-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_dsigma.py
465 lines (425 loc) · 16.3 KB
/
example_dsigma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 28 14:49:15 2023
@author: Admin
"""
"""
example_dsigma.py
Isaac Cheng - December 2022
EDITS: Jack Elvin-Poole - June 2023
Example script measures the excess surface density around a given lens sample using UNIONS sources
usage: example_dsigma.py [-h] [-ub] [-zc Z_CALIB] [-wc W_CALIB] jobid source_catalog lens_catalog cluster_dist_bin
Example:
python example_dsigma.py 1 ShapePipe mergers -zc 2.0
jobid=1 is arbitrary
cluster_dist_bin=99 does nothing for merger lenses
run this to get help:
python example_dsigma.py --help
WARNING: check to make sure random subtraction is on/off (as desired) before using this
script! (see the `kwargs` variable).
"""
import argparse
import gc
import numpy as np
from astropy.cosmology import FlatLambdaCDM
from astropy.io import fits
from astropy.table import Table
from dsigma.helpers import dsigma_table
from dsigma.jackknife import (
compute_jackknife_fields,
jackknife_resampling,
)
from dsigma.precompute import precompute
from dsigma.stacking import excess_surface_density
######### hardcoded CONFIG. Set any paths you need here to your machine #########
lensfit_file = "<path to lens fit catalog>"
shapepipe_file = "D:/unions_test7000.fits"
calib_file = "D:/GitHub/summer-research/data/dsigma_measurements/input/calib_ShapePipe_v1.1.fits"
redmapper_file = "./data/redmapper_mnc_allz.fits"
mergers_file = "/Users/jackelvinpoole/UNIONS/mergers/data/merger_table_environment.fits"
randoms_file = "D:/dr8_run_redmapper_v6.3.1_randcat_z0.05-0.60_lgt020.fit"
radius_bins = np.linspace(0.01, 1.5, 75) # Mpc, almost replicate Li+2016
cosmology = FlatLambdaCDM(H0=70, Om0=0.3)
num_jackknife_regions = 100
distance_threshold = 10 # in degrees. Used for JK. should be > typical distance between lenses,
# but < size of smallest contiguous field
def main(
jobid,
source_catalog,
lens_catalog,
cluster_dist_bin,
use_boost=True,
z_calib=2.0,
w_calib=1.0,
):
"""
Calculates the excess surface density measured from a galaxy's tangential shear using
`dsimga` and outputs results in a .csv file.
Parameters
----------
jobid :: str
The slurm job ID.
source_catalog :: "Lensfit" or "ShapePipe"
The catalog to use for the galaxy-galaxy lensing sources.
lens_catalog :: 'redmapper' or 'mergers'
The catalog to use for the galaxy-galaxy lensing lenses.
You can add your own manually
cluster_dist_bin :: 0.1, 0.3, or 0.6
The cluster-centric distance bin of the satellite galaxies. In units of h^-1 Mpc,
use 0.1 for [0.1, 0.3], 0.3 for [0.3, 0.6], and 0.6 for [0.6, 0.9].
use_boost :: bool (optional)
If True, apply the boost factor correction
(<https://dsigma.readthedocs.io/en/latest/background.html#boost-factor>), which is
important since our lenses are in galaxy clusters. Requires a random catalog to be
provided.
z_calib :: int or float (optional)
The nominal redshift to assign to each source in the calibration and source
catalogs. The value of `z_calib` should not affect final results.
w_calib :: int or float (optional)
The inverse variance weight to assign to each source in the calibration catalog.
Returns
-------
None
"""
print("Loaded all modules")
#
# Check arguments
#
if not isinstance(jobid, str):
raise ValueError("`jobid` must be a string")
if source_catalog != "Lensfit" and source_catalog != "ShapePipe":
raise ValueError("`source_catalog` must be either 'Lensfit' or 'ShapePipe'")
if lens_catalog != "redmapper" and lens_catalog != "mergers":
raise ValueError("`lens_catalog` must be either 'redmapper' or 'mergers', you can add your own manually")
if not isinstance(use_boost, bool):
raise ValueError("`use_boost` must be either True or False.")
if lens_catalog == "redmapper":
cluster_dist_bins_end = {0.1: 0.3, 0.3: 0.6, 0.6: 0.9}
if cluster_dist_bin not in cluster_dist_bins_end:
raise ValueError(
f"{cluster_dist_bin} is not a valid cluster-centric distance bin!"
