diff --git a/docs/notebooks/dispersion_analysis/dispersion_class_usage.ipynb b/docs/notebooks/dispersion_analysis/dispersion_class_usage.ipynb index d708a5407..7c4d045fd 100644 --- a/docs/notebooks/dispersion_analysis/dispersion_class_usage.ipynb +++ b/docs/notebooks/dispersion_analysis/dispersion_class_usage.ipynb @@ -130,7 +130,8 @@ { "data": { "text/plain": [ - "object: \n", + "object: \n", + "last_rnd_dict: {}\n", "elevation: [113]\n", "gravity: ['Function from R1 to R1 : (height (m)) → (gravity (m/s²))']\n", "latitude: [39.3897]\n", @@ -167,7 +168,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[-7.941838119682821, -5.1848868537745565, -6.297258022730775, -5.160109128320204, -6.06175163255842, -6.2141336730918955, -6.250626162157481, -7.2032128745494495, -7.2032128745494495, -6.06175163255842]\n" + "[-2.43363182401062, -3.2080744792977374, -2.4175938202996714, -0.6800836428870567, -0.4147986561882701, -1.8612257454415737, -0.4147986561882701, -2.43363182401062, -2.77675179028226, -0.4147986561882701]\n" ] } ], @@ -243,7 +244,8 @@ { "data": { "text/plain": [ - "object: \n", + "object: \n", + "last_rnd_dict: {}\n", "thrust_source: ['../../../data/motors/Cesaroni_M1670.eng', [[0, 6000], [1, 6000], [2, 6000], [3, 6000], [4, 6000]], 'Function from R1 to R1 : (Scalar) → (Scalar)']\n", "total_impulse: 6500.00000 ± 1000.00000 (numpy.random.normal)\n", "burn_start_time: 0.00000 ± 0.10000 (numpy.random.normal)\n", @@ -303,7 +305,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[6050.998637754388, 5766.223640702702, 5611.48217852651, 6796.31371954537, 5890.827371319523, 4987.026087626678, 6715.05101167799, 7035.740461025036, 7064.140373537157, 7863.149290020834]\n" + "[4964.74023772148, 6301.063121057903, 6874.945671519245, 7031.676385780169, 4180.972740531396, 7288.821931463088, 6355.952556067599, 7213.048653028296, 6243.881552378145, 5622.112927760851]\n" ] } ], @@ -406,7 +408,8 @@ { "data": { "text/plain": [ - "object: \n", + "object: \n", + "last_rnd_dict: {}\n", "radius: 0.06350 ± 0.00001 (numpy.random.normal)\n", "mass: 15.42600 ± 0.50000 (numpy.random.normal)\n", "I_11_without_motor: 6.32100 ± 0.00000 (numpy.random.normal)\n", @@ -513,7 +516,8 @@ { "data": { "text/plain": [ - "object: \n", + "object: \n", + "last_rnd_dict: {}\n", "radius: 0.06350 ± 0.00001 (numpy.random.normal)\n", "mass: 15.42600 ± 0.50000 (numpy.random.normal)\n", "I_11_without_motor: 6.32100 ± 0.00000 (numpy.random.normal)\n", @@ -556,19 +560,37 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "2.635994054005331\n", - "2.523126587210294\n", - "2.6347254291046167\n", - "2.686647308967953\n", - "2.6474737151348924\n", - "2.7325920042010625\n", - "2.650851443331149\n", - "2.4350579060868878\n", - "2.7485770017938167\n", - "2.61882176237531\n" + "data": { + "text/plain": [ + "{}" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mc_rocket.last_rnd_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "ename": "IndexError", + "evalue": "list index out of range", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mIndexError\u001b[0m Traceback (most recent call last)", + "Input \u001b[1;32mIn [17]\u001b[0m, in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m10\u001b[39m):\n\u001b[1;32m----> 2\u001b[0m rnd_rocket\u001b[38;5;241m=\u001b[39m\u001b[43mmc_rocket\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_object\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(rnd_rocket\u001b[38;5;241m.\u001b[39mstatic_margin(\u001b[38;5;241m0\u001b[39m))\n", + "File \u001b[1;32mC:\\Mateus\\GitHub\\RocketPy\\rocketpy\\monte_carlo\\mc_rocket.py:643\u001b[0m, in \u001b[0;36mMcRocket.create_object\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m parachute \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparachutes:\n\u001b[0;32m 642\u001b[0m parachute \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_parachute(parachute)\n\u001b[1;32m--> 643\u001b[0m \u001b[43mrocket\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43madd_parachute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 644\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparachute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 645\u001b[0m \u001b[43m \u001b[49m\u001b[43mcd_s\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparachute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcd_s\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 646\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrigger\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparachute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrigger\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 647\u001b[0m \u001b[43m \u001b[49m\u001b[43msampling_rate\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparachute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msampling_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 648\u001b[0m \u001b[43m \u001b[49m\u001b[43mlag\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparachute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlag\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 649\u001b[0m \u001b[43m \u001b[49m\u001b[43mnoise\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparachute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnoise\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 650\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 652\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m rocket\n", + "File \u001b[1;32mC:\\Mateus\\GitHub\\RocketPy\\rocketpy\\rocket\\rocket.py:1123\u001b[0m, in \u001b[0;36mRocket.add_parachute\u001b[1;34m(self, name, cd_s, trigger, sampling_rate, lag, noise)\u001b[0m\n\u001b[0;32m 1059\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21madd_parachute\u001b[39m(\n\u001b[0;32m 1060\u001b[0m \u001b[38;5;28mself\u001b[39m, name, cd_s, trigger, sampling_rate\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m100\u001b[39m, lag\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, noise\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m)\n\u001b[0;32m 1061\u001b[0m ):\n\u001b[0;32m 1062\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Creates a new parachute, storing its parameters such as\u001b[39;00m\n\u001b[0;32m 1063\u001b[0m \u001b[38;5;124;03m opening delay, drag coefficients and trigger function.\u001b[39;00m\n\u001b[0;32m 1064\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1121\u001b[0m \u001b[38;5;124;03m Flight simulation.\u001b[39;00m\n\u001b[0;32m 1122\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 1123\u001b[0m parachute \u001b[38;5;241m=\u001b[39m \u001b[43mParachute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcd_s\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrigger\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msampling_rate\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlag\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnoise\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1124\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparachutes\u001b[38;5;241m.\u001b[39mappend(parachute)\n\u001b[0;32m 1125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparachutes[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n", + "File \u001b[1;32mC:\\Mateus\\GitHub\\RocketPy\\rocketpy\\rocket\\parachute.py:163\u001b[0m, in \u001b[0;36mParachute.__init__\u001b[1;34m(self, name, cd_s, trigger, sampling_rate, lag, noise)\u001b[0m\n\u001b[0;32m 161\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlag \u001b[38;5;241m=\u001b[39m lag\n\u001b[0;32m 162\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoise \u001b[38;5;241m=\u001b[39m noise\n\u001b[1;32m--> 163\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoise_signal \u001b[38;5;241m=\u001b[39m [[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1e-6\u001b[39m, np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mnormal(noise[\u001b[38;5;241m0\u001b[39m], \u001b[43mnoise\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m)]]\n\u001b[0;32m 164\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoisy_pressure_signal \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m 165\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclean_pressure_signal \u001b[38;5;241m=\u001b[39m []\n", + "\u001b[1;31mIndexError\u001b[0m: list index out of range" ] } ], @@ -610,7 +632,7 @@ { "data": { "text/plain": [ - "object: \n", + "object: \n", "rail_length: [5]\n", "inclination: 84.70000 ± 1.00000 (numpy.random.normal)\n", "heading: 53.00000 ± 2.00000 (numpy.random.normal)\n", @@ -647,7 +669,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAALfCAYAAACnw553AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gUVdbG3+qcuyfPwGSGHAwIiDmjsmYxK+YVwYA5ICqsOaCucc1rWAXzp+6aEEQEEQzkMMMEYHLonLvr+2Ooonti574znN/zzKP09FSfvlV1661T576H43meB0EQBEEQBEEQESNJdwAEQRAEQRAEMdAgEU0QBEEQBEEQUUIimiAIgiAIgiCihEQ0QRAEQRAEQUQJiWiCIAiCIAiCiBIS0QRBEARBEAQRJSSiCYIgCIIgCCJKSEQTBEEQBEEQRJSQiCYIgiAIgiCIKCERTRDEoKK0tBSXX365+O9ly5aB4zgsW7Ys6m0Jf/vRRx8lLsAUUVNTA47j8NZbb6U7FIIgiEEJiWiCIAYEb731FjiO6/HnrrvuSnd4eP/99/HMM8/0+74HHnig1+8R+nPMMcckPeZ4qK+vxwMPPIA///wz3aEQBEGkBVm6AyAIgoiGBQsWoKysLOy1cePG9fr+o446Ci6XCwqFIqlxvf/++9i4cSNuvvnmPt939tlno6KiQvy33W7HrFmzcNZZZ+Hss88WX8/Ly4srnpKSErhcLsjl8ri20xv19fV48MEHUVpaigMPPDApn0EQBMEyJKIJghhQnHLKKTjkkEMifr9EIoFKpUpiRNExYcIETJgwQfx3a2srZs2ahQkTJuCSSy7p9e/cbjcUCgUkksgeIHIcx9T3jhSHwwGtVpvuMAiCIPqFyjkIghjU9FYT/cILL6C8vBxqtRqTJ0/GihUrcMwxx/RYRhEMBvHQQw+hsLAQKpUKxx9/PCorK8XfH3PMMfjqq69QW1srlmOUlpbGHfMHH3yAefPmYejQodBoNLBarWhvb8dtt92G8ePHQ6fTwWAw4JRTTsFff/0Vto3eaqK3bt2Kc889F5mZmVCpVDjkkEPwxRdfdIvBbDZj7ty5KC0thVKpRGFhIS677DK0trZi2bJlmDRpEgDgiiuuEL9z6GctWbIEEydOhFqtRnZ2Ni655BLs2bMn7DMuv/xy6HQ6VFVV4dRTT4Ver8fFF1+M+++/H3K5HC0tLd3iuvbaa2EymeB2u2McXYIgiMRAmWiCIAYUFosFra2tYa9lZ2dHtY2XXnoJc+bMwZFHHom5c+eipqYGZ555JjIyMlBYWNjt/Y8++igkEgluu+02WCwWPP7447j44ovx66+/AgDuvfdeWCwW7N69G4sWLQIA6HS6GL/hPhYuXAiFQoHbbrsNHo8HCoUCmzdvxmeffYYZM2agrKwMTU1NeOWVV3D00Udj8+bNGDJkSK/b27RpEw4//HAMHToUd911F7RaLRYvXowzzzwTH3/8Mc466ywAnSUmRx55JLZs2YIrr7wSBx98MFpbW/HFF19g9+7dGD16NBYsWID58+fj2muvxZFHHgkAOOywwwB01q9fccUVmDRpEh555BE0NTXh2WefxcqVK/HHH3/AZDKJMfn9fkybNg1HHHEEnnzySWg0GkydOhULFizAhx9+iDlz5ojv9Xq9+Oijj3DOOecMyCw7QRCDDJ4gCGIA8Oabb/IAevwJpaSkhJ85c6b47x9//JEHwP/44488z/O8x+Phs7Ky+EmTJvE+n09831tvvcUD4I8++uhufzt69Gje4/GIrz/77LM8AH7Dhg3ia9OnT+dLSkqi/l4tLS08AP7+++/v9rnl5eW80+kMe7/b7eYDgUDYa9XV1bxSqeQXLFgQ9hoA/s033xRfO/744/nx48fzbrdbfC0YDPKHHXYYP3z4cPG1+fPn8wD4Tz75pFu8wWCQ53me/+2337ptn+d53uv18rm5ufy4ceN4l8slvv7ll1/yAPj58+eLr82cOZMHwN91113dPmfq1Kn8lClTwl775JNPwvYlQRBEOqFyDoIgBhQvvPACvvvuu7CfaFi7di3a2tpwzTXXQCbb9zDu4osvRkZGRo9/c8UVV4QtTBQyrzt37ozhG0TOzJkzoVarw15TKpViXXQgEEBbWxt0Oh1GjhyJ33//vddttbe3Y+nSpTjvvPNgs9nQ2tqK1tZWtLW1Ydq0adixY4dYbvHxxx/jgAMOEDPToXAc12fMa9euRXNzM66//vqwbPH06dMxatQofPXVV93+ZtasWd1eu+yyy/Drr7+iqqpKfO29995DUVERjj766D5jIAiCSAUkogmCGFBMnjwZJ5xwQthPNNTW1gJAmEMGAMhksl7rmIuLi8P+LYjtjo6OqD47Wrq6kACd9dmLFi3C8OHDoVQqkZ2djZycHKxfvx4Wi6XXbVVWVoLnedx3333IyckJ+7n//vsBAM3NzQCAqqqqPh1P+kIY35EjR3b73ahRo8TfC8hksh5LaM4//3wolUq89957ADrLeL788ktcfPHF/Qp5giCIVEA10QRBEP0glUp7fJ3n+aR+btcsNAA8/PDDuO+++3DllVdi4cKFyMzMhEQiwc0334xgMNjrtoTf3XbbbZg2bVqP7+l6Y5EKQjProWRkZOBvf/sb3nvvPcyfPx8fffQRPB5Pnw4mBEEQqYRENEEQ+xUlJSUAOjOzxx57rPi63+9HTU1NmP1cNKQqO/rRRx/h2GOPxeuvvx72utls7nOBZXl5OQBALpf3m70fNmwYNm7c2Od7evu+wvhu27YNxx13XNjvtm3bJv4+Ei677DKcccYZ+O233/Dee+/hoIMOwtixYyP+e4IgiGRC5RwEQexXHHLIIcjKysKrr74Kv98vvv7ee+/FVZ6h1Wr7LKdIFFKptFsGfMmSJd3s47qSm5uLY445Bq+88goaGhq6/T7UTu6cc87BX3/9hU8//bTb+4TPFryczWZz2O8POeQQ5Obm4uWXX4bH4xFf/+9//4stW7Zg+vTpfX/BEE455RRkZ2fjsccew/LlyykLTRAEU1AmmiCI/QqFQoEHHngAN9xwA4477jicd955qKmpwVtvvYVhw4bFnFGeOHEiPvzwQ9xyyy2YNGkSdDodTjvttARHD/ztb3/DggULcMUVV+Cwww7Dhg0b8N5774mZ5r544YUXcMQRR2D8+PG45pprUF5ejqamJqxatQq7d+8WvaZvv/12fPTRR5gxYwauvPJKTJw4Ee3t7fjiiy/w8ssv44ADDsCwYcNgMpnw8ssvQ6/XQ6vVYsqUKSgrK8Njjz2GK664AkcffTQuvPBC0eKutLQUc+fOjfi7yuVyXHDBBXj++echlUpx4YUXxjxuBEEQiYYy0QRB7HfMmTMHzz33HOrq6nDbbbdhxYoV+OKLL2AymWL2H77++utx0UUX4c0338RFF12EG264IcFRd3LPPffg1ltvxTfffIObbroJv//+O7766isUFRX1+7djxozB2rVrMX36dLz11luYPXs2Xn75ZUgkEsyfP198n06nw4oVKzBr1ix8/fXXuPHGG/Hiiy9i5MiR4iJAuVyOt99+G1KpFNdddx0uvPBCLF++HEBnE5UPP/wQXq8Xd955J1555RWcddZZ+Pnnn8M8oiPhsssuAwAcf/zxKCgoiOpvCYIgkgnHJ3tlDEEQxAAgGAwiJycHZ599Nl599dV0hxM3VVVVqKiowDvvvDOgyyD++usvHHjggfj3v/+NSy+9NN3hEARBiFAmmiCI/Q63292trvjf//432tvbe2z7PRAR6p6j7ebIGq+++ip0Oh3OPvvsdIdCEAQRBtVEEwSx37F69WrMnTsXM2bMQFZWFn7//Xe8/vrrGDduHGbMmJHu8OLmjTfewBtvvAGNRoNDDz003eHExP/93/9h8+bN+Ne//oU5c+aICxkJgiBYgco5CILY76ipqcGNN96INWvWoL29HZmZmTj11FPx6KOPIjc3N93hxY1MJsOIESPw5JNP4tRTT013ODFRWlqKpqYmTJs2De+88w70en26QyIIggiDRDRBEARBEARBRAnVRBMEQRAEQRBElJCIJgiCIAiCIIgoIRFNEARBEARBEFFCIpogCIIgCIIgooRENEEQBEEQBEFECYlogiAIgiAIgogSEtEEQRAEQRAEESUkogmCIAiCIAgiSkhEEwRBEARBEESUkIgmCIIgCIIgiCghEU0QBEEQBEEQUUIimiAIgiAIgiCihEQ0QRAEQRAEQUQJiWiCIAiCIAiCiBIS0QRBEARBEAQRJSSiCYIgCIIgCCJKSEQTBEEQBEEQRJSQiCYIgiAIgiCIKCERTRAEQRAEQRBRQiKaIAiCIAiCIKKERDRBEARBEARBRAmJaIIgCIIgCIKIEhLRBEEQBEEQBBElJKIJgiAIgiAIIkpIRBMEQRAEQRBElJCIJgiCIAiCIIgoIRFNEARBEARBEFFCIpogCIIgCIIgooRENEEQBEEQBEFECYlogiAIgiAIgogSEtEEQRAEQRAEESUkogmCIAiCIAgiSkhEEwRBEARBEESUkIgmCIIgCIIgiCghEU0QBEEQBEEQUUIimiAIgiAIgiCihEQ0QRAEQRAEQUQJiWiCIAiCIAiCiBIS0QRBEARBEAQRJSSiCYIgCIIgCCJKSEQTBEEQBEEQRJSQiCYIgiAIgiCIKCERTRAEQRAEQRBRQiKaIAiCIAiCIKKERDRBEARBEARBRAmJaIIgCIIgCIKIEhLRBEEQBEEQBBElJKIJgiAIgiAIIkpIRBMEQRAEQRBElJCIJgiCIAiCIIgoIRFNEARBEARBEFFCIpogCIIgCIIgooRENEEQBEEQBEFECYlogiAIgiAIgogSEtEEQRAEQRAEESUkogmCIAiCIAgiSkhEEwRBEARBEESUkIgmCIIgCIIgiCghEU0QBEEQBEEQUUIimiAIgiAIgiCihEQ0QRAEQRAEQUQJiWiCIAiCIAiCiBIS0QRBEARBEAQRJSSiCYIgCIIgCCJKSEQTBEEQBEEQRJSQiCYIgiAIgiCIKCERTRAEQRAEQRBRQiKaIAiCIAiCIKKERDRBEARBEARBRAmJaIIgCIIgCIKIEhLRBEEQBEEQBBElJKIJgiAIgiAIIkpIRBMEQRAEQRBElJCIJgiCIAiCIIgoIRFNEARBEARBEFFCIpogCIIgCIIgooRENEEQBEEQBEFECYlogiAIgiAIgogSEtEEQRAEQRAEESUkogmCIAiCIAgiSkhEEwRBEARBEESUkIgmCIIgCIIgiCghEU0QBEEQBEEQUUIimiAIgiAIgiCihEQ0QRAEQRAEQUQJiWiCIAiCIAiCiBIS0QRBEARBEAQRJSSiCYIgCIIgCCJKSEQTBEEQBEEQRJSQiCYIgiAIgiCIKCERTRAEQRAEQRBRQiKaIAiCIAiCIKKERDRBEARBEARBRAmJaIIgCIIgCIKIEhLRBEEQBEEQBBElJKIJgiAIgiAIIkpIRBMEQRAEQRBElJCIJgiCIAiCIIgoIRFNEARBEARBEFFCIpogCIIgCIIgooRENEEQBEEQBEFECYlogiAIgiAIgogSEtEEQRAEQRAEESUkogmCIAiCIAgiSkhEEwRBEARBEESUkIgmCIIgCIIgiCghEU0QBEEQBEEQUUIimiAIgiAIgiCihEQ0QRAEQRAEQUQJiWiCIAiCIAiCiBIS0QRBEARBEAQRJSSiCYIgCIIgCCJKZOkOgCAIgoiPYDCIYDCIQCCAQCAAiUQCqVQKiUQCjuPEH4IgCCJxkIgmCIIYQHQVzMIPz/MAAJ7nIZfLEQwGReEsiGiJRELCmiAIIkFwvDDzEgRBEEwRiWAWxHGoYJbJZJBIJGHvC32/8D4S1gRBELFDmWiCIAgGiEYwSySdy1n6E7yhglkgdHs8zyMQCJCwJgiCiAES0QRBECkmGYI5UkhYEwRBJAYS0QRBEEkknYI5UkhYEwRBRA+JaIIgiAQRKpj9fj8CgQCCwSBTgjlSYhXWHMdBKpWSsCYIYtBDIpogCCIG+sswr1y5EgceeCD0ej3zgjlS+hPWVVVVcDgcGD9+vPg+IVNNGWuCIAYbJKIJgiD6IdKSDCELKyB4NQ9mespEC68J2equriAkrAmCGAyQiCYIggihL8EsiOaugrknAbg/i8L+MtaBQKDb+0lYEwQx0CARTRDEfkuiBDPRSV9tB0hYEwQx2CARTRDEfgEJZvYgYU0QxECGRDRBEIMOVgQzNYSNHhLWBEEMFEhEEwQxoGFFMBOdJGNsSVgTBMEiJKIJghgw9CWYt27diuzsbGRnZ5Ng3g+IRFhv3boVBoMBQ4YMIWFNEETCIRFNEASTRJth9nq94HkeMtn+O635fD7YbDb4fD4YDIYwj+r9ga7C2uPxwO/3g+M4ylgTBJFw9t+rDUEQzJCIkoz9Tfj4/X7YbDbYbDZYrVbYbDa4XC6oVCqoVCps27YNgUAAer0eRqMRRqMRBoMBOp0uacKatRrwrsdO19dJWBMEEQ8kogmCSCnJrGFmScQlUnQFAgHY7XZRLFutVjidTiiVSuj1euj1ehQUFECv10OhUEAmk4HjOLhcLlgsFlgsFuzZswdbtmwBz/MwGAwwGAyiuNZqtYNWJPbl4U3CmiCIeCARTRBE0hAESTAYhN/vp0V/ERAMBmG328MyzA6HAzKZTCzRyM3NhV6vh1Kp7HU7HMdBo9FAo9GgoKAAQOf+cDgcsFgssFqt2LVrFzZt2gSO48JEtcFggEajiWlfDNT9R8KaIIhoIRFNEERCIMHcnf4y48FgEA6HI6wsw263QyqVQq/Xw2AwoLS0FAaDAUqlMu7x4jgOOp0OOp0OQ4cODYtByFhXV1fDZrNBKpWKgloQ1yqVakDts3ifTJCwJgiiL0hEEwQRNSwKZmHxGKvwPA+n0xlWkmG328FxnCiYi4uLodfroVarUya8JBKJWBJSWFgIoFNY22w2MWNdVVUFu90OuVzeLWOtUqlSEmesJHocSVgTBCFAIpogiD7pSTA7HA40NTWhqKgIwP6XYe4P4Waivb0dTU1NYqaZ53lRsA4dOjSusolkIpFIRKEsEAgERGFtsVjQ1NQEu90OpVIpCmqn05nGqNNHpMLa7Xajvr4ew4YNI2FNEIMAEtEEQYhEmmH2er2or69HWVkZMxf+dMXB8zzcbnc3pwy/34/GxkZkZGQgPz8fI0aMgEajGbCWc1KpFCaTCSaTSXzN7/fDarWKGevW1lb4fD50dHSIIlwQ2HK5POUxp/PJRE/C2uv1oq6uDuXl5ZSxJohBAIlogthPiackY3/OOHs8HlEoC6LZ7/dDq9WKi/6GDRuGP//8E2PGjIHBYEh3yElDJpMhMzMTmZmZAIDt27fD7XZj6NChYsa6rq4ObrcbGo0mrMbaYDCkxNO76zHa5m7D93Xf4/Ahh6NQV5j0z+8pntAbKSoFIYiBC4logtgP6E8wh2bNIhHIrNYfJzomr9cbll22Wq3wer2iYM7KykJpaSl0Op04bgIDNeMcLxKJBFlZWcjKyhJf83q9oqju6OhATU0NPB4PdDpdWI21Xq/vNo6JIhAM4M0tb+LNzW/CE/BgiHaIKKJ3mHfgvzX/xXXjr4NCqkjK5wMIO9cEYq2x7iqqSVgTROohEU0Qg4xEC+aBQrzfQej2Fyqa3W431Go1DAYDTCYTiouLodPp9uuuiLGgUCiQk5ODnJwc8TW32y2WgrS0tKCyshJ+vx86nS4sYx1P10XheOd5Hvf/ej/+V/s/AMDojNHIVmeL73ls7WP4s/VPbGjbgCePeBJGpbGvzSadSIR1qLgmYU0Q6YGuBAQxgEmXYGY1Ex0pod3+BNEsdPsTnDKGDh0KvV4fVy3vQB6jWIn0+BI6K+bm5gLYV1seunBx+/bt3bouCs1hohHWn+/8HP+r/R9kEhnmTZqH6aXTw86NS0dfih2rd+CPlj9w4/Ib8cpxr0AlS7zrSE+Z6EghYU0Q7EEimiAGCPtrhjkaehKtXbv9Cc1LFAqF2LwkPz9f7PZHpAeO46BWq6FWq5Gfnw8g3Bawp66LoRnr3rou8jyPNze/CQCYNX4W/lb2t27vOXro0Xj9+Nfx96V/x6b2Tbj/1/vx6GGPMn/+kLAmiPRCIpogGCRUMHs8Hvh8PkgkEqYEM4tZVp7nw+qXY+32R8RGoo8JjuOg1Wqh1Wp77LposVh67bpoNBoRDAZR66zFHsceKKVKnD/8/F4/q8JUgaeOfArX/Xgdftj1Az7f+TnOHHZmQr9PPJnoSIlWWAOdpUxqtZoWLxJElJCIJog001+Gubm5GY2NjTjwwAOZyTCn+/OBzoYgoc1LzGYz2traktbtj2CD3rouCk8bQrsuAsAu2y4MVQ3FEM0Q8D4evLR3IXtgzoG4fvz1eO6v5/DUH0/h0PxDka/NT9l3SxZ9CWuv14sff/wRxx13nFjrTxlrgogMEtEEkUJiKcno+l9WSGUmumu3P+FH6PYndPnLyMjAsGHD6GK/nyGRSGAwGGAwGMK6Lq5atQqT9ZNxaP6hMJvN+OmnnyCXy7tZ7YV2Xbxk1CVYUb8C3oAXTn9im8ekIhMdKV2FtSCYASoFIYhIIRFNEEkiVDAHAgFRNEdbksHiRSqZMfE8D5fLFVaSIXT7EyzRhgwZ0q3b34YNG6BQKJgZL1biSDWsfG+JRAKZTIbs7GwMGTIEQGd9vNVqFTPWjY2NcDgcYtdFQVQ/PPlhZOmyIOH2H5vCUEFMNdYEERkkogkiAXQVzIJoTkQNM6tOGImIief5sOYlwn8DgYAomCPt9kcXbqI/pFIpMjIykJGRIb4W2nVRWLzodDpFa8NEdl1kKRMtENpYqSdIWBNE75CIJogoSaZg7uszWSLW7+PxeLo1L+mp259Op9tvm5UQieWd6new7s91uGTUJTi9/PRuv+/adRHoXGhnsVhQ316Pd6vexZDgEBTyhWLXRUFUp6rrYjLpT0T3BAlrguhkYJ/9BJFk0iGYu8LqhaY/Yd+125/NZoPH44FGo4HBYEBmZmav3f6SFVOqYS2e/Q2e59HubcdO6060udsi/ju5XI7s7Gy8s+sdfNH2BQ7OORiXHnGpmLFua2tDdXV11F0XWcxEJwoS1sT+CIlogtgLC4K5J1gs5+j6vfvq9qfX62EymVBUVAS9Xp+0zB1dfNMPa8cpACilnVaGnoAn6r+9aORFWLxjMX5v+R1bbVtxQM4BUXVdFDLW8XRdTDaxZKIjhYQ1MdghEU3sl/QkmB0OBxobG1FUVMSED3PXeFlBqCEFgE2bNnXr9qfX6xPS7S8WWBonIv3wPA+VpNN5IxanjTxNHk4pOQVfVH+BxdsX44DsA8J+31/XxcbGRmzbtg2BQECsqRZuOKPtupgsUp0dj1RYu91uNDQ0oLy8nIQ1wSwkoolBT6QZZo/Hgz179qCsrIypCTqdsQjd/ro2LxHEsUajoW5/BNMYFUYAQIe7I6a/P2/4efii+gv8sPsH3OK+BVmqrF7f21fXRYvFgoaGBvh8PqxevRoAwtqZGwyGXrsuJhMWbjx7EtYejwd1dXUoKyujjDXBLCSiiUFFPCUZoY0GWCMVF7pgMAiHwyFagIV2+xOal+Tk5MBgMAAAVq5ciZKSEiayaSzC4nGUClj73iaFCQDQ7m6P6e9HZY7CuKxx2Ni2EZ9VfYarxl4V1d9z3L6uixKJBF6vF4ceemhY18Xa2lrR9zzUw9poNEKtVid9TFnbZwKCWBagUhCCNUhEEwOWRNcws1h7DCQnrq7d/qxWK+x2u9jtT6/Xo7S0FHq9HiqVqtu4eb3ehMaTCFi8WLJ4PO1vCCK6wxNbJhoAZlTMwMa2jfik6hNcPvpySCXxLYTluN67LlosFlitVrHrotCyPjRj3dM5GSusLnbsKS6qsSZYg0Q0MSBI1aI/FkVPIuzxnE5nN6cMjtvX7a+oqAgGgyHqrBdr48VaPER64XkeGYoMZCozkaPO6f8PeuGE4hPw4voXcXDOwXD4HTAoDDHH09v5Fdp1USAYDMJms4kZ68rKStjt9m5dF41GI5RKZcJjSieRxkXCmkgnJKIJ5kiXSwarmWggcnEoLGzq2rykv25/0UIXHKInWDx/humH4duzvo1rG0qpEp+f9jlkkvgumdEKVolEIopkAaHropCxFrouqlSqbhnrgbxOIR5xT8KaSBUkoom0wpKtHKsiure4hG5/glju2u1Pr9cjPz8fw4cPT5oTAEvjRRc8IpnEK6ATRbRdF7s2h+nqmDPQM9GRQsKaSAZszArEfgFLgrknWJ0cQ91D+ur2l5OTk7Juf6yOFUuinkg/yRCIO8w7EOADGJUxKqZ4kkFPXRe9Xq8orM1mM2pra+F2u8O6LhqNxv1GRPcECWsiXkhEE0mhL8G8bds25ObmIiMjQ5yUWJiIhIwvCxcVn88niuX29nZ4PB6sXLkyqd3+CGKw8uL6F/Ft3be4csyVPbb+jpT3t72Pp/94GkcMOQLPHPVMTNtI1dyiUCiQnZ2N7Oxs8TWPx9Nj10WO47BhwwaxHKSvroupIl3zcCTCeuvWrdBoNBg6dCgJ6/0cEtFE3PSXYQYgTioSiQRutxuBQCBpnetiJV2Tnt/v75ZhDu32p9PpYLPZcPjhhzMzZsJYsZT5Ze2ixVo8qYKl7y0cnzafDbvtu7HLviuu7U3NnwoA+LXxV9h9dujkuqjjSef4KJVK5OTkiF0XeZ5HS0sL1q9fD6VSGdZ1UbC1FDLWqXjCFQqLc4vwX5fLBblcLiZeKGO9/8LGFZkYMEQrmHuaOFitPRZI5oUuEAh0a4/tdDqhVCrF9sBDhgwJ6/Zns9nQ1NTEjIBmGdaOK9bi2R/hOA5DtEMAAA2Ohri2VWYsQ4m+BLW2WqysX4lpJdMSEWLa4DgOcrkcMpkMI0aMANB5zLpcLjFj3dDQgG3btiEYDIrNYQRxrdPpkioMWRWdPM/3eH2jUpD9D7oqE72SCMHcE6xOGonOrvbW7U+hUIiCOS8vL6JV9KyJMRYz0QTRGwXaAgBAvaM+7m0dW3gs3tryFpbtXha1iE53Jronup7DHMdBo9GI3UiF9whdF4WFi1u2bAEAccGikLGOx/Wna1ysjZVAb7FRjfX+B4loAkDyBHNPsJqJjkcYhnb7E0Rzb93+FApFVGNHE2pk0DilH1aFj5CJrrfHL6KPKTwGb215CysbVsIT8EApjc2fmSX622cct6/r4pAhnWPJ8zzsdruYsRa6Lgp+16GuILF0XWT1WAKii42E9eCGRPR+SCoFc08MdBHN8zwcDkdYhtlut4PjODHD3Fe3v1jiYm28KBNNDASE47NQVwgAaHW3wulzQiPXxLzNMZljkKvORbOrGb81/YYjhhwRVTysiaFYY+K4fc2aeuq6aLFYsHPnzh67LgrNYfr6XBbHSiDe2EhYDx5IRA9yehLMwr9TIZh7gkVRCPScjQnt9hcqmjmOE5uXFBYWxpxtiRQWx4tFaJyIrnAcB4PCAKPCCIvXgl32XRiZMTLm7Uk4CY4uPBpLdizB8t3LoxLRLJJIsRradbGoqAjAvnUgQsZ6x44dsNvt4jqQ0Brr0K6Lg1lE9wQJ64EJiehBBIuCuSdYFdFCTM3NzeLCmp66/en1emi12pSNHcuTIkv7kbVxYi2eVMHS9w49PsdmjYXFY4Ev6It7u+cPPx9HDzkaB+YcGHU8LI0PkPxzWCqVwmQywWQyia8JjkRC18WGhgax66Igqr1eL1PzSyip2o8krNmHRPQApS/B7PV6sXbtWhx66KGQSqXM+DALsCCiu3b7E/4LALt374bRaEx6t79IYWG8usLKsUQQ/SEcq88d/VzCtllqKEWpoTRh20s3qT6fZTJZj10XBVEt+Fj7fD4sX748rL7aaDSm3akonTdD/QnrhoYG7Nq1CxMnThTfR8I6eZCIHgBEm2GWyWTw+/2QSqVpN8zvCY7jEAwGU/qZQveuUNHs9Xqh1WphMBiQnZ2NsrIyrFu3DgcccABUKlVK4+sP1kQ0wKa4Zy0eggiF1Uw0CzHJZDJkZWUhKysLAFBbW4uWlhaUlpZ267qo1WrDRLVer0+psA4Gg2lNrHQlVFgHg0EEg8GwdSuUsU4eJKIZIxElGcLJHQwGmRXRyRQ7od3+BNHs8Xig0Wig1+uRmZmJkpKSXrtysSbEQidDmuQGFqwdSwQQ5IOQcPELoAZHAz7Y/gEcPgfmTZ6XgMjSA6vzCs/zkEqlPXZdFDLWbW1t2LlzJ7xeL3Q6XVjG2mAwJE3osjpmwL7YqBQkNZCITiPJqmFm3TkhkSK6t25/KpVKzFIUFhZGnKlgMbvK6iTG2lixOk77EywdD0C42Nlt240bf7oRHr8HX53xVdzb9gf9eG/be5BJZLjloFsicvxgWXyxRm/HklKpRG5uLnJzc8X3CcLaYrGgqakJO3bsSGrXRZb3Y2gWuiskrBMPiegUkcpFf8IkwdoFTSBW8RVLt79YYmMVliduVmD1mCfSj0llQp2tDgBiatndlSJ9EQp1hdht3421zWtx1NCjEhFmymF5Xok0aaRSqaBSqZCXlwcgsq6LQsY6lq6LLI+Z0E0xUkhYxweJ6CTAiksGq4IiEhEt+I12bV6iUCjE7EKk3f4SHVuqYXlyYm2sCCKU0ONTJ9chU5mJdk87dtl2YXTm6Li3P7VgKpbsWIJVDasiEtEsii8WYwLii4vj+u+6uHv3bnExebRdF1kdMyAxsZGwjhwS0XHCimAORfiMVC/ei5SuQrVrtz+heYlUKhUzzOXl5dDr9f0a9CcC1oQhq+U5rE2QrN0AsTY+qYK17x0aT5G+CO2edtTZ6hIjovP3iujGVXFvK12wdM6EkmihynG9d10Uaqwj7brIsojuq5wjHkhY9wyJ6Cjgeb6bWE63YO4N1gSFAM/z8Pv98Hq92LZtW1i3PyHDLCz6S0S3v2hhddwANi92LMZEEL1RrC/GX61/YZdtV0K2d3DuwZByUuy270ajoxH52vw+38+q+GIxplSMlXDd0ev14mt9dV0URLXf74fP52Nyf6YyJhLWJKJ7pS/B7HQ6sXHjRkyePJkJwdwTLIjB0Lo0oSTDbrcjGAxCLpdDq9WmpNtfNLAwbl1hYVx6gsW4WNt3RHrpejwU6Tq76NXZ6xKyfZ1ch5EZI7G5fTN+b/kdp2pPTch2UwmLQhBIX1x9dV0UMtY+nw9//vlnWNdFIWMd2nUxHURbE51o+hPWLS0tqKysxKRJk8KSjgNVWJOIRvQZZplMBo/Hk3bD976QSCQpFRQ8z8Ptdoct+rPZbAgGg9DpdGGL/hobGxEIBDB8+PCUxRcpLJ64rJZzAGzFxOK+Y2l8UgGL3zf0uCjWFwNAwjLRADAxdyJaXC3wBDz9vpdFwcpiTABbcXXtutja2ooJEyZAIpGIGeueui4K4jrWhe6xwNK4CYQKa+FpdKgBgqC5Qu35BoqwZlcFJolElGQIApXFg1UgmRlVnud7bF7i9/vF5iW5ubmoqKjosdufRCKBzxd/691kwGImWoC1uFg99vd3eJ6Hz+dLe0aMRUoNpRidMRojMkYkbJuzxs/CjQfcGNH5wPI1gzVYHiue58XyjtCui0KPAsEVZPfu3XC5XNBoNN0y1slKwiWrJjpRCPFFWgrCurAe1CI6WTXMA2FxQSLFYKhgFkSz0O1Pr9cjOzsb5eXl0Gq1ETV3YVmoAiRWo4G1sWItnlQgnJ+hP36/H2q1GkajESaTSbxwp6L5EsvHa4WpAu9Meyeh21RIE+cOlA5YvY6xGhfQe8mEXC4P67oI7Ds/LRYLOjo6eu26mKjzM93lHP3RV3wDUVgPWhG9Zs0a3Hbbbfj888/3Ox9mIPbW2j6fr1vzktBufxkZGSguLu6121+ksbE6dizHxlpcrF7gBjOhi54EwRya6RJuaHU6nfg+oaubz+cTL9iCsO7Pymugk0ohFuSDcPld0Mq1fcbDGqyKVRbHSiCabK9Coei162LX81On04VlrPV6fdSCmNX9KRBtpjxaYS2RSKBQKFI2BoNWRPv9fmzfvj0pi/6EbbHaVhuITAwK3f5CRbPL5RK7/RkMhqi6/SUytnTBYmwsT4gsjRVr+y7e/SasMwh9PGy32yGRSMTMVX5+PgwGQ7eaS5lMFnbhFhb5ms1mWCwW1NbWwmq1QiaTiYJaENeprN9MF4FgAL6gDyqZKiHb+7L6Szzz5zM4eujRuG/yfX2+l+XzmSVYzqjGK1R76roonOs9dV3s2hymr3EJBoPMjhuQmP3am7AWqg9SyaAV0XK5HD6fLymp/T4XegX94Mx1kDgawTnb4C85ElCZOv+ufSekTevBqzPA64ciaCoGkvQosOvCwkAgIDYv6drtT7CWKygo6PGCnGhYEzuhsBgbqwsLSQwkFr/fH1aSYbFY4Pf7xezU0KFDYTQaY3Ky4bh9zScEj9xgMAir1SoK6/r6ejidTvExsyCuY8mGsUJP58wrG17BW1vewmWjLsOsCbMS8jkmpQlmjxnrmtf1Gw9r5w2LMQmwGlcyPKzVajXUanW3rovCU6f6+nps2bIFPM+HCWuj0QitVht2nWD5fE2mj3U6rpGDVkQrlUp4vd6kbDu0nINztEBatwLSXasgbVwPSXsluJBV2o4LP0dwyEQAgKxmGVQ/zhd/x3NS8KZiBPIPQmDoZPgrTgKvzY07vmAwiGAwiNbWVjQ3N8Nms8HhcEAmk4nNS/Ly8sTmJamGRaEqwGpsrMZFxAbP83A4HGFlGcLKfoPBAJPJhJKSEuh0uqQ97ZJIJGGOA0Bn/aYgqpuamrB9+3YEg8GwTLXRaEyLh3usdI1TK9fCF/SJLcATwYE5B0LCSbDbvhtNzibkafIStu1kw6qIDgaDzDpgpcrDWrjxLSgoED9XaExmsViwa9cubNq0CRzHiWUgDocDWq2W2f2abJGf6u/M5hGaAIRMdDIILeeQb1oC5YqHw37Py1QI6oeC12QD3L6DhdfmwF90GDhXOySWOnA+J7iOakg6qiHf8gmcWRUICCLa7wakSqCfA0Lo9hdakmG328HzPCwWC7KyslBWVpaybn+RwLIgZGF8eoO1MWNtP7K474Tx8Xg84oVPOE8BiBml8vJyJjxmFQpFt8fMDodDFNZVVVWw2+1QKBSioDaZTKLbAEvHQ2+U6EsAALW22oRtUyfXYYRpBLZ2bMX61vU4sfjEHt/HorBheZ+xNlbAvvFKR2wcx0Gn00Gn04U9UQq9IbfZbGhvb0dDQ0M3qz0Wbn5T4R5CCwsTgEKhSGwmmuchrf0Jit9fh2/8heA4VaffYckRkG2fgEDRVASGTEIgZzR4Y1GYeBbwjzwN/pGnidvj7I2QtG2DdM9aSBt+RyDvgH3xr1oEWeU38E24GL4x5wLqDPA8D6fT2a15Ccft6/ZXXFwMg8GAjRs3ori4WHw0xBKsia+usBhbuie+3mBtrFiIR2jM4PV6UVdXh+3bt8Pj8Yj2j/n5+RgxYkTYI1hWCb1oFxYWAthXdmKxWGA2m1FbWwuPxwO9Xo9AIACtVgu73c7s9xO8omtttQjyQUh6mKtjYUL2hH5FNKuwuJ9YvOEA0iuie0IikYR1XRQWKGZnZ4vnqXDzG9p1URDYKlVi1gVECuvlJtEyqEW0sHIzrkdCfBCybV9CsfoZSNu2d74kV0NiuKizbCJvApyXfB39djkOvL4AAX0BAqXHdPlMHvJtX0JiqYV02YNQ/PQwGvJPwNasaXAqssUTRlj019MK+1Q3W4kGlkU0y7GxFhcrF5F00rVuUbixlcvlCAQCUKlUKCsrS6ovbKqRyWTIzMxEZmam+Jrb7YbZbEZlZSVsNhtWrVoFjuO6lYGkOtPekxAbqhsKKSeFJ+BBs7O531bdkTIhawIW71iM9a3ro4on3bAYE8B2XAC7858gUoVzr6eui0K5lt1uh1Kp7JaxViiSZ9vIuo91tAyOWb0HhMk6ns6C0l2/QLlsAaTNGwEAvFwL37jz4T3oCnAbdiVM1PTU7c85bD4KWn5Gecdy6O07MbT+vxjS+B18Y86Fd+Kt4PUFfW6TZTFIsUUPq3GxFFMqJmahmUKoaA4Gg92eBKlUKvz222/Izc0NE5uDFZVKhfz8fLS0tECtVqO8vBx2u10sA9m2bRscDkeYd7VQBpLqrJRMIkOhrhC1tlrU2moTJ6KzJwAAtnZshdvvTpjzR7JhWayyGhfAtojuKbauXReBfQ5dgrAWFhcLXRdDxXWiDAeoJnqAIOxwoSlItCh+fgzKX/8JAOAVOngP+Tu8B18FKA0AAIlkT8wCQqiP7Kvbn6GiAlrtiQDHwbl7FRSrn4Os7mcoNn4Ajg/AffKiPj+DMtGxwWpsLE7YLMaUyH0neDKHimaXywW1Wt3Nk7mniwKL45MqJBKJaJMp4PP5wrxxq6qq4Pf7w7yrTSZTTO4jvdHb8VCsLxZF9JT8KQn5rAJtAY4ZegxKDaXwBr1QobuIHmyPspMJiejYiMbiTiaTISMjo8eui8Kct2vXroR2XaRM9ABBeBwR6+LCYOYwAIB3wiXwHn4HeE14NinSZiZer7db85Ku3f7Kysr6XIUfKDoMrqLDIKlfB+XKJ+A57LaQX/oAafc7RFbFIECxxQqrcQ0GunoyC+drqBjszZOZ2Edfx6hcLu/Xu3rDhg1h3tXCf+MZ854u2JPzJkMpVWKIdkjM2+3pc5488smEbS9VsCxWWY0LALM3Q/GOW29dFwVR3dHRgZqaGnGdR6iojqTr4mC7kSQR3Qv+0efAkTUSwbzxPf6+J7HVX7c/k8mE4uJi6HS62O7ghkyEa8YHYa+pvrkVCPrhOW4heM2+gz7WjoWpgGWhyiosXkwG8n7s6slstVrDOoYNGTIEBoNh0Hf0Syc9eVcLdZuCsN6zZw9cLhe0Wm2YsO6v4UR/XDjyQlw48sJEfZWIYVEYshgTwG7SQLiusjhmQHL2p0KhQE5ODnJycsTXQpvDtLa2oqqqSpxDQ8tAuvrMUyZ6gCCVSiGVSqNy6ODsTeBVRkCmAjiuVwENdJ5A/XX7Gzp0aFIXFHEdOyHb+jk4PgBp7Qp4TnwU/hHTxfhYnYQotuhhNS6W6G2MunqrCp7MwoIa4eY2nlb2vUH7LDp6qtsUWiSbzWbRu5rnedFPW9iHPbkMpGP8bV4bNrVvwpS8KQNCLLB6jJK4j41UiVSVSgWVStWt66Iwx/bWddHj8STVEYRqohOIQqGIKhMt//01yDd/AveJjyEw7ATx9dBuf4JodrlcqK2tFe+4CgoKoNfrk7qqtSt8RjmcF/8fVN/cCmnLFqj/7+/wHnAZPMfMZ1p0UWyxwVpcrI6VsOZAEM2hnswGg4EZT+bBSqIvYj21SBa8q81mM6qqqmCz2aBUKkUBLszLfcUT5INocjYhR50DmSQxl0JfwIeTPz8ZnoAHn03/DIX6wrDfsyoMWYyJ1bES4mIxNiB95RKhXRfz8/PFWAT3IuHJktlsBgCYzeawjDWrlpj9MahFtEwmiyoTLbHWQ+Jogq9hMxpUo0XR3LXbX25uLiorKzFs2LCwxxvpIJg3Ac6Lv4Lil6egXPMCFH/9G9L6tdCMvg28bkRaY+sNVsUXwG5sA3FySQXCDa5g2eR0OtHc3Cwu0s3LyxswnsxEZPTlXS0I65qaGni9XvA8jx07diA7OxsmkynsOJj+xXS0uFrwwckfoMJUkZDY5FI5RphGYEPbBqxvW99NRLMI62KVNViNS4Cl+Hrqurh+/Xpx3UNvXRcFcT0QyukGrYjmOK7fhivBYDCseUmezYciAB3Vf6JZeyQMBkOv3f5qamrYEVtSBbxH3o1A0VSovr4J0pbNGGW/G9un/SfdkfUIq0IVYDc2VuNKZUy9eTILDQQUCgVkMhkmTJgwaDyZicjo6l0tPFpevnw5pFIp9uzZg82bN4v+uSaTCRnyDLS4WlBrq02YiAY6re42tG3AhtYNOLX01LDfsSRwBFiMSYDFuFgeL2BgxKdUKjFkyJAeuy5aLBbU1NTAarVCKpUy2XUxlEF9pQkt5wgGg3C5XH12+5MNPx6o/xrF7s3IOmA80McjPhYX7gVKj4Hzsm+g+u/NqC44AwEktr4zUbAqCAE2J20B1sYs2WMlWC2FlmYEAgGxvi7Uk5njONTV1cFisZCAJsRHyxzHYdiwYdBoNAgGg6InrtlshsHXWe6xfP1yZLdnh7Uwj+dx+JjMMQCALR1buv2OtXMYYDMmgF0xyGpcAtFY3KWDnspNQrsuCk+XQs9Xq9Uqdl2Uy+XdMtZCjXU6juVBebXheR6VlZXwer14/PHH0dzcjJ07d+Ktt95CZmZm793+fEPA/7oQEutuyLZ8Cv/YGb1+BqtCkNflw3Xuf2Dfvh1SwYqneXOnZZ+MjRpQVscOYDc2ViftRI1VqCez8ON0OkVP5szMTNEKsrcLBGtjxFo8+zuhXdyKi4txiPQQrN2wFl5dp+VoV+/q0EWL0XhXCyJ6e8d2+IP+bvXWLB4XLMbEqlhlNS4B1uOLdOFj6Pkq0F/XRb1ej2HDhiUz/G4MChHd0tKCn376CWvXrhV/HA4HOI6D2+3GeeedhylTpuDggw/uO0sl18AzeTZUPz0E5YpH4S8/AVBn9PhWiUTCXCZaZO+iB57nIWmrhGbxuQjkTYDrjNcAhS7d0TErVAVYjI3FMYt1ouZ5Xlz8J2QZunoy5+bmwmAwpHShLhE/rB2jfcVTqi8FADR5m1BRUSG+3+l0itlqwbtaLpeH+Vb35V1dqCuEXq6HzWdDpaUSozJGJfx7JRJWfXtZFYOsxiUwEOKL9XjrretiaPIl0Q5L/TEoRPTSpUvxyCOP4JBDDsG5556LRx99FOPGjcNBBx2EG264ASeffHLE2/IdeDnkGz+EtL0Sij/fhnfqzT2+j0VRE4og8jlHMxAMQFb3MzSLz4fr7He6NY5JNSyPHcuxsRhXJDGFtpYN9WQWjPoT6cnM2hixFs/+SG/HVImhBABQZ6sLe69Wq4VWqw3zrhZu+MxmM3bv3g2XyyX64Xb1ruY4DqMzR2NN0xpsad8SJqJZFzgswepYse5zzHo5R6LHL3Q9RCAQYNvi7qWXXsJLL72EmpoaAMDYsWMxf/58nHLKKQA6zbdvvfVWfPDBB/B4PJg2bRpefPFF5OXliduoq6vDrFmz8OOPP0Kn02HmzJl45JFHwjLEy5Ytwy233IJNmzahqKgI8+bNw+WXX95rXOeffz7OP//8bq/L5fLom63I1XCf8iyku3+Fb+LVvb6N5bbawD4xGCg+HM7zFkP9yaWQNv0F9QdnwXXu++ANQ9MeG4uwGhuLk3ZPMYV6Mocu/lMqleIj8mR5MhNswOKx2hNFuiIAgMVrgdljhklp6vF9Uqm0W2vkUO/qxsZGbNu2DQDEY/yE7BNwTMExmJIX3lKcRWHIYkwAu3EBbB/jLI8bwO6Tj1iJSkQXFhbi0UcfxfDhw8HzPN5++22cccYZ+OOPPzB27FjMnTsXX331FZYsWQKj0Yg5c+bg7LPPxsqVKwF03tFPnz4d+fn5+OWXX9DQ0IDLLrsMcrkcDz/8MACguroa06dPx3XXXYf33nsPP/zwA66++moUFBRg2rRpUX25aH2iBYL5ByCYf0Cf72FxYWEoofEF8w+A6/xPoP74Ikg7qqD54Cw4z1sC3lSS9Dj4QACBxkb4d+2Cv24X/I0N8DS3IK+2Fk2vvQbe6QLv8wF+P3i/H5xMBk6lAqdUgtNqIM3KgjQ7G5KsLMiGDIGstBSy4mJI1OqkxMuyiGYxLp/Ph5aWljDRLDTCMBgMKC0thdFoTIknM8sXDiL19He+qGQqnFV+FoxKY9TnVk/e1YLVotlsRq4lF3a7Hdsbt6PJ2CSWgbB4DrMquliNi/VML6vjJpDMTH46vndUIvq0004L+/dDDz2El156CatXr0ZhYSFef/11vP/++zjuuOMAAG+++SZGjx6N1atX49BDD8W3336LzZs34/vvv0deXh4OPPBALFy4EHfeeSceeOABKBQKvPzyyygrK8NTTz0FABg9ejR+/vlnLFq0KCYRHY1PdI/4XFB9dwd8Y89HoOQI8WVWRY1A1/iCWRVwXvAZ1B9d2CmkF58H5wWfJDwj7a+vh/ev9fBu2Qzv5i3wbdsG3u3u9j4tgNgasncizc+HfNQoKMaNhWLsWChGj4ZEq41ji52wPPmk+3gLbTokNDGxWCyiJ3Nubi4qKiqg1WrTdpFJ9xgR7NHXOX3v5HsT9hld3QX8fr+4AKqjowM1NTXweDwwm81wOp2isE63hzmr5wyrYpDVuAQGgshPZnxMl3OEEggEsGTJEjgcDkydOhXr1q2Dz+fDCSfs6/Q3atQoFBcXY9WqVTj00EOxatUqjB8/Pqy8Y9q0aZg1axY2bdqEgw46CKtWrQrbhvCem2++OeoY5XJ53CJa8etzkG/5FLId/4XrnHcRKDwUAOMLC9GzyOcNQ+A6bzE0i2cgqMsH38uiyWgIulzwrF4N96+/wv3rGgR27478jyUScBoNOIUCnEwGyKTgfX7wbjd4jwfoY98FGhsRaGyEe9myzhekUijGjYPq0EOhmnoo5KNGgYuhXIDVm6NUTwyCJ3OovZzgySxkmR0OB4YOHSqKBoJg8dxJFzttO7G+Yz2m5E3BweUHg+d5rFu3DgqFAlKpVGwyEepdLQjrlHa+ZVQUsnossTpeAqzHx7rIj5aoRfSGDRswdepUuN1u6HQ6fPrppxgzZgz+/PNPKBSKsFWTAJCXl4fGxkYAQGNjY5iAFn4v/K6v9witttVRPMZPhIj2HnozpM0bIav+EepPZnYK6aGTmBVbAr3VbPO6PDjP/wi8Qg/IYyuJCLpccK9YAdf3P8D9yy+dgrcXpEOGQD5iOGTFxZAVFkFWOBQ+nQ7rKitx9PTp4Po4mXi3G4H2dgRaWxFobe0sCamphb+2Fr6dO8E7HPveHAjA+9df8P71F6yvvAKJyQT1McdAfdKJUB58cFSCmtX9msy4unoyW61W+P1+0UO9qKiom9G92Wxmqq6ZtQsHa/Hsb0RyvvA8jxZXC6xea0IbrgDA8+ufxy8Nv+DOiXeiSF8EjuMglUrFMicA3byrGxoa4HQ6odFowoS1Xq8fVNm7SGBVDLIalwDFl1qiFtEjR47En3/+CYvFgo8++ggzZ87E8uXLkxFb3CgUCvj9/vg2IlPCddq/oP7sSsjqVkD90UVwnfE6JJJ8ZsUW0HdGldfmhvyDh3zDe/BXnAJek9XnNv27d8O+eDEc//cleLu9+xtkMijGj4dq0iQoxo2FfPRoSLvcVAEA5/Eg2NAA9HMicSpVZx303lXyYd8hGIS/pgbejZvg3bQRnnW/w19bK/4+aDbD8dlncHz2GSSZmVAffzy0p58Gxai+7aZYvTlKZFyh3aFCPZlVKhWMRiMyMzNRWloa0YWbxbFiCRqf9NPXBfvXpl8xZ9kclBnKsOTUJQn93DGZY/BLwy/Y3L5ZfK2rgOjqXQ0AXq9XLANpaWlBZWWl2GQoNFsdjXd1X7AsaliMi+XxAtiPL5k10QOi2YpCoRA9NSdOnIjffvsNzz77LM4//3x4vV6YzeawbHRTUxPy8/MBAPn5+VizZk3Y9pqamsTfCf8VXgt9j8FgiCoLLcQad000AMjVcJ35BtRfXANZzTKoP7scpoPvgzn/8Pi3nSQiFV2KNc9D+fNjCGz4D5wzFgOK7nXFQZsN1lf+BftHHwGBQNjvJBkZUB97DFRHHgnlwQdDotFEFBsQ38nOSSSQl5dDXl4O7emdtfr+hga4V62Ge9UqeFavFmuxg+3tcCxZAseSJZCPHgXtWWdDc9KJPdZQsyyiY8XtdoeVZdhsNnAcJ3Z9itWTmcWJmsV9t7/B4nHRGyX6zsXVu+y7emyMEg+jM0cDALa07+tcGMmcp1AokJOTg5ycHPFvnE4nzGYzLBYLqqurYbPZwryrBWEdS7dOVs8ZVsUgq3EBnbGx7n7BenzREveMEQwG4fF4MHHiRMjlcvzwww8455xzAADbtm1DXV0dpk6dCgCYOnUqHnroITQ3N4urmr/77jsYDAaMGTNGfM/XX38d9hnfffeduI1oiMnirteNdQpp1VdzIN/xNYr/ehKWrAMTs+0kEKl7iL/iFMjX/gvSxr+g/uJauM56E5DuE1O+6mq03nwzAvUN+/5IqYTmpJOgOfUUKA86KOra41ARnUhkBQXQnX0WdGeftbfk5Gc4v/sO7l9+EeurfVu2wrzlYViefRbas8+C/oILIM3dl5ln2XUlkvESPG1DRbPX64VOp4PBYEBBQQFGjRqVEE/mSGNKFaxe2Ij0IBybfR0XeZo8KKVKeAIeNDgaUKQvStjnC50Ld1p3wu13QyVTxbSdUO/qoUM7F4IL57kgrHft2iWWWIYKa51OF9F5weK5w6pYZTUuILJjPt2w7rMdLVGJ6LvvvhunnHIKiouLYbPZ8P7772PZsmX45ptvYDQacdVVV+GWW25BZmYmDAYDbrjhBkydOhWHHtq5GO+kk07CmDFjcOmll+Lxxx9HY2Mj5s2bh9mzZ4sWWNdddx2ef/553HHHHbjyyiuxdOlSLF68GF999VXUXy5hmWgBqQLuv70Ifun9qDUdCr8ktkkxFUSaUQ1mVcB19tvQLD4fstrlUP1vLtyn/hPgJAi0t6P1xpsQ2FuvzimV0F12KXTnnddjmUa0JFOASdRqaE46EZqTTkTQbofz2+/g+OxT+LZs7fxshwP2d96F/T8fQHPyydBfegnk5eXMntw9LhQN6a4W6smsUChgNBphMBhQWFgIg8GQlNplFseKJVFPsI+Ek6BYX4wd5h2otdUmVETnqHOQqcxEu6cdlZZKjMsalzAB1pt3tdlsFmurt27tnOtCG8II6xpCYVUUUlzRMxBEdDIz0cxb3DU3N+Oyyy5DQ0MDjEYjJkyYgG+++QYnnngiAGDRokWQSCQ455xzwpqtCEilUnz55ZeYNWsWpk6dCq1Wi5kzZ2LBggXie8rKyvDVV19h7ty5ePbZZ1FYWIjXXnstans7IHaf6D6RyOA54SG4qqvBu1wAAK59J/iMUoBj5xFFNGUJwYKD4TrjVag/vRzyrZ8jqB8C71H3wvbGm6KAlg8fjqynnoSsoCAhsQGpEzwSnU7MUHu3bIH944/h/Pq/wF5/aueXX8L51VfQTJsGnDwNfFbfteHpgOM4+P1+tLa2holmnueh1+thNBpRWloKg8HQ7SKZTEi0EgOdUBF9BI7o/w+iYETGCKxuXI0d5h0YlzUuodvuilKpRF5enrgwX/CuFrLVO3bsgN1uh0qlEgW1yWRi+skbi2KQ5UyqsC9ZLpdItjsH0xZ3r7/+ep+/V6lUeOGFF/DCCy/0+p6SkpJu5RpdOeaYY/DHH39EE1qPJDwTHYIgUiXNm6D58Bz4h50I97Snwkoh0km0HRUDpcfAPe0pqP97E5S/vYRg1gg4v/++85dKJbKfWRRW9hAPqRbRoShGj0bmvHkwXncd7IsXw/7Rx+BtNoDn4fzf/6D49ltwRx4J/223Qra3Tj8dCKv2Q8syOjo6oNFomPFkZvVCQqQPlm6qIo1FqIuutdb2887oGWHqFNHbO7aLMaXqvAn1ri4q6sywC97VZrMZHR0dqK6uhtfrhc1mg9PpFIV1osq94oFVEc1qXMDAyUSzHF+0JG4VBYPIZLLEZ6L3IvhES9qrAb8b8i2fgnO0wnX6vwClPimfGQ2xLJDzjzkHno6dUPz6T8BpRrCtDQCgGD48YQJaiA1I7wVXmp0N4/XXQ3/55XB8/DFsb/8bQYsFXDAIxfLlaFy9GvpLLoF+5mVJ644o0NWT2Wq1wmazhXkya7Va5OXliSv4ie6wNjGzFs/+Sn/7QRDRdba6hH/26eWn47CCwzDcNDzh244FmUyGrKwsZO192sbzPH777TfR6UPwrpZKpd3KQFLpXS3ExuI5xPLCuIEgopOVyRcWVaaaQS2ilUolLBZLUrYtiFT/qNPhUhmg/uJayOpWQPPhOXCd/W/wuvRlMYX4YnlM5z3sVviHnYhg/oHgDB+Ct1rh371bbMmdqNgANrJWEo0G+ksvhfass2D/zwewvPMOOJcL8Hhge/11OP/v/2C86UaoTzwxYSe+z+cTvWF78mQW6phDLaysVitTnswAm04mFA8RLWOzxuLSUZeKbhqJpNRQilJDqfhv1oQhx3GQSCQwmUxitlp4CiaUgYR6V4eWgSTbu5q1sRJgNS5gXzkHq/ENBPeQaBnUIjqh7hxdCC2XCJQeA+f5H0H9yWWQtmyG5j9nwnX2uwhmJda8PxpiFjicBMH8AwEAqkMOgWvpUgTNZjj/9z9o//a3hMXGmgCT6HQwXHM1OqYeCt8HH0L1/fdAIIBAczPa750HxZIlyLjzTsgrotungiezUJIR6slsMBhET2adTtevSGZpvAiiN1i5gEealSs1lOKmA29KRUhM0nVeCfWuFhC8q81mM1paWrBjxw4Eg0HRJlNwAwltxpTouFiBZREtxMZyfAA7c0QiGNQiWqlUJk1Ed830BvMmwHnh59B8cgkkHdXQfHAmnBd8imBWeh7jJUKk6k87Bq6lSwEA1pdfgfqYYyDR6RIRHnMiWoAzGOC+4HyUXH01LIsWddrjAfD++ReaLrkU+ssvh+HKK8D18mjT4/GEZZitVqvoyWwwGFBRUTFoPJlZ24csjhFBrGpYhTVNa3DkkCOZFWCxeFcLDZvMZnOYd3VotjpW72rhM1gcK1bjAtiODdgnoikTPUBIZia6R8sxUwmcF3wO9WczwSsMCJpKk/LZkRDtwsKeUA3Lg7bAC0eDAoGmJnQ8+igyFy5MyEnKmgATEOKSl5Yg+9ln4Fq5Epann4a/bhcQCMD2+utw/fADMubdC9m4cd1aZXs8HtGTOT8/HyNGjIBWq417zFgdL9agMSJiwewxo9pSjWx1dkJt7gBg6a6l+HTnp5BL5JiIiQnddiKIRXhxHAedTgedTheRd3WosI7Uu1r4HNZgWaiy7BwCJN89JB1Z+EEvopPlziEsLOwKr8ns7PzHBwCpfO+LfL8trhNNIkRXsOAgZN58LVzz3kDQJ4Hrm29hKymF4ZqrmYgvWYTGpT78cKgOOQTWN96A7e1/A4EA/DU1aL7mWpiPOALW0/4GQ3a2WMus1+tjzrxEExcrsBgTQQDRHZsvrn8Rn1R9gqvGXIVZE2YlNI4RGSMAANvN23Gw4mDmRE4yvavdbreYre7qXR0qrIU+EaExsSpWWY0LYHvRI0DlHAOOpPhE76VPESgPcXPgeSiXzgOvNMB7+B0pE9OJ6rzHHzsLuWf/gsYPOy2arP/6F6R5udCefnrc8bEowIS4vF5veKvssWMhu+lGFHzyKeQ1NeB4HhkrViCnoQFZCxdAXlKS9LhYg7V9yOIYEeknkuNCWPxXY6tJ+OcLzhzbO7aDz2XnfEkFKpUKKpVK9K4W1ogITWF6867W6zsdrlg8p1kX0azGBgwMH+toIREdI5GWS0jr10Lx59udf2NvhPvEx/dlqJNIwgQOx0F206vI3j0NrSvdAICOhx8Bp1ZDs7fJTlrjSwDBYBB2ux0WiwWNjY1wOBz4+eefRU/mnJycTk/mI44Ad955nS4eL70EeL3wV1ai6bKZMM6+HroLLwSXxMdUrIwXy7A0RixfzJIFS+MfDYKIrrZWJ3zbgohudjXDHrAzd1ykUnhJJJI+vavb29tRXV0tXrd37NiBzMxMZryrAbaF6kAp52A5xmgZ9CI6mc1WIsn0BoZOgvukJ6D87i7INy0B52iG67RXAEViFuj1FV/CLmhyNVT3v42Mm85CxxYFEAigfd594L1eaKdPT398UcDzvPiIMdSTWfBFVSqV4HkeBx10EOTynm929JdcDNWhU9B+33z4KisBnw+WZ56Fe/VqZC5cmJCW6L3FzhKDaSJMFqzts/2JaB4dl+pLAQC7bLvgD/ohkyTu0qiVa1GkK8Iu+y7s8e7BeIxP2LYTQbpFYU/e1UIiQyKRoK6uDhs3boRMJgsrA0mHdzWQ/I578ZDufdkfrMcXCzJgcH4xIPULC3vDN/5CBLW5UP/fdZDVLIfmwxlwnf02eG3iGph0JRELC8PIKINh3iMIPPoErBvsQDCIjgceBO92Q3fOOTFtMhUCw+/3h5VlCJ7MOp0ORqOxmydzQ0MDGhsbexXQAvKKCuS+9SYsL70M+3vvAQA8q39F88WXIPPRR6Acn9gLJauZaJZiGoxz2EBkIO6HfG0+lFIlPAEPGhwNCV9cONw0HLvsu7Dbu5u58WHpHAY6jx+VSgUAGDFiBORyOYLBoDiHm81m1NfXh3lXC8I62d7VAHvjFcpAqIlmOb5YkHk8Hrz44ouYO3duumNJOEqlMuULC3sjUH48nOcthvrTmZA2b4DmP2fCefa74DPLkxJfMkRXYMQp0L96EoKLFsH+4WIAgPnRxxBobobhuuuiujgkI75QT2bhx+FwiJ7MGRkZEXkyRxoXp1TCdPNNUE2divb58xFsb0eguRkt11wL4003QXfB+cxdMBPJYP5uxP6FhJOgRF+C7ebtqLHWJFxEj8gYgaW7l6LR18jkecNaTF2fIggNYUwmE0r2rj8J9a5uamrC9u3bRe/qUGGdSO9qITbWxktgIJRzDDoR7XQ6ceutt+L666/vtkJ2oMNKJlogWHBQp5f0x5eAs+6CpKMKgQEkogGAk0phvPVWcEoVbP/+NwDA9sabCNQ3IOO+eb36J3clEZlyj8cTlmG22WwAIHoyl5eXR/3IL5ZxU02ZjLx330HbPffA++dfQCAAy9NPw7v+L2TMmweJVhvV9hIVVypgLSbW4iHSR7ROACWGvSLaVoMjcWRCYzl72Nk4rew07Ph9R0K3mwhYFIWR7Lv+vKt37twJm80GhULRrQwkHgclnueZ6x4rwOK+DCUV8aXc4k6hUIhic7CJaBYWFnaFzyiD88LPIN3zKwLDYl+Y1x+C6ErGQctxHHIndEBzkAVNfxoBHnD+738ItLQg6/HHIDEYIo4vUgKBAGw2W5ho9ng80Gq1CfVkjlWsSnNykPPSS7C8+CLs77wLAHB9/wP8NbXIeupJyIYMiTkmIS7WYC0m1uLZHxnINzF/K/0bJuZMxMTcxHs5Z6oyAQA7wKaIZo1YrNB68662WCyisK6rq4Pb7YZerw8T1tF4V7MsVFkvlxiUmWihLCFZZQ/pJNkWd7FayPHaHPhH7GuhzVl2Qbp7NfxjZyQqPPFATdYJHzSVIXOkAzIdUP9rDnivF55169B89TXIXvQ0ZHsnsd7oS6zyPA+n0xlWy+xwOCCXy8Usc7I8mePJ+HIyGUw33gjlAQeg/YEHwdvt8FVWovnyK5D1+GNQHnhgWuJKJizGRBCxcPiQw1PyOSwKMNZiStS8IpVKkZmZiczMTPE1t9stNoTZs2cPtmzZAgDdOi32llRkXUSzGhvAfrlJLMiUSiUkEsmgFdFerzdp2diEnOgeG9QfXwJpRxU85lp4D7s1IV7SwvdNlsjxTbgY0trlMOC/kJyWiz0/mBA0m+GvrkbzzMuR+dijUE3sPaMTOn4+n69bq+xgMAi9Xg+DwYCSkhIYDIaE17b1Fle8qI8+Grlvvom2W2+Bv24Xgh0daJl1PTLuvhva00+LebusCVYWJ0OWxojF8UkFrHxv1ho7fFr1Kb5o/QIXZF+AaTnT0h2OCMvCKxlxqVQq5OfnIz8/H8A+i1NBWG/btg0OhwNqtTpMVBsMBkilUqbHi3WRyvLYxYrMbrdDKpUOahGdDBLmfqHQwT/yb5CufhbK1c+AszfAc+JjQJwWS8kW0eA4uE98HNL6ddA5qlF43cWo/89O+GtrEbRY0Dp7Dky339bNuUOYsHw+H+rq6lBZWQmXyyV6MmdnZ6O8vBw6nS4tj30SdXMkLy3pFNJ33wPPmjWA34+OhQvhq66G8YY5UftJszrxsCRaiU54nh+U5XmpYGPbRlRbqnFs0bHQyRNrQ7q+dT02uDfgQOuBmAYS0X2RSj9hiUQiPuEUEBI7FosFbW1tqKqqgt/vh8FggN/vh9/vh8PhYMa7WoD1co5kxpeua5Hs7rvvhtvtRiAQSEsAyUShUMDv9ydl2wmrOeY4eA+/HbyuAMof7oFi44fgXB1wT38hvPNhDPEBST6w1Blwn/QENJ/OhKbmfRQ89G80P/8pPKtXA4EAzI8+BtfWrQhcfjlsTicsFgvsdrt4Eun1epSWlsJgMPRrKZdKEjVmEoMB2c8+A/OiRXAsXgIAsL/7LgItzcicPz/iRZgAm+UcLF08APbiAVIzsQcCAbHsSfjx+/1h9l8ZGRlR1X0OBmIZ+7tW3oVGZyOK9EU4MOfAhMYzzDgMAFDjqEnodgcr6TxW5XI5srOzkZ2dDaDzWHK5XDCbzaisrITFYsHPP/8MmUzWrQwkndcyFm+IQhmUNdHLli0DMDgzSslutgIk7qD1HXAJeG0OVF9eD3nVt+A+uQSuM98ElP0v0usrvkS0/u6LQPnx8I47H4qNH0K94l5I7lmM4KtvQPJ/XwIAPJ99Ds+mzQjeMhdDhw6F0WiEWq3GH3/8gZycHNFgnxUSLVY5mQwZt98OeVkZzE88CQSDcH3zLVrb2pH1xOOQ6CLPdrF4jrIWE2vxJAOPxxMmmG02G+RyOYxGIzIyMlBWVgadTgebzQaz2YzGxkZs27YNHMeFiep4XQoGAtHOzaWGUjQ6G1FjrUmaiK611yZ0u/HCovBiLSaO46DRaKDRaNDc3Ayj0YiSkhJYrdaw+mqXywWtViuKapPJlNKnqvt7OUc6vrvs22+/xTPPPAONRpPyD082ybS4C124lyj8FdPgOuddqD+7ErLdv0K19D64T3k2pm0lOxMdaidkL7gQI2rWYmvGKWjfWQvj2WfDUFIKySuvAD4flDt2QLNwIbKfegryggIxPhYFT7Li0p17LqS5eWi/5x7wHg88a9ei5dprkf3ss5DutWhKR1zxwPJkPVjgeV5sSS/8uN3usGZBPXnhymSyMPuvYDAoiuqOjg7s3r0bHo8Her1eFNUmkwlqdexPvwYDpYZSrG5cjVpb4oWuIKJ3O3fDG/BCIU19t72eYE2wAmzGJCDEFupdLeD1ekVRHepdLVjrCe8XmskkIzaWM72pyESn3OJu6NCheOKJJ1L6oakiFZnoYDCYUM/IQNFUOM9bAuXS++A5al7M2+E4LqHCS/BkFh4bC57MnVZBGWg9awnKjUaMFuowx42D5+CD0Hb7HQi2tSFQ34DmK69C5oIHoT7mGCZFIZBcsao+6khkv/Qi2ubegqDFAt+OSjRfdTWyn3sW8tLSfv+exfFiKSZWL7rR4Pf7wwSz1WoFALGBREFBAQwGQ9QZZIlEIl7IhWYVwuNps9mM6upq2Gw2KJXKsGx1tB3gWDoeYkFo/11jrUn4tnPUOVBzarh4F2pttRhuGp7wz4gFFvcZyyK6LyGoUCiQm5uL3NzObsRCskkQ1lVVVWHnmSCsYzmne4LlcQPYz5THggwYnHUqQOcBHQgEEi50geRkogWCeePguuCTcJcOVwegzohqO7EKwlBPZkE0h3oy5+Xl9e3J7OoApHIox49H3r/fRuttt8O3ZQt4lwttt98Bw9//Dm7iwUxO3skW98rx45Hz2mtovelGBOobEGhoQMu1f0f2C89DMbz3iyqLNx0sxsQS/V0seJ6H2+0OE812ux0qlQpGoxE5OTmoqKhIWi2zWq2GWq1Gwd6nQ4KAN5vNaG1tRWVlJXieFy/0QraapfULfRHLsVlqKAWQHBHNcRzyZfmo9lWjylzFjIgG2LsBZVkMRnNchXpXFxYWAug8z0LLQGpra8WnQqHZ6lh6HrA8bgD7mfJYkAEYdF9KQFid7vV6E/6YMhXuFwKyTUugWvYAXGe8iUDh5Cg20b/IERZMhFrM2e12yGQy0dZnyJAhEd8pS6u+g+qb2+AfdTo8xy2ENDcXuf96Be3/eAiub74BAFhfeQX6iRPB33pLxN8lVaRiApKXliD39dfRetPN8G3f3mmBd90s5Dz3LBRjx6YtrlhgTUSzFk8oQklFqGj2+XzixbO0tLRPf9pkI5PJkJWVJa5TEEpJhBKQLVu2wOl0QqfThWWrWXMoCCWWmmgA2OPYk5SSizxZHvYE9sDsNSd0u/HAovBiMSaBeIWgTCbr1bvabDZjz5492Lx5c9jTI+F866/7LusJUZb3a6wM6lUlwgGXTBGd7IV74IOQb1oMzm2B+uML4frbKwgMOyGiP+2pIYzP5wvr+id4Mgs1lsXFxfF5MstUkLjaIP/jLfhGnYngkIngVCpkLlwA2/AKWF94EeB5KNatA3/3PfA/+0y/jVlSTSqEmDQ7Gzkvv4TWm26Cd8NG8FYrWmbPQfaip6E86KC0xRUNrE2GrMUj2DkKq/ltNhukUql4YSwqKoJer2e2hTDHcdDr9dDr9SgqKgLQWdYlXOx3796NzZs3iw4FJpMJPp+PmeM0ljiyVFnQyXWw++zYZd8l1jEnium66XjwqAeRlcHOgmoWhQ2LMQkkI7a+vKvNZnOYd3XXMpBQ0czyuAHJF/lpWViY8k9MIcJjR9Zaf0cFJ4HrrH9D/eV1kO38AerPr4L75KfhH3NO/38LiIuSBOHscrmgVquT5skcKDkSvrEzIN+0BKpv74Dz0v8CUgU4joNh5kzIhw1D+7z7wDsc4GprOxuzPPoIVIcckpDPj5dUlihI9Hpk//OfaLv1NnjWrQPvcKD1hhuR9dRTUE0Jf+JApRNsI3TZDM0yO51OOBwOZGVloaCgAKNGjWI6axsJSqUSeXl5yMvLA9B5URRKQMxms3hj3tDQEFYCkq7serRjzXEc7pl0DwwKAwo0BQmPRyVRQcqxedPEEizPdakQqqHe1cXFxQD2eVebzeZu3tWCsGa93wfrIj8WBrWIDi3nSAbxtP6OCrkartNfg+rb2yHf/BFU/70ZHp8TvgMuFd8i1FeGdv3z+