-
Notifications
You must be signed in to change notification settings - Fork 0
/
OCR.cpp
executable file
·381 lines (305 loc) · 10.6 KB
/
OCR.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*****************************************************************************
* Number Plate Recognition using SVM and Neural Networks
******************************************************************************
* by Ronnie Leon Ochieng, 25th March 2024
******************************************************************************/
#include "OCR.h"
const char OCR::strCharacters[] = {'0','1','2','3','4','5','6','7','8','9','B', 'C', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'R', 'S', 'T', 'V', 'W', 'X', 'Y', 'Z'};
const int OCR::numCharacters=30;
CharSegment::CharSegment(){}
CharSegment::CharSegment(Mat i, Rect p){
img=i;
pos=p;
}
OCR::OCR(){
DEBUG=false;
trained=false;
saveSegments=false;
charSize=20;
}
OCR::OCR(string trainFile){
DEBUG=false;
trained=false;
saveSegments=false;
charSize=20;
//Read file storage.
FileStorage fs;
fs.open("OCR.xml", FileStorage::READ);
Mat TrainingData;
Mat Classes;
fs["TrainingDataF15"] >> TrainingData;
fs["classes"] >> Classes;
train(TrainingData, Classes, 10);
}
Mat OCR::preprocessChar(Mat in){
//Remap image
int h=in.rows;
int w=in.cols;
Mat transformMat=Mat::eye(2,3,CV_32F);
int m=max(w,h);
transformMat.at<float>(0,2)=m/2 - w/2;
transformMat.at<float>(1,2)=m/2 - h/2;
Mat warpImage(m,m, in.type());
warpAffine(in, warpImage, transformMat, warpImage.size(), INTER_LINEAR, BORDER_CONSTANT, Scalar(0) );
Mat out;
resize(warpImage, out, Size(charSize, charSize) );
return out;
}
bool OCR::verifySizes(Mat r){
//Char sizes 45x77
float aspect=45.0f/77.0f;
float charAspect= (float)r.cols/(float)r.rows;
float error=0.35;
float minHeight=15;
float maxHeight=28;
//We have a different aspect ratio for number 1, and it can be ~0.2
float minAspect=0.2;
float maxAspect=aspect+aspect*error;
//area of pixels
float area=countNonZero(r);
//bb area
float bbArea=r.cols*r.rows;
//% of pixel in area
float percPixels=area/bbArea;
if(DEBUG)
cout << "Aspect: "<< aspect << " ["<< minAspect << "," << maxAspect << "] " << "Area "<< percPixels <<" Char aspect " << charAspect << " Height char "<< r.rows << "\n";
if(percPixels < 0.8 && charAspect > minAspect && charAspect < maxAspect && r.rows >= minHeight && r.rows < maxHeight)
return true;
else
return false;
}
vector<CharSegment> OCR::segment(Plate plate){
Mat input=plate.plateImg;
vector<CharSegment> output;
//Threshold input image
Mat img_threshold;
threshold(input, img_threshold, 60, 255, cv::THRESH_BINARY_INV);
if(DEBUG)
imshow("Threshold plate", img_threshold);
Mat img_contours;
img_threshold.copyTo(img_contours);
//Find contours of possibles characters
vector< vector< Point> > contours;
findContours(img_contours,
contours, // a vector of contours
cv::RETR_EXTERNAL, // retrieve the external contours
cv::CHAIN_APPROX_NONE); // all pixels of each contours
// Draw blue contours on a white image
cv::Mat result;
img_threshold.copyTo(result);
cvtColor(result, result, cv::COLOR_GRAY2RGB);
cv::drawContours(result,contours,
-1, // draw all contours
cv::Scalar(255,0,0), // in blue
1); // with a thickness of 1
//Start to iterate to each contour founded
vector<vector<Point> >::iterator itc= contours.begin();
//Remove patch that are no inside limits of aspect ratio and area.
