = "/home/fabian/Downloads/MICCAI_BraTS2020_TrainingData"
downloaded_data_dir_val = "/home/fabian/Downloads/MICCAI_BraTS2020_ValidationData"
target_base = join(nnUNet_raw_data, task_name)
target_imagesTr = join(target_base, "imagesTr")
target_imagesVal = join(target_base, "imagesVal")
target_imagesTs = join(target_base, "imagesTs")
target_labelsTr = join(target_base, "labelsTr")
maybe_mkdir_p(target_imagesTr)
maybe_mkdir_p(target_imagesVal)
maybe_mkdir_p(target_imagesTs)
maybe_mkdir_p(target_labelsTr)
patient_names = []
cur = join(downloaded_data_dir)
for p in subdirs(cur, join=False):
patdir = join(cur, p)
patient_name = p
patient_names.append(patient_name)
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
seg = join(patdir, p + "_seg.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
isfile(seg)
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesTr, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesTr, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesTr, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesTr, patient_name + "_0003.nii.gz"))
copy_BraTS_segmentation_and_convert_labels(seg, join(target_labelsTr, patient_name + ".nii.gz"))
json_dict = OrderedDict()
json_dict['name'] = "BraTS2020"
json_dict['description'] = "nothing"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "see BraTS2020"
json_dict['licence'] = "see BraTS2020 license"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "T1",
"1": "T1ce",
"2": "T2",
"3": "FLAIR"
}
json_dict['labels'] = {
"0": "background",
"1": "edema",
"2": "non-enhancing",
"3": "enhancing",
}
json_dict['numTraining'] = len(patient_names)
json_dict['numTest'] = 0
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
patient_names]
json_dict['test'] = []
save_json(json_dict, join(target_base, "dataset.json"))
if downloaded_data_dir_val is not None:
for p in subdirs(downloaded_data_dir_val, join=False):
patdir = join(downloaded_data_dir_val, p)
patient_name = p
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesVal, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesVal, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesVal, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesVal, patient_name + "_0003.nii.gz"))
downloaded_data_dir_test = "/home/fabian/Downloads/MICCAI_BraTS2020_TestingData"
if isdir(downloaded_data_dir_test):
for p in subdirs(downloaded_data_dir_test, join=False):
patdir = join(downloaded_data_dir_test, p)
patient_name = p
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesTs, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesTs, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesTs, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesTs, patient_name + "_0003.nii.gz"))
# test set
# nnUNet_ensemble -f nnUNetTrainerV2BraTSRegions_DA3_BN_BD__nnUNetPlansv2.1_bs5_5fold nnUNetTrainerV2BraTSRegions_DA4_BN_BD__nnUNetPlansv2.1_bs5_5fold nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold -o ensembled_nnUNetTrainerV2BraTSRegions_DA3_BN_BD__nnUNetPlansv2.1_bs5_5fold__nnUNetTrainerV2BraTSRegions_DA4_BN_BD__nnUNetPlansv2.1_bs5_5fold__nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold
# apply_threshold_to_folder('ensembled_nnUNetTrainerV2BraTSRegions_DA3_BN_BD__nnUNetPlansv2.1_bs5_5fold__nnUNetTrainerV2BraTSRegions_DA4_BN_BD__nnUNetPlansv2.1_bs5_5fold__nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold/', 'ensemble_PP200/', 200, 2)
# convert_labels_back_to_BraTS_2018_2019_convention('ensemble_PP200/', 'ensemble_PP200_converted')
# export for publication of weights
# nnUNet_export_model_to_zip -tr nnUNetTrainerV2BraTSRegions_DA4_BN -pl nnUNetPlansv2.1_bs5 -f 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -t 82 -o nnUNetTrainerV2BraTSRegions_DA4_BN__nnUNetPlansv2.1_bs5_15fold.zip --disable_strict
# nnUNet_export_model_to_zip -tr nnUNetTrainerV2BraTSRegions_DA3_BN_BD -pl nnUNetPlansv2.1_bs5 -f 0 1 2 3 4 -t 82 -o nnUNetTrainerV2BraTSRegions_DA3_BN_BD__nnUNetPlansv2.1_bs5_5fold.zip --disable_strict
# nnUNet_export_model_to_zip -tr nnUNetTrainerV2BraTSRegions_DA4_BN_BD -pl nnUNetPlansv2.1_bs5 -f 0 1 2 3 4 -t 82 -o nnUNetTrainerV2BraTSRegions_DA4_BN_BD__nnUNetPlansv2.1_bs5_5fold.zip --disable_strict