/3Yvn27WJaRm5sLg8HQ7yOheHEfPR/SnUshbdsGxZoX4Z16s/g79RFHIPetN1F/w42QNjZ2NmaZcwNMt9wC7Yxz036CpVqsSrRaZD+zCK133AnPqlXgPR603nILsh5/DOrD97UhTve49ASLwj5V8fTkzRwMBmEwGGA0GlFRUYFdu3YhJydHrIUcjEgkEmRkZCAjo3O9xm+//YbMzEyoVCqYzWbs2LEDdrt9QHlWn1R8UtK2zaKIoJiiI12x9eVdbTabUVtbC4vFInagFoR1ur2rQ2G93CQWBrWIlkql4DguaZnolIoIqRzuk58Gr9BB8edbUH1/N1yWFuwuPlsUzT6fDzqdTqxjdrlcGDt2rHiBSxnqDHiOWwD1V7Oh+PU5+Ef8DcGsCvHX8tJSOObfB92rr0Hyxx+djVmeeAK+7dthuuP2qJqQJJp0CENOpUL2k0+g7d55cC9bBni9aLv9DmQ/9SRUU6eK72NNsAJsxpQMBG9mYTGQ3W6HXC6HyWRCZmam6M0ceoHYs2dPGiNOHwqFAkOHDsXQvWVaPp9PvNA3NTXtt57VAv/c/E9sNG/E/VPux+jM0ekOh0nBymJMAqzEFupdPWTIEADA5s2bRQEtlFwJ3tWhZSDp6gicbHcOKudIMBzHQaFQDOxyDuyzybFarbAUXIScVivKdn+C9j3VsGXYYDKZUFxc3K2+sqamJm0ixz/ydPg3fwxZ9VIov7sDrvM/Arh9Jy2n0yFw5x0wfP017P9+BwDg+Pxz+KqrkfX4Y5CmqQlLuiZHTqFA1iMPo33+/XB99x3g86H19juQvehpqCZNYjLryxqJGqNgMCh6oPfkzVxUVNSjNzPRM3K5vJtntd1uR0dHh3ihd7vd4mNpQVjHO76xih2r14qV9Sth99kxY/iMmD+/t5jq7HWotFRih3kHMyKaRVg9t1gR0T3BcRxUKhVKQyxTQxMAwk0sgLAykGR6V4cyaN05BjNyuXzAlXP05clsMBjAH3cfLJYzkTvsWOT2cTKnVXhxHNwnPALt28cjmDkM8HvC2phzHAee42C64QYohg9H+z8eAjweeNevR/NlM5H1xONQjBmThrDTN2acTIbMBQ+iPRCAa+lSwONB2y23Ivu5Z8Ex1tkRYLOcIxZ682YWHoXG6s3M6oU22fT3vUPrPQXParfbLYrqmpoabNiwAQqFQqypjsWzOlba3e24b/V9UMvUOLci8SVmpfpS/N72O6osVQndbjywdqyyLFRZj63rOaJUKrt5VwtrpcxmczfvakFYJ8q7OpRB6xM9WOE4LukiOl4REQgEwhb/Wa1WuN3uME/m4cOHQ6vVhp8cOcft+3+fC/I/34Jv4rWAZF8mOt0ihzcMhePKFeC13TvyhcamOflkyEpK0Hbb7Qg0NyPQ3Izma/+OzHvvheaUk1MddlrHjJPJkPmPhWi7yw/3Tz+Bd7vRevNcYN694Peu3CZiR1g7ICyCM5vNcDgcojdzbm6ueL4NtsmeZVQqFQoKCnr0rG5ra0NlZaXY+U0Q1pFYfsVCoa4QUk4Kl9+FZlcz8jR5Cds2z/Mo0XXeOCTDizoWWBSFLMYkwHJswWCw3/rnUNedUO9qIYkg3Mh6vV7RzlLIVsc7L7I8drEyqEU0gKSXc0STiRYWAoRazMXjybx3o1B/OQuynd9D2vgX3Kc+B+z1Nk1VuUmf4fUgoIHuAl8xejRy334LbXfeBe/69YDHg/b58+HdsR3G2bPBpcgGLN03HgDAyeXIeuRhtN1+B9y//ALe6QT3j4cgvfUWYPz4tMYWCmuTYU/x9OfNXFZWllZvZqJnevKsdjgcYrZ669atcDqd0Gq1YdnqUPeTWC/YMokMhbpC1NpqUWOtSaiIBoBiXafbAksimjVYFlssL46L+Zjv4XwTGkH15F0dKqyjuZHleZ5ZS89YGfQiOp2ZaMGTObQ0IxAIiGUZCamt5Dj4xs6AtGY55Nu/BOdzwnXaK4BczYQgFODMNVD9+AA8U27o9I7uITZpdjZyXnoR5sefgOPzzwEA9nfeha+yClkP/QMSvT75ccZ5AU5YHAoFsh57FK233gbPmjXgnE7onl4E3/jxkJeVpS2urrByfAkEg0G0tLSIgjnd3sysjc9AJbTzm+BZ7fV6xUYwwkVeKpWKolqhUMQ8/qWGUlFET8mfkrDvwfM8SvSdmeh6Rz3cfjdUsuTXovYVD8DeDXG659++2B9i4zhO7Gga6l0tJCTMZjMaGxvhcDig0WjCmsJ09a4OJZJMeayka67dL0R0KhYWhi5GEkSz0+kUPZl7W8GfCPwjpsOl0EL9+dWQVS+F+tOZcJ31Vuos+CJA8evzkO38Hpy9Cc6Lv+w1Nk6hgOneeyAfMQLmp58GAgF4Vq1C8+WXI+uppyAPWTCRDFgR0UCna0fWU0+i9aab4f39d0gcDrTOuQE5r78OWX5is2MxxZfm8Qn1ZhbElNfrxc6dO2EwGFBQUIDRo0dDrVanPVYi8SgUirBaz2AwCKvVKmar29vb4ff7sWrVqrBsdSRPHUoNpVi+ZzlqbDUJjztDkQGDwgCr14pd9l1MtP9m7fxgYf7tDZZjS2aWPLSDYqh3teBY1Nra2qN3tclkEudgcucYYAjuHInORPM8D4/HA7/fj/r6etTV1cFms0EikYiPiVPlySwQKD0GrnPeg/rTmZDt+gXqjy+FrHwuM5kw7xF3Qr7ja0ibN0C+/l1w+iN6jY3jOOjOmwHZsHK033kXghYL/HW70Hz5Fcj8x0KojzgiaXGyNjlKVCpkP/Uk6q+6Gti5E4HmZrTecANyXv0XpCZTWmNL9ZOO/ryZi4qKUFdXhylTEpc5JKIjnfONRCIRa6UBwGw2Y926dSguLobZbEZlZSXsdjvUanWYqO7Js7pUXwoAqLXWJjRGYeHXcNNwdLg74PA5Err9WOIB2Jv3WLlu9QTLIjrVsXV13uma2KipqYHNZoNcLofRaITL5RJth1nxro4XGcsHRCJIRDmH3++HzWYLq2X2+XyinYxQx5zubmSBwilwnvMeNJ9cCtmeXzHa/SRaC19MWzyh8NoceA6/A6ql86D8+XHIjx8HH6ft829UEyci999vo+222+DbUQne4UDbLbfCcP310M+8LCljHZqJZgWJTgfu/vnw334HpM3N8NfUoPXmuch58QVINJp0h5c0hBbTgmC22+1QKBQwGo09PtmxWCxpjphgCY7jwHFcRJ7VXRcslhpKASS+blmYV14+9mWmrrssxQKwbYXGsmZKd2wcx0Gr1UKr1Yre1aHJj+rqajQ1NWHPnj2iZaiQsU6Xd3W8yFg9GBKFQqGA3++P+P2hnszCj91uh1KpFDNegifz+vXrkZeXJ64oZ4HgkIlwnvsfqL+chV3lF0PFkBj0HXAp5Bs/gLR5Iwo2vozKcbf0+zeyIUOQ89pr6HhwQaftG8/D+sIL8G3fjoz590GSJG9LlkQ0AHAmE8w334Scpxch2NoK36ZNaLvzTmQ//TS4NN7RJ2qcQsuhBOHs8XjE1eFFRUVi++iBMmcNlDgTDcvfO1LPaoVWgVtKb8HInJFiWV6ivpcg7lmAtXlOgNW4gPQL1b5g0UJOWKeQkZGB9vZ2ZGVlIT8/X5znGxoasHXrVgAI84oX1ouxjmzHjh0oLCyEWq3u/90DkP7KObxeb1iG2Wq1gud50ce0tLS019X7LC3cCyWYfwAcVyyHY9MWKIX4eB5I98klkcJ9/EPQ/ucMZNb9F5qhpwDov9mARKNB5qOPwPbGG7C+/AoAwPXdd/DX1SHryScTWh/MYiYa6IwrkJWFnH8+h+Zr/w7eZoNn9a9of+BBZC5cAC4Nd/DxTNb9eTNH7VITZzzE4CMSsdObZ7XZbEZBRwHMzWasqFwBhUIhln/0t3iqv5iijTGZsFzOwVpMAqzHxnI2Vxg7pVKJvLw85OXlia/b7XZRWO/YsQN2u120HhWEtcFg6HVReLpuTmU33HADTjzxRBx//PE48MADmT5AYiG0nMPhcMDr9Yb5Mrvdbmg0GhgMBuTm5qKioqK7J3MvsGAh1ytSuSjyJQ1/QPnTQ3Cf9i/wmsy0hhUcMhG+sTMg37QEBdUfAYedHdHfcRwHw1VXQV5Rgfb594N3OuHbtg3Nl1+O7KeehGLs2ITEx6qIFpBXVCB70dNonT0HvMcD17ffwlpQAOOc2WmJJ5JxEqwdQ0Wzw+GAWq1OuDczq/uNGDioVCrk5+eLrgSBQAAWiwUdHR1oa2tDVVUVAoFAzJ7VHMehw92BG5ffiEZnI/53xv8glaTH9otVEQ2wGRPAvohmNTag94WPod7VgvtOqFd8R0cHqqurw+xJhWx1uj39ZWeddRZuuOEGnHDCCfj666+Z3wmRwvM8du7cidbWVrzxxht49tlnUVVVheeffx5jx44VPZn1en3MBe4suV/0BMdx4IN+qP43F9L2SqiXnAfXjA/Aa7LTGpfniDvRLslCdd6piFb6qo8+GrlvvI7WW29DYM8eBNva0Pz365A5fz40J50Yd2ysHvuhTz2UBxyAzEceRttttwPBIGxvvw3p0KHQnXVmymPqif68mcvLy2EwGPYLb+b9TdSz9H3jjWVz+2asrF+JUkMpTiw+EZmZmeJ2HQ6HeHHftm0bHA5HmGd1T40pQgWrQWFAlaUK3qAXjc5GDNUNjSvWWGFpf4XCsg6h2GInmnKT3ryrhWz1rl27sGnTJtE1JCMjAyNHjkxm+D3H+c0332Dy5Mk4//zzAbArIvrD4XBg5cqV+PXXX7F69WqsWbMGFosFGo0GFRUVuPbaa3HEEUdg5MiRCXvcwWo5hwDHcQjyHNynvwb1kvMhbd0K9eK9Qlqbm7a4eF0+2kbPRNBsjunv5cOGIfetN9F2x53w/vFHZ2OWe++Fv7YG+quvjusYZjUT3fU7qY88EqbbboP58ccBAObHHoOsIB+qQw9NaVw8z8Pr9YYJ5nR5Mw/UuYtIHvEcE3+2/IlXNr6C4wqPw4nF+27QQz2rhY5vvXlWdy0BEZBKpCjWF6PSUolqa3XaRLQAa+cOy2KQ5dhYbgQDxFduEupdLaxDExI2ZrM5af1A+kNy/vnnY8WKFZg5c2ZEdwmPPPIIJk2aBL1ej9zcXJx55pnYtm1b2HuOOeYYsT5F+LnuuuvC3lNXV4fp06dDo9EgNzcXt99+e7cFgMuWLcPBBx8MpVKJiooKvPXWW73GVVlZieuuuw5btmzBSSedhP/7v/+D1WrF0UcfjXPOOQfXXHMNRo8endADLNqOhalGEPnBrAo4z1+CoK4A0rbtUH84A5y9kYnYEPRD0rQh6r+XmkzIeeF5aE47TXzN+q9X0T7vPvBud9zxsSiiu8akm3EudBdd1PmPQABtd90NX2VlUuMQatf27NmDxsZGdHR04Oeff8bOnTvh9/sxZMgQTJ48GUcccQQmTJiAkpISmEymQdelihj8iA4dEXhFC57VI0eOxJQpU3DCCSdg4sSJyMzMhMViwV9//YUffvgBQOe1qrGxEUXazsfW6excyGo5B6tCled5puuOWR03gUQvfBSy0CUlJSgvL0/YdqNBJmSgI72DWb58OWbPno1JkybB7/fjnnvuwUknnYTNmzdDq91nWXbNNddgwYIF4r81IVZcgUAA06dPR35+Pn755Rc0NDTgsssug1wux8MPPwwAqK6uxvTp03Hdddfhvffeww8//ICrr74aBQUFmDZtWre4DjjgAOzcubPb6+nsWJhuQuPjM8rhPP8jaBafB2lHFTQfngvneUvA69PjLMJxHGTudmjeORkScy0cV60Ar8uPbhtyOTLumwd5WSks/3we4Hm4vv0WzXv2IPvJJyDNjr5shdVMNNBzTMabboS/vh7uZcvAOxxovXkuct98A9KcntutR0tf3swymQwajQYHHXQQM56fLO63/Q2WL+LRIHhF77Ltgj/oh0wS+SLXrp7VQgnIzz//jGAwiKqqKqCt873ratbhKM1RMJlM0Ov1KR0/Vs8XVsUgqzcdAqyOmwDLNyCxIvpER/rF/ve//4X9+6233kJubi7WrVuHo446Snxdo9GICzO68u2332Lz5s34/vvvkZeXhwMPPBALFy7EnXfeiQceeAAKhQIvv/wyysrK8NRTTwEARo8ejZ9//hmLFi3qUUT3hkKhSEnHQhbpGh9vKoHzgo+hWXweJOYaKFYtguekx9MSG8dx8MqNgFwLzu+C8ufH4D55UUzb0V96KWTFJWi/7z7wLhd8mzaheeblyHr6aShGjohpm6zt194mRk4iQebCBWj5+3Xwbd6MQFMTWm+5FTmvvByTh7Tb7Q4TzH15M9fX16O5uZkZAc3axYO1ePY34hUU+dp8KKVKeAIeNDgaUKQvinlbwqNoABg1ahQUCgUsOy34cc2PaPY3i57VAMJKQEwmU1QONfHExxKsikHWRTSLFnehJDO+dH1vSbwfLDQ4EBZdCLz33nvIzs7GuHHjcPfdd8PpdIq/W7VqFcaPHy/amwDAtGnTYLVasWnTJvE9J5xwQtg2p02bhlWrVkUVXzI6FgoMhIWFXePjDYVwnrcY3nEXwHPsg2mKbK9QBeA+9gEAgHzTEkga/4p5e+qjj0LOa69CuveYCjQ3o+Waa+Bavjy22BgT0UDvWSOJSoXsp5+CdG+dmG/rVnQ88CD4fo5NoU3yrl27sHHjRqxcuRKrVq1CXV0dAKC4uBhTp07F4YcfjnHjxqGoqKibtReL40QQiUDCSVCi77S9q7ZWJ3z7wzKGAQAavY2YNGkSTjjhBEyZMgV5eXlwOBzYtGkTvv/+e6xcuRKbN29GfX09nE5nQs85VkUhq/MKq+MlwHqmN9nxpcXi7sMPP4TP54PNZkN2djZmzJgR8R8Hg0HcfPPN4kVW4KKLLkJJSQmGDBmC9evX484778S2bdvwySefAAAaGxvDBDQA8d+NjY19vsdqtcLlckXsa53MTDSrYkugt/h4QyE8054MeYEHfE5A0XcHwWTEFiw4GL4x50C++WMolz0I1/kfx+xnrRgxonPB4e13wLtxI3iXC2233wHD7OuhvyzyDocs7tf+YpJmZSH7mUVovvIq8A4HXD/+CNvrr8NwzTXie3w+n1iaYTabYbVaRZ/cWLyZWbyQsLbfiPSRiGOh1FCK7ebtqLZW46ihR/X/BxHEI5w3JfoSFOuLUaIvgSfggVKqFD2ri4uLAezzrO7o6EBtbS02bNiQMM9qISZWz2MWxeBAENGsxgawnymPBdns2bOhUCjgdrsxZcqUqET07NmzsXHjRvz8889hr1977bXi/48fPx4FBQU4/vjjUVVVhWHDhiUs+EiQy+VJLeeIphtiqokoU87zUKx4BLLqH+CasSRlPtKhotBzxF2Qbf8Ksj1rIKv6Fv6KyMt1uiLNzkbOSy+i/R//gOubbzs7HD7/Avx1dci4+25wEQhEFk/ySGKSl5cj86F/oG3uLZ3f+1+vwp6ZBevYMd28mfPy8jBixIi4PTZJtBIsE++5XG7oXKyUjMV/KpkKn0z/pO/39OJZbTabu3lWhwrrSD2rWYXVeYV1Ec26SE3WzZGw4DMdyOrq6sQvFs2XmzNnDr788kv89NNPos1Pb0yZMgVA56rkYcOGIT8/H2vWrAl7T1NTEwCIk0V+fr74Wuh7DAZDVN0VFQoFHA5HxO+PBtbLOSIR+ZyrDfLNH0PiaIL6owvgnPEhoM5Iemxhix71BfAefDWUa56HYsWj8JcfD0SxiKfbtlUqZC5cCFtpGayvdHY4dH7xfwjUNyDr8ccg0ev73QaLk3hfMYlWP4WF8JxzNjQffQwA8C9aBPmCB1E+fjyMRmNCL66sTdasxQOweRwlk8H2fU8vPx0nFJ+AQl3f17hISIQAk0qlyMzMjMizOlRU93azzGrmkuW4ADbnGoDdDL4A6yI/FiQrVqyAVquFSqWKqPkBz/OYM2cOPv30UyxduhRlZWX9/s2ff/4JAKK339SpU7FhwwY0NzeL7/nuu+9gMBgwZswY8T2CJVDoe6ZOnRrpdwOQ3Ew0i4/9Q4kkPl6TDdeMDxHU5EDashmajy4E3OaUx+adfD2CqgzwKhM4V3tCtm+4+ipkPvQQsFc4etauRfNVV8O/Z09UsbFA14nH6/WipaUFlZWVWLduHZYvX47169fDYrFAef75kB1/PABA4vFA8+xzyJTLk5KdYm2cWIuHSB+JOBZyNbkoNZRG5cwRLTzPw+2PzZZT8KwuLCzE+PHjceSRR+K4447DyJEjoVAosGfPHvzyyy9YunQp1q1bh6qqKrS3tyMQCIifzaqoYTGugSCiWY0NYF/kx4LslFNOwRNPPIFgMIjbb7+93z+YPXs23n//fXz++efQ6/ViDbPRaIRarUZVVRXef/99nHrqqcjKysL69esxd+5cHHXUUZgwYQIA4KSTTsKYMWNw6aWX4vHHH0djYyPmzZuH2bNni0L+uuuuw/PPP4877rgDV155JZYuXYrFixfjq6++iuoLJtudg+VMdKSZ8mBWBVznfQj14vMgbd4IzUcXwznjP4DS0O/fxhNb2EVOaYDzkq/BGwpjronuCc1JJ0Kal4e2225D0GyGv7oazVdciaynnoRy/PjIYkszQqcmn8+HzZs3w2KxwOVyQavVirXMo0ePhlqt3mfR98D9aK6vh2/LFgTq69F+993I/uc/IypniRSWJ2sifbB0XLAUS08CbOmupVi4ZiEOyDkAzxz1TEI+R/Cszs3tbKglLCAWstV1dXXwer0wGAzQaDTi/KJSqRLy+YmAVTHIuohmPdPLenyxIFOpVHjhhRdQWFiI22+/vd+D96WXXgLQ2VAllDfffBOXX345FAoFvv/+ezzzzDNwOBwoKirCOeecg3nz5onvlUql+PLLLzFr1ixMnToVWq0WM2fODPOVLisrw1dffYW5c+fi2WefRWFhIV577bWo7O0AQKlUkk90BASzRsA144NOId30F9SfzITr3PcAefQ2abHGxhtjt5DqC+UBE5D75htovXku/LW1CHZ0oGXW9ch88AFo9mZs+4stlfj9/jBvZqvVKt4MqVQq5OXlwWAw9Gktx6lUyHricTRfNhPB9nZ41q6DedEiZERwoxwNLB3/g21yJtjgs6rP8HvL7zhv+HkYlzWu/z+IAoPCAJvPhjpbXUK3G0qoZ3VpaSl4nofL5YLZbEZzczOCwSCWLVsGtVodVgKSas/qUFgW0SzGJTAQ4ktWJlpo7JdqZIFAIKxJSX9B9HfRLCoqwvIIbMVKSkrw9ddf9/meY445Bn/88Ue/2+oLmUy23/pERysGg9mj4Dr3P50NWerXQlq3EoFhJ/b/h4mOzW2BYu0r8B18dcIWOsoKC5H7xutou+NOeNat62wVftfd8M+Z3c25I9Uiui9v5qysLJSXlyMQCGDz5s1RdWWS5eUh64nH0XLdLMDng2PxEijGjoP21FMSEjfLkzUL0Pikl0SdwysbVuLH3T9idMbouER0T1lMwXt6j31P1A1dYoXjOGg0Gmg0Guh0OrS1teHoo4+G2WyG2Wzu5lkdKqxT4VkNsCsGB3Nb7WQjLP5jcb/Gg0zoJOj3+yGVSgfdF0y2xR3L5RyxiPxg7lg4z/43JOaapAlooG+hqv6/ayGrWwnO54Rnr490IpAYDMj+53PoeOhhOPeWBVmffwGBhkaYbr8NXApaUweDQdjt9jDR7PV6odPpYDQaUVxcDKPR2O3RquDHHi3KCROQcecd6PjHQwAA88MPQzFiOOQVFXF/F4CtTDRA8aQb1r5vIq5nZYYy/IgfsdPavSNuNPQ0NjnqHKikKrgDbtQ76lGsL47rM2KJieM4yGQyZGdnI3tvl1ee5zsXKu8tAamvr4fL5YJerw8T1aElZMmIizVYjQtgX6QKxz+rIj9WZAsXLuz8nxTdYaYaKueIPr7gkIkIDpm47wW3BVDoAEniRGZfsXknXQ9Z3UrI/3wb3oOvBG9M3IWFk8uRcf98yIoKYX2507nD8fHHCLS0IPOhf0CiUiX0CYPgzWw2m8XSDIlEAqPRCIPBgKFDh0Kv10d0/sUak/aMM+DdsBGOzz8H7/Gg7c47kfv225DodDFtT4C1yZq1eIjBQZmhc/F8tSUxDVdCj1MJJ0GRvgg7zDtQZ6tLuYjuDY7jovKsFoR1PJ7VobCaUR0IIpXV+ISEI6vxxYpM8IX2+XxYv349Jk6c2M+fDCyS7RPNuoiON1POOZqhXnIhAgUHwnPSEwCXmImtLxEdKD0a/uIjIatbAeXKJ+A+9Z8J+czQzzZcdRWkBQXoWLAQCATg/ukntFw3C9lPd7aZj2W/CrWGoVnmRHkzx3vDZrr9Nni3bYNv61b463ah/cEFyHr8sUE3oRHph5VjKlFzc5lxr4i2VidFRBXri0URnWqi+T59eVa3t7dj586dCfOsZlWsshoXwH6ml/X4YkV20kkn4a+//oLFYsE111yD33//Pd0xJZT9uZwjEZlySdMGSNp3QNq2DZBr4Dl2QULcM/qLzXPUPZC9ewpkWz6DZPJsBLNHxf2ZXdGeeiqkWdlou/NO8A4HfJs2ofnKqyC76krwEZQ7BAIB2Gy2MNHs9/vFDoDl5eUJ82aOd+LmlEpkPfoImi69DLzNBveyZbC/+x70l14SV0ys3USyFg+RXhIheEr1peDAweK1oMPTgUxVbOs0essUFus6M72si+iu9OVZbTabRc9qjUaDjIyMfj2rExVXMmE1LoAy0elCduONNyIYDEKr1eKmm25KdzwJRy6XJ62cYyBkouONL1B+PNwnPw31f2+G4o83wcu18B55V9JjC+aNh2/EdMi3fwXFL0/BffqrcX9mT6imTEbOq/9C281zEWhuRmDPHuQ89TQCCx4Ejgpv8+v1esXMi8Vigc1mg0wmEx9nlpSUQK/XJ+1OO959KRs6FJkLHuzsaAjA8sILUIwZA+XEgxMRHkEMSlQyFYZoh2CPYw+qrdVxieieBMSYrDE4rOAwDDOmtpuvEFOiEDyrBd9qoHPOFET1nj17sHnzZkil0rASEKPRCGmX9SisXldZFtGsi9RBm4k+44wzIJFIoFarMXPmzHTHk3CSXRPNciY6USLfP+ZcuH1uqL6/C8o1z4NXZ8B3yN/j2mYkAt972K2Qbf8a8h3/hbdpPYJ5E+L6zN5QDB+OnDdeR+tNN8NfVQWpwwHf3fegfd69cE2YIGaZQ72Zhw4dKnqjp2LSStRnqI84Avorr4TtjTeAQABt99yDvPfehXTvgqJoYelix+rFgxj4lBpK0eBsQKOjMeHbPrbwWBxbeGzCtxspyTxvevKsttls6OjogNlsDvOsDi0BYVWsshoXwL5ITYXIT4vF3aRJk/DOO+9AIpFg8uTJg26BoVwu77f1dayw+Dg7lETG5zvgEnAeC5QrHoFq+ULwKhP8485PamzBrBHwj50BnpOAV8cm8iImKwvyJx6Hd/79kGzcCHi9cNz/AOznnwfVWWdF5M2cTBK5Lw3XXgPvxo3wrFmDYHs72u6dh5wXX4janYTliwkLsbEQw/5MIo+D+VPmQyfXQSntv6tvX/GwRqrPFWFRtdFoFD/f7XaLorqqqgo2mw1SqRRqtRpyuRwZGRnQ6XRMiENW5paeYL2cg9XFovEiq62txUUXXQSPx4OdO3cOOhGtUCionCNBeCddD87VDsXaV6Bc/Rz8o84AZLF1uYo0Nve0pxLawRDoPJk9Hg/MZrPonGG326FUKmG86UbIX/kXtGvXguN56D/4EDqpDMYbbwCX5gkgUfuSk0qR+Y+FaL7kUgSam+H9/XfY3ngDhmuuSVtMiYDFiwdL45MKBuv3zVJlJWQ7fR2jVq8VCokCqhjn1FhI9/7iOA5qtRpqtRpDhgwB0Gm3u27dOkgkEjQ3N2P79u0A9nlWCz/pSGiw3HGP9XIOlscuHmQKhQJPPPEEsrKyxJbbgwlhYWEy7iBZL+dIeHwcB89R88DLNfCNvzBmAS3EFtEEnoB91p83c0lJSZg387qrroSurAz8kiUAAPt77yHQ1ITMB+4Hl6ZzJNHHrjQjA5n/WNjZiCUYhPW116E8eGJU9dGDcUIkBg/pFohd6esadP2P12NN0xo8fvjjOK7oOCZiShcymawzoWE0oqysDDzPw263i9lqwbNap9OJ5R8ZGRkpKa1jcbwEWM/0sh5frMi8Xi+OO+445OTkpDuWpJDMTPT+VM4RslF4D7s1/DWfC5Cro9wMF5U5vKR1GxS/PAXfgTMRKD68z/f6fL4wwRzqzSzUMxsMhm6LWcTYJBJILr0E+ooKmB97DAgG4fr+e7S0tSL7qacg0euj+q6JItH7UnnQQTBce02nX3YwiLb77kPe++9BajKlLaZEwPKFbn+ApbFPVCyBYACPrH0EO6078exRz0KvSOwcIGS60+HQwdL+Egg9hzmOg16vh16v7+ZZLdRVb9y4USz9SLRndVdYFYKsz3vJzESn8zokO/LII5MmMlkgmRZ3+1s5R0/Itn4B5fIFcM5YDD4z8pbU0Z5M8r/egXzH15A4muEsOkzMUId6MwvlGV29mUeOHAmNRhPxZwrjpjv7LEhzc9B+9z3g3W54//gTLdf+HdnPPQtpim86k7Uv9ZdfDs/adfCsXYtgSws6HnwQWU8/HdFYsTxhE0QikUqkWNmwEi2uFlRbqzEhO/pFzn2JHKH9d6pFNKvCq7+4evKstlqt6OjoQEdHR0I9q0NhuSSB1X0pMGgz0cuXL093DEklmc1WWC/nSLrIDwagWPsKJPZGaD66EM4LPwOvL4joT7kQERzJie+dcgPkG/8Daf1auDd+iSbDPteMQCAAvV6fMG/m0HjURxyBnJdfRuvNNyNoNsNXWYnmq65G9j+fg7ykJObPiCemhG5XKkXmggfRdPElCHZ0wP3zStj/8x/oL7ooor9n6SaS5QsIkXoSfWyWGcriEtF9IXQqTEcmmkWiFYRSqVT0ohb+3ul0iiUgXT2rBWEdbeMrloVqMBhkWqSyfAMSD5Lp06ejvr4+3XEkjWQ3W2FJRHQl6fFJpHCd/TaCGeWQ2PZA/ellgMcWcWxA/xc6j8fTubikwYpd+ScDABQ/Pw6rxQKTyYQJEybgqKOOwsSJE1FRUYGcnJy4sw1dx00xdgxyXnsV0iGdNwiBhga0XH0NvJs2xfU50cYEJEe0SnNykPnAA+K/Lf98Ht7NmyOOiTVYPieTTTAYFOtG7Xb7fj0WQGKP0Xjbf/clwEr0nTfku+y7YgsuRlgVhfHGxXEctFotCgsLMW7cOBx55JE47rjjMGrUKCiVStTX1+OXX37B0qVLsW7dOlRVVaGtra1fJy9WxwtgOzYg+ZlojuPSY3Hn9XoRCARS/sGpYn9350h2ppzXZMN5znvQ/OcMSFu2QP3FtXCd/TYg7VvI9iQKhY5XoQ1N3G636M3smzwbwcbvYHRW40BtEwLFyfGN7hoXAMhLSpD7+utovfFG+HZUImg2o2XW9ch67FGopk5NWhw9xZWMiUJ12FToLr0E9nfeBfx+tN1zL/LefQcSna7feIieScWE7vf7RYcZoZxJKpVCo9Fg8+bNkMlkYoYuMzMTer2e6Qsty4S2/040QjlHm7sNdq8dOkXf512iYFV4JSOuSD2r9Xp9WLZaWHCerLgSBcuxAYM3Ey377rvv0h1DUkm2O0c0i+NSTaoy5byxCK6z3obmw3Mgq1sB1bd3wH3yoj6dNYTxam9vF4WzxWIBALFtdn5+fjdvZt9Bl0P524tQrnoGzvITEm5/J8TW07hJs7OR869/ofXW2+D9/XfwLhda596CzPvvh+aUkxMeR9eYko3x+uvh/eNPeDduRGDPHpiffDIsQ52OmKKBtXiAxN9k+Hw+UTALXTMVCgVMJlNY/b9wzlgsFrS3t6O1tRU7duwAx3GiOMjMzITRaExodoilm6pEx1Ju6FzzEauI7us6oZPrkKXKQpu7DXX2OozJHBNznNHGxCKpiKs/z+rq6mr89ddfUKlU4jnD8vox1kXqoK2JTncAyUaw7fP7/XE/5u+KcEDs7yIa6GzT7TrtFag/vRzyzR/BX3Yc/KNOF38vTFChrhkAsGPHDphMJmRnZ2PYsGHQarV9nmi+Q66F4o83IW36C9KaHxEoS7wdVF/jJtHpkPPcs2i/bz5cP/4IBAJonz8fgY72iOuI4yGZ+5OTyZD5j4VouvgS8A4HnF99DdXhh0Nz4olpiYeA6Gcu/Ah1nSaTCYWFhWLXzJ6QSCTd6kRDF1/V1tbC7/fDaDQiMzNTzL7F2yuApbkwGeUcDY4GuPwuqGXRORL1x8klJ8Mb9EIj0yR0u/3B0v4SSMc1tTfPaovFgo6ODrS0tKC9vR3BYBBr1qwRz5d0eVZ3hXWRyrrIjxWZ1WplphtQMhCEs8fjSbiIFg4IVgv6U11uEig7Fu4TH4O0vRLe4afCbrWKgtlsNsPn84V5M2/atAmHHHJIVP7kvCYb3kNvAi+RITB0SlK+R38nOqdUIvORh2F+/HE4PvkUAGBZ9AwCbW0wzpmTlIkimTXRociGDoXpjtvRcf8DAICORx+DYsIEyPLyeo2JNQaqsBecZkJFs9vthk6ng8lkQllZWVwOAxzHiZm30tJSsXxKENV79uyBx+OBwWAQM9WJcDQYLGSoMpChzIBSqkSrq1UswYiU/oTh3IPmxhti1LCaAALYmF9kMhmysrKQldVpQVhbW4vGxkbk5+fDbDajoaEBTqczLZ7VXWF5XwKpqYlOB7JrrrkG999/P8aMGcP8TogF4Q4xGYsLUyVsYiWV5SaiN7NmEiy+EbCu+Llfb+ZNmzbFVLPtnTInkaF3I5Jack4qhemuuyDNzob1X68CAOz/fgdBiwUZd98ddQvtSGJKFZpTToF7xc9wff89eKsVHQ8uQPbz/+yxYyNLx/5Am7sEERsqmn0+HwwGA0wmE0aOHAmj0Zi0LrIcx0Gn00Gn06GoqFMQulwudHR0oL29XXQ0EASCkK0OrRFlmWQcm1+e/mVcrb9Zg9VrPqtZS57nIZfLUVxcLHpWC0+LOjo6sGvXrm6e1SaTKeFlU73FxuKYCbC6T+NFJkyUgxUhi5KMWqbQcg4WidZGLlIE+6DQ0gyn0wmNRiPWMo8cORIahQTqH+6FN28mghmlPcYX99gJf5+Gk5PjOBiuuQaSzEyYH3sc4Hk4P/8CvM2OzIULwCUhg5eKY43jOGTcdSe869cj0NwMz2+/wf7BB93KVQbjhJhMhIVMQj2z2WwGz/OiaO6vCVAq6Po42+PxiJlqoUZUrVaLgjojIyMqD/ZUk+i44hHQkczDdq8dLa4WcRFjsmH12gWwOb/0tA+VSiXy8vKQt/dpXW+e1cITHkFYJ7pDNKtPxAVYLzeJFdmff/4p/oPFgzZekimiQ8s5WCRRmfJAIACbzRYmmkO9mYcNG9ajN7NixSOQb1oMafVSOC/8HLwp3Fc5XhEtq/wGil+egufYBxAoOizm7XQl2rh055wDicGA9vn3A34/XEuXotXhQNYTj0PSS71qLDEBqbvoSYxGZNw/H62zO7P+ludfgGryZMgrKsLex+JFmJWYhPKM6upqUThLJBLxIlpaWsp8KZ1SqQxrauH3+8PKPzZt2gSFQiEK6kAgwMz4DzSqLdWY8d8Z0Ml1+PHsH1N2PWbxus9qVjWSuPrzrN6xYwfsdru4tkEQ1jqdLq7vzOqYCQzaTDTrdy/xwnEc5HJ5v/6PsW6bZa/oWIWXx+MJE8w2mw1yuVzs/lRSUgK9Xt/vceOdcgNk1csgbdkEzSeXwHnB5+A1mWHxxTN20tqfIG3ZDMWqZ+BKo4gGAM2JJ0Ki1aHtjjvAezzw/PorWmfPQfYziyAxGBISU6pRTZ4M3UUXwf7++4DPh/b75iP3rTfB7c2gDMYJMR6EkqaudnNZWVnIycnB8OHDo27uwBoymQw5OTnI2duxMxAIiAuvmpub4XQ6sX79emRmZorZ6mS1X+6PZMzLNdYaPLL2EQT5IF49/tWo4+lr3xdoO33o7T47LF4LTEpTPKEmJKZ0wXJc0R7Lgme14FsN7HPZ6ejoQENDA7Zu3RrmnCOUgERTysXqmAkM2pro77//HieddFJaPjxVyOXypFnTsNy1MJJyk9C6TEE0C4uZjEaj6ACgUqmiP0gVOrjO/jc0758OSUc11J9dAeeMDwB5Z3Y23oPeO2k25Ovfh2zXL5Du/hWBwsQsNIxV3KsOm4rsF55H681zwdvt8G7YgJa/X4fsfz4HaXZ2QmJL9Q2b8fpZ8KxZA19lJXyVlbC8+BJMc29OWzx9kepJ1Ov1htUz2+12qNVqsTRDpVJBrVZj2LBhKY0rlUilUlEwDxs2DCtWrBCFgvAoOxgMdnMASVXJSqKPCY1Mg3XN6yDlpPAFfJBLI3dl6O9cUclUyFHnoMXVgt323SSiB3Fccrk87GY0Fs/qrrCeEB20mejZs2fj9ddfx1FHHcX8TogFIROdTBHNkpAIpadMtNCcoavVXKg3cyIXM/G6PLjOeRea/5wJacM6qL6+Ae7TXgEk0rjHjjcMgW/c+VCsfxeK1c/Cde77CYk5nriUBxyAnFdeRusNNyLY3t7ZJvyaa5Hz/D8hGzo0rpjSAadUInPhAjRdNhPw+WB//32ojjwCqkMOYXZCTMb5KFg0hno0C6vyhaczXeschXNrf0JYrJiTk4OysjLwPA+73S6WgOzatQterxdGo1F85J2RkcGERVgk5KhzoJVp4fA7sMu+C+XG8qj+vr9zplBXKIrocVnj4gl1QDPYRXRXunpWAxCdeoT1COvXr4dSqQzLVoc+EWZ1zAQGbU10bm4ufvrpJxx11FEIBAKD8kvuz10LAaCpqUlcCGi326FSqWA0GkVv5nhrsfojmDUcrjPfgPqjCyGv/B/4FY/Ac/S8hNyAeCfPhnzjB5DV/gRJ/ToEh0yMO954x0IxYgRyXv0XWufcgEBDAwK7d6P56muQ8/w/IY8xK5lOJxh5RQWMc2bDsugZAEDHwoXI+89/Uh5HKhHqGEMzzUJmyGQyoaKiAkajccCIv3TBcRz0ej30ej2Ki4vFOnHBAWTr1q1wOp1ixk3IVidi0VUyzhWO41BmLMPGto3Yad0ZtYjuj0JdIf5o+QO77bsTut3eYFV4UVz7FvkWFHSW+XT1rN6xYwd4nhdvSL1eL9NaZNBmoocMGYLsvY+aB+sFQS6XJ8XiDmCrnCMYDMJut4eVZgBAQ0MDMjIyUFpaCqPRmPBVwZEQKJwC98nPQLl0HvzDTgCQmCw+byyCb8y5UGz8AMpf/wnXWW/FHWsi4pIXF3cK6RtuhL+6GsHWVrT8/e/Ifu45KMbE3o0sXZOk7oIL4Fq2HN4//kCgvgGW556D8sYbmZq045mgQ88d4fwJBAJidqigoABGozGtzhmDAY7joNFooNFoMHTvkxkhw9/e3o6qqirYbDZoNJowB5BYfXeTcdEuM3SK6GpLNRCFVXQkAmyornNM9tj3xBNixLAsVlkknePV1bNaeMojZKtbWlrg8/nw888/h2WrWXHPSWYmOp3Hi8ztdqO8vBwNDQ1ob29Hfn6+uJMGC0Lr72SQznIO0Zt574/Vag17LFRYWIg//vgD48aNg0aT2i5YPeEfdTr8ZccAys6Fdom6AfFOvh7yjR9CtvN7SNq2I5g1Iu5tJmKfyvLykPOvV9B6403wbdmCoMWKlutnI/vZZ6E8YELU20vnscZJJMicPx9NF10E3uWC4+NPIJmauMWcqUawoRIWAlosFrEZSTSLZ4n4UalUYQ4gPp9PLP+oq6vDxo0boVQqw8o/kv30rC+EzoXRtv+ORIAV6jrryVOZiWYRlsU9K3GFPuUpKipCdXU12tvbUVhY2M2zuuuCxXTMa8nORKft5mb37t14+eWXYbPZ0NLSgptuuglXXHFFWoJJBsmuiZZIJCnJREfszdzlrlMqlbI1USr3OVXoXLshNSuBjPhKMPiMcninzkUgbzyCmRX9/0E/JPLpgtRkQs5LL6J17i3w/vEHeIcDrTfcgOxFi6CceHDUcaUTWeFQGG+4AebHHwcAOB5/HNyc2WmNqSd6Ot6FR6GhzhnCxSVZZU3p3l8DFblcjtzcXOTm5gIIf4zd2NiIrVu3htmIZWZm9njDkyzBE6uIjoRRGaNwTsU5GJUxKuHb7g0Wj1OWxGoorMYFdMYmk8l69KwOra32+XxiskAQ1ql4Oj1oa6JPOOEE8RGbw+FAaWlpumNKOANxYWFopkz4CQaDYTWZBoOh35a8rC58lO5egykb7gVflQ33pV8D6oy4tuc97JYERZb4MZNotch+7lm03XobPGvWgHe50HrTTch66kmopkTnKJLufak952y4li6FZ+1aBJubkf3ll8App6Q1JoHQi5vX6w0TzTabDSqVCiaTCQUFBRg9enRaWvMOdpJxfHZ9jB0MBmG1WtHe3i6WgPA8D5PJJJaAhC7QSjRlxjJkqbKQq86NSlRFMjalhlLcfcjd8YYYMSyLQhbjYlkI9pTpDb3ZFBb6Cms9Ojo6kuZZ3Vt8yeq+mk5kTzzxRLpjSDrJLOdI1MLCvryZhXrmWB4vsyqig5nl8Mn0UNt2gfviarjO/Q8gTVCHv2AAkMReu5qMMZOoVMh++im03XkX3CtXgvd40HrLrch69BGojzwy4rjSDSeRIOO+eWi68CLwTieMa36D+5dVUB02Na1xud1udHR0AAB+//13uFwuaLVamEwmFBUVwWQyDZh21UTfhDasAfbVhra3t4slIF6vV7TlbGlpQUZGRsIu4IW6Qnxz5jcx/S0L53AoLF4bAHbFPctCMBKBH+pZLaxJEDyrzWZzwjyrY41vICLzer1QKBQIBAJi8xAWD954SHZNdLSP/oVJP1Q0J8ybOQHxpQJek42/xt6DyRvuhWz3r1D+eD88JzwS30YDPijWvAD5hvfhvPgr8NqcmDaTrOOfUyqR9cTjaLvnXriXLQO8XrTdcSeyHnoI6uOOjSguFi56siFDYLzpJpgf6dxfHQ89hLwP/gOJXp+Szw/NpgjZZo/HA51OBwAoKSlBTk4OEwulWdhfqSbV14/Q2tCSkhLx+KisrER7ezs2b94Ml8sltl0WSkD6e4qXaCIVhg6fA7vtu5GpykSOOrY5LBpYvN6zKqJZjQuIPbbePKuFbPWuXbvg8XjEp+CCsFZH2Y03mRbK6dStsnfffRdXXnnloF51nu5yDsGbWbjoW61WAPu8mQsKCmAwGJJyh8uK8OoJp64ETUc8jPwfb4bir3cQzBkL3wGXxL5BiaxzcaGtHvI/3oD3iDtj3lSyxoyTy5H1yMNov/8BuL79FvD70XbPPch88AFopk1LW1zRoj3rTDi+/x6+335DoLkZ5qcXIfP++Un5rNBV6MJPIBCAwWCAyWTCqFGjxPNn6dKlyMzMZEJAE+lByLaZTCYEAgEcfPDB4pOK9vZ2VFZWwm63Q6vVhtnqRSsKACAQDEAax1Ovnli4ZiG+3/U9bj7wZlwyKo75MAJYFYUsx8VqNjVRC/dCzQlKSkoAdPesttlsome1IKz7e1LO6j6NF9lTTz0FjUaDCy64YFA2WwGS7xMdmukVmjKEZplDvZlzcnJQUVGRstXlLItojuPgGHoEvEfcCeXPj0K5dB6CWcNj7zzIcfBOngP1F1dD8efb8E66HlBGnx1N9phxMhkyFzyIDrkczq++AgIBtN83H7zXB+1pf+szLlbgOA76u+5Ey0UXQ+rxwPnll1Afd2zEpSl9Edq9S8g0AxAXwxQVFfXZSprV451ILaHHgUqlQkFBgei56/V6RQeQ2tpabNiwAUqlMsxWr68W7f+t+S+eX/88JuVOwgOHPhBxPJGcw4JDRyps7lgVNhRX9CQztt48q81mM1pbW1FZWSl6Vodmq0OTGYPWJ/pvf/sbFi9ePKhFdDJ9ogHA6XSirq5OFM0+nw96vR5GozGt3swA281gBLHqnTwbkpbNkG/7AvI/3oyrfbe/4iQEModD2r4Dir/egXfy9THHlUw4qRQZ8+8Dp1DA8emnAM+jY8EC8D4vdGef3evfsbQvZfn5aDntNOR/9BEAwPzoY1AedBAke8sqIiUQCHRzzpBKpeJCsfLycmi12kE5NxHJpbeLtkKhCHMx8Pv9Yqatvr4eW7ZsgUwm6+YAImxPIVWgydmEndadCY85lTZ3LM0nobAqVlmNC+iMLVUVBf15Vm/ZsiWso6vJZILP50va2KXVJ1qr1Q769rSJrIn2er1hpRlCeYawIryoqAh6vZ6Z8hjWM9E8zwMcB/e0JxHMGQPvIX+Pc6MSeCdfD/X/5kL++2vwHnwlIItuQVmqxoyTSGC6+y5wCgXsH34IADA/8ih4jxf6Cy9IW1zRYD1kIkp274Zn9WoEmpthef4FZNzVdxmNsJBFEM42mw0KhQImkwl5eXk9WjVGCksXOJZiSRWsHZ+RIpPJkJ2dLTYeCwaDsFgsaG9vR2trK3bs2CEutsrMzESWvFM81FhrIhZWkY5Nqr2iWTxOWRWrrMYFpDe2rp7VQKdZgpAY2b17tzjnt7e3i9lqg8HAjFaKFdlvv/2Gww7rbJowWDM9sZZz9OfNXFBQAI7jkJ2djeLi4iREHj+sLiwEuohCuQbeKXPC37BXYEeLf9QZCK58orM2evNH8E2Irq4wlRMRx3Ew3noLoFTA/u93AACWp58G7/XAMHNm2uKKGI6D4Y470HrxxXubsHwMzbSToDzoIPEtoZOp2WyGw+EQLZWERbSx1KMSRLKQSCRiFhrovBZYrVaxBKSlvQUSSOD0O/Hr5l9RkVcBk8nU77qWaMo56h318Af9kEmS5wbBqihk9WaM1fEC2CuXUCqVYU971qxZI5Z4mM1m1NTUpM2zOpHIrFYrbrzxRgCDV0RHWs7RmzezsACwoqICRqMxrM6nra0tmaHHDYvZS4FeYwv6oVy+ELw2L6ZyDEgV8B7yd6h+vB+Kta/AN/7iqMR4qseM4zgY58wBp1DC9tprAADr8y8AXi/0V18dNjGytC+FuGRDCmCYNQuWp58GALQt/Af4p5+CZe8NqMvlEsubysrKYDKZkuqMwNIY7Y+wciFP5HEgdLMUSvR4nsfLX72MOnsddlp2wt3ihsfjER1AMjMzux3nkQqwXE0uFBIFvEEvmpxNYivwZMDiuSLExKIeYVlE/z975x3fVnW+8e/Vtrbk7XjEI8NZEAgj7BFIgJYyC4VSIOwGWkZLW6ADKB3s+SO0rEKhLZQyChQIMwFCgJDlOM5OnMQrlmTL1l6/P5x7Yzm24yFZh8TP5+MPRLq6enTuuec89z3veV6RNz1CFz+z2UxRUZHy70AggMfjoa2tbQ/PallYZ7I66UCgeeuttxRrqH0VfUWiu3szt7W10dnZqXgzO51OysvLMZvN/XZMkXOO4dspojUbF6D75ikSSMRyJhCrOHHQ545M/QEq90Yi0y8dUjR7pNtMkiRsV12JpNPh/b//A8D7l7+SCEew/vgaxcJHxGvZ2dlJxxEzib5WgWbTJuLbttH59NPoL76Y8ePHp8RjdKAQbbAV8XrtT0ibXaUkUWmvpL6zHrLhuAnHKYLA7Xazdu1afD4fZrNZEdUDTSlUSSqKzEVs8W5he+f2tIvo0Xtm4BCxvWSIzA325CcX+TMajb16Vjc1NbF27VoljUoW1b3NJxm1uNvXBTR0iehgMMjixYv59NNPOeigg8jKykryZi4pKRmSN7PI6RIgtsjvSxRGq+YQnnoBulUvkvX2dfgu+C8JZ+XgTq41Epr1h5TyGglYL70ESa+j/YEHAeh49lkSoSC2G24QYoDs6SEKsGzZsq4luXk/hl/8EqJRzO8tIO+ii9Dt2ngyilHsaxhrHQvsLv8tOxjIkbZQKKSkf2zevBmv14tKpWLVqlVKqkhfuf/nVp1LMBZMq4CWIcK40htE5CWyUBUtnaMnBsJvb57V27dvJxgMKvamsrAeac/37hCz9E4K0N7ezpIlS/jss8945513aG5u5i9/+QuTJ09m8uTJTJ8+PSXezKJGB2WILPL7bDtJInTi71G51qNp+IqsN67Af8F/QWca+pcl4iANbKkr09fUcsEFSDodbX++G4DOf/wTEiAdMXPEeckpTnJ0oL29PalinNvtZubMmUoeW/sll3SlpMRieO78PXlPP4U0whW+RL4fRzFySHc/qHZUc0DOAZRaet8Po9frKSgooKCgAID6+nrq6+vR6/Xs2LGD1atXo9PpkhxA5KXr88afl1buMkRMAZCvm4iCUGQHM5EFPgytr/XmWS17vst51atWrSI3N5dDDz00HbT3in1KRHd0dHDzzTfz+eefs2rVKsaOHcsRRxzBuHHjOOSQQ3j66adTvqzc0ydaNGRaEPaHfrmpdQRPfwLj86egdq3DsOBmgqc+OujUDKltC/rP74NoiODpfxk+rxGC+ZxzkHQ6PL+/CxIJOv/5T2zNzcRv/nlavzcSiSTZzcnl5+12O7m5uYwbN07xz43FYmzatClpYLReegmBDz4gunkzkTVr6Pznv7D88MK0ch7FKPpCOkXFCSUncELJCQM+XqVSodfrGT9+PLDb2tHj8dDS0sK6deuUB1TZr7o/P/R9FSKLaJGFqogPRN2Rqkh5T8/3SCRCKBQa9nmHiiG1+B//+EcOOeQQLBYLeXl5nHHGGaxduzbpmGAwyLx588jOzsZsNnP22WfT3NycdEx9fT2nnXYaRqORvLw8fv7znxONRpOO+fjjjznooIPQ6/VUVVXx7LPP9snLZDJhtVr5zW9+w/bt29m0aRN///vfmTFjBg6HY7+rCAhi89sbt4Qpj+B3/o+EpEZb9zra5X8b/HfEomjXvIp2/dtI7o0p4TVSMJ1+Oo5f/1p5cLB89BHRp59OKbdwOKxM4F9++SWLFi1i/fr1RCIRxowZw+GHH86RRx7JlClTKC4u7nWTR3c+kk6H47ZbFc7e+fOJbh8Zqy4Qa+IVictIQYT75tsCtVqN0+mksrKSQw45hBNPPJEZM2bgdDrZ6d7Jm0ve5Il3nuCrr75iw4YNuFwuYrFYSjmIKApHRfTQIHo6R7pEvkajyai705BU5SeffMK8efM45JBDiEaj3HLLLZx88snU1tZiMnUtud9www289dZbvPzyy9hsNq699lrOOussPvvsM6DrKfy0006joKCAzz//nMbGRn70ox+h1Wr5wx+6clk3b97MaaedxtVXX80LL7zABx98wOWXX05hYSGzeymRrFKp+POf/7zH6+kstjIaiR46BsItVnwYoWNuRf/5fSRMOYP+jnh2FdGKk9BsWoBu6V8JnfSnodLNCEzf/Q7Eonju6ronoi//G6/ZjPWaawY9YMrVNLunZnQ3xC8rKxuUxVBf36+fNg3z98+l818vkQiF8Pzhj+Q89uiIDfCi9vdRjCxGSvAEo0EADHvxo98bn+5L11K2xI/X/xiD2sCpk0+lra2Nbdu2EQ6HsdlsSgqIw+EYVol7EUXhqIgeGkTmBmKnwgwHiogezAV45513kv797LPPkpeXx9KlSznmmGNob2/nqaee4sUXX+SEE7qWu5555hmqq6v54osvOPzww3nvvfeora3l/fffJz8/nwMPPJA777yTX/ziF/zud79Dp9Mxf/58ysvLue+++wCorq7m008/5YEHHuhVRPcFvV6fNhEtcs4xfDs3FvZE5OAriI7/Dglr0ZC+JzzjSjSbFqCtfZnwkT8nYex/s5tobWY64wwS8Thtf+x6AOh45lnQaLBdeWW/n5N9zrt7NIfDYSwWC3a7vVfLxqGgt7ay/vjHBD5ZSKypidBXXxF4912Mc+YM63tG8e2AyBN5qnH7ktt5c/Ob3HrIrZxReUa/xw5mTCkyFSEhEYwFMeebKSsrS7IE83g81NXV4ff7sVgsSk61w+EYlM+uSOOcjFERPTSIns4hctsNB5q2tjbsdvuwfpxc8dDpdAKwdOlSIpEIs2bNUo6ZOHEipaWlLF68mMMPP5zFixczdepUxYgbYPbs2VxzzTWsXr2a6dOns3jx4qRzyMdcf/31g+Kn0WjSKqJFHIhkiCzyB9x2kpQkoCXfThJZTlANrNJRrPhwYvkHoG5egXbFc4Rn3rDXz4h2Tc1nncXWTZuw/eslADr++iSSWo31ssuUY+LxuFJ6VY40x2IxJbpVWFiIzWZLWYWofqNqRiP2m3+O68abAGh74EEMRxyBympNyXcPhVMmIFo/GkVqYdaaSZBQHDr2hoH2T51aR54xj2Z/M9s7t5NtyO7VEkx2AHG73WzcuJGOjg6MRqMiqB0OB1lZWf1+r6j3jGi8QGwhKHo6Rzoj0Rm1uLv11ls55phjmDp1KhUVFRgMgyuRHI/Huf7665W8SYCmpialjG935Ofn09TUpBzTXUDL78vv9XeM1+slEAgMOA9mqBULBwLRopY9IbLIHwo39bbPMbz5YyLTLiR85AA32UkS4RlXkvXWPLTLniU842rQ9t13RG0z/7HH4rTZiP3lrwB45z9BIBwhcMocRTTLRSHk9AyLxZKx6ETW0UdjOO44gh9/TNztpv3//g/HL3+ZES6j2P8wEvdwT5u7VKLYXNwloju2c0DOAb0e09MBJBKJKJHq+vp6ampq0Ov1Sekf3fc1iCgKRRx7ZYjYXjJE5gbi8xsqNHq9nj/96U8UFBRw4IEH8sc//nFQJ5g3bx41NTV8+umnaaI4fOzP6RyiCkIYGjepswmVvxX9Fw8RKzqYWPnAdsdHx59GfOEfUHXsQLvmP0Sm9e0YIXKb+U84AbXfj+bvLwAQefppIp2d5PzgfCorK0e0ulP3ibgv2G+6ieYvvyTh9+P7z6sYTzsN/dSpaeUl6rXbHyBa26f7Xii3lgOwxbtlr8cOVkQUm4tZ2rKUHb4dA/6MVqslLy+PvLw8AKLRqOIA0tTURF1dHWq1WhHUoVAIo9E44POPBOR2ElFwiSwERU/nED1SPlSo7r//fl555RWsViuPPvrooD587bXX8uabb/LRRx9RXFysvF5QUEA4HKatrS3p+ObmZuWJuaCgYA+3DvnfezvGarUOajemVqsdjUQLiKFwi1afRfiAiwHIevsnSO3bBvZBlYbQETcSOvpXRMaftldeIiAcDrNz507Wr1/PV199RUdHBw0NDfhPOgnpRz9Sjst66SVsCxdhsVgywr2/a6gpyMd61ZXygbT98U8kejjwpBKiXLtRZB4jMe7JIrrR16hsMOyPz2D6Z5GpK4WtobNhyPw0Gg3Z2dlUVVVx6KGHMmvWLA4++GDF411OA/nqq6/YuHEjbrc75Q4gg4Wo8xWIL6JF5Qbii/yhQnP99dfz2WefkZWVxf/tKje8NyQSCa677jpeffVVPv74Y8rLy5PeP/jgg9FqtXzwwQecffbZAKxdu5b6+npmzpwJwMyZM7nrrrtoaWlRnpoXLFiA1Wpl0qRJyjFvv/120rkXLFignGOg0Ol0+21OtMgif6hR/NBxv0HdvAJ103Ky3rwa//mvgnrvFYuiUwZWwCBT17S7c0ZbWxt+vx+TyYTdbqekpIRt27ZRUlLS9ZA5aRJekxHv4/MBaH/gASSNGvP3vz+inAcyaJu//338b75FZP16IuvX0/nSS1guuGAE2GUWoo8N6YJIE3m6uTgMDmw6G+3hdrZ0bGGiY2LKzj3G1JX33OAbuojuie6FkqCr2qjBYMBoNCopIOFwWKkEJ/+lwx62L4gsBkXmJnKkN5FI7Lsi2uv18sgjj3D44YcP+EPz5s3jxRdf5PXXX8disSg5zDabjaysLGw2G5dddhk33ngjTqcTq9XKddddx8yZM5XvOfnkk5k0aRIXXXQRd999N01NTdx2223MmzdP2V189dVX8+ijj3LzzTczd+5cPvzwQ1566SXeeuutQf3IdFrcjaZzDB1D5qbRE/juE5iePxl10wp0n91L+JhbUsot3W0mO2d0L2wSCoUUu7nKykrsdnuSc0ZDQ0MSL+vcuRCL4d2VI912z72gVmPe9eA6UthbW0kaDfZbfsXOuZdBIoF3/hNknXAimoL8fj+XLj6jGEUqMdY6lhWtK9jS3r+IHmy/nJI9hWsPuJYqW9VwKfaLrKwsysrKFAcQv9+vbFasra0lEAhgtVqTHEDSXWZZZDEoqhAUnRuIe12HA83TTz8NoCzhDGTn/uOPPw7Acccdl/T6M888wyWXXALAAw88gEql4uyzzyYUCjF79uykSLdarebNN9/kmmuuYebMmZhMJi6++GLuuOMO5Zjy8nLeeustbrjhBh566CGKi4t58sknB2VvB+nNiRY50gtii/zhCPyEdQzBk+8h640r0X31OLHy44iVHDGgz2rW/w/dV/9H8MS7iOdPSymvPvkmEknOGW1tbcRiMaxWK3a7nYkTJw6pDL3l8stJRGN07LqP2/70ZyS1GtMZZ6SUf18Y6KConzIF01ln4nvlPyQCAdruu4+ce+5OM7tRjCL9OLroaErMJeQb9/5QOKicaEsxl1RfMgxme0fPcU6SJEwmEyaTSUnRlMssu91u1q9fT2dnJyaTKUlUp7LYxWi0d2gQvd0AYUX+cKDM2IOxvRqIwDAYDDz22GM89thjfR5TVla2R7pGTxx33HEsW7ZswNx6QzpzokUWqSA2v+GK1ei4UwlPuxApGiLWixjuC5p1b6FuXIbum6cInvJQynlB16DR0dGBx+NRos2A4pxRUlIy6JK+vfGSJAnr1VdBLEbH37oqOnr+8EfQ6TGdesqwfsNAMdC2ss2bR+CjLqeO4McfE1i4iKxjjk4pF1EnkVGMPEYquHHJpEsGdJyowZa93TM9yyyHw2HFAWTr1q2sWrUKvV6fZKtnMpmGfC+KLAZHuQ0NIxGJzpjFXSAQUH5gIpEgHo9jsVgyQiZd2J9zokXmlwpuoRPvAtXgorfhgy9HW/camro3kI65lYQpb9i8YrFYUmqG1+tFrVZjt9txOp1UVFRgMpmG9STeFy9JkrDO+zGJWIzOv/8dEgk8d9yByphFVo/VolRjMAOXymLBfsP1uH/9GwDa7r0X/SEzUKW4ZKtI/V0kLvsjRBMVg+Wz1buVLR1bGG8fT6GpMOV8hiK8dDod+fn5iv1sNBqlra0Nj8dDQ0MDa9asQaPRKILa6XQOatOz6GJQVG4iVwTcpyPRd911F36/n2AwSDQaxev18vTTTwtnezMcyCI6HTfAtyGdQ1R+KeHWXUAnEqha64jnVvf7kXjBgcQKD0bduBTtir8TPuLGPXjtDZFIRPFmbmtro6OjQ/FGz8/PZ8KECRiNxpT2t70VTLD95DoSoRC+l1+GWAzXLbeS88ADGA47NGUchous2bPRv/FfQl99RayxkY6nnsZ27bxM0xpFiiDSWDOSXCKxCNs7t1NqKUXdRxGoocw/9y+7n88aP+OWGbdwVtVZqaC6B6fhQqPRkJOTQ05ODtAlmNrb23G73bS2trJ+/XokSVICCg6HA5vN1qegElmojnIbGvbpnOg//OEPTJgwgZycHPR6PaFQiGgaLagygXQWWxE5XQLEFvkpFfgRP1lv/hj11kX4L3xzr0I6fNBlZL21FO2K5wkfOg80u0vl9sYrFAol5TP7fD6MRiN2u53i4mJlU2260V97SZKE/Wc3kfB14n/7fxCJ4PrZz8h57FH00wae7jIYDPYaSpKE/Rc30/yDCyASoeOFFzB+9ztoy8pSxmcUo5AxEv0hkUgw67VZ+CI+/nPafyi1lKbs3EXmXTZ3KXTo6I50BZbkKLT8HV6vV0kB2bJlC9FoNMkBxG63K/tBRBeDo9wGDzmXXFR+w4HmRz/6EYcccgjz5u270aD9PZ1DVJGf0rbTZAEJpFgIw1vX4r/wzX6rEkbHnULcXICqswnNuv8SnXSO8p6c1tTQ0KBEmwOBABaLBZvNRnl5OXa7Pe071HtiIAOQpFLh+PWvifv9BD/+hEQwSOv1N5A7/3F048ePAMu9Q1tWhuWHF9LxzLMQjdJ23/3kPPTgPjfA7mu/Z6DY3363JEkUGAvY2L5RiUb3hqGMdbLN3WAKrgwW6b5echVVm83G2LFjSSQS+Hw+RVTv2LGDUCikOIB0dyQSCbJNm6j9W+RNj+nklmn9pXr00Ue54447qKurA0ib2Mwk0l1sRVSRCmKL/JRykySCs+8nbspD7VqL/pM7+j9erSVyYFfRFt03T9HZ0cH27dupqalhxYoVxGIxGhsb0ev1jB8/nmOOOYZDDjmE8ePHk5eXN+ICGgbeXpJGQ/Zdd6E/tCuNI9HRQet1PyGydWtaeA3lGlouvRT1Ln/40OLFBBcuyiifUYxiOCgxlwCwraP/4k+DFRKpKLjSHzIhCiVJwmw2U1JSwrRp0zjuuOM45phjKCsrIxqNsm3bNoLBIJ9++im1tbU0NjYSDPZfyGYkIapQFd3iTlRuw4Vqw4YNhEIh5QVRnwKHg3SX/RZ50haZX6q5JYzZBOc8CIBuxfNo1v+v1+PknL3NzmNpcx7AcvPxLF26lJ07d2IymaiqqkKSJA4++GAqKyvJzs4e0WID/WGg7SXpdGTfcze6XSW24243rfOuJbrL0z1VGOqEosrKwnbD9cq/2+6/j0QKJkpRJ7hRjDxGUiCWWLpE9PbO7SnlMxLpHCIgKyuLoqIipkyZwpQpU8jKylLG4c2bN/Pxxx/zySefsGrVKrZv347P5xtx7iLn9YrMDdIfJc/k79ZcfvnlHHPMMeTm5maMRLqRzmIrIuccw/4logFiY48hPONqdF/Px/Dez/EVHEDUmI/X61Xymdvb25XKXbETH6fAbqfKbFaelP1+v5CD0WA5qYxGch58gJ1XX0Nk/Xpizc20zptH7l/+gjo7O2W8hnoNs048Ef2MGYS+/ppYQyMdzz+P9YorMsZnFKMYKorNXZ7K2zr7j0QPFnI6hyfkwR/xY9SmfsO/aGOdHLUsKCjoqs5KlwNI9/SP1atXo9PpkhxAzGZzWn+LyEJVZG4wMpHojFncORwOHnroIbJTOKmKBnljYToiEyLnHIPYIj9dAt93+I0kNi9E76ol/PIVfFr+M7RaLXa7ndzcXMaNG9evj6nIDx6D5aWyWsl55GF2XnkV0fp6ovXbaL3uOnLnz0dltQ6bz3DuJ0mSsP/8ZzRfcGFX5cW/PYfx1FPRjBkzbF6iIFP9SNT+O5IYyTaQ0zlSHYm26CxYtBY6Ih00+Bqosqe2eqGoOb49OWk0GnJzc5Vgn2wp6vF4aGlpYd26dUpgRHYAGawP/94g9ycR0xJEt5ATtZ+lApoFCxZkmkPaodPpSCQSxGKxlHcykQUXiC3yU9V24XA4yTmjs7OT7NKrOSj8IJ2H/JTDqw7HYDD0fRMHPOhWvkBCrSMy40pATBEy1PZSZ2eT89ij7Lz8CmLNzUTWb6D1+uvJefRRVCmwshxOW2krKjCfdx6dL74IoRBtDz5Izj33DJvT/gb5HpCjdYFAQBEUTqcTu90+qIJaoxgc5Ej0js4dxOKxPm3uhoLrp19PliaLPGPe3g8eJEQUNwPhpFarlb5dWVmpFLdyu914PB42bdpEPB7fwwFkOPeAPI+K1l4gfiRaZA/r4ULT3t6OzWbLNI+0Qq/vsi8Lh8Mpz/kWOdILYov8obRdIpEgGAwmpWb4/X7MZjN2u52ysjLsdjt6vZ7Y8WfiGMCgotn+BfpP/0Tc4CBywEXKQCTaBDMcLpqCgi4hfeVVxN1uwqtqcN38C3IeuB9pGPdEKtrHesXl+N99l7jLRfDjTwh+vhjDETMzxufbgEgkgsfjUYSzz+dT7oHKykosFgterxeXy8X27duJRCJ7iOp0TGr70j0zGOQb8zlt7GkUm4uJxCO9iuihts33Kr6XCorfGgylnVQqleIAUl5eTiKRoLOzU3mo3LZtG+FwGJvNpojqwTqBiCxUReYG+3hO9E033cRNN91EdXX/vrrfZsg3SjgcxmQypfTcIkd6QWwRPRBuiUQCv9+fFGkOh8NYLBbsdjtVVVXYbLbeB8NuN5bKtZ64pQh0e17/aOXJxK3FqLzb0da9Rmj8Wcp3izYoDSvqW1ZGzqOPsPOqq0l0dBBasgT37XfgvON2pGEIquH2L5XZjO0nP8Hz298C0HbfveTP+AfSEB1QRO3vw4Fc3EcWzp2dnZhMJhwOB+Xl5XsIAo1Gg9Vqpbi4WLmH3G43LpeLbdu2KaI6Ozsbp9PZb/GLbytG8v5Vq9TcfvjtI/JdqYSoY9xwOUmShMViwWKxUFpaSiKRIBAIKKK6rq4Ov9+PxWJRcqodDocScOuLl3xu0fBtSOcQldtwoVm0aBH19fU8+eSTlJamziReJMh2ZOnYXCh3DBEHI/j2ieh4PE5nZ2dSpDkWiylRhsLCQmw226CW5TSrX8bw/i+JVJ9N6OS79zxApSZ84CUYFv4e7TdPIXUT0SIhFddSN24cOQ/cz85510IoRODdd2nPdmK7/voh9d9U9XnjKXPwvfofwstXEK3fRseL/8B6ycUZ45MKDIdL91LKHo+Hzs5OjEYjDoeDsWPHDsqnXJIkTCYTJpOJkpISxafX7XbjdrvZunUrsVgsKVK9r4hqkfrDUOeItlAbK1pXoELF0WOOFoJTOpGuvUtGoxGj0ciYXXsuQqEQHo8Ht9vNxo0b6ejowGg0KoLa4XCQlZWVtDIpn0s0iDZX9YTIHtbDhebjjz/mhBNO4Msvv6S0tHSfzF2RJ5t0eEXLHSMejwuZcyh6ukk8Hk+KMre3tyvm/HJ6hsViGVafTFiKIBpGt+pFohWziFWdvMcxkanno//8PtStdWgbvuz6nGDtlqpBSH/AAWTfdReum2+GeJzOF/+BOicHy0UXDel8qWinrmqLP6flRz+CeJyOp57CeMocNPn5wz53JjHQtpFFsyyc5Qm9Z4pSKiD79JrNZiVK5/P5cLlcuN1utmzZQjweVyJ0Tqcz5Zu09kVE41EafY3EEjHGWsfu8f5Q75MaVw03LbqJ8fbxaRHRomGkhL1er09yAJFTpDweD/X19dTU1KDX65MEtaiQ20xUobpPR6ILCwsxGAx4vd5Mc0kb1Go1arU6rSJaxMEIxItER6NR2tvbaWtro7W1Fb/fT01NDXa7nZycHCorK1NuVRQrPZLIwVeiW/oEhvd+jr9wOglTD0tHg53I5HPQrXgew4pnwPrDlH1/KpGqa5l17DE4fvVLPHf9AYD2hx9BlZ2N6dRTB3WeVF4n3YTxmM4+G9/LL5MIBvE++hjOO/dSNKcXiNTf+4J8H8jpGR0dHRgMBhwOByUlJXtdWk4luovqsrIyJZ/U5XLh8XjYvHkz8XhcEdSyqBZ1ws4UXtnwCvd8cw/HjTmOe4++t9djhtJm3asWpitKKxIyFR3XarXk5eWRt6sIVCwWUx5qm5qaaGtrA+Cbb75RHjCHG+BJFUQPfqb7mmY0J/rJJ58kHo9TUlKSMRIjAa1WSzQaTfl5u6dziIhM52yHw2FFNMu5nHq9Xlk6jkajHHHEEWm/CUJH3Yx66yeoW+swvPdzAmc8k5QzDRCZfim6Fc+j3fQ+WZPmCHdNU/1AZDrjDGIuF975TwDgueNOVDY7WUceMajzpJKT7aorCbz3LvF2L/533sH0/XPR7yoY821Gd0suOdIsR7mKi4ux2+0YDIZM0wSS80nlMs2y84G89A3sEakW7YF9pLnIDh192dwNVUgUmgoB8EV8eMNebPrUGQHsL+kcQ4FarSY7O1ux//V6vXzxxRfY7XblPkgkEkm2eoNNNUwVRGmzviC6yB8ONL/85S+5/PLLOeqoowBxE9OHi3SV/u6eziEiRnpi6+mc4fP5MJlM2O12SkpKksSCx+Nh586dI3Pza/QET30E4wunodn0PtpVLxCZlhxtjmePJ1p+PHGDEymREEoQQHqeti1z5xJzufG9/DLEYrh/+UtyHv8/9FOmZISTymbDeuVVtO2yuWu//wFyn3pywBsfRZlIYrEYgUAAn8/H0qVL8Xq9ysPjmDFjsNvtQi8Pd4ckSVitVqxWqyKqvV7vHqLa6XQSi8Xw+XzCRKpHkoNcorvR39jnMUPhY9AYyDZk4wq6aPA1pFxEiwYROUHXtVOpVFRUVAAoKzayrV59fT3hcDjJVs/hcIxItdtvg4gWmd9woPnrX//KmWeeCYh/IYYKSZKUgivpODeIe+OnMyda3vHcPac5FAopVlsVFRXY7fY+bYRGOl87nltN6KhfYPjkTvQf3U607BgStuTNtIEznyOeSOD/+GMhr2mqOUmShP2mG4m7XQQ++JBEMIjr+hvIffJJtGPLMsLJdNaZdP7730Q3byZcU4P/nXcxnXrKgD+fiesWi8Xwer1KpNnr9aJSqdDpdBQXFzNp0qRvjWjeG+Q9C7KdWHeP3p07d1JTU8OaNWuS0j/SXU2uN4x0PygwdeXW+iI+OsIdWHSWlJ17jGkMrqCLHb4dVDtT66Ql2pwvqg7pKQS7r9jIaVB+v1/ZrFhbW0sgEMBqtSY5gAx0Q/BguYkcAN2nc6LPPPNMmpqa0Ol0OJ3OTPNJG9IpojOdMtEfUhmJlp+8u4vmWCyG1WrFbrczceJErFbrgJ+8M7H8Gzn4CjRbFhIrPqxrw+GepJCHSdFEdLraS1Krcd5+O61t7YSWLiXe3k7rT35C3lNPos7N7f+zaZjsJI0G+4030HrdTwDwPvYYWccfh0ogERqPx5U0JVk0azQaHA4HhYWFVFdX09jYSDgcpqiol362D6G7R++mTZuYMWMGiURCEdVyNTlZUGdnZ/dbMTSVGEkxlqXJwq630xZqo9HXuIeIHo44LDIXsdK1kobOhlRQTQmndEFETjL6E4LdXXCKi7tSe4LBoCKq169fr1hT9nQAGS5EbjNIbyQ60/O05rXXXuPxxx/nhz/8IRdddJHwTzRDhVarTYvFHYi3ea87hsNNjjB5PB5FMACKc0ZJScmwdu1npN0kFYGznwep/8HQEthG1jdPkDjipyNIrn+ks70kvZ7se+9h55VXEVm/nlhjI60//Sm5TzyBytJ/RC0dnAyHH47hqCMJfvoZsZYWOp57HttVV+71c+kaqOPxuBJpllOVNBoNdrud/Px8Jk6cmGSHBftuatze0N1dp6KiQnngcLvdtLS0sHbtWjQaTVKkeqREdbpRaCzsEtH+RsY7xie9N5z7RM6LbvCNiuhMYShC0GAwUFhYSGFh1/ULh8PKatXWrVtZtWoVer0+SVQP5V4Qtc1k7NOR6CuuuIJDDjmE8eO7bniRL8RQIUlSWkW0yDZyg4mSy5uf5Ciz1+tFrVYrGycqKiowmUwpuxky9vDRXUBHg0idzSTs3VIXAh6Oq/sNKmL4qk4injdp5Dn2gXS2l8psJufhh2i57DJiDY1E1m/A9YtfkvPwQ0h9rC6kc7yw/fR6gou/gFiMjuefx/S909HssqNKN7o/QMoPkWq1GofDQW5uLuPHj8doNO6T42WqoVKpFIEgl2hub2/H5XLR1NREXV0dWq02SVR/W9u2wFTAGs8aGn2950UP9TedVHISVbYqJjgmDIfeHhB53hINqRCqOp2O/Px88ndZd3b3g29oaGDNmjXKilZ3B5C9fa/oOcf7dMXCdevW4XA4hCCTTqQrnQMy74DRH/oTqpFIJEk0d3R0oNPplOjahAkT0jqZZTqCL3k2k/XGFUixEL6L3gWtseuNLAeNjhmM8SxBu+JvhE76c8Y4dsdI3JvqnBxyHnmEnZddTrytjdBXX+H5059w3Hprn9+frmuoHVuG+bzv0/niPyAUov3RR8n+/e/3+rmh8JGL/HQXzSqVCrvdTm5uLuPGjRtyhGgUyeguqmH3w7vb7aahoYHa2lolvVCuqNgzyj8QZCI6N6tkFlW2KqZk77kxdzh9Ybxj/B6R7VRBtDlf1KhqOnhpNBpycnLIyckBSFq1aW1tZf369UiSlLRRsbdCSKJHekXnNxxoHA4HsVhM2Xm6r2I0naOrQlP3fGafz6cUdCguLsZms43o5qdMt1siy4EUbEfV2Yj+4zsInfQn5b0tuSd1ieja/xA6+hYwpG5H/FAxUu2lLS0l+7572XnNjyEcxv/6G2iKS3qtIJjuyc562WX433qbeHs7gXffI3Tu99EfMK3P4wfKR7Zt615KW5IkpRR2VVXVPpNiMJIYitBQq9VKBLqqqkrx53W73ezYsYPVq1crS97dI9UiYnbZ7H7fF60/iShYReQEI8Or5wNmd3tJj8fDli1biEajSQ4gdrtd2DaTIXqkfDjQeDyepEj0vop0RqJVKpVwkWjZOaO1tRWAxYsXEwgEsFgsyq76wZQOTgcyLaIx2AnOeQDjv89Ht/LvXdUMK2cB4LFMJOIYh9azHm3tv4kcdFnmeHbDSLWXfto0nL/9Le5bbwW6NvdpisdgnDVrRL5fhspqxXr1VbT9uatce9v995P3zNMDtryTIW+KlSPN3UWznKqUCQeJUeyJnv68sVhM2Zy1fft2Vq9ejcFgSBLVvT38ixbYGK7Q+azhM7Z1buPUsadi1VlTxkk0iCoIM8GrN3tJn8+njGM7duwgFAqRlZVFNBqlpaUl4/N6b0hnJDrTfUVzww03cMwxx3DiiSdSVjYwS6tvI/b1SLR8c3WPNEciESy7NoVVVVWNmGflYJDpdouVHUX44CvQLf0rhndvwv+j90iY85FUKnyTf4D90zvQLn+OyPS5exRnGWmMdD8znnwS0R3b8f7f4wC4f3c76vz8pOInI8HJdMYZdP77FaIbNxKpre0qwtJPZcXELo9v2UlGFs1yYQSHwzEqmr9FUKvVSUvech6py+VSyjMbDAYl9cPpdCpe9CN9fWPxGDt8O2jxtzAjf0ZKz/2nr/9Eo7+RiY6JHJh7YMrOK9o9MCqi+0b36qJygbxAIMDmzZtpampi7dq1+Hw+zGZz0mbFTBdySrdhRUZzov1+P/PmzeOqq67iwQcfJBaLZaTiTrqR7kj0SItBeeNT95zmRCKh2M2NGTMGq9VKPB5n0aJFQgro7tUeM3kThI76Ber6T1HvXIPhfz8hcPaLSJJEoOp0bF/ej9qzEXX9Z8TKjsoYx0zBcsklROu34X/zTQiFcN30M/KeeRrNmDEjxkHSaLDfcD2t114HQPujj5F13HGoui3pyw+R4XCY+vp66urqFNFst9sZO3YsZrN5n05Z21/QM480Go0qkeqtW7eycuVKJd0jHo8TDAZHTER0Rjo5662zAPj0nE8xaHZ/73DniEJTIY3+Rhp9jSkT0Zkee3uDiJxAXF5ZWVnY7XY6Ojo47LDDCIVCSqR68+bNrFixAqPRmJRXPdIbd/fpnOiXXnqJzs5Otm7dCrBPCmhIX8VCGJmNhXIxh+7VAOWNT/2JBHngznTEtzd0L1ST0cFJYyB42uMY/34KmvrP0H09H0k6gLjWSGTS2WjWvY0UcGeO3y5kYsVDkiQct/yKWFMjoa+XEvd4aL3hRvKeelKxvhsJTobDDsNw9NEEFy0ivnMnHc8/j+aHP0xKz5D3dtjtdsaNG4fFYsnowC3ihLsvQqPRkJubS+4uT/NIJILH42Ht2rV4PB4+/vhjxZtX/tPr9WnhYtVZMWqM+KN+mvxNjLWOTXp/OH2i0FQIO+nT+WMoyPjY2wtEnKtAzLaS0Z2bXq+noKCAgl1ORvJDppz+sXr1anQ6XZIDSLpX5fbpnOiVK1dSXV3N5MmThe4kw4VOp/tWpXPIS5ayYPZ6veh0Omw226DcAkSuqCgSt3h2FcET70Jb808iE8+ElZtIJBKEjvw5oeN+C+rM55hl6t6UtFqy//xnWuZeRnTrVqKbN++2vhshYZ9IJNBddSXBzz+HWIz2555na0EB5tJSHA4HpaWlWCwWvvnmG3JycrDZMr8RdBSZgVarJS8vj8bGRiwWCyUlJXg8HlwuF5s2bWLFihXKcrf8l6ocUkmSKDAVsKl90x4ierjzq+wV3V9Z8X0BokYtRRaC/XHr+ZApu+F4PB5aWlqUYkjy/hCHwzGs+g+9IZ3XNNP6QXPeeedx5ZVXct111wm33J9KpFNEpyKdIxwOJ+Uzd3Z2Kss0RUVFTJo0CYPBMOibuHvKhGgQSUQDRCefS3TS2aBSI0mbu3gZ7JmmpSCTufcqq5WcBx+k5dJLk6zvmDMnLd8nb4yVo8wej4doNErRscdg/PAjVOEwk1euxPm976Xl+1MFUfr2SEHE3yuL6ry8PGB3wQu3282GDRvo7OxURHV2dvawSzPnZeWxqX0TO/07U/UTgN0iusnXlLJzihg4E7EPgZhtJWMwIrW7G47s297dAWTTpk3E4/E9HECGk6Ug8gPIcKH517/+xQ9+8AOMRiNXXXXVaMXCIWCw6RyJRIJgMJgUafb7/ZjNZux2O2VlZdjt9pQuOYo4MIkmopEkkNS7/ldC27wMbMd1vR6Pod7yMbGyozMalc5kW2mKx5B9773s/PFu6zuTSk3i0kuGfW75nuienhEOh5XKd0VFRVitVjjwQJqWfEnC58P/5ltYfvADtFVVynn21YF6FINHX/dKz4IX4XAYt9udVJrZYrEkRaq1Wu2Avzc3qyvitzOQLKKHHYk2pj4SLaIwFJETiBshh+G1mUqlwmazKa5dPZ2Mtm3bpozF3fOqB3NPiNx2w4Vm2rRpzJ07l7///e9cddVV4giaFCPdxVb6a7dEIoHf70+KNIfDYSwWC3a7naqqKmw226A65WC4iVoMRjgR3Q3j61+gYPHrBI//HZGDLsf4r7NRN3xN4LTHiE7MTPRThIlFf8A0nL/9De5bbwPA/OqrJMaNg3PPGfS5AoGAEmX2eDyEw2GsVisOh0MRzXtEP+x2rHMvpf2RRyEep+3hR8h9+KGkQ0TsT/sTROinMgbCRafTJeWQyhuzXC4X69atw+fzYbVaFUG9NwHRl4geLpR0Dl9jyoSmqPeKSH1IhqjiHlIb6ZUkCYvFgsViobS0NGlV0OPxUFdXh9/vx2KxKDnVDoej36BfOiPRssbJFDQAZrMZr9ebMRIjgZF055Crn8lRZnnTk/y0V1hYiM1mG7FNnCJY8PUGkUV0SN+181//yV3Eig4hWnoU6oav0a78e8ZENIjRVsaTTya6fTvex+cDEH/wQUITJyRZ3/UGOdIsC+dQKKS4yVRXVw/4njCfdx6dL/+bWFMTocWLCS5ZguGww1Ly20Yxip4bs0KhEG63G5fLpQgIq9WqWOr1dD7Ky+pKG2kJtCSdd7girMBYwF0z76LQVEiCBBLDEw7yWCKaMBQ1aimyiE4nN0mSMBqNGI1GxuxyZZIfNN1uNxs3bqSjowOj0Zhkq9e9yqio1zQV0Hg8Ht5//32OPfZYQLwbKlVIp4gG8Pl8bNmyRRHOkiQpS9HypqdMdSJRRbQMEbltLzyFkugmTPUfkfXmjwl876/oljyMZttiJPcmEs6KEeck0nW0XHppl/XdW29BOIzrZz8n7+mnkqzvulsttbW1EQwGlejFhAkTsNlsQ9qHIen12H78Y9y/+Q0A7Q89jP7555DU6n12/BrF4JGqe0Wv11NYWEhhYVckOBgMKukfa9asIRAIJEWqJzkmccXkK5jgmJCS75ehVWv3WhFxKBDtnhFVrIrKC0ZepPZ80JQdcTwej+LdrtfrFUGdrlRaEaC54IIL2LlzJw888ADAvvu0oNEQjUZTcq5oNJrkz9ze3q5U2crJyaGyslKoQg6Z8LEeCORlGBG5IUm0HvE7strWo2rfiv7Tu4mNPQ7N5g/RrXyB0HG/zgAlMfoT7LK+u/UW2jasR7d2HXG3m53XXw9//CPtuyyV5AqZDoeD8ePHD1k094as2SejffFFInV1RNavx/+//2H6zncAcR7KRLpe+yvScQ0MBgNFRUUUFRUBXWlJsqiura0lGAxygO0AnHonra2tOBwO1Gq1cCJMlPukJ0RrJxmi8oLMb9zruXk3FospK45NTU20t7fT2dnJzp07lWh1KgKLcmGtTEIza9YsLr/88n3eEkqv19Pe3j6kz4bD4STR3NnZiV6vx263U1hYiEajwWq1Ul5enmLWqYGwQhVxuUmSRExnJXD6XzD+40w0m94nVngQAJrVLxE66uegGfkqUCK1VSSRoPWyy8i77340zc3Etmwl9LvbUd96C+PGjcNut6fN8UdSqbD99Ce0XvNjALyPzydrhEuSj2IU0FXsYsyYMcpSdyAQwOVy4Xa7qampIRQKYbfbCYVCGI3GYRU0W+New8rWlYyzj+OgvINSwl80YSiqWBWVF4jHTQ4qZmdnA/D555+Tl5eHSqXC5XKxYcMGpRiWLKpHMsU1ldDcdNNNmeYwIhiMO0dP5wyfz4fJZMJut1NSUoLdbk+qgNXW1pYm1qmBqEIVxOUm84rnTyN0wp0YFtyMuvEbAFRBD5r17xCtPiMjnDIF2YZRTs/w+Xyo1Wrar7uO7LvvBq8X/dq1mF57Dfsvf5n2Qd0wYwaGo44i+OmnxFpa6PzHP+CAA9L6nYOFiH07nRDp92aKS1ZWFjFrjLA2zKHVh0IExfljx44d1NfXK+LB6XQOyj5sQf0Cnqt7jvPHnz9sES1yTrRonEBcXvDtyDm2WCyKI47sACLb6tXX1xMOh5Ns9USsstwbNCJ3jFRCr9f3KqLlnafdnTNCoZBiN1dRUYHdbu93N7ao6RIyRHXngMwLw77Q/Z6ITLsAVWsdsTGHoHKtQ7/4AdTbPsuIiB5JRCKRJPcM+WHS4XAo90VtbS3Z2dnk3n8/O6+5BiIRfP95FW1FBebzzks7R9tPriO4eDHEYnT87TlUt/+OxK48vVGMIlNz29UfXc3OwE6eO/k5JjknYTQaaWxsJD8/n+zsbCX9Y/v27UQikT1EdV+CqLtDx3AhsogWESJrpUync+wNPfl1dwApKytTHMzkzYq1tbXKXoPuDiCpKoqUSmhEbvhUQo5ER6NRvvrqK7RarZLiEY1GFZeAiRMnYrVaB/UEJLJIBXGFKojLrec1DZ1wR9frvhai5ccTL5ieEV7pbCtZNMvCubOzU1mBKS8vx2637zGIKaVmD5iG47bb8Pz2twC03f8AmtJSDDNnpo0vgLa8HNP3Tsf3n1dJ+HyY3nwTbrghrd85iv6xv8wp/SE3K5edgZ20BlqTXlepVJhMJkwmEyUlJYp4kNM/6uvriUajinBwOp3YbDZFVO8vIlrEqKrIQlXUNpOxN36SJCn3RXFxMbDbzam7f7vJZEpyAJEL0GXc4g7EfsoaDsLhMF9//TWfffYZX375JSUlJcTjcW6++WbOPvtsSkpKhl3iUvRItMj8RBXRfSFhyoNEAu2yp4gcdPmIfneq20ouLS+nZ8g2RQ6Hg7KysgE/+cucTKeeQnTzZjqefRbicVy33Ere00+hTfNeAesVV+B/510Sfj+GhYtInHsu7Nr0NYr9F5kcVxx6BwCekKff47qLB9mT1+fzKZHqrVu3EovFlEi1WWcGoMmfuqqFokHU+UBkjSS6iB7KA4jBYEhyxZErjXo8HrZu3cqqVavQ6/WUlZUxfvz4dNAeEDTRaBSNRiNs5xgsEokEH3zwAYsWLWLhwoV88cUXmM1mCgsLyc7O5pFHHmHGjBkpXRYYjUQPHaJy65NXqAPjC6ei6mwGSUNk6g9Ak7rKknvjNBzIolkWzrJolm0Yh1Ilsycn6zVXE9mymeDHn5Do7KT1xpvIe+Zp1Hb7sLj3B3VODpaLLsL7xBNI8TiJ556DQw9N2/cNFPvKmPptRqaugdPgBMAT3C2iByLCJEnCbDZjNpsVUS3njrrdbhpdXRFob9hLzfoainOLhxwEEjUSDWJyElmoiizwITVt17PSaHSXC1SmNyOq7rzzTp555hlqa2sH/eGFCxfy3e9+l6KiIiRJ4rXXXkt6/5JLLlFC7fLfnDlzko5xu91ceOGFSjrFZZddRmdnZ9IxK1eu5Oijj8ZgMFBSUsLdd9/dJydJkvjDH/7Axo0b+cEPfsA333xDS0sLV111FaWlpRxxxBEpz6sZFdFDh6jc+uSltxCZeiEAhg9vQ//ZPSPKazBtFY1GlZ3QX3/9NYsWLWL9+vVEIhFKSko48sgjOfzww5k4cSL5+flDLjPfnZOkUuG8/Xa048YBENu+Hfcvf0UizT6h5gsvQJXbVSmOJV8SWrEyrd83it4h4r2cCciRaHfIrbw2lLaRc0fLysqYPn06p5x4ClatFYBNrZtYunQpH374IUuXLmXz5s20t7cP+HtEFdGiCkJReYHYqSaQHn4ajYacnBzsaQzQDIjH/Pnz8fl8aLVa7r77bq644ooBf9jn83HAAQcwd+5czjrrrF6PmTNnDs8884zy754T9YUXXkhjYyMLFiwgEolw6aWXcuWVV/Liiy8C4PV6Ofnkk5k1axbz589n1apVzJ07F7vdzpVXXtnrd3744Yd7vDaSFQtFg8gi/1snooHwzOvRL74fAN3X8wkfcg0JY3ZGOUGXN2d7e7uy5NXR0aEY3o8ZM0bJIUs1p55QGY1k338fLRdfQtztJrR0KW1334P9ll+lbaBXZWVhveIK2v7wBwDaH3uU3CeeEHpiGUV6kdF0DsOudI5gcjrHcPujJEkUmgvxerw4Sh0cVXQUHR0dSkXFjRs3dn2/w6FUVLRYLL1+r4jjLogrVkXlBWJHyUF8fsOBpra2lq1btzJ//nyuuuoqKisrOeGEEwb04VNOOYVTTjml32Pkyja9Yc2aNbzzzjt89dVXzJgxA4BHHnmEU089lXvvvZeioiJeeOEFwuEwTz/9NDqdjsmTJ7N8+XLuv//+PkV0b9BqtSkrttITIotUEFeogrjc+uUlqfBd/D6mv3X5Ehv/diK+K78Cdd8OLqni1B2yaJbTM7xeLzqdThHNdrudrKystHKC3idjTUEB2ffew86rr4FwGN9rr6GpqMDyg/PTxsP03e/geuop1M3NhJctJ/j552QdeWTavm8gELFvpxsiCY1McVEi0cHhRaJ7w8+m/wy1Sk2lrRJJkrBarVitVsaOHUsikcDr9Sqiev369ahUKmWjYnZ29h6FwES6XiCuWBVZCIraZjJEj5QPBxrZEPsvf/kL4XCYP/7xjwMW0QPBxx9/TF5eHg6HgxNOOIHf//73igH34sWLsdvtioAGmDVrFiqViiVLlnDmmWeyePFijjnmmKQUjNmzZ/PnP/8Zj8eDw+EYEA+9Xp+2SLSoQlCGyPxE5ba3Gz6eM5G4oxyVZzMqfyv6j35HaNZdaeUUj8eJRqNs2rRJ8TDX6XRK0Z9JkyYpu5VHCv19l37qVJy/vg33r3eV537wQTSlpWQdeUR6uGg0+M88E8v8+QB4H3sMw8yZSIJOfKPYdzHJOYmrp1zNWNvYpNdTcW9Oz+vbGUiSJGw2GzabjfLycuLxuCKqW1tbFVEtR6hFhKiCUFReIDY3EPsBZLhQ3Dni8Tg//elPmTVrFuFwOCV5w3PmzOGss86ivLycjRs3csstt3DKKaewePFi1Go1TU1NSplIhZBGg9PppKmpa/dxU1PTHpUA5cTypqamAYvowRRbGSxET+cQmZ/IInpvvILH347xPz8CQLP1Y0LhTti1ez4VkCdAOT1DrrgZCATIz89n4sSJZGVlZXzw7K+djHPmENm8mY6nn4F4HPetuxw7KirSwiV88EFQVQUbNhBZvwH/O+9iOrX/1bJR7JvI5LhSYaugwpbcxzMhdFQqFXa7Xal5II8pLpeL1tYu+72PPvpIsdNzOp2YTKaMjimiCkJReUHXXCGySE13JDqjFneLFi3iyCOPRKVSMWbMGEKhUMpE9Pnn7166nTp1KtOmTaOyspKPP/6YE088cdjnHwzSmRM9ms4xdIjMbW+8YmXHEreMQdWxg/DBVw1bQMfjcTo6OpJEs0ajwW63K7uSt23bxuTJk4f1PanEQAYv61VXEd28hcBHH5Hw+bocO559Ji2OHZJKBRddBLv8qr1PzMc460QkAU36R5F+iCp6hoPWQCsfbPuABAnOHz+49KjuorqwsJCFCxcyffp03G43zc3N1NXVodVqk9I/jEbjiLajqGJVVF4gPjdAaJE/HGiOPfZYdu7cSXZ2NqFQiMLCQmKxWFq+rKKigpycHDZs2MCJJ55IQUEBLS0tScdEo1HcbreSR11QUEBzc3PSMfK/+8q17g3pzokWVQiC2CJf1LYbEC+Vmsi0C9B/dg+auteJHNgVlSYWGVB+dHfRLFvPqdVqHA4Hubm5jB8/PmkCc7lcw/1ZacHe2klSqXDc/juiDQ1E1q4ltmMHrpt/Qe5jjyL1Uwl0yHymTsFw2GGEliwh1tCI79VXR6R6Yk+IOqmNYmSwqX0T7qCbqTlT0av1KRvndgZ2cs8395BtyB60iO4OeYldLlxRWVlJPB6nra0Nt9tNU1OTIqq7R6rTLapFFYSi8gKxucnaQ1R+w4XGaDQqovnll1/mgAMOSFu98u3bt+NyuRTz7JkzZ9LW1sbSpUs5+OCDgS5njXg8zmGHHaYcc+uttxKJRJTS2wsWLGDChAkDTuWA3TnR6ehsKpVKWJEK4gpVEJfbQHlFppwHsXCXX3Qige6rx9GsfQP/ef/eIzIdj8fp7OxMEs2SJOFwOMjJyaGqqqrfpdRv8yCkysoi+957abnkEuIuF+Fly/D8+c84br01Lb/Ldu08WpYsAcD71NMYv/MdVCZTyr9nFOIi0+PK3Pfn0hnp5N+n/pux1rFAau5huWqhK+giFAuhVw/dmrInHzlf2uns8rmOxWKKqG5oaKC2tha9Xr+HqE4lRBWEIm+OE5nbPh+J1ul0yo9csWIFl1xyCaYBTjadnZ1s2LBB+ffmzZtZvny5cnPdfvvtnH322RQUFLBx40ZuvvlmqqqqmD17NgDV1dXMmTOHK664gvnz5xOJRLj22ms5//zzKdpVceyCCy7g9ttv57LLLuMXv/gFNTU1PPTQQzzwwAOD+qHpTufI9IDdH0TmJyq3gfJKmAsIH/nzrs/4W9Eu/Ssq/06y3vwx/u89RYcvkFQVUJIkpfpYZWXloPMPRWurwVw/TUE+OffdS8tVV0MohP/1N9BWVGC54IKU8gHQTZxI1kknEViwgLjHQ+eLL2IdhH3nKIYGEftnpuDQO+iMdOIOuhlrHZsycWjT2TCoDQRjQZp8TZRZy4Z0noFcK7VajWw+AMmieseOHaxevVoR1bKl3nAdgUTrQzJEFfcg9sa9dEaiRegrmqeeegqbzQbAgw8+OKjo7tdff83xxx+v/PvGG28E4OKLL+bxxx9n5cqV/O1vf6OtrY2ioiJOPvlk7rzzziSv6BdeeIFrr72WE088EZVKxdlnn83DDz+svG+z2XjvvfeYN28eBx98MDk5OfzmN78ZlL0ddIno0Y2F4kFkET1YxLOycZ38KNn//RGazR/ifvEqVpddgt1ux+FwUFFRsYe91GA5idhWg4Fu8uQux47bfg1A+0MPoykrS4sVnfXqqwh8+CHEYnT8/QVMZ5+NeleEbRTpg6hCY6Th0DvY1rmNtlBbSs8rSRKFpkI2ezfT6G8csoiWzzUY9BTVchVUt9vNtm3bqKmpwWAwKIG07OzsIXnTi9iHRBfRInODfTgSfeaZZyr/GIyABjjuuOP6ndTffffdvZ7D6XQqhVX6wrRp01i0aNGguPXE/r6xUFR+IgvDvfFKJBL4fD48Hg+JDR+Qs/EVtmcfTeukm5i46o+MbXmPgklHEpl2WUr4iNhWQ+FknD2byOYtdDz11C7HjtvIe+pJtJWVKeEk89GWlmI643v4XvkPCb+fjmeexX7TjSn5jsFyGcXII9NtbzfYARQRnUqhI4voJl/TkM+RCj5y1bicnBxgdylmt9tNfX09NTU1ZGVlJaV/7E1UiyoIRY/2ithmsB/kRL/++utoNBqam5s566yzMl5CMV3Y3zcWispPVG698ZJFc/f0jHg8js1mY4J/PXnty3DazARP/gchh4Rh4V3oP/4dcXspscqTUsJJNAyVk/XKK4hu2Uzggw93O3b87dlhO3b05GO9/HL8b71NIhik85VXMP/gfDS7UsVGse8jk/eMXWcHwBPy9H/gEFBg7NpU3+hrHPI50jHuajQacnNzyc3NBZJF9ZYtW1i5ciVGo1FJ/XA6nXtUMRZZRIvIC8QW+HK7pavt0nnugUBz3nnnKRHaI488ErvdLnRnGSr297LfovITlZscvZcjzbJwjsVi2Gw2HA4HpaWlWCwWVCoV0lgH1P0NTf2nSO3biMy4GpVnM7pVL5L11jx8l35CwlI4bF4ittVQIKlUOH73O6I7GojU1RFraMB1883kPvZYSh071Dk5mH9wPh3PPAuRCN4nnsB5++0pO/8oRtEX7Ho7kL5INECjf+giGtL/kNFTVEciEUVUb968mRUrVmAymZTUD4fDIaz+EJUXiM1NdA/r4ULz6aef8vvf/56ZM2dSUlICiBnxGi50Oh2xWIxYLJZy9xGR0yVAXKEKYnFLJBIEAgFlkA+FQuzYsQObzYbdbqe4uBir1drrgJCwlxEtPQpN/adoa/5F+MifETrxLlSdjUQrTkqJgBbxvhzO9VMZDGTfew8tl1xKvLWV8LLleO66C8dvfzus39qTj+Wii+h85T8kvF78/3sH8w9/iG7cuCGff6AQ8XrtT8j0uOIwdKVHpjonGmBO2RwOyjuIEnPJkM+RCeGl1WrJy8tTiqxFIhHcbjdut5uNGzfS0dGBJEnU19cTjUZxOp0pqVmRCogsVEe5ZQ6aGTNmMH/+fE466SSOPPJIjjrqqH3yR8tLRuFwOOUiWvRItMgWfJkU0bJolqPMHo+HaDSK1WpFq9VisViYNGnSgJ+iI1PO7xLRq18iPPMGUGsJnPkcpOheEumBI1XQ5OeTc++9tFx1VZdjx1tvoxlTjPWKy1P2HSqLBesll9D+8MOQSOCd/wQ5992bsvOPQlxkch6bnjudq6dezUTHRCD1kWg5Gj1UiDDPa7VapZAUdM3Pn376KZIksWHDBjo7O7FYLErqh8PhyJioFqG9+oLI0V6R87VTAQ10FS2xWq0Eg8FM80kbZI/pdDh0jEaih46R5iZHmmXhHA6HlUhzUVERVqsVtVrNhg0bBj0wRcfNIWGwoepoQF2/iNjY45IFdMCDbulfCR9xI6iG9iAn4nUcLifd5Ek477gd9y9/1SVy//IX1GPGDKlcd1/9yXzuOXT+85/EWloILlxIePVqdAJVfhwu5MI9brcbj8dDIBDAbrcrTgojUXVObndRJsxM3ytTsqcwJXtKRjl826DT6VCpVIwdOxaHw0E4HFYi1evXr08S1XL6hzYNBZt6g8giWnRu6RT4mf7dmuXLl2O323nooYeoqKgQglQ6ID+9pktEZ3rA7g8ii/x0t10wGFSizG1tbYRCIaxWKw6Hg+rqamw2G2q1utfPDpqXxkCk+ix0y55Bu+qfXSJaRjyG8eXzUe9cjRRqJ3TC7wcdoRbxvkwVJ+MJJxD7yU9of+ghADx33ok6Pw/DriJMw4VkMGCZeyltf/ozAO2Pzyf30UdScu5MIJFI4Pf7FdHs8XiU6nP5+flYLBba29tpampizZo16PV6cnJyFPHRczPXvgqR7plUC53/bPgP2zq3cdHEi3AaBm/dKKrw6s5Lp9NRUFCgVCcOhUKKqF67di0+nw+r1Zrk/pGuYnGitheIzW2fj0QfddRRHHroofzxj39UqhTti+iezpFqiJ7OIbLITzW3YDCYlJ4RCoWwWCw4HA4mTpzYr2hOBa/IlB+gbviGaHcBDaBSEz78Jxj+ezW65X8jYconfPhPBn1+Ea9jqjiZL7yA6Pbt+F55BaJRXD+/ucv6rrw8Jec3nX46Hc89T6yhgdCSJYSWfoP+4INScu6+kOq+Lfdrt9tNNBpVPMjLy8uTPMhl67HKykpisRgejweXy6U4JMjRvJycHBwOR9qEx/6MaDzKFu8W2sPtHJx3cMrv3b+t+Rs7fDs4dsyx+6yI7gm9Xk9hYaFS9TgYDCqiuq6ujkAgkCSqU9m3RXbAEDmdQ+R2SwU0H330EbfddhvXXHMNzz77LNOmTRP25hoO1Go1kiSlRUSLHOmFfVtEh0KhpEhzMBjEYrFgt9uZMGECNpttSIPoUHnF8ybh/+Fbvb4XHX8aoeN/h+Gj36L/7G4Sxmwi0y5MO6d0IpWcJEnC/rObiDU1EfzsMxIdHbRefz15Tz+Neldxh4Gco8/3tFqsV1yO5/Y7AGh/Yj65Tzwh7FgXiUSUQhZyioYsfidPnozNZhvQ5KRWq5O8fOUlcpfLxZo1a/ZI/RjoeUfRP4LRIOe/cz4An57zKZDayHihqZAdvh00+Bo4MPfAQX9etLFExmB4GQwGioqKlArH3UV1bW0twWBQEdXZ2dnY7fYhi2qRI6oia7Z0C/xM/27NIYccwmuvvcbRRx/NV199tc+KaEmS0la1UBYSorabyJHywYqwUCiU5NPs9/uVSPO4ceOGNUgOh9dAETnoMiTfTvRfPor+/V+RyMomOm7OgDmJiFS2k6TR4PzDXey88ioia9cSa2ik9aafkTv/cVQDrHzWHx/jnDl0PPs3olu3El62nNAXX2CYOTNV9IeFWCyG1+tVRLPX68VoNCol4lMVVeu5RC6nhbS2tlJfX08sFlNER3Z29rCqbGYSmR7zTFoTGpWGaDyaFocOeWPhcAquiHpdh8qrp6gOBAKKqF69ejXBYBCbzZYkqgeyMgmZ70/9QVTtAWJzSwU0AFlZWajVagKBACB2ZxkOtFptWkS0/JQlamcRMYIpY2/cwuFwUnqG3+/HbDbjcDioqqrCZrOlZWPJsNss2I627nViRTOI501Keit81C+Q/K3oav6J4a15BM55gVjx4QM6rWjXMR39XWU0kvPA/bRccimxlhYiq1fj/vVvyP7TH5EGOOH1BUmjwXrVlbhvuRXoyo3WH354Wn7H3s6ZSCTo6OhQ0jPa29vRaDQ4nU7GjBnD1KlTRyR32Wg0YjQaKS4uJpFI0NnZSWtrK62traxfvz6p1HN2djZZWVl9/h7RkMnxWJIk7Do7rcFW2sJtKZ8f8o1djhbNgeYhfV7U+SqVEd+srCzGjBnDmDFjgN0PjG63m1WrVhEKhbDb7Ur6R3+iWuS0BJGj5CJzSwU0HR0dPP744wSDQaqrq4F9s8a5JElotdq0pXOAmJMIfLtEtCyaZeHs8/kwm83Y7XYqKyux2+0jtht7ODB8fAfa1f8iPPUHhE6+J/lNSSJ00p+QAh7UO2uJm/IGdE5Rr2M6OKlzc8l56EFaLr+ChM9H8OOPaX/4Yew33NDv5wYyWGedeCLacc8SWb+eyJo1BBcuJOvYY1NFvU/09CH3eLoq2dntdnJzcxk/fvyIuGj0B0mSsFgsWCwWysvLicfjtLW14XK52L59O6tXryYrK0sR1CL5+IoIh8FBa7AVd9Cd8nMrIto/dBEtKtJ1D/R8YJQj1XL/jkQi2Gw2pW/b7Xbhg2TydRRVt4n88JEKaL773e+ycuVKfv7zn3P88ccD4i7xDBfpqlrY/SYTESLnbMsD2bp162hra6OzsxOTyaRslhpJC6PuGG4KTGTKuWhX/wtt3RuEjvsd6Ew9vkBD8LRHkcIdJAYhokVDOjlpq6rI/tMfab3+BojF6HzxH2iKijCfd16/n9vbdZNUKqxXX43rppsA8M5/AsPRRyOlYaCPx+M0NTUlbXSVl5O7V7wUFSqVSonSjRs3jmg0qogO2cfXarUqogPE6aciiJ7crFzWt62nxd+CNWFNKZ+8rK5xY6giGsS5Vt0xUtdNkqQ9RHX3SPW2bduIRCJKpDoWiwk5x4tmLdkT+3wkevr06dx3330cnCIrKZGR7ki0qEJVpAhmJBKhvb1dERWdnZ1oNBoMBgNjx47FbrcLE9kaTpvFxhxG3FGOyrMZzdr/Ep16/p4HabNIaHcvjavrPyOeM4GEMWevvEQalNLZtwyHH47jl7/Ac9cfAGi7737UeXlk7XrgH/J5jz4K7eTJRFavJrJhA4H338d48snD5huNRpVVlObmZsLhMNFodNDuMKJCo9EkVZwLhUK4XC5cLherV68GYNmyZeTm5iqbFEXqqyMNWejuDOzEkrCk9NypiESLeG0yxUuSJEwmEyaTiZKSEhKJBD6fTxHV4XCYpUuX4nA4lAdLETbhyrpDxGsJ6Y1Ei6BrNA888AAgtkVKqqDVaolGoyk/72g6R9+QRYUsLDo6OjAajTgcDsrKyvB6vUSjUSZMmJARfn1h2G0mSUQmn4f+0z+hq/ln7yK6GzTr3sLw1jziuZPwf/8l0Jl75QRiTX4jwcN0xhlEGxroeOZZSCRw3fZrch97FP2BBw75nJIkYbvmGlqvvRYA7xN/IeuEE5AGuXEvHo/j9XqVFA2v14vBYMDhcJCTk4Pf7+egg9Jro5dJ6PV6ZSNXLBZjwYIF5OXl0d7ezpYtW0gkEkmpHyaTSZi+OxLIzcoFoCXQQgUVKf3tpZZSnp71tCKmBwuRxpHuEIWXJEmYzWbMZjOlpaV88MEHTJo0SXG32bJlC/F4PElUW63WEddRoqdz7PPuHA8++CDxeByXy8WsWbM4/vjjhenEqYTszrE/5kSPpDtHNBrdI9Isi4qSkhIcDkfSZim/35+WB5vhIhUPHpHJ56L77B7UDV+jcq0nnj2uz2NjORNJ6K2om1eS9foVBM58FjTJm8pEvSdHom9Zr7mGWHMz/rf/B+EwrTfeRN6Tf0W7q0CUjMFcN/2hh6A76CDC33xDtL4e/9v/w3T6d/v9TPfolOwQIxc5KSwsZNKkScrGux07duzTVWB7Qu6fY8aMoaKigkQigdfrxeVy0dzcTF1dHTqdLklUGwbouDIUiDAeH1ZwGBqVhknOSfhW+1J6D+vUOqblTBvy50Von54QPTXBZDJRWFhIWVmZsglXjlRv3rxZEdVy/7ZaU5vC0xtEb7N9UU92h+buu+8mKyuL1tZWHA4Hxx9/PPF4/Fu95NgX0pnOIXLecTq5xWKxPSLNer1eEc12u73fiVKkVJPuSMVNnzDnEys/Ac2mBWhX/ZPQcb/u+1hnJYGznsP40vfR1C/C8OaPCX53Pqj3zAcXqb1GanCUJAnHr39NzO0h9MUXXR7SP/kpuU89iSZ/aJG4rmj01ey84koAvE8+ifGUOUg9cvBl71n5wTAWiylFTiorK/e76OpAIUkSNpsNm81GRUWFMla0traydetWVq5cidlsThLVqS76kunrcmDugYqH8/ur388ol96Q6fbpCZEFYU8x2H0TriyqOzo6FFG9ceNGgD0i1an+baKnc+zrWQ6ahoaGPV7cFwU0kDafaNi3vJj7QywWUyLNbW1teL1e9Ho9drudMWPG4HA4BhVdEllEp4JXeOoPUG/+ACnYttdj4wUHEvje02S9ejHaje/C29cRPO1RUGkUTiCWiIaR4yNpNGT/+U/svPpqImvqiDU30/rT68n7619QWbryTQc7kegPPBD9zJmEFi8m1tiI7/XX0X/ve0mVAeWCDQ6HgzFjxgx4yVbUSS3d6Ot3d7fKg91FX7pXm5OdEWQP331p8k1HRG7hjoUs27mMIwuPZEb+jIzzGS6+TSK6JyRJwmq1YrVaGTt2rLIS01NUdy9RbrFYhv1bRW4zELOfpRKa7hPgvvxDIb0iWvRI9FCFjlwAQhYVXq8XnU7X6/L1SHNLN1LBK1ZxAr4rlpCwFA7s+LKjCHzvr2S9fjnadW+CWktwzoOgUu/z9+dA0OUh/QAtl19BbPt2ohs3dhVjeeRhpCF6KpuvvILQ4sUAuOY/wSaLBeOuHfmpLOCzr2Ow90vPoi+BQEDZpLht2zZisZiyNJ6dnT1owSHCuBKKhdjq3Uo4nvoVUOgS0a9teo0sTdaQRLRoEJGTjMFGVLuvxMh2kXKkWvZg7+5+43Q6h1TYSBapos4P6XTnEOF3azJNYCSRrnQOEFsMDoZbPB6nvb1dSc/wer1oNBpFNFdXV5OVlZWyjitqu6WMl0ozYAEtI1Z+AoHvzCfrv1eS0GTBrraWOpuxBLaTiIZAEFGXieunzs4m9+GHaLnscuIeD+Fly3D/9rc477oL2PtE3H3Z1ePx0N7eTtG0qRhXrkLd3s6BTU04Zs9OCVcR+7aoyMrKori4OKnoiyyqN2zYgEqlSir6YjQa93rOTM9vW7xbuPDdC8kx5HCj8caUn384Dh0iRghFjqoOt71UKtUeolqOVO/cuZN169Yliers7OwBpYqJeB27Y5/3iX7uueeIRqN4PB4mT57MnDlzhL8oQ0U6RbTI6Rz9cevuLtDW1qZUTbPb7eTn5zNx4sSUiuae2OdFdPdzereT0JnBYN/rsbGqk/Ff8F/ieZNB6hqA9LUvcULdfSTW/Ya4o4J49viuv5zxxLMnEHeUK6kfI4VMjROakhJyHniAnVdfTSIYJPDBh7Rl3w/f3XNjoOz/KqdntLW1AV25irm5uUyYMAFNcTEtF1wIiQSBF/+B7fvfRzWMFZZRDA/d803Hjh2rPNy7XC4aGhqora3FYDAkieqe1pgijCtaVVd+fSTetQKa6vtluDZ3os3zoorodPBSqVTY7XbsdjsVFRVKH3e73bS0tLB27Vqlgqn815uoFt2HeZ/Pib7xxhsxGAx4PB4uvvhi5syZs89uLNyf0zlkbvKSkpye0d7ejlqtVgTFSFdN219EtP7D36Bb9jTBY39DZMaVA/pMPH9qMqdokIjKgDYeRO1ah9q1Lul93yUfEs8eD4CqYSkqXzOx7Akk7GVpFdeZun66yZNw/ulPXUVTYjF8L72MVpKIn3EGoVAoqTKgXInM6XQyduzYPVMDqqrImjWLwIIFxN1ufK/8B8sPL8zI7xrFnpAdUBwOB1VVVUrgx+VysWnTJlasWIHValUieA6HA8i8GFPtegCOJ+JpCU7ta5FoGaLxGglx372PV1ZWJj04NjU1UVdXh1arTRLVRqNR+EhvOkW+CNpB09rauseL+6KAhvRVLARxI9HxeFyxkVu+fDnt7e3KE7AIpYZFffhI+Q7qXfZ22tX/InLwFUqKxmAQOuoXfBw5lKMPqMDQsRlVa5eQVrnWoWrbTNxerhyrW/l3tKtfBiCh1hN3VhLPrSaWM7HrvyVHgHr4RW0yPdllHXkEjttuxXP7HQDo/vUSLSoVnx14IBaLBafTSXV19YCKnFgvm0vg/fchkaDjuecwnX3WaDRaUGg0GnJzc8nN7fJhDoVCSiXF2tpagsEgkiTR0NCAWq3OiH8vQCwR6+KbpofY7iJ6sKJYxPlqf4pE7w3dRTXs3tTvdruV1RidTofFYlHm+XSuGg8ViURin9WUAJpQKEQ8HicWiymV4/ZVaLXatEaiRRiU5HxPOT1DXrqOx+NkZ2dTVVUllCWXKO3WE6nmFZnwXfQf/Q5161pULauI5w/e31WSJJAk4pYiYjnlxMpPQOnNiUSSMI/bSonlT0PlWo8UDaDeWYt6Zy1aIIFE50/Wwa5xTbP2TaRwB7HcauLZE0ArvnCUozQejwd3QQGaOXPIeecdAHJfepnxBx2M+ZBDBnVObWXl7mi0x4Pv369gueiH6aC/TyKT97Fer6ewsJDCwq79B36/ny+++AK/38/SpUtJJBJK9C4nJ2fExsBYvEtEqyV1WiK/BcauTZn+qJ/OSCcW3eCqIooyD8gYFdF9Q61WK324qqpKsYxsaGggHo+zaNEi9Hr9HpHqTEPkFY9UQHPbbbcBXTujq6qquP766/fZHJZ9MZ1D3oAjp2e0tbUhSRL2Xe4CctGD5cuXU1JSMuL89gZRRTSkWBQY7ESrZqNd+wbampcIDUFE98urxyAVnnkD4Zk3QCKO1L4NVeta1K11qHauQYp0Jgll7TdPoWn4quvckoq4s4p43hRieVOI508hVjyzz8j5SF2/7v1czmuWN7yOGTMG+y2/Imix4Hv5ZaRYjLbbbkP7yMPop08f1PdYL79sdzT6+ecxnXP2aDT6Wwij0Yharaaqqgqn00lHRwcul0vZwKXVapPyqdMVPJIj0WpVeiJxBo0Bm85Ge7idZn/zoES0iOJGBLHaG0TkJVtGSpKEy+Xi6KOPpq2tDZfLxfbt21m9ejUGgyFJVA/HSWuoSLc7R6aheeONN5RlsKuuuirTfNKKfSGdQxYTsntGW1sbiURCKf5QUVGxh02Oz+cTVqiKKqLTwSsy5ftdIrruNULH/nqPioQD4QSDFPeSioS9jJi9jFjVyb0eEis9AjQGVDtrUQVcSr61ds1/iJsL8F31tXKspu51EnoL8bypJEy5g+I/WAQCgaQiJ92rgfW2omK46Ubat21D88UXEArResON5D7xBLoJ4wf8ndqKCrJOOonAe+/tikb/G8tFFw2JvwgDfCYg0u+WLbBk/17ZFUHOp66vr6empgaj0ZhU9EWr3bPI0VAQjXdVY1VLaoVPqvH48Y9j09vIMeQM6nOiimjROIGYIlqGnBPd04c9Go0qolru5/JmXFlUj0TmQbpztjN9TTRr165lzZo1PPjgg1x88cWAuDXYh4tvYyRaLjMsC2aPx6OIZrvdztixYzGbzf1eM1GFKojLLR28YqVHEzfno+psRrPpfaLjTxOCV/jIn+8+f2czqpYa1C01qJpXkTBm7z4wkUD/0W9R+bv2UcRN+RRbqzAZStBknUgsfxoJ65ih8wiHk4qchEIhbDabUv3SYrH038/VaiI/vgbJ70O9chUJn4/Wn/yE3L/+BW1p6YB5WC+/jMCCBbtyo5/HdM45o9HobyH6uk+6W+UBRCIRPB4Pra2trFu3Dr/fj9VqTSr6MtScztysXK6eejU6lQ62Dvmn9IvxjoE/JHaHiOOuqCJa5KqAfUV6NRoNOTk55OR0PVzJm3HdbrdSMdRoNCZFqtMhqvfVzAYZGoDq6mrmzJnD3Llzqa2tJRaL7ZOJ4BqNRvic6O52XLJwjsfj2Gw27HY7paWlexUT6eKWDog4KEGaeKnURCadg/7Lx9DUvTZkEZ1OJMz5xMz5xCpO3PPNWIhY6ZEkWlajcm9E5WvG4mvGArD5n0SLDyNw3ivK4ZoN7xJzVpFwlCs2fUmn25XTJw/snZ2dmM1mHA4HEyZMGJJ4kbRaQj/9KfYHHyK8ahVxt5vWa68j78m/os7LG9A5tOXlZJ18EoF33yPe1obv5Zex/OhHg+IhQ9T7bn/BQO4XrVZLXl4eebv6RzAYVPypV65cSSQSSSr6MpjSzQWmAi6ffDnxeJz3tr4n3HgnGh9RRbQMEbkNtM16bsaNRqNKNcUtW7awcuVKTCZTkqjWD7GA1VD4DeW8IoyvGtnybNWqVUpVLhE7Siqg1+vx+XxpOfdQ0zlk0SyLCY/HQywWUyJwQxHNPSGLaBEHKFEFfrp4RaZeQNxZRXTcqUM+R8baS2MgeNpjXf8f9qHauYaOdZ9C4wpyow3EC7rlH4c6yHr9MgASehuxggOJFhxIp30izZoSWv1dGwP1ej0Oh4OysjIcDsceXr9DgsFAzoMPsPOqq4ls2ECssZGd115H7l+eQG23D+gU1ssuI/Dermj083/vikYLsElnFOmHwWBgzJgxjBkzRlkJlEX1pk2bkCRJsdKTi75kclytddeyoH4BY0xjOGfcOQP+nIjjroicYHe0V7T5E4aeLqHRaJIeHuUVme62kWazOUlUD2V83ucj0XfddRfr16/nk08+4frrrwf2XRGdbneOgaRzJBIJAoFAUnpGNBpVIs3FxcUpt2Pqnksr2rUVVURDegb0hL2MqL1syJ8X5vrpTMTHzKBdKqLZfiymHhv4pICLaOFBqFtWI4Xa0Wz9BM3WTzAAOYBrwgXETry9a6NLIg7xaEos92DXpGK1kvPIw13lwXfsILp5M63X30DuY4+iMpn2eo6uaPTJBN59l3hbG50vv4x1V7rbKPYfSJKE2WzGbDZTVlamFKeSvXvXrFmDXq9P2qTYPXrX0NmAP+onW5+tnC/V2OLdwvN1zzMjb8agRbQw48kuiOp5LGJbyUgVt54rMnJ6ndvtZuPGjSxfvnxIolrktksFNE899RRjx47lV7/6FVdffTUg0ESdYmRiY2EikSAYDCalZ4TDYSXSXFRUhNVqTWv6jDwoiShWRRXRI7JRVD7/IO83EdtLhtzX3W4fntKbiRUGGaNuIz+6DXvnBvStNag9GzEVTyGyK89YtbMO44vf6XIEKZxOrGA6scLpJGylQ/LTlqHOySH30UdpueIK4q2tRFavxvXzm8l58AGkAQz+Sm50PE7n83/HfO65o9HofiDa5qt03Cfdq8xVVlYSi8WU6J28JG42m8nOziYnJ4cnNz3JG5vf4IpJV1DG0B+e+8NwCq6Icq1kiDq2iSwE0+V+odPpyM/PJz+/q3+Fw2El/WPDhg10dnYqXvzyX28bcvf5SPSWLVuUf4jcUVIBvV6fNhHdXQwGAoGk9IxwOIzVah0x0dwbNxBzgBK12Aqkt720y/+GdsXzBGffS7zgwAF/TrSHjng8TjgcZu3atXg8HgKBgDKwFhUVYbPZlAE0BvgBgm1JOdLq5hVIsTDqxm9QN36z+9xZ2cQLpxM+5BpixYcNiE/P8UtTPIbcRx6m5cqrSHR0EPrqK9y3/RrnH+5C0vRfAEM7dizGk0/G/847xNvb6XzpZayXjEajv01I93ymVquTNm/JQsPlcrFmzRpqWmoA0Pi6+lo67l1ZRLcEWgY1h4s634vISdS2gpGL3ut0OgoKCigo6PIml6vCulwu1q1bh8/nU6qGOp1OHA4HWq02rW0nQoqN5pNPPlFyEm02W0bJpBsajYZoNJry8waDQYLBIH6/n+3btxMKhbBardjt9gFXS0sn5E4molgVTRTKSDcv9Y4vUbfWoa15mdAgRXQmIVfNkh8QvV6vUlmrsrISh8Oh7K3oEwZ70j8jU84nWnw46qZlqBuXoW78BlVLl92eatP7hKdfqhyr3r4Ezbo3iRUfRmzMYb3a7PW8btqqKnIefIDWedeSCAYJfPQRnj/9Ccett+61PS2XXYb/vfe6otF//zvmc88ZUDoIZP5ajWLk0VNo3P363RAFa9wKwMKFC5PyqXvakQ4FeVldy++hWIi2UBsOg2NAnxNx3BVVrIrKCzLHTa/X7yGq5Uh1XV2d4nITDAbp7OwkGo3ufW74FkJz6qmnYrVaOeuss/jd736n7NzcF5Eqizv5CUz+C4VCaDQajEYjlZWV2Gw2oTqL6JHo/ZFXZPJ5aOteR7v2NULH/Ro0A7cWGsn26l4B0+12097ejlarVYqc5Ofns3PnTsaPH5rNFgCSRMJRTtRRTrT6rK7XokFULatRNy4jVrg731qzcQG6Zc/AsmcAiDvKiY45lFjx4cTGHLo7RaYH9NOmkX3P3bTecCNEo/hffwOVyYTt+uv7nYC0Y8swzp6N/3//2x2NvvSSof/WUYwYMi18IrEILcEWAI6edjTLP1vOjBkzFO/e9evXJ3n7ZmdnD6kYhk6tI9uQjSvootnfPGARDeI96GX6mvUFUXlBeouZDAY9q4YGg0Hcbjdr1qxhx44dbN68eY9ItUg6aajQ1NbW8sUXX3DLLbfg8Xh48cUXM80pbRhqOocsmuUUDXnJWrbistlsbNiwQamCJRpGRfTgke5BKVZ6JHFzIarORjQb3yc64TsD5pXO9uq+8VUudAJgt9vJzc1l/PjxSW4ETU1N6eGjMRAvOph40cFJL0fLj4doEPWOL1HtXIPKsxmdZzPU/AsA/UkvENF1LW8TbAe9RUkdMRx+OM4778B9y62QSND54j+QDAZs11zTLxXL3Ln43323Kxr9wt8xf//cAUejRezboxgZ7PDtIJ6IY1AbcOi6hK08b8hFX3pWmMvKykoq+jJQN4R8Yz6uoIsmfxMTnRMH9BkRhaGInEBcXiDuZkyDwUBRURGbNm1iwoQJmM1mJVJdW1tLMBjEZrMliepvo7WypqysjLKyMkpKSjjhhBMAse1chgOtVjsgES3vSpVFs9/vx2KxYLfbGTduHHa7fY8nKFHFIOzOGxKR337LS6UmMvkc9EseQbv6X4MS0amGnMcpC2d546vT6dyrxeJIjxGx0iOJlR7Z9Y9gO+qGr7tSPHZ8idTRQNhUTGLXPW5Y8As09YuIFR1CbMyhREuPwHjC8SRuuxXPnb8HoOPpZ5D0eqxz5/b5ncnRaC+dL72E9dJL+zx+FGIg0+NKnacOgHH2ccp90v1+UalUioAYN26c4tvrcrmUjVvdi770JzLyjfnUumsHtblQRGEoIicQlxeIzQ1268msrCzFOhJ2V6R1uVzU1NQQCoWw2+3KPTGcIkcjCUUJxuNxJk7seoIV8akmFdBqtb3mRIfD4aQy2j6fTyn6UFlZid1u32sZ2JEq+z1U7LdidRhIN6/I5HPRL3kE9ZZPkDqbSJgLRoSXXA5WFs0+n0+JkA0lhz9j189gI1ZxIrGKEwlDl03elnrlbXVLDVKwHc2m99Fseh89XZ7VhpLDUV1wLK4XPwHA+/h8JL0ey4UX9vlVlsu6R6Nf6HLqMJvT+/u+ZRDxPs6kuFjrWQvARMfEATmX9PTtDYVCij91TU0N4XAYu92uiGqbzaac78bpN/Lzg35OtmHgK6EiXi9RBaEoKRO9QdQ2k9FXpLy7qJZXQOVI9apVq741olrT2NiIy+XizjvviMtUOgAA7+9JREFU5PTTT2fDhg1Eo1FisRiTJ0/ONL+UQra4a25uZsGCBWRlZVFcXIzP58NkMuFwOKioqBiQaO4JSZKIxWJpYj58iOqCIaqIHgleCUcF0aJD0DR8hbb2P4QP/XFaeMnetnK02ev1YjAYlGVleRf1UCDU4K3SJPHxXfpxVwnz7V92Rau3L0YKtaPd8C7ZBQcQ/clPaH/4YQDaH3wIFSFMF/YekdaWlWGcMxv/27ui0f9+ZdSpow8I1ScyiFkls7DpbEzOHto8qtfrKSoqoqioSCnKJYvqLVu2kEgklLSP7OxsTEbToNtetGslqiAUlReILfBhYG0nSRJGoxGj0UhxcbHS32VRvX37diKRSJKo7v4QmUlozjvvPJYtWwZ03bSfffYZiUSCcDjMJ598IqTyHyw8Hg8LFy7kH//4BytXrmT8+PGUlZVx6aWXcvTRR2O324ddKU1UMShDVH77O6/ItAu7Sm0XHTSg4wcyaMhV1mTR3NbWpjhoFBYWMmnSpCFtYOrv+0SCwkelIV5wIPGCA4nMuBLiUVTNq9DUf0rcmItl6vkkQiG8TzwBgOfB+ehWPo355OOIlR1NtPhwMOx2LLJcOhf//97pyqd+4QXM530fVQrbcRT7FiZnT1YEdDAYBIYuWiVJwmQyYTKZKC0tJZFIKEVfWlpaWLt2LTqdDqfTSU5ODk6nE4Oh/83KIgpDETmBuHnHIDY3GJpPdPf+XlJSkvQQ6Xa7qa+vJxqNMnHiRKqqqtLEfGDQHHTQQRx11FFoNBoikQg6nS41pXczjPfff5///e9/fPTRR6xYsYLx48czduxYsrOz+eCDD5S8nFRBpVIJGemVIbJYFREjVeUxOvkcopMHXmUMehet8mZAOUUjHo9jt9uVlCSTafBRqoFA1OvXK1SaLt/pbm4flsvmkmhrouNfrwPQ/FEIdeCf2MqeJSGpiOdPI3zQZUSrz0Q7toysk04i8N57xNva8L36KpYLLujz675VbbMPQlRBlgpIkoTNZsNms1FRUUGLr4WnVz5N+852TvednlT0RY5W99zHI2L7iMgJxOUFYnOD1PDr7SGys7NTiIcHzYMPPjisEyxcuJB77rmHpUuX0tjYyKuvvsoZZ5yhvJ9IJPjtb3/LX//6V9ra2jjyyCN5/PHHGTdunHKM2+3muuuu47///S8qlYqzzz6bhx56CHO3nMOVK1cyb948vvrqK3Jzc7nuuuu4+eab++T1xhtvEAqFuPnmmzn22GMpLCzk7bff5qc//WnKBTSIK1JliMpP5iXaQCASl+6Q2ysSiSSJ5mAwqBT0mTp1aspLx/cHEfvVQCFJEtabbiEhZdH5z39CQqJhSTZYNdgcW1E3LUcKtivHW88/ncB77wHQ8fzfMZ99NlK3Ms+jGAXAx9s/JhwPc3jB4Vh11vSnhkkJ/r3136glNb8/9/fEY3Fl01ZdXR2BQACbzaaIarvdDog3zok6log2P3WH6Okc6ahYKEkSZrNZiP6ikQVMbxjID/f5fBxwwAHMnTuXs846a4/37777bh5++GH+9re/UV5ezq9//Wtmz55NbW2tstx04YUX0tjYyIIFC4hEIlx66aVceeWVit2e1+vl5JNPZtasWcyfP59Vq1Yxd+5c7HY7V155Za+8Ht6V69gdOp2OaDSalhtC9I2FovIbqYjvYDHSvFSuDWjWvk74sOtAvedKkFzkJBKJsG7dOgKBACaTSdnZ35tjzEhApGsGQ3tYlCQJ2403kAiH8P3nVYgnaPggQfjOxzEXBomVHKEca4yvw1IcoGN7FvHWVoIPXo/pkmuI501JqsIoQ8R7bn9BJtv+mdpnWO1ezW2H3MYZlWcor6frfskx5KCW1MQSMdwhN7lZuUklmwOBgJJPvX37dqLRKFqtFqPRiNfrxWKxCHMvi8KjO0Sbn7rj25DOIWrbpQKa4VrZnXLKKZxyyim9vpdIJHjwwQe57bbb+N73vgfAc889R35+Pq+99hrnn38+a9as4Z133uGrr75ixowZADzyyCOceuqp3HvvvRQVFfHCCy8QDod5+umn0el0TJ48meXLl3P//ff3KaJ7g7yxMB0QdeOeDFH5iexhDSPEKxEn69/noepsJp47mei4OUqRE3ljhdfrVUqo5uTkUFpail6QCKio124wkCQJ+y9+QSIUwv/W2xCN0vq7u+GB+zFYd69cJXQmHEfm0fGvDgDa315CrvRfEtY8YmOPJ3TkTSQsRZn6GaPogUxM3p6gh1p3LQBHFHY9gKVbhKlVanKycmj2N9PsbyY3K7lomryJXt601dnZSU1NDcFgkCVLlqBSqZKKvhiNxrRx7Q+iilVReYHY3CB9Il+UeSetjy+bN2+mqamJWbNmKa/ZbDYOO+wwFi9eDMDixYux2+2KgAaYNWsWKpWKJUuWKMccc8wxSbnas2fPZu3atUoxiIEgVRULe4Oo6RIyROUnqogeUV6SisiEMwCILH2elStXsmjRIpYvX05HRwd5eXkceuihHHHEERgMBux2uzACWuTBe7CQVCoct91GljxehUK4bryJ0IoVyjHR6jOJ/+wDDId3jVdRv4a2bXZUvhY0tf8mod1dhEW/cxVZgcYR/Q2ZxEBs3PYHfNH0BQkSjLePJ8+YN2Lfm2/sijo3+Zv6PU6SJCwWC2azmcLCQk488UQOOuggzGYzDQ0NLFq0iE8++YSamhoaGxvTFnjqDaIKQlF5gdiR3v1hTEjr+m9TU9fNLC8pycjPz1fea2pqUnwxFVIaDU6nM+mY8vLyPc4hv+dwDKzM6UCLrQwFoxsLh4b9WUTLlTDdbjeRSBVHAeaGz3AeLDF27IG9LrGKOBiJdO2GvYFFo8F55x24ImGCnywkEQzS+tPryXn0EfRTpijHWa76McEvuuzwdm6rQnfDDajbNia5eeQuvY+S1lXENj1EtGoO0XGnEs+tBgGv4ShSh88aPwN2R6FhZESYLKIHU3BFkiTFucfhcFBVVUU0GsXj8eByudi0aRMrVqzAYrEkFX1JV+qYqGJVVF4gdjqHrIlE5ZcK9HoniNxhhgM5JzodEFWkyhCVn+giOpWQJyf5Ty5y4nQ6KTh4NtHGZ9DsrKXct4yIdWqf5xGprUQcJ4bbPpJGQ/Yf/kDrTT8j9MUXJHw+WuddS/b992E4uKsMuX7KFPSHHUZoyRJiOxroWNOJ6bRuHtPxGHGdmbikRt1ah7q1Dv0XDxK3lRKtOoXIhNOIFw7M1nAUQ0Mm7pNYPMbixq5V1iMLjxzR7y4wdhVrGqiI7mue12g05ObmkpvblRISCoWUTYpyuWa73a5Y6dlstpSJJFG1h6i8QHxukL55YrjpyKmA5rHHHiMcDit/0WiUnTt38pvf/IaCgoFVUOsL8uebm5spLCxUXm9ububAAw9UjmlpaUn6nFz+VP58QUEBzc3JA4P878FwTHdOtEjipie+DRsLRUIqeMXjcdrb25Voc0dHB1lZWX0W9YlOOgfNJ3egrX2FyIE/6pfXKHpHqtpH0unIvuduXDfcSOjrr0n4/bRe9xNMZ5yBbsoUtOOqsFx0EaFdKWcdTz+Dcc4cJNlXX6Wm8cTHaNhYywxbK5r1/0Oz5WNU7fXolj6B1L6V4Pee3P2F8SioRn5j6L6Okb5fljQvoT3cjlVnZWrO7gfhkYxEt/hb9nJkFwY6tun1egoLC5U5vLeiL3IBjJycnGHZaYoqCEVPmRCV234Rib7zzjvRarXKX1ZWFh6Ph5/+9KfDFtHl5eUUFBTwwQcfKKLZ6/WyZMkSrrnmGgBmzpxJW1sbS5cu5eBdUZ4PP/yQeDzOYYcdphxz6623EolEFNGxYMECJkyYMOBUDtidE50udw7R0zlE5CeqiJYxGF7yhh1ZNLe1taHRaHA4HIwZMwaHw9FvAYRo9RkkFv4edeNSJM8mEo6KYXMaCYjGJ1VQGQzkPPgArl/+iuCnn0Ikgu/ll/G9/HLXAd0KUUXr63HfdhvWq69GU1ysiOmo1kx00nFEJ50DET+azR+h2fAO0arZymclzyZML3yXaOUsolWnEB17LGhHi7gMF5nolzWuGgBOG3samhF+KDp17KmcUHzCgEt/D3UelCvLyUUwOjo6cLlctLa2sm7dOrRabdImxb0VfUkFp3RDVF6QHgu5VEHWHKK2XSqgkfOOh4rOzk42bNig/Hvz5s0sX74cp9NJaWkp119/Pb///e8ZN26cYnFXVFSkeElXV1czZ84crrjiCubPn08kEuHaa6/l/PPPp6ioa5f7BRdcwO23385ll13GL37xC2pqanjooYd44IEHBsVV3owViURSvjFL9Ei0qPxEFdED5RUIBJTKgB6Ph3g8jsPhIDs7m6qqqkFFZRKmPGJlx6BuWobKvZFYLyJatOsoGh9IbV+S9Hqy77mbtrvvwffGGxCL7X6z+/8Dgfc/IPD+B6DXox07ltiYIoxWG4FQCG1lJer8fKLjTyM6/rSkz2k2fdBVjrz2FbS1r5DQZBEtP57ouFOJVpwIekvKfk86IVo/gJGfvK+cciWnlJ2CXp08v4yECLPqrFh11kF9JhVFMKxWK1arlfLycuLxuBJEqK+vp6amBqPRmFT0pfvqW0+IKlZFzjsWtc1gP9lY2H2ZovsgONAO8/XXX3P88ccr/77xxhsBuPjii3n22We5+eab8fl8XHnllbS1tXHUUUfxzjvvJD2dvvDCC1x77bWceOKJSrGV7j7PNpuN9957j3nz5nHwwQeTk5PDb37zm0HZ2wHKzRsKhVIuokVNl5AhotiRISK3vkR0OBxOKnISCoWw2Ww4HA5KSkqwWCzDGmyDJ99NIisbNL33TxHbal+HpNHguOVX2Ob9mPDqWiIb1hNet57opk1EtmyBno4/oRCRtWth7VqsgOu117rOYzKhrahAW1GBprISbWUF2spKEgdeSjz/ADQb/odm/f9QebejXf822vVvk1Dr8J/7EvExM3rSGoWgKLGUZJrCgJCOcaS7Vd64ceOUolBylNrn8+1R9EXdbUVHVEEoKi/4dnBLZ050pqHpPuEPhdBxxx3X780oSRJ33HEHd9xxR5/HOJ1OpbBKX5g2bRqLFi0aNL/ukC3y0rG5UNR0CRkii3xRhaEkSUSjUVwulxJt7uzsxGw243A4mDBhwh6TwHDxbfMYFu3apXNQVdlsGI6YieGImcpriWiUzn/+i/aHHlJe05SWEt2+HXqMBwmfj/CqVYRXrUo+r92OtrISbVUl2qpfoatWkRVehX7LO0gdjcTzJu8+d+0rSNEA0ao5JIw5vfKMx+MEAgGMRmNGJhkRJjYY2ch4NB7FHXT3aWk3UkLn/1b+H9s6t3Hj9Bv38IruDenmpNVqycvLUxy4gsGgkk+9cuVKIpGIsnKXnZ0t7BwqslAVOV9b5FSTVGG/2skii+h0bC4UTUz0hMj8ROIWj8eVIieJRIKvv/4avV6Pw+GgrKwMh8OR5FeeNiQSSN5tJGylSS+L1FYgjmDqjpFsH0mjwXzhBfjffZdIXR0Athuux3DIITQvW8bOpUspTUBk40YimzYSa9jTNzre1kZo6VJCS5fuflGtRlNagm7sIWheeAntuHHoxo8ja8mjaNzrSbx/C7Hiw7pSPqrm4FPblMI8Ho+HWCyGwWAgJyeHnJwcsrOz+11G31cxUv3zkx2fcMvnt3BG5Rn8asav9nh/pPrku1vfZYdvB+eNO2+vIjoTwtBgMDBmzBjGjBlDIpHA5/MponrTpk3E43G0Wi319fVK0RcRxhiRRfRoqklmoQmHwyMjCgRAOkX0t2FjoUjiqzsyyU0eyLtbz8m+qZIkMW3aNLKzB7ZRJ1WQvDswvvx9pICHzqu/Ac3u1Kd9fUD6NkKSJKxzL8V18y8A6HjqaQxHHom6spKgWo3tkEOUY+M+H5HNm4lu3NglrDduIrJpE/HW1uSTxmJEN28hunkLfLR7BU5l1mNwlGEwetBvWo5h5VeYrL8mbK1CXTwb29QLKC8vx2q10t7eTmtrKxs2bGDFihVYrVZFVKfSlmwU8MqGV4glYth0tj6PGYl7N9+Yzw7fjr0WXIHMCxxJkjCbzZjNZsrKyojH46xZswaPx0NTUxNr1qxBr9cnbVLMVJGpTLdVfxCZW7oj0SL8bs39999PYWEh06ZN48ADDxSCVLogSRJarTYtVQtFFqkgdrrJSLddMBhUcpo9Hg/RaBS73Y7T6aS8vByz2YwkSSxcuDAjg3bCUgixCFLIi2bj+0QnfCf5fcH6mUh8MjV+GY49Fk1lJdGNGwnX1BD68iuoKN/jOJXJ1OUx3a1wC0CsrY3I+vVdf+t2/Xfz5j3yreOdIfyd4Me8+0Upgd7WjrHiMyyBcWirJyJNnKgIZujq862trbS2tlJfX08ikSA7O1s5Jitr1A1kqKhx1fBl85eoJBVnVp6ZUS6DKbgi0n0LXYEog8GA1Wpl2rRpxGIxpejLli1bWLlyJWazWem36Sz60hOiC9VRbpmD5rbbbkOtVjN+/Hh+9atfccEFF2SaU1qRLhEtcs4xiC3y080tEonQ1tamiOZAIKAUOSkqKuo3KpeRNpNURKrPQv/lo2hrX0kS0aJdx319gBwoJJUK69y5uG+9FQDvU08h3fX7AX9ebbejPuQQDN2i1kGfD/fKlXSsqiGyfj26hgYMTU2ovN7kDyckQm1aQt+0wDd37zqhGl1lJbrqavSTqtFXV1M0fjzFxcUkEgm8Xi+tra00NDRQW1uL0WhU0j6cTueIiZN0YaRcARKJBA8v79oEf9rY0yg0FfZ53EhFomHgBVdEu3+7t5NarU56EAyHw0rRlzVr1hAIBLDb7UqUOp2rKyKLaNHTOUTllipoZs+ezfnnn09ubi6/+tWvKCws5Pjjj98nE8LlSHS6cqJFjfSCeOKrO1LNLRaLKUVOPB4PXq8Xk8mEw+GgsrJywBGMTLZZdNLZ6L98FPWWj5D8LhLGbIWTaBCtX2WKT9aJJ6D5SxnRrVsJL1uGtqYGzOa9f3AXYrGY8rDndrvx+/1dD3uzTqTgvO8rzi+x1lYlah1et57IunVEt25N3sgYixFet47wunV0vv5612tqNdry8l2iehJjJlVTPm0aca1W8flds2YNwWAQh8OhCJjeys/3BxH7aLrweePnfLPzG3QqHVdNuarP40aqTw42Ei3ateqPk06no6CgQKlf4ff7cbvdyupKLBbD6XQqolpeUUw3r0xDZG77RSQ6EolQX1/PRRddxAMPPMCXX37J8ccfL9zEmCqkq2qhyCIVxOY3XG6y4b+cotHe3o5Wq1WKnEydOnVIaRmZvPnj2eOI5R+AunkFmrVvEJl+qfKeSNdRtAEyozmeajWWSy/B87vbAYi99DKJSy/p83g5H18WzW1tbWi1WiWtyOFw9LoZUJ2TgzonB8PM3S4h8UCAyLr1hNbUEllTR3Tduq50kB6+1pENG4hs2EDnG//tek2l6hLW1dUUT6qmctIkYlOn4urspLW1lY0bNyZFBPvLSxWpX44El1g8xiMrHgHgvPHnUWDqvziZaJFoka6XjMEIQrnoi7y60rmrz7pcLtavX49arU7Kpx5OypLIYlBkbvtFJNpgMCRdgHSVxRYF6YpEy+kcoj4VipxuMlgRnUgk9ihyAmC328nNzWX8+PEp2dWd6QePSPWZqJtXoK17XRHRmebUG0Tjk0kYZ8/G+8RfiDU2Ev/6azSzZsGhhyrvRyIRRTS73e4ki69x48YNqd/G43HiWi1S9UQM1RMx0LUUropGiW7YQKSujvCaOsJraglv3JQsrOPxXRscN9L55ptdr6nV6MaNo2TqVCqnTCZcWopHp1PyUq1Wa1JeqsiTZDrH4m2d29gZ2IlZa+aS6kv6PXakI9Gtgda9HClmBHOonCRJwmKxYLFYlKIvbW1tuFwutm/fzurVq8nKykoq+jIYQwWRxaCI11FGOrmJMu9otFotLS0tvPPOO3R0dDB9+nRAvAhTqpDOjYUgbocWOd1kIMJQzoeTo83hcBibzaZUxhxukZOh8konohO+S+Lj21E3fI3UXk/CVipc3xKND2R2cJU0Giw//CFt99wDgPm9d2k78QRFNHu9XsxmM06nk+rqaux2+6D7bTweJ5FIKP+FruugUqmQJAm1Wt1V4ECrRTVlCtrJkzHtKngQDwaJbdxIuK6O0Jo1hGvXEN64Ebp758dihOvqCNfVwa4S51qzmfLJk9FMqiZYVkabJLGyoYFoNIrT6SQnJwfzIFJX9gWMtY7l9e+8zrq2ddj0fbtyyBiJe6XCWsHbp7894NLfot2/qZo/VSoVTqcTp9PJuHHjiEajSj71hg0b6OzsVB4Gs7OzcTgc/fr9izqvg9gCf79w5ygoKODvf/87b7/9Nueeey7f+U7XJiZRL8pwIEkSOp0ubRsLQZyno57ItCDsD71xi0ajtLW1KaLZ5/NhsVhwOBxUV1djs9lSWuSkL2SyzRLmfELH3kY8fyoJyxghOPUG0fhkGqqTT4K//AXa28latpw1H3yIdeKEIacWyWJZFs4yZOGsVqtRqVS9jtndH+4TiQTodKirqzFOmqQI60Q4THTDRsJr1hBavZpgTQ2RjRuh23VNdHYSWLIEliwBwATYKypQT5lCsHwsrQUF1O36/pqamv3Gm9qsM3NQ3kF7PW6kRJhWre2z4EtPiCgM0zWWaDSapKIvoVBI8aeuqakhHA7vsUmxe9uILlRFu44yROaWKmhmz56NxWLhwgsvZOrUqZnmk3akc2MhiCsoRI9Ey8tvcrTZ6/ViMBhwOBz95oemm1emr2dkRvJmJRE4dYdoA2Qm2kd+4JMrWwaDQQpPOB7zq68hJRJMqK3FefZZgzpnPB5PEs+wWzTLf/K/BwJJkvYYo+RzJ9Rq1BMnYJpUjfmcs7vuR5+PcO0aQqtWEVy1ilBNDbGdO5POGdnU5XEN4ACys7NpLyxEd9B0thYUsMLhwLYrSi17U49Uf0mnO0ejr5GlLUs5bexpwvX/wUCkcUTGSIlVvV5PUVERRUVFJBIJ/H6/Iqq3bNlCIpFI2qQoshgU8WFIhsgPH6mC5vTTT+f0008nGAzy0UcfYbfbmT59utAXZjhIVyRabiuRhapIg2b3TVWBQIDa2lrUajVOp5PCwkImTZqUce9a0doMxBOtIOZknE7Im5hk0dze3o7BYFDymu12O6pDDqHh3ffA78f/9ttYr7wCTX5+n+fsLUUDUNIz5BSNVExIch/qGaVOinIbDGgPmo5+xsHYdt0H8ZYWgqtWEVy+nNCy5YTq6pLyq+MuFxaXC2pqyAXyDAYYP57g2DJqCwoIlpfjLCpSotSZvr+HgkQiwe+//D1LmpewtWMr86bNG/DnRgqvbnyVL5u/5Lvl3+WIwiP6PVbE8WSkOUmShMlkwmQyUVpaqlhAulwuWlpaWLt2LQAmkwmj0YjT6cRgMOzlrCMHkYWqyA8fqYJm27ZtfPXVV7z99tu8/vrrzJ07l+nTpxOPx0dkuXykkS53DtHTOUTYWBgIBJSNgG63m3g8jt1uR6PRUFxcTGmpWDm/ooholWs92hXPE7cUgekYITjJEOl6pROhUChpQ2A8HsfpdJKfn091dfWegtBsRv3d7xL7178gGqXzhRew33hj0iFytLlnioYsmOU0jXSj3yh19yh4Xh6mWbMwzZrVFa32BwjV1BBctozg8uUEly8n4fcr500Eg7ByJfqVKykA0GhIjKvCU1nJxuJiVBMnklNQQE5ODk6nM6XzTbrukdc3vc6S5iXo1Xq+W/7dQX12pO6Vla0rWVC/gCpbVb8iWsRAWTwez7hHuSRJ2Gw2bDYbFRUVxGIxli5dCsDWrVuTir7I+dSZTFsS8TrKSKfA7z5uZRKa733ve2zdupWZM2fyxBNPMHv2bIB9UkBD+jcWihyJHmlukUgkqTJgMBjEarXicDiYOnUqVqsVlUrF0qVL0ev1QtwQ3SEKH1VrHbplTxO3liAdKZaIBrEeHFN1zWSvcVk0yxuRnE5nUt/tD5ozvkf0P/9BikTwvfoapksuQWWz7XVDYCajSr1FqeX/RqPRpIlLZdBjOGQGhkNmIEkSvo4Ovvz3vzkoK6tLVC9bTqypW/npaBRpTR2mNXWYAPR6YuPHs628nNqxZRinTCEnL0/ZpJiKa5nKe7jJ18QDyx4A4Jqp11BqKR3wZ0dS6AzU5k5U8SUaJ7VajU6nw2azUV5erjjsuFwu6urqCAQC2Gw2RVQPZbPwcCBytFdkbqmC5rLLLuO8885TqgLt60hXJBrEiPb2hZGIqnYXHh6Ph46ODkwmk7JDWo46Z4LbUCAKr2jFLBJaEyrvNsxta4gUTM80JQUiDpBDuWZyXqQsmj0ej+LZXFZWhtPpHHy0yWbDN3Mm5oULSQSDdPzzX5gvv2xAGwJFQV+pH3L6hyyqJUkiIUmEi4qwzZ6N7fzzAYg2NRFctozA10sJfvklkfr63ScPhVCvWoV91SrsACYTofHjqS0rI1w9EVt1NTm5ueTk5AzKjiwdSCQS/OHrP+CL+piaPZUfjP9BRvn0h8GIaNEgqrDvzkur1ZKfn0/+rvSsQCCg5FNv376daDSq2FZmZ2cPuljRcLiJBpFTTVIFzWWXXSZUfk+6ka5INIgjunpDOrjF4/GkIider1cRHiUlJTgcjgE5EYjcbkLw0mYRrZqNds1/yG74kMb8AzPNKAlCtNEQIK+UyLnNkUgEu92O0+mkqqpq6J7N3TYEth51JKbPPkOKxQi8/DKOSy5GZTJ9ayeW3lI/fD4fLpeLnTt3IkkSsVhMOU6dn4/5lFMwn3IK0CWqA19+2fW35EtiLS27T+7zoVu2jNxly+A1SOTn46quZkNlBZoDDiCnsJCcnJwBRfpS3Sdf3/Q6nzd+jk6l47eH/Ra1anArtSJGokG8h2BRBWF/vLKysiguLk4q+iKL6g0bNqBSqZKKvhiNxpRzE3U8SWckWpR5R3PWWWdx8sknc9RRR1FcXEx+fr6QnThVSGckWmQHjFREyeVonSya29raAHA4HOTl5TFx4kSysrIG3X9EFdEi8YpUn4F2zX9wNn5Cw7TrMk1HwbdprJAf+mTR3NHRoWwUGqptYn8bAp1OJ5OPOw7vp5+hXriQRGcndQ89TNYPzicnJwer1fqtaj8ZsVhMWc5ubW1NKhM+ceLEPXK8gd0pK/n5WE4/Hcvpp5NIJIhsrSf45ZIuUf3V18R3jSkAUnMzpuZmTB9/DAYD0SmT2VBZSeeECdjGjlVcP0wmU59cU9G+neFOHljelcZx9dSrGWsdO+xzphOjkejUY6C8JGl30ZexY8cSj8dpb2/H5XLR0NBAbW2tsglZ/hvOKovIBd5AbIGfKmgqKip46KGHuPfeeznggAM499xzueSSS9Jukp0ppMviDvbNdA55Q5W8ITASiShFTsaOHZuSpSqRxGp3iMQrVno08Swn2oAbS+syGD8x05SSIMpA3vOayZUt5T4sSZJSDt7pdA6pHPxgNgTq9XpsP/kJDYsWQSKB5aOPaJ8zh/r6eiRJSppMh8JlJCA76cgllT0eDwaDgZycHCZMmNDrpsB+NyjuEtQAurFl6MaWYf3+90nE44TXrSOw5EsCn31GYOnS3UVggkE0Xy8l5+ul5ABUVdIxaRKbx45FqqxU0j6ys7NTvjHNrDPz4NEP8tqm17hwwoVDOkcmItEdkQ78ET9Gbe+RT1Hu2e4QkRMMPaKqUqlwOBw4HA6qqqqIRqPK6temTZtYsWIFFoslaZPiYPpvOq0cU4H9Iif60Ucf5dFHH2XJkiU89NBDLF68mEsuuSTTvNIGnU5HtHt1rhRCJNHVEwONkss3uRxt9vv9WCyWYUXrBsJNxHYTipdaS3T8aehWPI99x0eAGDmZog2Q8XicSCTCunXrFPtE+aGvrKxsSA99A60Q2FfQQVtRjvH44/F/+CF4PJRv2cKUs87E6/XS2trKtm3bWL16NRaLRRGCNpsto0GM7punWltbiUQiOJ1OcnNzqa6u3uuS9KA2KMqiWpLQT5yIfuJE7Bf/iHhHB/4vvsC/cCH+RZ8S93h2f8GGjRg3bKQUkAoKiBx2KJurq1nucGB3OLDb7UnfO1xMz5vO9Dxx9iL0B7PWjElrIhgN0hpspVTb9wZI0e5fUUV0qnhpNBpyc3PJzc0FdgepXC4XtbW1BIPBPYq+9DcOyP1b1IDnfhGJbmlpQa1Wc9hhh/Hiiy8qb+yrP3x/TefoSxDKy02yaO7o6CArKwuHw0FlZSV2uz3t9j1CidVuEG0wj47/Dqz9HxFDLqLFLDM1+ck5iPJE1NbWpqwIVVZWDjqyA8OrENgXrHMv7RLRgPdvf8N8xvew2+3Y7XaqqqoIh8NKHuWKFSuSij3k5OSkfd9KIpFQUl1aW1tpb2/HaDSSnZ3N5MmTsdvtw3p4HswGRflPZbFgPukkzCedRCIeJ1SzuktQL1xIeJd3L0CiqQnN62+Q9/obFJaWkjhiJp7Jk0GnY+HChUobDrYdN7RtQKPSpCR9Y6Tvj1dPexWbztZv7raIglXEeQDSJwb1ej2FhYUUFhYCJBV92bp1K4lEQtmkKKcudb9m+3MkWhiLuyuuuAKLxcIBBxzAmWeeSVVVVaY5pRXpKrYC3450Dll0dM9r1mg0yhK3w+EY8Y2moopoEGtQj5XMpO6kf5FAYnymyexCJgaxcDisiGaPx0MsFlPy8nNzc2lubmbChAmDOufeKgTKAnKoE6l+0iQMhx9G8IslRHfswL9gAaZdm+2ga1ySJ9PuxR4aGxupq6vDZDIlLfmmYkLvLtxdLhexWIzs7GwKCwuZMmVKWouh9LZBsbuw7h7pl6PUhmlTMUybivPaeUSbm/EvXITv/fcJfPkl7HrYidXXQ309NsCQn4/11FMJzDiY7cEgq1evxmQyKYLa4XD0+WAQjAb55ee/pNHXyL1H3cvMwplpa4t0wGlw7vUYkcY2GSIKexg5XkajEaPRSElJyR4PtuvWrUOr1SalgMnjgIhtBl3ttq/aJcvQeL1e3n33XRobG3nppZd46aWXKC8vzzSvtGF/jEQHAgHa2trw+Xx8+umnxONx5em2qqpqj6fbkYaoIlo4XpIKSaUm3q1KnChIZzt135wjezbLKUaTJ09OWvJsbt67I4F8zr42BKa6QqAM29y5BL9YAkD7M89gnD0bqZfzS1JysQc5taK1tZXVq1crFlpy6sdAd/snEgmlHVtbW/F6vUo+5rRp0zKWQtJXlLrfDYp5eVjPPQfruecQc7nxffA+ne++S3DpN7Dreuqbmwk98wyqZ56hZOpUxs+eTWhGKa5olJqaGsLhsNKOPb2pH135KFu8W8gx5FDtrB72bxRVHIrGSdR2ygQvSZKwWq1YrVbKy8uJx+NK8Ku+vp6amhrlQXfnzp3k5ORktOhLbxCheE66ofnZz37GrbfeygcffMDFF1/ML3/5S/71r3/tsxsLNRrNPr+xMBwOJxU5CYVCGI1GVCoVU6dOxWKxCHVthROruyAiL0mSIB5DXf8ZseLDQJX56l6pRk/P5ra2NqUkfFlZGQ6Ho88d7f3xyXSFQP3BB6ObOpXwqlVENmwksOhTjMces9fPdfel7W6h1dzczNq1a8nKylIiUz03+YVCIUU0u1wuxTWkpKRE2M2Me4tSy8fIglrldGD9/vexfv/7RFta8C14n4533iG8cqVyztCqVYRWrQK1muzDDqP0lDlw2GG4d3n8btiwAY1GQ05ODttU2/jnun8C8JvDfoNdbx/2bxrpcWRJ0xJe2/gaExwTuGTSJX1yEk2wisgJxODV3Spv3LhxRCIRmpubqampYcOGDaxYsWKPoi+ZjgKnKw2m+1iQaWgikYhiVXb++edz9dVXZ5ZRmqHX6+ns7EzLuTMlumKxGG1tbYpo7uzsxGw243A4mDBhAna7HY/Hw6ZNm7DZbCPOb28QUayCoLwSCSYvvIKszq34z/kHsbKjM80oJehe3dLtdhMOh5UJobKyckirJcPdEJhqSJKEbe5cdt5wAwDtTz9N1jFHD+p39bTQikajSdXTQqEQFosFtVpNKBTC7/cr7VhaWorNZsu4GBgMBrtBUZ2bi/WCH2A452wW/edVDg748f3vHcLr1nWdMBYj8PnnBD7/HEmvx3jssUw89RQMxxxDW2cnW5q2cF/tfQAcbTma3M5c3G53SqrQjWS7t/hbWLBtAd6w91slokG86DiI2VZyTQaAo48+mmAwqKRmrVy5kkgkklT0JROWmvuFO0d3X9/t27cLKbJSiXQXWxmJdA7Z71YWze3t7ej1+n4jdaKmmoA4EfyeEPHml1QqOhxTyOrcimbdm8KI6MFePznvVxbNXq9X8WyWH/yG4tks/4VCoSQBJkqFwKyjj0JbVUlkw0bCq1YRWroUw4wZQz6fRqPBYrEQDocJhUJEIhF8Pp+y4qbX6zGbzVgslpSV0s4kBrpBMRqNEnXYsX7/XBxz5xJev4HO/71N5//+R7ShseuzoRC+997D9957qKxWTLNm8WnpdryGNkotZVw39To6PB1s27aNeDyO0+lUUj9SXTAj1VC8ogN9pzeJOOaKKFZBbF7yeGYwGBgzZsz/s/fd8W1Vd/uPZA3LW8vydmwntrMTkpCELMgmy44TaKEQoJS2KaSlgTJaWtq3LRToWyhQRgelL6U/aOKZvRMgk5DplR078dDykmVt3d8f5hyuZMmxZY1rW8/n4w/Elq+vju499znf83yfB6mpqdSWkpDqq1ev0l0oduhLoN/TsHDnEAqFaGtrwxdffIF33nkH69atAzB03TnEYvGgk3OQG4JYz7W2tlL/SZVKhdGjR9+yCYiTVdWvwdVz4+J58Xg86JNmI/HGNggu7YBlwe9DKunozyRsNpspaW5paQEAyGQyJCcnY+zYsT41tLo3BAqFQnR1deHkyZO0o703+UewwePzEf/II9D94gUAQPs/P+w3iSY7T0SiQarNCoUC2dnZ1MbP4XBQT9pLly7BZDJR+yx3DfBgBbsSTeKXdTodWlpaEBkZCcfX/QOCnGxIN2xAwhNPwHruHDq3b0fn7j3UNs/Z0QFDSQlWArgjFoj+z/PIzsgGMr5xLtHpdGhubkZNTQ0kEgkl1DKZ7Ja6z2CTMHbgSm9/m2ufP5fJ6mA6Lx6Ph5iYGMTExCAzMxNOp5M2K5NrWCwWB9ynflhUokkVY82aNVi5ciU2btzo8saH2gAIBIJBUYk2m80uuma73U4jibOysvr9AOQiISTg6rlx9bw6ZJPgjJSCb2pBxM3jcGTMCvUpeRwnQvZIQ6DJZEJcXBxkMhkyMjL85tkMfKNtlsvlmDt3Ltrb26HT6XDp0iWXRD1SRQzlvBa1aBEi/vIOHI2NMB89CuvFixDl9u63wq4qtbS0QCgUQqFQICcnBzKZzGNDUUREBH3PeXl5MJlMlHhfu3aN/pw8RLnWlHQrkIZTnU4HnU4Ho9FIpSvZ2dmIiYmhryPg8XgQjBsH2YQJkD39NEzHjuH6pnLwj3wOsb27uBKZmIwxGdNcfoc0eGVnZ1MJjU6nQ21tLV2ckLH2tG0e7HmEkGiT3QSDzYA4UVyP13CRGHLxnIDBf158Pp9aaubk5LgssK9fv45z584hJibGpbfCHw2BgaxEc8bibty4caioqMCECROoAfhQRiAt7gZCuog2nZBmk8lEHQhSUlIG3DnPVckEwG2pCdfGjMfjgeHx4chZBH7VfyG4sjukJNrds5SQPdIQSGRGvno2A/1vCGSTR+AbAqrT6XD58mVagSFVxGA33/AEAsQ98ABaX30VANDxr/+D4ve/c3mNt2ht0lTki0ZcIpEgPT0d6enpcDqddIFz7do1VFZWIi4ujo4LVyPJie6TVJtJs1VWVlavCwFPDYrNBiv+2BSPnbK7IV46HwtbLmCdsQZZdy/o9RwEAgESExORmJgIoNvbl7044fF49PqTy+V0hyWY4xkpiIRULEWrpRXNxmavJJpr4CpZ5arRgq+VXvc5km0byl4YEgmTr/xjWFSiu7q6cNttt8FsNuPq1atgGAYOh4MSzbFjx4b4FP0LsVjMCZ9oh8PRI+QkOjqahpz4Sji8gctEFeDmhM7FSjSZkOw5iyGs+i8EV/bAcuevgRBNVEQadeHCBbS1tcHhcCAhIQFKpRJ5eXlg91z0Ff5uCIyOjkZ0dDQyMjJcyOmFCxdgsVhc7OKio6P7NwA+IqZgFdr/+j6cbe0w7t6N+B+thyU+vl/R2gMBn8+HTCaDTCbDqFGjXJqSuBRJzrY31Ol06OzsRFxcHBQKBUaMGNFnsu++s1rTZMADH56CyeYEnwesmZGFDXfNR1yk0GUe78uxo6KikJGRgYyMDJfqeH19Pc6fP4+YmBgqI3Q4HEFbtCVFJXWT6K5m5Eo973RwjeBwlURz7TlA4K9Kr0gkQlJSEpKSkgCAuiORRFWHw+Gip+7rTviw0ESvW7cOdrvdpTmDdD6LRCLs3bs31OfoVwiFwpD4RBNdHSHN7e3tEAqFkEqlSEtLg0wmC+iDiouEkICr58bV82IYBvYRc8EIxOC314OvvwCnIj8of5uQBKJrNhgMALonYXfP5v4c05s3sL8bAiMiImjsLrHS0+l00Gq1uHjxIiWutwrjGCj4Egmi77kHhr/9HXA4UPvaa9CsXNmvaG1/gt2URPSToYok92TLp1AokJmZCblc7hd9e64qBjnKaAj5PLywLBf5qhh6/XlLUOzrtrlUKoVUKsWoUaNooE1dXR2MRiP27dvn0qAYSI/+pOgkXGy7iHZLu8efc5GwcvGcAO6SwUCNFwl9SUtLo7aa5H68dOkSlc6RL289WcOiEp2dnQ2BQODyJRQKIRAIONOM408E2p2DvW1oMpmoPKP16wYWUqXLzc0NqjaTq4QQ4O65cfG86DkJo2Be9AqcslFwyvuXztcfsK9jci0Tz+b09HQkJCTgyJEjyMzM7NciMNAJgX0Bj8ejVerMzEzY7Xa0trZCp9OhpqYGVqvVJXp7oKTWPYHMkJKCLJEIfKsVcSdOIO+Xv4RILvfTu/MdbP1kMCLJSQgM0TYbDAZabc7MzPSLtKS5w4y/H67HUwtzIBFGIILPw3v3TUBClBD8Xmz02CTAJUERfavikiRKm80GgUCA/Px8+j4vXrwIkUjk0qDoz2fui9NfhCRC4jX6m4uElWvzLQEXxwoIDkll22qS0BciBbt58yaqqqp6eNWT65iriw9/QvDWW2+F+hyCikBqooltV01NjYvXLbGei4mJCdkFxUVCSMDVc+PipMk+J/uYtQH5G4RMEtmDxWLx2tTa188tFAmB/YVAIHCpUhuNRpcqNduRoa8WfLeK1jZduADDJ58CZgu6iosh+v73g/BO+wf3SHLiVDGQSHKr1UorW3q9HgAgl8v9Wm0GAKvDiY+O3cA7n9XBZHMgVizAT+ZnAwBk0b0H9rjb6Dkcjh4/I8Sa/T1vYDsmjBgxgjZ3Ea2+0Wiki4eB6FAJYoQxvf6ci3MuV8kql88r2HOmuxSM7VV/+fJlKrmSy+UB2/XnEgS3Sn4ZaqsIf2qi7XY72traKOEwGo1UWzR69GjEx8eHPDGIgOuNhVw8N66el7/PiV0hJZ7NEokEMpkMubm5fZI1eDqnUCcEDgTuhIftyFBdXU2r1ITwkO1MUlXta7S28IEHYNi0GXA4YPjkU8Q9+CD4t7CrDCXcnSrcI8ltNhsdF3YkOSkwkCosGReFQoFJkyYFJATm6NUW/H7nJVzVdQEAJqfFYfGY/jfPs6vPnhoUyWt6I9Se7g/35i520+SpU6fAMAyt9vcn3r2/741L4DJZDZ+XZ7g32hI5ll6vh9lsxtmzZ1FfX08X2oMt8OlWEHDFJiRYGIgmmmgFybZ2R0cHIiMjaYVOr9dDKBRi5MiRfj7rgYMQQi7cdO7gMsHn2nm5E/uIm8cgrNwE+4i5sOcX9Pk4ZKJjezZLpdJ+ezazryWuJQT6E+wHBbtKrVarUVtbC5FIBIFAQENe5HJ5n6K1BSkpiFq8CF07dsLZ1gbjli2IvffeIL6zgcFbJLlGoxnQuAwEDW0m/HHvFeyq1gIAZFFCPL0oB6smJFHphq/wVKUm//WUoMi+P24177qHZZBFR2NjI6qrq/vtTa3uUuONM2/A4rDgT3P+5PKz/jROBhtcPCcuPjcBbmqOxWIxUlJSkJKSgpaWFuTk5MDpdFI7PbYcjDRz+/oeuPDeQ5fSECKIRKI+k2jysCSkua2tjW5lJCcnY8yYMS6C+vb2ds46YLAnfS5ceGxwteLLxfNy/+wi6g9DWPUpYDf1SqLZ0fAtLS3o6uqiFdL09HTExsb63BAIdAddkN8PREMgl8AwDKxWK2w2G93VEggE9L06HA6PVXhviF+3Dl07dgIAOj76N2KKisDzozNPMEHeMwk5IVKdiIgIOl7kSyQSBWQuemP/Veyq1oLPA+6blooNd2YhLjIwHtjepB/uemryzOnr/Mvj8RAfH4/4+Hjk5OR49KZme5978lwX8AXYU78HPPBgd9ohYIUycW1eI+Di8wng9nlxfX4lSbQZGRl0cUgW2hcuXIBQKHSxHB1oj0Ww0WOm5vIK1R8gmmhvN4XJZHIJOXE6nUhISKDWc72tmrhsI9dfDWswwUWyCnD382SPlSNjNnD0dUTUHwYYJ8Dj09eQBSDxbCaTVVZWFqRSqU/hGp4aAuPj43H69GkXPSdXfYZ9hXsaHulOz8rK6tFIQzrZiWY4KirKRUvt/tAT5eUhcuZMmI8ehb2hAV379iN6yeJQvM1+w2azuThpkHjs1NRUTJw4kVabiRMK269bJBK5PDx9tfR0MgxMVgeixd2//+T8bHSY7di4IAd5qt51wf4GqUSz9c46nQ4WiwVZWVmw2+0+NSh686bW6XS4cuUKvR7JdSYWiyEVSyHii2B1WqHp0iAlJsXj+XIJXCSrXN3BBbg5Xmy4V8rZi8Ps7GyXQK66uroeoS++PqeCCQHQPRHyeDwIBAKXN8z1D8gXuDcWWiwWatnV2toKs9mMuLg4aj0XFxfX55Uen88PWNPiQBEm0f0HF69997FyJE8GI5CAb9LD2VwFLT+RyjTsdrtLQIcvbjB9aQicOnUqbaDT6XSoq6uDQCDo19Yz19DXaG13uHeyszXD58+fp42F7s4WcQ+tg/noUQBAx7/+hajFizh5/bEbC/V6Pdrb2xEdHQ2FQuFR803AdkIhft0kMe3y5cvo6uryKZL89I12/GHXJWTIovBa0RgAQGqCBO/fP9Hv7/1WMJvNtBG1paWFOm8Qn28iWxtogyLQ05uaXKt1dXU4f/481ZsrxAo0mhrR3NXsQqK5WizjMufg4nlxUc7Bxq0q5WyrPAB0vmSHvpAUUrlc7rEIEWoI3n33XTQ0NMDpdEIul2P06NHIyMjA2LFjOf3h+Aqn0wmDwYANGzbg6NGjGDFiBJ555hnaaZqQkODzA5+rZBD4pkGUi+fH1XHj6nkROJ1OdBi6wIvPQ4z+DK58UYLWzLshk8kwZswYnyccXxoC3X2GSRXu0qVLdOtZqVT6xSouEHCvlLa2ttJK6ciRI32uiLhrhj05WygUCshHjoRw9GjYampgra2F+cQJSKZPD8A77T/YCwGdTufiMDJ+/Hiftl/dm+r6G0l+SdOJvxy6jt013brna/ou6I1WyL04bgQCpEdGq9W6xI4rFAqvqZIDbVD0BLZbQm5ursuCNsrRfa8drToKWZeMelNzdV7jIokmY8U18gZwX87R36RH9nwJfLMDSOz0SGFIJpNBpVJxQvohePHFF12iH81mM/Lz8zFjxgwsXLgQs2fPHnRVJDbsdju++uor7N27F/v27cMXX3xBLbzWr1+PJUuWID093S9/i8ukK1yJ9g1cOy+bzQaz2Yxz586htbUVfD4fk2OyEKM/g9EJVthvv73fx/R3QyCJYpbL5cjLy+sRaMJukOqrJVogwPaFJp3kRGeam5vr9yAMT84WhOycP38ekmlToaqpAQC0/fOfISPRbEmKTqdDe3s7laSMHz8+INWgvkaStyEaH53SUfLMA1A0ORk/visrKASaTVCJNZ9Cobhl7Lg7btWgCHxD2vpLqtmWhPnGfFy+fhlmoZnefyKRCDKZDABoqBpXwEUSTYoJXDsvgJvjxcZAz08ikSAtLc0l9IWQ6tjYWEilUj+erW8QaDQal280NzfjwIED+OSTT/D555/j008/pVGQgw0vvfQSXn31VfD5fMyfPx/33nsvfvrTn+K+++7Dv//9b79ffHw+n5MaWoDbJBrg5nlxgdyzPZtbWlpgMpkQERGB5ORk6tksrG4G6kohbKmFvQ/HDGZCIOC69cxukKqqqoLdbu+h5QwU2K4awYjWvhWEQiGN2mUYBu3jx6Nt127w1GpYT3yJk5s2IWHy5KCkBNrtdhdyaLfbaQP1uHHjvCaSBQLeIsl3nG/En07U09fNzYrB43fmYHy6LGDnwl5QaLVadHR0ICYmxu/WfH1pUPT0dSskRycDACxiC6ZNm0Zj78lz//PPP6fVc+JNHUpSxkVSyFXpC8DN8WKjv5Xo3sCWymVkZHDmfQtIJznQfZJJSUm47777cN999+HgwYM+T56//vWv8Zvf/Mble3l5eaitrQXQrR976qmn8Mknn8BisWDJkiV45513aBkfAOrr67F+/XocOHAAMTExeOihh/Dyyy/3uTK+aNEiLFmyBJMmTaIPx5qaGrrS9ze4QLq8gVxwXCT5XB23UJwX2fInpLm9vZ16NpMY4aamJowYMYL+jjNxbPf5Wo1ej8uFhECgp1VcZ2cntFotGhoaUFNTQwmKUqn0S3MiW2On0+moj3EoorV7A4/HQ4JMhojvPoKWl/8AAFAdPoL20aNpSiDbM3igiw32gkKn06GtrQ1RUVGQy+UYO3ZsSHcI2DDZHJB8LRW6X5mEf1UdxaSUaBSOEiPGYUBz7VcwNvg3ktzhcNDrRafT0QVFSkoKJkyYEJQtZDZJZlep+5ugmBSdhAheBCwOC4BvYu/j4+Nx48YNzJ49m+7G1NXVuVxnbP/zYIGLpJDLJNqfJNXfCEZDJhc+EwFpDnKH3W7HnXfeOaCDjx07Fnv37v3mj7HI709/+lNs27YNmzZtQnx8PJ544gkUFRXh8OHDALonsuXLlyMpKQlHjhxBU1MT1q1bB6FQiJdeeqlPf3/atGk9vkcs7gLx4XLZ7xjgLlnl6rgFa7wsFgslzS0tLWAYBlKpFCqVCqNHj3Z5kKnV6h7n5JTnwfBENSCO++Z7gyAhkF1ZyM7OplvlWq0Wp06dAo/How/zvm6Ve2p8I1KEsWPH9jlpMFSIXrkSbe+9D2drK5xffIG8nz2NsWPHUs/gGzduoKqq6pvGsX5UD9m7AHq9ngbGqFQqjB07NuiEqTdUNRrwzmfX0dhuRvH3p4LP4yFKFIEdT8xAjPib54i/IsnZbhctLS2IjIyEUqnkxILCW5W6Lw2KyzKXYcWIFT2iv8mcIJFIEB0dTbfLSVAQ8aZmO8tIpdKASzu5+BzgMonm4qKDgMvj5k8Irl69CqvVSquzra2tmDRpEmJjYwe8yhEIBB6lIO3t7fjHP/6B//znP5g/fz4A4J///CdGjx6NY8eOYcaMGdi9ezeqq6uxd+9eqFQqTJo0Cb/97W/x7LPP4te//rXPOi6RSEQnIH9PjFy1RCMY7mS1vwjUze9wOKgjjF6vp3G/MpkM48eP79URxuNY8SMAcdygTggEXLWcTqcT7e3t0Ol0VBcbHx9PmxPZemX3aG1isxYKKcJAwY+MROx930b7O+8CTicM//l/kP3saRfPYLYu98yZMwDgUqVm2+25y1eIHp00nnJpQcEwDI5cbcX/Hb+Bzy93BwDxed2Eenxq9wKRTaCBW0eSExLoHklOdNekKZDtu5yXl4fo6Ojgvvl+wFuV2tMuE9sbmg1P8y2Px0NCQgISEhKQk5Pj0lBaXV0Ns9nskkbpzaFmIOAiKeQyGeTieBFwuSHTnxDMnTsXQHc1rKOjA06nEydOnMDkyZMH/OFcunQJKSkpiIyMxMyZM/Hyyy8jIyMDX331FWw2GxYuXEhfm5+fj4yMDBw9ehQzZszA0aNHMX78eBd5x5IlS7B+/XpUVVVh8uTJPp0T2Qa1WCx+9x/kKhkk4Or5DfXzIs4PhDQTz2aSdNkf5wf2PTmUEwL5fD6kUimkUilGjRpF3RuIx7BQKIRYLIbD4XAJjunNZm2wIHbtWnR88AEYswWd5eVI+OEPwI+NpT93J45ksVFXV4fKykpIJBKaEkikCFyTr7BhtNpRcVaNj7+8SSO6+TxgxXgVfjB7BLIUfTtnT42bbP291Wql5Jj0FhAnjcFowwj43qDo/vue4O4sw67WX758GQKBwK8So76cUyjAZRLNZYs7UswJ1FzMlfctePPNNxEREQGdTod//etfyM/PR2pqKoCBneT06dPx4YcfIi8vD01NTfjNb36DOXPmoLKyEs3NzRCJREhISHD5HZVKhebmZgDdDY5sAk1+Tn7mKwhZ8TX6uzdwtdJLwNVKOVdJNOD79iJ5gJMvm81GfXAH4tlMvkiMMjD0EwIB0PdHvhwOBxwOB/W4F4vFiIyMRGRk5KB//xEJCYheuRKdmzaD6eqCoaQU8Q+t8/p6oVBIv3g8Hk0LJMEe5GdcJYnnbnbgtzsuAgCiRREompyM+6elIlM2MMIvEAjoNSESieiigoyRUCikC02uPJAHir42KBKC3ddKJo/3jc93Zmamizf19evXce7cOeqg4qvrDldDTbh4TgRctrjj8uLDnxAUFRXRfyxevBgbNmzAxYsXaeOPrwNw99130/+fMGECpk+fjszMTPz3v/8N6fYq2eoMRHMhV0kqAVfJ6lA4L+IZS0hzR0cHoqOjqfd6fHy8T1vn7g2BQqEQZrMZJ0+ehFwuh1KpHBSpTv0F2+ZMp9Ohs7OTmu5nZmbSpkO2ZEGtVuPChQuIioqCUqnkrDl/XxB3//3o3FwMMAwMn3yCuPvvA+/rz5g4LJCxsVgs1Ic7Pz+fVlvJNUmq1FVVVTRVUi6XhyRVkmEYHLvWCo3BioKJ3VK/GVlSzM9TYEaWFKsnJtHkQV/gKUFRLpcjIyMDCoXCZf4nDXW1tbWwWq1ISEigY+Nve8NQgb1AIC4nJAwmKioKDoeDPuf7Y6PnyZuaVKnPnTtHd0CInro/RQOujTuXq71cJviBrkRzBS6zVWJiIs6fP4/r169j9uzZfv2AEhISkJubi8uXL2PRokWwWq1oa2tzqUar1WqqoU5KSsKJEydcjqFWq+nPfAWZRIdrJZqL5zdYz8tkMlHS3NraCh6PRyOPx48f79P25q0aAmUyGebOnUurQBcuXIDVanXpqOeCAb0v6Gu0Nhs8Hg8xMTGIiYnBiBEj6A6AVqvF+fPnKYkiY8MlT9zeIMzMhGTuXJgOHYJDrUbrtu3ovG0yDYIRi8W3tObj8/lU4zpy5EhKogipJn7e/Wnc9BVdVge2nG/Gv0/cxBVtF+IiBVg0WokoUXcl+O1vjffpuJ5cRvqSoCgQCKBUKqFUKqlUIRCR5KEE2/1Gp9Oho6ODLqJycnLoYssfCYoikQgpKSlISUlxsQXUaDSora2lVpJkPD1da1ytXHKdqHL13Lj6efobgurqalgsFpjNZvz3v/+FUChEZmYmAP+++c7OTly5cgUPPvggpkyZAqFQiH379mHNmjUAgAsXLqC+vh4zZ84EAMycORO///3vodFokJiYCADYs2cP4uLiMGbMGJ/Pg2wHB4JEc5UMEnD1/AbLedntdrS1tbl4NsfHx0MmkyEzM9PnRhtfGgLJAykvLw9GoxFarZY2U8XExFCCEIjmH3+ht2jtnJycPkc/s+Gu42S7WlRXV1MSoVAoOD82zMoVwKFDAADtP/6BzrRfQaFUIi8vzyc5kHuqpKfGTUIc/TU2F9SdKD3ThLKzzegwd+/+RYkisGK8Cla7E1Gi/u/OsCvxWq12wC4jbKmCPyPJQwEyNsTXmviwp6Wl9apbvlWDYn8INdt1Jysry+WcLl686HKfs91luEy6uFpNHc4EnyvvWzBx4kQaEuJwOPDqq69izpw5AAZ2kk8//TRWrlyJzMxMNDY24sUXX0RERATuu+8+xMfH49FHH8XGjRshk8kQFxeHDRs2YObMmZgxYwaAbmnJmDFj8OCDD+LVV19Fc3MzXnjhBTz++OMDbmAQCoWw2WwDOoYncF3OwdVKOVdJNNBNnK9fv049myMjIyGTyZCTk+Oz5ZM/GwLZldisrCyXbdX6+nrw+XzqaCGXy0PqxuBe8fNXtLY38Hg8F1cLi8VCx+b69esu0dNyuTzk1Ub22LS0tEAkFCJtxAjwr19HZEMDMnk8RH5d4Bgo3Bs3zWYzXcy4j423yuGt8NHxG3h512X673SpBA/cnorCicmIjezfWLMbS1taWiASiaBQKJCfn+/3kBxPkeTkcyGR5MGq4PcF5LMjMg2yS9Efez5fGxT7whGIN7VSqQTg+llev34dPB6Puqf09ZjBBNervVxy2GGDy3ptf0Jw/PhxCAQCtLa2oqysDHFxcejq6hpwF/fNmzdx3333Qa/XQ6lUYvbs2Th27Bi9kV5//XXw+XysWbPGJWyFICIiAlu3bsX69esxc+ZMREdH46GHHsL//M//DOi8gMCRaK6SVAKuknwukWhiH0YqJw6HA2KxGImJiT08m/sKbwmBbNLsr4ZA9rYq28br4sWLLtrZYAUpBDtauzeIxWKXSiypgl+5cgXnz5+n50Us9AINp9NJx4Zts0aaT6Ojo9FlNEL3ixcAAB3//hiRU6YE5FwiIyNpvK6nsWFXDj1VYh1OBkeutkAaJcS4lG47ujkj5fjj3iu4K1eB1ZOSMWekDPw+ftbsSrlOp4PRaKSaZTI2wbpu2NHDvUWSKxSKoOjM2TssWq2W9gsolUq/jU1fGxTdv/oCdsQ7212msbERAHDs2DGXBVyoSSLXq72hXvx7A5eDYPwJHsNiL2azGd/5znewbNkyPProo0NyEBiGgVKpRHFxMW677Ta/Hru9vR3nz5/H7Nmz/Xpcf+HEiRPIysqiCxmuwGAw4MyZM3QHJJggD0Ui0ejs7ERsbCxksu4o4dbWVkydOtWn43qSaLCdNIDgbhMS2QdbO0oItb/ifj15ExM9pFwu58RD0RPY9l1Ec0zGxp9hG+4VVaFQ6EIY3B+IjM2GhpWr4NBoAB4PKSXFEPqpGt2fc2ZXyNnWZgZIsKVSi4pzaqgNFizKV+LP946jv2sw2/tcdWbvouj1evB4/Q/bCTaIzpx8kaoq+fKX7RsJyiH3L9H6kwbaYGr93aUf7jrq/lSp2bBardi/fz8mTJhAixhWq9VlcRsKKU1rayvOnj2LOwcYPhcInD9/HpGRkRg1alSoT6UH2tvb8dVXX9EsEH/C6XQiIiKCEz0uLrMbwzDQaDRoamqi/x6KIKmF/sZgqERz8fyCeV5sz2bSEEhIQWZmJqRSKb0x1Wo1Wltb+3Tc3hoCCWnuq0QjUCC6T9KARzSlp0+fpoSFPJT7U91g+/Hq9XoarU2q91z0JnZHVFQUMjIyqCaWkMaqqqoeTgP9adwk1WZyPKKvVSgUGDly5C1JAU8oROy3v422N98EGAYd//kP5M8/74+33Ge4V2Ib1DpUnLmJXXtrcLn9m2s9PlKANGmkC7HqjUCzw1FI4xuJfWc7sHAZ7jpzb8mSvkSSkwWXVquli1GlUonx48eH1HXGW5V6oA2KZN5MSkqiDYpGo9Gl4VMgELgsrIJBorhcieayZCKQRVgu8RjBjh07YLVaYTKZsGXLFuj1ehqXzdULZ6AQCoXhxkIOIdDnZbPZ0NraSpuRiGcz0TZ72/681XkN5oRAoVCIpKQkJCUluWyds6UNpBLrToLZ5GcwRmvfChEREUhMTKQ2n8RpgN242VvkNtGosl1GSLOkL/ri2DVFaP/b38CYTDBu2YKE9esR4eaxHyzw+Xw8u+MGztzs6P43D5iaGoWZKiBT1InoyCbU1Fi9VtbZ0eM6nY42vqWmpmLixIl+q9yGAu5uKP2NJCfSBlJtNhqNgyJFkV19HkiDovtcy+73IN7URP509epVnD171qVROFALCy6TaK7rtbl6bv6E4Fvf+hYiIiIgFAqRkpKCF154AUuWLAHA3Y7UgYDH44UbCzkGf5Nop9MJg8FASbPBYEBUVBRkMhny8/P7TPLcJ4ChmhDo3mRGpA1ESx0VFUWb/oitHztae/z48YPWVu9WcHca8BS5LZPJIJFIqKuD0WgcsMsIG/zYWMQUFsDw/z7pTjHcXIz47z3qp3foHU6GwZkb7dhepcFP7sqmVeW7xyaizWTD6onJKJiYhMTYbuLLdlu5dOkS1XgTp4+Ojg6X6PH+NL4NRvQlkpwsNIhkBuh23snKyuKshKU3+KNB0du9QiwZ5XI58vLyYLFYXO5Fh8PhYmfprx0wLpNBLp9boOXAXHnfgmvXrtEHBfuG5fKHM1CIRKJwYyGH4A8STbSJRKIBdJOblJQUyGQyn0geIcx2u71HtXkoJwRGRUUhPT0dcXFx0Gq1UKvVuHnzJoDu9y6VSpGcnAylUjnoHvIDBSFGZNHR3NwMjUYDoPt6iYqKwogRI6BSqfyq34y97z4YPv0v4HTC8N9PEffQOhq+4k8wDIOa5k7sqNJge5UaTe0WAMDY5FisnpQMAPj21FQ8cHtaj/dGXCtI9bSpqYlW44Fub2aVSoWkpCTOauMDBR7vm0jypKQkNDc3Q61W48aNG3T+i4+PR1JSkl8JYKjRnwZFkrTZ13tGLBa7eFOTRUpzczNqamroYo0Qb18b8LjMhcLnFnoI5HI5ANeVokAgoG/eYrEM6i02TwhkJZqr0aUA9+Uc/Rk3UvVjezbHxcX53bPZZDLhwoULdCImGryhRpwBUAs49yap7Oxs+t47Ojqg1WpRV1eH6upqqu9VKpU+eRcPFnhyiyBbybm5uYiNjXWx0Kurq6P2fUqlcsCkUZiWBsm8eTAdOACHTo+uffsQvXSp396f3mjFf75swK5qDa7quuj3o0URWJCvQI7yGymBMKLnte8uYSHa1TFjxkAmk4HH49Gt+AsXLri4tPQ30W6wge12otVqYTKZaCiTUqlEZGQkbcYluz+DoRnXF3iSfrC13xEREVRb3Z8GRfYiJTs720U2dOHCBZhMJjpX9ddFhavPc2D4aqK5BLo04/F4Liu1a9euoaysDKmpqbj33ntDcnKBQiAbCwHu3nRcJtG3AtGmEtLc1tYGsVgMuVzud89mck4ymQwTJ06kdla1tbWQyWRUKzzYJQzu0dqEGLpHa7NBfJdJAh7Rb165ciVgjhahApsUt7S00OZLb1vtbJs4ssgjD3FiL0gWHL7YC8bd922YDhwAABg++XRAJJphGBgsdsRFdr8Hp5PBe59dBwNAFMHHnblyLBuXiLkj5YgU9iRwbGsyEsvOTsPzVIVney+7N4wRb+OhQhptNhsdG51OBz6fT+35PGnF2ambbFtIcu0MpUhyMpdrNBrodDoYDAYqf8rLy/NLgqJAIKB9DYCrBzvZfe9ryiuXdcdcPrdA8yCuvG/BxYsX6erPZDKhqakJp06dwrFjx9DS0oKf/OQnoT5HvyOQjYUAtzpH2eA6iXa/6axWKyXNLS0tcDgctOEtLy8PEonEL9Vmcg6eGgLJwz03NxddXV0uyYCxsbE0RIDLKWZs+BKt7Q2RkZHU75Wkkmm1WlRWVg7KuG22uwL74S6XyzFixIh+Va/YgR3EEcZdZ97fhijxlCkQjhwJ2+XLsJw7B0t1NcT9SG9lGAbnGw3YU6PF7hoNUhMk+ODBSQAAZawYj87KwEhlNObnKRAj7rkgJY4uZHwYhqFOGv11SnBPCCRVw9ra2h62ZoNB2sC2dtRqtWhvb6cNqLfddlu/rp2hGEnudDpdLPpsNhvkcjnS09M9zg/+TFAEuiVqRKbG3lW6ceMGKisrXZqFpVKpyyKOq0UxgNvnFshKNJfes2DmzJlISkqCUCiE0WhEZ2cnUlNTcf/992P9+vWQSCSc/qB8QaA00WSMiIch18BVzTYZN4fDgfb2dkqaDQYD9WweO3Zsvy2iCHprCCRft2oI5PF4LhZxxNNWq9Xi+vXrEAqF9MHHpSosO8KYRGuTCGN/NL0RsFPJiD5Rq9W6xG2Tn3OpksZuTmJLWHwhht7AvnYyMzNht9vp3zx//jxt0iT2gt7kczweD7Hf/hZafvd7AIDhk08gvkX4lN3pxFd17dh/UYe9tVqqcQaAFqMNXVYHjd7euCDH5XcJMSTEp729HdHR0VAoFJg4caLP96M73K8d9wUHkTZ4IjihBNstQqvVwmKx+L3Zln3tkAUHkYaQSPJbBeGECuw5Uq/X08XB6NGjIZPJbjnfsv/rzwRF90ZqUqzR6XSorKykMfJkTLksS+CynGOo8UZv4B0+fJi5dOkSbDYb9aDMzs6mL+DyBeQrFi1ahGXLluF73/ueX4/rdDpx8OBBzJ49m5OVt6qqKkoCuQCGYWAymaDVanHlyhXw+XwIBALIZDL65cs4eksIJDo7fzcEEqKq1Wqh1Wpht9vptr1CoQhq811v0dqEhAS7GZDIIsjDVCQSucg+gkmK2DIEvV6Pjo4OF5usYHsTsxccpPpNvIU9nY/TZELD3cvg7OgAhEKkbd+GiK/7WjzhyU2V2F2jpf+WCCNwZ64ci0crMWeknBJoAnZVmIRdhFLCRLSt5HpmExy5XB70KrUnYkju9VDIULztLIUqoIYsutjVeLJA8rVPxRM8Vag9fflyXLKjwB5THo+H0aNHBz3Y5lY4evQoRowYgeTk5FCfSg/cuHEDarXap7CyW8HpdEIoFHJiF8YlsZCAfWEORSxfvhzz5s3D+vXr/XpchmFw4MABzJo1i5PNmNXV1ZBIJMjKygrZORC9H3HSsFgsiI+PR1tbG2677Tafk/P6khDo68TaH7BJkXskL6nC+hu9RWtzTUPJXnCQbV02SQvEfcO2pdPr9WAYhrNSE/fUPqKlJZ+lQCBA65/fRMe//gUAiF//QyQ89hi0nRYcvKjH/gs6/GpZLpLju8nup1814M/7r+HOXDkW5CswK1vWQ+PsHupBJExcq/x6SsMkDgyB0uGzfcK1Wi06OjqojEuhUPiVGA4UvfU4BGqBSKQRZL4zm81BX3QFKkER6J6vLl26hObmZgiFQhf9NvGJD2WR8ciRI8jOzkZSUlLIzsEb6uvrodVqMWXKFL8f2+FwQCQScYJEezwDrkwKgUKgNdFctJEDQqOJJqSSkOaOjg5IJBLIZDLk5eUhISEBPB4PBw8e7FeHPlcTAtld4jk5ObT5TqvV4vLly1QLq1Qq6XvvL3qL1s7Ly+N0Y5a7VpgQlIaGBtTU1NAq7EAqVwzDuGibCfFRKBSYNGmS3yLOAwGRSERtu9iuDiQEJyEhAYqZM8D76CPA6YT640/xODMBZ5q7QO6CAxd1uH9aGgBg9cRkrJmcDAHrPmAf1z1FMTc3l1OLLjZ4PF6PBjxSNa+qqqILMnJ9+dK8CXhe6A2GQBg+n0938EaNGgWz2UzHp76+nkqVBhpJTuRIZHwAQKlUem2aDDS82ej5o0ExIiIC0dHRiImJwdSpU6mVqk6nw6lTp+iCnCxUgr0zwmU5x1BUMXhC6Gl8CBAoTTTAXd0xEDwSTSZv8gWAeguPHTvWY1IX+7/eMBgTAtnNd+yHz9mzZwGgz1HbQyFa2x08Xs8gE1Lxq6ur69dWOTsdjjS9kcalgRCGUIJNinJzc2nF+MTlZjiTx+D2hkpEdrQi7uRhMGmTMT4lFvPzFJiVI6PHEAm67wdvFW5fUxS5ALYDA1mQ6fV6qNVqXLhwgS5YiXd1b3ODxWKhpJAtORo9ejSnqvH9QWRkpMuCrKOjA3q93iWSnJC/W1VU2bsVLS0tiIqKglKp5OSi1JON3kAaFNnVbXbMO3ux3tTU5OJNHaymTy7rjrl8bv5EmET7GTweNwNNgMARfNLsQkhzV1cX9WwmoR293UzeXE380RDIJZCwCZVK5RLxS6qMZBtUqVRCLBb3Gq3NpeZFf8G9Cutu80WqjO7jQ6rNMTExkMvlfm16CzVutJpw6JIeCRIhVoxXIT09HQnKZPwgew5ub6gEADzaeBgLCyciOzkCSqUAiih+r1prb/aFgxnsBdmIESNcFp2VlZVwOBwuVWpy/bjLrhQKBUaOHMnZaryvYEeS5+TkuCw6z507R5tbCan2ND4JCQlQKpXIz88fNIt2fzQoeiODPB6PWn7m5OS47IzU1tbSxE6ykAuUnIar12mg3Tm48r6HLYkOhJwDGB6VaCInIA0/7e3tEIlEkMlkyMrK8ql5jcfrTqxyOBweGwLZzYBDgRzxeDz6UBs1ahSMRiOamppw48YN1NbW0gkiISFhyEdrewI74pfYCzY3N6O+vr7H+KSkpGDChAlDYnxMNgdO1rXh8JUWfHGlhQafjE+JxYrxKgBAbKQAzz69FoKmPbBfvgxl43WMTJFDHxuLuro61NTUuIwPCfUYjNV4XyEUCl0WrMSXuL6+vsf4pKenQ6lUckobH2h4iiT3Nj4ZGRlDJp3Um/TDU4Ii+eprRdWTNzVZ5F+5csWl6dNf/R9clnOEK9FDGIEk0Vz1Yga+Iaq+wN2z2W6301V2bm6uz4ljRJ7B4/HQ1tYGhULhQpa5KNHwF9i+xMQpIjY2FhkZGYiIiKCBFF1dXTAYDNQ+bzBuLfsCtp6ebbGWnp4OgUBAXUiMRiPa29tdmu8GI54qrsK+Wh2sjm8WkBE8Hm7LiMeduXKXh9LE9AR0rF2L1j/8AQDQ/H//h5vLliEqKgppaWkQCoXUueHy5ctobW2l4zOcyKKnpsm0tDSIRCI6PhcvXoROp6PjMxQWY32F1Wql1WYiY0lNTYVIJKL2jzU1NVCr1SFzRAkkvEk/yDPJbrfDYDC4PNf7402dkZGBjIwMl6bP+vp6nD9/3sWFx9edRS4T1bAmeghDIBAMSzlHfwg+6bpmezbHxMRAJpNhzJgxfQ6I8HRcTw2BycnJuHr1Kq5evQq5XA6VSgW5XD7kbkLSmOIere1Nu0tkDVqtFjU1NbTJiXS/DzVCxN6G1+l0cDgckMvlXqvxnprv2LIPX5vLAokWoxVHr7XiXEMHnls8kvUQB6wOJ5LixJidI8MdOTLckS2lqYKA6/Wgl0qRIhKBb7VCcvwEZv7854j+OhGQgG3pV1dXh6qqKurZzTVfYX+A/X61Wi2MRiNtmszLy+ux2CcLNXZzK/HC5oL7gr/B9v52dxvx5BvPbmLWaDS4cOHCkI4kB77Rx2s0GrS2tiIqKopGifvaoOje9Ml2DDp37hzsdruLnKavciIuk+hAnRtb284FeLS4G+p46qmn0N7ejtdff93vxz569Cjy8/MhlUr9fuyB4urVq7BYLBg9erTHn3d1dVHS3NraSm980pjj6/aTt4ZAMhGRajN5AGo0Ghe7pMTExEG73epP2ymyLU0egMRuieiofd0NCCXYDh2k2uxLmh8BSZUkHtmkAYocKxTjY3M4cfZmB7640oLDV1pQ3WSgThpbf3Q7shXdtoeXNEbweUC2wvVzNJvNLr617IZL3rvvwVhWBgCQvfALxBYV9Xou3o41mNLv3MEOr9FqtTRJkTTs9keG4CmVke2+MBglMWQOIvMG6S9g91/0Fe52mkMhktzbvEqeO1FRUV5t9Ng9OQPxpmbPgcTbn21t6e0a3rdvH6ZNm4a4uDgf333gQGRB+fn5fj0uKcKJxWJOLOCGJYl+7rnn0NTUhLffftvvxz527BhGjRoFeS8BCKHCtWvXYDKZMObrqGAyIRLibDabacyxTCbzuUrlrSGQ3RTYl4ZAo9FICTUJxSATWyD8lv0FTwEI7MqNvxYDhBCRjnmxWEwfjL7uFAQD7AYcnU5HqzBkjPxVPSZVbbYVV18eTP7E5lONeGX3ZRitrjKqPFU07siW4f5paUhN6OlW415N9ZZKZ6muQfMDDwAARPl5SPr4437ZRLIT98iidTDEbbNTDd0XS/6qHrPdF0jvh3sQDlfvMbIYINc+n8+nc4O/qsfsYCdiYTpYIsk9LSzkcjkSExP7tMPnTqoB3xMU3UEsFsn8SAovnnZH9u7di+nTpyM2NrbffyfQqK6uRkREBPLy8vx63DCJ5gBefPFFXLp0Ce+//77fj338+HHk5ORA4batygVcv34dbW1tSEhIoBpc4tksk8mQkJDg06TXW0IgW988kAcO2WIjhFEikdCHQqgtlnqL1g7WlrnD4XB5aDqdTp+rcf6GewpYW1sboqKiXFIUA01G2G4o5MFE3AbI9ulA0NhuxrFrrTh+rRX3TknBlIwEAMChS3qs/3/nII0S4o5sKWblyDArWwZlrGv1z2azuVjQAXBpQurt82t64EFYq6sBAEkf/R/EY8f69B7YnxE7yIQLizIiLyPEuaurC1KplH5+wSD8vYX2cMFGkaS/koVFdHQ0nSOD4cbCjiQn8yBZ/Mnl8pAH05A5UqPRuPhbJyYmDnhhEagERcB198j9uqupqcEdd9yBmJgYn889UKisrIRYLMaoUaP8etwwieYAfvvb3+Ls2bP45z//6fdjf/nllxgxYgSUSqXfj+0LLBaLS2wu2eokxNnXql9fEgID9dBl+y1rtdqAVFl6w62itUNdgWETRnfCESydMLvarNfrXeKaBxKE4S+4+972lzC2GK04fr2tmzhfb0V9i4n+7HuzMrBxQQ4AwGxz4Iq2C6OTY8B305q6y1gI6SHVpr4+dA1lZWj5n98CAGIKCyD/1a/6Oxw9QD4/sugg2nR/OgvcCu7VVB6PR8cn1A2kngJ92DKtYCzsyTmQ+9xoNAb9Pu8NvUWS+3NHrjeQxkmNRoOWlhZERkZS4hyoz8iT9MMTmfZHkBRZ7JIKulQq5Uz1/9y5c4iKisLIkSP9elwyrmKxmBM7QcOSRL/yyis4fPgwPv74Y78f++TJk0hPT4dKpfL7sfsCh8OB9vZ2ur1GtoJkMhnsdjtMJhMmTpzY7+NyNSGQbMsR2Qe78c6ftkyetIBSqZTqJbmsBXTf+g5EhYpUm9kLC3bwQEJCAieqBp7gThidTie9hoibhcPJIILfPU7XdF1Y/s5xl2NE8HgYlxKLGVlSzM9TYHxqT42iw+Ggf4cdmEPGyFdXCKfJhJtLloDpNIIXKUba7t3g+7EyxW6+Y3tyE0Lrz2uIrWlva2vzeWERbLiH2ZCGYX87orCvIa1Wy6kdp94QzEhyduNke3s7baQlMsBgX0PeqtTAwKQfDMNg165dGDt2LCXWZrOZumaFOpb+7NmziI2NRXZ2tl+PyzUSzY0lS5AhEomo0bq/EWyLO7Znc0tLC9ra2iAUCj16Nt+8eRMmk+kWR/wGgyEhkN31nJeX5+IHW11djYSEBKqj7k9lhp2ARqK1JRIJ5HI556O13cG2WmLLBk6dOjWgKj55oJPjWa1WWgkbTCmK7sl37e3tqKpTY+/RK6jWVuN6ZwRylVF4tWgMoqOjkSmXQB4thDxahBlZUszIkmJqZgJixD2nU7ZXLLFYUygUGDNmjN9kLHyJBNF3343OTZvBmC3o2rcfMQWrBnxcAh7vmyj77OxsF8JI4qR91Zp7a3pTqVQYO3ZsyKupfQU7KMjdEaWystJF09pfwuguZSO9D+PHjw+5zKav6EskObsvoj87HZ523oijz4QJE0Ius/Fmo+cpQdH99X2BUqlEeno6gG8kWXq9nnpTs+/NYI4Fl51D/IlhWYn+y1/+gtLSUpSWlvr92KdPn4ZKpUJKSorfj01AGqbIl81mg1QqpZOUN5eGhoYGaLVaTJo0yeNx/dUQyBV40ggSQu1phe4tWnso+qMC3ptrSOXPfcIllUIyPmxSSLYSB8vCwhM+OdmAE9fbcOpGGzQGVx95eSQPv57ioO83JkGOlMSeFoxsyz2dTkelNOxmvUA8WCznzqP54YcBAOKpU5H0V//3e3gCW6vM1pqT9+up8ucpgpwt0xjM15AnEL9ldpWavFdPVWpPbhGhrqYGEoQEkzEitnu9RZJ7qsiT8Qm11Kc/GEiDosPhwJ49e3DXXXd5JMfuc5G75CjQvSinTp2CXC5HZmamX4/LtUr0sCTRf/vb3/DRRx9h27Ztfj/2mTNnoFQqkZqa6rdjklAOQprJdiohzfHx8X168DQ1NaG5uRmTJ0+mxw10QyBXQCqwZKtYKBTSpj8SJMO2VyO2fkPhvfcFnvxjyYQrEoloVZ7IWNiWVoMNRqsdVY0G3Gg1Yc3kbxa7a//2JaqbOgEAAj4PY5NjcVtGPKZkJGByehzixBF0kaXVamG32yGXy5GQkAAAaGtrQ0tLC/h8vkv1JxgPdIZh0Li6CPb6eoDHQ+q2rRAkJQX877qDaM2JDpZYdUVHR1ONMyFJRIYQ6oazYIK96NDr9ejs7HS5z8g9aLVaXWRpg9He01ewI8n1ej2NJCcWlaSJWygUUn3zYKnI3wqeKtTkv4RUk+/Z7Xbs3bsXCxYs6NPuj/vile2KFIgF/ldffQWlUomMjAy/HRPgHokeHMs1P0MoFAYsbMVfsd8mk8ml2ky2w1JTUzF+/HiftmVIEIzdbvdKmrkg0QgEhEIhkpOTIZfLodPp0NjYiMbGRppMFRsbi9zcXKSkpAyaKoY/wePxEBMTg5iYGKhUKjQ3N6O5uRlXr14FAEREREAmkyE3N5emSg4G2J1OXNIYcb7BgPONHTjf0IHLWiOcTDdRXjZOBYmwewF6z20paDXaMCUjHuNS4+j32SAV0+TkZDQ2NtIQCgAQi8VISkpCampq0Ikhj8dD9PJlaH/3PYBhYNy9G/Hr1gXt7xNIJBKkp6cjJSUFer0eDQ0NaGpqokmpMTExyM7ORnJy8qCRavgTfD4fUqkUUqkUI0aMQFNTE5qamnDt2jUa4RwfH4+cnJwhE7XdX7Ajybu6unDz5k1oNBp6nwmFQiQmJiIpKQkymWzQzEV9QW8Jiu5NiuQZ3td5xl1yRBqbSYgO2WUjOyQDvfbCiYVDGGKxmHOJhXa7nVay9Ho99WyWyWTIzMz0+aHMlmg4nU4YjUbU1dXRKmyoGgKDBW/R2gqFAjk5OYiLi6Nbpzdv3sTFixddggiGQwQw25dUr9fDZDJBKpUiNTWVyjrYqYnsxrtb2a8FEwzDoKHNjJSESOqE8fPyWmw9r+7x2qQ4MSanx6PTbKdk+VtTvO8esT2nSXVMLpdj5MiRUCgUYBiGVnlOnjwJgUBAxydY+vnoJUvQ/u57uBmtwJnjlzFxeRdGyIMnQbJYLC6OJ2S3Z8KECUhISHCx6rp69eqQTgb0BtI4qdVq0dbWRhs08/PzERMTQ2UNdXV1qK6u9uoPPlRBmliJowZxHMnIyIBSqYRAIKDPyOrqaiq5IxKFoSS5c5dykAqs3W6noWTAN71L/WlQJIWj2NhYZGVlufS3XLp0CWfPnnW59nxp6mWf01DGsJRzbN68Gb/97W/xxRdf+P3YlZWViI2NvaUOiN24RqQEkZGRdELw1bMZ8N4QCIB6ZLa0tCAqKopqhIPhIxoseIvWJl+9VfG7urqo0wcJV2AHvAyVMfK07d4Xiz5PtlrEb5mkewUDDMOgsd2MmuZO1DQZUN3cifMNHWjpsmH749MpefzwaD3e+ew6xqfEYXxqHManxmJCSlwPn2ZPx/fkbd2XJEV2NDfZmicLs4G4cNwKbSYbfvzLj3Ey7pu5Z1aODH8sGoN4if8XOmzCo9PpXLS7tyJ93pIByfgOFfmCp6Y39rXQWzWeLDrIPMZuEpPJZJxZvA4U7veLzWajUp/eFunse5T0aAzVSHJCcsmzCejeFVOpVDQdmd2/xP63L2DbE3ryre/LHHbs2DFkZmYiOTnZp3PwBrKYiIyM5MTzeFiS6IqKCjz77LM4ceKE349dXV2NqKgojBgxosfPiGcz+XI6ndQmbaCezf1tCLTb7XQrR6fTuTgUDDZ9WaDsk4jHKKk+isViSqhDFSHtK9jpdDqdDiaT6ZYNYH2Be/MmSY7zZwiO3ekEwwDCiO5rsuRME17dfRkd5p4OOwI+D2/eOw535naHHVntTggieC4ezd7gnhRGnCIG4m3N1poTP+hA2MMBwGMfn8HRKy1w4pvjRfCAGdky/O07/be19AR2QxdJm2TvSvhCftkLM51OR3XCXLDp8gVsy0RCeNg2dL4GWrk3rA7mKjXx+ifPH9JcSoJPfHn+EBtS8hwY7JHkpI9Ho9FAr9dDJBK5aMDZ7yWQCYpstxm2pz276OJpsXL06FFkZWUhyc+9GWESzQHs2LEDGzZswOnTp/1+7JqaGojFYmRnZ9OJj5Dmzs5O2nUsk8l8jo31d0Og0+l0WeWSQJbExETOdsuTSiqp5AcqWpuAnQjIrgSQByOXx4jYqwkEApdKlr+1355CcNjk4VZjxDAMmjosuKo14qquC5e1RtSqO3FRbcQb94ylxHhvrRY//m8lBHweRiVGY3RSLEYnxWB8ahzyVTEQCfp+T5nNZkre2I1wgZJhkKYpsjBjj1F/PpML6k7srtagqcOCpnYz6lpMaO6weH09uzrfX3iLlw9Uhz+RhZD7O9DXrT/gfh2RUA+ymPT3GLkHmQyGMSJWfST4hCy4ExMT/b4T2lskOfni6hiR53BLSwt1lEpMTOzXQqk/DYr9hfsuErE2dV/QHT58GKNGjUJiYqJPf8cbwiSaA9i/fz8efvhhVFZW+v3Graqqgs1mA5/Pp8SFELuBbMEFKyGQrDpJI4fFYqGEOpT6Vy5EaxMwDEOt4cgYcaGT3lO1KlRjRFwI2GNEtrETZHLoTAxixAIoYrrH6vCVFvz4v5Uw2Rwej/eTu7LwgzkjAAAGsx0320zIUUZDFNG/a96TJRup6AVbssO2GNTpdDCazGAi42EVxcKISGiMDtxsM+Nmqwk328z4nxV5dCGxo0qNp4qr+/y33rtvAuaOkvfptZ4qw/Hx8S4R6cEcI/cdFPYDO1TuMESORwgPe4zIdRQssMeIPTcOdJdpoGDvwmg0GhgMhpCNEZcjydlj1NHRQccoMTHRL/K4QCcosr3wyYJOLpdDr9cjLy/P73a/YRLNAXzxxRe45557cOHChQF/CDabjZK7lpYWWCwWREZGIi0tDTKZzOcJjAsJgewHBbvJg0gaAtl0x/VobfZ5entQ+GsS7A3sZi12RZ4Lukmrw4lrui5c1nTiQlM7apvacV1vQpPRAQfDw3dvk+IH83IQExODixojVr//JQR8HjLlEuQoopGtiEKeKgb5STFIl0r6JMnweB5u1d+BhIMMBAzDQG+0oaHNRMnxnbkK5Km60wVLTtbjhe1XvP7+80tG4cHpaQCAK1ojPjpxEynxkUiOFwMM8GxZjdffvVUl2lNqIxkjLjWPuj+w2amYgbakJDt2ZIzY6ahc0nH72u/gD3C1wOAOUsln682DFUlOegnIc5Xo5MlzNdCBKOwKNZtUAwOXfrAXdNevXwfDMC7SLH9IRUkhMUyiQ4gTJ05g2bJluHr1qk8dpwaDgZJmg8GAqKgoWmnW6XTg8XjIzc3t93HJfz1JNLiQEGgymeiNz45TTUxM9EtVgTzIycQ2mKK1Cci2LtmO83fzpif9d6i1kQazHVd1RlzRdWGETILbMhIAAFWNBtzz95Mef0ccwcOKkZG4S9kFoVAIqVwBqygOYzNVEAsH9pBnh1WwY6oH0mneVxgtdoAHRIu630NVowF/OXQNN9pMaGwzw2Rzde75xdJR+M7t3cT47M12rPvXaaTERyI1Xgx5JBAXYYPEYYQ8EhidJkdmisrr4uixj8/i2NUWOFgzem+aaKJnZzca+/NhF2iQ+YIQRnffW38s8om3LlmAEW9iQra4PkbsCqx7Jd9fc+pglLqxwZ5T9Xo9LYT4M5KcYRjaPKnRaGjzJNnhDVVByJOW2l8NigcPHsTo0aPhcDjo9edwOOi4+pozECbRHMCZM2cwd+5c3Lx5s08fAtuzubW1FTwejyYEurs9XLlyBXa7HXl5ebc87mBOCLRarXQrU6/X+0QWe4vWHgoJeKR5kxCViIgIl4jtvn6uxG2EkB2io/WXn2d/0GmxY+t5NS5/rVu+qjO6pPt9e2oKfrWs+9o3Wu1Y+OejyJZHIVsZjRxFFLIV0chRRiE5vtuGjsh0yAPYbre7VED7WhHyRKjYk7U/d006zDacvdmBBpbUoqHNjJttJrSb7C7E+MyNdtz/z1P0d3kAVHFipCZEIi1BguXjEjF7ZLfMwkkagtzuHU8OD4QIsR1R2k02PF1SjcNXWujvst05+nqcwQh/LpzYoUPsRtD+6lK5CPcYel97ADw1XXtrehts8JQw6UskuSdHDfKM5KpziD8bFA8cOIDJkyfTMCpSgWdff8RNpT/BVGESzQFUVVVh6tSpUKvVXuM0W1tbKXE2mUyIi4ujpLk3/dTVq1dhsVgwevToHj8bqgmB7k4fvSVJDbdobYL+2Dh50u0Gy62AYRhoDFZc1hpxRWvEFZ0RoxJj8MDXpLDDbMOMV3taQypjRMhWRGFBvpK+lhyvP80wxDKtLzpTQgiIM4g/tvbtTifUHRbcbDV/TY67SfLi0UoszFcCAE7faMd3WMTYHd+fnYkn52cD6B6vHVUapCVIkJoQiZT4yH41PnqCewVZIpHQ6yghIQH1rWbUt5iQIZMgNU7o0gQEfOMUEWq5TyBBJDzkffcm4WHr97VaLcxmc1AsCUMNT240ZOePeC6z711P9p/snUguEBp/o7+R5O6OGiQYZrAuLjxJP4C+NSju27cPU6dORXx8vMefs3ee2T085D71Vowj/tNcuS+HJYm+dOkSRo8ejZaWFvB4PFrFIKS5ra0NYrGYNgRKpdI+b7dcu3YNJpMJY8aMARC8hkCuwN3pw+l0Us9rk8mEjo4Oao8z3KK1CTwFCsTHxyMyMpKG7rAf+oHW6FntTvxux8WviXMXDBZX67hZ2VL87YFJ9N/PlFZ/TZqjMVIZhSxFFOIi/U/G3KUxkZGRdAFhMBjo1jTZNu7L1iDDMNAZrWhoNSMhSkh1wpc0Rjz+yTk0tVvg8DAlPjIzHT9bNBIAoO204LF/n0VqggRp0kikxkciVRpJiXKMOHhbs560zOR+M5vN1I6KEOdASlm4Cm+LUolEQoMrALjsEnGh3yKY8NaDQohMZ2eni8f1cAmicoenSPL4+HgIhUKX+80XRw2uo78Ninv37sX06dMRGxvbp+OztfzsfAd3eRbXSPTwmim+hkgkgsPhwHvvvYeDBw+Cx+Nh/fr19IGcl5fnc0WUx+tOLLTZbCFrCAwl+Hw+4uLiYLPZqBaK3BAMw0AmkyE5OZlTzUrBBkmLYu9MtLW1ISIiAg6HA1FRUVCpVFCpVAOehEll+YrW2E2SdUZc1hiRKpXg1dXdCz1hBA97arVoN3WT5wgeDxkyCUYqu6UX41PiXI5Jfi/QiIyMRGJiIq14kMZdEo+cmJgIlUrldRuwzWRD6ZkmF9lFY5sZZnv3gpZNjOMlAtxsMwPoHo+U+EikJUQiVSpBWkIkpnyt8wYAZYwYZT+8PfAD0AcQazOBQACBQEB3g8i1FBsbi6SkpJC6NIQaJGo7MjISkZGRaG5uRnt7Ozo7O+FwOKj/Lpe32QMNHo+H6OhoSCQSREVFITIykhZCyNzN9lzmCoEJNkgkeXx8PKKjo9Hc3EwbEx0OByQSCWQyGRISEnpU8gc73Eky20bPU4Nif+uzEokE6enpSE9Pd1n43rhxA1VVVbQYQPrPuIJhU4m2Wq04fPgwdu3ahW3btqGyshIjR47EvHnzsGzZMixYsMBnz2byX6fTiaamJtTV1bmEcggEgiFLmoHeo7XlcjmtfoXK6YMrIE1KnlbacrkcIpEINpvNRWvYmzTGHWabA5HCbwjA9z8+i7M3O3pUlgEgXRqJXRtm0n9vPtWIKFEERiqjMUIeNWDJga/oS/CGyebAhRta1N7Q4oq6HU0dVhgYEVqtfCweo8KG+d3EWN1hwV1vHOnxN/i8bl1y4YQkbLirW3bhZBicqm9HmjQSibFin51AgoW++E27excH2t+ZayDXEpH8dHZ29kjX9CZp6Eui4FABkSCQa4UEbymVSkilUvB4vB5a6qHUu9IXsB01SFKru6MGkSqSav5QjiR3B6GR7GtJo9Fg9uzZ9H0PxJvaarW69LxMnDjR7yEuvmLIk+g9e/bgz3/+Mw4ePIjY2FgsWbIEM2fOxA9/+EPU19dT0Xt/0FtDIAAXfR2Px3OJ5xwqD66BRGsD3fo6cqMRpw92vPZQgCc9HZsQ3qoBk50OR6QxSqUS8VI5WhkJrupNuKg24pKmExc1RsRJBNiyfjr9/W/9/STONxp6VJZHKqMxUhmN3K+t1UINd/N+u4MBE5UAqzAWBkaENGk0bb7TGCy48/WexJhgktyJH0+J7pZ4KBR4ad9NJMdHIk0qoc18SfHifvtLhxoDTT4MRNIgF+H+PokbwK0ipIGBRb0PNpjNZkoIW1tbER0dTRfrt+q5YDfx6vV6Gms/kGRPLoLsEJLCT1/jyMnvDpdIclL4UavVLiE6KpUK0dHRfk9QdDgc4PP5nCm8cYJE/+Uvf8Frr72G5uZmTJw4EW+99RZuv90/26X79u3DqVOnsGTJEowfP57qKePi4nDlyhUolcpbHsPXhkBia0NuQofDQSeqwWD9w0agorUBz0lWRFM22CJ/2Q1Ner0eDMO4VJv74wHqZBhoDBYkxUVSQv7Tkhp82WCG08NdK+DzcPL5uZQgnmvoQKSAH9LKsic4nE60tBtgbP/a8qmlHWU3RGi3C6AzOaHptLm8vyVjlHh97TgA3WMy+aVDEAv43ZrkBFfZRUaCCBKH0aWqRiqPg61ixm5GZceQD7Thja3J1+l0dD4kxx1sOk53pwi2PGMghQt2EzTRm7M1moNp4eEpHCYhIYEWLnwlvt4WHuwq9WBaeHhy1GDHkfs6f7hHkpvNZr9bDQYTJFlRo9GgtbUVsbGx9JntqQg2kAZFdzidTvD5/ID7afcVISfRn376KdatW4f33nsP06dPxxtvvIFNmzbhwoULfo+LJLBarRCLxaitrfWapuPvhkCytajRaKBWq2G1WjnhE9kbeovWDpS1Wn+cPrgA9paxXq+nXevsanNfzrnDbMOF5k7Uqo24qOnERXUnLmu74GQYnHxuLiL43RPMz0qqsa1SjfjICGTEC5EotkMptGKkMgoTRyRiRGoSJyr5ToZBdZOh2+Gi1YQbrSZc1xpws9UETZcDE2QMnprZ/RCRyuS44/UTsLOYsyiCj9SESKQmRGJ6lhSP3pFBf2Yw2xEjjrjlpOvJEYXr1VdCCNmR12xf4kAsAkjMNmngFAqFtOLGxYUHuyqv1WrpDk8gFwHs+5wsPMh9rlQqObnYZydikkpqoK9/b97dhFRzsUrtLmcJhqMGkcd4iiTnqmuOe05EfHw8Haf+fK4DTVAMk2g3TJ8+HdOmTcPbb78NoHuA0tPTsWHDBjz33HMB+ZsOhwNCoRBnz57FiBEj6N8NVkIguyqgVqthMpkgk8mgUqmgVCo5Ea1NjPlDFRsNdH8mRPep0WgA+KcqMFCwO7R1Ol2/qs1OhkFDmxlpCd94XP5qSy02n27y+HpRBB/bHr8dqQndk1RDmwnCCD6UMSL6+6SSz3axIOMUKDcGo9WOBjcbuKQ4MR6Z2U12Hc7uirHdU8kcwITUWHzy6FT673+fuIl4iQBpX1eX5TEiv+qS2T7CWq2WBiqEIu7b23mxLbRIJTXY9xxbI6zVamG1Wum1HYw0NW9gE0KtVutSlQ/FeREvYXLPEU16f/xuAwG73U7Pi1j7happklzbhCxySR7jvvvZHzmLv8H1SHLCUzo7OyGVSilP8dc9198ERafTiYiICM4UQUJKoq1WK6KiorB582YUFhbS7z/00ENoa2tDeXl5QP6u0+mERCLB4cOHkZOTE/KEQHKhktho0nCXmJgY0IfDYInWBjzr0+RyOa3kB3Lh4W4ST2z62EEOnq4Tk82BSxojLqg7UdvciQvq7i+j1YF9P5mJ5Pju7fi3D17DO59dR3K8GPmqWOSpuvXKuYnRyJBJIOjHNejpIUp2PPoVpmB3orHdDKvdSbXTDMPggX+ewvUWE1q7bD1+Z3xKLN5bk0MJ2O+PmxEREYE0qQRZiXHIUsYh7WvZhSpODGEIdcnuCw/SdEeagQN535MtYzJO7GAYhULBmQqLp4ov0WEHo/pKtPLkWubz+Zx00SAEn8wP7BAbT37L/oanRTSRaXDJ0tBdHuNwOPyeMNkbiM+1RqOhuxfkOculpr9QR5K7F/jIczYYBb6+JCgCCJNogsbGRqSmpuLIkSOYOfMbp4BnnnkGhw4dwvHjxwPyd51OJ0QiER599FE88sgjyMvL40xCoL+2TLyht2jtYEz4/gD7RidOH6Qq5a+FB3mAkwWGe1wpe8InNnIJUQKIBd0P9r8frsMb+6961C4LI3j4+3cmYtoIKQCgrcsGHg+Il/h3gvJUvWM3xpBJaMv5ZtTpTTR1r6HNDHWHBQyAialx+H+PTqHHXPzmUWoFFxcpQGq8GAoJD/ECO2R8M2Ym8+mWMVe3Jd3Bji0m2lcyTv6SLZnNZhfJhL90u8GEu7sMIbXknvAHqSVBMu4Nb/1JQg013J0sxGKxSwiQP8aJFF7YcpbB1JjNrlKTRllSmJDL5X5ZyHp7TrAdNbgOttWbeyQ52/lqICBSJbVaDY1GwympKZtU2+12fPHFF6ioqEBaWhp+9atfhey82BiWJNrhcGD9+vWoq6vDoUOHkJOTg1WrVmH16tUYM2YMZx5o/RXve8JQj9YGeiZp+fJA6eukbnM4cU3Xhdqvq8u1X1eXW7ts+OeDkzA9q5sYbznfjGdLayCLEiI/KQZ5qhjkJ8UgXxWDEfKogFdhGYZBS5cNN1tN1Cf5mtaAOl0nRLDhgWwrtfv6XlkDGtotPY4hEfIxPiUOHz40mX7vZF0rYLNAbO+EqaPFJblsoA2mXAA7Gps00BLLs/40YHmyV+OCfMRf8LRA88Uajm1pSKzDfBlvrsLdLYTsoPW3+sq+LjUajUuq4mAhhL3BvWjhdDpdkmz7M06h2rEMBvwVST5YTA+sVisOHTqEsrIybN26FTweDwUFBXjwwQcxd+7cUJ8egGEq52Cjvb0dW7ZsQXFxMXbt2oXU1FQUFhaioKAAkyZN4gyhdreRkUgkUKlUHlOR3KO17Xa7Sycwl7au/I3+OH14Gif29iIihHAyQJSoe0LZWa3Bc6U1sDqcPf4unwf8z8p8FE1KBgAYLXZ0WR1QsLTL/ka7yYaGNjMa282w2J1YPk5Ff7by3eO4ou3y+HuKGBF2/2gKHacPT7fBxhMiUxGDUclSjEqRIU0qgSxKCB6P1yMVj12V55L8IBBwjxbvrTLqqaJNqvLEB3wogsjCyPtua2uj40TkTrcaJ39X/rkIbwv13saJbXHJMIzLOHFFaudv9Fc+FyhHDa6DbaHKbmr3FknOThPWaDSctd81m83Yt28fysvLsW3bNkRFRaGgoAD33HMP5syZw7nrnhONhbfffjveeustAN0fdEZGBp544omANRZ6g8FgwPbt21FSUoLt27dDoVBg5cqVWL16NaZNm8aZi8yTgwW5CTo7O12itUPdwBFKuI+TQCCglXej0Yj29nba6BIZK0WTOQIX1EZUNxtQ09yJq9ou/Gp5Lu65rdvB5ezNdtz3wSlEiyJcKst5qhiMSox2CTrxB9zDU97//DoqGw00eY8dopIYK8LBn86i/374X6fxZV0bEmPF3f7I0khqCZculWBqZgJ9LakCaTQaqsEjIUFdXV1oa2uDRCKhD/Dhej150uhKpVIaad/W1ka9YMPj5KrLZwfAEIlDsDToXAVxhSCLeACQSqUQCoWwWCxB1+pzFZ4auaVSKcRiMR0n4qgRHqdvtNREc07GqbW1lQbpBNJ5xBd0dXVh9+7dKC8vx86dO5GQkIDVq1djzZo1uOOOOzi9EAo5if7000/x0EMP4f3338ftt9+ON954A//9739RW1sLlUp16wMECF1dXdi1axeKi4uxbds2REdHY9WqVSgsLMTMmTND/qG6J5Y5HA4A3YJ7pVKJlJQUmjY1nMGuopImLgfT7amsUChgEsvw4p6buNFq9vj7D81Ix7OLuxPwrA4nmtrNSJdK/OYccV3fhTp9FxrazbjZ2l1VJrpksYDfgxifqGtz+X15tJCS41eLxtDz0hutiBUL+uwPzbaD02g0sFgstKFDKpUiJSVlSFcJ+wpS/SHVHJPJRCNuExISaKT9UK7O9wXuDUpGoxF8Ph9OpxPx8fG0w38o74r1FaQPpqmpCQaDgY4Tke+FwqWFiyC7jI2NjWhvb6fjRHYbudZIGSrY7XY6Tq2treDxeHA6ndS1iSw0Qs1hDAYDdu7cibKyMuzZswdJSUlYvXo11q5dy6mi5a0QchINAG+//TYNW5k0aRLefPNNTJ8+/da/GCSYzWbs3bsXJSUlKC8vh1AoxMqVK1FYWIjZs2cHhVj0JVobAFpbW6FWq+n2H1l1ymSyQXNRDgRs83+tVotrmnZobWJoHZG4aeThit6CFeNV+O4UOTQaDa7eVOOpw90LkMQYAcYmx2FsShxGJ8ViTHIsEmN9l2OYbQ40tpvR0Nb91dhmRofFjl8vz6OvWffhKZysb/f4+zwAp38+jxLhHVVqtHbZkJogoR7KkgFUv0mzG4mFFggELjZdfD6/h16VrcPkSmJUoOHueAKgh52ZN9/ioaB/7ivcfblJgxK7kdVdHkPSzXpzuRlq8BQhTRyZyH11q3sz1AQoWLhVv0tv4VZc9YIPBIi/PNlNjI6Ops/+mJgYF0OBUEWSkwLEtm3bUFFRgb1792LEiBGUOHNJPtsfcIJEDybYbDYcPHgQmzdvRnl5Oex2O1asWIGCggLceeedfq1ADSRamzRYkI5brjYO+APuMbTtXVb83xUR6g1OdFh66pfvyJbi7w9MAtA9TodqGhHHGGHp0Perg5tUpjUdFuq0AQD/s/0C9tbqoOu09vgdd2L8ux0XcepGO1Lju5P3Ur6uKhOSHC32n/6LTGLk4dzZ2dmvkAr3qPZQ+hkHGmyNb3/JHju8RK/XU3eGweTE0VewgyqIFKiv4TDuixN3ze9Q2vUgCwxCCO12e58jpD0lV7pb6A0VDMR5ia0RJlrquLg4l0LTUJqjfDUeCGYkOcMw0Ov12LZtG8rKynDw4EHk5+dT4jx27NhB/5mESfQAQCxXNm/ejLKyMnR2dmLZsmUoLCzEggUL+t1Z7i1am1zcvjofuKclEqszlUoVcgsbX+BwOlHb0IIvL6tx7mYbLuktUEVH4Ok5KqoBn/2no+gw2yHg85CjjMLopNivq8vdOmZv5NSbl+ilThFqtKyqcvs3NnA8AKd/MY/GbT9fVoPyc80AupsSCSlOSYhEWoIE99yWQpsVAw1Ccsg1BcDFqs/XSg2xOyMP9sGu3fTk9ctuMvWVqLg3h7GbDQerWwBZYGi1WrS1tfnFO5q9wCPV2YSEBEo0B4P1pjvYPRnsBQaxf/TlHiFNnGwLPa4EmPgKtqMGO+BnoI4anpws/DH3hRKeLHCJNMpXJxsyR7lHkpOx6u9OGsMwUKvV2LJlC8rLy/H5559j4sSJKCoqwpo1a5Cbmzvo7uXeECbRfoLD4cCxY8coodbr9ViyZAkKCwuxePFiryvDYEdru6/0CVkglVeuTiwOhwOv7KjB6RttuNJig9nh+vO0hEjs/vE3NokHLuigjBVhVGI09W7ucUwnA7XBgoZWk4smmZDk0u9NQltLd8Pdm8dbcULb8+EUKeAjVRqJDx6YBGVsd5XkstYIs82BtAQJ4iWCoE4YvVn1EUcJfz9kPXXHE59RLu96sBu7SKNgIFPnPNm5EZtBLuuD2fZqWq2Wzhn9tbPrD8i8SGQfg2WRZjabXYJPAu1zTar57ACTweCcw06jJdLDQDpqsOWQ7F04MlZctuZ0Tw0MtNe1L5HkDMOgsbER5eXlKC8vx7FjxzB16lRKnLOysjg7vgNFmEQHAE6nEydPnkRxcTFKS0vR0NCARYsWoaCgAHPmzMGRI0ewc+dOGI1GPProoyGN1g5VWqInOBkG9S0mVDcZUNVkQGunGT+cEkcrLn88F4E6Q/flKhbwMTopBmOSYzEuJRZjk2MxKjGmx/G0Bitt1GtsM+O7szI8Vow9YecTM5Ah6yYIpacbcOyyBjE8KyIdRqhiBMhLU2BUelLIGzjZCXg6nc4lqjkYSWBssBvvtFot9bPlwiLNXS/f3t6OmJgYlwVGMD9HNlEkdoyEcIV669m9IRdAyOzViCUeGStSzeeC7pVcU+R6J2EY5HoP5sLIkzUc6ZvhAlH05CpFiHOwF0aeqtTsBXQod4hIIYRIMYOdGsiGeyR5S0sL/vCHP2DOnDlYtmwZUlJSsHXrVpSXl+PkyZOYNWsWVq9ejaKiIqSnpw9Z4sxGmEQHGA6HA1u2bME777yDI0eOwGg0QiQSYfz48Xj44Yfx4IMPcmZLl6SFqdXqgKQlesLnl/U4fq0VVU0GVDcZYLB8U2Lm8xj8fWk8UlTdD+6DVw2wOBiMS45FtjIKETwedEYrZFEiRPC7b9aSM03YXqmm1WSbw/XyZhPjtw5cxd8O1yMlIbJbkyyNREp8JNKkEqTGR2J0cozHKjYXfEnJZxXIVLSBwlNsdHx8vEvDXaBB9KSEgFksFirT4FJzpLe4dkJag/F5squoRCfJJvVcqP4SokjOk63rD1YTJ0mRI/e/xWJxkR9wZTfPU8JksNNE2ZHker2+V9/+UIGdCuguo1QoFEE5T3fXHy6lBrKh0+nwpz/9CRUVFbh+/ToYhkFSUhLuvvtubNy4cUhonPuLMIkOEL766iv8/e9/x86dO9HU1IR58+Zh6dKlyMnJwenTp1FaWorq6mrceeedKCgowIoVK6BQKDhzAbqHlsTExNBwl/6SH4Zh0NxhwfnGDlQ3deLHd2VRK7Yn/3sOu2v19LUCPpCVIMTY5FjcNkKB5ROSoDVYUd1s8Ci7sNid2LVhBtKl3cT4zQNX8d7ndfR4ETwekuPFVJP8o7kjkJrQ/VqzzQFhBJ8ScF/gKSGrrw1D/YEnze5g04x6eqAGovLK1mvr9XrqbEDIAxcWGL2BPNTJWLHT6fy5s+CJkAZ7kTNQsF0s9Ho9jVP392KSVMNJFRUAHScuS5YIeps/fNG99gZ33e5giyQnDf3kmgqUxJJ8Ju6pgSqVilPzFMMwqKmpQVlZGSoqKnDhwgXMnz8fq1atQkpKCo4ePYpdu3bh3LlzmDp1KpYuXYof//jHkMvloT71oCBMogOE7du3Y9euXVi6dCnmzZvXY1uPYRhcvnwZmzdvRklJCc6cOYNZs2ahsLAQq1atgkql4gwpImmJpEFGIpEgMTERKpXKo/zEYLajsrED5xo6cL7RgHMNHS5OFR/fn4soRye0Wi32XLPgVKsQsmgRFHFRiJWIoDFY8ctluUiO7yYL7sSYDT4P+NdDkzElIwEAUN1kwAV159fuFhKo4kQQBKmC5sm6aiD6Nfctx0BrdoMJduVVq9WCz+e7NF315wHC1oGTijfZxh5IsxtXwK7mD9QVhaSWsX3T2Y2OXKmi+gKHw+HiYkFsvMh76+/9x7YNa2lp6eGzO5ivKSIlIhZ6A9nJ6s1Rg0u7Pb7AU7N/fHw8HStf7z9iQ8vj8WhlnkvOPU6nE5WVlSgtLUV5eTnq6uqwaNEirFmzBqtWrfJ4/Tc1NWH37t3YuXMn3nvvPWq7O9QRJtEcAMMwuH79OtVQHz9+HDNmzMCqVatQUFCAtLQ0zkzYPVIAhUJ0iaSYkJWMZKUMPB4Pb+y/ir9+0ZP0KiV8jIpzYFmWAFdMUfhvjRFGa08LOgD454OTMD2r2zZuR5Ua/z5+E6lfyyzYsgtVnJhqnLkGb04fiYmJHrWSpPGMrWlkbyuGWtMYKLArMlqtFjab7Zbd+e6EiejAfSVMgwXuVXaiK+3NPs+X3xns8HVh5b5gGQ5+3556Km4leXJ31CCOTwN11OA6PPl3E32+N4mMw+HokZzLxdRAp9OJU6dOoaysDOXl5VCr1Vi6dCmKioqwYsUKxMXFhfoUOYkwieYYGIZBQ0MDSkpKUFxcjCNHjmDy5MkoLCxEQUEBRowYEfKb7marCbtrtDh0SYdzDR2w2Bn8aCwQI+KjxijB9ktGODxcVX9YnIT549IRHR2N4tNN+NXWCwAAebSoO5qaZQM3d5QMSXGDt4LhDnd5DDHDl8lkLhVndtPUrbzAhyLYVS0iMUhISEBiYiLi4+Np41Qgt+4HC9gLCfeqclRUFNra2vxSvR4K8CbxIXpTsivCdisKdlMuF+Cp+Za4+8hkMkoI2Y4ag0XS4m94k8jI5XIkJCTAbDZT4hwZGUmJM5eKIQ6HA8ePH0d5eTkqKirQ1taGZcuWYc2aNbj77rsHhfwm1AiTaA6D+C2WlpaipKQEBw8exLhx41BQUICCgoKQ+C0ev9aKRz464/K9GHEEfjY/E81aPd492TN9TyoRIFUqwVMLcmh1ubXLihajDSkDTN0bbCANJDdu3IBer4fNZgOPx0NMTAySk5ORlpY27B5G3sAwDHQ6HW7cuIG2tjY4HA7w+XzEx8cjLS0NiYmJQ7KK6gscDgeamprQ2NiIjo4OMAwDgUAAmUyG9PR0yGSyUJ8iZ2Cz2XDjxg1qGQaAyhkyMjIQExNziyMMH5hMJtTV1VFtPgBIJBKoVCpkZGQMu0V+b+jo6EBdXR1aWlpgtVpd5vWUlBTOVOftdjuOHDmC0tJSbNmyBWazGStXrkRRUREWL14cMBOBoYowiR4kIMk/5eXlKC4uxr59+zBq1CgUFBRg9erVGD16dFAI9ekb7fjuR2dgsXfLMFblRWNFmg1mkwltvBicaRViRGI8VNECiO2d4HW1QAAHDXcZjhULUjEkFQt24phMJqONOKFy+uAS2HZmOp2OJruRpEDis8y2yBrKsoTe4CmOnC09INrnlpYWSCSSIaPn9QXEE5z0dbCvHaFQSMcq1LaHXIDVaqXzEdtRQ6lUUn9nttcyGavhuMNBHG1IaiCR7CkUCppcqtfrA9rI2RdYrVZ8/vnnKC0txdatW8EwDAoKClBUVISFCxcO6l6IUCNMogchSDWzoqICJSUl2L17N9LT07Fq1SqsXr0aEyZMCAihIHqwm806NGpbECXiI031jeuBNxN2kpao0WhgNpupdk6pVA7q5rjeQMaKkBiRSEQnUG/kmGwPkkmZOH1wzebI3/DU5MSWaXi6lkmDDnnYO51Ol4CXoT5W/fGW5pLnczBBbCCJZR9JVkxMTPRK+NxjzEkzL5njhvJYuTtqkLHytqXv7mLBlsgM9bEiHs4dHR1UbpaYmOhV/tPV1UXHih1gEsixslgs2L9/P8rLy7F161aIxWIUFhZi7dq1mDdv3pD9fIKNMIkeAjAYDNi2bRuKi4uxc+dOKBQKFBQUoLCwEFOnTvWZUPu7M5no7cgEZDQaXUzkB/NqmJ3q5q+x8qfTB5fg74hn9kLNXdc6FMbKnymHvaUPDnYnBU+WfVKplL63/m5TszWvWq0WJpPJpeFuMG97e+o9IEFbvlwHbD92nU4Hk8lEx16hUHA2jbOvYLuPsFMDExMT+/3cYu9M6vV6OlbkWTEQu9Kuri7s3bsXZWVl2LlzJ+Li4ihxnjVr1rDb2QwGwiR6iMFoNGLnzp0oKSnBtm3bEBcXh5UrV6KwsBAzZsy45U3Eri60tLRQg/5AJDmRTni1Wu2SljhYHuZWq9WlEgMgYKlXZKxI9YP4+Xpz+uAa2PHEpCmJjJW/u/k9WcKxfWq5vuVM3BLIgoxEOfvbexyASxNZW1sbrdYOFmtAQt7I590XZxdfQcaKBBxxKWGyL3AP9Aiko4bRaKRSo9bWVkgkEhcLPa5Lr9hFjECnBpKYbXJd9WXXko3Ozk7s3LkT5eXl2LVrF1QqFSXO06dP5/xYD3aESfQQhtlsxp49e1BcXIyKigqIxWKsXLkSq1evxqxZsyAQCGC1WnHgwAHo9XpkZ2e76NyCldZEzlWj0dC0RKItU6lUnKn4eLLNIvpJotkNxlhZLBZaQWI7ffS2TR0KkIcDeZBGRUXRKl6wEvCI1y/ZnheLxfRByCVtMNFPkvMkziPB1HuzpQzEiosQdy7p88mCjDgfEI9x4rUbjPO02WwuCx0gcAvogcBd9kQWr0T2FIyxInIidp8DO7adKztF3lIDSS9PMOQPZAFNCg6kf+bYsWOYM2cOxo8fT3entm/fjrKyMuzbtw/p6ekoKirCmjVrcNttt4WJcxARJtHDBIQsFxcXo6SkBBaLBQkJCdDpdBCJRPjOd76Dp556CnK5POSyCk9piYRQB9tyx1OjG9nS5YIFFrthSqfTUT1xKDxI2fG5RCrApS1d8lmytcGhsujyFInOJU9ibxXeUIWyuM8JpArMBcswT1IuIrkhTWTBBNvLnyTusX2JQ0mwSIWX7YUfykZO99RAp9PJmcZuhmHQ1dWF5uZmfO9738OpU6cQExODmJgYNDc3Izc3F2vWrME999yDcePGcaYgMNwQJtHDAA6HAydOnMD27duxY8cOnD59Grm5uZBIJKirq4PD4cCKFStQUFCABQsWhJwYsuEtLTExMTFgVXL29ho7qYzrW5GkikGqTjwez4UkBuK8bTYbJaZsSQvXm9Y8hUUQkhgofT67cdT9b3KpIucOsgNDzttgMASc8HtaZAyWSHLS0EjmDyJlILsfgbgP3dMVyTzJdYcRIokj8wePxwt4RZ84jLDnSS6mBjIMA61Wiy1btqCsrAyfffYZUlNToVQq0djYiJaWFtx1111YtmwZ7r77buTk5IT6lIclwiR6GODHP/4xPv74YyxduhR33303lixZAqVSCaCbeB05coSmJba1tWHp0qUoKCjA4sWLQ149ZINs46rValpBJ5PfQKQUbHLDboph2xENNnhKAfSX0wchNzqdDm1tbYiOjqZEcDBoQ91BCBsZK4PB4DfNOXuRwZYe+BJvzhWQqjCRE5Hdj4GSRLKwIcc2m80BX9gEGmxnFHaYEllkDuQ9+eKowWWwd7LYzdnsir6vc4u31ECVSsWpOYthGDQ2NqKiogLl5eU4evQopkyZgtWrV2Pt2rXIzs4Gj8cDwzCora2lhbHPPvsMO3bswIIFC0L9FoYdwiR6GIB4n97qge10OnHixAlKqJubm7Fo0SIUFhZi6dKliI2NDdIZ3xrsqqtGo+n3liXRoJKmwIiIiCFrZeXeJNPV1eVCTm5VAXVfZJjNZheZBlc06/4C8X5l28j1p6rnbq1GFhlcrwr6ArZEhpBE9k7ErSqJXJLYBBpspxXis0wcfPpS0fe3owbX4W592d+GO3epW2RkJFQqVUB3MX0BwzCor69HeXk5ysvL8eWXX2LmzJkoKipCUVERMjIybnmuBoMBYrF4UC40BzvCJDoMj3A6nThz5gw2b96M0tJSXL9+HQsXLsSqVauwfPlyTq3eiX6TkEQSR0uaZ/h8Pn2AEb0uqTYGu4GSC/Dk9EEWIIQQk5hkssggFdSh7gHrDqIvJcQnIiLCpZJMri13y76BWKsNVvR1HMi1RSRabB1/sBpOuQB3L3mSmshuJvXmqMEOihkOYNvCabVaWK1Wl94U9rVFHJ/Y/TSkOs+VOZ5hGFy5coUS57Nnz2LOnDkoKirC6tWrkZKSwplzDaN3hEl0GLcEwzCoqqqihLq2thZ33nknCgsLsXz5csjlcs7c8Gytq1qths1mg0gkgt1uBwCXrvDwqv2bqqtarab2SjweDxaLBbGxsZQ4D7UKqi9gN9up1WrY7XaXa6s/FdjhAHZFnlQSybXlLj0Y7tcW29ZQq9X2uLbYRYGhVJ33BUR+5W4Lx+fz6bxFKs5ckiMSCUZ5eTnKyspQW1uLu+66C2vWrEFhYSGUSuWwvw8GI4ZHOSmMAYHH42HcuHEYN24cXnzxRVy8eBHFxcX4xz/+gR//+MeYM2cOCgoKsHLlSqhUqpBNBGRybW9vh8FggNVqRWRkJIRCIRiGgdVqBcMw4PF44ckK3aSws7MTRqMRJpMJfD6fSjusVivsdjvsdjucTmeIz5QbsNlsMJlMMJlMsNvtEAqFEIvF4PF4MJlMsFqtsFqtcDgcw55Ek/vNarXCYrGAx+NRomO322E2m2E2m2EymSCRSMLEkGHgdDrhcDjgcDggEAjoeHV1daGrqwudnZ2QSCScsrEMBXg8Ht2tcDqd4PF4EAqFiIiIgMPhQFdXFzo6OiASieg4hgpOpxNVVVUoLS1FRUUFrl69ikWLFuGnP/0pCgoKIJVKh/VnORQQrkSH4TMYhsG1a9eobd7JkycxY8YMFBQUoKCgIChbUn3d5vOUliiTyaBSqQZt05IvcNeCC4VCjzpDd60qcfog1k/DYcvdkyuFNw0rqbpqNBqX0BKueXcHEsSTmIyXw+HwWJ335lJCXstVlxJ/w5OjhifbPvd7lqv+3YFGX1IDuSDbI1LI0tJSlJeXo6mpCUuWLMGaNWuwYsUKxMfHB/TvhxFchEl0GH4BwzC4ceMGSkpKUFpaisOHD2Pq1KmUUGdmZvpt8hpowwnQbWNHJuSOjg4kJCRQQj2UGnTYvqxsezJCWPpC8ALp9ME1+MMfmWh+iW2XUCh0CXgZSgsQTwEt5L32xS6sN79shUIx5BYg7ostkqbZV0cN9+uTFA3IeA3FuYudGtjfhEVvDeTEQs9fc5fD4cCXX36JsrIyVFRUoKWlBcuWLUNRURGWLVuGmJgYv/ydMLiHMIm+BbZt24b/+Z//wblz5xAZGYl58+ahrKyM/ry+vh7r16/HgQMHEBMTg4ceeggvv/yyy8158OBBbNy4EVVVVUhPT8cLL7yAhx9+OPhvJkhgGAbNzc0oLS1FcXExPvvsM4wfPx6FhYUoKCjAyJEj+/Vg9GR9lJCQ4GJBN5AHLUlLJA82kpbINU1dX+EeG00SwkhFcCCVvt6cPtgVocEENhEkD1p2WuBAKn3uWlcS5sB1H+3eQHT0Go3GxX3EH64H7gmToUhu9CfY9omkguovRw32AkSn01EXpsHcx0AaKcmOoc1mo9eWQqEY0L3obytTu92Oo0ePoqysDFu2bIHRaMSKFSuwZs0aztnDhhJDnUOFSXQvKC4uxmOPPYaXXnoJ8+fPh91uR2VlJe69914A3Q/ISZMmISkpCa+99hqampqwbt06+jsAcO3aNYwbNw4//OEP8b3vfQ/79u3Dk08+iW3btmHJkiWhfHtBAcMw0Ol0KC8vR3FxMfbv34+8vDysWrUKhYWFGD16tMeJ3t0dIhgm/OTvkgeee3c3l6sJfen0DwTY/srenD64iK6uLkrW2PILpVIZsC1fdrKdRqOB2WymVUQuyxg8WauRRL5Afs6eFiDsXQGu6s5D5ajhHlzC5/Nd5DRclX30xV0pEPAlVMtms+Hzzz+nxNnhcGDVqlVYs2YN54LKuIDhwKHCJNoL7HY7RowYgd/85jd49NFHPb5mx44dWLFiBRobG6FSqQAA7733Hp599llotVqIRCI8++yz2LZtGyorK+nvffvb30ZbWxt27twZlPfCFRDnjIqKChQXF2PPnj3IzMxEQUEBVq1ahc7OTmzZsgUHDhzA448/jvz8/JDFwQLfVCjVanXQ0hL7Cm+es/4IJvAV7hVKLumC2QSWRJKzCWwoHn7uVoNcCstgV+00Gg2sViu9F0PhbMO+3ol9HiHySqUy5FU/dyLIjo8OBYH1pDvnkre7t9RAlUoVEskT6QEhpLqsrAxVVVVYvHgxli9fjuvXr6O8vBxbt26FUChEYWEh1qxZgzvvvJOzi7lQY7hwqDCJ9oITJ05g+vTp+OCDD/Dmm2+iubkZkyZNwmuvvYZx48YBAH71q1+hoqICZ86cob937do1ZGdn49SpU5g8eTLmzp2L2267DW+88QZ9zT//+U88+eSTaG9vD/K74hYaGhrwxz/+EWVlZairqwMApKWlYcWKFXj66aeRlJQU4jP8BuzEK61WS3WuwUy8CmT6mb/hHnQgFov9ki7ZH7DHiwR5cDWS3D0FMDIykm75B3O82MEp7Nh4rjWwkb4IdiAOOddgjxe5xkngExelJ8QSjuy8REdH03shWOPlaQ4lVnRcyh1gGAbHjx/H66+/ji+++AJtbW0QCoWYMGECHn74YTz22GOc3TXiEoYLh+LOU4RjuHr1KgDg17/+Nf70pz9hxIgR+N///V/ceeeduHjxImQyGZqbm+nqiYD8u7m5mf7X02s6OjqovdNwgslkwvvvv49t27bh0KFDyM7ORlFREebPn4+Ojg5UVFTg3//+N7Zt24ZVq1ahoKAA06dPD/kDPCIiAiqVCiqVyiUt8cyZM7SKkpiY6PeHJ2lEIluOpIN//PjxnG5SEwqFSE5ORnJyMq3ysMcrUE4f7LTB1tZWukU7ceJEJCQkcOZB7Q6xWIy0tDSkpaW5kFn2eAWCzHoj75MmTeIUsXGHRCJBeno60tPTe4wXELjUQ2+OGrfddhunNcjR0dGIjo5GZmamSxQ9Ga9ALS697eZNnTo15Lt57ujs7MTu3btRVlaGXbt2QaFQ4JFHHsGCBQvQ2tqKHTt24MUXX8Svf/1rLF26FPfeey9WrVoV6tPmLIYLhxp2JPq5557DK6+80utrampqqDfuL37xC6xZswZA9+onLS0NmzZtwg9+8IOAn+tQhFAoxGeffYaVK1fi3XffxciRI11+ft9998FkMmH37t0oLi7Gvffei8jISKxcuRKrV6/GHXfcEfIKIrvxjL2NW1lZOWA9H1t2QJooSfNLXl5eyLf5fQE7kp3t9FFdXQ2HwwG5XO6z0wdpdCREkC1rGazjJRAI6IKNvS1/4cIFF32tr7IKdx07kZHk5uYOifEi98+lS5dw/vz5AbtXeHPUGKzjJRQKkZSUhKSkJJem7StXruD8+fN0vvFVJuOtr2TkyJGc6ishEqEdO3agvLwce/bsQVpaGlavXo39+/djypQpLvP3Aw88AIfDgePHj2Pbtm04derUsCTRYQ7limFHop966qlbdnVmZ2ejqakJADBmzBj6fbFYjOzsbNTX1wMAkpKScOLECZffVavV9Gfkv+R77NfExcWFfAUVCggEApSUlPT6GolEQq3xrFYr9u7di5KSEjz44IPg8XhYsWIFCgsLMXfu3JBLGPh8PuRyOeRyOfLz82lneW1tbZ87y0lliOjxgO7KUFZW1pBLv+Pz+ZDJZJDJZMjLy6M616tXr6Kqqop6v/bm3e3uR2y326FQKJCRkTHkkijZ45Wbm0t9q+vr61FdXd2nBj9vDY0pKSmYOHHikNqa5vP5kEqlkEqlyM3NpbrzpqYm1NbWIjY2ltqkedPp9+aoMW7cuCHVPMYer1GjRtFmO7IIiYqKcpF9eCsKeHM4ys/PD7lenQ2GYdDa2opt27ahvLwc+/fvR05ODoqKivCb3/wGEyZM6LXwERERgTvuuAN33HFHEM+aWwhzKFcMOxJNKoi3wpQpUyAWi3HhwgXMnj0bQDfZuX79OjIzMwEAM2fOxO9//3toNBokJiYCAPbs2YO4uDh64cycORPbt293OfaePXswc+ZMf76tIQuRSIRly5Zh2bJleO+993Do0CFs3rwZP/jBD2CxWLBixQoUFBRg/vz5IScDPB4PCQkJSEhIQG5uLrWCu3z5MiorKyGXy6FSqaBQKFzcR4hNmEKh4Pw2uj/B4/EQHx+P+Ph4jBw5khKXmzdvoqamxsXpIyIioof3slKpxNixYzmnPw0UeDweYmNjERsbi+zsbJdGzkuXLrlYzUVFRbn4CZNGt5EjR3JODx5IEBnDiBEjXPy76+rq6DVE3BjIjgZZaMjl8iG5MOsNUVFRyMjIQEZGBpXJ6HQ6nDt3Dk6nkzokKRQK2Gw2j177XFtoEIeoLVu2oLy8HIcOHcLYsWOxevVq/PGPf/TqEBWGZ4Q5lCvCjYW94Mknn8TmzZvxwQcfIDMzE6+99hq2bNmC2tpaSKVSas+SkpKCV199Fc3NzXjwwQfxve99r4c9y+OPP47vfve72L9/P3784x9zxp5lsMLhcODw4cPYvHkzSktLYTAYsHTpUhQWFmLhwoWcqn4AQEdHB27cuEEDPIDuB3xycjKSkpI4saLmEsxmM27evInm5maYTCYA3VUMpVKJ1NRUzukpQw2bzYbm5mY0Njaio6MDQHfVTCaTIT09fdgsNPoKp9MJnU6HhoYGtLS00PjouLg4pKWlQaVShbwPg0sguxmNjY005AXoJt3JyclITU0NeRGDDZJVUFFRgbKyMhw5cgSTJ09GUVER1qxZ0++sgjB8w3DgUGES3QtsNhuef/55fPTRRzCZTJg+fTreeOMNjB07lr6mrq4O69evx8GDBxEdHY2HHnoIf/jDH3oYhf/0pz9FdXU10tLS8Mtf/pIzRuFDAU6nE8ePH8fmzZtRVlYGtVqNJUuWoKCgAEuXLg2ZDs+bb2tcXBxtuCEVHFJx5VIFJ9hg61m1Wi2VHchkMgBAW1tbyJw+uAqTyUT1zcTvWqFQQCwW06TKgerOhxLYDhHEUYMkd5J0O7aunsS7D1cQ3TCpOJvNZlq5J/0gxJf+Vh7LwTjXGzduoLy8HBUVFTh+/DhmzJiB1atXY82aNX5NzQ2jbxgOHCpMosMYUnA6nTh16hSKi4tRUlKCGzduYMGCBSgsLMSyZcsC2kFPtJRky5gkiPXmdU225NVq9ZBIS+wv3G3VgN6dFdhOH1qtFnw+P2BOH1wEOzGS+CX3loDnyV851P7YwQaRcWg0Guj1eupAkpiY2Os96e7wcitd8FAB8fMnxJn0HHjr7egtITXQUhiGYXDt2jWUl5ejrKwMZ86cwaxZs7BmzRqsXr0aqampYeIcRkARJtFhDFkwDIPKykps2rQJpaWluHjxIubPn4+CggIsX74cMplswBMsqcaQB4jFYvHZDYDYZ6nVarS0tCA6Opp6UYciPCVQcLft89Xjl+30odFo4HA46MN+KOl+2dcYkQOxHTr603hKkho1Gg3a29sRGxvrEvAy1K4xd0cNUnXuKwaT1/hA4K/UQLZbjk6ng8FgoO4vCoXCL6FLDMPg4sWLKCsrQ3l5OaqrqzFv3jysWbMGhYWFUKlUQ+Y6DoP7CJPoQQaLxYLp06fj7NmzOH36NCZNmkR/du7cOTz++OP48ssvoVQqsWHDBjzzzDMuv79p0yb88pe/xPXr1zFq1Ci88sorWLZsWZDfRfDBMAwuXLiA4uJiFBcXo7KyEnPmzEFhYSFWrlwJpVLZ54mX3aCk1+shEAjog9VfPr7uYSWkeqZSqQadHjgYaXPsbWetVguTydQnpw+uwm6302uMLTsg15g/qqHuFVqyJU9kMoOp4urNUYO8H39U3LmYejkQsP3uya4OqdD7y4OeSGTIXCkSiehcKZVK+zxXOp1O1NTUoLS0FBUVFbh06RIWLlyIoqIiFBYW+qUgMhQR5guBR5hEDzL85Cc/waVLl7Bjxw6Xm6KjowO5ublYuHAhnn/+eZw/fx7f/e538cYbb+D73/8+AODIkSOYO3cuXn75ZaxYsQL/+c9/8Morr+DUqVM0QWg4gGEYXLlyBcXFxSgtLcVXX32FmTNn0vjxlJQUlwmZWKp1dHRQHTOp4CkUioCTWncdp0AgcHnYcfHhwd7iJe4Q7C3eQNv2sQmVwWCgunOlUsnZJk62jIBU6Mk5BzrIg8hk3CuuoYqt7gs8Wfextd+BXji5pwCSmHulUsnZhS6RT6nVauh0OohEoqD1FzgcDpddO6vVCrlcTvtE4uLiXF7vdDpx9uxZWnG+efMmFi9ejDVr1mDlypXDvh+iLwjzhcAjTKIHEXbs2IGNGzeiuLgYY8eOdbkp3n33XfziF79Ac3MzfXg899xzKCsrQ21tLQDgW9/6FoxGI7Zu3UqPOWPGDEyaNAnvvfde0N8PF8AwDOrr61FSUoKSkhIcPXoU06ZNw7JlyyCRSHDs2DEcOnQIy5Ytww9/+ENq7xSqTnSn0+miCQ5kWmJ/4V51IpVNpVIZ0nRFthVca2srDX8ItYSBXT3VarUwGAzU1s9fFXpfz6u9vZ2eF2nw5EJVny070Gq1cDgc9BrrzYs90CA7R+Taj4iI8Pvu1EDOjVz/7NRAlUrlF3mFL2AYBp2dnXTM1q9fD4ZhMH/+fOTn5+Py5cvYsmULdDod7r77bhQVFWH58uWIjY0N+rkOVoT5QnAQJtGDBGq1GlOmTEFZWRkN4mDfFOvWrUNHRwfKysro7xw4cADz589HS0sLpFIpMjIysHHjRjz55JP0NS+++CLKyspw9uzZ4L4hDqKhoQEff/wxPvroI1RXV8PpdEImk2HBggV46qmnMG7cOE5VPtiaYLVa7aJjDMaDm5BAUr1kp98RVwMujRfQk1AE2+mD3bSl1WphsViCWj3tLzx9xsF2riA7MeQciLSFCwtHT/CkYScV12AtQrylBpKQGS7B4XBg69ateOedd/Dll1/CYrFAIpFg1qxZ+P73v49ly5YNa4cUXxDmC8HD0OiKGOJgGAYPP/wwfvjDH2Lq1Km4fv16j9c0NzcjKyvL5XvsDHqpVOo1g55k1A9X/OlPf8LHH3+Ms2fPYsaMGfjOd76D5cuXIzExEWVlZSgpKcGcOXOQn5+PwsJCFBQUID8/P+QE0T39j1QPSVqiQqGASqXyawMUO4aaTQJTU1MHRfqdUChESkoKUlJSXJw+Tp8+7aIJ9Sc58ySVIDHbXJVKEPB4PMTExCAmJgZZWVkwm81UWnT58mWfm0JvBW+OGrfddlvApS0DBTvFNC8vj6ZMkhChQC00SWqgWq1Ge3s74uLioFKpMHr0aM5JmGw2Gw4fPozS0lJs3boVVqsVq1atwjPPPIN58+bhyy+/xNatW/H8889j3bp1mD9/PjZu3IgFCxaE+tQ5jzBfCC7CJDqE6GsG/e7du2EwGPD8888H6cyGF4RCIZ588kncfffdUCgULj/7wQ9+gO9///tobW1FeXk5iouL8eqrryI7OxurVq3C6tWrMXbs2JBXw9hpiaNGjaI2aFeuXKFpiWQ7vr96ZBJLTrSMxFYuLy8v5FvVA0FERAQlzezqYVVV1YCdPojTClvakpiYiIkTJ3JWx94XREZGIi0tDWlpaVRfy16EsJsf+3tduEdHk+rpyJEjObmr0Re4p0xaLBZ6XVy9enXAkqeuri5KnA0GA6RSKZKSkjB+/HjONTparVYcPHgQZWVl2Lp1KyIiIlBQUIB//etfuOuuu1zmpQULFmDBggX405/+hAsXLmDr1q0hn2NDjTBf4CbCJDqE6GsG/f79+3H06NEeVb6pU6fiO9/5Dv71r395zZcHbp1BT34+XLFhw4Zef87j8SCTyfDII4/gkUceQXt7O7Zu3Yri4mLMnz8fycnJKCgoQGFhISZPnhzyyZ4kr8XFxWHkyJHo7OyERqNBfX09qqurqb41MTHR69ZyV1cX3UInseRKpXJQVAJ9gXv1kDh9kMj2vmiC2bIHUgkkUduDlQT2BoFAAJVKBZVK5SItIjshbJmKt4UbqdK6N4ByLTraXxCLxXQRQnYodDodzp8/T2O1iX2epzEj8hq1Wg2NRgOj0Qi5XI60tLSQ69U9wWw2Y+/evSgvL8f27dsRFRWFwsJCbNq0CXPmzLnl4pTH4yE/Px/5+flBOmPuIswXuImwJnoQoL6+nkb5AkBjYyOWLFmCzZs3Y/r06UhLS6ONAmq1mk6+P//5z1FSUuLSKNDV1YUtW7bQY91xxx2YMGFCuFHAR3R2dmL79u0oLi7Gjh07IJPJsGrVKhQWFmLatGmcq9KaTCb6AGanJSqVSlol0+l0NMSDVMm4th0cTHhz+lAoFLDZbFTfTCzPyM+GIgnsC0jTGBkXtt0ce8xC4ajBVXiygextzMguiVKp5JxXtdFoxO7du1FeXo6dO3dCJpOhsLAQa9euxcyZMzk3Jw41hPlCcBEm0YMQ169f79Eo0N7ejry8PCxevBjPPvssKisr8d3vfhevv/66i2XNvHnz8Ic//AHLly/HJ598gpdeeilsWeMndHV1YdeuXSgpKcHWrVsRHR2NlStXorCwEDNnzuTkw66uro6GxABAbGwsUlJSkJycHHAbusGIrq4uXL9+3WXMYmJiqM46PGY9YTQaUV9fTzX0QPeYJScnIy0tjXP3BRfQ1dWF+vp6aDQaOmbR0dFITk5Geno658aso6MDO3fuRFlZGfbs2YOUlBQatz1t2rSQ784NZ4T5QmARJtGDEJ5uCsDVPF2hUGDDhg149tlnXX5306ZNeOGFF6h5+quvvho2Tw8AzGYz9u3bh+LiYlRUVCAiIoIS6jlz5oSMbLE1mS0tLVSTKZVKqY5Xr9cP2bREX8AOvtHr9RAKhXTM7HY7HTPS/ObvJrvBCE/x7MQ1hgTJsMeSjOdwJltEl69Wq6HVasEwDB0zYm3J7kkIpX0ecZnZtm0bKioqsHfvXmRnZ2P16tVYu3YtJk6cOKw/Sy4hzBcCizCJDiOMAMNms+HgwYMoLi5GWVkZbDYbVqxYgYKCAtx1110BdbQgW+uEOBMvYnZaoDvZ85aWmJiYOCT10J5AYqOJJvxWQRreSCNXbdgCAXf7wFstKkj4BhkzogkearHtvcH9umE3u3pqNPTkjsNOTQz0XKLX67F161aUlZXh4MGDGD16NIqKirB27VqMGTNmWMwNYYTBRphEhxFGEGG32/HFF19g8+bNKCsrQ2dnJ5YtW4aCggIsXLjQL9pjbz61RF/ZH90peciThLPBkJboC3rT8fZXE+4pEISQw1AGggQCxFGDvdjwJcjGPbadrS8PNDkMNkglnixSfU0N9ObTTpoT/RGkwjAM1Go1KioqUF5eji+++AITJ06kxHnUqFFDZg4IIwxfECbRYfQb169fx29/+1vs378fzc3NSElJwQMPPIBf/OIXLgSNvV2kVCqxYcMGPPPMMy7H2rRpE375y1/S7aJXXnll2GwXORwOHDt2jMaP63Q6LFmyBIWFhVi8eHG/QhHYiWmE7LK3yf1B3Ej8OWlw4vF4UCqVUKlUg7La6m2xcStHif6ATQ6HSiNdMCLV3Z1OYmNj6d8YjPKiYKQGutsqikQin6QyDMOgoaEB5eXlKC8vx7Fjx3D77bdTjXNWVtagG/9AIvw8HN4Ik+gw+o2dO3fi008/xX333YeRI0eisrISjz32GB588EH88Y9/BNDdaJKbm4uFCxfi+eefx/nz5/Hd734Xb7zxhkvjwty5c/Hyyy9jxYoV+M9//oNXXnllWDYuOJ1OfPXVV9i8eTNKS0tx8+ZNLFq0CAUFBbj77rs9yig6OjooCSS+ur1JDvx9vsTSTKPR0PhlshXP1Wor29s4FPpSb5ZuXHZA8bQQCGYMuDfPbeKtzFVCR/oP1Go1rdKrVCpapQ8kHA4HWlpa6KLa4XDQ3SipVNrDOYZhGFy/fp0S51OnTuGOO+5AUVERioqKkJaWxtlxDjXCz8PhjTCJDsMveO211/Duu+/i6tWrAEAtdJqbm+lD9rnnnkNZWZmLhY7RaMTWrVvpcWbMmIFJkyYNawsdp9OJc+fOobi4GCUlJbhy5Qrmz5+PlStXIiYmBvv378e+ffuwaNEiPPLII5QEhspSjWEYmpao0WhgtVpd5Auh1rYSMkMikAOVstdfeAsX6a8UIhBgV+nJIokLemVv6Y/EWznUizeipSepgfHx8fQzDdUiiSyCyE7Vxo0bwePxsHjxYkybNg1VVVUoKytDZWUl5s2bh6KiIqxevRpJSUlh4uwjws/D4YOh37kRRlDQ3t4OmUxG/3306FHMnTvXpUq1ZMkSvPLKK2htbYVUKsXRo0exceNGl+MsWbIEZWVlwTptToLP52PSpEmYNGkSnnnmGXzwwQf48MMPsWHDBkpmFi9ejJ/85CfIyckJ+YPOPS2xs7MTarUaV69eRVVV1YDSEn2BJ60oaabMy8sLeBWwr4iMjERGRgYyMjJcYq6vXbsWEqcPb82RY8eO5Yxcxz1lkizeLl68SCPogy2VcZe3kNTACRMmcELLzePxEB8fj/j4eGRnZ+OXv/wl3nrrLbz11lswmUyIjo7GnDlz8Pvf/x6LFy8O+aJ3KCD8PBw+CN8tYQwYly9fxltvvUW3rgCgubkZWVlZLq9TqVT0Z1KpFM3NzfR77Nc0NzcH/qQ5jn/+85/YtGkT9u3bRyPG33rrLSgUCpSWlqK0tBRTpkzBHXfcgcLCQqxatYoTlSN2zPHIkSMpwXBPS/R3sxix3CLEmUgOUlNTMXHiRE6Qmd4gEomo17TD4aBVw9OnTyMiIoJKZfxNZt21ukQqMXnyZM7b9PH5fEilUkilUuTm5tJr7caNG6iurqZVYOJC4y+wm1DZqYHp6emc1Lk7nU6cP38epaWlqKioQF1dHRYvXox3330Xd911F06cOIEtW7bgwQcfREREBJYvX47vf//7mDlzZqhPfVAi/DwcXgiT6DAonnvuObzyyiu9vqampsYlgrWhoQFLly7FPffcg8ceeyzQpzhscOXKFSxYsABvvPEGcnNzXX72/PPP47nnnkNdXR2Ki4tRXFyMn/3sZ5g+fTpWrVqFgoICpKenc4IARUdHIysrC1lZWTCZTNBoNGhqakJtbS3i4+OpRtQXKYqnrX2FQoFRo0ZxYmvfV0RERLjEaROnj8rKSjidTipf8NXpw2w2U+LMdtQYzPHkPB4PMTExiImJQXZ2Nn2PWq0Wly5dQlRUFCXUvtg0snXharWaSpaysrI4IVlyB+mxKCsrQ3l5OTQaDZYuXYoXX3wRy5cvR1xcHH1tRkYG1q5dC7vdjqNHj6KioiJM3BB+HobRN3Drzg8jpHjqqafw8MMP9/qa7Oxs+v+NjY246667cMcdd+Cvf/2ry+uSkpKgVqtdvkf+nZSU1OtryM+HM373u9/1+nMej4cRI0bgqaeewsaNG9HQ0ICSkhKUlJTghRdewKRJk1BYWIiCggLOdNNLJBJkZmYiMzMTFouFVvIuXrxI3Rdu1XTFlj2QyqlSqcTEiRMRHx/PCcmBP8Hn8yGXyyGXy5Gfn0+J3OXLl1FZWdln+YI3R40xY8ZwtqFxIIiMjER6ejrS09Nhs9noYuvUqVO0sk+aSb1dM2R3Q61WuzTP5ubmcnKR5nA4cPz4cZSVlaGiogLt7e1Yvnw5Xn31Vdx99923lDEJBALMmTMHc+bMCdIZcxvh52EYfUG4sTAMn9DQ0IC77roLU6ZMwb///e8eDxTSSKFWq6kO9uc//zlKSkpcGim6urqwZcsW+nt33HEHJkyYEG6k8BHE17WsrAzFxcU4dOgQxowZg4KCAhQWFiI3N5cThJoN4r5AiDFJS0xMTERMTAxt1tJoNNTujMgbBmvldKAgum9CjDs7OykxTkxMhFgsdvFdNplMQXXU4CrcGybtdjv1VSaVfWLjyE4NJMmBXFuk2e12HD58GKWlpdi6dSvMZjNWrlyJNWvWYNGiRUNygcRFhJ+HwxdhEh1Gv9HQ0IA777wTmZmZ+Ne//uUyYZBVc3t7O/Ly8rB48WI8++yzqKysxHe/+128/vrrLpY+8+bNwx/+8AcsX74cn3zyCV566aWwpY+fwDAMWlpaUFZWhpKSEuzduxcjR45EQUEBVq9ejdGjR3OSFGi1WjQ0NKC1tRU8Hg8MwyAuLg4pKSkhdSHhMohUprGxEZ2dneDxeODxeJDJZEhJSRk2CYD9AcMwMBgMaG5uhlqthtlsBo/Ho82LycnJkEqlnFukWa1WfPbZZygtLcW2bdvAMAwKCwuxZs0azJ8/f9gukEKF8PNweCNMosPoNz788EM88sgjHn/GvpzY5vIKhQIbNmzAs88+6/L6TZs24YUXXqDm8q+++mrYXD4AIDZ0W7ZsQXFxMXbv3o20tDRaoZ44cWJICTUJciE6VofDAZlMhsjISFgsFuj1ehogo1KpOO0PHEywHTV0Oh14PB7kcjlEIhGMRiNaWlqGZWz7reApNZBUmg0GA9rb26nvOtkRCeW4mc1m7N+/H+Xl5di2bRvEYjEKCwtxzz33YO7cueEFUggRfh4Ob4RJdBhhDEMYDAZs27YNJSUl2LFjBxQKBVatWoXCwkJMmzYtKITaW8qiJxeKoZaWOBAQRw0ybsRRw1NsNHH6IGQxkE4fXAcZN7VaTf3C2bIh9rgR7T0ZYxLNTQJegjFuXV1d2LNnD8rKyrBz507Ex8ejsLAQa9euxaxZszinyQ4jjOGIMIkOI4xhjq6uLuzcuRPFxcXYtm0bYmNjsXLlShQWFmLmzJl+fVi7O0NER0dTUtfXlEWGYahjxWBKSxwIvDlq9EcXznb60Gg01OljKI8bu4G1tbW1zw2sbLDT/4hOmuio/S2TMRgM2LlzJ8rLy7F7926oVCoatz19+vRhtegJI4zBgDCJDmPI4i9/+Qtee+01NDc3Y+LEiXjrrbdw++23h/q0OA2z2Yw9e/agpKQEFRUVEAqFWLlyJVavXo1Zs2b1OyyFeOoSAkga4Ig7wkD9e71Zj3ElLXEgII2D7MAYf6XfEXkP+VzMZnPQQ3ECBaIPJ42ogR43mUxGr+f++pGT423fvh3l5eXYu3cvMjMzsXr1aqxduxaTJ08OE+c+IjzfhxEKhEl0GEMSn376KdatW4f33nsP06dPxxtvvIFNmzbhwoULSExMDPXpDQrYbDYcOHAAmzdvRnl5ORwOB1asWIHCwkLceeedXhuYnE4nDT5hx4ATB4RANT6xQzDUajV1pFCpVIOCGJIFARm3YDlqeHL6kEqltEo9GBo5yfmr1Wp6/mynkkD/XbLQiYuLc3GO8QTS8Lt161aUl5fjwIEDyM3NRVFREdauXYtx48aFdev9RHi+DyNUCJPoMIYkpk+fjmnTpuHtt98G0E3s0tPTsWHDBjz33HMhPrvBB7vdjs8//xybNm1CeXk5urq6sGzZMhQUFGDhwoWwWCwoKyvDli1bcP/990Mul7t48YZCKuApjjkYxKo/IAsOQsSI5RqRWISiks62FGxra/NJAhFocHHBZLFYqOSjpaUFJ0+eRH19PQoLC3HXXXdBr9djy5YtKCsrw+eff44JEyagqKgIa9asQV5eXpg4DwDh+T6MUCFMosMYcrBarYiKisLmzZtRWFhIv//QQw+hra0N5eXloTu5IQCHw4EjR47g//7v/1BSUoL29nY4nU7IZDIsXboUTz31FOf8qAO5xd9feHLUINVLrnkRsz28Q+30QSr1JPyEy9Idu92OXbt24b333sPhw4fhcDjgcDgwatQorFu3Dt/+9reRnZ3NqXtksCI834cRSnBn1gkjDD9Bp9PB4XBApVK5fF+lUlFj+zB8Q21tLcrLy1FeXo4TJ07g9ttvx+TJk9HZ2YkjR46gtLQUnZ2dKCwsxNKlS13ihUMJb2mJly5dCkqllTiREOJMHDUmTZrUw1GDSxCJREhNTUVqairsdjsl/yT5j0hNAuX04a2JlKupgQzDoL6+nsZtnzx5EjNmzMDYsWPhcDiwb98+vPTSS/jqq69QWFiI5cuXQy6Xh/q0BzXC830YoUSYRIfRbzidTk5Vy8IIDvR6PaZMmYK77roLjzzyCEpKSlwiaZ1OJ86ePYvNmzfjlVdewQ9/+EMsXLgQq1atwvLlyznj7SwWi10ioYnt2dWrVyGRSKBSqfziDezJUUOpVCI7OzvkvsO+QCAQQKVSQaVSuTh9VFZW+tXpw5ud4dixYzlpy8cwDK5cuYLy8nKUlZXh3LlzmDNnDh588EGUlJQgOTmZftYMw+D8+fMoLy/Hm2++iQ8++AAHDx4M7RsII4wwfEZYzhFGn2Gz2TjfnAWEt/cCCbPZ3KdGM4ZhUFVVhc2bN6O0tBQ1NTW48847UVhYiBUrVkAul3OORHoK4CCEuq/ShUA6anAVxGGCkF6LxdJvpw+2xEWr1UIgENBx48riiw2GYVBTU0N3ZWprazF//nwUFRVh9erVUCgUfTrnvt5PYXhHeL4PI5QIk+gw+ox///vf+Nvf/ob3338f+fn5PX7OpQr19OnTcfvtt+Ott94C0H1uGRkZeOKJJ8KNJkEGwzC4dOkSNm/ejJKSEpw9exazZ89GQUEBVq1aBZVKxTmS5E7qiHSBhJSwK4sGg4ESyK6uLhcCOdwimL05fZDxYBNGEvHOlrj0d9ESTDidTlRWVqK0tBQVFRW4du0aFi1ahDVr1mDVqlWcjAgfLuDyfN/V1YUnnngCP/rRjzB16tSQnksY/keYRIfRJzAMAx6Ph8TERPzlL3/BPffcA4fDgYiICPozLuHTTz/FQw89hPfffx+333473njjDfz3v/9FbW1tD+1cGMEDwzC4du0aiouLUVpaihMnTmDGjBkoKChAQUEBUlNTOXctEemCWq2GVquF0+mk1VGDwQCbzcbZBrdQw93pIzo6GlFRUbDZbPTf3lIDuQCn04nTp09T4tzU1ISlS5eiqKgIK1asQHx8fKhPMQxwf75/6qmncPnyZTzwwAO45557OFVwCmNgCJPoMPoMh8OBxx57DDabDR999BElz++88w7+/Oc/4z//+Q+mTJkS6tOkePvtt6n5/qRJk/Dmm29i+vTpoT6tML4GwzC4efMmSkpKUFJSgsOHD2PKlCmUUI8YMYIzpMq9Mu10OunPEhMToVKpONnoxgWQRs7m5ma0tbVBIBDA4XAgMjKSk5Vnh8OBEydOUMvGlpYWLFu2DEVFRVi2bBliYmJCfYpheACX5nvybCT/NRqNePvtt/HWW2+hsrISCQkJITmvMPyPMIkOo08gK+f3338ff/rTn3DhwgWo1Wq8/vrrePfdd/Hiiy/iRz/6UVjfF4ZPYBgGzc3NKC0tRUlJCQ4dOoRx48ahsLAQBQUFGDVqVNBJFttRQ6/XQyQS0aopqUCy0xItFgsUCgVUKtWwr0h7shQkHs4SicTF6UOn07nIZRISEoJepbPb7Thy5Aglzl1dXVixYgXWrFmDxYsXDzhZM4zhgVtVmEeNGoWVK1fiF7/4RdiVZYggTKLD6BeuXr2KwsJCPPjggzh06BB0Oh1+8YtfYOXKlaE+tTCGCBiGgV6vR3l5OTZv3oz9+/cjNzcXq1atwurVqzF69OiAEWq2/V1ra2uf5Qbs8A+ijQ5G2iCX4J4ayH7/vYXbsN04tFotGIZxCZwJVHXfZrPhs88+o8TZ6XSioKAARUVFWLhwIWcCecLgLpxOJxiG6XGNnj59GkKhEPn5+RAIBLBarRCJRPjrX/+KDz/8ED/96U9xzz33hOisw/AnwiQ6jH5j8uTJOHv2LL73ve/hxRdfRGpqKgAMSBs9mDViL7/8MkpKSlBbWwuJRII77rgDr7zyCvLy8uhrzGYznnrqKXzyySewWCxYsmQJ3nnnHRe9Xn19PdavX48DBw4gJiYGDz30EF5++eVhXdFkGAZtbW2oqKhASUkJdu/ejYyMDBQUFGD16tUYP378gK8bo9FIdbv+ctQYDGmJAwVZOJDwE5PJ1G9XDk/HdHf6IJHx/kgitFgsOHDgAMrKyrBt2zYIhUIUFhZi7dq1mDdv3qBwHwoUwvOYZ3R2duLQoUNYvnw5AFApl6d5p6amBvfffz8uXLiAnJwcrFq1Cr///e9p/1BjYyMeffRRZGRk4P333w/q+wgjMAiT6DD6BEKQGxoa8LOf/QxGo7FX66BbEWq2VowrUcK+YunSpfj2t7+NadOmwW634+c//zkqKytRXV1N39v69euxbds2fPjhh4iPj8cTTzwBPp+Pw4cPA+jWYU6aNAlJSUl47bXX0NTUhHXr1uGxxx7DSy+9FMq3xyl0dHRg69atKCkpwc6dO5GYmIiCggIUFhZiypQpfSLU3hw1iM+xv6vGpLlOrVaHPC1xoHAnuYFMDeyP00dv6Orqwt69e1FeXo4dO3YgNjYWhYWFWLNmDebMmRPWsX+N8DzmGS+//DKuXLmCd999t8ci6/Tp03jppZdgt9tx//33Q6fTwel04p577sFHH32En/3sZ/jyyy9deoU2btyI2tpavP/++0hPTw/22wnDzwiT6DD6BEJ6d+zYgeeeew5PPfUU1q1bB7vd3uuD0+FwAECPBxWpPL/77rt44YUX8PTTT2Pjxo09qnSDsUKt1WqRmJiIQ4cOYe7cuWhvb4dSqcR//vMfrF27FkB38t/o0aNx9OhRzJgxAzt27MCKFSvQ2NhIqzrvvfcenn32WWi12mEhB+gvjEYjduzYgZKSEmzbtg3x8fFYtWoVCgsLMX36dJdrzmq14urVqwC6P59QOWpYLBaXGO2YmBjaXMfVxaTT6URbW1uP1ECVSgWZTBY0Euqus46Li4NSqYTD4cDIkSNdXtvZ2Yldu3ahrKwMu3fvhlKppBXnGTNmDLo5JRQY7vMYefasW7cOCQkJePPNN+FwOGA0GvHOO++Ax+Ph/Pnz9Pr/6KOPMHPmTJSWliIxMRFAtwZ6xYoV+MMf/kCfbe+//z4+/PBD/PWvf8X48eND9v7C8A8G5/5KGEEHqSqfP38eDocDS5YsAeBKjgnRPn36NDQaDZYsWeL1AUseYufOnYPBYMD777+PH/3oR3SiMZlMiIiIgEgk4qSFXm9ob28HAMhkMgDAV199BZvNhoULF9LX5OfnIyMjgz58jh49ivHjx7tsiy5ZsgTr169HVVUVJk+eHNw3MQgQHR2NtWvXYu3atTCZTNizZw+Ki4tx7733IjIyEkuXLoVSqURVVRU+//xzTJgwAa+//jpGjx4NmUwWEiIlFouRlpaGtLQ0mpao0WhoWiJx+gi13RvRKRNbP2JvGcrUQHZ0u9VqhVarxY0bN7BixQoolUrMmzcPKSkpqKqqwr59+5CWloaioiI899xzfd6lCOMbDOV5rC/FGT6fj66uLkRHR1NHloiICMTFxVHZyzPPPIMXXngBQPeio6WlBVarlR7jvvvuw6effoqnn36ayh6nTZuGp59+2iXtNYzBizCJDqPPqK+vx4EDBzBq1CioVKoe5Jb8v0ajwTPPPINvf/vbGDlyJDZv3ozMzEz6OvJ7586dQ1NTE26//XbcuHGDVq0BYPv27bjnnnug1+shlUqD9yYHCKfTiSeffBKzZs3CuHHjAADNzc0QiUQ9bI1UKhWam5vpa9z9TMm/yWvC8A6JRIJVq1Zh3rx5WLBgAf72t7/ho48+gtPphEgkwuzZs7F+/XqMHDmSM9UwoVCIlJQUpKSkuKQlfvnllz2cQIJBqImNn1qthk6no6mBEydO5FxqoEgkQkpKCiQSCX73u9/hgw8+wL///W/weDzExMSgsLAQjz76KObNmzdotbihxFCfxwiBZhgGTqcTPB7PI6mOiopCZWUlVq5cSV/H4/Fwzz334JVXXnEJT7nvvvvw+9//HleuXEFaWhqA7tTE3/3ud6ipqaEkOiUlBTExMWhtbYVSqQzCuw0jkAgvzcPoM8RiMXJzc3s0WLhjyZIlOHnyJHbt2oU777yzx6RKFEQnTpyARqNBYWEhMjMzsWPHDgDdVehDhw5h1KhRkEqlLuTa29/kCh5//HFUVlbik08+CfWpDCts2bIFS5YsgVKpxP/+7/9iwYIFOHnyJMxmM7Zu3YqRI0fi8ccfR3Z2Nn7wgx9g+/btMJvNoT5tCoFAgKSkJEyYMAHz5s1DXl4erFYrTp8+jc8//xy1tbVoaWnx+/Vvt9vR1NSEs2fP4uDBg7h06RIiIyNx2223Yfbs2cjLy+NUEh/DMNBoNPjHP/6BgoICZGdn46OPPsK3vvUtVFVVoaurC59++iliY2Pxne98ByqVCg8//DAuXboU6lMfVBjq89j169cxYcIEXLx4ERERER4JNHnuyGQynDp1Cnw+n95/s2bNQkpKCi5fvkxfv2rVKnR1deH06dP0GZeTk4OsrCxs27aNzjcnT57E5MmTOSvfCqN/CC/Rw+gzVCoV/vznP9N/96aFFAqFuP3223H77bf3+BmZsL766itER0dj/fr1+Pvf/w6TyQQAUKvV2LZtGx555BGvv0u6nbmEJ554Alu3bsVnn31GKxEAkJSUBKvVira2Npcqjlqtplt6SUlJOHHihMvx1Go1/VkYvcNsNmPJkiV49913kZ2d7fKzBQsWYMGCBXj77bdx+PBhbN68GRs3bkR7ezuWLl2KwsJCLFq0iDNewBEREdSNgp2WeP78eTAMQyvUvkpSiBSC+F8TG7+cnBxER0dzhjATMAyDpqYmVFRUoKysDEePHsVtt92G1atX47333kNOTo7LOS9duhRLly7Fu+++i2PHjqG0tJRzcwWXMRTnMVJx5vP54PF4GDFiBBoaGrB582bIZDKUlJRg48aNuPvuu+lOKblm5s+fj1dffRXAN8+fGTNmIDExEefPn0dXVxeioqIQHx+P2267DSdOnEBzczOSk5MBAHfffTdOnz4Nk8mEyMhIREREgMfj0cp0GIMb4cbCMPoMhmHAMMyAtIVkgqqtrcUTTzyBiRMn4n//93/xwAMPQCQS4YMPPsDOnTuxbNky1NXV0e7lixcvYv/+/UhLS8OKFSv89Zb8AoZhsGHDBpSWluLgwYMYNWqUy89JQ87/+3//D2vWrAEAXLhwAfn5+T0acpqammhTyl//+lf87Gc/g0ajGTK2aFyB0+nE8ePHafy4Wq3G4sWLUVBQ8P/bu++oqM78DeAPOIKoFAEdREOxYhREBQ2WGBVjF4XE6KK46k+NxBiVFKLBjScKa0t21bUlWc3aY2j2hqhLYBFbiAViBGIFlCKgIGW+vz/cuWEUzU4iRXg+53CO3Ma94507Dy/v+30xePBgmJqaVvcpPkFb7k87uK60tFSZ3OW36ikXFRUpwTknJwdmZmZKGK8pvzyUJyK4fv06IiIisHv3bmV6eG9vb3h7e8Pe3r7Ghf0XXW18jj3tM+vcuXPo1q0bjI2NYW9vDz8/P0yfPr3CCVDOnj0Ld3d3xMbGokePHkoYnzdvHuLi4rB8+XKl+saGDRsQGBiI7777Dv379wfwaDBx+etOS0tDUVERnJycKvHKqaowRFOV0j6ANm3ahHXr1iEgIABvvvkmAgMDcfLkScTGxmLmzJk4cOAArl69iqKiIuzZswdTpkxB586dkZaWBkNDQ6xZs0bpVlK+b7a2xaEqW578/f2xbds2REZG6tRUNTc3V0qYzZgxA/v378emTZtgZmaGd999FwAQGxsL4NfSULa2tli6dCnS09MxYcIE/N///d8LWxrqRaHRaHDu3Dl89913CAsLw7Vr1+Dp6QkvLy8MHTq0yvok60NElNkSMzMzUVRUpFQbadq0KVQqFQoLC5Uaznl5ebCwsFCCc02cWVREkJKSgsjISEREROCHH35A7969leBsa2tb4/4fapPa/By7c+cOtmzZgsuXL2PatGlo2bIlPvzwQ2zfvh1Xr16FnZ3dU/fVaDTo27cv7O3t8dVXXynvnRMnTmDu3LmYPHky3nnnHQBATk4ONmzYgKlTpyoDMrVetAHy9D8Somowa9YsGThwoGRkZIiIyDfffCPdu3eXmJgY6dixo3z00UciIrJjxw5xdXUVf39/uX//vpSUlMi7774rPXv2lAcPHijHO3r0qGg0mid+ztdffy137typ1GsBUOHXxo0blW0KCwvF399fmjRpIg0bNpTRo0fL7du3dY6TlpYmQ4YMERMTE7G2tpaAgAApKSmp1HMnXRqNRhITE2XBggXSqVMnMTIykkGDBsmaNWvk2rVrUlBQIPfv369RXwUFBZKRkSGJiYly+PBhiYiIkD179khERIScOHFCkpOTJScnp9rP82nnfubMGVmwYIG4uLhI/fr1ZeDAgbJ27Vq5fft2he9pqhw1/Tmm0WikrKyswuUlJSXKvVL+niktLZUPP/xQLC0txc3NTQIDAyU8PFyKi4tFREStVssXX3zxzJ8pInLgwAFxcHCQ0NBQZV1xcbG4u7vLp59+KqWlpX/4+ujFxJZoqnJJSUkYP3483N3dsXbtWgCPKn+0atUKq1atwqxZs3DhwgW0b99emRp1xYoVSmvBvn37MGfOHHz55Zfo27cvjh07hoEDB+KLL77A3bt30aZNG7zxxhswMDBAo0aNcPToUfTr1w8lJSXK1Kt5eXmYPn16jfyzPdUMIoLk5GSEhoYiLCwMiYmJ6NOnD0aNGoURI0agWbNm1d6yJI9NHFNYWAgLCwvUr18fDx48+N0TlFQmjUaDS5cuITw8HLt378bVq1fh6ekJb29veHl5wdLSstpfV6oZ5BldCCsqU5eXlwczMzPl+8TEREycOBGffPKJ0gWl/HiayZMn48qVK4iOjv7NKi6BgYGIiopCWFiY0s0wKyvriS4gwhbnOoUDC6nKNWvWDOPHj9fpcycicHFxwYoVK9CqVSu0b98eOTk5SE1NhZeXlzJIA3g0wDErK0sZKX3o0CGICA4ePIj27dtj165d2LlzJ06dOoWmTZuiTZs2MDAwgJGREYqLixEdHY0bN27A39+/yq+dXhwGBgZwcnLC/PnzMW/ePKSkpCA0NBTbtm3D3Llz0bNnT4wcORJeXl5V2tVAnjJrYOvWrWFlZaUTBoqKipCZmYmMjAwkJycrfaHVanWVzpao0Whw/vx5REREIDIyEjdv3sSgQYMQGBiIESNGPFE2jQiAUlIOAMLCwrBhwwYUFRXh+PHjSoC+efMm1q9fj8jISBgbG2P06NEYM2YMWrdujYSEBGg0GjRo0ADXr1/HnTt34OjoiIYNG8LY2BhvvfUWvLy8cOPGjaf2s9eG4oULFyI1NRUBAQFYtGgR2rVrpwTo8sGZAbpuYUs0VTtti8LgwYNx+PBhLFy4EEFBQbh16xbGjx+Pvn374i9/+QuARw+rjRs3YubMmXjw4AEAoGPHjnB0dMSaNWtgZ2enzGzWq1cvPHz4EFlZWejatSt27dqF7OxsvP/+++jfvz+CgoJQUlICQ0NDjt6n/5mI4Nq1awgLC0N4eDhiY2Ph5uYGLy8veHl5Vcqgt8dnDdRoNMo05f/rrIHFxcXK/trZErWBujLKbZWVlSEhIQERERHYs2cP7t69iyFDhsDHxwdDhw7lX4HoN+3evRt///vfcfLkSajVavj4+ODPf/6zMmlLcnIygoKCkJ2dDV9fX9y/fx/btm2Dubk5Dhw4gLS0NISEhODLL79Ely5doFarkZCQAE9PT2zYsAGmpqawsrLC7NmzERQUhLy8POTn56NFixY6Ld3akJyeno6oqCio1WqdSWeoDqvyDiREIhX2dfzpp58kICBArl+/riwbPXq0DBgwQOlTFx8fL3379hUfHx8RETl27Ji0bNlStm/frnPcW7duiUqlkuPHj8uNGzdkw4YNkpOTI1999ZW89tprEhYWVtmXWOOEhIQIAHnvvfeUZdo+jpaWltKoUSPx9vaW9PR0nf1++eUXGTp0qJiYmEjTpk3l/fffZ1/t/9JoNHLz5k1ZvXq19OvXT1QqlXTt2lUWLlwo58+f/0N9qPPz8yUtLU1OnTol+/btk/3798vp06fl2rVrkp+f/4f6Iufm5sqVK1fk+++/l927d8uRI0fkhx9+kNu3b/+hc753754cPHhQZsyYIS1atBBzc3Px9fWV0NBQuX//fnX/d9VIfF9WbNu2bVK/fn0ZOXKkpKamVrhNamqqbNq0SWfZ8uXLxdDQUC5fviwiIjk5OXLp0iU5deqUREVFyY4dO6R58+ayatUqEREJDAyU1q1bS5s2bcTExOSZfaSJHsfuHFQtKmqpa9u2LZYvX66zbN68efDz84OnpydeffVVpUVh3rx5AIDQ0FC0atVKaZmQ/7YYhIeHw8rKCp06dYKVlRWmTp2KsrIyxMTE4JdffsHBgwcxf/58qFQqLF++HK+//vpTz1XbIlFYWAgjI6MXstU6ISEB69evh4uLi87yOXPmYN++fdi1axfMzc0xc+ZMeHt74/vvvwfwqDVx2LBhsLGxQWxsLG7fvg0/Pz/Ur1+fVUPw6D62tbXFO++8A39/f9y9exfh4eEICwvDokWL4OTkpLRQd+jQ4TdbqMvKypSZC8vPGujq6vpcq4Q8PluidqbC06dP6z1bYklJCWJiYhAeHo69e/eipKQEI0eOxLp16+Dp6Vkj+mHXVHxfPkn7DH/55ZfRt29fODs7w8HBQWebwsJCmJiYwMHBAQ4ODrh06RKWLFmCvXv3KtPSh4aGYv78+bCwsNDpLnThwgVYWloq3ZmCgoLQp08fpKenY+TIkbC2tq7Cq6UXXnWneCItjUZTYQt1SkqKBAYGyvDhw2XZsmVKRQ8Rkc6dO0tgYKDSyqXdv0+fPuLn56ezLDExUTp37izdunWTvXv3yvXr12Xq1KnSs2dPKSoqeuo5ab399tvi6+ur01L+IsjPz5e2bdvKkSNHpG/fvkqLV25urtSvX1927dqlbHv58mUBIHFxcSIisn//fjE0NNRpBVu7dq2YmZnJw4cPq/Q6XiQajUaysrJk48aNMnz4cDE2NhYnJyf58MMPJS4uTqclOS0tTb7++muJjY2V3bt3y+HDh59Lq/Dv+crLy1Nav/fu3SsHDhyQY8eOyY4dO3QqfGRnZ0tYWJhMnDhRrKyspFmzZjJt2jQ5dOiQUvmAno3vy2e7f/++zJo1S/r06SMiIpmZmbJixQpxdXWVkSNHSmZmpoiIZGVlibe3t4waNUqio6OlrKxMpk+fLm5ublJUVCR5eXmyfv16iYiIkE8++UQ6deokPj4+UlhYWOHPragCCNHTMETTC6V8qI2NjRWVSiVbt27V2SYrK0uMjY1l//79OvusWbNGXF1d5eDBg8q2W7ZsEXt7ezl16tQzf+6CBQukW7dukpSU9Lwupcr4+fnJ7NmzRUR0PqyjoqIEgOTk5Ohsb2dnJ59//rmIiAQFBUnnzp111qekpAgAOXv2bGWfeq2Rm5srW7ZskdGjR0vDhg3F3t5e+vXrJ506dRKVSiVt2rSRM2fOSEZGRo0po5efny/Xrl2Tr776Spo0aSKmpqbSvXt3efXVV8XMzExsbW3F399foqOja1U3gqpSm9+XT2sQ0demTZvE3t5e7O3txdzcXF555RUJCQnR6d4RGhoqxsbGSveN/Px8ef3118XU1FQSExNFRGT+/Pni5uYm/fv3l3/+858V/qLBcor0e7A7B70Qyk/ZquXi4oKdO3eia9euAIDS0lKoVCqcO3cOxcXFyoQBBgYG0Gg0OHPmDGxtbdGjRw/lGAUFBTqVP6SC8kS7du3C5s2bsWbNGrRv3/6JyV20P6Mm2rFjB86ePYuEhIQn1qWnp8PIyOiJyghqtRrp6enKNmq1+on12nX0vzE3N8drr72GnJwc3L17F7GxscjPz0d+fj6sra0xePBg5OTkoG3btjXmXjI0NESDBg1gbGyM/v37Y9++fbh48SIMDQ2VCSgGDBgAd3f33ywPRrpq+/tSew8XFRX9ru482mds586dYWdnB0NDQ+zZsweNGjV6YrBf8+bNUVxcjFu3bqFVq1Y4evQomjVrhoKCAuzfvx/Ozs4ICAjAwoULdbriPf6srynvO3qx/P75m4mqUEV1Qhs1agRvb2+lv5z2g9zS0hKurq5YtWoVMjIyAAAXL15EamoqOnXqpHw4PXz4EImJiTAxMUHnzp0B4IlwnJKSgs8++wyjRo3C4MGDodFoYGBggJycHGV77T5lZWWVc/G/0/Xr1/Hee+9h69at7Jdajc6ePQsPDw84ODggNDQUY8aMQVpaGrKyspCbm4u1a9ciNzcXb7zxBpycnDB37lycPHkSpaWl1XK+eXl52LlzJ8aNGwcHBwcsXLgQrVq1wokTJ5CXl4d79+7hxIkTcHBwwMcff4ymTZvCx8cHxcXF1XK+L5ra9r7UPivlsUJfI0eOxKeffqqUIq1ov9LS0grXa5+prVu3houLC8rKymBqaqr8Ald+Gw8PDwwbNgzTpk2Dra0t3n77bUyaNAnJycn46KOPAABNmjRBvXr1oNFoanzDB71YGKKp1nF1dcUnn3yC48ePo3v37krLX15eHvr166dsl5SUhOTkZHTr1g1GRkY6D3PtA/bQoUO4e/cuPvjgAwC/BmVPT0/MmTMH//73v3H69GkA0GnlKCsre+qHR1U5c+YMMjMz0bVrV6hUKqhUKpw4cQIrV66ESqWCWq1GcXExcnNzdfbLyMiAjY0NAMDGxkb5RaT8eu06+m02NjaYMmUKbt68iejoaMycORMtW7YEADRs2BCjRo3C5s2bkZ6ejg0bNqCkpATjx49HmzZt8O677yIqKgolJSWVdn4igpycHGzevBlvvvkmHBwcsGzZMjg7OyMmJgbJyclYunQpunfvrvw1qFu3bggODkZSUhISEhIwcOBAGBkZVdo51ia17X2pbVQo3wBx69Yt/Oc//4GnpycMDQ2fCNja/VQqFQwNDZV6548zNTVF165dcefOHZw6dQrArw0qx48fR0REBABg48aNWL16NbZs2YL09HT0799fZx4Crcf/mkn0h1VHHxKiqqIdPLJq1SoZNGiQZGVlKes2btwo7u7ucujQIRF5ckDJ7du35U9/+pOMGDFCZ31ZWZmYmJhIixYtZPLkydKiRQtp166dXLx48ZnnkpmZKcHBwRITE/Pcru9Z8vLy5Mcff9T5cnNzk/Hjx8uPP/6oDGD67rvvlH2SkpIqHMBUfjDn+vXrxczM7KmDMemPKy4uliNHjsj06dNFrVaLpaWlTJgwQUJDQyU7O/u5TLedlpYmq1evFk9PT6lfv764uLjIp59+KhcuXGD/0EpU296XQUFB8tJLL8mqVauUQaWrV6+Wdu3aSWFh4VMH6t27d08WLVokzs7OYmBg8MS4FO09mJCQIK+99posWLBAEhMTZcKECdK0aVMxMDAQf3//Co/NwYFUVRiiqVbSaDRPPEhLS0uVfxcXF4ufn584OzvLgwcPKjxGcnKyuLi4KPVEtYF8x44dYmBgIEuWLJGCggK5ceOGuLu7y9y5c+Xo0aPi7e0tY8eOlYSEBOVY2oFXw4cPl+DgYBGpngd9+QFMIo8qjtjZ2cmxY8fk9OnT4uHhIR4eHsr60tJS6dSpk7z++uty/vx5OXjwoDRt2lQ+/vjjKj/3uqq0tFSio6Nl5syZ0rJlSzE3N5exY8fK9u3b5c6dO3oF559//lk+//xz6du3r6hUKnFzc5Pg4GBJTk5mcK5GL/L7Mjc3V/7xj3+InZ2dTJgwQUpLS+Xtt98WLy+vZ+63b98+GTt2rKxcuVKuXr36zOOPGzdODAwMpHHjxvLGG2/I4cOHK9yW9zBVNYZoqhMqCqxxcXFKof6K1l+7dk2MjIyUihzaEd0DBw6UYcOGKaPnNRqN+Pn5iYmJibzzzjuyZ88e8fLyEnd3d8nNzdU55sSJE2Xx4sXV9rB//MNaO6lDkyZNpGHDhjJ69Gi5ffu2zj5paWkyZMgQMTExEWtrawkICGA1hmpSVlYm33//vcyZM0ccHR2lcePG4u3tLf/6178kIyOjwuCclJQkS5YskV69ekm9evXEw8NDli1bJikpKQwdNURteF/GxsZKixYtZNiwYWJiYiKRkZEi8vTGgvKNGr8lLi6uwqoj+hyDqDJw2m+ix8h/R22fOnUKw4cPR3JyMiwsLJS+dEZGRlizZg0mTZqEevXqQUTQoUMHDBgwACEhITAzM0NcXBzeeusthISEwNfXVznuwoULcfr0aezdu7c6L5FqAW3FmdDQUISFheHGjRvw9PSEl5cXOnbsiKioKERGRuLs2bPo1asXvL294e3tjZYtW7JfKD1X2upJV69exfz58/Htt99i9erV8Pf311n/PJSVlbFvM9UYrEtEdZZUUM4O0C3P5ObmhuvXr6NJkyYAgPDwcDRs2BCvvPKKMpDwwoULuHLlCjZv3gwzMzMAgLW1NXJzc9GiRQsAQHFxMYyMjHDhwgVlm+f5wUJ1j6GhIdzd3eHu7o7g4GBcuHABu3btQnBwMFJSUtC/f39MmjQJkZGRsLGxYeigSqN9jjk6OsLCwgKWlpYICQnB9evXERIS8lyfcy/ijLFUe/ETnOqs3woVvXv3RmJiIoqKipRly5Ytg5ubG1566SVlWWhoKNq0aYOXX35ZWRYfH4+SkhL07t0bwKNploFHI/OdnZ0BVFy2r664efMmxo8fDysrK5iYmMDZ2VmpcgI8+gVnwYIFaN68OUxMTODp6YkrV67oHCM7Oxu+vr4wMzODhYUFpkyZgoKCgqq+lBrB0NAQLi4u+Oyzz5CcnIykpCQcPXoUM2bMQPPmzetsgOZ9VrWKioqwc+dOhIWFISQkBOvXr8fkyZORmppa3adGVCnq7qc40W8oLCzEuHHjlFZo4FFN0okTJ8LU1FRZFhYWhtGjR6NRo0YAHn2QhIeH49VXX4VKpUJJSQkMDAyQlJSEBw8ewMnJqcqvpSbJyclBr169UL9+fRw4cACXLl3CihUrdF7npUuXYuXKlVi3bh3i4+PRqFEjDBo0SOcXGl9fX1y8eBFHjhzB3r17cfLkSUybNq06LqlGUalUaN++fZ0Nzlq8z6reiRMnYG1tDSsrK4wfPx67du1CSkoKhg4dim3btgFAtZf+JHquqq87NlHNV1RUJHfv3n3q+p9//lkMDAwkOjpaWZaWlibW1tayefNmERGl7NP8+fPF1dVVmYq2rvroo4+kd+/eT12v0WjExsZGli1bpizLzc0VY2Nj2b59u4iIXLp0SQDoVEA5cOCAGBgYyM2bNyvv5OmFwfus6mgHqM6bN09eeeUVEfl1QOGdO3dk5syZ8s0331Tb+RFVFrZEEz2DsbExrKyslO/lsXG4rVu3RlJSEnr27Kksi46ORlZWFkaNGgXgUVeOgoICrF+/HmPGjFGmI6+rdu/eDTc3N7z55pto1qwZunTpgi+//FJZn5qaivT0dHh6eirLzM3N0aNHD8TFxQEA4uLiYGFhATc3N2Ub7cQO8fHxVXcxVGPxPqs6BgYGePDgAcLCwjBmzBgAv3ZXs7a2xqpVq+Dn51edp0hUKRiiifRQ0Z/I27VrpzNbm6mpKfz8/NC4cWMAQH5+Pv72t7+hQYMGCAgIqPMzu6WkpGDt2rVo27YtDh06hBkzZmDWrFn45ptvAADp6ekAALVarbOfWq1W1qWnp6NZs2Y661UqFSwtLZVtqG7jfVa1cnNz4eDggKFDh1a4nt04qDZidQ6i58zHxwc+Pj7K9ytXrkRMTAyCg4OV6cXr8qBCjUYDNzc3BAcHAwC6dOmCCxcuYN26dZg4cWI1nx3VFrzPqpatrS0OHDjw1PV1+ZlHtRfvaqLnrHyLy5kzZ7B9+3bMnj0bEyZMAMAPk+bNm+tUMgGADh064Nq1awAAGxsbAEBGRobONhkZGco6GxsbZGZm6qwvLS1Fdna2sg3VbbzPqgdbnKkuqduf5kSVQBuSRQS2trb49ttvMXjw4Go+q5qjV69eSE5O1ln2008/wd7eHsCjWrM2NjaIiopS1ufl5SE+Ph4eHh4AHlVJyc3NxZkzZ5Rtjh07Bo1Ggx49elTBVVBNx/usetT1RgKqY6p7ZCMR1S2nTp0SlUolixcvlitXrsjWrVulYcOGsmXLFmWbv/71r2JhYSGRkZGSmJgoXl5e4ujoKIWFhco2gwcPli5dukh8fLzExMRI27ZtZdy4cdVxSVQD8T4josrGEE1EVW7Pnj3SqVMnMTY2FicnJ9mwYYPOeo1GI0FBQaJWq8XY2FgGDBggycnJOttkZWXJuHHjpHHjxmJmZiaTJk2S/Pz8qrwMquF4nxFRZTIQeaxmFxERERERPRM7LxERERER6YkhmoiIiIhITwzRRETllJWVISgoCI6OjjAxMUHr1q3x2Wef6cxWKSJYsGABmjdvDhMTE3h6euLKlSs6x8nOzoavry/MzMxgYWGBKVOmoKCgoKovp1LxtSKiuowhmoionCVLlmDt2rVYvXo1Ll++jCVLlmDp0qVYtWqVss3SpUuxcuVKrFu3DvHx8WjUqBEGDRqEoqIiZRtfX19cvHgRR44cwd69e3Hy5ElMmzatOi6p0vC1IqK6jAMLiYjKGT58ONRqNb7++mtlmY+PD0xMTLBlyxal/ndAQADef/99AMC9e/egVquxadMmjB07FpcvX8bLL7+MhIQEuLm5AQAOHjyIoUOH4saNG7C1ta2Wa3ve+FoRUV3GlmgionJ69uyJqKgo/PTTTwCAH374ATExMRgyZAgAIDU1Fenp6fD09FT2MTc3R48ePRAXFwcAiIuLg4WFhRIKAcDT0xOGhoaIj4+vwqupXHytiKguU1X3CRAR1SSBgYHIy8uDk5MT6tWrh7KyMixevBi+vr4AgPT0dACAWq3W2U+tVivr0tPT0axZM531KpUKlpaWyja1AV8rIqrLGKKJiMr59ttvsXXrVmzbtg0dO3bE+fPnMXv2bNja2mLixInVfXo1Cl8rIqrLGKKJiMr54IMPEBgYiLFjxwIAnJ2d8csvvyAkJAQTJ06EjY0NACAjIwPNmzdX9svIyICrqysAwMbGBpmZmTrHLS0tRXZ2trJ/bcDXiojqMvaJJiIq58GDBzA01H001qtXDxqNBgDg6OgIGxsbREVFKevz8vIQHx8PDw8PAICHhwdyc3Nx5swZZZtjx45Bo9GgR48eVXAVVYOvFRHVZWyJJiIqZ8SIEVi8eDHs7OzQsWNHnDt3Dp9//jkmT54MADAwMMDs2bOxaNEitG3bFo6OjggKCoKtrS1GjRoFAOjQoQMGDx6MqVOnYt26dSgpKcHMmTMxduzYWlVtgq8VEdVpQkREiry8PHnvvffEzs5OGjRoIK1atZL58+fLw4cPlW00Go0EBQWJWq0WY2NjGTBggCQnJ+scJysrS8aNGyeNGzcWMzMzmTRpkuTn51f15VQqvlZEVJexTjQRERERkZ7YJ5qIiIiISE8M0UREREREemKIJiIiIiLSE0M0EREREZGeGKKJiIiIiPTEEE1EREREpCeGaCIiIiIiPTFEExERERHpiSGaiIiIiEhPDNFERERERHpiiCYiIiIi0hNDNBERERGRnhiiiYiIiIj0xBBNRERERKQnhmgiIiIiIj0xRBMRERER6YkhmoiIiIhITwzRRERERER6YogmIiIiItITQzQRERERkZ4YoomIiIiI9MQQTURERESkJ4ZoIiIiIiI9MUQTEREREemJIZqIiIiISE8M0UREREREemKIJiIiIiLSE0M0EREREZGeGKKJiIiIiPTEEE1EREREpCeGaCIiIiIiPTFEExERERHpiSGaiIiIiEhPDNFERERERHpiiCYiIiIi0hNDNBERERGRnhiiiYiIiIj0xBBNRERERKQnhmgiIiIiIj0xRBMRERER6YkhmoiIiIhITwzRRERERER6YogmIiIiItITQzQRERERkZ4YoomIiIiI9MQQTURERESkJ4ZoIiIiIiI9MUQTEREREemJIZqIiIiISE8M0UREREREemKIJiIiIiLSE0M0EREREZGeGKKJiIiIiPTEEE1EREREpCeGaCIiIiIiPTFEExERERHpiSGaiIiIiEhPDNFERERERHpiiCYiIiIi0hNDNBERERGRnhiiiYiIiIj0xBBNRERERKQnhmgiIiIiIj0xRBMRERER6YkhmoiIiIhITwzRRERERER6YogmIiIiItITQzQRERERkZ4YoomIiIiI9MQQTURERESkJ4ZoIiIiIiI9MUQTEREREemJIZqIiIiISE8M0UREREREemKIJiIiIiLSE0M0EREREZGeGKKJiIiIiPTEEE1EREREpCeGaCIiIiIiPTFEExERERHp6f8BPgffkLfCnGAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAALfCAYAAACnw553AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wTZf4H8M+k92T7LmyFBQREqQIiqKBwip4Vu1hOFBs27AXL2fXn2U6sYMGz66ngKVVFQUB6Z5eyLGX7pvfM749lxmRrJmUzGb7v14vXnbvJZJ6dzMwnT57n+zAsy7IghBBCCCGERE2W6h0ghBBCCCEk3VCIJoQQQgghRCAK0YQQQgghhAhEIZoQQgghhBCBKEQTQgghhBAiEIVoQgghhBBCBKIQTQghhBBCiEAUogkhhBBCCBGIQjQhhBBCCCECUYgmhEhKaWkprr76av6/ly1bBoZhsGzZMsHb4p77xRdfJG4Hu8nevXvBMAzmzp2b6l0hhBBJohBNCEkLc+fOBcMw7f677777Ur17+Pjjj/Gvf/2ry8c9+uijHbYj/N8pp5yS9H2Ox8GDB/Hoo49i/fr1qd4VQghJCUWqd4AQQoR4/PHHUVZWFvGzY489tsPHjxs3Dm63GyqVKqn79fHHH2Pz5s24/fbbO33c+eefj/Lycv6/HQ4HbrzxRpx33nk4//zz+Z/n5eXFtT8lJSVwu91QKpVxbacjBw8exGOPPYbS0lIMHjw4Ka9BCCFiRiGaEJJWzjjjDAwfPjzqx8tkMmg0miTukTDHHXccjjvuOP6/6+vrceONN+K4447DFVdc0eHzPB4PVCoVZLLovkBkGEZU7Y6W0+mEXq9P9W4QQkiXaDgHIUTSOhoT/frrr6NXr17QarU44YQT8Ouvv+KUU05pdxhFKBTCk08+icLCQmg0GkyYMAEVFRX870855RTMnz8f+/bt44djlJaWxr3Pn3zyCR566CH07NkTOp0ONpsNjY2NmDlzJgYNGgSDwQCTyYQzzjgDGzZsiNhGR2Oit2/fjgsvvBCZmZnQaDQYPnw4vv322zb70NzcjDvuuAOlpaVQq9UoLCzE1KlTUV9fj2XLlmHEiBEAgGuuuYZvc/hrff755xg2bBi0Wi2ys7NxxRVX4MCBAxGvcfXVV8NgMKCyshJnnnkmjEYjLr/8csyaNQtKpRJ1dXVt9uv666+HxWKBx+OJ8a9LCCGJQT3RhJC0YrVaUV9fH/Gz7OxsQdt44403cMstt2Ds2LG44447sHfvXpx77rnIyMhAYWFhm8c/88wzkMlkmDlzJqxWK5577jlcfvnl+OOPPwAADz74IKxWK6qrq/HSSy8BAAwGQ4wt/MsTTzwBlUqFmTNnwuv1QqVSYevWrfjmm28wZcoUlJWVoaamBm+++SZOPvlkbN26FT169Ohwe1u2bMGYMWPQs2dP3HfffdDr9fjss89w7rnn4ssvv8R5550HoGWIydixY7Ft2zZce+21GDp0KOrr6/Htt9+iuroa/fv3x+OPP45HHnkE119/PcaOHQsAOPHEEwG0jF+/5pprMGLECDz99NOoqanByy+/jN9++w3r1q2DxWLh9ykQCGDSpEk46aST8MILL0Cn02H06NF4/PHH8emnn+KWW27hH+vz+fDFF1/gggsuSMtedkKIxLCEEJIG5syZwwJo91+4kpIS9qqrruL/e+nSpSwAdunSpSzLsqzX62WzsrLYESNGsH6/n3/c3LlzWQDsySef3Oa5/fv3Z71eL//zl19+mQXAbtq0if/Z5MmT2ZKSEsHtqqurYwGws2bNavO6vXr1Yl0uV8TjPR4PGwwGI362Z88eVq1Ws48//njEzwCwc+bM4X82YcIEdtCgQazH4+F/FgqF2BNPPJHt06cP/7NHHnmEBcB+9dVXbfY3FAqxLMuyq1evbrN9lmVZn8/H5ubmssceeyzrdrv5n3///fcsAPaRRx7hf3bVVVexANj77ruvzeuMHj2aHTlyZMTPvvrqq4hjSQghqUTDOQghaeX111/HwoULI/4JsWbNGjQ0NGDatGlQKP76Mu7yyy9HRkZGu8+55pprIiYmcj2vu3fvjqEF0bvqqqug1WojfqZWq/lx0cFgEA0NDTAYDOjXrx/Wrl3b4bYaGxuxZMkSXHTRRbDb7aivr0d9fT0aGhowadIk7Nq1ix9u8eWXX+L444/ne6bDMQzT6T6vWbMGtbW1uOmmmyJ6iydPnoxjjjkG8+fPb/OcG2+8sc3Ppk6dij/++AOVlZX8z+bNm4eioiKcfPLJne4DIYR0BwrRhJC0csIJJ+C0006L+CfEvn37ACCiQgYAKBSKDscxFxcXR/w3F7abmpoEvbZQrauQAC3js1966SX06dMHarUa2dnZyMnJwcaNG2G1WjvcVkVFBViWxcMPP4ycnJyIf7NmzQIA1NbWAgAqKys7rXjSGe7v269fvza/O+aYY/jfcxQKRbtDaC6++GKo1WrMmzcPQMswnu+//x6XX355l0GeEEK6A42JJoSQLsjl8nZ/zrJsUl+3dS80ADz11FN4+OGHce211+KJJ55AZmYmZDIZbr/9doRCoQ63xf1u5syZmDRpUruPaf3BojuE96yHy8jIwFlnnYV58+bhkUcewRdffAGv19tpBRNCCOlOFKIJIUeVkpISAC09s6eeeir/80AggL1790aUnxOiu3pHv/jiC5x66ql49913I37e3Nzc6QTLXr16AQCUSmWXvfe9e/fG5s2bO31MR+3l/r47duzA+PHjI363Y8cO/vfRmDp1Ks455xysXr0a8+bNw5AhQzBw4MCon08IIclEwzkIIUeV4cOHIysrC2+//TYCgQD/83nz5sU1PEOv13c6nCJR5HJ5mx7wzz//vE35uNZyc3Nxyimn4M0338ShQ4fa/D68nNwFF1yADRs24Ouvv27zOO61uVrOzc3NEb8fPnw4cnNzMXv2bHi9Xv7nP/zwA7Zt24bJkyd33sAwZ5xxBrKzs/Hss8/i559/pl5oQoioUE80IeSoolKp8Oijj+LWW2/F+PHjcdFFF2Hv3r2YO3cuevfuHXOP8rBhw/Dpp5/izjvvxIgRI2AwGHD22WcneO+Bs846C48//jiuueYanHjiidi0aRPmzZvH9zR35vXXX8dJJ52EQYMGYdq0aejVqxdqamqwYsUKVFdX87Wm7777bnzxxReYMmUKrr32WgwbNgyNjY349ttvMXv2bBx//PHo3bs3LBYLZs+eDaPRCL1ej5EjR6KsrAzPPvssrrnmGpx88sm49NJL+RJ3paWluOOOO6Juq1KpxCWXXILXXnsNcrkcl156acx/N0IISTTqiSaEHHVuueUWvPLKK6iqqsLMmTPx66+/4ttvv4XFYom5/vBNN92Eyy67DHPmzMFll12GW2+9NcF73eKBBx7AXXfdhR9//BG33XYb1q5di/nz56OoqKjL5w4YMABr1qzB5MmTMXfuXNx8882YPXs2ZDIZHnnkEf5xBoMBv/76K2688UYsWLAAM2bMwL///W/069ePnwSoVCrx/vvvQy6XY/r06bj00kvx888/A2hZROXTTz+Fz+fDvffeizfffBPnnXceli9fHlEjOhpTp04FAEyYMAEFBQWCnksIIcnEsMmeGUMIIWkgFAohJycH559/Pt5+++1U707cKisrUV5ejg8//DCth0Fs2LABgwcPxgcffIArr7wy1btDCCE86okmhBx1PB5Pm3HFH3zwARobG9td9jsdceOeha7mKDZvv/02DAYDzj///FTvCiGERKAx0YSQo87KlStxxx13YMqUKcjKysLatWvx7rvv4thjj8WUKVNSvXtxe++99/Dee+9Bp9Nh1KhRqd6dmHz33XfYunUr3nrrLdxyyy38REZCCBELGs5BCDnq7N27FzNmzMCqVavQ2NiIzMxMnHnmmXjmmWeQm5ub6t2Lm0KhQN++ffHCCy/gzDPPTPXuxKS0tBQ1NTWYNGkSPvzwQxiNxlTvEiGERKAQTQghhBBCiEA0JpoQQgghhBCBKEQTQgghhBAiEIVoQgghhBBCBKIQTQghhBBCiEAUogkhhBBCCBGIQjQhhBBCCCECUYgmhBBCCCFEIArRhBBCCCGECEQhmhBCCCGEEIEoRBNCCCGEECIQhWhCCCGEEEIEohBNCCGEEEKIQBSiCSGEEEIIEYhCNCGEEEIIIQJRiCaEEEIIIUQgCtGEEEIIIYQIRCGaEEIIIYQQgShEE0IIIYQQIhCFaEIIIYQQQgSiEE0IIYQQQohAFKIJIYQQQggRiEI0IYQQQgghAlGIJoQQQgghRCAK0YQQQgghhAhEIZoQQgghhBCBKEQTQgghhBAiEIVoQgghhBBCBKIQTQghhBBCiEAUogkhhBBCCBGIQjQhhBBCCCECUYgmhBBCCCFEIArRhBBCCCGECEQhmhBCCCGEEIEoRBNCCCGEECIQhWhCCCGEEEIEohBNCCGEEEKIQBSiCSGEEEIIEYhCNCGEEEIIIQJRiCaEEEIIIUQgCtGEEEIIIYQIRCGaEEIIIYQQgShEE0IIIYQQIhCFaEIIIYQQQgSiEE0IIYQQQohAFKIJIYQQQggRiEI0IYQQQgghAlGIJoQQQgghRCAK0YQQQgghhAhEIZoQQgghhBCBKEQTQgghhBAiEIVoQgghhBBCBKIQTQghhBBCiEAUogkhhBBCCBGIQjQhhBBCCCECUYgmhBBCCCFEIArRhBBCCCGECEQhmhBCCCGEEIEoRBNCCCGEECIQhWhCCCGEEEIEohBNCCGEEEKIQBSiCSGEEEIIEYhCNCGEEEIIIQJRiCaEEEIIIUQgCtGEEEIIIYQIRCGaEEIIIYQQgShEE0IIIYQQIhCFaEIIIYQQQgSiEE0IIYQQQohAFKIJIYQQQggRiEI0IYQQQgghAlGIJoQQQgghRCAK0YQQQgghhAhEIZoQQgghhBCBKEQTQgghhBAiEIVoQgghhBBCBKIQTQghhBBCiEAUogkhhBBCCBGIQjQhhBBCCCECUYgmhBBCCCFEIArRhBBCCCGECEQhmhBCCCGEEIEoRBNCCCGEECIQhWhCCCGEEEIEohBNCCGEEEKIQBSiCSGEEEIIEYhCNCGEEEIIIQJRiCaEEEIIIUQgCtGEEEIIIYQIRCGaEEIIIYQQgShEE0IIIYQQIhCFaEIIIYQQQgSiEE0IIYQQQohAFKIJIYQQQggRiEI0IYQQQgghAlGIJoQQQgghRCAK0YQQQgghhAhEIZoQQgghhBCBKEQTQgghhBAiEIVoQgghhBBCBKIQTQghhBBCiEAUogkhhBBCCBGIQjQhhBBCCCECUYgmhBBCCCFEIArRhBBCCCGECEQhmhBCCCGEEIEoRBNCCCGEECIQhWhCCCGEEEIEohBNCCGEEEKIQBSiCSGEEEIIEYhCNCGEEEIIIQJRiCaEEEIIIUQgCtGEEEIIIYQIpEj1DhBCCIkdy7JgWRbBYBChUAjBYBAymQxyuRwymQwMw/D/CCGEJA6FaEIISRPtBeZAIIBQKMT/DgCUSiX//wGAYRg+UFOwJoSQxGDY8CstIYQQUYg2MIcHY+6/lUolGIbhH9PeZZ6CNSGExId6ogkhJMW4UMyF5a4Cs0wm4/+7M+HBOvy1uP8NBoNtHk/BmhBCokMhmhBCulGyAnO0KFgTQkhiUIgmhJAkSXVgjlaswbp1qKZgTQg5mtCYaEIISQChgbm94Joo3JjoRItmjDUFa0LI0YJCNCGECCSmwNyeZIXo9lCwJoQcrShEE0JIJ8QemNvTnSG6PRSsCSFHAwrRhBByRHuBmfsn1sDcnvZCdCAUgEKWumkwFKwJIVJDIZoQclRqHZi9Xi9CoVDE7wDxB+b2cCH6z9o/8f2e7/Hbwd9wQfkFuGHQDQCAYCiIO369A8Nyh+HcXufCrDanZD+7CtaBQABqtZqqghBCRImqcxBCJC+aHubt27fDYDCgpKQkZVUyEsXhc+Dx1Y9jafVS/mcV1gr+/29u3IzfD/2O3w/9jne2vIPL+12OawZcA7Vc3a372VVVkKVLl+LEE0+ETqfjH0c91oQQsaAQTQiRnFAo1GFgBloCWuuycuG1kNNZiA3h3t/vxaqaVZAzcvy97O/4W+nfMDBzIP+YEmMJ7ht+H76q+Ao7m3finS3v4Keqn/D0iU+jX0a/FO59ZLDmjhP3M67cXnjJPQrWhJBUoRBNCElrsQRmKQesVTWrsKpmFTRyDd6a8BYGZA5o8xiL2oILyy/EBb0vwOLqxXhx7Yuoslfh2kXXYtbIWZhYPDEFe96+8EDcWR1rCtaEkO5GIZoQkjYoMHdt6cGWIRzn9Dqn3QAdjmEYnFZ0Gk7IOwEP/v4gVhxegdmbZuPknid3+9AOoShYE0JSjUI0IUSUujswSyVMjcobBZ1Sh/FF46N+jkllwr/G/Qtzts7BWWVniT5Ad4SCNSGkO1GIJoSknFh6mKVQrOjUnqdiYulEwX8fuUyO6469LuJnDr8DBqUhkbsnSCKOBwVrQkiyUIgmhHQrsQRm0rn5e+bj/9b9H9449Q30zeibsv1IxrGnYE0ISQQK0YSQpKHA3P1YlsV++364Ai4ck3lMTNsIsSHM3zsfVp8V9/1+Hz6c+CH0Sn2C91RcKFgTQoRK71pOhBDRCIVCCAQC8Hq9cLlcsNvtsNlssNvtcLlc8Hg8CAQCYBgGcrkccrkcSqUSCoUiIoikSjqHn1AoBLvdjgMHDmDOH3Nw/oLz8c/f/4na2lp4vV7B25MxMjx94tPI0+Whyl6FZ9Y8I4mhLkJx70kuLIe/T7lg7ff74fP54PV64fV64fP5EAgEEAwG+aXhCSHSRD3RhBDBWvcwNzc3Q6FQQKlUAkjfHuZ0CDwsy8LpdEZ8SHE4HGAYBkajEX2NLUMvKpwV2Lx9M3wuHzQaDcxmM0wmE8xmM8xmM3+sOmJWm/Hk6Cdxw5Ib8MO+HzC6YDTOLD2zO5oI4K9jIbb3jdAea5vNBoPBALVaTT3WhEgMhWhCSKeiGZKxfft2FBUVIS8vD4D4gk+6YlkWbrebD8s2mw0OhwMsy8JoNMJoNKKwsBBGoxE6nY7vIc2pykGduw7qcjXG5oyFzWaD1WqFzWZDdXU13G43dDpdRKg2mUxQKCJvCYNzBmPawGmYvXk2Xlz7Ikblj0KmJjNFfw3x6ixYb9q0Cf369UN2dnbE42koCCHpj0I0IYQX6xhmMQzHSHcsy8Lr9UYEZrvdjmAwCIPBAJPJhIKCAphMJuh0ug5XVmQYBuN6jMOXlV9iafVSjOkxBllZWcjKyuIf4/P5+FDd1NSEvXv3wuv18q/DBWuj0YirB1yNJdVLsLN5J15c+yKePPHJ7vqTpLXwVRa584XGWBMiLRSiCTlKJXrSXzoMhRATn88Hm80WEZoDgQD0ej2MRiNyc3PRu3dvGAwGwUuRjy8ajy8rv8SyA8twf+h+yGXyiN+rVCrk5OQgJyeH/5nH4+F7rOvq6lBRUYFAIACDwYBLsy7FU9ankKXMQiAYgEJOtw4hWvdU0+RFQqSBroSEHAWoSkbXktlev98f0btss9ng9Xqh0+lgNBqRmZmJ0tJSGAwGyOXyrjfYhaE5Q2FWmdHsbca6unUYnje8y+doNBpoNBrk5uYCiBxKkm3NxhNFTwBWYMniJTAajRHDQAwGQ8L/fkfLhzIK1oSkLwrRhEhMKgIzNxY33SWiDYFAAHa7PSI0u91uaDQamEwmmEwmfhxz6zHIiaKQKXBK4Sn47+7/YtH+RVGF6NYYhoFOp4NOp0N+fj76oR8/qZHrsd6/fz9sNhsYhuGHgXD/y43Rjle6h0PufBOCgjUh6YFCNCFpjHqYUysYDMLhcET0MLtcLqhUKphMJhiNRhQUFMBoNEKlUnXrvl3S9xKMKRiDk3qclLBtMgyDKl8V3q54G7NGzkJ/dX+EQiE4nU5YrVZYrVbs3bsXdrsdcrm8TUUQjUZz1L3/EvXhkoI1IeJDIZqQNBFtYObqMAPdF5il0BPd1d+KC4vh45idTicUCgWMRiNMJhNycnJgMpmgVqu7aa871sfSB30sfRK6TZZl8c9V/8TO5p14Z8s7mDl0JmQyWUSlEOCvutVcsK6srITD4YBSqWwTrMXwt0q2ZJ2HFKwJSS0K0YSIkJgD89Ggs1rMXA9zaWkpjEZjWvSuxjKkoD0Mw+C2wbfh5mU348uKL3FFvyuQr89v8ziZTMaHZE4wGIwotXf48GE4nc42NaxNJhNUKpVo60SLHQVrQroPhWhCUqyzwBweJMQcmMW2P0JwE+hcLhcCgQCam5sjajFzY5hNJhO0Wm1atZVlWczdNhdfV36N1055DcXG4ri3OTJ/JIbmDMXaurWYu20u7ht+X1TPk8vlyMjIQEZGBv8zv9/P9+xbrdaIGtZGoxEA0NTUhKysrKSNH0+2RH2AiQcFa0KSIz2vSoSkqfDA7Pf74XA4oNFo0iowdyQdhnN0VotZoVBArVZHVYs5XTAMgw31G3DQeRBfV36N2wbflpDt3jDoBtyw5AZ8s/sbXN3/6nZ7o6OhVCo7rGHd3NyMmpoabNmyBT6fD3q9nu/d5mpYJ6KSydFKaLD2+/0AwE8YpWBNCIVoQpKmqx5ml8uFdevWYezYsWkXmFsT6357vd42peU6qsVcUVEBmUyGHj16pHq3E+r83udj+cHl+Hb3t5g+aDrU8vjHIA/LHYbhucOxpnYN3tv6Hh4Y8UAC9rQFV8M6IyMDlZWVOOmkkxAKhTqsYR1eas9oNIrug48YeqKj1Vmwrq6uht1ux3HHHRfxeOqxJkczCtGEJEAsQzKUSiUASKY3LdU90d1dizldjCkYgzxdHmpcNVi6fyn+Vvq3hGz3hmNvwJola/Dtnm9x3cDrkKvLTch2W2MYptMa1larFYcOHcKOHTsQCoX4GtbcGOtk1LAWItXnRbzC/3ZcaKahIIS0oBBNiECJHMOc7jdYTnffIMVQizldyGVynNvrXLy5+U18VflVwkL0kNwhOLvsbAzMGgiTypSQbUardQ1rAPy3O1xFkOrqamzdupWfDBpeESRRNayF7K8U0MqLhEQ6uu8uhHQhmZP+pFAWLlyy2tJRLWa1Ws1P/OPGMXO9+7GS0vEId06vc/DOlnewtm4tdlt3o5e5V0K2O2vkrIRsJxEYhoFer4der+eH5LSuYb1v3z7YbDaqYR2DroalULAmRyMK0YQc0d1VMrjnptOYyY4kav87q8XMjXnNzc2F0Wg8KuoLJ0quLhdje4zFsgPL8HXl17hr6F2p3qVu0VUNa5vNlvQa1lI4vwFaeZGQ9lCIJkclMZSVk9qNQWgvrthqMUvteLR2UZ+LYFQZ8beSxAzn4PiDfszfOx+L9y/GS+NegkKWmNtKsupEJ6KGdSztSHe08iIhbVGIJpLHXZhDoRACgYDo6jBLpaeqM+ETwbjQLJVazOnihPwTcEL+CQnfbggh/Hvjv9HobcTi/YsxqWRSwl8j2dqrYR0IBPhQ3bqGdXhvtclk6nLcvRTez8m8TlGwJumKQjSRFLEH5nDhwznSXeubX0e1mA0GQ8QYZrHVYpbCsehuarkaF/a5EG9tfgtfVHyRliG6PQqFosMa1jabDU1NTdi7dy+8Xu9RU8M6FZMxKVgTMaMQTdJWOgXm9ohpX+Lh9Xrh9XrR0NCApqamTmsxiykwH612Nu3El5VfYkr5FJRbyhOyzXN7nYt3t7yLdXXrUNFckZDtivEDDVfDOicnh/+Zx+PptIY1N85fbB8YhRLDN2YUrInYUIgmaSHdA3NnxBgWOsIt0xzew+z1eiGXy6HValFQUJC2tZilVi2lI+9ufReL9y+GDDLcO/zehGwzV5eLcT3HYWn1UnxZ+SXuHZaY7QLiP4+7qmHNsiw2btzID10SUw1rIcR6blCwJqlEIZqITmeBecuWLejZsycsFktaBuZwYh/O0boWs81mg8fj4WsxWywWFBUVwWg0YseOHdDr9SgqKkr1bpMuXND7AizevxgL9i3AjMEzoFVoE7LdC8svxNLqpViwZwFuPe5W6JS6hGw33bSuYb13716ceOKJAMCX2jtw4AC2bdsGACmvYR0tlmXTpic9mmC9fv16FBQUIDs7m4I1iRmFaJJSXfUwh18M5XI5PB4PAEhiAQ0xXaDjrcUslV5cKbShK8PzhqPQUIhqRzUWVS3C2b3OTsh2R+SNQLGxGFX2Kvyw7wdcUH5BQrab7rjrmE6nS/sa1mLYh1i1DtZOpxOhUIi/doXfe7gATcGadCX9kwhJG0IDM/f/w4UvOSsV3d0eqsV8dJMxMpzb61y8tvE1fF35dcJCtIyRYUr5FPxR8wd6meJfzCVZJe5Sob02iKGGtRBSvO6GB+Twn3P/S8GadIVCNEmKRATmzrYtBd0xnKO7ajFL4SYihTZE66yys/DGpjewsWFjwiYCAsAlfS/Bpf0uTci2pEDouS20hnXrUntCa1gLIYaJhYnUUXuiHWNNwZoAFKJJAiQzMLcmlWEDQOJDW3u1mO12OwB0Sy1mqRyXo0G2Nhsn9zwZS6qX4Jvd32Dm0JkJ2S4Fh/bF83cRUsNaq9VGlNqLpoa1EFI6vkI+FFCwJh2hEE0E6c7A3B4phWhOLO1hWRYejyciLLdXi7lfv37dUlqLbg7p57ze52Fj/UbkaHO6frBA1Y5q/G/f/3DVMVdBKW87hv5okaxrVaw1rLlJjLFUzjlaeqKjRcGaABSiSSdSHZjbI6UQLWQ4h9frjQjMYqzFLIXjIoU2RGtk/kh8//fvE7ZMNyfEhnD94utR665Fb3NvnFp4akzbkdKx6I6gFEsNa244iNFo7PK6IbUQzU0qTCQK1kcfCtEEgDgDc3ukFKKB9tvTUS1mbrnhzMxM0dVipot++pExMsiYxH/gkjEynFF6Bt7f9j6+2/NdzCGaQ++t2LVXw9rj8fAVQQ4fPoydO3ciFAp1WcNaStddTne8tyhYSxuF6KNQugTm9kgtRAMttWPr6+u7rMUs9rJ+6X5cxPIe726BUAArDq1AmbkMhYbChGzzrNKz8P629/Hbwd/Q4GlAliar6ydJkNgqjDAMA61WC61Wi/z8fAAt++hyubqsYe33+1O56wmXyp71aIJ1IBDgH0PBWrzEfVcmcQsPzFxYDgQCaRGY25POIbq9Wswsy6KiooLvAeqsFrOYifk9I0S6vrfi8eTqJ/Hdnu9web/LcceQOxKyzTJzGQZmDsSWxi34377/4fJ+lydku+kmHd5PDMNAr9d3WMPaZrNh3759sFqtaGxsRGNjoyhrWAuVjOEc8aBgnZ4oREtI68BstVqhUCggl8vTMjC3J11CdCgUgsPhiBiS0V4t5s2bN2PIkCEwGAyp3uW4pcNxIW2NLxyP7/Z8h+/3fI+bj7sZKnliyqSdXXY2tjRuwYK9C2IK0WLrxY1HurUhvIY1Z+3atfxKjK1rWIeH6lTUsI6V2I+L0GDtcrmg0WigVqspWHcTCtFpKpoe5o0bN6K8vBzZ2dkAxH/BiIYYQzRXizm8h9nhcEAul/M3oo5qMafLMrpEukYXjEauNhe17lr8cvAXnFZ0WkK2e1rxaXh+7fPY0bQDVfYqFBuLE7LddCK2a1W8NBoNiov/Oo4d1bBWq9VtSu0ls4Z1LMTWEx2tzoL1pk2bUFJSgry8PP4x1GOdXBSi00CsQzLaW40p3aW6LdHUYi4qKhJUi1kKN9pUH5dEkEIbYqGQKTC5dDLmbJuD73Z/l7AQbVFbMDJ/JNbXrUeltfKoDNEcKby32htDHGsNa67nOtXzPKRwXIDISk9yuZz/9pn7GQ0FSR4K0SKTyDHMUlwim2EYhEKhbnmtzmoxcz3MPXr0gNFohF6vj+kCJMae9VhJoR1SaEMszio7C3O2zcGKwytQ765HtjY7Idt9YPgDsKgt0Cg0gp8rhWMhhTaEi+Ya11ENay5UJ6OGdSzStSe6M60zQvj/cr/n/peCdWJQiE6hZE/6k1JA4ySzTdHUYi4vL4der0/YMAypHCOptONoVWIqwXHZx2Fj/UYs2LsAU/tPTch28/X5cT1fKjdwKbQjnmoWKpUK2dnZ/NBCILE1rGMhtbrXQNcfDChYJx6F6G6SiioZ3dlr210SdfKKpRazlC5GFKLT29llZ2Nj/UZsadyS8G2zLItmbzMyNBldP1hCpDQ5MtGhs6sa1jU1NVHXsBZKSsclHMuygj9wULCOD4XoJBBLWTkp9g7G0qZAIMAPxRBjLWYpHKOj9QIqJROLJ6J/Rn/0y+iX0O1WWitx72/3IhAK4OvJX9N7JU0l+zrFMLHXsDabzdDpdFG/t6QcohPRJgrW0aMQHSexBOb2HI0hur1azC6XC2q1mp/4J6ZazFI6RunejqPhgt8ZvVKPYzKPSfh2C3QFOOQ8BG/Qi21N2zAgc0DCX0Os0v2cCJeK4Q8M07aGNcuycDgcETWsbTYb5HJ5RG91ZzWspRqikznOm4J1+yhECyDmwNweqU4s5NoUbS1mo9Eo2rqlUrmgSKUdUjtfYuXyu6CUKaGUx/9BU6fUYVyPcVi4fyEWVi2MOkRL6VhI5fwQQzsYhmlTwzoUCsFut/PBuqsa1lIN0bEM54gHBWsK0R1Kt8DcHqn1cjqdTjidTvj9fqxevTrqWsxiJ6VjRNLf6xtexye7PsHDJzyMicUTE7LNCcUTsHD/QiytXooZx8+I+vxMp/O4PVI6J8TcFplMxodkTmc1rE0mEwCgqakJGRkZoqthHSsxTJY82oI1hWhIIzC3J11DdGe1mBUKBVQqleBazGKVrseotXQ+BiQSwzBwB9xYsHdBwkL0ifknQiVTodpRjUprJcot5QnZbrqQwvkhhoAmRGc1rJuamlBXV4ft27eLtoZ1LMR6jKQcrNPvXRKn1oHZ7XbDarXCYrGkdWBuTzpU5xBai7myshLBYJCfeJLu0vW91Z50/zAgpWMRjzNKzsB7W9/DikMr0OxthkVtiXubOqUOI/NH4teDv2Jp9dKoQnS6v58AabQhXLqfI1wNa4PBgIqKCowdOxaBQCCihvW+ffvg8Xj4GtZcqO7OGtaxSqfa110Fay5UAy3lZz0eD7KyskQXrCUdoqPpYbZardi5cydGjRqV+gMS9INxN4A1/BUQFdu/haxhJ8CGAJkckCnAKrRgdZlgtVkIFo8B5O1/FSXGXs54azGLsU3xkFp70h0dC6DMXIZ+Gf2wo2kHFu1fhAvLL0zIdk8pPAW/HvwVyw4sw7Rjp0X1nFTfIBNBCm0AxNvLGYvwMdFd1bCur69HZWVlt9awjlV3j4lOtI6CdWNjIw4ePBgxXEcsPdaSDdHz58/HO++8g/feey/ihOH+6Nz/VyqVCIVC3f/GC3ggP7QO8oN/Qla3DbL67ZA1VQJyNRy3bgeOvAmU276GYvfCDjdjn7ELOPLhWLn2HcgaKhAsGIpgj2FgkNpQkIxazFIMnVJojxSPy9HsjJIzsKNpB/63938JC9En9zwZG8o2YHzReEkFss5I6ZyQ0jHr6rhEW8M6GAxG9FQnooZ1rFoPP5UK7t4ik8n4nNBRjzWX77qzkIBkQ7Tb7cbu3bsjAnN7UnHzVy9+EMpNn4AJetv8jgUD+J2AygAACJSdipCxACzLIOT0IuTxAh4n4LYCHjd8O3cDDANGpYJ89Q+Q16yBUv4xNKoQhqmNcOQOh8L1dwRLTwGrz0lam7hazOGhORm1mKUW1qTWnnQmlZsPy7IIhUJxffV8evHpeHn9y1hfvx6HnIdQoC+Ie78sagseGflI3NtJN1J6X0kFFzaFTHDtrhrWsZJqxRGg7Qe4jnqsuX/dSbIhWqVSwefzddnDnOwycLKGXVBs/RK+UbcBSi0AgFXqwQS9COlzEew5En5DH3jcZvjdGgSsXgT/7zUEa2oQrKlFyGpFyG4H63a3/wIfX9PqB3l/vbYiBLlqC+TqTZDrnwZGToE8rwCK/HzIexRAUVICucUiuE3htZi50NxdtZilFjqlcsGT2nFJJ9yYTu6f1WpFIBDgV3mzWCwwm83Q6/VRv9/ydHkYmjsUf9b+iR+rfsTV/a9ObiMkSmrnhFSuV4k4LgwjrIZ161J7ia4ixbUpnYdzdCSa0QKpugdJOkT7/f4uH5eUyXd+FxTbv4Vq8yeQH1wDAAgWDEWgbAICe/bAebAnfI6r4N/ZgMDXexBq/DOxr39EKCBDKCCD3wWgCUD1120eI8vIgKKsDMqyUij79IFqwAAoy8vBHAm/0dRizsvL67ZazFIMa1JrD0kertQjd5O22Wx82S4uMJeUlECn08Fms6G5uRn79+/Hli1b+MUowoN1Z6W9Lul7CU7IOwETixJToYOzuWEzllYvxRX9ruh0GXCpnBdSCp5SaksywmY8NaxNJhM0Gk3Mry3lnmghEya7u/2SDtE+n6/LEz+RPdGMowbKdXOg2vghGI8VQT8De70WDm8fuP/5Pny7n+y4R7k9cjlkGRmQGY38P8agB6NUgVEoALkcjEIONsQCPh9Yvw+szw/W40HIZoOnvh6MwwHG6QSCwXZfItTUBF9TE3xr1/71Q6USweIieAoLYetZCF/fPtD16AGTyYTS0lKYTCao1eqUnKxSC9FSaY9ULtxiOxZerzeih5kr9ch949OrVy/+fAynVCqh1+tRUNAyDIO7kTc3N6O5uRmHDh2Cy+WCTqeDxWLhQ3X4RKlTC0/FqYWnJrxNT695GjuadqDIUIRze5/b6WPT/X0ltvdTPKQWorurLZ3VsObO6/Aa1uG91SaTKeoa1lxnoFSOUTgxT5iUfIjuChdi4j2pGGsVdO+cDE8tg/oaNRz1PeGpAxBiAdQf+deWLDMTyrIyKMrKoCgqahlqkZcHeV4uZJmZYOJ441RUVCAYDKJvnz4INTYiWFODwOHDCO2rQGjDEvh3V8DXDAQ9rcZO+v2QV+6GvnI39Ed+pCgrg3r4cKiHD4PqhBPAxPGJOR5SCZ0cKV3wpHRcUiF8mBTXa8WV2jKZTMjLy0OfPn06rFzTmfAbeUlJCQDA5/Ohubk5YqJUKBRq01ud6K+dT+15KnY07cDPB37uMkRLgVTOcSmd36n+QNBRDWvu3LdaraiurhZUw/poH86RKpIO0eGzNjvCHZiYTiq/G6xMBe+6dXAvWoyDP+Qh6OKGhrS94MgLCqAaOACqAQOPDJvoDVnYp9NE4wMnw8Cn18OekwObWg17Zibs5f3B+t3o7V6Pwr0LIK/eD0+jEu4mDVz+YgQO1ERsK7BnT8tQlM8/B+RyqIcMgWbsWGjHjYWisDBpbWivTVIjhZuTFI5Ld7YhfEEh7sbpcDj4YVImk4mvj57oeQUclUqF3NzciAoETqeTD9aVlZVosjWhAhXYi724pe8tyMzIhMlkimty8Ek9T8LszbOxumY1vEEv1PLum0nf3VId1hKJ2pJcCoUCmZmZyMzM5H/m8/mirmEt5eEcYjxeHEmH6Gh7ogGBn3SCPsgWvgDnl1+iaX8OQg2N7T5MUVoK9fDh0IwYAdXg4yEPOzmSiavFbLVa4Xa7sXz58k5qMU8C2HuAvUthXvESLM56OK/9CiGXB77Nm+Fd8yc8f/4J/7ZtADd2PBiEd80aeNesgfWll6Do1Qu600+HduLpUBYXJ7VtUuyJlkp7pNKOZAjvZeKCc3jdWTGswMkwDAwGAwwGAwqPfDB2eB149ttn4Q66MebwGGRXZcPn88FgMPA91RaLRdCkxX6WfsjR5qDOXYe1tWsxumB0u48T843zaCWV45Eu7632alh7vV6+t7qhoQG7d++G3++HTqcDAOzfv1+UNazjISSf0ZjoBFEqlVFPLASiDwChDQvhePFR2Lb7AFYOICxAq9XQjB4N7SknQzNiBORHeniSqbNazDKZDCqVCn379u28FjPDIFg2Hq7SU8E4awG5EjKjEpoThiPjwKvw3zsFvsJX4N2wAd6VK+H+dTmCBw/yTw/s3g3bm2/C9uabUPY/BrrTJ0I78XQo8vLaf704pMMqjEKkw4U8GlJpRyI+CHQ0+Y8r9xhLffRUMagNOLXoVCzYuwBV2ipceOKFfL3c5uZmVFdXY+vWrfxwkfDx1R2N5WQYBmMKxuCb3d9g+cHlHYZoKZDSB8t0CZ7RSOe2qNXqNt8geTwe1NbWYtu2baKsYR0vGs6RAtH2RIcP5+gM6/XC+eQtsP64HmyIAXDkjSiXQ3PSGOgmToRmzBjI9PpOtxOPjmoxa7VaGI3GNrWY9+3bB7vdHjGhoVMMA9bwV/BVbv4Uin2/QLHvFyh7joTi9GehPWkmzHfdhcDu3XD/uhyeX36Bb9Mm/jn+bdth3bYd1tdeg2b0aOjP+Ts0Y8e2TIRMgHS8AHSGeqLTHzf5jwvN4ZP/zGZzh5P/0sWEoglYsHcBluxfgjuG3NGmXm74pEWr1dpm0iIXrsN7xk7qcRIfomcOnSm58zqcVNqWzsGzNSm1hathnZWVBblcjhEjRoiuhnW8aGJhCqhUKn65787G74UP5+iIv3InmmZMg6/WDS48MwY9DFOmQH/+BVDkJ77HtbNazFxpua7GTMYb0PwDLgDjboTqj1ehOPAH5B9OhG/kDPhOuAnK3r2h7N0bpquvQuDwYbgXLoJr4U/wb9ve8uRQCJ7ffoPnt98gy8yE/qyzoD/3HCiKimLen0S0SYyk0B6xX4SjEU0buPOSC8xWqxVerzdi8l/fvn0FDW8Qu1H5o6BT6FDjrsGWhi0YlD0o4vftVR/w+Xx8b3VdXR127dqFUCjEL7xUbCiGglHA4Xeg0duILE1Wm9eVwnkhpbAmhePBkdJx4YS3SWw1rOMlpMRdd5NsiOZ6fXw+X5churNg5t2wAQ233IiQ58gkRbkMhssuh+mqqQmbFJisWsxxB06lFr5RM+AfcD40i+6HYs9SqH9/AYod38FzxksI5R0HAFDk58N45RUwXnkF/FVVcP/4I5zffofg4cMt7WtshP2DD2D/8ENoxoyB4bJLoR4+POaTQkoXcyl9KJBKOzidTf7jviLtcaT0YzwT7cROLVdjbI+x+LHqRyypXtImRLdHpVIhJycHOTktq6SGD3Fpbm7G4arDuMl4E3pqemLf1n2wWqz8DTz8bynWG+fRSirHQ4ohuqug2VkNa+76lqwa1vGKtieaFltJIG48ns/n4wfcd6Sjcba+nTtRP+M2sEcCtLI4HxlPvwBV374x71coFILL5YoYkuFwOCCXy/nar4mqxZyoGtisqRDu8z6AYvt/oV46C/KGHVAvfQzui78AWu2fsrgYymnTYLz2WnhXrYLzm//C/fPPLXWqWRae5cvhWb4cyj7lMFxyKXSTJoIR8MEg2StMdjepXcjTWTAYhNfrxZ49eyIm/3HnZVFRkSh7abrD+KLx+LHqRyzevxgzjp8huP3hkxZ79uwJADghcAJ/825ubsa+ffvg9Xr5YTBqtToh5UdTSUrXqnQ+Dq1JqS2cWIY8hH+LVHTkW+JgMMgXJuiohjUXsKOtYR0vmliYAtwQh2gmF7YXzFiPBw333AvW5QIAqEeORNZzz0LWRSCP2EZYT1Z4LzN3Q+FuzMmalZ/QSXgMg0D/cxEoPRmaZY/CO+r2NgE64uFyOTSjR0MzejSCjY1wfvcdnJ99jmBtLQDAv6sCTU88Aevrr8N4xRXQX3B+VH9bKfXccqTQnnQ7LqFQCE6nM2Iss8vlgkwmg06n4yf/SWmGezzGFIyBVqFFpiYTVp8VFrUl7m1yJb0yMjIQYkOQy+TweDz8gjC1tbXw+/1YvHhxRN1qi8XSbTfvRJBKWEun87srUg3RiWiTXC7nJwhzWtewPnDgAFwuV9Q1rOMl5uMl2RDNDXuIdelvxzuvIHjgAABA2b8/sl94vtMFRrgZsuFh2W63IxQKwWAwRIxh7q7xkkkJNtoMeM54OeJHqhX/QiinPwLlk9p9ijwzE6arroLx8svhXrIUjk/+A9+mzQBahnpYX3kF9vffh+GyS2G46CLIDIZOd0FKF/N0C5/pqvXkP5vNBoZh+Ek25eXl/HjBgQMHpnp3RUej0OD7s7+HWZ3YuvZvb34b31R+g7uG3oXxReOh0WiQn5+P/Px8WK1WrFmzBsOHD/9rGMiRXjGdThdRDUSsH3akdG6LOcgIJaW2cJI5brirGtbcN0kd1bCOtwoRVedIAblcDoZhBK1ayAk5HLD/50vul8h8dFabAM3dlMNDM1eL2WQytarFnJqD3x0BTXbwT6h+fxEMWHhPuAW+MXcDsvZPGEahgG7i6dBNPB3eTZvg+Gge3EuXAiyLkNUK2xuzYf/wIxguuQTGyy9rN0xLLXRK5UIupuPCfR0ZHprDJ//l5+e3O/nP6/WmcK/FL9EBGgBsPhtq3DVYfnA5xheNj/gd9/U019NVfKQGPTdp0Wq1oq6ujl+Zlbtpcz3Wqay5HU4M+5AoUmmLFEN0d7dJSA1rrh4+d44K/dBLEwtTgGEYqFSqqIdzhPdEe796CyFfSyDQTxoPFBWhoaEhIjRzY61NJhOys7NRVlYmurqv3RFsQnnHwT/0WqjWvgv1qtcgP7wensmvg9W1nW0fTj1oENTPPgP/7t2wz30frh9/BEIhsA4H7O+8A+fnn8F49TUwTLkwYsy0mMJaokitPd2JGzIV3sPcevJfYWEhX/aRxM/usyPIBhMypGNMjzH4z87/4PdDv0cdAtqbtOhyufgSe3v27IHdbodSqYwYApKsr5o7I6WwRm0RNzGUgeuohjUXrFvXsA6fvNhZh2O0beMKRXQnSd9VlEql4J7oQCAA77L5/O92lx8D66+/dliLWcy6ZRKeXAnvqY8hWDAUmh9nQlG1HLoP/wb3eXMRyu36a3Flr17IfPwxmKZdB9v778P1/XwgGETIaoP15Zfh+OQTmK6/HrrJZ4I58u2ClEKnVNrTXe3gFhcKr5gRDAb5yWjFxcX8TPJYLqZSOBbJ9Pbmt/Hu1ndxTf9rcMOgG+Le3pCcIVDL1aj31KPSWolyS7ngbYSX8+ImLQaDQdhsNn589f79++HxePiVFrlQna6LT6SClM4NqYZosbWJq2EdXle+sxrW3HW8dQ1r6olOAYZhugzRXM3XYDCIffv2YefOnfDbatH/YAMAFcAwKD39dJhycjqsxSxm3RnQAsecA1f2MdB+Ow2ypt3QfXIe3JNfR7D36VE9X1FUhMyHHoLp2mthe/NNuH74H8CyCNbUoOmJJ2D/6COYb5sBZsAASV3MpRKik4Gb/Bfey+xyuaDRaGA2m5GZmcl/A5TqHpijRYG+AIFQAIurFyckRKvlagzNGYoVh1fgj5o/IkJ0POeFXC5HRkYGMjIy+J9xkxZb37hb91YnclEcqZzbXDvEGmSEEmPgjJeYg2a4WGpYcxXNLBaLaIZpcSQbogFEDOfw+XxtJv5xtZhDoRCUSiWKioqQdWg/aj0tN2SZyYSsIwc5HXX3Etmh7H5wXvYttN/dAEXVb5A56xAUuA1Fjx