while (itc!=contours.end()) {
//Create bounding rect of object
Rect mr= boundingRect(Mat(*itc));
rectangle(result, mr, Scalar(0,255,0));
//Crop image
Mat auxRoi(img_threshold, mr);
if(verifySizes(auxRoi)){
auxRoi=preprocessChar(auxRoi);
output.push_back(CharSegment(auxRoi, mr));
rectangle(result, mr, Scalar(0,125,255));
}
++itc;
}
if(DEBUG)
cout << "Num chars: " << output.size() << "\n";
if(DEBUG)
imshow("SEgmented Chars", result);
return output;
}
Mat OCR::ProjectedHistogram(Mat img, int t)
{
int sz=(t)?img.rows:img.cols;
Mat mhist=Mat::zeros(1,sz,CV_32F);
for(int j=0; j<sz; j++){
Mat data=(t)?img.row(j):img.col(j);
mhist.at<float>(j)=countNonZero(data);
}
//Normalize histogram
double min, max;
minMaxLoc(mhist, &min, &max);
if(max>0)
mhist.convertTo(mhist,-1 , 1.0f/max, 0);
return mhist;
}
Mat OCR::getVisualHistogram(Mat *hist, int type)
{
int size=100;
Mat imHist;
if(type==HORIZONTAL){
imHist.create(Size(size,hist->cols), CV_8UC3);
}else{
imHist.create(Size(hist->cols, size), CV_8UC3);
}
imHist=Scalar(55,55,55);
for(int i=0;i<hist->cols;i++){
float value=hist->at<float>(i);
int maxval=(int)(value*size);
Point pt1;
Point pt2, pt3, pt4;
if(type==HORIZONTAL){
pt1.x=pt3.x=0;
pt2.x=pt4.x=maxval;
pt1.y=pt2.y=i;
pt3.y=pt4.y=i+1;
line(imHist, pt1, pt2, CV_RGB(220,220,220),1,8,0);
line(imHist, pt3, pt4, CV_RGB(34,34,34),1,8,0);
pt3.y=pt4.y=i+2;
line(imHist, pt3, pt4, CV_RGB(44,44,44),1,8,0);
pt3.y=pt4.y=i+3;
line(imHist, pt3, pt4, CV_RGB(50,50,50),1,8,0);
}else{
pt1.x=pt2.x=i;
pt3.x=pt4.x=i+1;
pt1.y=pt3.y=100;
pt2.y=pt4.y=100-maxval;
line(imHist, pt1, pt2, CV_RGB(220,220,220),1,8,0);
line(imHist, pt3, pt4, CV_RGB(34,34,34),1,8,0);
pt3.x=pt4.x=i+2;
line(imHist, pt3, pt4, CV_RGB(44,44,44),1,8,0);
pt3.x=pt4.x=i+3;
line(imHist, pt3, pt4, CV_RGB(50,50,50),1,8,0);
}
}
return imHist ;
}
void OCR::drawVisualFeatures(Mat character, Mat hhist, Mat vhist, Mat lowData){
Mat img(121, 121, CV_8UC3, Scalar(0,0,0));
Mat ch;
Mat ld;
cvtColor(character, ch, cv::COLOR_GRAY2RGB);
resize(lowData, ld, Size(100, 100), 0, 0, INTER_NEAREST );
// cvtColor(ld,ld,CV_GRAY2RGB);
cvtColor(ld, ld, cv::COLOR_GRAY2RGB);
Mat hh=getVisualHistogram(&hhist, HORIZONTAL);
Mat hv=getVisualHistogram(&vhist, VERTICAL);
Mat subImg=img(Rect(0,101,20,20));
ch.copyTo(subImg);
subImg=img(Rect(21,101,100,20));
hh.copyTo(subImg);
subImg=img(Rect(0,0,20,100));
hv.copyTo(subImg);
subImg=img(Rect(21,0,100,100));
ld.copyTo(subImg);
line(img, Point(0,100), Point(121,100), Scalar(0,0,255));
line(img, Point(20,0), Point(20,121), Scalar(0,0,255));
imshow("Visual Features", img);
cv::waitKey(0);
}
Mat OCR::features(Mat in, int sizeData){
//Histogram features
Mat vhist=ProjectedHistogram(in,VERTICAL);
Mat hhist=ProjectedHistogram(in,HORIZONTAL);
//Low data feature
Mat lowData;
resize(in, lowData, Size(sizeData, sizeData) );
if(DEBUG)
drawVisualFeatures(in, hhist, vhist, lowData);
//Last 10 is the number of moments components
int numCols=vhist.cols+hhist.cols+lowData.cols*lowData.cols;