)
if not isinstance(z_calib, (int, float)) or not isinstance(w_calib, (int, float)):
raise ValueError("`z_calib` and `w_calib` must be ints or floats.")
print("=====")
print("Job ID:", jobid)
print("Using boost factor:", use_boost)
print("=====")
#
# Read source data
#
if source_catalog == "Lensfit":
source_path = lensfit_file
data_kwargs = {
"ra": "ra", # degres
"dec": "dec", # degrees
"w": "w", # ellipticity weight
"e_1": "e1", # 1st component of ellipticity
"e_2": "e2", # 2nd component of ellipticity
"e_2_convention": "standard", # "standard" or "flipped"
"z": "z", # best-fit photometric redshift
"z_err": "z_err", # uncertainty in photometric redshift
}
else:
source_path = shapepipe_file
data_kwargs = {
"ra": "RA", # degres
"dec": "Dec", # degrees
"w": "w", # ellipticity weight
"e_1": "e1", # 1st component of ellipticity
"e_2": "e2", # 2nd component of ellipticity
"e_2_convention": "standard", # "standard" or "flipped"
"z": "z", # best-fit photometric redshift
"z_err": "z_err", # uncertainty in photometric redshift
}
print(f"Ingesting {source_catalog} sources from {source_path}")
data = fits.getdata(source_path, 1)
#
# Need fake redshift
#
print("Adding 'fake' source redshifts")
# Construct empty record array
new_dtype = np.dtype(data.dtype.descr + [("z", "f8"), ("z_err", "f8")])
new_data = np.zeros(data.shape, dtype=new_dtype)
# Copy over values
for colname in data.columns.names:
new_data[colname] = data[colname]
# Set fake redshifts (these should be the same as the nominal redshift in the
# calibration catalog!)
new_data["z"] = z_calib
new_data["z_err"] = 0.0 # z_err only affects error bars (not `ds` value)
#
# Free memory
#
del data
gc.collect()
#
# Convert to format required by dsigma (an `astropy.table.Table` object)
#
print("Converting to dsigma table...")
sources = dsigma_table(new_data, "source", **data_kwargs)
#
# Read calibration catalog
#
calib_path = calib_file.format(source_catalog=source_catalog)
print(f"Reading calibration catalog from {calib_path}")
calib = Table.read(calib_path)
print(f"Setting nominal redshifts to {z_calib}...")
calib["z"] = z_calib
print(f"Setting the inverse variance weights to {w_calib}...")
calib["w"] = w_calib
print("Converting to dsigma table...")
calib = dsigma_table(calib, "calibration", z_true="z_true", w_sys="w_sys", w="w")
#
# Read lens data
#
if lens_catalog == "redmapper":
print(
"Cluster-centric distance bin = "
+ f"[{cluster_dist_bin}, {cluster_dist_bins_end[cluster_dist_bin]})"
)
lenses_path = redmapper_file
print(f"Reading lenses from {lenses_path}")
lenses = Table.read(lenses_path)
#
# Slice lenses into cluster-centric radius bin
#
lenses_mask = (
(lenses["R"] >= cluster_dist_bin)
& (lenses["R"] < cluster_dist_bins_end[cluster_dist_bin])
# & (lenses["PMem"] > 0.8)
& (lenses["zspec"] > -1)
)
lenses = lenses[lenses_mask]
print(
"Number of lenses in cluster-centric distance bin = "
+ f"[{cluster_dist_bin}, {cluster_dist_bins_end[cluster_dist_bin]}):",
len(lenses),
)
print("Converting to dsigma table...")