7IfOwxGK64ArZ//xue5b8BAAJ79qDh9jsgHzkS8tMmJH7nSVwScVHjxtNxPcxcJRvuK7/c3FyYTKakVWYQ04VZrMb1HAc5I8du625U26tRaCyMe5sj80e2hOjDf+DyfpdH/C6RxyR80iLwV31+Lljv2LEDTqcTWq02IlibTKa4PqRJ6X0llbZIMUSnc5u6qmG9c+dO1NTUYN++ffxQvfZqWFOd6AQJBALYunUrvF4vnnjiCRw+fBhVVVX4+OOPkZmZ2aYW859//onc3FxkZ2dDs+pX8MdB5MM1upKSXk6NBe7zP4Ji90IE+pwZ82ZUffog+6WX4F23DtZXX+OXFg/+8Qd6rFmD5v37Ybr22qQus94dpNQTLaQd4bVIuV5mr9fLl34sKCjAMccc0+1L0krlWCSLSWXCkJwhWFO7Br8c/AWX9bss7m2Oyh8FAPiz9k/4gj6o5N1Tvk4mk/HjMjl+v5+vNtDQ0IDKykoEAgF+pUUuWEfbG5bOwSYc9USLnxjGRCdS+KTiffv2oV+/fsjMzOy0hrXFYkGfPn26dT/TOyUecejQISxZsgRr1qzB6tWrsW7dOjAMg0AgAIVCgRtuuAGjR49G//79232ThffYMrZqyBQtF4yQwwE2FAKTpm/MlAU0uTIyQLuboP7jVXhPugdQCFv1SD1kCHLefQfuhQthffkVBGtrwQSDcHzwIVzzF8A841bozjgjbS+IUgnRnf39uTFw4eOYnU4nvyoWTf5LL2N7jsWa2jX49cCvCQnRvc29MSx3GPpa+sIdcHdbiG6PUqmMqDgQPn6zubkZe/fu5ScthpfYS8Wkxe5EIVr80mU4Ryy4Endd1bAOBALdvm+C0uEbb7yB4447jr/xjR49Gj/88AP/e4/Hg5tvvhlZWVkwGAy44IILUFNTE7GNqqoqTJ48GTqdDrm5ubj77rvbNHzZsmUYOnQo1Go1ysvLMXfu3E73a/ny5Xj11VcRCAQwbdo0rFq1ClarFaWlpZg+fTquu+46DBw4sMNPaeFBxn3JV5ANHNPyC68Xofp6IX8iURHF6n4sC+2310H151vQfn0V4HMI3gTDMNBNnIi8Lz6H+oorEDpyswo1NKBp1qOov+km+KuqEr3n3UJKFz3uveb3+/nyRuvXr8evv/6K1atX4+DBg5DJZCgpKcHo0aMxZswYHHfccSgtLUVGRoakQ4iUjOsxDgCwtm4tHDGcz60xDIM3x7+Ju4beFVFGL+XXLvw1frNHjx4YMGAATjzxRJx22mkYMmQI3yu2adMmLFq0CMuXL8fmzZuxf/9+2O12frVFKZBKOzhSDJxS/GDA6ex4cTWsy8rK0KtXr27eM4E90YWFhXjmmWfQp08fsCyL999/H+eccw7WrVuHgQMH4o477sD8+fPx+eefw2w245ZbbsH555+P335rGdcaDAYxefJk5Ofn4/fff8ehQ4cwdepUKJVKPPXUUwCAPXv2YPLkyZg+fTrmzZuHxYsX47rrrkNBQQEmTWp/MY8pU6ZgypQpbX6uVCpjKnGnKO0FrFgFAPDv3w/5kXIt6UYUvZwMA9/oOyH/5looqn6D7rOL4T7/Q7C6zK6f24pMq4X2H9diV3ER+v6+Ap5lywAA3jV/oubSy2C67h8wXnklmDQLYyk/RnHgxpU2NjbC7XZjxYoVcLvd0Gq1fPnHXr16pcXkP6negBKtyFiEUlMp9tr24vfDv2Ni8cSkvZYYj0lHkxa53upDhw5h+/btAACtVgufz4fa2tqET1pMBTEej1hJqS2A9IZzhJNMibuzzz474r+ffPJJvPHGG1i5ciUKCwvx7rvv4uOPP8b48S1F8+fMmYP+/ftj5cqVGDVqFH766Sds3boVixYtQl5eHgYPHownnngC9957Lx599FGoVCrMnj0bZWVlePHFFwEA/fv3x/Lly/HSSy91GKI7IqROdHiQUZT99WnGt2kzNMOGCXpdsejuiYUdCRaPgeuiz6D98grIazZA++n5cF/4MVij8EmbDMPAn5mJ7Oefg+f3FWh69hkEDx4CfD7Y/v0GXD/+hIwHH4B60KAktCTxRPFBJ0osy7ZZ+c9ut0Mmk/El5fr06ZPUyX9EHKYeMxWeoAdDc4YmbJu+oA8b6zeiX0Y/GFXGrp8gIhqNBhqNBnl5eQD++nC5f/9+HD58GDt37oTD4eCXSeaGgCRiNbfuQMM5xE+KvescMa9YGPNeBYNBfPLJJ3A6nRg9ejT+/PNP+P1+nHbaafxjjjnmGBQXF2PFihUAgBUrVmDQoEH8hQYAJk2aBJvNhi1btvCPCd8G9xhuG0KoVKqo60SHQiHIq36D9uurYVRs5X/nXbNG8OuKhZgCWij/eLgv+RohQwHkjRXQfToFjO2g4O2Et0lz4mjkffIJDJdfDhw5wQKVlaj7x3VofuFFhDyehLYhGcR80QsGg2hqasK+ffuwadMm/Pbbb/j999+xd+9eBINB9OjRAyNGjMDYsWPRq1cvqNVqZGdnp3WAFsv5InZ/7/V3XNTnImRrs7t+cJSuX3I9pi+djt8P/Z6wbaYKN2kxOzsbWq0WJ510EiZMmICBAwfCaDSioaEBa9euxaJFi7BixQps3boVBw8ehMvlEuV7kEK0+EmxTRwxt03w996bNm3C6NGj+cL1X3/9NQYMGID169dDpVJFDPgGgLy8PBw+fBgAcPjw4YgAzf2e+11nj7HZbPzXxNESutgKY9sPxe5FUJeFIM/LQ7CmBr7168F6PG2W/U4HYgrRABDKKofr0m+g++wiyKz7oPlhBtwXfyFoG63bJNNqYbn9NugmTUTTk0/Bv2MHwLJwfPopPCtWIOPRWaLvlRbDMQqf/Mf1MnOT/8JX/uus50wM7SDpa0jOEGxu2IyVh1diUskkSbyfwm/+7U1adLvd/IIw3IdVhUIRMWHRbDanfJ0CCtHiJ8U2caLpiU7VHATBIbpfv35Yv349rFYrvvjiC1x11VX4+eefk7FvcYs2RHNjohn2SFVjmQLqUSPh+u+3YL1euJcvh65V73g6EFuIBgDW1BOuiz6H5ocZ8Ex8XvDzO2qTqn9/5M6dA8d/PoH1zTcBrxeBqirUXTcNxqumwjRtGhgRLpiTqmPElfIKX/0vFArBaDS2KQEp1QsziU+DpwHLqpdBJVPh7F5nd/2ELozMG4kPt3+IPw7/IbnQ1h6GYaDT6aDT6fhFJ7iVFrnx1eErLYZXA+nulRbFdh+JlxSHPkh9TLRYj5fgEK1SqVBe3rKq1LBhw7B69Wq8/PLLuPjii+Hz+dDc3BzRG11TU8MXt8/Pz8eqVasitsdV7wh/TOuKHjU1NTCZTIJ6obl9jabkCR9k2CPjhxkZdKdPhOu/3wIAXD/+lJYhmhvrLbY3IGvq0bYHOhQAZF2/Hbl2tNcmRqGA8coroBl7EhoffQz+LVuAUAj2OXPhWb4cGY89BlU315DsSneEaG58Zngvs9vthk6nS9jkPzG9v2IlhTZ0p7W1a/H0mqdRaipNSIgenDMYKpkKte5a7LXthQmmrp8kckLP7fYmLXq9Xn5BmPBJi1wvNResu2PSopTOESm1BZDmBwPgrx5msX5AiLuMQSgUgtfrxbBhw6BUKrF48WJccMEFAIAdO3agqqoKo0ePBgCMHj0aTz75JGpra5F7pOLFwoULYTKZMGDAAP4xCxYsiHiNhQsX8tsQItox0fzEwtCRnmhGBvXwYZBlZiLU2AjPb78hZLdDZkyvyS6dBU4xke9eDPWvT8F94Sdg9TmdPjaaNilLS5H7ztuwf/ABbG+/AwQC8O+qQO3Uq2C+9RYYLr1U1H+PeHCT/8J7mbnJf1xpyvz8fJhMpoR/RSyF3ioptKG7jMofBTkjx17bXhx0HEQPQ3yru2oUGhyffTxW167G6trVmJApjZVJ473WqNVq5OXl8cMcuSWSuWC9a9cuOBwOaDSaiGEgiZy0KLVvBqQYOMV+n4+V2N97gkL0/fffjzPOOAPFxcWw2+34+OOPsWzZMvz4448wm834xz/+gTvvvJNfFfDWW2/F6NGjMWpUy4pUEydOxIABA3DllVfiueeew+HDh/HQQw/h5ptv5j9FT58+Ha+99hruueceXHvttViyZAk+++wzzJ8/X3Djoi1xx1exkLeECiboByOXQ3f66XB8+ing98O9eDH0554reB9SKTxwilYoAPWyxyFvqoT2y8vhuuhzQGPu8OHRtolRKGC69lpoxpyEpkcfhb+iAggEYH3pX/CuWo2MWY9AHtbbkyrx9kQHAgF+aVQuOPv9fuj1epjNZvTo0QMmkynpK/+J9QJHkseoMmJQ1iCsr1+P3w//jgvLL4x7m8PyhmF17WqsqVmD8RnjE7CXqZWMYBO+RHJRURGAlutA+EqLu3fvht/vh9FojAjWsV4HRH0PiYEUA6eYe2vjwVUYk0SJu9raWkydOhWHDh2C2WzGcccdhx9//BGnn346AOCll16CTCbDBRdcAK/Xi0mTJuHf//43/3y5XI7vv/8eN954I0aPHg29Xo+rrroKjz/+OP+YsrIyzJ8/H3fccQdefvllFBYW4p133hFc3g4Q1hMdCoXAqgwtP/A7AQC6M85oCdEAHF9+Bd0556TViZcWIVqmgPu8udB9cj7kdVuh/fpquC/8GFB2PnQn2jap+vVF7vtzYX1jNhwffQQA8Pz2G2ouuxyZTzwOzfDhcTchHkJCdPjqaVwvs8PhgFqthslkgtlsRnFxMYxGY0rKZon6fUaSYnTBaKyvX48Vh1YkJESPyBuB2Ztm48/aPxHqJ73ewmRRKBTIyspCVlYWgMhJi1arFfv27YPNZuMnLYaX2YvmGymphU6ptQeQZu86ICxEp4KgEP3uu+92+nuNRoPXX38dr7/+eoePKSkpaTNco7VTTjkF69atE7Jr7Yq2TjTXE82FaMbvAgAoB/SHsv8x8G/bDv/27fBt3iz6Sg/h0iJEA2AzyuC+YB50n10IxcHV0H53PdznvAu0s/xvLG1iVCpYbpsBzQkj0DjrUYSamhCqr0f9TTfDeM3VLZMORbhAi8/ni1gq22azgWVZGI1GmM1mfvKfRgSVY6Rw8ZZCG7rbmIIxeGPTG1hdsxr+oB9KeXxDhAZmDsTtg2/HsNxhYILpfzxSde1tb9JiKBSCzWbjg/WBAwfgdruh1+sjgnVHcyOkdH5IsddWim0CJDacI90IqRPNsiyCJeNgn7ELUGj4nxsunIKmJ54AADg//yKtQjR3Qok9RANAKHcA3Oe9D+0Xl0KxZyk0P9wOz5mvArLIHtV4PhhoRo9G3sfz0DjrUXhXrQJYFvb35sD751pkPfVkSlam5N573OS/8F7m8Ml/OTk5KC8vh16vF+2FMh3eZ12RQhu6U9+MvshQZ6DJ24RNDZswNDe+xVcUMgWuOOYKAEBdXV0idjHlxHLzl8lk/NAODjd/orm5GTU1NdixYwcAwGQyRQwDkVrPrdTaA0g3RHM90WI9XpIO0YKX/ZYr+XHRHN3E02F95WWErDa4Fi2C+fbbIM8UvmR1KqRLTzQn2HME3H9/G9pvroVyx7cIFo+B/7jLIx4Tb5vk2dnIfvUV2D/4ELbZs4FgEL4NG1Bz5VRkPfUU1MMStwJbR1iWhcfjgc1mQ319PZxOJ3755RfIZDJ+QlCyJv8li1gvcCS5ZIwMw/OGY/H+xdhj2xN3iG4t3d9XYg9rarUaubm5/ER/btIiF6y5SYsqlQrBYBB79uyBxWJJm5UWOyL24xILKbYJ+KtdYm2bpEO0SqWCw+Ho8nGdjUtlNBrozv57y3havx/O//4XpmuuSfSuJgX3phPD0t/RCpadCs/fXoL8wCr4j724ze8T8cGAkclguvoqqIcNReP9DyBYU4NQYyPqbr4Z5ltugeHyyxJ6wnKT/8J7mf1+P/+1qVarxcCBA6HVakV7oYhGunxYI4l12/G34cHhD8LAzSmJky/ow8Kqhfij+g+chvQrLZrOwictFhYWAmi5fh06dAjbtm1DU1MT9uzZEzFpkRsGkuzJy4kkxcAp5THRYu5hl3SIFtIT3VInmoV64b2QOWvh/ttLgLaleoPhggvgmDfvyEp4n8F42WVguqEmZyKIccGVrgT6n4tA/3Pb/V0ie9fVgwYh96MP0fjQw/D+8QcQDML68svwbdmMjIcegkyvF7xNlmXhdDrbrPzHTf6zWCwRk//279+PpqYm6HS6uNuTSlK4eEuhDamQr89P6PZkjAzP/fkcnAEnBuQOSOi2u5sUwppCoYDZbIZcLsfQoUP5SYtcb3VVVRU2b97MPy48WIv1mzQpHJfWpNgmQPzDVCQdooVOLATDQLHrB8g8TZA5axA6EqIVhT2hPfVUuJcsQaihAc4FP8Bw3rlJ3vvESMcQHSHoh3rZo/APnIJQ/mAAiW2T3GJB9sv/gu2tt2B/bw4AwL1oMfyVu5H13LNQlpZ2+nxu8l94LzPLsnxN5l69evEr/7Un7Y9PGKm0g8QuETdyhUyBwTmD8duh37DLuytBe0biEX5cwyctFhQUAPhr0iIXrMMnLbZeaVEMgUiKgVPsYTNWQnvYRV3iLt2o1Wphi60AYPW5gKcJjLMOyD6Gf4xx6lS4lywBADg++hD6v58NJg3GhIW3LR2p/ngFqvXvQ7FzAVyXfQvWXJTw4MnI5TDfeCNUAwaicdYssE4nAnv2oPbqa5D55JPQjjkRQMvJzNVk5m4YHo+Hn/yXm5srePKfVC7kUmlHOp8rqbRo/yLM2z4Po/JH4YZBN8S9veF5w/Hbod9Q4a1IwN6ljlTCWlftCJ+0WFJSAgD8CsZWqxU1NTXYuXMnQqFQm97qVFQXkspxCSfFNgFpMpxDqn98hUIhrCcaaFkxr2EHGGdtxGNUAwdAPXwYvGv+RKBqP9w//wzdePEvBpDuPZ2+4TdAUfEjX0Paddl/k/Ze1Z48DrkfvI/Ge++Dv6ICrNOJhjvvhO+yS9F44omwOxxQKBQJX/kvnY9POKm0gwjn9ruxqWETACQmROe21G+v9FYiEApAIZN0f4/oxXJuq1SqNpMWnU4nmpub0dzcjMrKStjtdqjV6ohKINzQkWSSYuaR6phosR8rhdfrxb///W/ccccdqd6XhBMynCOiJxpoE6KBlt5o75o/AQD29z+A9tRTRX1wgfQP0VAZWhZjmXc25A07oPnhNjCWKxPepkAg0NLDHArBducdUM9+E/qNG4FQCKqP5qGgphb9770HOpMpocc87Y/PEWI/D6IhhTakyvC8ltC7tXErHH4HDMr4Jhn2tfSFQWGAI+DAjqYdGJg1MBG72e3EHgCEiLcdDMPAYDDAYDBETFq0Wq2wWq1oamrC3r174fP5+Fr4XLDW6/UJ/TtK6bhwpDycQ8ztUrhcLtx111246aabOhy3ma7UarWwEnc40hMNQOaoabu9UaOg7NsX/p074d+6Fd61a6EZNiyxO51g4b3s6Yo19oD7729B99kUKCt+RN8eerBDY/+7cz0i4eOYucl/ZrMZlrw8mF54HvjkEziOjJNmFy6Es74OmmefTehy4VIJ0QD1RB/NCvQFKDQUotpRjfV163FSj5Pi2p5cJsexlmOxsn4l1tSuSesQLQXJCp3trbTo8Xj43ur9+/djy5YtkMvlfC81F6xVqraLcUVLqiFaam0Com9Xqs41hUql4qtYSC1EK5VKQYutAEDI1PIJmbFVt/s449Qr0fjQwwBaeqPTIURL4UIe6jEMntOfhfZ/d6DPwa/QsHsccHx0ywx7vd6Iccx2ux0AYDQaO5/8d+ONUPUuR+PjjwNeL3zr1qP26quR/eL/QVneO9FNJCIghXMlVYbnDke1oxqra1bHHaIBYJBlEFbWr8R++/4E7F3qSCHYdFdAYxgGWq0WWq02YtKi3W7ng/WhQ4fgcrmg0+kihoEYjcaoeyylGDilOpxD9D3RXC9sNGEz3UQ7nCN88l3IXAwAYDxN7T5WO2EC5P9+A8GDB+FdsQK+HTuh6tc3cTudYOk+sTBcYOAU+Oq2Qrb+I7Cy9nshgsEgHA5HRMUMj8cDvV4Pk8mEvLw89O3bFzqdLqoTUzfxdCh69kT9zJkI1dcjePAQaq+7DlnPPQvNCSfE3SapfMiR4sWbCDM8bzi+2f0N1tSuScj2JuRPQKm7FJNOmJSQ7ZHYpfIaxS1CZTabIyYthq+0GD5pMby3WqPRtHttkuLQBym2CRD2gScV9yGFWq2GTCaTbIiOtieaG/IQLB4D+y3bALWx/ccqFDBecQWan3sOAGB/7z1kPftM4nY6waQS0jjecQ9iXWgQyorGQXWkXml4L7Oj1eS/Hj16wGQyQaGIfWKSauAA5L0/F/UzZ8K/bTtYpxP1M25DxiMPQ3/mmXG1R0rHJ93bQR8E4sNNBtzZtBPN3mZY1Ja4tmdUGmGUt38dThdS6fEUWztUKhVycnKQk9My/DJ80qLVam0zaZEL1ty9IN2vVe0R2zFKFKE90d1e4s7hcEAul0s2RAvtiYZC0/KvE/q/nw3be+8hVF8P95Il8FdUivbrfSmFNG7yn12RjYqKCrjdbsjd9VBl9IDJnIGioiKYTKakrPwnz81FzltvofHBh+D55RcgGETTrEcRrKmB8eqrY349qVz0pNIOErtsbTaG5gyFRW2Bw++IO0RL5bolFWI+xzuatGiz2fhgvW/fPvh8PhgMBni9XjQ3N8NisSR80mKqUIhODcX9998Pj8eDYDCY6n1JuGhXLBQ6+Y5Rq2G88kpYX3oJAGCbMwdZT/4z5v1MpnSdWNjR5D+NRgOWZWEwGHCsrh5Zy2bBP/hq+PremfR9kmk0yHruWTS/8CKcX3wBALD9+w0EDx2G5Z67wcTY2y2VsCCVdpDYvTXhrYRur9JTiY+WfoRcbS4eHfVoQrfdHaRyTqRjQFMoFMjMzERmZiaAvyYtWq1WbNu2DY2NjTh48CA/XCR8fHU8kxZTRapjosX+3lMsW7YMgHRO9nDRDudoPW5YueZNKPb9At+w6xEsPbnd5+jPPw/2999HqLER7oUL4Z92XZer26VCuvREc5P/uNAcPvnPbDZHTP5buXIlcnJyYDi8GTJ3I1QrXkKwx7AOj1UiMXI5LPfcDUVBPqyvvgYAcH79NYJ1tch88knIBC7fnS7HpytivsgJIYVjISkMsKpmFbI0WaK/mXYkHfe5NSmcF+GTFvfs2YOysjLk5ubykxatVmubSYtcuBYyaTFVpDomWkhPdErGRP/000/417/+BZ3Am3864IZzdHXxbd1bK6/ZBMXenxEoPqnDYCbTaGC84nJYX3kVYFnY35uDzMcfS3gb4iXGkMZN/uMCs9Vqhdfr5Sf/5efno2/fvh1+zca1KTDwQvgOroZq4zxo5t8C15U/gjX1SPr+t1RpmQp5bi4aH3scCATgWf4b6qbfiOxXXobcYhG0LakQ2/vsaOP3+/mau36/n+9ZMxqN3fo+Y1kWB5wHkKXJglahjWtbJeoSKGVKNHgasN+xH8XG4gTtZfdI1+DfmlTaweHaEz5pkRM+abGurg67du1CKBSCyWRqs9KimP4mUjtGHLG3S9GzZ088//zzqd6PpBAysTA8AHAVOmTWqk6fp7/gAtjf/wAhqxWuH3+Eadp1UBQVxbfTCZbqEM12MvnPbDbHNPkvvE3eUx+D/PBGyGs3Qfv9dLgu/gKQd89Xcbq//Q2ynBw0zLwbrMMB/7ZtqJt2PbJfexWKvLyotyOF8Cnmi1y00qkNLMvC5XLxodlqtfI9aGazGVqtFjU1NdixYwcAwGKxICMjgw/W8Uy07cq0xdOwvn49Xhr7Esb2HBvXtpSMEgMzB2J9/Xqsq1uXdiFaStLp/OhKZ8Gso0mLXLDes2cP7HY7VCpVRCUQs9mc1POqK1IdziH6MdGA+HcyViqVCoFAoMvHtR7OEbKUtvy8aU/nz9PpYLj8Mtj+/QYQCsE2Zy4yH3k4rn1OtO4ucef3+/nAzP0LBAJ8TeaioqJOSw9FI+KDgUID99/fhP7DMyA/tBbqn/8J7/jHE9iizmmGDUPu22+jbsYMhOrqENi7F3XXTUP2669BWdz1DT/VH3ISSSrtEKNgMAi73R4RmoPBID/cqXfv3hFjOZVKJf8Nm8PhQFNTE5qbm1FdXQ2PxwOj0ciH6oyMjIT2qhUZi7C+fj02NmyMK0Rz76chOUOwvn491tetxzm9zknIPnYXsfeiRUsq7eAILZvGTVrs2bMngJbzkTsPm5ubsW/fPni93oiVFrt70qJUh3OI/b2nACDJPzwQ/WIrXNDkDlYos6XShqyxosvnGqZMgf3Dj8Da7XAtWADTP66F4siJJgbJnFgYCoXgdDojxjK7XC5oNBqYzWZkZmaitLQ04ePJWgdP1lwM9xn/gu6ba6Ba9x4CpScj2GtCwl6vK8ry3sh9+y3U3XIrgtXVCB4+3NIj/corXdYQF/PF4Wgklg8CXq83IjDb7XYoFAr+5lxSUhLVeSWTyfhyj1yNXY/Hw4fqvXv3YtOmTVCpVBGhOp5z9rjs4/Ddnu+wsX5jTM8PxzAMBucMBrYB6+rWxb297iaW91O8pNIOTrzBTC6XR0xaBBCx0uKBAwewdevWiEmL3P8ma9Ki2MNmrEQ/JrrbX7EbRbvsN/eHD4VCkMvlCGWWAwBkjsOA195hzWgAkBkMMFxyMexvvwMEg7C//wEyHrg/MQ1IgET2dLae/Gez2cAwDH+TLi8vh8lkSvrM5vbaFOx9OnzDbwDjbkawcFRSX789ip49kfv2W6ifMQP+XRUINTai7oYbkP2vl6AePLjT50rhBsWdQ1K9kCdT+NfFXM8Wt0CQ2WxGz549+SEaifjbajQaFBQU8CvCBQIB/nXr6+tRUVEBlmX5mz4XrpVKZVTbH5Q1CACwpWELAqEAFLL4bjPHZx8PBgyqHdWod9cjW5sd1/a6m1TOB6m0A0jOdUqj0SA/Px/5+fkAwH8LxAXrw4cPw+l08kOuwucsJKKTiYZzpIakQ7SQZb+BsDCjMSOkz4XMWQtZUyVC+YM7fb7xkkvg+Pg/YJ1OOL/7DsZrr4UiP/oxsckUa4jmvj4OD81CJv8lU0dt8o57EGBSd7LJs7ORM3s26u+4E76NG1sWZbnlVmQ++wy0Y8a0+xypDOeQwsW7u9rA1a/lQrPNZgPLsjCZTDCbzejXrx9MJlPUoTVeCoUCWVlZyMrKAtByHeRu/k1NTdi2bRtcLhcMBkNEqNbpdO3+zXqZe0Gv1MPpd6LCWoFjMo6Jab+488KgMmBIzhBoFBrYffa0C9FSILUPx93RnvBvgYqPDO3z+/18JZC6ujpUVFQgGAzy5z7XYx3LB2YazpEakg7R3Jjorg4C98aLGBed2RtM0AfG3djl68hMJhgumgL7nLlAIAD7Bx8g4567497/RIgmpHGT/8J7mB0OB5RKJX8RKCwshNFoTOnECU6HbQoP0GwIssPrESoY2n07hpb3QvZrr6LhnnvhXbkSrNeLhrtmIvPJf0I3oe0QE6mEaI7YL3ipwNWm5f45HA5+UlJWVhZ69eoFg8EgmhsgwzAwGo0wGo0oOjJRmlucoqmpCfv378fmzZuhVCojQrXZbIZMJoOMkWFQ1iCsPLwSG+s3xhyiuX0BEl9/urtI5XyQSjs4qWqPUqlsM2nR5XLxwZqbtMidW+HBuqt7r9SOEYcbISBWqU9ESaRWqwG0fPrj/n97wodzcNznfQAooy/PZLjsMjg++RSs2w3nf/8L0zVXQ37kREml9iYWtp7813qSUnFxMUwmk+hK+HC6DJ4BD7T/vQ7yfb/CdfGXCPUc3n07B0Cm1SL7/15E4yOPwL1oMRAMovHBh4BgCLqJp0c8Vox/31hIpR3xfqDh5glwN0Wr1cqvksadW9zE2nSiVquRl5eHvCNVZ4LBIL8aXFNTE3bv3o1AIACz2YyMjAz00vTCSqzEpvpNuKjPRSne+9SRygdkqbSDI5bAyTAM9Ho99Hp9xKRF7txqbm7G/v374fF4+G+CuFBtMBgi2iCWNiVatO1K1XtU0iGaG5vr9XqjCtERB0FAgAYAucUC/YUXwPHhR4DPB/sHH8JyV/JX0YuG2+1GdXU1H5pdLhe0Wi1MJhMyMzNRVlYmqp6wrnR5QsnVYLUZYNggtAtugfPKHwGNufPnJBijVCLzn/9Ek0YL1/fftwTphx8GGwhAf+YZEY+V0g1KSm2JBjeeOHxoBgC+5JXQ8o3pQi6XIyMjAxkZGSgrK+N71LgJi3muPJykPgnF9mJs3LiRf2y8w7/q3HUwKo3QKNLnQ4gUgo3UApqY2xN+bnG4SYtWqxUHDhzAtm3bACCivJ5Uh3PQmOgU4sYUdjW5kGGYhFSxMF5+OZyffQ7W64Xj669hvGoq5NndO36Pm9UfPpYZaDkJzWYzcnNzu2XyXzJ12RPNMPBMeAryg2shs+6DZuF98Jz1b6C7x27L5ch4+CEwCgWc33wDhEJoevRRIBiE/uyzjuyqtIZzSFn4sCfuH7cUvcViQW5uLvr06ZOSeQKpFt6jVlhYiGNxLKb4pvC9aQcPHsS2bdsgl8v53jTuX7Rf1d609CasqlmFl8e9jDE92p9jQJJHSu9pMYfo9nQ2adFqtWLnzp0AgJUrVyIjI4MfBmIymUQdQKMhZMIkVedIMC4oxrL0N7x2aBfcAqZpL1xXLQLkXU/ykWdlQX/BBXB8/DHg9cI+931YZt4V8/53Jbx2LNfL7PV6YTAYYDKZUFBQALVaDbVajT59+iRtP7pbVMFTbYR78qvQfXI+lDu/Q2D76Qj0P797djAMI5PBcv99gFwO55dfAiyLpieeAIIB6M89N60u5J2RQjtatyEUCrWpzez3+/lhT2VlZTCbzZ1+y3U0U6lUyM3NRW5uLoC//p5NTU1oampCVVUVfD4fvxIcN7aaG+rS+hzP07UMJVlftz5tQnS6hbWOSKUdnHRvT/ikRaAlCyxcuBD9+vWD0+lEQ0MDKisrEQgE2qy0mKgqP91F7D3sR0WIjrbMXURPtEoPefUqMD47ZI0VCOX0j+o1jVOvhPPLL//qjZ56JeRHbiLx4L4uDR/H7HQ6+cl/ZrO53cl/Docj7tcWm2h7b0MFQ+EbdTvUv78AzeKH4SwcDdZY0A17GImRyWC59x4wCgUcn37aEqSffApsIABMmiSpnuh0bksgEEAgEEBFRQVfm1kul/MraxYVFcFoNIp6kouYOHwObGncArVcjcE5gyOWWC4tLeV79rne6srKStjtdmg0GmRkZIBhGASDQT7wHJ99fEv96Yb46093l3Q+H8Kle+hsTWrt4bJLdnY2X7oyfFVTriY8N2kxvMReqlda7IrYS/eJ9y+XAAzDQKlURh2iIy54jAzBnP5QHFgFWd3WqEO0PCsL+ilT4PiIGxv9ASwzZwred27yX3gvcygU4lf+Kykp4XvBuqo8kqzFVlJFyBAI38hboNi9EPLDG6BZeC/c53+Q5L1rH8MwMN91J6BQwDFvHgCg+dnnoHV7wBaLa6n4WIj5IteejpbNZhgGfr8fBQUFOOaYYzos40a69v3e7/HC2hcwtsfYlgVTWmEYBjqdDjqdDj169ADQ8kGGm6xYU1MDh8OBRYsWtXw1rW7pdUtU/enuIoX3j1Q+DHCkFqK54xPeYxs+xIo7v8InLVqt1jaTFrlw3XrSYipF2xOdqv1Nj6tQHISuWhgulDMAOLAK8tqtCAy4IOrXNF55BZxffAHW44Hj629gnDq1095obnxTeC+z2+3mJ/9lZ2fHXAZLqmNuo26TTAHP316GZsEt8I6+I7k71QWGYWC+bQYYhQL2998HALhfeQXGCy8ETj45pfuWKGJ9r3E3j/DQzH0otVgsKC8vB8uy2LVrF/r3j+4DM+lc/8yWv+O2xm1RP0ehUCA7OxvZ2dnQarU4cOAA+vfvj+bmZigaFdAwGniCHnzx8xc4Lu84vjdNrF9RSymsSaUdgLSOC/DXdberNnU0aZHrrT506BC2b98OAG16q1M1bI1WLEwhric62gVXWvfYhnIGAABkdVsFva48MxP6i6bA8cGHgM8H29z3+brRLMu2WfnPbrdHjHFK5OS/ZC77nSpCPxiEssrhuuKHbp9Y2B6GYWC6+SZALoP9vTkAgJwvv4Rz4ADozzorxXsXO7HdkNpbNpv7GjMjI6Pd5eibm5tTt8MSVG5uWfm13lOPZm8zLGqL4G20XrBiSPMQrDi8Ag6TAwzDYN++ffyy5dy46niXLU80sZ0bsZBS6GRZVlLtAf4azhFLmzQaDTQaDV++MrxMZ3NzM3bu3AmHwwGtVhtRt9pkMnXL0DbRD+eQ2pupNZVKFdVwjvZ6ooO5YSGaZQWFMOOVV8L5+RctdaO/+Qa2CeNhU6na1I3lSmAl62tjKfZEx9SmsL8t07gbrKUEkKVmbCvDMDBNnw7W54fjo4/AsCyanvgnGJUKuokTU7JPiZKK91r4stnc15TcstkWiwU9e/bkJ6x1dY5J7VxJJb1Sj576njjgPICK5goMz4u/Xvtx2cdhxeEV2Ovbi+uGXQeg5VsG7obf0NCAiooKhEIh/gMT15uWzhWJUk2KOUFK7eGOTyLaJJPJ2iy25Pf7+Q6J1pMWw3usk/GNkOgnFkrpjdSeuHqis/qBZWSQuRvAOGvBGjpfyjt88p/VagU79iQYf1oI+P3wf/opTDffjMLCwm77BAdQiG5NuW4u1D8/Dt/oO+EbeUuC9yx6DMPAPONWBNwueL78CgiF0PjILDBKJbSnnpqy/YpVd15HWi+bbbVaAYC/oOfn53frstmkY70tvVtCtDUxIXp0wWg0ehoxqmAU/zO5XN5m2XKn08nXrN6+fTtcLhf0ej0fqjMyMrplvLtUwqeU7iHRDn1IJ8l+nymVSn6YFfd64ZOCuW+EFApFxBAQs9kc93U42p7olC22smvXLhQWFkKrFba4SLqIpycaSi1CeYMARg7G09wmRHOfzsJX/wuf/Ge6+moEfl0O1u2G5tflyL/zTijCxiJ1h3bblebiCdGsSg8m6IPq9xcR6DUh6gmjycAwDHQzZuDw/mpYVq0CgkE0PPAgsp57FtqxY1O2X/FIxnuNW2iAmxDjcDigVqthNpuRnZ2N3r17Q6/Xx91bIaWbqliUm8vxy4FfUNlcKfi57b2Xjs06FsdmHdvp8xiGgcFggMFgaLNseXNzM6qrq7FlyxZ+aWUuVCejc0Mq116pfBgAKEQnQnuTgsPnnXDnmdvt5r915841oZMWRd8Tfeutt+L000/HhAkTMHjwYEmdLPGOiQYA12XfA0d+5wib+Gez2eB2u6HT6Tqd/Ge9+GLY584FAgHY58xBxv33J7KJXaKe6EiBARfCv+sHKCt/gubHmXBd9l8ghbP8ZTIZas87Fz1ycuCaPx8IBNBw733I/r8XoRk1qusNSAw3yTa8lzl8+BNXlSbdls0+WpVbWsZFV1grYnp+ou5FrZctD4VC/M2+qakJe/fuhd/v52/2XI91IiZTSel+KgVSDNFiWNWvvUmL3IdXq9XaZtJieLDu7DwT/Zjo8847D7feeitOO+00LFiwQFIhGkBMJe64yX/hvcytJ/9F+5Wx4fLL4Pj8c7BOJ5zffgfj1VdDUdB9tYppYmGbJ8N72lNQVK+EvGYDlGvfhX/4DYndQUG7wwAyGcwPPgDW74f7p58Avx8NM+9G9quvQD1kSMr2TYhYrxnhpRy53mbuPEvFstlS+8CZakNyhuChEQ/hmIxjErZNb9CL7U3bEQwFMTR3aEzbkMlk7S5bzoXqXbt2weFwQKfTRYRqMZX+6k5SygVSDNFiPT6tP7yyLBux0iJ3nnGrvrY3aVH0Je5+/PFHnHDCCbj44otTuiPJEs1wjkAggGAwiLq6OtTW1sJms8Hv90Ov1/91I9cqoTNnCf77yC0WGC6+qKUSQyAA+3tzkPHgA/E0SRCp9kTH88GANeTDe/LD0Px0N9S/PYdA74lgM8oSuIfR495PjFyOzMceRaPfD/fSpWC9XtTfcSdy3nwTqn59U7JvsejsvdbRstncrO+8vDz07dv3qFw2W6pytDk4t/e5Cd3mT/t+wmOrHsPg7MF457R3ErLN8Jq6PXv2BNDyAY8L1YcOHcK2bdsgk8kiQnVXC1WINdwIJaV7CIXo1GEYps2kxUAgwHeiNDQ0YPfu3fzKsBaLBX6/Hz6fL6o2pqTE3cUXX4yLLrqIDyap/kog0VQqVcRwjvBFFrheZofDwbc7Pz8fxcXFf61M5ndD9/FZkDVWwnHTJkBtFLwPxssug+PTz1p6o7/7Dsarr4LiyIU62aQaouNtk//YS6DY/l8oqpZD89PdcF/0GcCk7r3PsixkCgUyn/wn6u+aCe+KFWCdTtTPmIGct9+Csrg4ZfsWDe7iFX5culo2u1evXjCZTLRsNmlXR+f4oOxBAIBtTdvgD/qhlCdnAqlSqUROTg5ycnIARC5b3tzczC9bbjQaIyYshg81ktK1Nx1CWjTiKQcnVmIf8tAZhULRZmIwN2nRarUiEAhg48aN2Lp1a8SCMImYtJgICq4HWooBGmg5IMuXL8eKFSuwbt063HnnnfwnIW75WZPJhJ07dyIzMxOFhYWRG1BqwfhcYEIByA9vQLDkJMH7IDObYbjkEtjffRcIBmGbMweZDz2UoBZ2jkJ0hxuB5/RnoZ83GcHSU46UMEzI7gncjcjwySiVyHr2GdTfcit8Gzci1NiI+ltuRe47bydk+fhka2xs5Hubw5fNNpvNol82O11vQmK317YXa2rXoIe+B04sOFHQc9s7JiXGEphVZlh9Vuxo3tHlRMNECV+2HGg5Zz0eDx+qd+/eHbFsOdeLJgXp0tMphJTaI/bJd0K0nrR48OBBDBs2DAD4YH3gwAG43W6+jCl3XnJBvDvxdaKlcAB8Ph/Wr1+PlStX4o8//sDKlSuxe/duVFRUYPTo0Zg8eTKGDh2KgoKCNu3tbIhAsGAIZLb9kB9aG1OIBgDjZZfC8emnYB0OuL6fD9PV10BRmPzeaKrO0THWUgLHtJWAypCAvYpNexdymVaL7Jf+D3U3TIe/ogLBQ4dQd8utyH37LciO3MBTrb1lswGgqqoKFouFls0mvJ8P/IxXN7yK04tPFxyi28MwDAZlD8Lyg8uxqX5Tt4Xo9vZDq9VCq9W2Wba8ubkZtbW1aGxsRH19PZqamiKGgXTXGP9EkdI9RIo90VL8kMMJhUKQy+X88A4ON2+tubkZhw8fhtVqTU2Ilsof/o8//sDJJ58MnU6HUaNGYeTIkZg6dSqeffZZnHXWWZg2bVqnz+8sbAYLhkC541vID62Lef9kJhMMl14C+9vvtPRGv/ceMh95OObtRYsmFnYhPEAHfYBMmZKVDVu3R2YyIfvVV1D7j+sQPHgQgT17UH/7Hch+/TXIdLpu37+Ols3mJgCWl5dj48aNOP7446FLwf4lipTCglhwKxdWNMdWoaM9g7JaQvTG+o24tN+lCdtuvMKXLQeA9evXQ61WQ6/Xo6mpCQcPHoTb7eYDAReqxbpsOUdKPZ1SDJzpPJyjKx2999RqNXJzc5GbmwuWZVOWc2SffvopPvroI7zxxhv4/PPPu3zC008/jREjRsBoNCI3NxfnnnsuduzYEfGYU045hV89h/s3ffr0iMdUVVVh8uTJ0Ol0yM3Nxd13341AIBDxmGXLlmHo0KFQq9UoLy/H3LlzO9yv4447Dps2bUJDQwMWLFiAWbNmYdKkSdDr9XGVuAOAYH5LhQTZ4XUtX/vHyHjppWAMLaHNtWABAtXVMW8rWlIdzpFoskNrofvwDCi2f5PwbXemvbHEHHl2NnJefw2yI5+ufZs3o+Gee8FG8X6Ol9frRW1tLXbt2oU1a9bgl19+wZYtW2C325GRkYHjjz8e48aNw9ChQ9G7d29kZ2dL5iZLEosrc1dlr4IvGP17t7Pr1nHZxwEANjZsjG/nuoFarUZxcTGOP/54nHzyyTjllFPQu3dvyGQy7Nu3D7/++iuWLVuGdevWYe/evWhubhZlx4dUQpoUQ7SUPuS0Jvahxoqbb74ZKpUKHo8HI0eOxJQpUzp9ws8//4ybb74ZI0aMQCAQwAMPPICJEydi69at0Ov1/OOmTZuGxx9/nP/v8N6pYDCIyZMnIz8/H7///jsOHTqEqVOnQqlU4qmnngIA7NmzB5MnT8b06dMxb948LF68GNdddx0KCgowadKkNvul1WrRp0+fNj9vPbGwI52FzVDuQLAyBWSuejC2arDmoi631x6Z0QjjZZfB9tZbLb3R776HzFmPxLStaEk1RCe6TYp9v0LesAPqZY8hUHYqoLEkdPsd6epirigsRParr6Duhulg7XZ4//gDjbNmIfPJJ8Ek6MLCrfDGjTfjls3majMXFhbytZmlvGy21G6sYpGrzYVRaYTdb8ce2x70y+gX9XM7OiYDMwdCxshQ46pBjasGebrOV5NNpdZt0Gg0yM/PR35+PoCW+6HVakVTUxO/pHIwGBTVsuVSCp5SagtHim0ChFVSSdSy50Ipqqqq+E8x0aT9//3vfxH/PXfuXOTm5uLPP//EuHHj+J/rdDr+ItHaTz/9hK1bt2LRokXIy8vD4MGD8cQTT+Dee+/Fo48+CpVKhdmzZ6OsrAwvvvgiAKB///5Yvnw5XnrppXZDdEeirRMtk8k6/vSv1CKUMxDymg2QH1qHQIwhGkDLkI7//Aes3Q7XDz/AdO01UBTFvr2uUIiOjm/EjVBs+wbyxl1QL38W3tOeTuj2u9JZe1R9+iD7pf9D/c23gPV64V60GNacHFjuvDOm14pm2eyuSne1R4oXcRI/hmFQbinHurp1qGiuEBSiO6JT6vDwiIdRbCpGpjozAXuZHNFcp+RyOTIzM5GZmck/RyzLlnOkFtKk1BZAeseHw2UyMfdEy3799Vfo9XpoNJqYSk1xN2DuAsCZN28esrOzceyxx+L++++Hy+Xif7dixQoMGjSIL8ANAJMmTYLNZsOWLVv4x5x22mkR25w0aRJWrFghaP+iXfa7q2AW6PM3+AdcANbQ/geDaMkMBhgvv6zlP4JB2N59N67tdfl6NLEwOnIVvKe1fAui3PARZAf/TOz2O9DZcI5w6uOPR+azzwBHKls4/vMJ7B9/3OX2uXJBhw8fxo4dO7Bq1Sr88ssv2LZtG1wuF7KzszF06FCMHTsWQ4YMQa9evZCVlRXzxKd0f6+l+/6LFT8uWsDKhV0di7N7nY3js49PWom7RBEabrhly4uKijBo0CCMGzcO48ePR79+/aBUKlFdXY3ffvsNS5Yswdq1a7F79240NTUhGAwmqQXSOi+kOH5Yim0C0qOmt+KMM87A888/j1AohLvvvlvQk0OhEG6//XaMGTMGxx771wzpyy67DCUlJejRowc2btyIe++9Fzt27MBXX30FADh8+HBEgAbA//fhw4c7fQy33LZWq41qH6MN0Z32RAPwjbw1qteLhuHii2H/+D9gbTa4fvgfjFdfA2VpScK2H44mFkYvWDQa/oEXQbnlM2gW3QfXFT8kfUnwaEM0AGjHjEHG/feh6Z9PAgCsL/0L8pwc6E4/nX9MKpfNFvOFjqRWb0tvAECltVLQ8+g91UKlUvGTqIDIZcubm5uTumw5IK2eTim1hSPVMdHp0BOt0Gg0eP3111FYWIi7775b0Bvs5ptvxubNm7F8+fKIn19//fX8/x80aBAKCgowYcIEVFZWonfv3gltQFeEjInurrApMxhgvOJy2P79BhAKwfbO28j65z+T8lpSHM4BJK9nxDvuISgqf4K8bhuUa9+Df/j1XT8pTkIu6PpzzkGgpqalyguAxlmPwqFUwl5UxC8gFF7PtmfPnhFLqCabFN9rJH6n9DwF5eZyFBsTt2hQIBTAj/t+xLambbh98O1QJPkDbyySFdjCly3nXifZy5ZLJXhKNURLrU1AmoToYDCI3bt38z+I9kDccsst+P777/HLL7+0XaCklZEjRwIAKioq0Lt3b+Tn52PVqlURj6mpqQEAfhx1fn4+/7Pwx5hMpqh7oYGWkkNer7fLx0U17IENQVa/Haw2C6whvokshosvhuPj/yDU3Az3Twvhv/pqKMvL49pme6QYopPZJlaXCc+4h6D9aSYU+3+Df9i0bil5F017uKEZzrPOgn/HTih/+QXw++F5ZBb8Dz+EvAEDUrpsdrpfxNN9/8UsW5uNbG12QrcpY2R47s/n4Aw48feyv6NvRt+Ebj8RuuvaG82y5du3bwfDMIKWLedIKaRJqS0cGs6ROgquakYgEIBcLo9q9v2tt96Kr7/+GsuWLUNZWVmXL7J+/XoAQEFBAQBg9OjRePLJJ1FbW8t/PbVw4UKYTCYMGDCAf8yCBQsitrNw4UKMHj1aUAPVajXsdnuXj4umJ1oz/xYod3wLz7iH4B8xvdPHdkWm08F41VWwvvwywLKwvvkWsp9/Lq5ttodCtHCBYy+CS5uJYO/TuyVAd9Se8GWzw5dANRqNsEy7DiqnE+yff0LmdsP8yqvIfe9dyA2pWzgGoJ5o0n1kjAwDMgdgde1qbGncIsoQDaQuACRi2XKOlIKnlNrCkfJwDrG3S/HEE0+0/J8oJxLdfPPN+Pjjj/Hf//4XRqORH8NsNpuh1WpRWVmJjz/+GGeeeSaysrKwceNG3HHHHRg3bhyOO66ltufEiRMxYMAAXHnllXjuuedw+PBhPPTQQ7j55pv5MVzTp0/Ha6+9hnvuuQfXXnstlixZgs8++wzz588X1EClUtmm/nR7oumJDuYfD+WOb6Go/iPuEA0A+gsvgH3ePITq6+FZtgy+bdug6t8/7u2Go4mFsbyADMHyicnbfuuXO3JB9/l8EWOZWy+bXVxcHLFsduj/XmxZ1XD7dgQPH0b9bbcj5603IUtxkE5nUjtXxGRZ9TJsqN+ACUUTolplMJpjcWzWsS0humELzut9XiJ2U7JaL1sOAG63mw/Ve/bswYYNG6DRaPhAnZGRAYPBIKnzQqohWmptAoS3KyUl7ri60H6/Hxs3buTXKO/IG2+8AaBlQZVwc+bMwdVXXw2VSoVFixbhX//6F5xOJ4qKinDBBRfgoYce4h8rl8vx/fff48Ybb8To0aOh1+tx1VVXRdSVLisrw/z583HHHXfg5ZdfRmFhId555x1B5e2Alp7oRI2JDha2DEuRH1gFhIKALL5xpjKNBqZrrkHz888DAGxvvoXsf70U1zZbo57oOHntUK2ZDd8JtwDK6IcRdSV82exQKIT169fD6/VCp9PBbDajR48e/AfTji4MMp0O2S/9H2r/8Q8EDx6Cf9cuNNx/P7JfeglMCpYVluJFnCTOgr0LsKR6CXK1uVEv1d3Ve2pg1kAAwJbGLXHvXzKIPdy0t2w5V7OaW2yJZVnI5XIEAgEYDAZYLBYoleKuiNIZKfbaSnU4R1r0RE+cOBEbNmyA1WrFtGnTsHbt2k6f0FV4KSoqws8//9zlC5eUlLQZrtHaKaecgnXrYl9qG4i+TnQ0wSyUeyxYpR6M1wpZ/Q6EcgfEtW8AoD/3HNg/+ADBmhp4fvsN3g0boT7+uLi3y6EQHR/dV1dCfnANAMA3Rlj1mnCdLZsNAMXFxcjPzxd8c5JnZyP75VdQd90/ELLa4F35B5pfeBGWe+9JyUU1nd9rUrwJiUlPQ8tY3YPOgwnbJheiK62VcAfc0CoS90E3EdLtfFAoFMjKykLWkVVSWZaFw+HAhg0b4Pf7sXXr1rRctjxcuh2TaIj9w1qs0qFdshkzZiAUCkGv1+O2225L9f4knFKpjKonuqsSdy0PUiDYczgAQF4trF51RxiVCqbr/sH/t2327IRsl9/+kcAppQtHd4Zo35HqHKrVs8E074v6eeHLZq9evTpi2ezMzEwMHjyYXzZboVDE1bujLC1B1gsvAEee7/zySzg++TSmbcVD7Bc7klo99C29nYkM0TnaHORqcxFiQ9jeuD1h202kdD4vGIaB0WiEVqtFYWFhl8uW79mzR7TLlnOk2BMtxTYBadITfc4550Amk0Gr1eKqq65K9f4knFqtjmpMdLTBLFg4Goq9P0Ne/Qf8Q//R5eOjoTvrLNje/wDB6mp416yBZ80aaIYPT8i2w+sQp/PFPFx3huhA+RkIFI+FoupXqJc9Bs+577V5DNdbE97LHL5sdlFRUZfLZsfbHvXgwch46CE0zZoFALD+619QFBVCe9JJcW1XqHT/sJbu+y9mQkN0tMdiYNZA1FbXosJagSG5Q2Lev2SQyvspvB0dLVve3NyMxsZG7N69m1+2PLy3OpXLloeT0r2QI8U2AdGH6FSeZ4oRI0bgww8/hEwmwwknnBDzSmVildCeaISNi67+A2DZhFRvYBQKmKZN4wOQbfabUL89LCEnBfcGlMrFHOjmnh2GgXf845B/cDqUlT/Bv2cpvEVj+aEZzc3NsNlsAP5aNrugoAAmkynqcylRHwr0Z56BwL59sL/3HhAKofHBh5DzzttQ9ekT97ajIcWLOEkcPkQ7DkZ904/mMbcdfxvuHXZvwkvoJYpUzouO2tHRsuVceb0dO3bA6XRGLFtusVhSVopTSvdCjlTHRKfDhwPFvn37cNlll8Hr9WL37t2SC9GJWvabE8w/Ht5RtyFYOAoACyAxB1g3aSLsc+cisGcPfBs2wLtiJTQnCivn1x4hK+Kli+7siWZZFk5dIXx9L0bG9nnAD/dged9/QqUzwmw2IycnB+Xl5aJZxMB0w/UIVO2De9FisC4XGu64E7lz50Ce3T0BI53fZ2K/WKe7An1LiVNnwAmbzwaz2tzFM6JTaOx8nYJUSufzIZyQMMMtW24wGPg1JHw+Hx+qDxw4gK1bt0Iul0dUAemuRaGkOPQhHcJmLIQM50hV+xUqlQrPP/88srKyErZEqJgI6YmO6oInV8U1wawjjFwO0/XT0Hj/AwAA6+zZUI8eFfcbQ6ohOllj7lovm93c3NyynG7mmThRvQA69yGM1+9EaHTiloEHEnd8GJkMmbNmofbQYfi3bEGwpgb1M+9G7uw3wCRhqe+I15bgRZwkjkahQZYmCw2eBhx0HuwyREvlmiWF8yLeY9HesuU2m40vr8ctW24ymSJqVicjk0gxcHIVVKQmLUrc+Xw+jB8/ni/ILjVqtTrqnuhUT4bQjh8PZZ8+8O/aBf+2bfD88gu0J58c1za5N1Wq25ZIiTxR/H5/xFjmzpbNDpgeAaqWgx10UcJeH0h8zzqj0SD7hedRe821CB5uCdONjz2GzCefBJPkHph0Dz7pvv9i9+rJr8KsNiNHm9j7zRe7vsAvB3/B5f0ux8j8kQnddjyk8n5KdPCUyWT8sA5u++E1qysqKuBwOKDVaiNCdTzf+HGkGKJDoZDkRhEAaTKxcOzYsVH11KaraEvcCVqUJBSAfM8yKKpXwDv2gbjrRXMYmQymG25Aw8yZAFrGRmvGjo0r+Ei1JzqW9nAX6vDQ7HQ6odVqYTabkZeXh379+kGn07V7kQ0MnILAwCmJaEKEZAxPkWdnI+v/XkTdddPAulxwL1oMW3ExzDfemNDXCSe1GxNJPKGrCkb7ntrSuAW/H/odAzIHiCpEA9I5L5LZDoZhoNPpoNPp2ixb3tzcjMOHD2PHjh38suVcqI522fJwUgzRUmwTkB7tUkRT0zmdqVSqhC22EvZoaH+YAcZrg7/f2QjlD45rH8Npxo2FcsAA+Lduhb+iAu5Fi6GbeHrM22MYRnK1oqNtD7fMLbdkNrdsNjcBsFevXjCbzbHPGvc5AFX8qwMm6yKh6tMHmU/+Ew13zQRCIdjfmwNl7/K43k9dkdL7jKSPgZkD8d2e77ClQVyLrkjlfEhFmOlo2XJubHV1dTW8Xm+7Nas7kw7BTCgpjvMG0qQnevLkyXj77bf5FYukhptY2NWJI6gnWiZHoGg0lBU/QrFvOXwJDNEMw8B843TU3zoDAGB76y1ox58a1wp0R0uIbr1sts1mg0Kh4IdmlJSUwGAwxD12jHEchnrxg5DZD8F1+fcAE/9Jnqzjoz3pJJhvuw3Wl1pWwmx6/HEoSkqg6iesRzAa6X5jSvf9TwfbGrdhYdVC9ND3wIV9LkzYdsNXLhRbSBLTvsRKDH/T8GF2JSUlAFqWLedC9Z49e2C326FWqyNCtdFojAhiYmhLokm1OkdaTCz0+XwIBoMpefHukJyeaCBYcjKUFT9CvmcJMPKWeHaxDfXIkVANGQzfuvUI7NsH148/Qj95cszbk2KIDoVCfBklLjS73W7o9Xp+2ez+/fsnZyUtmQKKqt/B+OxQbP0KgYHxhYFkHx/DpZfAv2sXXN9/D9brRcPMmcj94H3IMzIS/lpSep+RxNtn24cPtn+A4bnDuwzRQt5LfSx9oJKpYPPZsN+xH8XG4nh3NSGkcj6ItR3csuUFBS2VX8KXLa+rq+OXLTebzXyoDgQCkgucUvxgAKRHuxQLFy5M9T4klUqlSuhiK5xArwnAYrQsCe1uArSJCyQMw8B8w3TUTZ8OALC99TZ0kybF3BsthkmT8QpfNruxsRHBYBCrV6/mh2b06dMHZrM55lX/hGB12fCNvBXqX5+CevnTCPQ9E1DqYt5esi8SDMMg4757Edi7F77NmxE8fBgN996HnH+/Htc3HO29TroTa1iIBldZprm5GYFAIKkVDmLF1XKuc9dF9fho31MKmQLHZByDjQ0bsaVhi2hCNCCN8wJIj3Z0tGw5N2Hx4MGDcLvdUCgU2LJlC3+OpNOy5e2h4RypI73pnK0kvMTdEaypJ4LZx0Bevx2KvcsQ6H9ePLvZhnrYUKhPOAHeVasQPHgQzm+/g+H82F4jHXuivV4vX2LOarXC4XBAqVTCYrHAbDbDarVi3LhxKTvBfEOvhXLjR5BZq6BaPRu+E++Ma3vJPj6MWo2s555FzdSrEKqvh2/dOjS/8CIy7rs3oa+Tbu+zdMZ9sAz/NoZhGJjNZmi1Wr7CAbfIRUZGBjIzM7scM5pMubqWEmfRhmghBmYNbAnRjVtwRukZCd9+LKRyPqRDj2B7uGXLjUYjiotbPljt3LkTjY2NkMvlqKqqwubNm6FSqSImLJpMJtGHt3Dpeny6IrQ+eSoobDYbDAZDWr1hhEhmibtArwktIXr3ooSHaAAwTb8BdatWAQDs774L/eQzwcTQqyT2EC102WyXy4WqqqrUvmcVGnjHPgDt99OhWv0G/IMuBWssiGlT3XV85Dk5yHr+OdTdMB3w+eD88kso+/aB4fzzk/7a6UDsNyHuq2quYoHNZuM/WGZnZ6O8vJxfBU6pVIJhGH6Ri8bGRj4wqNVqPlBnZGR068px2ZqWnmhXwAWn3wm9Ut/hY4WeEwMyB0Cn0CHIimt4otjfV9GQUkiTy+XQ6XQ45phjAKTfsuXtoTHRqaOYNm0aZs2ahQEDBkjqROEI6YkGhF0sgmUTgFWvQ9a0J2FLgIdTDxoEzUknwbN8OYK1tXB+8w0MF18seDtiC9GBQCCiBy182WyLxdLlstliaU+g72QEeoyA4uBqqH97Dp6/vRTTdrrznFMfeywyHrgfTY8+BgBofu55KMvKoB4yJO5tS+3akWrcRFkuNNvtdmg0Gv4ciWbMf+tFLgKBAD8R69ChQ9i2bRsUCkVET7XRaEzasdQpddAr9XD6nahz13UaogFh76nTi0/HpJJJkCVgom+iiOE6lQhSaQfQ9h4vZNny8FCdqmXL2yPF7AakR7sU3BtEqqKtzhG+KEm01RuCPYbCefUShDL7JDxAc0zTb4Bn+XIAgO29OdCdcw5kAleeEzpUJZFYloXH44noZXY4HNBoNDEvmx1e+zqlJxjDwHvKI1B8fDbk+1fEVfKuO4+PfvJk+HfuhOPj/wDBIBruvQ+5H7wPRX5+3NuWws02Ve8rj8fDf7Bsbm6OuHEXFRXBYrFAE+eqkwqFAtnZ2cg+sgx8KBTiJ2LV19dj165dfC1erqfabDYntDcoQ50Bp9+JZm9zwrYJtIyLFiOxh4BopPxam0DRZAGhy5ZzwwxTtWogjYlOHcX69ev5/5DKSRJOpVKBZVkEg8FOD0Z4T3TUZAqEshJfKiycql8/aMePh3vJEoQaG+H87DMYp04VtI3unFgYvmw2Fwj8fj8MBgMsFgtKS0thNpvjmuwkmhANIFQwBO6/v4NA6cmAMraxpqnoWTffeiv8FZXwrlqFUFMTGu6+B7lvvxXX0uCpPhbx6s795xb+4XqZm5ub4fF4+Jq3cdcwj5JMJuN7oXv16gWWZfnlmLmyYcFgkA8LXGCIZ3U0k8oEALD5bIlqRhshNiSKHmkpfKjkpPv5zYnlviGmZcvbI+XhHGJvlyIdkn48uDex1+vttHJD3MtjhwJAknpCTNdPg3vpUoBlYf/gA+jPPx8yQ/Q9nskMaV0tm11YWMgvm50oYluFMdDnb3E9PxUhmlEokPXUk6i56moEDxyAf/t2ND3zLDJmPRLXRUssx0Rswr8i5v5xN12LxYJ+/frFtPpaonETE81mM0pLS/n9bmpqQmNjIw4cOACv18uHBa63WkhVnKdGPwWFTIEsTVanj4vlvTR/z3y8u/VdnFhwImYOnSn4+ckg9hAQDTF0WCRKItqSymXL2yOl4xOOZdmoskMq7zuKRYsWYeLEiSnbgWTjLu5djYuOOZixIWgW3ArFnqVwTl0I1tQzpv3sjLJ3b+jO+BtcC35AyGqD/cOPYL5xetTPT1RIC182m+tldrlc/LLZ+fn5nS6bnShiC9G8UBCK7d8g0PcsQBF9D0SqLn4ysxnZL7yA2muuAevxwDV/PlTHDYp5oqEUL+KxCl9djTtXuHq1FosFPXv2TPiHy2QI/2q7qKgIQMsCF42NjRHjRQ0GAx+oMzIyOh12UmgsTNr+yhgZquxVsKgsSXsNIUR3jYqRlEJaMtrS1bLlNTU1CVu2vD1SHs4R7Qf0lFXnuPnmm/Huu+9i3LhxaTH+RCju69CuKnTE3BPNyMDYD4Hx2qDYvRj+wcKGWkTLdP31cP20EAgE4PjPf2C4aArkWZ335PC7GGOIDgaDsNvtET3NwWAQRqMRZrMZvXv37pavnFsTa4jWfnM1FHuWwuNuhH/YNEHPTVVblOW9kfHwQ2h88CEAQPMLL0LVrx9UAwfGtD2xHZNYxHKTDS83x4VmrrcqIyMDZWVlkqmCpNVq0bNnTz4seL1efvjH7t27YbfbodPp2pTVi+UmJ/Q5/TP7AwB2NO9AIBQQxThpKYRPKZzXnO76QJCsZcvbI6UPOeHSoV2K3Nxc/PLLLxg3blyX44bTkZAQHXPYLBsPxYFVUOxelLQQrejZE/rzzoPz88/But2wz5kLy8y7onputBMLw5fN5qoBcMtmWywWlJSUtFlCNRXEelIFys+AYs9SqFe+DP+xFwNqU1TPS3W1Ed3EifBt2gzHJ58Afn/LRMMPPxC8oqFYj0sycFUuwitncOXmcnJy0KdPH1HN3k8mtVqN/Px85B+ZmMr1wDU2NqK6uhpbtmyBSqXie6qr2Wr80fgH+lj64KyysxK6L8XGYugVejgDTuy17UW5pTyh2xdKSuFTKu/lVPXaCl22nAvW0dxz02HscCzSoWNX0aNHD36mdnes9tbd5HI55HJ5UhZc4QR6nwb18mcg3/8b4HfHPMGsK6Zrr4Hru+/AejxwfPUVDJdfBkVB17WJ25tYyI11DO9lDl82u2fPnvyiDWI7OcXaE+0/9iIo/3wb8sZdUK1+A76TolvIRAx/X/NtM+Dbtg2+DRsQrKlB44MPIfvVV8AIHG4gtmMiRGfHgZudz/3jxjtyQzO4yhliOJap1roHLhgM8kGhpqYGPx36Cd+7vscwwzAMxEC+rF7rm2Us7yUZI0O/jH5YW7cW25u2pzxEA+I4v+OVDj2C0RJTWzpatry5uRn19fWoqKhos2y5xWJpk9WkPJxDLMeqIwqPx4NevXrh0KFDaGxsRH5+Pr9kplRwZe66EmsVi1BWP4SMPSGzH4C86jcEe58Wy252SZ6dDcMll8A+dy7g98P21tvInPVIl89jGAbBYBBNTU0RoTkUCvHLZvft2xcmkyktPkiJNURDpoBv7H3Q/vcfUP35NvyDrwJriK5sXKrbwigUyHrmadRccSVCDQ3wrl4N2+w3Yb75ppTuV6pwPUTcDc3lcvHl5kpKSmCxWES1nLaYyeXyiKWY6/bU4fs/vodX5kVjYyMqKyvBsmybsnpAbAG0f2Z/rK1bi62NWxPe0y1Uqs/rRJFKOwBxhejWulq2/NChQ3C5XDAYDBETFtMhbMYi2g8H3EiCVFBUV1dj9uzZsNvtqKurw2233YZrrrkmJTuTDAzDQKFQJLUnGgyDQK8JUG34AIrdi5IWogHAeOUVcHz5JVi7Ha4FC2C88gooe/Vq8ziv1xuxmElTUxPUajXMZjMyMzPTeoymaEM0gEDviQj2GA75wTVQ/f5/8E58rsvnpHo4B0eenY2sp59C3Y03AcEg7HPnQjVwALSnnBLV88XSDqFYloXL5UJDQwMAYMWKFfD5fPxYxfLycpjN5rT4gJkOLBoLAMAn82HYsGF8UOAmK+7btw9+vx8qlQpqtRp1dXXIyMiIegJW/4yWcdHbG7cnqwmCSCXcSKUdYg7RrbW3bDl3b29qauJXIWVZFjt37kRubi5fszod7+2tpcOHA8Vpp53Gzyx1Op0oLS1N9T4lXLJ7ogEg0Pv0lhBd8SO8E54EZMmZdS8zmWCcOhW2118HQiHYZr+JjGeejhia0dzcDK/Xyy+brdVqkZOTg9LSUtG/IaMl2sDGMPCOexC6T86DcvMn8A+7HqGszr9SFtMxUQ8ZAvOMGbC+1LL6YuOjjyH3/TIoj4zhkwIutIUPz+AmzAJAv3794q6FTDpmVrX0MnN1osODQklJCf+hZtu2bXC73di6dStfQzu8rF5HE5oHZA1AX0tfHJN5TLe1qSOivEbFIJ2CZ1fSvS1qtRp5eXnIy8sD0DJcasmSJTAajfzk3nRbtrwj6TBMRfH888+neh+STqVSRdUTHU8wCxafhEDhSARLxgFBHyBLzrhoANBeeAFsH38MNDXBvXQpds2bB29xMT9pofWy2Zs2bYJCoUjrC0drog3RAII9R8DfexJk7gYgFN2HNzG1xXDpJfBt3gz3woVgnU403HMvcufOgayLWeNiaweHWxghfHgGAL7HpqioCCaTCcFgEL/++isyMjJEX3ounXEh2uqztvt7hmGg1+thMBig0+kwYMAAvgZvU1MTdu3aBYfDwX+lzQVrrqxesbEYH//t425rT1ekcN1N9+AZLh16N4WQy+VgGAZFRUUwGo1tatJzZSjDK+aIbdnyjkQ7sTCldaJ9Ph9UKhWCwSA/rkTsf1ihlEpl1MM5Yl5sRa6E++IvY3tuJzpaNjt7wgRkfvEFAKB0+W/Im31Fh8dNrOEmHmJvk+fMlwGlPurl4MXUFoZhkPHQg/BXVCCwZw8Cu3ej+amnkfH4Y10ulysGwWCQD8vNzc2w2Wz8Er2ZmZno1atXu4seBIPBFO3x0cWgalkoyh1wIxgKQt7Jt3bcMeImYPXo0QNAy0RPbgGYvXv3YuPGjfzCFlxPdbLr1UdDKuFTTNenRJDCMQkX/j7rbNny5ubmNsuWh9esFlvnQTqcP4qPPvoI1157rej+eInCMAyUSmXUwzlSfbHgls3mes24ZbO52szcstmqsWNx+PffETx4EIG1a+FdvRqaE05od5vduex3dxHDseqUShwrSsZKptMh67nnUHv11WCdTrj+9z+ohw2F/txzU71rbXCrZoaXm1OpVLBYLMjLyxO8AJDYjoXUaOR/LcTiDrphkEV/rnBUKlXEV9qBQIDvqT5w4AC2bNkCmVIGpVGJstwyZGZmJm21uKNBOoSZaEmpLZyuetc7WrY8fGy1z+fjV1Dleqs7WzSpO6RFibsXX3wROp0Ol1xySVrscCyiHc4R88TCcD4nFLsXI5TdF6HsrsfkxbNstnn6dDQ+0lKdw/rvN6AeMaLdE0mMIS1eadMmjxWq1W8g2HMEgr0mtPsQsV7QlaUlyHjwATQ+8CAAoOmFF6EcOBCqPn06fE53HBNuYg33j/uqMrzcXCwLFpDuoZar8cnfPoFOoYNW3vFxEvJeUigUEWX1fq3+Fff8dg9KnaW4E3di586dLd+whPVUm0ympN/v0uIaFSWxXqeEkmKIFjp2OHzZ8tLSUn41Yi5UV1ZWwm6382U8uWEg3f1BNNqhN6k8noqzzjoLn332maRDtFKpRCAQ6PJxieixVS99BKrNn8I3+Gp4J/wz4nfhb1QuNLtcLuh0upiWzdZOmgjlBx/AX1EB/5Yt8CxbBu2pp7bbLildzDnp0CbVn29Dveo1BLP6wlV6MtDBCmpibYvu9NPhXbsOzi++ALxeNN53P3I/eB8yvb7NY5NxIeOGM4WHZrfbDYPBAIvFgrKysrSdNHO0Yhgm6fWbi0xF8LN+VHmqMGTYEMggg91u5yuA7N69G6FQKCIgWCyWpHwjK4XAJqXgKaW2AH/dO+JpU/iy5dyQKa6Dj6vvzi1b3rpmdTInYAv5cJCyEnd6vR5Wa/sTPKRCSE90vCE60OdMqDZ/CsWuH+A6eRbsDmfSls1mZDKYbrwRDXe1rFxofWM2NOPGtVkgIyE97CKTLh8MfMOmQbV+LuQNO6HY8gUCgy5p8xixt8Vy+23wbd4M//btCFRVoenpp5H5xBPtXrTibUf4pBhuiEZ4ubk+ffokrdyclG6sR7v2Vi7kvt0rKyuLqL/b2NiI/fv3w+fz8QEhMzOz3UUthJJCYEtESBMTqU0sTNbxUSqVyM7O5hfj44aacjWrq6ur4fF4+CEg3AfSRC46lQ7HSrF69WqceOKJACDJXmige6pzAEeWzdb1R7FCD4WzBpt/eBc2y0D+DZaMZbM1Y0+CatAg+DZtQmDPHrh++AH6syIXGBB7SItF2rRJY4Z35Axofn4c6hUvIdD/PEARuUiH2C8SjFqNrKefQs0VV4J1OuH+8Sc4hw6F4fzzIx8XQzvC5wBwwTm8PFOPHj06HM5E0tdnuz7DIechnN/7fBQZizp8XKznRvjKhdsat7Xp+W5df5f7lpDrqd62bRtcLhdMJhPfU52RkXFULrCTFtdZgcR+zRWC6/hLdn6TyWQwmUwwmUz8suUej4cP1Xv37sWmTZugUqkiFoKJJ/NE0xPNsmxqq3PYbDbMmDEDgHRDtJDqHNEejM6WzTblnYjsAwsxVLUXgZNuSOoJyzAMzDffjLrp0wEAtrfehm7iRDBhvdtpEzgFSKc2+QdPherPtyCzH4By4zz4h17b5jFib4uisBAZjzyMxnvvAwA0v/h/UA08Fqp+fSMe11U7gsEgbDYb38tstVr5rwiT9UFTKLEfCyn4pvIb7GzeiRPyTug0RMeDX7mwaSvOxtmdPjb862yuogEXEJqamlBRUQGHwwG9Xh8xrrqrsfdSei9JJXimQ++mEKn8pkCj0aCgoCCqZcvDJyxG+w1POgwxVsyfPx8Gg/DZ0ekkEYutcDf/8FUAuWWzuSoA3LLZ8lwn8NVCaHb/D072nwCT3EUb1MOGQj1qFLwrVyJ46BCcX38Nw8UXR7RLauW70ilEQ6GBb9Rt0Cy6H6o/XoV/0CWAUsf/Ol3aohs/Hr6LL4Lj088Anw+N9x8ZH33k+tHeRTz8osqVm1MqlbBYLMjOzkZ5eXla1CsliaVVtIRPV8DV4WPiHQrRPzO+lQtbBwSuTFhjYyP27duHTZs2Qa1W84E6IyOj3fdyur+3pTacQwpDbMKJ6fh0tGw5N2GR+4aHm9PCheqO5oGlw7FSSD1AA4i6xF14T3R7tZlVKhXMZjOysrL4WrPtfUoKFo9FSJsJmase8qrfECw9OeFtas18802oXbkSAGB7bw50Z58Nma4lqKVLSBMi3drkP/ZiqFa/AZm1Cqp1c+A74Wb+d2K/SIQzz5gB78ZN8G/bhsD+/Wh66mlkPvlPvg2BQAB1dXV8aHY4HFCr1bBYLCgoKED//v2h1WpF2WYx7pNUcSHaHXB3+ri4QvSR5b93Nu9EIBSAooNJvdFqXSYsEAjw4eDgwYPYtm0bFApFxAIwUigtKqaQlgjpEMyE4N5jYmxT+LCpoqKWb5zCly3fv38/Nm/ezHescKGaW7Y8LXqiU70D3aGrMdGhUAhOpxNutxtOpxP79++H1+vlJwAWH1kNMOqaiXIlAn3PhmrD+5AfWtstIVp1zDHQnjYB7kWLEWpshOOTT2C6tmXYQLoFzmikXZvkKnjHzIS86nf4jzkn4lfp1BZGpULWU0+h5sorwToccC9ciEPlvWEfMwYNDQ2ora2FXq+HxWJBUVGRKGqNEvFRylq+zg2Euq6aFKsiYxH+VvI39DL1gj/kjztEt6ZQKNpMvLJarWhsbER9fT127doFlmWxZcsW5OTk8AtaiD0UtEYhWtzS7fi0t2y5zWbjh05xy5Zzq8g2NjZCpVJ1WoAhlYsEHhUhunVPNPcVc3htZqBl+UydToc+ffpELJsdC98JN8I34gaw5uK49z9aphumw710GRAMwv7hRzBccAFkRy7a6RLSopVOwZMT6H8+Av3Pb/d3/8/eeYfHUV1t/Dfbe1OXbMmSXDAGAzZgTAc7GEjoH8GY3iF0CBBCSSChhN4hoRMglECAEEIvNmC6e+9dlqXVFmm1deb7Q8x411bZlXa1uxO/z6PHlnbKPXvv3Hnvuee8pxhsUSQaNQIdZ52F5eGHAUg8+RTaoUOx/axo0NjYmOeWDgzF0BfFDoO264UYFfvOVekvNIKGP0/8c98HZut+Go3ihYaucfTBBx/g8Xjw+/2sWrWKRCKheNw8Hg9OpzOnEmHZgNqeBzWS6GKuNK3Vard7bkKhUErC4sKFC5Wy5fLzUyhhgIX99GYBkiQRiUT4+uuvOfPMM5k1axa/+c1v2HXXXXE6nZSXlzNixAisVitLlixBr9fj8XgGfl/HkCy0PjPoh9Vh+dUvCb39DlJ7O4EXXsB16aVFSTj7QiE8PAOGJIKgKdj+SZabk39isVhXHsB++6Jdt5bEW28jxOPYnvgrkd9fv0NFYwfSguyJjok9h9kV4jORCWRiU1NTg8ViUZ4nWVZvw4YNRCIRHA5HSlx1LuQbswFVzLmoj0SrLVFSEASsVitms5n58+ez9957o9FolHeQHDqVXLa8pKREKbQ02FAdiY5Go8yaNYuvvvqKr776iq+//prm5mY8Hg9Tpkzh6quv5ogjjuj2C88ZmQn7wOTK/nW7gePc8wj9932IRml/9TXsU6fuKPtdYBC8KzB+eSeiq57ogb8vGFtEUSQYDKbIzcmZ1U6nk5qamhS5Oenaa2lesoTYoi79aPPLLyNdckmereg/1PQiKnSkQ6Jh4H0iSRIbOjawObSZ8eXjB3St/t5fhiAI2Gw2bDabEh+aLKu3ZMkSOjo6sNvtKbJ6+Q6HKrZwgb6gNhKdabXCYoE87jQaTZ9lyzUaTf5JtBoG1ubNmxk2bBhWq5V9992XfffdlyuuuILnn38ei8XCbbfd1uv5WQ97kERM716EbvkHhE7/GLEkt1W6AHSVFdj+7wTaX/4HRCIEnn4a4ZRTCoKkZROFQjz7A03bKvTL/oukMxEbdw6QH69bsuKMTJrlcrBut5v6+voek2cBBL0ez5//TPOppyF1dmKYPoP4uHFQXz/IluxAseH8Xc5n2qhplJlz++Jb6lvKKR+cgl1v59PjP83LO663e5rNZmpqaqipqQG6kq6SY0ODwaCyjZ0sqzeYdhTrPNsT1MB1kqE2e2T0pn+dXLa8rq4ur2NU4/P5gMxWmXfccQd77bUXdrud8vJyjj32WJYsWZJyTDgc5uKLL6akpASbzcYJJ5zA5s2bU45Zu3Ytv/zlL7FYLJSXl3PNNddsV577888/Z9y4cRiNRoYPH85zzz3XY7vKy8uZM2cOW7Zs4Z133uF3v/sdBxxwACaTacASd/2CoEGIRxDEOPr5r2Tvun3AfuaZCD8rc3S89TZC02bVTYTFTKITDZNIVI1DiIcxfPfIoNkSj8dpaWlhxYoV/Pjjj0yfPp0FCxbQ0dFBWVkZe+65JwcccABjx46ltrYWh8PRp4dDX1uL69prlN+1f/0b8Q0bcm3KDhQ5qqxVjHCNwGV05fQ+DY4GdBodwViQTR2bcnqvbdEfD67RaKSyspLRo0ez3377MWnSJEaPHo3BYGDdunXMmDGDzz//nDlz5rB27VqCweCgzYNqIWpqI51qs0dGseyAaG644QZeffVVFi5cSDgcTuukL774gosvvphvvvmGjz76iFgsxmGHHUZHR4dyzJVXXsm///1vXn/9db744gs2btzI8UkVzhKJBL/85S+JRqN8/fXXPP/88zz33HPcfPPNyjGrVq3il7/8JYcccgizZ8/miiuu4Nxzz+WDDz7otl2CIDBy5MjtvnSj0Zj1YivpIrZLV5ln3cJ/QqJvIp8NaN1u7Kee0vVLIgGvvFK0hLMnFDOJRhCI7H8dAPq5L2HobM7JbaLRKM3NzSxdupTvvvuO6dOns2zZMqLRKNXV1eyzzz7st99+7LLLLgwZMgSbzdavCcvyy19injIFAKGzE+9NNyHFc6e6kGsU7bhSGbLRD3qtngZHA9DllS426PV6ysrKGDVqFPvssw+TJ09m7NixWK1WmpqamDlzJp9++ik//fQTq1atwu/3Zz10r1jITLpQW/hDMcjA9QeDVYlxoNAZjUbuvPNOKisr2X333bnjjjv6POn9999P+f25556jvLycH3/8kQMPPBC/38/TTz/Nyy+/zKGHHgrAs88+y+jRo/nmm2/YZ599+PDDD1m4cCEff/wxFRUV7L777vzpT3/iuuuu449//CMGg4EnnniC+vp67r33XgBGjx7Nl19+yf3338+Un1/a6UCv12/n4e4OuYgdjjdMQrSUogm1oFv1KfHh6bd7ILBNm0b7a68j+nwwYwaagw+C3XcflHsPBoqaRAOJ2v2I1+6Hbu1XVCx6lsDOlw/4mp2dnSmFTUKhkCI3V1dXh8vlyknZYkEQcP/uOjp++gnNli1E580n8OSTOC+6KOv32gF1YFbzLH5s/pGdPDuxf/X+PR6XDeI2yj2Kpb6lLGlbwsFDDh7w9dJFLuYnrVabUsxCjg31er14vV5WrFiBJEm4XC4l/MPpdA4o4Vdtns5ifm90B7X1j4xM9a/z9R1o7rvvPt544w0cDgePPPJIvy7i9/sBFFWLH3/8kVgsxuTJk5VjdtppJ2pra5k5cyYAM2fOZNddd1W0AgGmTJlCIBBgwYIFyjHJ15CPka+RLoxGY9rhHFl/wLR64jufAIB+3uCFdGisVuxnndn1iyRhffNfg3bvwUCxk2iAyH7XAuBe+z6Gjo0ZnStn+m/YsIEFCxbw1Vdf8c0337B+/Xp0Oh3Dhw/ngAMOYMKECYwaNYqKioqcEGgZGpuN8G9+g/Tzyzr47HOEf/wxZ/fLBdT4IipUfLf5O56Y/wRfbvwy5/ca5R4FwBLfkj6OzA1yOa7k2NCGhgbGjx/PpEmTmDBhAuXl5QSDQWbPns0nn3zCt99+y9KlS2lpaUnLoZSMYp9nt4XaPNFqJdHF0k+6K664gq+++gqz2cxjjz2W8QVEUeSKK65QtoUBmpqaMBgMuFyulGMrKipoampSjkkm0PLn8me9HRMIBOjs7MRsNqfVRr1en3Y4Ry5ULGK7nIzhh7+iXfUpQvtmJFtF3ydlAbYTuhIME5s3Y5w/n/CPP2IaP/gZ6rmAGki0WD2e+LCD0a3+nKrVb8Jek3s8Nrl8qvwjC9LL1QAHqm0+UEgjhpP49Yno/vEKSBLem26m4uWX0G4zD+zADsgvfYncP8OjXD+T6LbBJdH5CIMQBAGHw4HD4VASrmTNXa/Xy4IFCwiHw9jt9hRZvd4KWaiNpKnNHrVJ3MkoljAVXSAQ4OGHH2afffbp1wUuvvhi5s+fz5df5t6j0F+kS6JzRczEkuEkqvdEu/EH9AteJzphcGTABKMRx4UX0HbLrQD4H34E47PPqOKBUwOJBojs91taHLuwpmwyOyf9XZaba2trU0I0AKUk6tChQ9NK/BtsxH/1K6zLlhP54QfELVto+9OfKbnn7qIac2oYV4UOga7xIEo9Oy2y1Q8j3CMA2BzajC/iy3kyYyFB1ty1Wq0MGdJVu6Czs1NRAFm2bBnt7e3YbLaUcuXbyuoV0/PbF9RGoovFY5spiqWfdM888wzQlegHZBQ7dckll/Duu+8yffp05QEFqKysJBqN4vP5UrzRmzdvprKyUjnmu+++S7merN6RfMy2ih6bN2/G4XCk7YWGrrLf6Wxh5bKyX2Sv36AJrCc2+ricXL8nWI44At/zLyCtXk1swQI6P/0Uy6RJg9qGXEENZEes3J3WqIe4z4fX61W8zIFAQBGT93g8NDQ09Dvxb7AgCAJoNHhuvYXNJ09D9PsJT59Oxz/fwHbi/+W7eX2ikL9btUH5rvt4hLPRJza9jUt2u4Qaaw1Gbe5CmrZFoc5PZrMZs9lMdXU10JWALHuqV69ezdy5czGbzQqh7s1LXYwoFnKWLtRmj4x0PdH5fs6Uvd9MyLMkSVx66aX861//4vPPP6d+G13Y8ePHo9fr+eSTTzjhhK544CVLlrB27VomTpwIwMSJE7nttttobm5WBLQ/+ugjHA4HO++8s3LMe++9l3Ltjz76SLlGujAYDGl7onNVlCQx/DASObly7xC0WvRnn0X05j8AEHjsMcwHHYRQ4KVm+0Kxe6JjsZjiYW5ubiYcDhMM+PHYzVRUVDFq1CgsFkvRTY6SJKEtK8N98820Xn01AL4HHsC4xx7ohxd3OfAdyB4UTzSDUwTqzNFnDsp9ukOhP8MGg4GKigoldDIejyue6g0bNuDz+ZAkidmzZyvEutAX9L2hmN8b3UGtJLpY7NJ1dnYqg0qSJERRxG6393rSxRdfzMsvv8zbb7+N3W5XYpidTidmsxmn08k555zDVVddhcfjweFwcOmllzJx4kQlbOSwww5j55135rTTTuOuu+6iqamJG2+8kYsvvlhJgLrwwgt55JFHuPbaazn77LP59NNPee211/jPf/6TkZHpkuhceqLzCe3eexMZPhzj8uXE166j4623sP1f4XsGe0OxkehIJJJS1KS9vR2LxYLT6cTlcmFq+pFdVjxHonIPIrvdk+/m9gvJE575wAOwnfRr2l99DaJRvDffRPlzzyEUgVermMZVsUIjdHmYevuui70filUaTqfTUVZWplSAa2tr44cffsButyuSmXJCoxxXXYihZT1BbeEPxRI7nCmKxS7dbbfdRigUIhwOE4/HCQQCPPPMM1h+LtbRHR5//HEADj744JS/P/vss5x55pkA3H///Wg0Gk444QQikQhTpkxJSVzUarW8++67XHTRRUycOBGr1coZZ5zBrbfeqhxTX1/Pf/7zH6688koefPBBhgwZwlNPPZWRvB10xUTnpdjKthDj6Oe/hm7xW3Qe8zQYe1+sZAsajYa2o4+i8r77AQg8+RSWI49E00sfFzoKmURLkkQ4HE5JAuzs7MRms+FyuRg2bBgul0vZJl2/fj3RLTq0LUvQeFcQnXApkqsuz1b0D8l94rz0UsLf/0B85Upiy5bjf+IJXJddlsfW7UChQPZE95VYmC0CGo6Hmb1lNhs7NnL88OP7PmEHFGg0GrRaLY2NjTQ2Nir5GnK58pUrVyKKolLp1O1243K5BiSrl0sUi4czXajNHhmZkGhBEPL2Hehuv/12Ro0aRWlpKUajkUgk0mf8cDrkxWQy8eijj/Loo4/2eExdXd124Rrb4uCDD2bWrFl93q835LPYSgoELfof/oq2bQX6Je8QG3tK7u6VfFtBIFJbi3nSoXR+8imi10v7Sy/jOO/cQbl/LlBIJFqWm0vWaI5Go9jtdlwuFyNGjMDpdKLX67s9XxAEgq6didcdhG7NFxi+fZjIlOLzRm/bJ4LRiOdPt9J85lkQi9H+4kuY9ttPNQoxO9B/HDnsSMaXj8dtdA/K/dpj7VzyxSVoBA1HDjsSk87U90kDRLF6orfFtiRNo9HgdDpxOp3U19crykFyXPW6deuIRqM4nU4l/MPlcvU4/w0m1NInyVAriS4Wu3Snn346e+21FxdffHG+25Iz5LPYyjY3ILbrVLTTb0M/7+VBI9Hy4sDxm9/Q+fkXkEgQfPFFrCccj/Znbe9iQz5JtCiKKXJzfr+fRCKhhGZUV1fjcDjS9sTItkQmXoluzRfoF/6T6D6XITlrc2xJ7mEYORLnRRfif+hhkCTa/vBHKv7xMpo+QsbyhWKYtNWAcks55ZbyQbtfqbmUElMJreFWlvuXs0vJLoN272JHX2RGEATsdjt2u53a2lokSaKzs1PxVC9atIhQKITD4VA81W63O6e69T1BjSS6WMIeMkWx2KV75JFHaGxsZNKkSey0007EYrGCWDFmE5kkFuaamMXHnIj01d1om+agaZqNWLl7Tu8HW+3S19ZiPfZYOt54AykUIvD007ivuSbn988FBpNEJxIJgsFgCmkWBEEhzXV1ddjt9gE98JIkIdbsSbzuQHRrpnd5ow+7O4tWDA666xPbtGmEv/qayI8/kti8Gd9dd+P5063dnL0DO5A7jHSNZGbTTBa3LR4UEq0WwpbpPCsIAhaLBYvFoqh2hcNhJVlx+fLltLe3Y7VaFU+12+3OSHGrv1BLnySjWDy2maJY7NItX76cSCSi/EFtBBq6SHQ6MdG5KraSDMlSSnzkr9AvehPD7OcJH757Tu8HqYTTce45hN57D6mzk4433sQ+dSq6oUNz3oZsI5cPVzweTwnNCAaD6HQ6XC4XpaWlNDY2ZjU7Pbl/ohOvRLdm+s964pchOYunb3r6PgStFvcf/8Dmk6chtbcTev99TAfsj+Wwwwa5hemhUMKE1Ix5LfOY0zKHEa4RTKic0O0x2e6HUe5RzGyaOehFV4od2SAzJpOJqqoqqqqqABQJXK/Xy5o1a5g3bx5GozGlAIzVas36PL+DRBcPMo2Jzhd05557LgceeKCSiatGyJ7odLalBuMFGt3jTPSL3kS3+B2EA29CsuQ2pCI5TEVbWortlFMIPvUUJBL4H3+Ckttvy+n9c4Fs9lU0Gk0hze3t7RiNRqUS4OjRozGbzTl7UJOvm6jZS/FG6xe+QXTiFTm5Z67QU5/oKitxX3ct3ptuBqDtzr9gGLsbusrBqd65A4WFb5u+5Yn5T3B84/E9kmjI7stRKf89SCRaTYQt2zYYDAbKy8sVedt4PI7P56OtrY2NGzeyaNEidDpdSgEYu90+4HaoqU9kqLViYbEsDnRut5sHH3yQkpKSfLclZ8jEEz0YJFqs3INExVi0m+ein/cS0QmX5vR+2xJO+6mn0PHGG4htbXR+9BHRU07BMGbnXq5QeBhI/HokEkmpBNjR0YHValUqAbpcru0qduUayf0TOeB6ouPOIVF/6KC2YaDoa2FjOfxwOmd8SeeHHyIFg7Tdcguljz6CUEBxb8UwaasBCenn4l