-
Notifications
You must be signed in to change notification settings - Fork 0
/
test with mass.py
179 lines (135 loc) · 4.62 KB
/
test with mass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 22 11:42:59 2023
@author: Admin
"""
import pandas as pd
from profiley.nfw import TNFW, NFW
import matplotlib.pyplot as plt
from colossus.halo import concentration, profile_nfw
from colossus.cosmology import cosmology
import numpy as np
from astropy.table import Table
from scipy.interpolate import interp1d
from scipy.optimize import curve_fit
from subhalo_profile import make_profile
import math
bin='0609'
if bin=='0609':
lowlim=0.6
highlim=0.9
elif bin=='0306':
lowlim=0.3
highlim=0.6
elif bin=='0103':
lowlim=0.1
highlim=0.3
lenses = Table.read("./data/redmapper_mnc_allz.fits")
data_mask = (
(lenses["R"] >= lowlim)
& (lenses["R"] < highlim)
& (lenses["PMem"] > 0.8)
# & (lenses["zspec"] > -1)
)
lenses = lenses[data_mask]
z=np.mean(lenses['z_any'])
# z=np.mean(lenses['zspec'])
def summed_profile(r,mass,tau,A):
# def subhalo_profile(r,mass, A):
# print(mass)
# print(tau)
# print(z)
# print(A)
# tau=200
mass=math.pow(10, mass)
concentration_model="duffy08"
c=concentration.concentration(
M=mass, mdef="200m", z=z, model=concentration_model
)
# c=4.67*(mass/math.pow(10, 14))**(-0.11)
eta=2
tnfw = TNFW(mass, c, z, tau, eta)
profile=tnfw
# R = np.linspace(0.01, 1.5, 75)
dSigma=np.squeeze(tnfw.projected_excess(r))/1000000
# dSigma=nfw.projected_excess(R)
halo_table = np.genfromtxt(f'{bin}(Mh70).txt', delimiter='\t', usecols=(0, 1), dtype=float)
halo_r=halo_table[:,0]/1000
halo_ds=halo_table[:,1]
f = interp1d(halo_r, halo_ds, kind='cubic')
halo_dSigma=f(r)*A
summed_halo=np.add(dSigma,halo_dSigma)/1000000
return profile, summed_halo
def subhalo_profile(r,mass,tau,A):
# def subhalo_profile(r,mass, A):
# print(mass)
# print(tau)
# print(z)
# print(A)
# tau=200
mass=math.pow(10, mass)
concentration_model="duffy08"
c=concentration.concentration(
M=mass, mdef="200m", z=z, model=concentration_model
)
# c=4.67*(mass/math.pow(10, 14))**(-0.11)
eta=2
tnfw = TNFW(mass, c, z, tau, eta)
# R = np.linspace(0.01, 1.5, 75)
dSigma=np.squeeze(tnfw.projected_excess(r))/1000000
# dSigma=nfw.projected_excess(R)
halo_table = np.genfromtxt(f'{bin}(Mh70).txt', delimiter='\t', usecols=(0, 1), dtype=float)
halo_r=halo_table[:,0]/1000
halo_ds=halo_table[:,1]
f = interp1d(halo_r, halo_ds, kind='cubic')
halo_dSigma=f(r)*A
summed_halo=np.add(dSigma,halo_dSigma)/1000000
return summed_halo
# Read the CSV file
# df = pd.read_csv(f'D:/GitHub/summer-research/output-roman(correct)/roman_esd_ShapePipe_redmapper_clusterDist{lowlim}_randomsTrue_1.csv')
df = pd.read_csv(f'D:/roman_esd_ShapePipe_redmapper_clusterDist{lowlim}_randomsTrue_1.csv')
# df=pd.read_csv(f'D:/GitHub/summer-research/output/{bin}.txt',
# delim_whitespace = True,
# names = ['rp','ds','ds_err'],
# comment = '#')
# Save the "ds" and "rp" columns as variables
ds = df['ds']
rp = df['rp']
ds_err=df['ds_err']
init=[12, 1, 1]
param_bounds=([10, 0,-np.inf], [np.inf, 100, np.inf])
popt, pcov = curve_fit(subhalo_profile, rp, ds, p0=init, bounds=param_bounds, sigma=ds_err, absolute_sigma=True,
method='dogbox')
# print(pcov)
# print(popt)
# Extract the optimized parameters
# lens_mass, lens_tau , lens_z, param_A = popt
lens_mass, lens_tau, param_A= popt
lens_z=z
profile, fit = summed_profile(rp, lens_mass, lens_tau, param_A)
deltaC=profile.delta_c
rho_crit=profile.critical_density
Rs=profile.rs[0]
Rt=lens_tau*Rs
M0=deltaC*rho_crit*16*math.pi*Rs**3
print("M0(rho, Rs): ",math.log10(M0))
t=lens_tau
denominator=(t**2/((t**2+1)**2))*((t**2-1)*math.log(t)+t*math.pi-(t**2+1))
Mo=math.pow(10,lens_mass)/denominator
print("M0(tau): ",math.log10(Mo))
print('lense mass: ',lens_mass)
r_full,ds_halo, ds_sub=make_profile(math.pow(10,lens_mass), lens_z, lens_tau, param_A, B=1, distbin=bin, plot=False)
# r_full,ds_full=make_profile(1e12, 0.35, 35, 0.6, distbin=bin, plot=False)
# plt.plot(rp, ds, 'bo', label='Isaac Data')
# plt.plot(rp, fit, 'r-', label='interp Curve')
plt.plot(r_full, ds_halo+ds_sub, 'g-', label='fitted Curve')
plt.errorbar(rp, ds, ds_err, fmt='o',label='dsigma Data')
plt.plot(r_full, ds_halo, '--', label='halo')
plt.plot(r_full, ds_sub, '--', label='subhalo')
plt.xlabel('R (Mpc)')
plt.ylabel('M/pc^2')
plt.grid()
plt.ylim(-40,120)
plt.title(f'{bin} lens log(mass): {lens_mass:.2f}, Z: {lens_z:.2}, tau: {lens_tau:.2f}, A: {param_A:.2}')
plt.legend()
plt.show()