Mat out=Mat::zeros(1,numCols,CV_32F);
//Asign values to feature
int j=0;
for(int i=0; i<vhist.cols; i++)
{
out.at<float>(j)=vhist.at<float>(i);
j++;
}
for(int i=0; i<hhist.cols; i++)
{
out.at<float>(j)=hhist.at<float>(i);
j++;
}
for(int x=0; x<lowData.cols; x++)
{
for(int y=0; y<lowData.rows; y++){
out.at<float>(j)=(float)lowData.at<unsigned char>(x,y);
j++;
}
}
if(DEBUG)
cout << out << "\n===========================================\n";
return out;
}
void OCR::train(Mat TrainData, Mat classes, int nlayers){
Mat layers(1,3,CV_32SC1);
layers.at<int>(0)= TrainData.cols;
layers.at<int>(1)= nlayers;
layers.at<int>(2)= numCharacters;
// ann->create(layers, cv::ml::ANN_MLP::SIGMOID_SYM, 1, 1);
ann = cv::ml::ANN_MLP::create();
ann->setLayerSizes(layers);
ann->setActivationFunction(cv::ml::ANN_MLP::SIGMOID_SYM, 1, 1);
//Prepare trainClases
//Create a mat with n trained data by m classes
Mat trainClasses;
trainClasses.create( TrainData.rows, numCharacters, CV_32FC1 );
for( int i = 0; i < trainClasses.rows; i++ )
{
for( int k = 0; k < trainClasses.cols; k++ )
{
//If class of data i is same than a k class
if( k == classes.at<int>(i) )
trainClasses.at<float>(i,k) = 1;
else
trainClasses.at<float>(i,k) = 0;
}
}
Mat weights( 1, TrainData.rows, CV_32FC1, Scalar::all(1) );
//Learn classifier
cv::Ptr<cv::ml::TrainData> tData = cv::ml::TrainData::create(TrainData, cv::ml::ROW_SAMPLE, trainClasses);
ann->train(tData);
trained=true;
}
int OCR::classify(Mat f){
int result=-1;
Mat output(1, numCharacters, CV_32FC1);
ann->predict(f, output);
Point maxLoc;
double maxVal;
minMaxLoc(output, 0, &maxVal, 0, &maxLoc);
//We need know where in output is the max val, the x (cols) is the class.
return maxLoc.x;
}
int OCR::classifyKnn(Mat f){
// int response = (int)knnClassifier->findNearest( f, K );
// return response;
cv::Mat results, neighborResponses, dists;
float response = knnClassifier->findNearest(f, K, results, neighborResponses, dists);
int responseInt = static_cast<int>(response);
return responseInt;
}
void OCR::trainKnn(Mat trainSamples, Mat trainClasses, int k){
K=k;
// learn classifier
// knnClassifier.train( trainSamples, trainClasses, Mat(), false, K );
cv::Ptr<cv::ml::TrainData> tData = cv::ml::TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainClasses);
knnClassifier->train(tData);
}
string OCR::run(Plate *input){
//Segment chars of plate
vector<CharSegment> segments=segment(*input);
for(int i=0; i<segments.size(); i++){
//Preprocess each char for all images have same sizes
Mat ch=preprocessChar(segments[i].img);
if(saveSegments){
stringstream ss(stringstream::in | stringstream::out);
ss << "tmpChars/" << filename << "_" << i << ".jpg";
imwrite(ss.str(),ch);
}
//For each segment Extract Features
Mat f=features(ch,15);
//For each segment feature Classify
int character=classify(f);
input->chars.push_back(strCharacters[character]);
input->charsPos.push_back(segments[i].pos);
}
return "-";//input->str();
}