diff --git a/Week8-Projects/Markdowns/QBFinalProject_Moger-Reischer_Beidler.Rmd b/Week8-Projects/Markdowns/QBFinalProject_Moger-Reischer_Beidler.Rmd index 10bf463..9dfad5b 100644 --- a/Week8-Projects/Markdowns/QBFinalProject_Moger-Reischer_Beidler.Rmd +++ b/Week8-Projects/Markdowns/QBFinalProject_Moger-Reischer_Beidler.Rmd @@ -3,7 +3,7 @@ title: Effects of Soil Warming Plus Nitrogen Addition on Plant Richness and Dive at Harvard Forest author: "Roy Moger-Reischer and Katie Beidler, Quantitative Biodiversity, Indiana University" date: "`r format(Sys.time(), '%d %B, %Y')`" -output: pdf_document +output: html_document geometry: margin=2.54cm --- diff --git a/Week8-Projects/Markdowns/QBFinalProject_Moger-Reischer_Beidler.html b/Week8-Projects/Markdowns/QBFinalProject_Moger-Reischer_Beidler.html index b72388e..d09c138 100644 --- a/Week8-Projects/Markdowns/QBFinalProject_Moger-Reischer_Beidler.html +++ b/Week8-Projects/Markdowns/QBFinalProject_Moger-Reischer_Beidler.html @@ -20,7 +20,7 @@ - + @@ -1497,13 +1497,13 @@
Arend, M., Kuster, T., G?nthardt-Goerg, M.S. and Dobbertin, M., 2011. Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology, 31(3), pp.287-297.
+Arend, M., Kuster, T., Guenthardt-Goerg, M.S. and Dobbertin, M., 2011. Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology, 31(3), pp.287-297.
Bowden, R.D., Davidson, E., Savage, K., Arabia, C. and Steudler, P., 2004. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196(1), pp.43-56.
-Clark C.M., Tilman D., 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, pp.712â“715.
-Classen, A. T., M. K. Sundqvist, J. A. Henning, G. S. Newman, J. A. M. Moore, M. A. Cregger, L. C. Moorhead, and C. M. Patterson. 2015. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?, Ecosphere 6(8), pp 130.
+Clark C.M., Tilman D., 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, pp.712-715.
+Classen, A. T., M. K. Sundqvist, J. A. Henning, G. S. Newman, J. A. M. Moore, M. A. Cregger, L. C. Moorhead, and C. M. Patterson. 2015. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?, Ecosphere 6(8), 130.
Compant, S., Van der Heijden, M.and Sessitsch, A., 2013. Soil Warming Effects on Beneficial Plant-Microbe Interactions. Molecular Microbial Ecology of the Rhizosphere, 1, pp.1047-1054
-Davidson, E.A., and Janssens, I. A., 2006. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature, 440, pp.165-73.
-DeAngelis, K.M., Pold, G., Begüm, D., van Diepen, L.T., Varney, R.M., Blanchard, J.L., Melillo, J. and Frey, S.D., 2015. Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 6 (140).
+Davidson, E.A., and Janssens, I. A., 2006. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 440: 165-173.
+DeAngelis, K.M., Pold, G., Beguem, D., van Diepen, L.T., Varney, R.M., Blanchard, J.L., Melillo, J. and Frey, S.D., 2015. Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 6 (140).
Frey, S.D., Knorr, M., Parrent, J.L. and Simpson, R.T., 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196(1), pp.159-171.
Frey, Serita (2009): Soil warming plus nitrogen addition expermient at Harvard Forest since 2006. Long Term Ecological Research Network. [link]http://dx.doi.org/10.6073/pasta/08505f370bbcf98b7237434e41c78bc8
Gilliam F.S.and Roberts M.E., 2003. The herbaceous layer in forests of eastern North America. Oxford University Press, New York, USA.
@@ -1511,7 +1511,7 @@Johnson N.C., Wilson G.W.T., Wilson J.A., Miller R.M., and Bowker M.A. 2015. Mycorrhizal phenotypes and the law of the minimum. New Phytologist, 205(4), pp. 1473-1484.
Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H., and Bowles, F. P., et al. (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, pp. 2173-2176.
Ramirez, K.S., Craine, J.M. and Fierer, N., 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 18(6), pp.1918-1927
-Strengbom J.A., Nordin A., and Nasholm T. and Ericson L , 2001. Slow recovery of a boreal forest ecosystem following decreased nitrogen input. Functional Ecology, 15, pp.454â“457.
+Strengbom J.A., Nordin A., and Nasholm T. and Ericson L , 2001. Slow recovery of a boreal forest ecosystem following decreased nitrogen input. Functional Ecology, 15, pp.454-457.
Schindlbacher, A., Rodler, A., Kuffner, M., Kitzler, B., Sessitsch, A. and Zechmeister-Boltenstern, S., 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology and Biochemistry, 43(7), pp.1417-1425.
Thakur, M.P., Reich, P.B., Eddy, W.C., Stefanski, A., Rich, R., Hobbie, S.E. and Eisenhauer, N., 2014. Some plants like it warmer: Increased growth of three selected invasive plant species in soils with a history of experimental warming. Pedobiologia, 57(1), pp.57-60.
Xu, Z., Hu, T. and Zhang, Y., 2012. Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research, 131(3), pp.811-819.