lenses = dsigma_table(
lenses,
"lens",
z="zspec", # spectroscopic redshift
# z="z_any",
ra="RAJ2000", # right ascension in degrees
dec="DEJ2000", # declination in degrees
w_sys=1, # systematic weight
)
elif lens_catalog == "mergers":
lenses_path = mergers_file
print(f"Reading lenses from {lenses_path}")
lenses = Table.read(lenses_path)
print(
"Number of lenses = ",
len(lenses),
)
print("Converting to dsigma table...")
lenses = dsigma_table(
lenses,
"lens",
z="z_spec", # spectroscopic redshift
ra="ra", # right ascension in degrees
dec="decl", # declination in degrees
w_sys=1, # systematic weight
)
#
#
# Read random catalog
#
if use_boost:
randoms_path = randoms_file
print(f"Using redMaPPer v6.3.1 random catalog from {randoms_path}")
randoms = Table.read(randoms_path)
# Verified "LAMBDA_IN" == "AVG_LAMBDAOUT" and "SIGMA_LAMBDAOUT" == 0 for all randoms
randoms = randoms[(randoms["ZTRUE"] < 0.5) & (randoms["LAMBDA_IN"] >= 20)]
print("Converting to dsigma table...")
randoms = dsigma_table(
randoms, "lens", z="ZTRUE", ra="RA", dec="DEC", w_sys="WEIGHT"
)
else:
randoms = None
#
# Set lens-source separation cut so z_lens + 0.1 < z_source
#
#JACK: REMOVED THE SOURCE-LENS SEPARATION CUT
#print("Setting lens-source separation cut...")
#add_maximum_lens_redshift(sources, dz_min=0.1, apply_z_low=False)
#add_maximum_lens_redshift(calib, dz_min=0.1, apply_z_low=False)
#
# Pre-compute lensing statistics
#
print("Pre-computing lensing statistics...")
precompute(
lenses,
sources,
radius_bins,
table_c=calib,
cosmology=cosmology,
comoving=False,
)
if use_boost:
precompute(
randoms,
sources,
radius_bins,
table_c=calib,
cosmology=cosmology,
comoving=False,
)
# with open(
# "./output/"
# + "example_precomputed_lenses_"
# + f"{catalog}_clusterDist{cluster_dist_bin}_randoms{use_boost}_{jobid}.pkl",
# "wb",
# ) as f:
# dill.dump(lenses, f)
#
# Drop all lenses that do not have any nearby source
#
lenses["n_s_tot"] = np.sum(lenses["sum 1"], axis=1)
lenses = lenses[lenses["n_s_tot"] > 0]
num_lenses = len(lenses)
print("Number of lenses with nearby sources:", num_lenses)
if use_boost:
randoms["n_s_tot"] = np.sum(randoms["sum 1"], axis=1)
randoms = randoms[randoms["n_s_tot"] > 0]
num_randoms = len(randoms)
print("Number of randoms with nearby sources:", num_randoms)
#
# Divide into different jackknife fields
#
print("Dividing into jackknife fields...")
global num_jackknife_regions
if num_lenses < num_jackknife_regions:
print("N JK > N lenses, setting Njk=Nlens")
num_jackknife_regions = num_lenses
jackknife_centers = compute_jackknife_fields(lenses, num_jackknife_regions, distance_threshold=distance_threshold, weights=lenses["n_s_tot"])
s="""
add_continous_fields(lenses, distance_threshold=2) # no need to do this for randoms
# NOTE: I added line 153 of
# /home/i8cheng/projects/def-mjhudson/i8cheng/dsigma_env/lib/python3.10/site-packages/dsigma/jackknife.py
# for debugging, so you probably won't get the same verbose output as me (i.e., the
# line containing "(in jackknife.py)" in the slurm output file)
num_lenses_fields = len(np.unique(lenses["field"]))
print(f"Number of fields in lenses table: {num_lenses_fields}")
# N.B. the following is required:
# tot num jackknife regions > num fields, AND number of lenses with nearby sources in
# each field (number of "samples") > num jackknife regions in that field
#
# Also, slicing the lenses into redshift & richness bins ahead of time causes the data
# to be very spatially fragmented, hence the need for a small number of jackknife
# regions per "survey field"
#
# Want to maximize tot number of jackknife regions (up to, e.g., 4 * num fields) but
# ensure tot num jackknife regions ("n_jk") > num fields and n_jk < num lenses with
# nearby sources
# N.B. num_lenses >= num_lenses_fields
num_jackknife_regions = np.min((4 * num_lenses_fields, num_lenses))
print(f"Using {num_jackknife_regions} jackknife regions")
jackknife_centers = jackknife_field_centers(
lenses, num_jackknife_regions, weight="n_s_tot"
)
"""
#add_jackknife_fields(lenses, jackknife_centers)
#if use_boost:
# # Use same jackknife centers as lenses
# add_jackknife_fields(randoms, jackknife_centers)
# Choose correction factors and other options
kwargs = {
"return_table": True,
"scalar_shear_response_correction": False, # very important. Requires "m" column
"shear_responsivity_correction": False, # very important. Requires something...
"boost_correction": use_boost, # need random catalog
# "random_subtraction": use_boost, # highly recommended to set to True
"random_subtraction": False, # highly recommended to set to True
"photo_z_dilution_correction": True, # highly recommended
"table_r": randoms, # random catalog if `use_boost` is True
}
print(f"NO RANDOM SUBTRACTION! ONLY BOOST FACTOR ({use_boost}) + PHOT-Z CORRECTIONS!")
#
# Stack lensing signal
#
print("Stacking lensing signal...")
result = excess_surface_density(lenses, **kwargs)
kwargs["return_table"] = False
covmat = jackknife_resampling(excess_surface_density, lenses, **kwargs)
result["ds_err"] = np.sqrt(
np.diag(covmat)
)
#
result.write(
"./output/example_esd_"
+ f"{source_catalog}_{lens_catalog}_clusterDist{cluster_dist_bin}_randoms{use_boost}_{jobid}.csv"
)
#also saving full covarinace matrix
np.savetxt( "./output/example_esd_"
+ f"{source_catalog}_{lens_catalog}_clusterDist{cluster_dist_bin}_randoms{use_boost}_{jobid}_covmat.txt",
covmat)
print("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Runs `dsigma` on the Lensfit or ShapePipe data sets",
prog="example_dsigma.py",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"jobid",
type=str,
help="The job ID of the slurm job. In a bash script, job ID can be accessed "
+ "using ${SLURM_JOB_ID}.",
)
parser.add_argument(
"source_catalog",
type=str,
help="'Lensfit' or 'ShapePipe'. Specifies the catalog to use for galaxy-galaxy "
+ "lensing sources.",
)
parser.add_argument(
"lens_catalog",
type=str,
help="'redmapper' or 'mergers'. The catalog to use for the galaxy-galaxy lensing lenses. "
+ "You can add your own manually",
)
parser.add_argument(
"-cdb",
"--cluster_dist_bin",
type=float,
default=99.,
help="The cluster-centric distance bin of the satellite galaxies. In units of "
+ "h^-1 Mpc, use 0.1 for [0.1, 0.3], 0.3 for [0.3, 0.6], and 0.6 for [0.6, 0.9].",
)
parser.add_argument(
"-ub",
"--use-boost",
action="store_true",
default=False,
help="If True, apply the boost factor correction, which is important since our "
+ "lenses are in galaxy clusters. Requires a random catalog to be provided.",
)
parser.add_argument(
"-zc",
"--z-calib",
type=float,
default=2.0,
help="The nominal redshift to assign to each source in the calibration and "
+ "source catalog. The value of `z_calib` should not affect final results...",
)
parser.add_argument(
"-wc",
"--w-calib",
type=float,
default=1.0,
help="The inverse variance weight to assign to each source in the calibration "
+ "catalog.",
)
args = vars(parser.parse_args())
main(
jobid=args["jobid"],
source_catalog=args["source_catalog"],
lens_catalog=args["lens_catalog"],
cluster_dist_bin=args["cluster_dist_bin"],
use_boost=args["use_boost"],
z_calib=args["z_calib"],
w_calib=args["w_calib"],
)