6awVNwkEn0Cv8K4mIcnaa4tfIHC4NBZnQ6HaWlpZSWlgJdxNDv9+P1emlpaWHZsmUIgpASU+10OjMOoVMjiVabZJ+MoomJ/uijj/LdhpwjXRKd88TCrTciOu4c9AvfIFE1bhBul0puNFYrjnPPwXd3lwKE/5GHKX3ssaKaWNL1RMtJLslyc+FwWFHOaGhowOl05rUq17a2iBW75q0tuYb7umuJzp5NormZyA8/0P7KK9inTct3s3ZgkBGXuhK9dULPRDbbDo0htiFYdBZC8RBrgmtodOa2+I9aCFs+wps0Go1ClgFFVk+Oq161ahWJREKR1fN4PDidTnR9FBFTS58ko1g8tpmiaEi03+/H6XTmux05RSEWW4mPPp74zicMyr3kgZj8sFmPO47gP14hsX49kR9+JDLzG0z7ZlYJMp/oiUTLcnPJpDkWi+FwOHC5XIwaNSqtyXYw0esEGG0HMQ4m16C1p79IZyLXOBy4//gHWn7TpQbkf/QxTHvvjX748Fw3L20UY0y0JEmEQiHa2toUicXkpK1CGu8ACfFnT7TQuyc6m+RAI2j488Q/U24up9ZW/Mo3g4l8k7RkWb1hw4Yp87wsq7dhwwYikQgOhyMlrnrbHK8dJLp4kIldeY2Jvvrqq7n66qsZPXp03hqRaxRMsZXUmw3Ofdg6wJIHpaDX47zoIrw33AB0eaON+0woqK313iCTaNlDIatmyCVq5Qm3pqYmI7m5fKCnBYFu4T8xffYHYjufSOSQPw5+w/qBtDTk99oL27RptL/8clc1w5tupvz54qhmWCiQd1hkz5zP5yMejyvavBaLBZ/Px6JFi+js7FTIRUlJCS6XK++kOh/hHAAH1hw4aPdSC7kpRDsEQcBms2Gz2Rj6c2J8sqze4sWLCYVC2O32lMWkGkl0sXhsM0Wx2KWbMWMGa9eu5amnnqK2Vp2r80wl7gZz0hDaN6Of/TzxhkmI1bkpQiHbsu2gNE+ehP7FF4ktWkRs2XJC73+A9cgjctKGbCGRSBAIBJRY5unTpyslaOVqgDabrSgevmR061W3lCKE/ejnvthVxdBS2HkLmTwzzt9cROS774gtX05s+XL8f/0rrktzmxuQDgr15ZocliQT53g8rmjvDhkyJKX0sl6vV+TFZHLh9XqZP38+kUgEp9OZQqoHe5GpkOg+PNE7kH8UIonuDmazmZqaGmpqaoCtuS9er5cVK1YQDAYVGb0NGzYosnrFYFtvKJb+yRTFYpfu888/59BDD+W7776jtra2aNh/JjAYDIiiSCKR6NUD013YQ87bNvM+DHNfQuNdRvjoJ3Nyj2RPdMrfNRqcl16ibK0HnngCy6RDEfIggt8TtpWbCwQC6PV69Ho9RqOR3XffPSdSSIOJntqeqDtoawLqT08R3f+6QW5Z5kg3FEKuZrj59DOUaobmgw7COHZsjltYPJA9zTJxjkajCmnOpKDPtuQiFAoppHrevHlEIhFcLhcej0epLpdrUh0Xu2KieyPRuQir6Yx38u6qd1kbXMtVe1yV03mjWEhAXyjG8CboqlRcWVlJZWUlALFYjKamJhYsWMC6deuYP38+RqMxRQGkGN8lahln26JYuKiuqqoKk8lEIBDId1tyBrkyUjQaTZtEDxZi487BMPcldMs/QPCvzUmVup5INHRtrRsnTiQycyaJTZtof/2f2E8dnEqK3UHWD02WmzObzUolwJ133hmTycS6desIBALYbLa8tTVb6DFJUhCITrgU8zvnYZj1HNE9LwSTevIX9MOH47jgfAKPPAqiSNstt1D+0ktoBlkZZVvkizQkF6Tw+XxKjKfL5WL06NE4nc6skNvkQhiyh7u1tRWv18v69euJxWLbkepsv8xOHnkyhw45lGprdVav2xcEBO7+6W5ESeT00adTZlavtGs2oQaSptfrcbvdaLVa9tlnHxKJhLJAbWpqYvHixWi12pTwj4EW0RoMiKKY9/CsXCDdxUG+F3m6p556ClEUlbgiNUJOLohGo1gslh6P641s5gpiyUjiww5Ct/oLDD89TeSQW7J+j77scl5yMc3ffAOSROCZZ7Ae9Ss0g5RsGg6HU0hzKBTCarUqlQBdLle35WHzWfY7F+jJlvjwKSRKRqFtXYJhzgs5l0McCPrTJ/ZTTyX8xRdE580nvnYdgUcexfXbq3PUwsKCvN0s/0QiESWGc9SoUYPiEU6uLjd06FAlQdHr9dLa2sratWuJx+MKsZBVEAZKLOocddQ56tJqXzZh0pmos9exKrCKZb5lOSXRavEQqsUOSLVFq9VSUlKiyPuKokggEFDG/vLly5EkaTtZvULLr9khcZfnxMLf/e53nHvuuey///4AquwMWb6sr+TC5NjhwUR0/PnoVn+Bfu7LRPa5AszurF6/LxJtGDkSyy9/Sejdd5GCQQLPPIPryiuz2gb5/qFQKKV8tkwcXC4XjY2NuFyutKtmqoVE90o+BQ3RCRdjfu8y9D8+SXTcOaDveSGYT/RnIhO0Wtx/+APNp5yKFInQ/uqrmA4+CNOee+aghfmFTJpl71dnZ2cKaS4E1RhBELBarVitVoVUd3R0KOEfa9asUaTF5Jjq5FjsYsBw13BWBVax1LeUfav2zXdzCh5qJdHbIjm3Rj42WVZvzZo1Kcm78i5Nvp9ZNfVPMoplcaB78sknOe644wD1dobsyeyLROcjnAMgUXcgifJd0DbPxzDrWaL7XpXV6wuC0KfyiOPCC+j86KMuIvPa69hO/DW6ITUDuq8kSbS3t6d4mhOJhLJFXVVVhcPh6NckpCZPdF/PXHzU0Yhf3YvgX4t27dckGicPUssyR3/6RF9Xh+Pii/Hfdx8Abbf+iYp/vIzGas128/pENue/aDSaQppltQCXy8WIESMK4gXcF5JVEGpra5VnWibVq1evRhRFhVSUlJSktQX+xYYv2NK5hb3K90rLI51NjHCO4CM+YrlveU7vo5b3qVrmWchcNs3hcOBwOKirq0uRkfR6vSxYsECpOZAsqzfYNQfUWrFQFMW0HWr5hO64446jqakJg8GAx5Pb8tP5glarRRCEPhU68uWJRhCI7n0x5ncvwjDrGaJ7XZh1b2NfpFNXUYHtlGkEn3kW4nH8jz5KyR23Z3SPZLk5+QfA5XIp1QCz5bVSE4mGPl5UGh3hKfcgWsuRPLktEDEQDGQit530azo//5zoTz+R2LQJ/wMP4r7h91lsXe6RHM/f1tZGR0cHNpsNt9ud8S5LoUIQBOx2O3a7XSEW7e3tSkz1ypUrAVLCPxwOx3Zj47Wlr/Ht5m+5dZ9beyTRuXq+R7pHArDMtywn11cb1LIYgIHZkrxLk6x8I3uqly1bRnt7u/LMy8Q619Vvi8VjmymKJrHwrbfe4vHHH+fUU0/ltNNOK5qGZwJBEAqu9Pe2iI84kkTpKBI1EyAeGXQSDWA//XQ63nob0eul8+OPiUw7GeOuPVfPSyQS2ylnaLVaZau3oaEBm82WkwlYTSQ6HVsSQ4unEE5/IGg0eG6+ic3TTkEKheh46y3MhxySlwJA6Y6rWCymEGY5CdZqteJ2u2loaFAFae4LyaRaLoIRDAYVUr1ixQoAhVB7PB7sdjuRRAQAg7Z3r10u5o7hzq7CPqsDq4kmon22ob9QE/lUix3Z7hOz2YzZbKa6uitBVt598nq9rFq1ijlz5mA2m1M81RaLJattUNM4S0a6dsk77fmC7rzzzmOvvfZi5MiRSoPUCL1en7ZW9KB7ogE0WkKnfQCa3GzvpkPUNFYrjvPOxfeXuwDwP/gQZU/+TRkTsVgshTQHg0EMBgMul4uKigpGjRqV9QliIPYUCzL9vgTfaiTHkJyNlYFgIH2iq6nBefnl+O64AwDvn/9M5Sv/QONwZKt5A0I8Hk/RaW5vb8diseB2uxk2bBgulyuv5eMLAclb4PX19UiSpCRrtbS0sGzZMjQaDd6gt+v4qDDoJKDCUoHD4CAQDbA2uJbhrsKpllmIUBNJy7UtBoOBiooKKioqgK45Q54vNmzYwIIFCzAYDCmyegN1NKk5nKMYHLq6pUuXKvXpQZ0kWhCEtEl0vjzRXTfPHSlK1y7rscfS/uprxFevJjpnDpvfepvAmJ0VT5vFYlEqAbpcLkW8frChNhKdri3GT29GP/s5woffR3zn/8txyzJDNuYO63HH0vnZZ0S++QZxyxZ8996L55bsK9b0hGQbZNIsE+dgMIjFYlGUY/IR/1hsEARBqR5aX1+vKCDEPuvaFVyxZAWsRomnTtbqzdXzLQgCfz30r1RZqrAZcieRqRbyqRY7YPBt0el0lJWVUVbWpQIj7962tbXR3NzM0qVLlYRG2VudacijmvonGcVil87tdpNIJBAEoShYf3+RbjhH3jzRSdA0zUa/8M2uUs9Cdvqkr5eSJEmK3Fzw2GOwPPAgAOEnn4R77i44T5uaSDSk78GVrOUIkojh20eJjz4+a+MjWxhonwiCgPvGG9g89WSk9nZC7/0X8yGHYD744Ow0sBfE43FEUWTdunWEQiGCwSAmkwmXy8XQoUNxu93dyi3uQPqQCUNM6JqLD5hwAJWaSrxeL5s3b2bx4sXodDo8Hg+dnZ1Eo9GcvExHuEZk9Xpqhprm2Xx7bbVarRLW1NjYqOQRyeXKV65ciSiKuFwuxVvdl9Tl/3pMdL7Hp66trS3FE61WZBLOkddOiXVi+ec0hEiARM3exEf9KiuX3XZxsK3cnM/nIxqNdqkH7L03wq67Is2bh27LFkrnzcN20klZaUe2UAwr1HSRiS3R3U/H8P1jaL3L0C37L/GRv8xhyzJDtvpEV1GB65rf0vaHPwLQdsedGHbbDW2W56lkr5DsaZYkiXg8Tk1NzaAkBf2vojPeCYDVYMVtdyvJl6Io4vf7aW1tpbW1lZUrV7J+/fqUmOrBChkbKIrFk5YO1GIHFJYtGo0mZadGTtSV46rXrVtHNBrdTlYvOddCTeMsGfle8KQL3ZVXXsmBBx7IpEmTqKsbXKmhwYRer087sTCvnmi9mei4czDOvB/DzPuJjzwya97Gjo4ORT3D7/eTSCRwOp1KNcDkMsLR315N8xlnAhB48iksRx6Jxm7PSjuygbwvdrKIjGwxOojucRbGbx7E8N2jxEccCQU00WSrTyxHHEHnp58S/mI6oteL7y9/oeTOOwd0zeRE2La2NgKBgBKfKIcn/fDDDwwbNgxHgcRhqxGSJBGKhwCw6FITqDUajeKB8/v9ig51a2srGzduZOHChRiNxu1IdabwR/w8teApNnVs4u797y6Kl3W+oCaSVui2JCfqypKSnZ2diqd60aJFhEIhHA6H8pzE4/GCtqm/KBYPuy4UCnHxxRdzwQUX8MADD5BIJAquIs9AIatzFIUnGoiOOxfDT8+gbV2Cbsm7xHc6OuNrJBKJFLm5cDjM8uXLle2hurq6XvVcDTvvjHnKFDo/+ADR7yf43PM4L71koKZlDYXQT9lEJrbE9jgbww9/Rbt5Ltp1X5Oo3S+HLUsf2ZzIBUHAff31bJ49B9Hvp/OTTwl98gmWSZPSvobs1UwmzXq9XtEol0vIq/EFVMiQkHj44IfpjHfiNPRcGVV+icpkGVBKNcslyhcsWKCQajmmOp08DaPWyKvLXkWURFrDrZSaS7NmX3L71TC21GIHFI93U0ZyRVFZVi8cDiu7Z8uXL6e9vZ0lS5bg9XqVuOp85SplE0WTWPjaa6/R3t7OmjVrAFRHoGVk4onOOzkzOYmOPw/j1/dgmHlf15a9pvd+icfjCmHw+/0EAgF0Oh0ul4uSkhI6OzsZPny4kuCQDpy/uYjOzz6DaJTgK69g/b8T0FVVDdS6rEBNJDpTWyRLCbFdTsIw+3kM3z1GZ4GQaMhufJq2pATXtdfiveEGAHx33Y1x/Hi0P1cU2xZy0posOef3+9HpdLjdbioqKthpp50wm829vkSL6QVbrNAIGvap3Kdf5yaXah4xYoSS/Clvfc+fPx+TyZRCqrsLyTHpTAy1DWVNcA3LfctzQqLVArXMszKK/Rk3mUxUVVVR9fO7+Msvv6S8vBxRFFmzZg3z5s1TFpayt1pO1i0mFI3E3dy5cxk9ejRjxoxR1YpzWxRTYiFAdNw5GH56Eq13Obol7xAffVzK57JGrfzT3t6O0WjE5XJRWVm5HWFoamrKuA266mpsJ/2a9r+/CNEogcefwHPr4Ckl9Aa1kehMEd3zAvRzXkTbNBsh1IpkKclByzJDLuYO8y8mY/roQ8Kff4Ho9eK/9z48f7oV2FrcR/bK+P1+tFotbreb8vJyRo4cWTTxszvQPfrqO51OR2lpKaWlXSRYlhSTS5TPmzdP0emVf2RSPcI1gjXBNSzzL2Ofqv6R+t6gpvepWuwoNk90unC5XJSXlwOpUpwbN25k0aJFijNBjqu22+0F/z0UjSf6pJNO4vzzz+fSSy8t+BK0A0G64RwF4YkGMNqJjr8A41d3YZj5AB3DpuALbA3P6OjowGq1KpUAXS5Xr0lQ/SWdjrPOIvTOO4j+AKH//hfbyVMxjB49EMuyAjWRaMjc2yM5a+k85mkSQyaAsXBi1bPdJ4Ig4L7uOpp+moUUCBB6/32Cu+9GW2Mjfr9fUXsoKyvLGmlW07gqRDSHmpm+cTpVlir2q87uLsq2kmLxeDylRPncuXOxWq14PB4qtZUALG1bmtU2yFDLOFLTYgDUsyCQsW3/bLuwlMPakrXaBUFQSLXb7cbpdBYcYS2WBY/u1Vdf5eSTT8ZisXDBBRcUDfvPFAVfbCUJcjJBU9Xh1NhfZ43zIJZ9/SU2R1c8c0NDA06nMyO5uf7apbHbsZ97Hv577wW6CrCUPv5Y3ge3mkh0f21JNE7OQWsKB3L1O18oRMf/nYD9mWcBEJ74KyUPP8Tw4cOLcpvyfx3LfMu484c7GeUe1SuJzsbzrdPpKC8vV7x0sViMtrY2WltbMbd3xY3O2TiHhQsXKp7qbMp4qmFsqolEFwsxywR9JeAlJ+vC9jt4q1atIpFIKLJ6Ho8Hp9OZd6dqOomFkiTlnQfoxo4dy9lnn82LL77IBRdckPcG5QrpxkTng5xJkkRHR0dKeEYsFsPhcNBx6LO43G4OGOCgHohdthOOp+O114ivW0fkxx8Jf/kl5gMO6HdbsgG1kegBQZIQ2lYheRqy06B+YqB9kizvJD8H0LVV6TrySHTzFxD/7js0Ph+Wf/4T2403ZqnlW6G2F2whwh/1A/SaVCgj2/2h1+sVUu2qdfHkv5+kOd5MQkooSVo2m02Jp95RUEc9HnVQ14JARqYLg2RZvWHDhin8Q1YA2bBhA5FIBIfDkRJXnSyrNxgolgWPDsBmsxEIBPLdlpwi3ZjowZC4E0WR9vb2FNIsSRIOhwOXy0VNTU2K3Fw2MBCCI+j1OC65GO91vwPA/9DDmCZORMjjSlWNJLpfE3xnG5Z/TkPjXUbHed8WRGx0upAnb9kjIj8Hskdk2LBhKbF78ZtuYvPUqUgdHYTefgfL5MmY9sl+LOsO5Bb+yM8k2tg3ic4lKi2V2PQ2dBodnjoPu47ZlWg0qoR/LFu2jPb2dux2u5KomAmZUBNhU4sdauoTGQO1SRAEbDYbNpstRVZPnpcXL15MKBTCbrcrnurBKDxVNBJ3bW1tfPzxxxx00EGAeh6WbZFPibtEIkEgEFAIc3Isp8vlYtiwYdhstp4HjJhAt+Qd9Iv+Reexz/SrPPhAY73NhxyCYexYonPnEl+9mo533sF2/PH9vt5AoSYSLaNfk6HJBYIGIR5GP+sZovtdk5O2pYN0qmLKOy4yaRZFUSkk0NdzoKuswHnZZfjuuAOAtttup+KVf6CxWrNqh9rGVaFB9kS7DK68tkMQBN7+1ds4DA7luTMYDFRWVlJZ2RUvHYlEFFK9ZMkSOjo6FA+d/NPTDqFaxpGaiKeabJGRbbKZLKtXU1MDdD0HcsLuihUrCAaDWCyWFE91X8pHmaJYQot106ZNY8uWLdx///0ARdHo/mAwJe6S5eZ8Pl+KPm1ZWRkjRozILJYzEcH42R/QdHrRz3+N2NhpGbdpoKRTEAScl1/GlnPOBSDw179hOewwNDZbv685UKjlJZXsie7HyUT3vgjzvy/EMPs5onv9BgzZJZX9hVwVUybMbW1tSoEft9tNbW1tr1rl3cF63LF0fvQRkR9+INHUhP+RR3Ffd20OrdiBbCNdT/RgPN99tcFoNKbIiYXDYYVUL168mM7OzhRS7Xa7U0i1GgibmohnsXg3M8Fg9I/RaExZXMq5BW1tbYq0pNFoTFEAGWi+StFI3E2ePJlzzz0XpzO/W2u5Riae6EzDOaLR6HZyc2azWakEOHr06IGt0vQWohMuxfT5LRi+vpfY6GNBn1mVrmwkTBrHjsU8eRKdH3+C6PV2FWC55OIBXbO/UJMneqATQHz4EYiuYWh8q9HP/wexcedmqWWZI5FIsGHDBoU4x+NxpSrmkCFDcDgcA3qJCYKA+8Yb2Dz1ZKRwmI5//hPL5MkYx4/LSvvVQhYKGb6oDwCHoe+qkIXWHyaTierqaqqrq4GtpLq1tZWFCxcSDodxOByUlJSg1WpVMUepwQYZarJFRj5ih5NzC2BrEaS2tjaamppYvHgxWq02xVOdqcOkaDzRV199db7bMCjIJCa6rwctHA6nkOZQKITValUqAbpcrqzHC8V2Ox3DrGfR+Ndi+OFvRCdekdH52SKdzosvofOL6RCLEfzHP7Aedyy6n7d8BhNqItEy+m2PRkt0zwsxffw7DD88SWy3M0Cb+yQQSZJSqme1trYSj8fZvHmzUko7F9JJupoanJdcjO+eLsUY75//TMU/XkbTi8RjJlDbuCo0KJ7oNBILc43mUDN3/HAHLZ0t/H3K3zM+f1tSLZdobm1tpaWlhWg0yjfffKMkKrpcrqIraKY2T7RabJFRCDYlF0GCrYWv5Gdh+fLlSJKU4qnu7d0gq27k2650oCuWhg4U/fVEy1vSciyzz+cjEolgt9txuVw0Njbicrlyn7mqMxLZ/zrM/7kYw/ePExt7CpI1/eqD2SKduiE12E8+meALL0A0iv+RRyj5OUZ1MKEmEj2gcI6fERvzfxi+vhdNcAO6JW8T3/n/stW8FHR2dioeh7a2NqLRKA6HA7fbzdChQ9myZQvjxmXHK9wbrCeeSOijj4nOmUNi/XoCjz+O68orc37fHRg4LtntEjZ2bGQXzy69HjcYz7fdYOfLjV8iIdEabqXENLDEXLPZTE1NDTU1NTQ3N7NkyRKGDBmC1+tl3rx5RCIRXC6XEv5RLKRaLRxBjXynEENUknO+YKtcaXIhJHmXUvZWu1wuJRRKfvYLza7uoFPbgOoJmUjcRSIR1q1bp3iaE4mEopyx00474XA48qKhGB91NIkf/4a2aQ6Gr+8l8os70z43m0Vk7GedSce77yJ6vXR+/AmRX8/CuMceWbl2ulDTuM2KLToTsXHnYPzyTnTLP8waiZY9zTJxlqWPXC4Xo0ePxul0KiRgy5YtbNmyJSv37QuCRoP7phvZfMqpEInQ/o9XMB86CeNuYwfl/jvQf+zs2ZmdPTvnuxkAmHVmhtqHsja4luW+5ZRUZk/dRpIktFotQ4YMYciQIYpDRo6pXr9+PbFYbDtSXWjEoRBJWn+hNhJdLB5bQRBwOBw4HA7q6upSngW5sqIcCuV2u3E4HMp5hQ6FCRZDRwwEBoOB9vb27f4uC4/LhNnr9QJdcc4ul4uhQ4cOOI4zaxAEIgfdjOXVE9DPe5no3r9BctameWr2PLcamw3HhRfiu/12AHz330/5c88hDOJ3JNujpnE70P6J7nYaiZKRAyrCImdhy8Q5HA4r0kajRo3qVYR/0OPy6upwXnA+/oceBkmi7bbbqHjx7wj/47q+asJgjKnhzuGsDa5lmW8ZEyon5Ow+giBgtVqxWq0MHTo0RZ/X6/Wydu1a4vG4st3d15b3YEEtO36grgUBbO2bYnsHbvssACmyesuXLwfg22+/TUna7a0qc76gi8fj6HS6ouuETKHX64nH4wQCAb744gtKS0sxGo0EAgG0Wq3iDdDr9Wg0Gnbaaad8N7lbJIZMIDLhMhK1+6VNoCH7lRitRx9Fx+uvEVu2nNiixYTeew/rr36Vtev3BTWN12yEcwBgcpIYflhGp0QikRTJuWQ90JEjR2ZcuWqwX7i2adMIffwJsYULia9aRfD553Gcd16/r6emcVWIiItx3lr5Fi6Di4OHHIyuH3Kd2cZI10g+Xf8py3zLsnrdvhb43enzyqS6tbWV1atXI4oiLpdLianOh0Nnh6OicFFMYQ99wWw2Yzabqa6uJhKJ8NlnnzF8+HB8Ph+rVq1izpw5mM3m7WT18g3dn/70J4YNG8aECRPYeefC2GLLJtra2vjqq6+YMWMGixYt4u9//ztut5vf//73HHHEEYwaNQqLxaJMEitXriQSieS51b0jun/mkl7ZjiEWtFqcV11Fy0W/AcD/6GOYDz0UjSUz1ZB+338gBUoKDDlpf6wTIRpEspan/FlWkpFX/KFQCJvNhtvtZvjw4Tidzn7H9+ejHwStFvcNv6f59DMgkSDw7HOYJ09GX1/f72uq7UVbSPBFfNz5w51oBA3f/PqbfDcHgOGu4QBZJ9GZojtS3d7erniqV61ahSiKuN3uFFI9GM9dsc+xMnZ4oosDsl2VlZWKvGQ8HlfeWxs2bGDBggUYDAZGjhxJ/QDm+4FC98QTT9DR0YFer+euu+7ivAF4cQoBoijyxhtvMH36dKZPn868efMYMWIEdrudhoYG/va3vzFy5MgeB12xJawJwY1IBhsYe5eLyoVdpj33xHTQgYS/mI7Y0kLw+RdwXnRhVu/RE7LmvS0gZMsW3bL3MX50LYmh+xI8/OGUmOaOjg5sNlvOkmLz0R+GkSOxn3oqweefh1iMtttup+xvfx3U8KIdSA+t4VagS5lDI/TeP4M1loY7u0j06sBqEmICrSY7iX7ZqCRnt9ux2+1KHGkwGFRI9YoVKwCU8I+SkpKUCp/ZghocFTLUZAug7C6rySbYKtuXbJdOp6OsrIyysi5BBVlWz5Dn8D3NwoULmT59OieeeCIXXHABn376adonT58+naOOOorq6moEQeCtt95K+fzMM89Uvgj55/DDD085xuv1csoppyjJSuecc852sctz587lgAMOwGQyMXToUO66664e2yQIAk899RSCIHDTTTexadMmlixZwgknnEBtbS2jRo3qdcBlMwEv19DNfw3rswdj/OruPo/NlV3Oyy6Dn7f7gy+9RLypKev36A5qItHZtCUWi9Eq2dF0etEtfY8fP36TVatWAVBfX88BBxzA3nvvzciRIykrK8sqgc7nRO449xx0P8fWRefMoeNf/+rXddT2Mio0NIW65odKS2Vaxw9Gf1TbqikxlTDKPUqpppgNZHtukpOzhg0bxrhx45g0aRJ77bUXHo8Hr9fLd999x6effspPP/3E6tWrCQQCWWmDmoinGt4XyVBTOEcy0tG+lnWorVmuWJspdLK239/+9jei0Sh33HEHhx56aFond3R0sNtuu3H22WdzfA8loA8//HCeffZZ5fdt9ZNPOeUUNm3axEcffUQsFuOss87i/PPP5+WXXwYgEAhw2GGHMXnyZJ544gnmzZvH2Wefjcvl4vzzz9/ufoIg8MEHH2z393R1orMdO5xLSPYqhFgI/azniI0+DrGqZ2mxXHnY9bW12E46ifaXXoJIpEvy7s9/zvp9toWaSDT0v3/i8XhKeEZ7ezsWiwV76XicLT+yv34e8Qkn5aDFhQXBZMJ1/e9o+U1X8R//w49gPuAAtOXlfZy5A4OJTR2bAKi0pkeiBwMaQcP7x7yfE6KYS/IpCAJOpxOn00l9fb2SJC9rVC9btgyNRpNSotxms2XcJrXMsbBVMUUtUHM4R7EsDJSsDlEUufzyy5k8eTLRaDQtF/kRRxzBEUcc0esxcrnI7rBo0SLef/99vv/+e/bcc08AHn74YY488kjuueceqqureemll4hGozzzzDMYDAbGjBnD7Nmzue+++7ol0b21Y7DKfg8WEnUHEBt9PPpFb2L68FpCp/63xyIbuVwcOM45m9B//oPo89H5wYdEfv1rjGNzKzWmRhKdDuSS8jJpDgaDWCyW7Qr9aCuvhDdOxbTwddr3vwZMg1PYIp/9YdprLyxHH0XonX8jdXTQdvc9lN7d865VT1DLmCpEKCQ6DU/0YPaDGkiIRqNRSHVDQ0NKwYvm5maWLl2qeO/kn3RLM6vh+wF1edVB/eEcfaEQ5mrNjBkzlPKKNTU1RCKRtIqSpIvPP/+c8vJyRo0axUUXXURra6vy2cyZM3G5XAqBBpg8eTIajYZvv/1WOebAAw9MIfVTpkxhyZIltLW1pd0OvV6fs7Lf+UTk4D8imj1oWxZj+P7xHo/LZay3xm7HceEFyu/++x9AyvF3qDYSDd3bkkgkaG1tZcWKFfzwww/MmDGDpUuXEovFGDp0KPvttx/77LMPO+20ExUVFcpOT6LuIBKloxBiHRjmvjQo7S+EfALXZZeh8XgACH/+OZ2ffpbX9uzAVkiSxJcbvwRglHtUWucMNjlIiImsXSvfhE0ueNHQ0MBee+3FpEmT2GOPPbDb7WzevJmvv/6azz//nNmzZ7N27Vo6Ojq6fX7zbUc2oSZboLg8tpmgmOzSHXTQQWzZsoWSkhIikQhVVVUkEtmZSA4//HCOP/546uvrWbFihaKIMXPmTLRaLU1NTUrtdaVBOh0ej4emn2Nrm5qatsu8rKioUD5zu91ptSXdYivF5IkGkCweIgf/AfN/L8fwzQPEGycjlm2vspJrgmM95hjaX3ud+MqVROfPp/ODD7EccXjfJw4QxdRXvUHun0QioXiafT4fgUAAo9GolNFOWytTEIiOPx/zB1ejn/UM0fHnglb9+skapxPX1VfjveEGANruvhvjXnuisdvz3LIdWB1YzZrgGoxaIwcPOTjfzUnBMt8yrv/6ejSChteOeC0r1yy0uUmj0SjSYI2NjYiiqNRGaGpqYvHixej1esVLXVJSgtlsVhXxVJMtoD57ZMiO3XSQb/t1FotFIc2vv/46u+22W9aq8U2dOlX5/6677srYsWNpbGzk888/Z9KkSVm5R7owGo2q9EQDxEcfT2zpf9Cv+BDTfy8nNO1d0KXGnud6cSDodLiuupKWSy4FwPfww5gO2B+NzZab+/2cqFpoL6pMkUgkCAQCiKLIokWLaG9vx2Aw4Ha7qa6uZuedd+63FmZ8p2MRv/wLmvYmtOu/JVF3QJZbn4pC6Q/zLyZj+u97hL/8CrGlBf8jj+C+/vq0zs33hKxm1Dvr+fdR/2Zx22Js+tzMC/2F2+hmdWA1GkFDJBHBqDX2fVIaKOTxlBwvDVvVDrxeLxs3bmThwoXKzpYgCIRCISyDJGGaK6iNdKrNHhmZ2pXP70BnMBiUF9+cOXM488wzc5bt2NDQQGlpKcuXL2fSpElUVlbS3Nycckw8Hsfr9Spx1JWVlWzevDnlGPn3nmKtu0O6iYXF5okGuioZ/uIvaJvmEG88DLqRjhoMgmOaMAHTAQcQnjEDccsWAk8+ievKK3N2v0IhbZlAFEX8fr+SDBgIBJRFa0lJCbvssgsmkylLpcCNhA+7G8k5FLFk5MCvVyQQBAHXddex+aepSKEQHW/+C8vhhw96afod2B5V1iqqrFX5bsZ2KDGV4DQ48Uf9rAqsYid3YRbbyiW0Wi2y0ABsJdULFizA7/czY8YMTCZTSkx1IRS7yARqI53pxg4XGzLxROcbmqeffhqnsyvp6IEHHuBXOaw6t379elpbWxXx7IkTJ+Lz+fjxxx+VYz799FNEUWTChAnKMdOnT08hwB999BGjRo1KO5QD0g/nKEZiBiBZy+g4ezrR/a7pNrlwsOxyXX0Vws/ei/ZXXyO6dGlO71fofSVvma5atYpZs2Yxffp0FixYQEdHBxUVFey9997st99+6HQ6SktLMZvNWZ0UEw2TBo1AF9JkrqusxHHRRcrvbbffgZRmrkehj6liRFyMZ3zOYCcWNjobAVjhW5GVaxY7YZNJtdVqpb6+nkmTJjFmzBgMBgNr165l+vTpfPHFF8yfP5+NGzcSDofz3eQ+Uex9si2KKXY4ExRTP+mOO+445ZdMSClAe3u7UuMcYNWqVcyePVtZpd5yyy2ccMIJVFZWsmLFCq699lqGDx/OlClTABg9ejSHH3445513Hk888QSxWIxLLrmEqVOnUl1dDcC0adO45ZZbOOecc7juuuuYP38+Dz74IPfff39GbTUYDKoN51BgSNpBSERBTIC+y1MwWHbpamqwn3M2gcceh0QC351/oeypJ3NS+KIQFzyyzJSsnuH3+9FqtbjdbsrKyhg5cmRKhUwZgzJhdLaBObNnPFMUUn/YTvw/Oj/4gOj8+cRXrybw7HM4L0hf0WcHsoeLPrsIq97KFbtfwTDHsLTPG8wXaaOrkZ+2/MQKf/ZItBog2yEv9EtLS4GtFeS8Xi9r1qxh7ty5WCwWJZ7a4/FsJ2mbbxQTOUsHarNHRlHFRL/99tvodDo2b97M8ccfj8vlSvvkH374gUMOOUT5/aqrrgLgjDPO4PHHH2fu3Lk8//zz+Hw+qqurOeyww/jTn/6U8mC99NJLXHLJJUyaNAmNRsMJJ5zAQw89pHzudDr58MMPufjiixk/fjylpaXcfPPNGcnbwdZwjr4GXVGGc2wDTetSTO9djlg2mvDh9wGDSzjtp5xC6D/vEV+zhui8eYT+/W+sxxyT9fsUAokWRZH29vYU0ixnxZeVlTFixIi0ZaRyZoskYnr/SnSL3yF0+oeIJSNycpt8T2bbQi4JvvnU0yCRIPjcc1gmT0Lf2NjzOQVmgxqwwr+CWVtmoRW03LjXjfluTo9QPNFZItGgjvHU0ztz2wpysVhMIdWrVq1izpw5WK3WlPCPfJNqtZHOHeEc+YfupJNOUjy0++23Hy6XK+2BdvDBB/f64u+u6Mm28Hg8SmGVnjB27FhmzJjR57V6w/+EJ/pnCKFWNFsWoG2eR3zoROJjThxUwikYDLiuvYaWiy8BwP/ww5j23x/tz7F2WbtPHki0XHpXjmn2+XxdMbguFyUlJQwfPjxt0pyMnNoiaCDagSDG0P/4NyKH9V3hsr/I96JmW+iHD8d+xukEn3kW4vGukuA52hnZge7x1oq3ADig+gBKzaX5bUwvkMt/L/cv7+PI9FBoz8JAkM58ptfrKS8vVxS3ZFLd2trKypUrmTNnDjabLYVUD3bJZrWR6B3hHPmH7ssvv+TPf/4zEydOZOjPZXOLpfGZwGAwEI/3HZenBk90YuhEohOvxPj1vZg+vp5Qxa5oNJ5Btcu0996Yp0yh84MPEP0BfPfcQ8kdd2T1HoMxTiVJUjzNPp8Pn88HgMvlwu1209DQ0K8qYNsi1wuC2J4XoF/+PvqFbxLd71oka1nW71Go84bj7LPp/PgT4mvXEp03j4633sZ2/HE9Hl/sz38hIRQL8e9V/wbguMaev/PuMNgv0kZnIyNdIxnuGk5CTKDVDLyyXaE+E5mgv/2wLamORqMKqV6+fDnt7e3Y7fYUUq3Xd18sLFsoJnKWDtRmj4yi8kTvueeePPHEE/ziF79gv/32Y//991dlx6i12EpPiE64DO2G79GtmY7p3xeimfL8oJMD19VXEfnmG0S/n86PP6HzsM8wJ4X/DBS5IJ6SJNHR0aGQ5ra2NiRJUkjzsGHDsNvtRfd8JKr3JFG1B9pNs9DPfp7ofr/NyX0KkYAKRmNXSfCLfgOA/5FHMB90YNZ3RnZge7y7+l3aY+3U2muZWDUx383pFXaDnZcP731XNBMU4rPQH2SLDxgMBioqKpQ6D9FoFK/Xi9frZdmyZSmkuqSkBLfbnXVSrTZuozZ7ZGRiV77t10GXVJzD4SiK7Nr+QtUSd91BoyV85ENY/j4FrXc5Zd/exoqqswe1CVq3G9dvr8Z7080AtP3lLozjx6NxOLJy/WwseCRJIhQKKTHNPp8PURRxOp243W7q6uqw2Ww5XxXnPDRFEIiOvwDzuxein/MC0b0vVpJOs3eLwp3MTXvuieXIIwi991+kYBD/gw/hufWW7Y4rZBvSgbwIjMfjOSEhmUCURF5Z+goAU0dORdON9KbaUezjCXK3GDAYDFRWVipStZFIRCHVS5YsoaOjA4fDkUKqB1rDQm2ks5g8tpmgmOzSzZ49G5fLxYMPPkhDQwOgjgd/W/wvxUTLkCylhH/5KObXTsK28j2qNMOAfQa1DeYpUzB98CHhL79EbG3F98CDeG6+KSvX7s84lUmz7GVua2sjkUgopLm2tha73T7oD/BgxHfHRxyO6BiKJrAO/cI3iO12atbvUcgLUOfll9P55VdIgQCh//4Xy69+iWnvvfPdrAGjs7NTSehqa2tDFEWMRiOdnZ04HA5F+9flcqHVDjxEIV18velr1gbXYtPb+NWwzKVT8zWW4mKcYDSI2zQwJZtCfhYywWART6PRSFVVlSKBGw6HFVK9aNEiZTzLoR/9IdVqI9Fqs0dGMdml23///dl777254447lMpFaoQcE91X5xSC4kM2kRiyD9H9r4VF79DiHEvtIN9fEARcv7uOzSfNQuroIPTvf2OeNAnzfvtm5dp99ZUkSQrJkIlzPB7H6XTicrkYMmQIDocj76veQZkwNDqi48/B9Nkf0c97OeskutAnPa3Hg/OSS/DdfjsAvr/8hYqXX1Z0zWUU+vOfrILQ1tZGOBxWyIU8no1GI5FIhNbWVlpbW5k7dy6xWAy3262QaofDkdM+27N8T67f83oiiQgWfXFUuvtiwxdc/9X17Fq6K3899K8Dvl6hPxPpIh92mEwmqqurFbnbzs5OhVQvXLiQcDiM0+lMIdV9LRKLiZylA7XZI6OoPNGfffYZN954IxdddBHPPfccY8eOVWXHyNI6sVisV5kdOZxDTd9BdK+LaKs/gfCylXm5v66iAufllyvkpe1Pf8Lwyj/QZiCn2B26I9GSJBEOh1PCM6LRqOJprq6uxuFwDKpHLl0MBnmL7TIVEnFiu07N+b0KEdZjjib07rtE584lvnYdwRdewHHeefluVq+QK8fJYzoYDGKz2XC73YwYMQKXy9WtR85kMlFTU0NNTY0S5iGT6pUrVyIIgrJVXlJS0q1++UBg0pk4YfgJA7rGYM/BFeYKomKU5b7lqnoHDASF8j2YzWZlPMNWUt3a2sr8+fOJRCK4XC6FVHe381IotmQL/+sSd4Xg8NDttddevPXWWxxwwAF8//33qiXRspROJBLplUTLdqvqOxA0aAxmZcBpV31KYsjErMfE9gbrsccQ/uILwl99hdjaStttt1Ny118G9B3LJLqzszOFZESjURwOB263m6qqKpxOZ0GS5mQM2g6IwUZsrwtzdvlCmNR6g6DR4L7+d4p2dODZ5zBPmYK+drD3aHpGcsEer9eL3+/HYDDg8XgYOnRov6TBBEHAZrNhs9moq6tDFEUCgQCtra00NTWxaNEijEYjpaWlWSmUUazz5zDHMDSCBn/UT2u4dUCSfMX6HWyLQrUjmVTL7wHZUy3vvDidTmU8ZyLfWyzYIXGXf+igazBqtVo6OzuBwn8R9gdygk1fyYXygFTbdyDHeuu/fwLT9D8TG3U04V8+CoM0UAVBwH3jDWw+eRqiz0f4888J/ftdrEcflfG1ZE9zJBJh0aJFxONx7HY7breb0aNHFwVp3hZ5mzDiEdBlpwBCsUx6+uHDsZ0yjfYX/g6xGL47/0Lpo48gCEJebEhObvV6vYqMotvtpqKigp122inr5eDlgkAul4vGxkYSiYQiPyYXyrDb7YqXOpP40zWBNVw14yrOGH0GR9UfVTTjArq850NsQ1gbXMsK/4oBk2g1oBjsEAQBi8WCxWJhyJAhyjMlk+p169YRi8UQBIGmpiYMBgNOp7PoCWgxkc1MUFQVC4PBII8//jjhcJjRo0cDFP3A6g6y56YvEi13iCiKRUfEeoPs6RQrd0PS6NAveQfRXU90v2sGrQ3a0lLcv7+e1muvA8B3770Yx41DN6Sm1/MikUhKTHM4HFZk5qqqqqirqxtw1nYhYDBfVtr132Gc/icSpaOJHHZX1q5bDC9cAMe559L50cckNm0i8v33dL7/AZYjDh+0+8tKBPLuiew183g8eZFR1Gq1KSWdZfmxlpYWJalLLihUUlLSKwF5btFzrAmu4bP1n3F0w9H9blO+xlKjs1Eh0RMqJwzoWvl+wWcLxWaHIAhYrVasVitDhw5Vwpm+//57wuEws2bNUhRs5PCPYiTVag3nKKbFge6oo45i7ty5XHPNNUoJ72JpfCaQSXRfCh1q9kRLkkRi6EQik27H9NG1GL95ENExlPggxseaDzkEy1FHEfr3v5FCIbx/+ANlf30CIYkEy6L8MmkOhUKKpzk5BvTHH3/EZrOpgkAPfkKrhHbTLDRbFhI54HowD0yJAIpr3tCYzbiu+S2tV10NgO+BBzD9nOyai36Ix+MKYW5ra1Pkuwp192Rb+bFQKKTEU69du5ZEIpESTy0XHNrYvpH3Vr8HwDljzhlwO/IxpoY7h/PZ+s9Y7htY5UK1vEOKidD0BDmcSafT0djYSElJiZIj4PV6Wb16NaIoppDqQkg47wtqDecQRTGv8pyZQLfHHntw7733Mn78+Hy3JacQBAG9Xp+RJ1pNSCZpsbHTEALrMX77EKaPrqPTXkli2MGD1hbX1VcR+fFHEhs3Ep07l7YnniD+618rxLmjo0NJnBo+fDhOp7PHB0otL6rBJtGJmr1JlO+KtnkehrkvEZ1wSVauW0z9YT7gAMyHHELnZ58her34H30UfvGLrFxbFEX8fr8SohEMBjGbzUqVS5fLVTQvCUDZKpe9esFgkNbWVlpaWli2bBk6nQ6Px8Prba+TkBLsU7kPu5Tsku9m9wuNrkYAVvhXDPhaxU4+QR0kWoZsy7Y5AnJl2tbWVtra2li1ahWiKKZUU8y1mk1/oKa+SUYx2aW7//77geKSFOkv0qlaKD9gxUQG0sG2RWSi+12DJrAe/aI3Mb9zAaGp/0Is33lQ2pIwGNBcdSXxa69DEEU6Xvg7XpsN8777ZkQw1NhPgwZBIDruHMzvX4F+9rNE97wAtAMjdcUy6SXDefVVhL/9FikUouPNf2EYPhyGDs34Osnl4eW4Zp1Oh9vtpqamBrfbjclkyoEFgw9BEHA4HDgcDurr6xFFEZ/Px7JNy/i46WMA9oztyYIFCxRPdX8WDPl6tndy7cShQw5lTMmYAV1nx9xUeOiJnAmCgN1ux263M2zYMGWhKMdUr1jRtaCSJSI9Hk9BVK4tJrKZCdLlo/nKY0mG7oEHHkAURVpbW5k8eTKHHHKIKjtG9kT/rxVckSETTqVvBYHwlHsQ2pvQrfsa7fqvc0aiY7EYPp9PCc9ob2/HarVSdtKvMfzjFQRJouyll6k48ki0ZWUZ26QG5MOW+KijEKffhqZ9M7ql/yE++tisXLeY5g9dRQWOCy7A/7Mzwf7Sy4gT0ytPLasByCEa8nZwSUkJI0aMyLpkXKFCo9Hg8Xj4cvWXxImzR+keHDn2SFpbW1m+fDmzZ89W4r1LS0szKvqSj+9viH0Id+2fnTwBNfR/MT3PfSFdW5IXijKpDgQCiqTesmXL0Gg0SvhHckjTYEKtzs9iskt31113YTabaWlpwe12c8ghh6guqU5GuqW/1UTOZHQr3ac10Hn0k+hWfUJ89PFZu1c8HlcIs8/nIxgMYrFYlDLabrcbg8GAtNdetK5bR/jLrxB9PlpvvJGyxx5LiY/uyya19FNebNEZie1+Osav78Uw6+kBk+hifdHafn0iof/8h9jSpeg3bEB659/wm4u2O06O1Ze9zZFIRNEfHzp0aF4qXRYKfBEfb654E4BzdjmH8vJyysvLga2V51pbW5k3bx7RaHRQi77kC2qZm/4XSfS2EAQBp9OJ0+lUdl+2DWmSF5Pyz2CQajX1TTKKyS7dxo0bt/ujGgk0pBfOAduHPqgBySQ6BSZnKoGOdkAimlGiWTweV+I/ZU+zyWRSymi7XK5uNWcFjQb3H/5A86mnkdi8meis2QT++jecF/8mbZvU1k+DjdjYUzF8+3BXkuGmnxCrxg34msU0AQIIOh3u319P81lngyQhvvwy8eOPQygrUxaDXq+X9vZ2JVZ/1KhRg15Gu5DhMrp45KBH+GT9J0yoSFW0SK48J6skyKR6MIq+9AeSJLGpYxMJKcFQe+bhPTLybUc2oKY5Nltzk0ajUUh1Q0NDiu56c3MzS5cuRavVppBqq9Wa9fFQbHNtuiiqYivJjVBjZyQjE0+0GsM5oI9B19mG5V+ngyQROvFVMFi7PUyuoCYTjGAwiNFoVDxybrc77UINWpcLz+23seX8CyCRIPjccxh22QXzQQemZVMhPETZQL5skaxlRPa7BslVh1gxdkDXKub5wzBmDJbjjyf0xhsQibDmxptYe8o0ZVwn76DsQPfYo3wP9ijfo9djkhO6amtrlW3ylpaWlKIvJSUlxGKxtObrXODvi//OQ3Me4rDaw7h939v7dQ21zE1Q3M92MnJFOrfVXZcTi71eL01NTSxevBi9Xp8SU52NxeIOibv8Q1csDR0oMomJVqMnOh3pPk2oFU3bKoSwD/NbZ9J53POgt5BIJBRPs8/nIxAIYDQacblcWUmaMo4di/OSS/A/+CAA3j/8gfLnnkU/bFiv5+0g0dlBbK/tQxcGgmLpk+SCDG1tbfh3342hH36ILhjEOGcO46ZNw7nvvvluZsEjEA3gMDj6dW7yNvm2RV/i8TizZ8/GZrMpXmqPxzMokpYNzgZg4Aodani/FhOh6QuDRTrleGm3262Qap/Ph9frZdOmTSxatAi9Xq/swHg8nn4VVJIkSZW7YUUVE/3CCy8oGqZjxozh8MMPV9VDk4x0JO7gf9cTLZYMJ3TCi1hen4pu3UyEl3/NrNHX09YRxWAwKGW0d955Z8zm7JYMt50yjeiCBXR+/DFSRwetV/+W8uefQ2Oz9WmTGlAwtkhSv6tYFowNvUCudimHaMTjcVwuF263m/r6etb+3yqczz4LQOihh3Dsty/CAMpfqx1zW+bym89+w2k7ncb5u5w/4DGQXPSlqamJ0aNHK4nvixcvprOzUynlXFpamrMCGY3OLpm71YHVxMU4Ok3mxL1YFpN9QW18IB+2JMdLw9bdXK/Xy4YNG1iwYAFGo1E5pqSkJK13rNr6RkYmCaD5hu6qq67CZDLR1tbGGWecweGHH/4/n1ioRk90byRajufqIhcimvrfss/yv2Brmc34xXfQfvQzmJxlOR2wgiDgvvkm4qtXE1u+nPjatXhvupmSe+9B6OElqbbFTl7HXDyM4Ye/oVvyDqFp/wZ9/xdJhfTsyMowMmnu7OxUCveMGTNmOxIWmbA3fP89zJ9PYsMGgi/8Hcd55+bRgsKFKIncN+s+wokwm0ObczI/yPrTctGXzs5OpejLrFmzeiz6MlBUWiqx6CyE4iHWBtcqnulMUQgv+YFCTUStUMIftFqtMmYBZQfG6/Wyfv16FixYgMlkSomp7o5Uq6lvklFUZb9bWlq2+6MaCTR0kej/ZYk76Bqccmax7JHz+/3odDpcLhcVFRW4d5pGZNw4dG+eimXLbIz/PZ/Q8X8Hoz2nbdSYzZTcfTebzzgDKRAg/OWXBP76V5wXdR9usCOcI4vQ6NHPfwWNfy36RW8QG3tq/toyACTHIsrx+mazGY/HQ2NjY98a5IKA5sILEC+/AhIJAs8/j+WII/osTf+/iA/XfMj81vmYdWZ+Mza9ZOBM0N3zYDabGTJkCEOGDEkpkCHLjiWTk3S9ed1BEATqHfUs8C5gZWBlv0i0WuYmtdgBhUs6k3dgYGuFU6/Xy9q1a5k/f74yj8k/JpOpqMIeMkEx2aWLRCKIokgikUCn06mmIEB3+F+NiZZJM8DChQsJBoNotVrcbjdlZWWMHDlyuyQHyTKO0P/9A8s/pyH41iCEtiDlmEQD6IbUUHL7bbRcdjmIIsFnnkVXW4v1l7/c7thCnAz7i7zbotES3eMsTJ/fgv6nZ4jtekrGYR35sEEmUnJRBHlB6PF4qKmpwePxpJ3kCj+L99fWYps6lfaXXoJIBN+991J6/305tKL4EI6HeXjuwwCcOfpMSs2lOblPb2Nq2wIZ8gKqpaVF8eaZzeaUeOpMEkMbnA1dJNq/Evop0JH35zpLUIMd8ju9GGzR6XSUlZVR9nPdhGRSvXr1aubOnYvFYgG63u+RSCSjea7Qkc5iR657kW/obrzxRqBrm2z48OFcccUVRbUKyAT/K55oURSV6mmyioY8IF0uF6NGjUpLbkes3I3Qia+AzoTk7t92Zn9gmjAB5+WXKwUw2v58G7qqKozjUuXX8u69zTLybUtsl5MwfnUP2talaNfMIDGsb4WU7pBLOyRJorOzM6UyoFzkpLS0tNsFYX/u4TjvXEIffoi4ZQvhL7+kc/oMzAcekEVLihsvLn6RzaHNVFoqOWXUKfluDpCazDVixAji8bgipbd8+XLa29txOBwKqXa73b3uutY76gFY5V/Vr/YUqtczU6jJDigOEr0ttiXVsViMtrY2Fi9eTFtbG5999hlWq1VZLGa6YCw0FBMH1b3zzjvKRHPBBRfkuz05hV6vJx6P93lcsZGz5JLDMnEWBAGXy6VsY1utVmbMmEFFRQW2XpL1toVYsWvK79r135EoGZGRjnR/YDt5KvG1a+l44w2Ix2m99lrKn30WXVJJ5mLrp95QELYYHcR2OQnDrGcw/PQUnRmS6Fy9nOQiJ3KIhlzkxOPxUFtbm5MiJxqrFdcVV+C94QYAfPfeg3HvvdCoeKcuXTSHmnlu0XMAXLrbpZh0hfmd6HS6lKIvkUhECf2YP38+0WgUl8ulkGqn05kyhves2JOzRp/FbmW79bsNxUjYtoVaSLQMNdii1+spLy9n/fr1yq5bcolyWdUmOfyjmEh1MY053ZIlS1i0aBEPPPAAZ5xxBkDRrAAyRbqe6EIP55BJc3JVQEmSFJWBhoaGbhNsBkrUtGu/wvyv0xEdtXSe8CKSI3dxooIg4Prt1cQ3rCfyzbeI/gAtV1xJ2dNPoXW5lGMKuZ8yQaHYEt3jLPSznkW36lME7wokT2PG1xioHXLxHpk0y0VOPB7PoBY5Mf9iMsZ//YvIDz+Q2LiJ4HPP47xQ3Y6GdLDQuxAJibElYzms9rCc3Sfbz4PRaEwp+hIKhRRSvXr1aiRJUjx5JSUljHaPZmfPzv2+XyE8z9mAWuyQd5eLhZylA0mS0Gg06PV6KioqqKioALocDzKplndh7HZ7CqnuNTckzygqTzTA6NGjOfzwwzn77LNZuHAhiURClcmF6cZEF1o4h1zlKzk8QxRFRdx92LBh2O32PieHgdolWcuQTB603mVY/nEMnSe8iFi6U7+v1xcEnY6SO+6g+Zxzia9cSXztWlqvuprSxx5FYzIVDPFUEyR3PYmGyehWfoThp2eITL4t7XP7+3KSY/blSV/WIfd4PAwbNgyXyzVoXpRkGwRBwHXdtWw+eRrE4wRfeAHrL49M2Q35X8TBQw7m1cNfJS7Fc05IcnV9QRCwWq1YrdaUoi9yxbklS5ZgMBjweDyUlpYqiVz9uY8aoAY75HdFsZCzdNCTx9ZgMFBZWamo2kQiEWU3b+nSpXR0dOBwOBRC7Xa7C4pUp6uiIghC3semTn6BzZs3TxGxz3ejcoVikbiTvSTJ4RmiKOJ0OnG5XP3ewh4o6RRLRhI6+W3Mb56KtnUplleOp/OYp0kMndjva/YFjc1G6f330Xz2OYitrUTnzcN7w42U/OXOglvsDASFtCCI7nkektlNbNeT+3V+X3YkLwrluGY5njVXOuSZILn9+mHDsE+bRvCFFyAWo+3ueyh98AHVzpHpYoh9SL6bkFUkF31paGhQdHxXNq3kw8Ufou/UU+esy6joS6E8zwNBMccRbws19Me2SDfswWg0bkeqZafF4sWLCYVCSr6ATKoHo6hRT5A97MUA3W233cayZcv44osvuOKKKwB1PDDdoVDLficnS8mkOR6P43Q6cbvdWYv7zAZRkxzVhKa+ifmtc9Bt+BbzG6cSPvIh4iO3V8/IFnTV1ZQ++ABbLrgQqaOD8PTp+O78C8LUk1QzMRYSiU4M3ZfE0Mwr9fU2b8hFTuQQDbnIicfj6TH8qFBgP+dsQu+/T6K5mcjMmYQ//xzzIYfku1mDjn8u/yfDncPZvWz3fDcl55Cl8h5e9jDvNr/LeTufx4iKEd0WfSkpKcHlcnU7PxfqmE4XaiTRxULO0kF/wx6MRiNVVVVUVVUBXfOzTKoXLVpEZ2en4qmWx/dgkupC0fNOB7qnn36aYcOGcf3113PhhRcC6nhgukOheKJl0izHNMukwuFw4Ha7GTJkCA6HI/vJUtmyy+Si84QXMb13Kfrl72P694V0/vq1nHqkDaNGUXLXX2i5/AqIx+l4+220Wi2x447N2T0HE2p65iRJUrLH5R+5yInH46G6ujpnleZyAY3FgvPqq/Be9zsAfPfdj3GffdDk0Vs+2FjlX8U9P91DXIzz4mEvspMnd2FcMgphUVnv7FLoWNO+hoqxW2NOk4u+rFu3jkQigdvtVki13W4viPYPFGok0WqwRUa2EvBMJpOSLwBd41sm1QsWLCAcDivJ3LKnOpchv0XliV69erXySzFlRPYH+ZS4kz3NMnGORqNKeEZ1dTUOhyPncehZ9XbqzYSP+ivSpzcjdLaQqNk7O9ftBaa998Zzyx/x3tAly6h78010ej3slPsX+mCg0F66muaF6Gc9Q3ynY0jU9S7vlkgk8Pv9AMydO5f29nasVitut5vhw4cPuiejv+hp/jMfcgjGfSYQ+eZbEk1NBJ95FufF2S8wUogQJZE7friDuBjngOoDGOUeNWj3zvf7SC7/vdK/MuXvvRV9Wb58ORqNBp1Oh81mIxQKKZq+O5A/FNr8mg3kirOZzWZqamqoqekSDwiFQgqpnj9/PpFIRNlJ9Hg8WU32lvWfi4ZEf/HFF7jdburq6nA6nfluT06h0+mIRCJ9HpcNj628fS0T50gkoniaR48ejdPpHPTkzawvDjRaIpP+DGIcND/bEuvs+ncAZaN7g+Www0i0evHf11X8wvTqq7QPHYLtpJNycr/BQiGFc8jQL3gVw/xX0IRa6NyGREuSpFS9lIucyIkplZWVVFRUqEr8v0st5rddSYaxGMEXX8Tyy1+iH1aX76blHP9c/k9+2vITJq2Ja8Zdk3diO5iQtaLXBNcQF+PoNNsvBHsq+iIXtpoxYwYmk4mSkhIlSbFY5MbU5L2VCacabJExWCoWFosFi8WiLBplT3Vrayvr168nFottR6r7265iG3O6I488EofDwfHHH88f//hHRcxbjTAajbS3t/d5XH/Ippz9Kv9EIhHsdjtut5uddtopL6R5W+SEqAkCaH/O6pUkTB9eg8a7gs5jnkZyVGf3Xj/DfvJUpM4QgcefAMB3z71gMGIr4tCOQpwworudgeGnp9Gu/ATaVhMylisxzW1tbQDbVb38/PPPKSsrK2oC3dMzoq+rw37aqQSfeRbicXz33EPpww8VZN9lC+uD63lo9kNAlyZ0tS03z3ShospahUlrIpwIs759PcMcw/o8R06StdvtWK1W6urqaGtro7W1VdHwzaToSz5RbISmN6hxpz0fNgmCsB2plj3VcniTTKrlRMVMwvdk7lU0nuiFCxfyzTff8Pvf/562tjZefvnlfLcpZ9Dr9WknFvZFNmXSLIdnhMNhbDYbbrebUaNG4XQ6C277OtfeTiG4Ee2a6Wg6vVhe+iXho/9GomavnNzLcfbZ+Jq3oHnjDQB8d9yBYDRgPfLInNxvMFBonuiIbQhC1b5YN31Ny3/vZF7VSYoWeV1dHTabrduJrtDsyCbsZ51F6L3/kmhqIvLtt3R+8gmWyZPz3aycQJREbv3uVsKJMOPLx3PiiBMH9f6FMI40goZ6Rz2L2haxKrAqLRItQ27/ttXmZGUEuehLJBJJiafORT5Mf1EIfZAt7CDRuUGyXOTQoUMV9SU5/GPNmjUkEgnFU93XGM9Uzzvf9uvq6uqoq6tj6NChHHroocDWzMh8Ny7bMBqNaRdb2bayoVw1TSbNoVAIu92Oy+VixIgRRRHzmfOESUcNoVP+g/nts9FuWYT5tV8TmXQbsbHTcnPDk6cSbg9i+uBDkCTabrkVQa/H8otf5OZ+OUQhyPXF43FlfHu9Xjo6OhjmOYTdNn1NbesXuI+/G63J3us1in3O6Kv9GpMJ19VX0XrNtQD4738A0377qTLJcPqG6fy05SfMOjM37X0TGmHwiV0hjKcGZwOL2haxwr+CQ4ZkpsrSXfuTlRHkrfGWlpaUoi8y2SgpKcFqteb9e8j3/bOBQiCc2UYhqlgIgoDNZsNmsyka7O3t7QqpXr16NaIo4na7lXGerD5WbCoqCusTRZGdfk7QKpbGZwqdTpe2Jzoej9Pc3KwQ546ODsXT3NjYiMvlKihx8nQwGHG3knMooZPfxvT+leiX/gfTR9eiaVlE5KCbt4Z9ZAmCRkPoxBMpcTjpeP11EEW8N92MYDBgPuigrN4r18jHRCiKIoFAQAnRCAQCmEwmPB4P9fX1XQL8uoMR17+I1r8G09J3iI09pc/rqsl71R1MBx2Ead99CX/9NYnmZoLPPYfzoovy3ays46Cag/jD3n9ARGSITV260JngV/W/Yo+yPTKW9kuHtMlb47W1tT0WfdHr9QqhLikp6VfRl/5iRzhHYaMYEvCScwbq6upSEnG9Xi+rVq1CkiSFVFutVuW8YoBu06ZNtLa28qc//Ymjjz6a5cuXE4/HSSQSjBkzJt/tyyp6U+eIxWKKF665uZloNEp7e7tSRrsYSfO2GDRvp95C+FdPIH7zIMav78Ew61mEjhbCRz2e1dsIggA/lweXohFCb78DiQSt1/+ekjtuLyoiPSgLnKRtNnlxqNFo8Hg8vRY5ie5+BqYvbkU/61liu07rioNXMfrqB0EQcF51JeHvvuuqZPj3F7EedRS6IeoimoIgcFTDUfluRt6xV8Ve7FWRm7C0bdFT0ZfW1lbWrl3LvHnzsFqtKUVfcvle2kGiCxvFaNO2ibhykroc4rR8+XIAZs2apSQqplOROV/QnXTSScyaNQvo2mb66quvkCSJaDTKF198UbAJD/2B0WhUwjRaWlqU5Ki2tjZFkkuO+UwkEowdOzafzc06BlUBQhCITrwCsXQnTB9eTWz303Nwiy57BI0G9/XXQyRK6P33IRaj9brf4fnjH7AcfnjW75sr5KJvkov4eL1epVy8vKOSzlZxbJdfY5jzQldBHTEG2p6VBQp1oss29HV1KZUMffc/QOm99+S7WVnBB2s+YJ/KfXAa86vWVIwEIRnZeJ7loi8lJSVAl7NHJhtLly5NqTQnJylm0zOppl2lYh9P3UENNgmCgMPhwOFwMGzYMILBIDNnzsTtdtPa2sqyZcsUZ4+cO2Cz2QpmbOrGjRvH/vvvr4Q6GAyGopHfyQR+v5/Fixczd+5cxo8fz4oVK7jwwgs566yzqKurw+12K3avW7cOn8+X3wbnAPmQUYuPOJz22v3AuDWWVrtuJiQiSNYKJGs5ksm1VSIvAyTbI2i1uP9wMwgCof/+FxIJvDf/AbEzXBSqHdnqm+QiJ16vl3A4rEgr7rrrrv1LWjK56Dh7Rtoe6EKZ3PqDTF5I9rPPouO99xBbWghPn07465mY9s1dwaHBwHdN33HjzBspt5Tz8pSX806kCwXzWuaxzLeMA2sOpNRcmvZ52SY4er2eioqtRV/C4bCiTz137lxisRhut5vS0lIl1nQgbdjhiS5sDJbE3WBDo9FQX19PfX19SthhS0tLCqmur68f1PCm7qB74IEH8tqAXCEYDPLll1/y+eef89lnn/HTTz9RUlKCJElceOGFHHbYYdTVda/xWghJXrlArhMLe0QSgRa8KzG/eTpCvFP5myRokExuJEsp8Z2OIbrPZV0fJGLo57+CZClBMpciWkqQLCVgdMLPia/J9gg6He4//gHBYqbjjTdBkvDdfjtSZwj7tBwlN2YJ/Z3c5SIncohGMBjEarXi8Xiym/BaJJnSgwmN1Yrrssvw3nwzAL5776Vir38gFGnYlzfs5aZvbkJCYt/KfXcQ6CTc+eOdLGlbgsfk4eAhB6d1zmDMtSaTSSmKIYdrtbS04PV6laIvyfHU/Sn6opZnWo0kWo02bbsw0Gg0uFwuXC4XDQ0Nig57a2trQSwgNJIkIYpitz/pYPr06Rx11FFUV1cjCAJvvfVWyueSJHHzzTdTVVWF2Wxm8uTJLFu2LOUYr9fLKaecgsPhwOVycc4552yn5zx37lwOOOAATCYTQ4cO5a677uq1Xfvvvz8XX3wxLS0tXHbZZaxevZq7776b+vp6zjvvvB4JNBRm4YtsoBDs0gTWEa87kETZaESTu6tdkoimsxVt6xKETq9yrNDpxfTx9ZjfOR/Lq8dje/Yg7I/ugu2BeqxPjKd0zmNb7RHjGL57FP3iNymZui/2E7ZK3fnvf4DAk0/l3fa+kE775MSj1atXM2vWLGbMmMGiRYuIeH9IUAAA2U5JREFUxWIMHTqU/fbbjwkTJjBixAhKS0uzqxgjxtEt+y+6+a/12cZiRibtNx8+BcNuuwEQX7uW9ldeyVWzcgpREvnjt3+kNdxKg6OBq8ddne8mFdQ4anA0ANtXLuwLg0lwZFWEYcOGMW7cOCZNmsS4ceOw2+1s3LiRGTNm8MUXXzB//nw2bdqUllKVmkiammyRoUab+lIckXXYGxoaCiJWWjdQKbuOjg522203zj77bI4//vjtPr/rrrt46KGHeP7556mvr+emm25iypQpLFy4UHHDn3LKKWzatImPPvqIWCzGWWedxfnnn69oVgcCAQ477DAmT57ME088wbx58zj77LNxuVycf/753bZrxowZOByOlL8lx0T3Bo1Go0pPdCF42BPDDiIxLCnhLxFDCLchhFoQQl4kW/nWz6QEscYpaDpbf/68FSEaRBDjCB2b0SSiW7cbQy0YZ9yhnGrRQcsuNlrmd42BwN/+hhgK4bzsUgQpgW7x20i2SkR7NZK9CnT53RLqaYEjC9knF/KBrUVORo0ahdlsHpSJRLvyU8zvnIdo9hDf6ehuv7N8T2iDDUEQcF3zW5pPOx0kicBTT2M54gi0pelv+RcCXlryEl9v+hqj1sjt+96OKc/PQ6GhwdlFolcFVqV9Tr4XATLZkPMf4vG4UvRl5cqVzJkzB7vdnhJPve2iW00kTU22yChEibuBohgUR5IxYDfVEUccwRFHHNHtZ5Ik8cADD3DjjTdyzDHHAPDCCy9QUVHBW2+9xdSpU1m0aBHvv/8+33//PXvuuScADz/8MEceeST33HMP1dXVvPTSS0SjUZ555hkMBgNjxoxh9uzZ3HfffT2S6G0JNHTFk6Wz+i4Ej20uUJB2afVdcdHW8u0+kuzVhI99OvWP8TBCpxch1Iq/PYbUtnVRENv5BIT25i6C3b6Zsl38aHQSzbO7tqXbX3wRqb0d98WnY/7v5SmXFS2lSPZqRHsV8eGHEx/zc2EJSURob0KyVvQrbjtdJE+EciEfOUQjFovhdDqVIif5Wn0nGg5FtFejCW5Et+Rd4mP+r9vjCm6M5RiGUaOwHncsHW/+CykUwv/ww3huuSXfzUob81vn88icRwC4eo+rGe4anucWbUWhEASZRK/wr8jovEJpP2xf9CUajSrx1AsXLiQcDitV5kpKSnA6nap6ltVGootNTzldFNvCIKfVQVatWkVTUxOTkyp6OZ1OJkyYwMyZM5k6dSozZ87E5XIpBBpg8uTJaDQavv32W4477jhmzpzJgQcemJLwOGXKFP7yl7/Q1taG2+1Oqz29SdwlI2+xwzlGQZLoTKEzIdmrkezVJDRbkLyrAZBslYSPeDD12Fgnxo5mPG++gfeJV0GS6HjrLRIb12LcdyLaSDOa4EaEeCeaUAuEWtBunovkGoa8XyF0NGP7295IghbJXoXorEV0DkVy1iE6hyKW74pYMjDSEY/H6ejoIBgM8u2339LR0YHdbsfj8TB69OiCKBkPgEZHbLfTMX55J4bZz3ZLootp8usO/W2/46KLCH38CVIgQOi9/2I9/gSMuxWHus8jcx4hISWYPHQyxzUel+/mFCTkcI41wTUkxATaNBbUhT7XGgwGpegLQCgUUkj1mjVrEEURh8OhSJDZbLaifr7VSqLVZBOoxBOdrcHW1NQEoGQSy6ioqFA+a2pqorw81Qup0+nweDwpx9TX1293DfmzTEh0LBbr075CCHvIBdS2OOhzUaA3I7nqsJx9FdSMwfvHWyAeJ/zdT6z1j6L0/n92bbuHfV1kOrgRTWADYvlWfXShYwuSRtcVQhJYjyawHtZtvUV0/AVEDr6p69hQK6YPru4i2q5aRHcDorsByTEENFsfNTkxQg7PCAQC6HQ6tFrt1iInBZqcFtv1ZAxf34u2aQ6azXMRK7YnimoaY+lC63LhvOACfHffDYDvnnsof+5ZhEJY/PSBu/a/i8fnPs5vxv5GdS/kbKHaWo1RaySSiLCxYyND7UPTOq+Yvk+LxYLFYlFKNweDQTZs2IDP52PmzJl5LfqSDaiNRGdaHrtYkIniSCHYrnv00UeJRqPKTzweZ8uWLdx8881UVlbmu31ZxQ5PtAo80UnIxB7LlCloSktpveZapGCQ2JIlNJ91NqUPPIB+eCOi2Q3lY0hsc55YsSvtl6/oChEJbEDwr0HjX4fGvw7Bv4ZE+eit7fGtRrfy4+3uLWn0xO1D2DL8RFa6D6KtrQ29BsqsGqoqGxkzZoySUb/tgrLQIFlKiI88Ev3it9HP+TuRw+5O+bwQJrWBor/PiPX44+h461/Eli0ntngxHe/8uyjkFR0GB9fteV2+m7EdCmmu0mq01NnrWOpbysrAyrRIdDGTNlm7V5IkNm3axMEHH5xS9GX+/PlYLJZBK/qSDRRzf3QHtYZzFFs/6f70pz+h1+uVH7PZTFtbG5dffvmASbR8/ubNm5UtI/n33XffXTmmubk55bx4PI7X61XOr6ysZPPmzSnHyL9n0kaDwZBWYqFaPdFqtCuTF61p/HjKn3qSliuuJLFpE4nNm2k+91xK7voLpr337vlEjbYrfMReDTU9Vy6THEMIT74Twb8GqXUFQutK9MG1aMQoev8qOtuDeBo9NDY24ggsxfqPo5H0FkR3IwZzDWZ9BVpLE2LpSCRnLQiFOTnGdjuti0QveovIQTeBcfv8g/9FCDodrqt/y5YLLwQg8NhjWCYdiqab/Ix8Y7F3MQu8Czi+8fiCfmEVUtsu2/0ydIKOnTw75bspgwaZ0Mi6vLJ0pqxH39LSwtKlS+no6MDpdCqk2uVyFUYIWhKKjZz1BbWGcxSb9rVODpnIBerr66msrOSTTz5RSHMgEODbb7/loosuAmDixIn4fD5+/PFHxo8fD8Cnn36KKIpMmDBBOeaGG24gFospq92PPvqIUaNGpR3KATsSC9VmV3/s0Tc0UP7M07RcdRWxRYuROjpouexy3DfegPVXv+p3W6LRKL6QgNe4J236RsKufXHUOvC4XZQaojhizVSUDEdy1ACg2dSEJGgRYiG0zfNwMg8nwPLnAQgf/Edi48/tsrOjGU3THMQSmVznd9JM1EwgUTIS9GY07ZsRtyHRxTzGBvpCMo4fh/mww+j88ENEn4/A3/6G67e/zVLrsoNgNMh1X13Hho4NxMQYU0dOzXeTigL7VO6T0fHF/Bz0Bb1eT3l5ubJz1lPRF5lUOxyOvJO9HSS6OJBJYmEh2K5LbnDyQ5/uSqC9vV2pdQ5dyYSzZ8/G4/FQW1vLFVdcwZ///GdGjBihSNxVV1dz7LHHAjB69GgOP/xwzjvvPJ544glisRiXXHIJU6dOpbq6GoBp06Zxyy23cM4553Ddddcxf/58HnzwQe6///6MjJVjovvCDom74kB/FwXa0lLK/vpXvDfcSHjGDEgkaLvlVuIbN+I491yENMZ+IpHA5/MpKhrt7e3YbDbcbne3RU4kRqecHx9xJO2XL0fwr0Xbuoz21T8ibV5IibgFjXcFYsmIre1d+zXm9y7puo7RSaJ8DGL5riQquv4V3Q05VQ7ZDoJAaOqbYHJ181HxL9QG2n7nZZcSnj4dKRym/Z9vYD32WPTDC0PxQpIkbvn2FjZ0bKDaWs2Rw47s+6Q8odjHERTGS34gSJd4dlf0RSbVK1euRBAEPB5PStGXwf5u1Eai1RoTXXSJhcmN7U9n/PDDDxxyyCHK71dddRUAZ5xxBs899xzXXnstHR0dnH/++fh8Pvbff3/ef//9lKSEl156iUsuuYRJkyah0Wg44YQTeOihh5TPnU4nH374IRdffDHjx4+ntLSUm2++uUd5u56wIya6+AlOMgZij8ZspuTuu/Ddex8dr78OQPDJp4jOm4/tuOPQuF1o7A4Emw2NzYpkMtHe0aGQZr/fj8FgUBaLHo8nRT0mLWj1SJ5G4p5G2my70VTaxB577AFiAkiyS6MlUbYzGu9yhIgf3bqvYd3XysedRz9JfESXzKQQ2IgQbusi4doM25MJuiHQO9AFXUUF9rPPIvDY45BI4LvnXkoff2zQXnaJRIJEIoHZbN7us5eXvsznGz5Hr9Fz53534jAUXqhJoSKaiPLBmg9YFVjFxWMv7lOhQw2krT82yEVfbDYbdXV1Stnm1tZWmpqaWLRoEUajMSVJ0Wg05siCrVBDfyRDtkdNNkERhnMM9AIHH3xwr0RGEARuvfVWbr311h6P8Xg8SmGVnjB27FhmzJjR73ZCZuocaiKbMtRm10DtEbRaXNf8Fl11Nf6HHgJJIvLNN0S++abb40WjEY3FQrnNRpXdjs5uR2O3IVithKw2wjYrgtWKxmZT/tXY7WgcTjROB4LV2quXW7Flm5dzfNRRxEcdBYkomtZlaDbPQ9s8H23zfDTNC0hU7Kocq1/4Osav7kbSGhBLdyJRvgtixa5d/5aPyT6xDvvRbvqJRH3XQlptY6y/sE+bRsfb75DYsIHIjz/S+fHHWH7xi5zcSy7I09raitfrxefzIYoiFouF0tJSSktL8Xg8LPAt4KHZXc6Jq/a4ip09O+ekPdlEIREEjaDhjh/uICpGOb7xeIbYh+S7STlHNp7l5LLNjY2NJBIJpejL6tWrmTt3LjabjZKSEkpLS7st+pINqJVEqw3FZpcuGo1m7kErUhiNRiRJIpFI9LrSUVvYgwy1edizQdgEQcB+6inoGxpovflmJL+/x2M1kQhEItDWRgK2U/LoExpNF6l2OrqItcPR9eN0IGo0mCSJkNeLxu1G63ajcbvROBxbZdK0BsTyMYjlYxQda8REagJiIopkdCBEAmg3z0W7eS7M6/pI0hnpOO1DJE/jz3+QBhRfLQQ2Yn32QJBEOs7/HslS0u9rqQ2C0YjrqqtovbqrfLb/wYcw7b8/mm68w/1BLBbD6/UqP8kxqCNGjMBmsymJX4sXL6alo4XH2h8jISU4pOoQTmg8ISvt+F+CTqOjzlHHMt8yVgZW9kmi1TLXZpvQaLVaZXEHXfkkXq+XlpYWFi1aRGdn53ZFX7LhmSw2ctYXiq0oSbooOk/0fffdR1VVFWPHjmX33XdXZafIkBcLkUikVzketZFNGWrzEg50rMplcNva2vBqBMJXXE7punXYQiFM0Sj6WAxCIcT2DqSODsSODsT2dqSODqRQKPMbiiKi34/o95MiNv0zHID3lVdT/6jRoHE6U4i1trQUTWkJ2rIytCWlaMtK0ZaWItjtRPe7hui+v+2KtW6eh2bzfLTN89A2zeki2K465dLGj3+HdtNsEjV7kajZm0TNXl0l0NOE5KhGLB2FtmkOugWvEdvroqKfP7LZftMB+2OcOJHIzJkkNm8m+PwLOC+8oF/XkrfEZdIcCASw2Ww9FuTR6XQpiV//XvZvAj8GqDRUcnDkYD7//HPF81eMmr/5QoOjQSHRB9Yc2Ofxxf48DAbxNBgMVFZWKkpbyUVf1q5dSyKRSImn7m/RF7WR6GKLHU4X6fZToXAZ3Y033ohWq2XkyJFcf/31TJs2Ld9tyhlk4txXXLRMNtX20KnNw57poiC5yInX6yUYDGI2m3G73TQ2NuIaPz5trVMpkUAKhRA7OpDa238m2D+T7Z+JttjejhgMIgb8iP4AYmDrjxQMdnmC+240YlsbYlsbfYozGo1oS34m12VlaCsr0VXWo63YB+3O5ehsAoKgRR7R2nXfoG1bgXbLApj9XNftHEMVUh0be0qfnuro2NMwN83BMPdFYnt2EcRCmdz6i2y1XxAEXFdfxeapJ0M8TvDFF7EeczS6qvQWKp2dnSneZllmrKamhl133TWjONKjRhxFpaMSt9FNg6MBv99PS0sLa9euZd68edjtdoVQu93ugpAnK8RxVO/sKvq10r+yz2PV8P7Ihw3dFX1pbW2lpaWFZcuWodVqU+Kpu4v97w5q6I9kqM0eGUVXbGXKlClMnTqVsrIyrr/+eqqqqjjkkEOKzqWeDmRPdF8KHbLdahukavRE92aPJEm0t7crpNnn86HT6XC73dTU1OB2u/vtgRO0WgS7HY3d3q/zpUQCqb2dhN+PGAjQtnoNLStXUOd2k2hrQ/S2Ifp8JLxeRJ8P0etFikR6v2gkQmLjRhIbN/bcbqMRbWVlF8EuPQCDbV8MulaMiVUY40vRBdahCaxDs3kusd1OVc7Trv0KsWQEkjW1GEx8p6ORvrgVjW8N2jXTEYTshCuoBfq6Omy//jXtL78MkQj+Rx6l5LY/d3tsPB7H5/Ph9XppbW0lHA7jdDrxeDwMGzZswGWX96rYqnHudrsVJZloNKqQlHnz5hGLxfB4PMqWu9Vqzds8WGjzb6OzKxRqlX9VnlsyOMj3+0Iu+uJwOKivr0cURaXoy/r161mwYAFmszmFVPfkCFHb+3xHOEdhQBeLxVi7di2nnXYa999/P9999x2HHHJI3h+eXCBdEi0PzGLrzL7wv0CiZe+dHKYhimJKrGg+pJW6g6DVIjidaJxOALQVFXRWlGPfq+diLmJnJ2Krl0RrC4mWFhJbWhBbWki0bCHR0kpiyxbE1hZEf6DHa0iRCPE1a4ivWUME6Ej5tAKN3YreY0RX7kYbfxJdQwP6uqFY3z0bTaKDRPkuxOsPITHsYBJV40BvIbbz/2GY9Qz6uS9DxTmqGmPZgOPccwi99x6iz0fnhx8S+fWJGHfbTVnkyQmBfr8fk8mkFLTYViYxHYiiqGzzarXatMa6wWCgqqqKqqoqRZ6spaVFKaRhMBgUQt0bSflfQL2jyxO9KrAKURLR9FIQSS2krZBs2Lboi1yYrbW1leXLlzN79mwcDodCqJN3VdTSHzLUZo+MYrNLZzKZUhqcjgRcsUKr1aLVavu0MdkTrSaoLdZbDk/ZvHmzQpwjkQhOpxO3283QoUOx2+1FsRBKZ4GjMZvRDKlBN6Sm1+OkSITEli3Em5pINDWRaNpMoqmJ+ObNJDZvJrFpE1I43O25YrCDSLCDyBovfL9C+ftmjROj3YLRuQGD41mMzicxlBnRjNkXqXp3AHQrPsTg+b/MDC8w5GLy1tjtOC66EN8ddwKw5c478f/+93h/VtFwu91UVFQwevTotLemZcjhWaIopoRqyXbIEljJv/eGZHmyYcOGKUoKLS0tLF++nDlz5uBwOBRSna2kr2LBENsQ9Bo94USYTR2bqLH1/iwWOwqd0Gwb+x8OhxVSPX/+fKLRqOJE6ezszHNrswu1xkSLolgQ4WTpQqfX62lubub9998nGAx26dRSWKvPbEKv16ftiVYT4QR1eKLlIidynCjAmjVrcLvdjBo1qiDLzaaLrMXiGo3ohgxBN6R79QBJkhD9fhIbNhLfsJ74+vXE128gvn49iQ0bSDQ3b3+SCBG/nohfD2wlesI7s9FXrcVorcdkbqFU+z56cxRKjizYsuV9IZvPiLz97B0zBm11NfqNG2H5Cqzff0/N8cfjcDgyfhHK3mb5X0ApzSz/JOd1bKsnK38un9cbtlVSCIfDtLS00Nrayk8//YQkSUqCYmlpacaLgJ5QqNXYdBodjx/yOFXWKsrN5b0eW+gENB0Umw0mk4nq6mqqq6uVXRWZVG/ZskV5bvJZ9CVbKLa+SRfp2lUoGtm6yspKXnzxRd577z1OPPFEfvVz6WM1rnAEQUir9HdyOIeaUIyJhaIoEgwGFU+z3+/HaDQqcc1Lly5lr732KoiHaSAYzPYLgoDW5ULrcmEYs71WsBQOE9+4kdjq1cRXriK2ciWxlSuJr1kD8dT0RkkUiG5oIwoEsSPM+ZLgizOIum/FMLIO/YRJ6Pf5BbqG+rQqQRY7ZM1meZHX1taGXq/H4/Fgvfg3JG64EQDDa6/jOOmktOZZmSzLBECGIAhotdoU8txTm+R/5WvILyD5nHRfSCaTiSFDhjBkyBAkSSIQCNDS0sLGjRtZuHAhZrM5RZs6F3q/+cbuZbvnuwmDhmJ2uiTvqtTW1rJ06VLa29txOBw0NTWxePFiDAbDoBd9yRZ2xEQXBnRTpkzBbrdzyimnsOuuu/Z9RpEjndLf8gulmCeQ7lAMNiWTEDmuWaPRdLvlHY1GWbp0qSpW5IXUN4LJhL6hAX1DAxy69e9SPE583bouQv0zsY6tWEl87VpIJKlmSwIRL0S+WQPfPAMPPoNg0mEYPRrD7uMxjB2Lcdw4NBbL4BuXA8RiMaV4hKzZ7HK58Hg8NDY2bk3MGz2alo8+Ivz5F4itrQSfex7nxb/p9ppyeMa2pFkmyzJ5Tgfbep2TSXUikUjZFs7ESy0IAk6nE6fTSWNjI/F4XJEmW7x4MZ2dnbjdboVU2+32on9OM4Ea5iU12CBDkiSMRiONjY19Fn0pKSkp+EWgWsM5im3M6Y4++miOPvpowuEwn332GS6Xiz322KPoDEkX6Zb+LkavbV8oJKKWjHA4rChotLW1EY/HcblcuN1u6uvre1QlUFvYTaHbIeh06Ovr0dfXw6RJyt+lWIz4mrVEFy1i/aefYlu/FmnNuhQJPykcJzJrHpFZP1d+0ekw7r47pn0nYpo4EV1jY9HMN/LuiEyag8EgFosFj8fDTjvt1GtIkevyy2n66muIxQi+/DLWY49BV1PTbYgGbCXOcpJgNl6a3ZFq+Z7xeDzlc5lUp9M3Op2OiooKKioqgC69XzlBccWKFSmhIX15/Qr5Wdgc2syby98kkohwxR5X5Ls5OUexPJfpINmWnoq+JC8CnU6nQqpdLldBkVa1crR0PdGFMkfo1q1bx/fff897773H22+/zdlnn80ee+xRdMHd6SKdcA5QXxIeFI5NsVhMiWtua2ujs7MTu92O2+1mzJgxaScrqYlEF+oCJx0Iej364Y3oazw0ND+Gq34Fwae+JLZiHdHZPxL77nMiS1aSaE/yVsfjRH74gcgPP+B/6GG05eUYJ+6DaeJETHvv3W/pwAHb0kM/JGs2t7W1IQgCbreb6urqjLaBdUOGYDt5Ku0v/B2iUdoefBDnn7dK3skhGsmhGrlGMklO9lLLhD45OTFdLzV06f3W1tZSW1urxIa3tLQoXj9Zm1ou9VxIBKU3dMY7eXrh05i0Ji7b/bIeFTqK9XlOhpqIWl/hD9sWfens7FR2VtatW0cikVCSFEtLSwcsOTlQqDWco9jGnO6YY45hzZo1TJw4kb/+9a9MmTIFQJUEWo6J7iucQz52hyc6O0gkEkq1tba2NgKBgOK5a2xsxOVy9Us2S20kuuhhcmGMtKKJdWBc8xGacdMwjhsHZ58HQHzTRqILFxH5/gfCX39JYtNm5dREczOht98h9PY7oNVi3GMPrEcfjfmQgxHyUE1P3uqViXNnZ6cinVVXV9ev0ASZlJpPO43Qu/9B9HqJfPY58dlzMO05XvH65pNM9uSlHmiCYrI02ciRI1O0qefOnUs8Hleq0iUnKBbic5Gs0LGxYyNDbD2X/y7E9meCYiM0vSHT8Aez2ZwS/y/LUcpyelqtVtFTz6ToS7ag1nCOoouJPuecczjppJOULQ21I52YaCgcr202MVgLA7nKlExC/H4/Op2u39XW0rlfsaOYPdEKBIGmqsk0rnwe/fxXiI1NrX6qq6pGV1WNZdIkpM7zET56nMjn/yW03E+o2YiU+PllnUgoXmrBbsdy+OFYjzkaw6hROWu6/JIMBoPI2vlGo5GSkhIaGxtxu9391mzeNiFQY7Viv/AC/LffAUDwwQexvfQiQgE6LnryUg80QXFbber29nZaWlrYsmWLok0N0NzcTGVlZUFpU+s0OoY5hnWV//av7JFEq4GAFv2ctA362x+CIGC327Hb7QwbNkypftvS0sKGDRu2K/ri8XiUMZwrqGF8dYd0SXSh2K4755xz+l21rRixwxOd/UlRkiQ6OztT4polScLtdlNWVsbIkSNzIiWkJk80qMOOpspDaVj1ItpNPyF4VyB5Grs9TjC74ejfYzz695hbFlM++1Vin/2L0OoowY0mYu1dhFUKBul4/XU6Xn8d/ahRWI8+GsvhU9A4HANuqxwDKf8kEgn0ej0Wi4Xdd98dSz8SH9NNCDQedxydb75JdPESYkuX0v7229iPP37ANuUSuUxQlAlKfX09iURCkdBbvXo1CxcuxOl0pmhT5/sF2uBoUEj0gTUH5rUtuUa+v+tsQRTFrCUKysnubrcbYLuiL7IKSHdFX7KFHeEchTE2dccffzyHHXYY+++/P0OGDKGioqIgGpYrpJtYqEZPdDZtkgmIrKAhFznxeDzU1tYOSpETNZFotTxzcaObUNU+WDd+hX7Rm0T3u6bPc8TSnRAn/wEOuR7Hig/xzHsFf/V5dHzwGZ0ff6KUO48tWYLv7rvxPfQQ5oMPxjb1JIy77JJ222TvkZwQ2N7ejt1ux+PxKLH4y5YtQ6fTpU2g+5sQKGi1uH97DZvPPRcA36OPYf3FL/IWC94f5CpBUavVUlJSAsCECRMQRVFJUFyzZk3OtKkzQYOzAYAV/hU9HqOGeUlN3s5c2rJt0ZdIJKKEfsyfP59IJKLEU5eUlGRlIbgjnKMwoGtoaODBBx/knnvuYbfdduPEE0/kzDPPLDpD0kW6iYU7PNGpiMfj+Hw+hTS3t7djs9nweDx5K3KiNhKtBjsAAsOO7CLRC98kuu/V6Rdd0RqIj/wV8ZG/wggYJx6E+NvfEr/teAI/NRP2/rw9GonQ+cEHdH7wAcY998R+5hkY9957u5eSvEMik2afz6fEMdbW1va45dpbP/RWITDThEDTuD2w/GIyoY8+Rmxrw//U07ivvKLv76lAkasExW21qeVtdFmb2mKxpGhTD8Y81Ojs2mFZGVjZ63HFTkB3kOj+wWg0phR9CYVCCqlevXo1kiQpOQAlJSVbZTAzgJr6Jhnp2JW8YM83dI888giPPPII3377LQ8++CAzZ87kzDPPzHe7coZMJO4KpZOyhUxsEkWRQCCghGgEAgGMRiMej4dhw4bhcrlyHvOVDtTUT2qwQxAE2occiGSwoQmsQ7vhBxJD9u739TQ2G+Zzr8E59yViP03Hv9JEYLWFRLSLpMqx0/rRO2E/80z0++9PW1JFy2g0qshUpWg2Z4B0KwT2x+ngvvxyQl9Mh2iUwD/+ge2EE9DXDs34OoWGXCUoCoKAy+XC5XIxfPhwYrEYXq+XlpYWFi5cSDgcVpK9cqmgIHuimzqaenzpq4HkqGFOkpGv/hAEAavVitVqpba2VilS1NraSnNzM0uWLEGv1yu7Kx6PJ60QWzWMr+5QbA5cXXNzM1qtlgkTJvDyyy8rHxSTEZkg3ZhoNYZz9EY45RKpMmn2+XxK3FdVVRU777xzXrZN+4JaSLSaJkNRayQy8Soks5tE+fYVETNFovEXdDb+AmHyRtzzX6N09j8IzmujdZFNiZ2OLVqM97rfES0ro+OwwzBNOaxfOyTyeJJjfPtTITAT6KqrcZx2GoGnn4Z4HN/DD1N2910Dvm6hIdMExXR3AfV6vaJNLXv85NCP5cuXo9PpFHKSzYp0NdYa/vXLf1FtrVbVs9sd1GJfoYQ/CMLWIkUNDQ0kEgl8Ph+tra2sWbNmu6Ivbre728RatcZEF5tduvPOOw+73c5uu+3Gcccdx/Dhw/PdppwiXXUOtYZzJNsUDodT4prlIicej4eGhoa862Cmg0JvX7pQ22Igtuf5Wb+2ZK8mOvEKwrufT3jhf3EteI316yvh2zUYN24EwLBlC4aXXkL70UcYTjkF4bhjIY3FnxyekUgkCIVC+Hw+Ja4/0wqBmcJ51pm0v/UWYmsroU8+ITxrFqY99sjJvQoBfSUoRiIRvF6v8rdk739f15U9fnV1dYiiuF1FOofDoRDqgWhTazVahtp73zFQg6dQDTbIKNT5Vc4BkPMA5N2Vvoq+FMqiINsoNrt0gUCADz74gE2bNvHaa6/x2muvUV9fn+925Qz/y4mFMoFevHgxbW1thMNhHA6HUjQi3SInhQS1kE8o3Ek+U2TbDtlTI79YujSbh+E54E5KPR7sv7MT/eZb2h++nfDyLu3pRHMz/vvvJ/jMM9hOOgnbr09E43Qq1+wpIbCiokKRrBIEIcWLmavwJY3FguuiC/H++TYA2u6/n8rnn1cNeUkHgUBA8SAHAgFsNpvyHkpOUswkQVGj0SjEY+TIkUqy17ba1HLoRy4UhIodaiPRxWBL8u4K9Fz0RZIktFpt0diVLjKRuCsEu3W//e1vueGGG/jkk08444wz+N3vfserr75adHEp6eJ/SeIukUjg9/uVEI1gMAh02TZixAhcLlfWJH/yBbWQ6EKYDLKBFDs629AveA2h00v0gOvTvoYcWiSTZr/fj8FgUHZIutveNO07EcuwP5J45yH878+hfUMX4RX9fgJ/+xvBF1/EOnUqtvPO7VV+zmw2U1ZWlqLksWbNGubPn5/ixcy2zJrtmGMIvvIKseUriM5fQOjDD7H+XPhKjUguttLa2qoobgwdOjQl7GLb0I+BJChum+wll25vbm5m8eLFmEymlATFvrSpZ2+ZzWvLXqPGVsPFYy/e7nM1kBs1zK0yis3DKaOnoi9r1qwhHA7z6aefKovFkpKSfklzFhKK7bnRySWYAaZOncqFF16Y3xblGGoutiK/GOQQDb/fj16vx+12M3ToUGw2G9999x3Dhw9XTUVKNZFoNdgBW1+8msA6TF/8CUlnJrrPFaDvOayiO81ml8tFWVkZo0aNwmw29zmxitXjES58HtcZbVjXNRP4+4t0fvQxJBJIoRCJQEB5kfaVEJisAzt8+PAUL+batWsVL7XsqR6ol1rQanFffgXNl14KQNtDD2M5+GCELBYlyieSVTVaW1sJBAJK2e/dd98dh8PRbT/kMkHR4XDgcDior68nHo/T1tZGS0sLS5cuJRQK4XK5lP7tbtHki/j4cO2HjHSN7JZEqwXFRGh6gxrm12RN9XA4jCiKVFVV0draqqjVmEymFFJdCAIAmaDYHLi65JfT+vXrcSZteaoRmahzFLonWpbwSo5rBnoschKPx5Xz1AI1ks9iRvILVyzfFdFegya4Ad2a6cSHb/Wsyp5emTQHg0ElmUbWbM50IpVDM2JaG881+Rhy4kVMOuccQv94hfD77+M4/TQMBkO/JuhkL6asXCMT6gULFiiFFQZSDMS8376Y9tmH8DffkNi0icArr+I84/SMr1MoSF54eL3eHr3NmSDTBMV0t3x1Oh1lZWWUlZUBXVvocnjJ6tWrU0J7SktLMZlMiszdmuAaEmICrSbVMVFsHrXuoAYbZBSrJ7onyPYkL/blxWBraysrV65kzpw5OBwORU5vsCQgB4KiSyzU6/X4fD6+/PJLHnvsMU4/vWvSVtNgS0axS9xFIhGFMMsSXi6XC7fbTV1dHTabrce+kwdmoS8OMkGh9lOmSCYGxTSBdAelPwSB+IjDMfz0NLrl7xOoPkAhzW1tbYpm89ChQ/tdJnfbCoGrvZ384b0VzN/UjsOkY//f7E35jTcgXnUlmixtc2o0mhSZtWSyOGvWLARBUGJtMyWL7iuuYNPJJ4Mk4X/6aWxHH4X256pohY5kb3NLSwvBYFDxNtfW1vbobe4v+kpQ7G8FRejaQh86dChDhw5NsWv9+vUsWLAAq9WK2+PGoDEQSUTY0LGBWntt1mwrFKhhPpKhhvdEMrpbFGy7GJSTdFtbW1mwYAGRSASXy6XMTdl+JrOBYlvs6Ox2O9FolBNOOIGjjjqKq666KmUloJYHSIZOp0s7nKMQyGZykROv10tHRwd2ux23283o0aNxOp1pryy3fdmoAWoj0WpCPB4nWLIX1TxNYtknfGs4Cpfbjcfjob6+vl/qLz1pNkvAqz9t5qEv1hCJi9iNOq6fMgKPtYuYZ4tAd4dtY21lwrVu3ToWLFigEMnS0tI+X1qGkSOwHXM07W+9jdTejv/JJ/Fce23O2j5QJC8gWltbFY9tbW1tVsJcMkFPoR+wNTmxPwmK3WlTyzaXacrYIG7ggx8/YHLd5BRtajUQUDXMrTKKjZz1BVEU+4zbNxqNVFVVUVVVpexcyztD2Sr6km0UnSd6l1124Z133mHs2LHK6kXNMBqNSgx4b8gXOZO3imVvXSAQwGQyKcSjJ83IdLCDRBcu1OCJliSJeDyO1+ulubmZQCCA1WCnUtBhino5eLdhCCUNGV2ztwqBclxzUzDGTf9ewndrfADs2+DmT0ftRJWz74IF2ca2hCsajSoEc/bs2UpIQ29eaudFF9Hx/gdI4TDBf/4T+0knoa+rG3RbukNywqXsbZYTLmtra7OecDkQ9Bb6MZAERb1eT2VlJZWVlYwNjmXDmg0E9F1ztqxNXVpaiiiKaTlsChnFPB9tCzXZApnbIwgCFouF2traPou+yD/pFH3JJpR8miJa7OhCoRDjxo0jHA6zcuVKZStMfvjHjBmT5yZmF3q9XokN7g2DlViYrETQ1tamFDnxeDxZL3IivyzUQDplqM2eYrNF9kTK4zcej2OxWBgyZIgydsW1e6DZ+D2Gjd8SS4NEZ1IhsLUjyglP/kB7JIFZr+GaXwznpPGFUwDDYDCkeKnlWOptvdSy4odGo0FXVobj9NPx/+1vEE/Q9tBDlN97b95siEQiykIg2dtcV1dXNIlLuUpQlOOi2zRtjB8/XtGmbmlpQRRFvvvuO2WRUVpaqmj8FhMK5VkaKP7XSfS2EISei76sXbuWefPmYbVaFUKdjmLNQCE7StJ9RgqhP3Wnn3468Xg8JTlD9igZDAY+/vjjfLcxqzAajXmXuOvs7EyJaxZFUYlr7m9p4nShNtKpFnsKYTJIB8mazV6vl1AohN1uV2Kb165di9PppKamZus5Q/dB2zwPIdTa7TXlOac/FQJLrAaOHlvJ4qZ2bj9mNLWewquqKSP5pdXY2Jgi8zZnzhxla7W0tBTPSb9G++abJFpa6Pzsc8I//oRp/LhBaafsbZaJczAYVIo91NXV4XA4/p+9745v6rrbf7S9rS1jgycebBP2hoSw8YRfm7wZbdr0LWnSrGY0o23at0nTtE3apFldSZsmTbGNzSZhE0YgbIMH2xhsLW/tcX9/mHO4MrKRbMuW5Pt8Pv4AspB0de895znPeb7PN2Su1+7QXwWK6fHpEPAEsLs662zY2dR1dXWYNGkSzfk9ceIEXC6XR4FisMeRhRPxDKdjAfrf9tBT0xeSWEMKqPvarKg7+NpYKZggTE9Ph1Ao9PgRiUQQCoUhoTD4C6FQ6HOzlf4i0Q6Hw4M0s5ucjBs3bkDN/aGQOuIPwo1EB9uxsHdKSDt4suXnzV7k7XzYp6yBfcaTgODmeNK1IJD839t1CHQzDP579Dqmp8mQqugkIM/ePRICPg8CfugMvECnSs32KxKV+tq1azjb2gr14kWQ/vtTAEDTm3/AsH/+E7wAjRNWq9UjSYPH40GpVIaU2txb9KVAcUbCDOxfvR9C/q15+wzDQCKRQC6XIykpiUaQGgwGNDY2oqqqCpGRkR7Z1MGW2x9s41FfEG4kOtAe765NX8gYYTQacerUKTgcDshkMnrt9sfi2l8lOhggfPvttwf7MwwoBiLijjQ5IVvc7e3tiI6OhlwuH/QmJ+FCOtkIp+MJhmMhCgT5IYOlQqFAZmZmj53dvD4uietUm12uWywahDgLBAIP5c8bqhrb8cqmWpy61obpaTL87b4J4PF4EAtDZ8DtDt5UasOoUbDu3QvB1Xo4zlah6q9/Q/zyZf3iVXS73XTr1mAwoKOjg6rNqampYaE29xb+FCgK+AKfvyce72Y2dXp6Oq0fMBgMtL0zSU4gRajBcA6C4TP0B8KRRA/k8URERCApKYkuCE0mEyXV58+f99iFUSgUPmX7dwXhXKF0noTsAcIbQmlF4AvEYnG/e6K7a3JCtrhlMlmvMlEDgXAj0eFyPIM5aLCLWcn2fUxMDORyOUaNGuW3j5Nty+iN2twVJpsT7+y+hH8droebAaLFAtyZrQQDIHSGWv8gFouROHw4LM8+RxuwRJWX49q4saiqqkJ0dDT1Uvt6fqxWK7VoNDU10UkvNTU17NXmvqC3BYq3IzlCoRBqtRpqtRoAYDab6aLm0qVLdDeA2D8GusgLCK9EC45E9x94PB5iYmIQExODlJQUj9x/b01f5HK5TxzIVztHMM35Ql9jfsIF/aFEMwwDs9lM7Rkk7YM0OfG1w9pgIBQ7MfaEcCPRA3UspEmP0WhEc3MzLWYdPny4zwNeV5D7xeFw0IVqdwWBvoBhGGyvNuDVreegbbcBABaPVuGnizOhjg2ORWmgETFzBiSTJ8P2zTfgNTZiVH09JPn5VME8ffo09dl2JVtEbSbE2WQy0SK3tLQ0xMbGBuUYFczwtUCR2EDYj98OUVFRiIqKwogRIzx86VevXkVlZSViYmKoSi2TyQakaUY4Ec9wOhYguDr7sZu+ZGRkeG36Ehsb6+Gn9rYbz65HCBUElwFrAOArie5KNkmTE6I2OxwOxMfHQyaTITU1NWQmpHAhnQThdjyBOhYyqBGLhtVqRXx8fL9kNrOV58jISFy5cgVGo5GSOrlc3qvBfutZHZ4uPQsAGC6NwEtLszA3U+H364QyeDweZD9+DI0PPAgAaPnwL0havpxGrLF9tg0NDaiqqoJEIgGfz4fNZoNQKKT+dYVCEfDq+qEG9oTP7nLY1NSEiIgISqj97aDIJiWZmZmw2+104VRZWQm73U6LUJVKZcCK0cOJeIbTsQDBfTxdm76QImqj0YizZ8/CarVCKpVSUk2SiUJx5+MWEh2K1ZH+QCQS+ZTO4Xa7YbVaUVtbi+bmZtrkhGxx+9PkJJjAFRYGJ/r7fmNbjJqamtDa2kq31/riy79dQWBGRgbS0tLotvSZM2duSSTwVeW+K0eFnIQYzBupwP/OSUGEKPTut/6AZOxYRN11F8w7dsBtNKLt008h/f73AdzM5nY6nXRcEwgEEAgEdEeA/LhcLo5E9yPYarHBYIDJZEJ8fDyUSqVH7YAvBYq3g1gs9lg4mUwm+r61tbUQi8Ue+eOcNedWBDPp7A1C6XjYRdTATeuS0WjElStX4Ha7IZfL6WLQl2MLFsVaCHRuv/J4PAiFQo8PFUonyVdIJBKvSjQZEIla19bWBj6fj9jY2D43OQkmhAvpJAiX67M/7BykxSv5IQOTRqPBqFGjepU33lNmM4mg62rR4PP5tKqbrZReu3YNZ8+eRWxsLFQqlUfxlNPtRvmJRqw/1Yi/3p8LsYAPsYCP/35/EoQhpkwEAtIfPQLz7t2Ay4W2jz5G+8yZMN5QJwUCAZRKJTIyMjyyXMl3bzQa0dDQgOrqakRFRVGiFYiIqnAHUdT0ej3NzCb2mO6Ufl8KFP3toEj8qKmpqXC5XDSbmmydEzKvVCqpytcbhBMHCKdjAYLLzuEv2NYl9jjV2NgIp9OJ3bt3e3RS7K9eGYGA8L333sO1a9fgdruhUCgwatQoJCcnY8yYMWF1wRGQZisulwtHjhyBxWKBTCZDS0sLhEIhZDIZEhMToVKp0NzcjOzs7MH+yP2KcCTR4XI8/h4LOwWmqakJHR0diIuLg1wu73V0Yn8WBJL/x04kIB38DAYD6urqAAAX7HFYW23F1dbOxW3FyUasviMRADgCjRuFn7GxcM6fB+GOnWDMZpj+8Q/EP/IIMjIyurXisL/7tLQ0mrpCLAEul4tOVEqlMqgnqsECexFoMBjQ1tZGvcn+ZmbfrkARuJVM+/LaZBGlVCoBeMYVHjt2DAzDeHjm/cmmDifiGU7HAoTP8bDHKalUihMnTmDChAkwGo20KVVUVJRHkWIwuQCEP//5z+nNZ7fbYbVakZOTg+nTp2PhwoWYPXt20GVX9haXLl3C7t27ceHCBaSkpMDhcOChhx7CI488gpEjR3r4yhoaGsLK9kDAFRYGN3o6FlLQSgoCSWazXC5HSkpKrztK+dMhsK9gd/A7cMGI3395HlW6NgBAtJBBQWYEcuNt6OjoCGjToWAH21/b3Nzc2Uo6Px/Cr/YDNhui9u5D0pNPQRgb6/NrsnNfGYZBR0cHzSyuqamhExUpXAtVlauvYEfPGQwGOJ1OKBQKJCUlYcKECf2StNRdgSK5B72p1Ozn94SuUWQkf5x45v3Jpg4XogaE17EA4Xc8wE11XS6X00hg0meDWJdIgfTYsWMHJbGmK4Q6nc7jgcbGRuzatQv/+c9/sG/fPnz++edISEgYpI/XNxgMBuzcuRM7duzA9u3bUVdXh+zsbIhEIvztb3/D3Llzux0Qw41sEoQb6Qyn4/E2IJIBhMSSORwOSKVSOsD0lNncHfrSIbA/YHG48Njnp3HgYjMAIEoswHemj8C3cpWwtnemSXx9+SLEYrHHZB9M6kN/g90u2mg0wmw208KbkSNHUrW5+d570faPfwAOB1refw/KX/6yV+/H4/EQGxtL7WpslfrMmTNwOBwehWvhrlKzPcbNzc2UaI4ZM2ZAFhQ9qdT+dFD09rrs/HFv2dSkYYZSqbylQD5cxlYg/EhnuB0P4D1SUSQSeURBkqjOYCDQACB03WiAAHTecAkJCbjnnntwzz33YPfu3b0ePH/xi1/glVde8XgsOzsb1dXVADq/iKeffhr/+c9/YLPZsHjxYrz77ru0Ow4A1NXVYc2aNdi1axdiYmLw4IMP4rXXXvNZGX/44Ydx8eJFLFy4EG+//Tbmzp2Lw4cP4zvf+Q4WLlzY4wUYbgV4BOF2XOFGook3n5Dm9vZ2REVF9bmgtbcdAgOBSJEAfB4PQj4P356chP+dkwJF9I1CKGksRowY4eHzrKmpgc1mCztSx84Fbmpqgkgk8uptZiP+Ow+io7QU7rY2mDZtRtwDD0A8cmSfP0t3KrVWq0VNTY2HeimVSkN+QcNetOj1elitVsjlcqhUKowaNWpQ23F7U6nJn30tUPSWTU0WDxcuXKCtn9n2kHAhauFGOkPZE90dfGllHhERgcTExKA5diGp5O4Kp9OJ+fPn9+nFx4wZg+3bt998Mxb5ffLJJ7Fp0yasXbsW8fHxePTRR1FUVIT9+/cD6PR7Lr8R5XTgwAE0NDTggQcegEgkwquvvurT+//3v/+9ZSISi8U+pXNwSnRoIByOh2Q2u1wuHD16lG5nJSUl9Smz2d+CwEDhaF0L/n6gDj9fnk3znV9Ykgkhn4fhMu9kmO3zZKcREFJHCuQIqQuWAbUnkIUBIc7sDnVstbkn8GNjEffQd9Hy1h8BhkHr+x9A9bs3+vVzdlWpnU4nraTvqlIrFIpBJZz+gChYZNEiFAqhVCqRlZUFhUIRtAuD7qwfQN8KFIHOAq/k5GQkJyd7dLGsq6vD6dOnIRQKYbfbERcXF/IWn3Aj0eF2PEBoNvcRXrx4EXa7nTZHaG5uRm5uLmJjY/u80hEKhV6tIK2trfjb3/6GTz/9FHfeeScA4B//+AdGjRqFQ4cOYfr06fjiiy9w9uxZbN++HRqNBrm5ufjVr36F5557Dr/4xS98ivDxpuT4SqLDgZx5Q7gdVygej9PpREtLCy0ItFgstII+OzsbGo2mVxYN8mcwqM0Mw+DgpWZ8sO8KjlxpAQAky+rw3OJMAECqwnfi1TWNgG09OH36NC2KJqQ6mOK9iNJHdhZIFFlmZuZt/ajdIXb1arR/8glcBiPMO3fCXl0NcU5OAD59J4RCoYdK3XVBQ1RqkvgRLGSUYRgaQafX6z0i6HoqyAx2BKpAsasX1W6345tvvoHL5cKpU6fgdDo9ClFDrWYh3EhnuB0P4JsSHWwQzp07F0BnPFZbWxvcbjcOHz6MiRMn9vlgzp07h8TERERERGDGjBl47bXXkJycjKNHj8LhcGDhwoX0uTk5OUhOTsbBgwcxffp0HDx4EOPGjfOwdyxevBhr1qzBmTNnMHHixF59pv7oWBjKCDeFPRRINNkeJwWBJLNZLpcjIyODdm/at2+fXxPTQBYE+gqGYbC71oj3913G6evtAAAhn4fC3GG4d+rwfnmPrtYDUjhFKrlJVz52hN5AgW1DMRgMsFqtkMlklDj3B/HgR0Yi7qGH0PzbTgW65b33of7jW/3w6W+Prgsatse2qqoKdrvdw2M70Cq1w+Gg373RaAQA2tpcqVSGRUwpG4EsUBSLxZBIJFAqlUhOTqYWH71eT7OpyXkO9kY+/nSODBWEo53DHyU6WM6l8E9/+hMEAgEMBgM+/vhj5OTkICkpCUDfPuS0adPw0UcfITs7Gw0NDXjllVcwZ84cVFZWorGxEWKxGFKp1OP/aDQaNDY2AugscGQTaPJ78rvewtdmK3w+PyxJdCiQTn8QrMdD8mTZmc0ymQxqtRo5OTndkouejmWwCwJvBzfD4L5/HMOJ+s60jQghH6snJeK7M0YgIS4wRSBdC6dsNhu1S9TV1YHP53sUJwZiojeZTPQ9m5ubqdqclZXVa7X5dogtLETbx/+ES6uFZd8+2E6fhmTcuH5/n9uB7bFlq9SEaEVERAS0VTXbv20wGNDa2koj6HJzcxEfHx80k+1AIBAFiuQ5bIsPe7F4/vx5mk1NVOq+ZFMHEuF0LYTbogAIzYWBsKioiP5j0aJFeOyxx1BbW0sHxd6epKVLl9K/jx8/HtOmTUNKSgr++9//DmpREGfnCK/jCpbjIX5CdmYz6XDpa2azt3stmAoCvcHicCFCeEPx5vEwLikOtToT7p2ShAenj7hZMDhAkEgkNEKPnBNSNHX69GnqQe7LdrTL5aK7Cmy1mfhrB2KbmyeRIP5730PTjfqQlvfeh+bdPwf0PW/7mbpRqY1G4y0qtUKhQHR0dK/ex1sEnVwux7BhwzBu3LigqdofbPRHgWJ3HMBbNjU7/51kUwdLIXA4dmIOVxIdasfkIZGo1WqcPn0aly9fxuzZs/v1JEmlUmRlZeH8+fO4++67Ybfb0dLS4qFGa7Va6qFOSEjA4cOHPV5Dq9XS3/UWYrEYLpcLLperR4Uo3GwPBMFCOvsLg3U87MzmpqYmmuVLMptlMpnf3lwej0evzWAoCOwJ2jYb/n2kHv89eh3vfnsc7kiWAgDWzEnFmrmpkEYO/tYu2+OZlZXlkb184cIFulV9O5WUnOuuarNSqUR2dja14ww0YvLz0PrRR3Bdvw7roUOwHj+OiF7a3AIBbyo16fbHVql9aaDATpFoamoa8Ai6cEBvChR95QAREREYPnw4hg8f7mGxun79Os6ePetRCDwY9wtHokMDIVlYePbsWdhsNlitVppmkZKSAqB/L7iOjg5cuHAB999/PyZNmgSRSIQdO3aguLgYAFBTU4O6ujrMmDEDADBjxgz8+te/hk6no3E8X375JeLi4jB69Ohefw6SdGC323u8kcPVEx1uxzWQJJpkNhPibLfb6RZmRkZGrxRIdkEgABiNRohEIkgkkqBRm9k429COjw9dxZYzOjjdnd/7xkotJdHSqMEnz90hMjISI0aMoBF6Xb287Ag9sVhMf280Gj3U5uzs7F7lc/c3eCIRpA8/DOONKNGW995DwocfDupn6g5slTolJQVOp5PaAaqrq6lKTdTLiIgIuotAkkxkMhlUKhWys7N7rWJzuInbWT9aW1thsVg8yHZvs6nJAvTs2bMe95K3bOpAIBxJdChaH24HX5XoYBIChRMmTKD+X5fLhd/+9reYM2cOgL5dcD/5yU+wcuVKpKSk4Pr16/j5z38OgUCAe+65B/Hx8fje976Hp556CnK5HHFxcXjssccwY8YMTJ8+HUCntWT06NG4//778dvf/haNjY146aWX8KMf/ahPHaOIJ9Jut/dY9MIp0aGDQB0PUVQIaW5ra6OZzdnZ2b3Oy+2uIDA5ORmNjY24evUqYmNjoVKpoFKpEBMT09+H5t/nvVEs+PGhqzRpAwAmJ8fjwRkjMD9TOXgfrpcQCAT0+yW+2oaGBly5coVm2QuFQshksqCOQItevgyt//gHnHV1sH1zNOjU6O4gFAo9vn+z2YzGxkZcu3YNtbW1ADrHYKlUioyMDCiVyrDpnBuM4PF4NPVGr9fDYDAA6CzKjI+Pp0o10LtsalIIDNxsbGM0Gmk2NbtAsT86QnZFuJHocCyUBEK0sPDrr7+GUChEc3MzysvLERcXB7PZ3Oeq6vr6etxzzz0wGo1QqVSYPXs2Dh06BJVKBQB48803wefzUVxc7NFshUAgEGDjxo1Ys2YNZsyYgejoaDz44IP4ZS87dBGQLfbb+aLDkWwC4bc46G9l3Wq1Uh9nc3NnRz3itxwzZkyv/Ja+FgSmpqYiNTUVNpuNFmddunSJWgdUKtWgRIgxDPD6F+dwtdkKIZ+HxaPVeHD6cIxNjBvQz9HfYKvRBoOBqqFJSUng8/loa2uj10GwRujxhELEf/97MP7s5wCAtn98FBIkGvCMoDMYDOjo6EBcXBzS09MhFAqphaaysvIWL3WwTKChDmKT0ev1aG5uRlRUFFQqFSZMmACpVOoxD/ZHB0UAiI6ORnR0NFJSUjzqFi5fvoxTp04hLi6u39vPhxuJJgi34wlFdZ3HsBiV1WrF//zP/2DZsmX43ve+F5IHdDvY7XZIJBJUV1cjMTGx2+fZbDbs378fCxYsCKsLtaamBkKhEBkZGYP9UfoFFy5cgNPpRHZ2dq/+v8vlog0GSGZzXFwczUPt7VZjdwWBZOLx1aJBquCJOkQaXahUKiiVyoCoNtdaLCg73oAfzEmBRNhJ2EuPN+Cy0Yx7pyRhWHxoFm6x0yMIOb6dL5ft7zQYDGhvb/eI0BuIrejbgXE4cC2/AK4bqUXD/vMfiLMyB/UzdQeHw0G39g0GAxiG8VAhuy5QevKjk3PGKdS+g9g0CHE2m83UJuNrJCGbVJM/2bnU/qjUXWG32z0iCknRKDsysTeva7PZsGvXLixatCgsOI3L5cKXX36JO++8M6gW9X3FuXPnYLPZMHbs2B6f53K5IBKJgiJW0WP0YRgGOp0ODQ0N9N/hBlKYdbusaHKjut3uoNzG7S3CTWH3V4lmFzg1NTWhpaUFEomE+pp7W/QSqA6BXTv3dXR0QK/X49q1a6iqqrrF9tFbQkeao3x65Bp21xrgZoAURRTyxncW8RZPHNar1x1ssJMcjEYjVZtVKhVycnJu6631FqFHJvnLly/fshU9GISOJxIh7oH7aW5028cfQ/nr/xvwz+EN3iLooqOjaQTd7VJreDweVS6Tk5M9otVqa2s9crhDsQHIQKDrwgUAbTjTm2u2uwJFtsWgq/XD13MiFotpug772tHpdKipqfEoBvYnsjLclOhwOx6CUBRuhVu2bIHdbofFYsGGDRtgNBoxZcoUAOF3goDOY/Il5q5rwUW4YCgWFtrtduprJu212UVKkZGRfSoIHKj4OXZWa3p6+i2EjvhMyQTjy+Kvw+ZE+clGfHbkGi4ZzfTxmekyJIag4uxNbY6MjIRCocCoUaP6bIeRSCRISkpCUlKS1wi9ro1GBmoMjcnPR+uHf4G7pQWmL76A9PEfQ3ijIHug4c0mo1Ao+iWCrmu0Gju148KFCzSjm9wDQ1WlNpvNdPeKbdMIRHZ2TwWKfemg6C2bmlxXtbW1MJvNtAMlyabu7nXJGB0unCacSbSv10awHLvwW9/6FgQCAUQiERITE/HSSy9h8eLFABByKwJfIRKJbqtEk2PnSHRwo7ts5dbWVkqa29vbaWbzmDFjet0IINg6BHYldGSCIWkHhEyoVCqvto9msx2L/nQIJrsLABAtFqAgNwH3TE5CujJ00g+8qc3E8jJq1KiAdc3rGqHHJnTnz5/3OUKvXz5LZCRiV69C61/+ivoIGc5+tg2j7iv2q716X8A+9ubmZnrs/bFw6QlRUVFITk6+RaU+d+4cLBZLv+SChwLImEeIs9lspvfA6NGjByynuTuVuj86KLKLgQHAYrFQhf3KlSsA4FG70HWxFk7nnszh4cbRGIYJuZ1/4aVLl+iKj701Eo6Vn0DnjeRL10K2nSOcwOfz4XQ6B/tj9BvIoqBrZrNAIIBcLseIESMgl8t75RsL9g6BbLA782VnZ9Nt0OvXr6O6uhqxsbGIkymgc0Zi7qhE8Hg8yKLEGJcUB127Df8zZTjyxmsQLQl+5Y5s85IJtKWlheYGB5q09YSuhK5rhF5PE3x/wLUsHy+d4eGoOhtoBfDnrzErQ47fFY1GfD/ndrNVeELaBjsCsDuVmqRAhJtKTWwahDjzeLw+2TQCgdvF6LF91F091bdDZGSkRzY18XrX19fjzJkziI6OpudbLBaHFZ8JZyU6GHzO/kCoUCgAdJ4UQq6EQiE9OTabLSDFS4MJsVjssyc6HJXocDgmkjOr1+upT1gqlUIulyMtLa3X/uBg7xDoC7pug55rbMUnBy9hy656mB1uvDb9PDKSOhWd3xXmQBYtCfrBmGTNEuJMCiw1Gg1Gjx4dMLW5t/AWoWcwGNDQ0IDq6mrqC+5ti2Q3w6DN4oTBZEeTyQ6jyY53917FJZVnQeGhi034SdlZ/OV/JvT5mNj2IaPRSElrMJE2Nrouagjp76pSKxSKPtUTDCTYbdVbWlrodTRx4sSgb3HuTaUmf7L91L21fkilUkilUowcOdLDB37mzBnYbDYwDINLly5BqVSGzPnuDuFKon0Vb4OJw9BRj8fjeQyCly5dQnl5OZKSkvD//t//G5QPFyj4YucgN3G4KdGhSqIZhkF7ezstCGxra0NkZCTEYjFiYmIwceLEfs1sDrYOgf7C4XJjZ40Bnx+9jkOXmunjmtgIxCQMB59vprYPdtpHsLRMZhNPo9GIlpYWREVFQaFQYMyYMb3O6B4MdF3UsCf4kydPeiRURMZK0WJjoG+3Qd9hh+7Gn00mBx6dn4Ykaef5+WDfFby9+5KXN/O8Tl0MsP9CEy4bzX5bO9jJJHq9Hu3t7dSDmpaWFhTJJL5CIBBAoVBAoVAgOzv7lu6VIpHIQ6UOFjWMrfjr9XpYLBbI5XKo1WqMGTNm0Ntp9wW9sX74er2JRCIkJCQgISEBDMNAr9fjxIkTaGpqwvnz5yEUCoM2ttIXhKtTICQLC2trayEQCOByuWCxWNDQ0IBjx47h0KFDaGpqwuOPPz7Yn7Hf4YudAwi/TGUgtDzRJLOZ/ACATCbzyGyur69HU1OTz4RqMAoCBxonrrbix2srYejoXCjyAMzNVOD/3ZGIOZlyCG8cW3Z2NkwmE/R6PbV9xMTEUAV1oEkSafZAiDNbbQ5lwsAwDEx2VychbrdD19H5p74jAg9Mm4ZIplPh/fOu8yg7373VqmBCAiXR8uhOkhcXIYQyRgwBDzinN3f7f+uaLD6RaG8RdAqFAsnJySFJNrpD1+6VXQtE2QVrA61aOhwO+v0bDAZq1Ro5cmRQKv79BV8KFNkCB/m3L68rkUggEAgwadIkuN1u6p1nZ1OT8y2VSoN+/A9FsukLQnFxIJwxYwYSEhIgEolgMpnQ0dGBpKQk3HvvvVizZg0iIyND8sC6A0nnuJ0STZ4bKoTTVwSzEk0mM0KazWYzYmNjoVAoMGLECMTFxd1yHfpyPMFWENjfMN8gaIQkpSmj0GZxQhkjRnHuMKy6I5GSLzZ4vJutmNPS0mhGq16vx5UrVyAUCmlhoq9pH/7AW/wZW23ur0YLgQLDMGizOqHvsFPlWN9uQ974BKhiOy1wnxyux5s7LsDi8D6OzMtUYHqaDFKpFBPaolB2vgaRIh6kYh6iBS5II/hIiI9EojwGmtib6mjBhAQU5g6DWND5/Vw2mrHsz193+1mT5d4XIOw0E71e7xFBN2HChF4X4YYS2Co1AKpSG41GXLp0yUO1DJRKTRazxOMfHR0NlUoVEjaNQKCnGD3SPdGfAkV2Jzw+n+9xvm02G104njhxAi6Xy0OlDjarGBCaZNMXhOLiQLhhwwacO3cODocDKpUK48aNQ3p6On1CKB7U7TCUlehgOiYygZMOga2trXRbNS0tDTKZ7LYTljcS7Y00k+cKBIKQtWiwwTAMTl9vR+nxBmyu1CJDFY3/fG8SACA+UoR/fmciRiXEQCTw/RjZGa1ErdHr9aipqYHNZusX2wdbbTYYDHC5XLQj5NixY4NCbXYzDFrMDg9yPDdTAUV0pwq77kQD3tt7GfoOO2zOW8nx6GGxlERHCPmUQMdIBFDHSqCKEUMZI4E6VgxVzE1ld8U4DZaNVSNa3Kk0shUzg8GA8ycaYGRF6LEzrlMVUZiVIcehi01wsW4HAQ+Yni73UKG9RdDJ5XIkJCQEzTkYTLBVanIOSHEiW6XuazOmlpYWSpyJTSPUd10Chb4WKPY050kkEo9s6vb2dhgMBjQ2NqKqqoo2ZBrMLPiuCFcS7etxBVXE3cyZMzFz5kyPB7uqdeEGX3KigeBWbXuLwT4mu91OJ6WmpiY4nU5a1Z+VleV3VT85nnAoCPQFTSY7NpzWovR4A87rTfTxZrMDbVYH4iI6Fx3jk/rWkput1pDFjl6vp4VxxPahVCq97hAQsCclslCKioqCUqnEuHHjBnTr1Ol2w9jhgP6GnWLiiHhIozq/r61ndfjHgTroO+wwdNjhdHveI3+9bwJmpssBdJLs+hYr/V1chBCqWDFUMZ0EmZ2EcfcoFaamyqCKFSNS1LOS3/X37HOQnZ3tESN37tw5RERE0HMgk8nwu6LR+EnZWey/0ERfY3p6ZzoHUVdJe+eBiqALdbDPQVZWlkes2qVLl2hxJXlOT4t+YtPQ6/UwGo3UppGZmRkWaSEDhd4UKPpDzuLi4mj7eXZ8JsmmZscm9jT2BRLhKG4CoXlcXu/aYGH4gYIvhYUAZ+foD7jdbrS1tVHS3N7ejpiYGMjlcowePbrXJIqtNlutVjQ3NyM2NjbkCwJ7wl++6iwmIwRPIuRj0SgViicOw+QUKfgBum+7s30YDAbU1dWBz+dTMqdQKOB2uynRMBqNAVebbU7XDY+xHRmqKLqQ2F1rwKdHrt0gxjY0mRxgX/l//Z8JmJnRSYxNNhdOX2/3eF15lIiS4wjhzeto7kgFPvnORKhuqMoRPZDj+EhRv8XLdU2bYKcPkPbIP5+nhHlBMho6nJAKnYh0tuPM8SMek39WVlZYZyYHEuxYNXbR36VLl1BZWYn4+HhqBYiJiYHFYoFer/ewyqhUKqSkpAwaAQs33K5A0el00ghAtmrtC4RCIdRqNdQ3GhexW9CTeOBAR1d6Q7gq0WFDosMdvnqig8n60F8YiIVB18xm0pRi+PDhkMvlvYpM7K4gMD4+HjExMaisrKQd+4iHN9Ruxq6ob7YgSiyA/IaNIFkeCaebwdjEWBTlDsOysWpKGAcSXW0fTU1NaGhooGQO6NwiJfaw3i6UTLZOv7EqVkwtDocuNWPdiYZOq8UNRbnNerMY7y//MwGzbhBjo8mBr1iqLAAIeDwoYkRQxUjA59+chGaky/D2t8ZSNVkRI6Z+465QxUqoXWOwIBAI6OROvOWNjY24cuUKzObOAkOjQACZTIb09PTbqqQc/Ae72Q7QWQit1+vR2NiIixcv0rkjJiamX7o1cvANPB4PVqsVOp2ORgHGxMTQxSd5jr8FikDnQjYqKopafUg29dWrV2k29UA0WApXEu3LcbELTYMBQ5JE++qJ5pRo30AymwlxtlqtiI+P77fMZm/V2eRHIpEgNzfXw8NbVVUFh8MBhUIBtVoNpVIZMgTC5nThyyoDSo9fx9eXW/DY/DSsmZsKAFiQrUTZD6YgJyFmcD8kOm05JLeZrTbHxsZShe7atWtobW2lxYlxcZ0Wk1arE5EiPiTCzgnmZH0rNp/R3VCTSYGeHRZH54T34b3jMXtkZxHQ9VYrNpzW3vJ5xAI+VLFiOF0379fJKfH41cocqGLEVFGWRYkg4N96LSbGR4Rcm3N2BJ3BYKCdOVNSUiAUCtHR0YGmpia0trZ6qGWhci+ECsi9wLZpDBs2DJGRkbQG4Pz589DpdHS3hlOh+xfkXiCqv8lkoh7zsWPH0sVLXwsU2eDz+ZDJZJDJZMjMzITdbqfWj8rKSlprwN6Z6K9z7mt77FADp0SHCHz1RIejEt0fx0R8roQ0t7a2IjIyEnK5HJmZmZBKpb3y9/WlILCrf7SjowM6nQ5XrlzBmTNnIJVKqUodbNXWDMOgqrEDZScasPG0liqrPHSSRgKxgD9oBJpN2Ii3OSYmhnqbY+PiwePzaHxejbYDh89qcbW+DQ2ntTB0XEWrHWh3AA438N63x2JeVmf73osGM/71db3X940SC2C+QaYBYEJSHJ6+Kx2qWAmUMZ3EWB0rRlyE8JZJJUUehRR5cJ3rvqJrYabb7abpNd4i6Nid3Mi9MJjxbeEAb4kmpEagO5uG1Wql986VK1c8xiuFQhE20YEDCdLmXafT0SJlkmHe3c5LXwsUe4JYLPbIpibXCKlhYHfM7Os5Z6eNhBNCUWEfsiSa80T7B5vN5pHZzDAMZDIZNBoNRo0a1WufayAKAtnNLTIyMug2q16vx7lz56gvkaijg3nTMgyD+/5xDMfr2+hjifERKMxNQMGEYV6j6QYKbLXZYDCg0cSg3hEFGz8CZncimgwu6CtboG/XocnkwLv3jMOcG4pxVWM7/ryvrtvXPnj0FGI7ZFCpVBipiML3ZiZ7KMbKG38nNg6CDFU0MlTR3bxq+KHrZEyazvhamMnjeXZyI2SOeDpJjCGZ2LkCQ+9gJ6Xo9XqaVpOQkOCTTSMiIsLDS00WNpcvX8aZM2cQFxdHCdZgj0nBDHYMp9FohEgkgkql6lUkZm8KFNnPv91rkzqS1NRUSviNRiMuXryIkydPeixm/Y2SDEWy6Qs4JTpEMJQj7nwl0S6XC62trTR+zmQyIS4uDnK5HOPGjUNcXFyfCwIHqkNgREQEjawizST0ej2OHTtGi+IClYXcFVaHCwcuNmNBloIOzKnKKJxp6MBdOUoU5w7D9HRZwIoEu6Kh1YqT19o6rRTtNlxv7kBDixn6dhuarW78YLwE87PVmDBhApovW/D3DTUAvDf10HfcXJhmqWNQPHFYJzGOkdwgx53RbspoEZz2m/7R1tZWzIyOhkqpgkoVN+RJBJlwCdklhK0/4s+6kjnyPrW1tbBarZDL5UGdjzuQYBfQEpuGSqVCVlZWnxYcXW0AVquVLlTr6uo8itU4lbqzxoaIIMTfrFKpkJ6e3q87KbcrUPRm/fD1vUmKi1KpRHZ2tsc5P3bsGBiG8eveC1cSHZIRd4P9AQYDnBJ9K4lmGIZWHjc1NaGlpQUikYj6mn3JbPaGYOsQyG4Hy/ZRV1dXUx81SZror8mLYRgcrWtFxalGbDurQ4fNhbXfn4wxibEAgB/PT8dzi0b2W5Fgi9mBc7oOj7bR7MzjF5Zk0ri2gxcMeGnjuW5eiQd5UjoyM4cBADLMAtyZrbxBjMU0nYKQZNJFD+jMSv7VypxuP6NEFI3o6GikpqZ6RH+RhQ27yctQiP5it6FuamqCWCymE26gFnddLVBsi0JtbS0iIyM9iqRCTSHyF+woR9L853Y2jf5AREQEkpKSkJSU5KFSX7lyBZWVlR7d9IbCApPtb9bpdDCbzV79zYFGT9aPvnRQBDzPOdsq19DQgKqqKo97z9sYyHmigwfhPzt5wVD2RLMXBsRfSX4cDgekUikUCgUyMzP9zmwm8KUgMBji57rzUdfV1eHs2bN99lHXNVmw/lQj1p9q9MgVToyPgMF0cxGnibt90oPF4cL1FitNpdC122G4QYp17TY8Nj8NU1JlAIC95414vryq29e60NAMDXND6bzWhpFSMdSxEiTKopGkiKUNQVSxEgxn2UnGJ8XhnW+N8/t7uB1EIhGGDRuGYcOGeTShOHfuHKxWK2QyGV3YhEsTCjZZMhgMMJlMNIIuMzNzUCLooqM7FzYpKSke+bgkdYVdnNibhJ1gBHshzVb9BytNo6tKze6mF84qNWkARBRnt9sNpVKJ9PR0KJXKQV9Id6dS90eBIo/HQ3x8POLj45GRkeFx71VXV8NisdySTR2unmiORIcIhmqzFbfbDZPJBLvdjm+++QZtbW2Ijo6GQqHAqFGjEB8f3yvFKxw6BN7ORx0VFQW1Wu2zj/rE1Vbc+49j9N9RYgEWj1ahYHwCJt3IdGYYBi0WB804JpFt5O8PTBuBiSPiAQBfVul7JMZXmiyURA+LkyBFHknJsDxKiEieAxK3BQJbB+I76mAydRaj5eYq8IMgIkTs2DCijur1emi1WtTU1FA/O/ERhpIa480eoFAokJ6eHrB20r0FOx+XROjp9Xpcu3YNVVVVtKg0lM8D8dUSX3ggVf/egt1Nj2Tue1OpFQpFyJ8H4m8e6CZMvUFXOwGbVPe1QNFbNjUZNy5evAiBQIDIyEg4nU7YbLawWdACoWlTGZIkWigUDhk7h8Vi8VCbycIgKSkJ48aN6/UNGO4dAtk+ahLW352P2uEGdtUaYXO6UDBhGNwMg0SWgjstVYrxSXHosLkQIRJQv/OmSh2eXXe2288wM11OSbQqpjOBQtnFSkGI8oThNzsUTk6R4rP7cihZa2trQ2xs7A3Sk9lrP/tggKijbNuHwWDA8ePHqe0jmNrxssHu1mgwGDzOQyg122AvMNPT02nBKTkPPB7P4zwE02IA8LRp6PV6j/OQlpbW69bdAw0+n+9RJOpNpSa+WoVCEZTkivibdTodWltbERsbGxB/80DjdtaP3hYoAp5NlsgO1oULF2AymbBr1y7W2K6EVCoNqkWgv+CU6BCBRCJBR0fHbZ8XinYOp9OJlpYWWhDIzmxOSUkBwzA4ffo0hg0b5tfrDkZBYLBAKBQiISEBSrUahnYbLjYY8c01A3bsPYMjupvXhyqms7XzM2VnPdpGf325BV9fbgEAZGtiMO5GS25lTOdWrDSyszOe+gY5JtFthEADwPQ0GQ49O6fbz2iz2XD9+nVKnMmEOmLEiKCdUP2FN9uHwWDA+fPncfr0aUogVCrVoNk+nE4nJTYkdkuhUCApKQkTJkwIi/MgFos9zgOxpbC79g12hB7bpqHX62lmb2JiIsaPHx8WTU+6U6lJ4w82uRoslZpELJLzQPzNvqaahCICWaBI7D5qtRo8Hg/jxo2j482pU6fgcDg8ChRDrTMpp0SHCEQiEe2s1hNCQYkmW62kILC1tRURERGQy+UYOXIkZDKZh0LX3t7u08KA7WkOV7WZwOFyw9DhaamYkiKlUWr7zhvx4vpqNJnscHfz1SkieJgYb0XdpQtwuhnwAMijRVDeyDEmnfBGsXKeJyXH48QL8yAW3v477DqwsCdN0miDbO0mJyeH3Nauv2DbPrKysmhRnE6nQ21tLe0cplKpAvpdkIJcch6am5v9iqALdXhLmmBvPZMCSVIgFUiVrDubRk5OTtDZNPobXVVq8l0YjUacOHECDMN4eKkDuZjrzt+ckZERlDtGgUYgChQJ2WQvaAkXIPdfbW2tx/0XjLtEbBCuEWrj5dC6mm9AIpGEdNvvrpnNbrebrk5vl9nc08IgVAoCfYXN6fLwGI9KiMUIWed3c+RyM17ddg76djuazQ50Pcs/W5ZFSbREyIeho/vr5dF5qfjh3FTYbTbUN2iRKtXDbWpBbIwEKpW0WyIn6qatdLfHw9q+JWqzQqFASkpKWBUZ9Qbsojh2jCHbbqBSqfplEvcWQUeKH0eNGjWko+HYEXrs76mmpoZ+T/0VoccmDaFs0wgExGIxVamJGmw0Gm9RqYmXuq9jOnsBYzAYIBaLoVarh8RC0h/0V4Git3QOtu0qLS3N4/47f/48Tp486ZH00h/nvT/B5hy+IFju7SFJokMt4o5sXRPS3NHRgdjY2F5lNrOLJUO1INBsd1HFeIQskqZbnKxvxZ92XYLuxu9I5z+Cny3LwrcnJ9F/12hN9O9CPo/6jdWxEogEPPz7cD22nNHhezOTUfLwZKhixLjeasXfD1zFyvEazB2p8FCRIyIiMDItBSPTUui2PiFyvcmjZm+VG41GD7U5lDy1A42uMYZkO/nChQs4ffo0Jbz+2D6IwqrX6wcsgi7Uwc7GZSv2JEKPKPbEy+nLOON2u2lyAbFpKBQKJCYmho1dpr/B491suJORkeHhaT958iRVqYlS7et3aDabodPpaNfGcPE3DyR6W6DoSzoH+/4D4LFLVFdX57E7EQzJR4SDBBvfuB2GJIkWCoVBHXFHJhxCmpubmyEUCqnqKJPJ+twy1Gazeaxyg8GiYba7oGu3QRopgjSqc9upurEDfztQB8ONWDd9hw0dtpttoNnE2OFicPBSs8drigV82ugjLuLm5Z6dEIMP7x1PC/SkUSK0WZ3YXqXH5jM6/HxjDbVuZJwz4pUV2QAAVawEf/x/8bgdhEIhNBoNNBqNR2xbdXU17HY7VUa75lGzQ/hJISghzUNdbe4N2HaDrKwsj8YNhMgRQs3eLfAWQUe8viNHjuRIgp/g8Xi3ROiR6/z06dNwu90eXk42kbPb7VThJDYNovrLZDJuAeMnuloAiC3s2rVrOHv2LGJjYym5YquVQ9HfPNDwtUCREGx/PMTsXSL2eb9+/TrOnj2LqKgoet4HI5+fCJYciQ4BiMXioPNEOxwONDc304JAktksl8uRkZHR6wKBrmozUZmPHDkCpVIJtVp9i2+6v2F3uuFmGESIOie7y0Yzyo43QHeDGOvabdC13yTHbGLcYXNiU6X2lteMFPGhjJFAwL/5nYxUReM3BaNoYZ4qVoz4CKHX7y0uQoTZN1pUt1kd+NF/TmP/hSaPgsDxSXFYNkaNxaPVfTr+rv5dEhdGtlZjYmIgEolgs9lgNpsRHx8PhUKB1NRUTm3uZ0RFRSElJcXD9mEwGKhvlNxnHR0ddAGTlpYW9H7CUAN7kclOMSFELjo6mu4Yms1mTuUMELpmFBOV2mg04uTJk3C73fT7NplMYBgGKpVqyPqbBxJdrRwWi4Uq/y0tLdSyAfhfoOgtm5qMhVVVVTSfnyxqB8Ia5a+dI1gwJO8AXz3RgSTRbrcb7e3ttCCwvb0dUVFRkMvlyMnJ6XVUze0KAiMiIjBnzhy0trZCp9Ph7NmzcLvdVI1TKpW9el9tmw07awydhPiGnaKTHNvRYnHg5aVZuGdKJzE2muz464E6r68TKRLA6ripNKcpo/CThRmsBiCdBDlGIrjlZpNGiZA3PuG2n9XicOGC3oSxiZ0pGbESIS4aTHC6GWRrYrBsjBpLxqipf7o/wePxIBKJIBaLERERAZPJBIvFArvdDrvdjqioKMhkMigUCo5ABxhCoRBRUVH0p7W1FRaLhfoTZTIZ4uI625BzBDpwICq13W6HzWaD1WqF2WyG0+mEw+GAQCBAdHQ0oqKiEBERwd0TAYRYLIZCoaD3gNFohMlkAp/Ph8PhQHR0NCQSCUQiUcgphqEGEs2o0+mg0+nQ0dEBqVQKtVqNMWPGICIiot86KLIXtYBnNvWFCxc8rCGBKkz1VYkOtjq1IUmiRSKRz4WF/UmiyVY9sWgAoLFLcrm819thvSkIJB64nJwcukV3/vx5VFZWQqFQQK1WQxwjxZlGM3QdN9ViHYsc/2heKlWMr7VY8Ksttd1+Rn2Hjf49WR6JB6YNhyq2M7lCHSOB+sbfoyWel6QiWoyHZib36nthw2x34asLRnxZpcfOGiNEAh72Pj0LYkHnd/OL5dlQx0poMWF/gtg5yErfZDJRbzO7AKo/fNQcega7G5jBYKCd+JKSkjyiz7z5d8kiUyqVckSuH2Cz2Tx85iKRCEqlEqNHj6Y2DW8ReuzubaEW4RWsYOdos/3NI0eOpN+x3W6n9w7bgkMsAJydo+8gNgtCnK1WKxQKBZKTk2+x/gGeBYrkz752UARuzaYmcaKXL1/GqVOnPOITZTJZvyyoCNcKtft5yJLogehYSKpjibfZYrEgLi6OZjb3doukLwWBNqcLV4yWG4pxJyG+qRpLUDguCWlxbtTV1eHU9bN4q7J74tbYdpMYJ0kjsTBHSRVjdawEmlgJJcpsP7IqRoLnF2f6fdz+os3qwO5aI7ZX6/HV+SZYnTcXRLKoCNQ3W5Cu7CTNM9Ll/frepIiDbI0KBAIoFIoerQHd+ahJsgFZ3HgbTDl0DxJ/RyLoIiMjoVQqMWbMmG4nAPYk4nA4aGTXyZMnASBkYqOCCezOh3q93qNQNiMjw6tNo2uEnsVi8VDIBjJCL5zQnb+5p3bnYrGYFuyyLTjXr19HdXU1jZVUKBRcIocfIJnmxKrhcrnoAsbXneGeUj/62kGxqx2R3Xn11KlTcDqdHvUMUVFRveI1/rQyDyaizWOCTRsfAPz73//GW2+9hZ07d/b4vLq6OrS1tWHs2LE+vS6ZJAhpbmlpgUQigUKhgFwu75P3uKcOgQBgcQIGk6OTFHfYPVTjpSxfb9d21F3x8KxkPHlXBgDgkrYFT5ScRYzAiSieA6oYCUao4pCWIEeyMg5JskjERwYvgfjznkv4857L9N9J0gjcnaPC4tEqjE/qX6sEe7VOtkCJt7mvnjL2th4hH/Hx8VSljo7uf/U8lEEmJaJyWq3WWwb53sIb+SDeQZVKNaTj7byBZAaTSdfhcHgkAvRlW5gd4cVuqBIsaQPBBnIudDodDAYDGIbpt+hHdn2B0WiEy+XyOBecSu0Jl8tFr1u9Xg8+n09bffeXskvAVqnJn2zbh78qddfXZmdTNzc39zqbur29HYcOHcLdd9/d4/PIoiBYrqkhSaLXrl2LX//619i3b1+Pz7t69Sqam5sxfvz4bp9DtrjIj8vlgkwmoyu3yMjIPqnNJqvjRs6xHfoOB/QmOwwdDszKkGP2SAX4fP5tifH3ZyXjqRvE+FqLFf/vr9/QBiDERqGO7SzEy1TFIFl+6+RDVp86nQ5GoxERERH0ph9s725DqxXbqw3YXq3H/dOGY2GOCgBQq+3AU6VnsGiUCgtzVBiV0L8FSRaLxSNJg/jGiFUmUApl17i1yMhIrwkTQwns+KampibaaIOcj0AplGzbB7vRCjkXQ1GNs9lsHmkaYrGYWmHkcnlAvhOy0CTXQEtLS68i9MINJNmENKCRSCR0rAjUd0JUajI2tra2cucC3c+hAz1us22ffe2g2BXsRTNbTPKlc2ZbWxuOHDmCu+66q8f34Eh0EKC8vBwvvvgiDh061OPzrl27BoPBgAkTJtDHiEePpGiwM5vlcrnPE6fd6aZNQHTtdmjbbBiVEI3cpFi43W7UaE34wednPeLc2OhKjO/+00HESoSd7aNZXmNVrAS5w+Noq+n+APHuEkVDIBBApVIFZBXtDQzD4LzejN21ncT59PV2+rvlY9V4o2hMQN6XKJxkciBJGoPZ4pjtozYYDDRRQq1Wh/X2NlGECYHtOlgHw7kAOmsPiNIXrrYPQprIcRObBiHOg3EuiAWHkGq32+2hgIezHcqbv5mQtcHwkHc9F2yVWqFQhPWOgdVqpf7mlpYWxMTEUPEpGPz8XWP0usbe9kWlBjyFJqPRCAAenTPZ576lpQXHjx/HggULenxNjkQHATZv3ozHH38cx451r94CwPXr19HY2IicnBxKmltaWiAQCChplsvlXgfkDpsT11qsiI0QIjG+82Rf0JvwbHk1dO02tFhujdh7cGoiHp+fAh6PB227HUve/QZAZ5xbJzG+2UJ6RroMc25EtLkZBlaHG1HigSdMbD+XTqfrl6SPnmCyO1H0wTe42myhj/EATBwRj7tHqbAwR4kkaf8NysSDSQpCSV43UdWCiRixfdR6vZ76qMn5CHXi4HA46ETsbUAOpuNj2z5IMalUKqXnItRtH+zWzuwCTW/Z54MNdiauwWBAW1ubR+e2wd5J6yvY1xopRpPL5fRaC6YGNF23/4lKTe7jgRBhAomeEjX8ae40WPBGqvtSoNj1tdnZ+113KHg8HiorKzF//vweX4e0Bg+W63pIkujt27fj+9//Pk6dOuX1YnA6nWhubsbVq1fR1tYGhmFoZrNCofBYQdqcbpy+3oZarQm1OhPO6Uy40mxB6w2S/NCMEXjyzjQAQEOLBYv+fIS+j0jA6yzCuxHdtiBLibzxCeDz+XC5GVxpMkMdK0G0+NY4t2CEt8G8L8VwRpMd+y80Qdduw/dnpdDHCz84gksGM6alSbEgS4m7spVQxfbPDcX20xqNRpjNZkilUjrIh0pGLRnMybkIRR+1twk3JibGp63BYIPFYqGE05sFJxSIQ3c2DZVKFVLkx2azeahjfD7fozgxmBbG3cHlcnnsevSnv3kgwVapjUYjjZYMJV97f897wQRvEXq9LVDsCuKjJ/ei1WoFj8dDZmZmj3MtR6KDAHv37sU999yDqqoqmsDR1tZGfc1tbW2IjIxEREQELBYLpk6dShVVhmFgc7pp45D6FguWsogxG9JIIYpyE/DY3M6YGDfD4NDlVqhjxdDERUAaKYJQKAyZyccf9LQiV6vVXrdiHC43Tta34asLTdh/oQlnGjptGmIBHweemU2V9osGEzRxEkSL+2eiYFf8s6O2SEFoKEyqtwMhQMRHPVh+vNvBWwRduBUosRsb6PX6WwhQsFxvbJuGXq9HR0cHtWkMljWgv8EuCCYWrWCN0OvO36xWq0NmIdYT2ItmsusbrCp1d4kagdqBDQYEukCxvr4e586dQ3x8/C27vuzFCEeigwCHDh3CsmXL8PTTT2PXrl1QKpW4//77PSwaERER0Ov1uHz5MqZMmUL/7y821cLNMPjljTbQboZB8V+OYrg0ApnqaGSqopAqj0RCrAjRN0gfe8XWU/xcOIMocd15wz7YdwV/P1h3iwc8JyEGczLk+O7MZEj7KQnE5XJ5TJwWi4VOnAqFImTU5t7Cm3eXTACBLMLrDuxgf6LS9ncGabDCm7eb2D4IiRtIhJJNIxDouqCWSCQe1+JA3xvs3SRiQwmnRUxPICo1WXA6HA4PL/VAW6IGMlEjFOBLgSLgO6nW6XQ4d+4cZs2adcuOMNuCxQ5tCAYMGRJtNpuxd+9ebNu2DevXr8fFixcxZswYzJ07F/n5+ZgxY8YtJ9tgMODixYuYOnUqAKDJZMe8tzqLER+eOQL/b1Ii1DGibjsEEtJMGp5wAAwddhy8YMBXtVosGs4A5mZERETgYFMk/n68FbIoEWamyzE7Q46ZGTKoYvpntUmIGvE2E7WZ3JShsv3Z3yCFskRRGQgfNXuAJIsY9hZuKFhNAgVC4romrwQy1aBr2gshjqFm0+hvdI3nG4gIPbKoIvdjMPubBxJEpSaEuqWlhS62FQpFwBY4wZxKFUzojwLFxsZGXLx4ETNnzrzld2wLlsFgwMyZMxEfHx+AI/EfYU+iS0pK8MEHH2Dfvn1ISEjA4sWLkZ2djZdeegmNjY09nlSj0Yhz585h+vTpADovkB99fgb7LjTR52SqojA9NR7TU6WYniaF8AZpHopqszc0tllxor4NRy634PCVZlzQm+nvfp2Xg7xxahgMBpy7qsX560akxvOh6YfVPTtD1mg0UqJGtofCXcXpDdg+ar1eT1f/7Mr+3oJ0pyPngx1BN5QXMT2BWFuIKux2u+l3plQqe2378GbTIMkmQ0Hh7A3YEXok9YI0FyH+/L6MVWRnSK/XAwBN2BmMnaFQANv2ZTQa6QKHjO99Ualvt2vK3Ru3R28KFBsaGnDlyhXKt7qDy+WCUCgMml2xoCDRf/7zn/HGG2+gsbEREyZMwNtvv03V376irKwM9fX1WLx4MbKyssDj8VBTU4OxY8fCaDT2eEM0Nzejuroa06ZNo0qz0+XG1ioD1p3S4Xj9zWg1ZYwYe56cSV/vq/NGyKPFyFBFQSIcGoOg1eGCw8Ug9kZ3wr3njPjhZ6dueV62JgZTU6XIG5eAMYmx9PG+Jn2wbQEk9J2dpMERNf/gzUfNzpjt6d7pWolN/LSEqIW7Zaa/Qeo2yPkgtg828e0JbJuGXq8fUpFvgQC7uQgp7PPn+ySLSp1OR9V/do0CJ8D4DvYCx2g00q6kbC91T3NHb+p3OPgHXwoUr1+/jvr6ekybNq3H13K73RAIBEEzZg06if7888/xwAMP4P3338e0adPw1ltvYe3ataipqYFarQ7Ie166dAnp6eloaWnpdrAihO7MmTPIzc1FRESEx9aEQCBAi8WJg5easf9CEyJEfPxsWadPmmEYzP3DARhNdgh4PKQoIpGljkGWOhqZmuhuG5qEClxuBlebLajVdeDcjUSSWl0H6pos+N85qXhsfmcaiaHDjgVvHkCWJhp3JMdjWqoMk5OlkEbdXkHzpeKZEAN2dS+nNgcGRC0j2eDArT5qb8SC3fAkWAa9cADb9tHc3GmJIoSa2D6sVqtHIggpRBsKXvOBBDtCj12ASa792NhOocBsNlObxlDzNw8kvKnUxC5G0rXCOVEj2OGtQJFhGFy+fBltbW2YPHkygO6tHxyJ7oJp06ZhypQpeOeddwB0fkEjRozAY489hueffz4g73n9+nUkJSVBr9dTjxnpEEj+BDpvxurqahqtpVarodFobqv6mGxOPPbfSlQ1ttOoOzZmpMnwt/tz6b/f+PI8VDFiDIuPgCZWAnWcBKoYMUSCwZnk3AyDNqsTTSY7dO12RIsFtFmLts2GJe8cgs3p9vp/F41S4a3VN9ukWxwuRIr6psQTpUCr1UKr1cJkMkEoFMLlctGYLZKkwanNgQfDMGhpaYFOp4NWq4XdbodAIIDT6UR0dDQlapyiNjAgpIGdFEDOR3x8PCUGHFEbGBCVmaRoAJ2EwO12Qy6XU8V5qPqbBxJk7iB2mebmZg9VWqlUQqPRhG2iRjCDCDNarZY2bUtLS0NSUlKP1o9gI9GDyjjsdjuOHj2Kn/70p/QxPp+PhQsX4uDBgwF7X+IltFgsEAgEtxQE8vl8CAQCSCQSTJkyhUYL6XQ6XLx4EdHR0R6EuuvEFC0R4u/354JhGOg77KjVdqBGZ0KttgPn9CZka2Loc002J/5x8Ootn5EHQBEjxvKxGjy3aCSAzgHhzR0XERshRHykCLERAogEfAj5PAj4PKhjJR6vfeZ6O3i8zu6INqcbdteNP51uqGLEmJIqA9Bpw1jz2Sk0mR1oMjnQYnbAxVpbsYmxKlYMPo+HCCEfI9XRGKmKRpY6GlnqGGRqoqGM9ryw+0qgvanNUqkUIpEINpsNbW1taG1thUQiQVRUFEcUAoyuxVYOhwNSqRRCoRBWqxUdHR1obm6GUCiESCTizkeAwbZpEMJGtq8tFgva2to8JqGoqCjufAQQLpcLra2taGlpoY254uLiwOfzYTKZ0NTUBIZh4HK5qHeXOx+Bg9vthslkQnt7O9rb2yEWixEbGwsej0frApxOJy2o5s5HYEGSoQhxFovFUKvVmDhxokehoDf7ByHUQeBA9sCgkmjSAlSj0Xg8rtFoUF1dHbD3JSfh3Xffxbe+9S2kpKTQBA1vBYFisRhJSUlISkqiXdN0Oh0uX76MiIgIaDQaqNVqenMS8Hg82mlw9o3ugl3hdDP439kpqGu2oLHVCm27Hbp2G5xuBoYOO9qtN5Vss92Fvx6o6/a4lo5R4/fFnS2vXW4Gq//6TbfPXZijpCRaIuTjaF0rnG7PizNGIoDyRiMYAj6Ph42PTIU6VgIBv/8HG4ZhPJI0mpubIZFIoFAokJ2dfUsra3b19KVLl4I2/ziU0dVrTtIbRo0adYvfkO2jvnjxol8+ag6+oTubxrhx425J8GA/98KFC/S5bNsHh76hu9qBCRMm3HLNs++l8+fPD3qEXjiiu0SNO+64wyNRgz3X6PV61NbWIiIiwqOOhjsffQfhTFqtFkajEZGRkVCr1Zg8efItnImAfY7InyaTCXv37kV5eTmmTZuGH/3oRwN6HN1hUO0cxFZx4MABzJgxgz7+7LPPYs+ePfj6668D8r4dHR1Ys2YN6uvr8dVXX2HcuHEoKChAfn4+Ro4c6fNET3Iju66qSPh9bwmDm2HQbHZA22ZDhIiPdGWnfcRkc+Kd3ZfQanWi1eJEh80Jp8sNp5uB081gVoYcT92VAQCwu9xY8vYhuBkGYgEfYiEfEiGf/n3iiHg8cWc6fc8vqnSIEQshixZBHiWGLEoEsXBgJli2umk0GmGz2Ty8zb6qA11zPAUCAW1GwHlAfYe3BhTsCDp/zkfX1IHBzKMOVbCLCkmRJrv7pL/ng9wjpLiQnI9g2R4NdnSXYkPGGn/OR9cIPXZxIlfQ5ju6JmrExsbS8+HrbljXXU+bzebReIdTqX0H2b3XarVoamry2L2PiYm5/QvcgMViwfbt21FeXo4tW7YgNjYW+fn5+O53v4tJkyYF8Ah8x6CSaLvdjqioKJSUlKCgoIA+/uCDD6KlpQUVFRUBfX+GYWA0GlFRUYGSkhLs3LkT2dnZyMvLQ0FBAUaNGuUXoSaFV4TAsYPYuZvvJtg+NaJuksIo4m3uK8Hqa9LHUEPXCDqBQOBRFNhXrznxURPiweXf9gxv8Xbspid97WrorRiOEHPOP30r2NevTqeDzWaj/malUtnn69dbi/v+itALRwQ6UYOo1Ow5SiwWe8RycnOIJ2w2Gz0fzc3NiI2NpcTZn8jBjo4ObNu2DRUVFdi2bRtUKhUKCgqwatUqTJ8+Pejug6AoLJw6dSrefvttAJ3kJzk5GY8++mjACgu9gQyS69evR1lZGb744gukpKQgLy8PhYWFGDdunM8nz+1200IfnU4HHo8HlUoFjUYzZBVRQgrIoOStYjpQIISBnA+uEvtWEtXe3k6zgkmiQCBJFJkAuaSCm/AlcSNQ8NZwZagnefiSSBMocEk3t2IwEzW4JCjvsFgsdF5tbW2lhcxqtdrnZkRkLtqyZQvKy8uxfft2DB8+HEVFRSguLsakSZOCevwZdBL9+eef48EHH8QHH3yAqVOn4q233sJ///tfVFdX3+KVHki0tbVh06ZNKC0txdatW6HRaCihvuOOO/wi1CTJQKfTweVyUUIdzqtZb9mdhBQMpv+vJwVDpVIFTSvRQKCv2baBQk+ZueHso+5r9nOg0LX1t8vlCorrZCDQnb+5rxa9vmAoZ66zdxRJ8kww7Ch23UkdSj0JzGYztFotdDod2tvbIZPJKHH2dUeGYRg0Nzdj06ZNqKiowM6dOzFy5EgUFhZi1apVfomWg41BJ9EA8M4779BmK7m5ufjTn/5028DtgYTJZMKWLVtQVlaGTZs2QSqVIi8vD/n5+Zg2bZrPNzK7patWq4XD4QiriJ1AdpEKFKxWKyXU4dadKpBd1gKFcO/eFqguhIFCuHc3DGSXzkDBarVSAheO3T9JbQvZAQj22pah0B23o6ODEmeTyQS5XA6NRgOVSuXzopphGBgMBmzYsAEVFRXYs2cPxowZg6KiIqxatQo5OTkh+T0FBYkOJVgsFnz55ZcoLS3Fhg0bEBERgZUrV6KwsBAzZ870eQAjkxO5MK1WKyULwTiZegObpBkMBrS0tCAyMpJuOYZatXl3Vd2hlPThrVhJLpfTSTaUlHb2ojOUfdRsm0ZTUxMiIyOpkhZqCRnebB+EUAcjwfEGt9vtcV2ReDNyTkLlugJuKrXkficEjtzvwbgI8AZSiEaiGsnYq1arPRI1QgHsdKmmpqaQVKkJPyECk8VigUKhoIKfr/yEYRg0NjZi/fr1KC8vx4EDB3DHHXdQxTkjIyOkzq03cCS6D7Db7di5cydKS0tRXl4OHo+HFStWoKCgAHPnzvVrhUaaiZCVHvF6+bPSGwiQnEeihDgcDkrSSM5mOCCUkj4ISWNHng22bSYQIIqhTqcLah81e/udbdNgF+2FA7raPpxOpwcZDcZxi3xWIDyTYtgRemTBxh4Lgm3c6pqowd4BCJb7uS8gKjWZLy0WC7VsKRSKoLLisEULnU4Hu91Od8r9KS5nGAZXr15FRUUF1q9fj8OHD2PatGkoKipCUVERUlJSguaY+wMcie4nOJ1O7N27F2vXrkV5eTlsNhuWL1+OgoICLFiwwK9qYbZnt7eeo/4Cu2rcaDR6qM1ESQuXCag7eEv6YO8aDPTxe4ugY0cxhcsE1BO6KleDnX9MSBohzqQQjJC0UNhZ6gvYtg+DwYD29vZBX+R48zeH2s5SX8C215FFDntXaqAj9AKdqBEKYCd+NDU1QSQSUULdHylI/oJ4k7vWbPlrn2MYBpcuXUJFRQXKy8tx4sQJzJ49mxLnxMTEsL3fOBIdALhcLuzfvx8lJSUoLy9Ha2srli5divz8fNx9991+qbWk+lWr1aKtrQ3x8fG0uUugBh2Hw+HhbWarzaFmCehvDFbSh81m8/BB8vl8Dx9kuJO0ntCdj5oQ2EBNTERJIxNiVFQUfd9g9JsPJAiBJderWCymhDpQiijb30wECHaedrjsAPQG3iL0YmJiPOojAkFyBjNRI9jhcrmoGGI0GqkYQqwfgVKpiSik1Wrpgp8sZORyuc/3JsMwqK2tRXl5OSoqKnD27FnMnz8fRUVFKCgogEajCVvizAZHogMMt9uNr7/+GqWlpVi3bh20Wi0WLVqEgoICLF68GLGxsT6/Fuk+ptVq6fYXIdR9sVF4G2CjoqLozRxs24DBgkAmfbAj6AwGA7UvkEkv1HyCAwVvk3Z/+ajZr20wGGAymaj/lDQ94XAr2D590ma5v2wfZFeGLKDY/uZgs8IFE+x2u8eiHIBHAktfFuVcRn/vwLblNTc3QygUenip+3pOSFyjTqcDn8+n3MGfnTu3242zZ89S4nzhwgUsXLgQRUVFyM/Ph1wuH3LzEkeiBxButxvHjx9HSUkJ1q1bhytXrmDhwoXIz8/HsmXL/FID7HY7vSGampo8UiV86QjEVptJjBU7SWMoq829RV+TPrqeE9Jgg2z3hVLBU7CAnbzQ2trqt+/Sm5eWndc7lHcAegOyYCfnhG378FV963pOeDwetVeFc2xooOAtQo+dGe/LOQm1RI1gB1mIkIWO2Wzu0znR6/UQiUS0+Yk/XMPtduPkyZOUONfX12Px4sUoLi7GypUrER8f3x+HHLLgSPQggWEYVFZWoqSkBGVlZaitrcWCBQtQUFCA5cuX+7WiczgcVHlj96YnLTZ5PB71LJKbkqjNbG8zN9D1H3xJ+vCWbsKdk8DBVx81sWmQpidRUVGU5A11m0Z/g2SEk3NCbB9EfSPfNUkFIaIBOSdDxd88kCDfNbEpsSP02D5Zcj+RcxLKiRrBDovF4uGlZneUZavUTqeTnhODwUDPiUaj8auBltvtxpEjR1BeXo7169fDYDBg6dKlKC4uxrJly/zaQQ93cCQ6CMAwDGpqalBaWoqysjKcPn0ac+bMQX5+PlauXAm1Wu3zxe90Oj1WnwKBAGKxGHa7HW632yNJg1ObBwbspA/SwVIikcDhcNxS7MOdk4EBsRiQ+8TtdiMiIgJOp5N20yRkjrNpDAxIkgFZwDgcDkRGRsLlcsFqtdKEk6Hubx5IsCP09Ho9LBYLoqKiwDAMLBaLR6a2LzugHPqOroXlJpMJkZGR4PF49PwQq4Y/vmqXy4WDBw+ivLwcGzZsQHt7O1asWIGioiIsWbKEGwe7ASepBAF4PB5ycnLw4osv4ptvvkFVVRUWL16MTz/9FFlZWVi6dCnee+89XLt2DT2teRiGgdlshtlshtVqBcMwVDVwuVwQCoWIjIxEdHT0kKiEDhbY7XbY7XY4HA4wDEPVNbfbDR6PB6FQCLFYzPk3BxButxtut5veT+yJhmEY8Hg88Pl8TnUeQLC/c/b3Ts4NwzC3nDcOgQVZ8ItEIlqgS+4PAHTRabPZ4Ha7B/OjDhnw+XxER0cjKioKEomE7mryeDzweDw4HA5YLBaYTCY4nc4eX8vhcGDXrl14/PHHkZmZiXvuuQcWiwXvvfceGhsb8cknn6CoqIgj0D2AU6KDGCRvkRQlHjhwAFOmTEFeXh4KCgqQnJwMvV6PiooKNDY2Yu7cubRFL/HSErLsdrvR1NREK3J5PB7deuM8a/0L0syBrRR4i6DrLumDK4oKDEiGblebRldLgDcfNfF3DoX4wIEE29+s1+vB5/PpOWH7m4ntgxTCkWgwkvbB+aD7D74maniL0GMXJ3I1HP0LUnOj1WrR2tqKuLg4qjiTHUyiUhPrh8lkgtlsxldffYUVK1Zg1qxZcLlc2L17N8rLy7Fx40YIBAIUFBSguLgYCxYs4Oo8/ARHokMEDMOgoaEBpaWl+Pjjj3H8+HFIJBJYrVYMHz4chYWFeOaZZ3zy0ZIbjTR3YRjGIxuSI9T+g3igySRPip18LUDzFs/VX0kfQxXsxYxer4fZbPbbptHV2z7YedThAJIyRPKb/fU3s9ssE9sHSWDhyFvv0NdEDVJzw04TGogIvXCHxWKh83RbWxukUiltt+3LbrLVasXBgwfx+uuv4/Dhw2AYBgzDIDo6GkVFRbj//vsxe/bskOiiGKzgSHQIwGg0Ytu2bdiyZQu2bdsGm82GuXPnIi4uDlevXsWhQ4eQk5ODgoIC5Ofn+9WDnqgO5EZ1Op0eXYo4hcc7uk4abMWyPyLo+pr0MVThcDioCsNO0+iPzGh2hz7io2Z3veMmIu/wlsjRX/nN7HhOvV6PtrY2eh8Sny53r3gH2QUIRKIGidAjBaP+igpDGezuxR0dHZDL5XTs92d30mQy4YsvvkBFRQW2bt0KmUyGiRMnIiYmBpWVlaisrMSUKVOwdOlSLF26FJMnT+bulV6AI9EhgLfffht/+9vf6MU+Y8YMOgiRjkPr169HaWkpvvzyS6SnpyMvLw+FhYUYM2aMX+HpxF6g1Wphs9kooVYqlUOeJLC70pFYwIHYvvQl6WMow2w207iz5uZmREdHezQ9CXQTCaJys/Ooh3rNgbf8ZnJOAtlkg9wrhLwJhUKPtI+hLgoMRqKGN3ubv3Ft4QyyECTE2WKxUPuMSqXya8HR1taGLVu2oKKiAl9++SUSExNRWFiIVatWYfLkyR5c4Pr169i6dSu2bNmCEydOoKamhttZ6wU4Eh0CYBdy3A6tra3YuHEjysrKsHXrVgwbNgz5+fkoKCjAxIkT/SLUHR0dlFBbLBbI5XK6lTQUlARSqMkOwB/sCDp20gfxkA41bzuZlAlxJgSWkLTBsL5056MeSmpoV2WzO3/zQIFYFMh5sdvtdNHb18Y7oQQS2Uh2tdhZ6YORqEEi9IidRywWe8S1DYWFjjfBiuwC+CNYMQyDlpYWbNq0CRUVFdixYwfS09NRVFSE4uJiTJgwwac5wR+OwcETHIkOY3R0dGDz5s0oKyvD5s2bIZfLsXLlShQWFmLKlCl+DVakM59Wq+3TFlOwg+23NBgMsNlstCtdsMWdsX2Mer0eLpeLNp0It85gxKbBbrBBFMZgs1Kw1VCDwRDWPuru/M3BlhXMrjlg2z4IofYnQzfY4a2TKqkFUKvVQbVL0tN4G261IITwkvPidDo9apF8Ha8ZhoHRaMTGjRtRXl6O3bt3Y9SoUSgqKsKqVaswevTosLmWQwEciR4iMJvN+OKLL1BaWoqNGzciKioKeXl5yM/Px8yZM/0iId6KHQihDqYB2lewmwuQhg+hpox4S/ogC51QTfogjWj0ej1aWloQHR3t0fQkFCYKbz5qstAJNvLvC9j+ZkLQ4uPj6XUWTIvMnuDN9kGIW6jc82z4mqgRzAjGnb++omvBZm+L+BmGgVarxfr161FRUYGvvvoKubm5VHHOzMwMifEwHMGR6CEIq9WKHTt2oKysDBUVFRAIBFixYgUKCwsxZ84cv6waXQvgSPi+RqMJWhVhKHj02EQnVJI+2E0ESGMHdupCsH5uX8Fe6ISSj5qcF/K5HQ4HjWIMFYLWE7zZPtjXXTCfF2+JGv4qm8GKrjUo7GZhwZzC4na7qa2pL3GyDMPg2rVrqKioQEVFBb7++mtMnToVhYWFKC4uRmpqasjPU+EAjkQPcTgcDuzZswclJSUoLy+Hw+HAihUrkJ+fjwULFvg1UNntdjqgNzU1ISYmhuZYDnaHMVItTgbkoVQtHsxJHw6Hg54T4qNlK4KhptT6A1IQqdPp0NraSs9LMPioSedTYkkZbH/zQIFt+yCpOzExMfTYB9v2EchEjWCGtwg9YsfpjzSkvsLlcsFoNEKr1cJgMEAoFNIxViqV+pWWdfnyZUqcjx07hpkzZ6K4uBhFRUVISkriiHOQgSPRHChcLhf27duH0tJSlJeXo729HUuXLkVBQQEWLlzolxLocDig1+uh1WrR1NSEyMjIXrUi7S243FLvCIakDzZJYds0VCrVoE+Gg4Wu9gKRSETJ0UBtY3vzN5NrY6ifF/IzGLaPwUjUCHZ0zeXn8/m0aHSgRBGy0CQLGrFYTOc4f84LwzA4d+4cKioqUF5ejjNnzmDu3LkoLi5GQUEBEhIShuQ5DhVwJJqDV7jdbhw6dIgq1Hq9HosXL0Z+fj4WL17sV1W30+mkk4DBYAjYJNBTBy2FQhG027KDhYFK+mDHnRkMBlitVo+mJ6Fu0+hvdOejJt9Xf6nz7AQevV6Pjo4OSKVSuqAJFX/zQIHYJ8g9Y7PZAmb7CLZEjWCGrx1i+wNEHCIiRGRkJLUv+iMOMQyDqqoqrFu3DuvXr0dtbS3uuusuFBcXIz8/HwqFgiPOIQKORHO4LdxuN44ePYrS0lKUlZWhvr4eCxcuREFBAZYuXeoXESbEjUzcIpGIDkK9UUJJ8RkpRImMjKSDZzhvb/Y3ekr66E0BHLFpEGV1KNk0+hPER00m7r76qLv6f8PN3zxQILYPco2zbR+9sReEUqJGsMNisdA5oT8i9LzZFMmc5Y9N0e1249SpUygvL0dFRQXq6uqwaNEiFBcXIy8vb8jujoY6OBLNwS+43W6cPn0aJSUlWLduHc6fP48777wTeXl5WLFiBWQymc8DQXcFGBqNptst7K5qEEmhCMYIulBFb5I+SGU9OyuZ2GeGsh2gv8H+jom/nRCt7pSwrvGAQ8XfPJDo2qGPfMdkF8zbd0wSNcj4F4qJGsGOri3iSdEomS+62wUj1iatVutRMK9Wq/2aY4gARRRnnU6HpUuXoqioCMuXL0dcXFx/HSqHQQJHojn0GgzDoLq6GiUlJSgrK6NeroKCAqxcuRJKpdIvQt01Cog9aBGbRlNTE/UlEmWBUzUDi+6SPhQKBWw2m0dXOnbTE049Cyy681GTBBayQCVdHIe673yg4K1bI7kvFAoFLBZL2CZqBDPYuwekHoMdoSeRSGAwGKDVatHW1ob4+HjqcfZnLHO5XPj6669RXl6O9evXo7W1FcuXL0dxcTGWLFky6EX2HPoXHInm0C9gGAYXLlygCjWpKi4oKEBeXp5fxRFutxvXrl3DtWvX0NHRAYZhIBKJoFAoMGLECG7baxDR3t6Oy5cvo6mpCXa7HTweDzExMUhMTERiYiK3oBkkOJ1OXL9+HdevX6f3jFgshkKhQHJyMqd4DRJIgfOVK1dgNBrhcDg87pmkpCSOOA8SHA4HGhoavN4zqampftf97N+/H+vWrcPGjRthtVqRl5eHoqIi3H333VzdRxiDI9Ec+h0Mw+DKlSsoKytDWVkZDh06hGnTptHmLiNGjLiFBNtsNqo2G41GAKBFgSKRCE1NTdDpdLDb7R5d+TjSFlj05P2USqV023Owkj6GMnryN4vFYqqGmkwmyGQyem64HYLAo7tEDblcDpvN5pEqQXZuOCU68GAX0+p0OphMJmqhiYiIoDn17e3tHhF6MTExt5wbu92OPXv2oLy8HBs3bgSPx0N+fj5WrVqFBQsWcHacIQKORHMIKBiGwfXr11FWVobS0lLs378fubm5yMvLQ1paGo4cOYKdO3dCpVLhpZde6jGCjgyApFuixWKhA6BKpQrrrOeBRG9SCEhOKvF3BirpY6iD+JtJOgDJCVapVJDJZF5JWG981Bz8h7+JGj2l1nCLnf4D2Q0g84bVaqVCjEql8irE2Gw22lfg1KlTeP755zFr1izcddddiI+Px44dO7Bp0yZERkYiPz8fq1evxty5czlRZwiCI9EcBgzt7e0oLS3F3/72Nxw5cgQ2mw3R0dGYPn06fvzjH+Ouu+7ya0InioJWq4XJZIJcLodGownZNteDCW+5q70tPuvvpI+hDkLO9Hp9n/3NJDWFkHC2j5pb7PiH/k7U4PLT+w+kaJMQZ4fDQc+LUqn0azxrbm7Gm2++ibKyMly+fBkMwyApKQl5eXl45JFHMGbMGO7cDGFwJJpDwFFeXo53330Xe/bsQUpKCpYvX46lS5di7Nix2Lp1K8rKyrB9+3ZkZGQgPz8fBQUFGD16tF8TutlspoS6vb2dbl+r1eqgbQ87mBiozmy9SfoY6iDKGSHOJL+ZEID+SqBxu90eedQul4vu7IR7F8/egp2oodPpYLPZApKoMZQ7efYW7Pb0Op0OLpeLzgH+CgHt7e3YunUrysvL8eWXXyIhIYG221ar1di6dSs2bdqEnTt3IiEhAcuXL8f//d//QSqVBu4AOQQlOBLNIeAoKytDXV0dli9fjszMTK/PaWlpwYYNG1BWVoZt27Zh+PDhlFBPmDDBL0JN2lxrtVq0trYiPj6eDqZDucCD7aE1GAwBbRbRHbpL+iCJEkMV3vzN7AYrgSa07Dxqto+anfYxVMFebAxGogYhh+xYT65ZUSfIuSHEmcfjQaVSQaPR+LWzQhZHmzdvRkVFBbZv346UlBQUFRVh1apVyM3N9fpaZrMZu3fvxpdffok33niDW9wMQXAkmkPQob29HZs3b0ZpaSm2bNkCpVKJvLw8FBQUYMqUKX4RapvNRgfY5uZm6lPUaDRDIlO6awzaYLQt7g5ksUNsCqSJgVqt7tcuY8GKrg1p2P5muVw+qNYKs9lMbR9sH3V/7lIEM5xOJ/WeGwwGCAQCutgbbNsLu9CXbfvorpYk3NC1/oKcG9JfwJ+ugU1NTdi4cSMqKiqwa9cuZGdno7CwEKtWrcLYsWPD/rvk0HdwJJpDUMNsNlPLx8aNGxEbG4uVK1eioKAAM2bM8IsEsivmjUYjoqOjPTpPhcOAybZp6PV6tLW10SrzYCZAhOyTcxMREUHVvnAiBv3pbx4osMm+wWAIWx91d4kaarU6qM9N10Y6pDg7nOoPyKJGq9XCYDBALBbTsdufc8MwDHQ6HdavX4+Kigrs27cP48ePR3FxMYqLi5GVlRWU55lD8IIj0QOAy5cv41e/+hV27tyJxsZGJCYm4r777sOLL77o4aE7deoUfvSjH+HIkSNQqVR47LHH8Oyzz3q81tq1a/Hyyy/j8uXLyMzMxOuvv45ly5YN9CENCqxWK7Zv347S0lKsX78eIpGIEurZs2f7teXNLrAyGAyIiIigwfrBSjS7Q1crgN1up/GAKpUq5Dzh4ZT0wfY3k0itULZJdOejHijbSX/D30SNYIbb7UZraysl1KRFPBkHQu1aI2O0VquF0WhEZGQkHQf8GaNJQlRFRQXWr1+PAwcOYMqUKdTjnJ6eHlLjfSDBcRX/wZHoAcDWrVvx+eef45577sHIkSNRWVmJhx9+GPfffz9+97vfAQDa2tqQlZWFhQsX4qc//SlOnz6Nhx56CG+99RZ+8IMfAAAOHDiAuXPn4rXXXsOKFSvw6aef4vXXX8exY8cwduzYwTzEAYfD4cCuXbtQWlqK8vJyuFwurFixAgUFBZg/f75fBT4ul4sO1myVI5hVUG82DUJkBtum0Z8IxaSPrp/Z6XQOqL95oBCKPur+TtQIZnSNNoyOjqbXYTCPa6TddlNTE6Kjo6m44c+ihvQqqKioQEVFBY4ePYoZM2agqKgIRUVFXnsVcOC4Sm/AkehBwhtvvIH33nsPFy9eBAC89957ePHFF9HY2EgJ4PPPP4/y8nJUV1cDAL71rW/BZDJh48aN9HWmT5+O3NxcvP/++wN/EEECp9OJr776CmvXrkV5eTlMJhOWL1+O/Px83HXXXX5N5i6XC01NTdBqtR5+O6KCDtbASzKyCXEmNg1CWIZC3m8wJ310tTyQRU0w+JsHCt6sKuTcDObuTk+JGkMlX76r7YPH43k0eRnMxai3uhVCnP2pW2EYBufPn6fE+dSpU5g7dy6KiopQWFiIYcOGhf0YGQhwXKVnBJ+MM0TQ2toKuVxO/33w4EHMnTvXgwgsXrwYr7/+OpqbmyGTyXDw4EE89dRTHq+zePFilJeXD9THDkoIhULMnz8f8+fPx5/+9CccPHgQpaWlePbZZ9HU1ITFixejoKAAixYtQnR0dI+vxS7uIoqiVqvFqVOnel353VuQrXNCzohNIykpCRMmTAg5m0ZfwePxEB8fj/j4eGRmZtKkj/r6elRVVQ140kd3/ubJkyeHnCWoPxAZGYnk5GQkJyd7LCquXLlCFxUDZcnpLlEjKytrSHYGFIlESEhIQEJCgoft48KFCzh9+vSA7yBYLBZKnNkJSqNHj/br/RmGQVVVFSXONTU1WLBgAdasWYP8/Hwolcohdx/2Nziu0jM4Ej0IOH/+PN5++226PQIAjY2NSEtL83ieRqOhv5PJZGhsbKSPsZ/T2NgY+A8dIhAIBJg9ezZmz56N3//+9/jmm29QUlKCX/ziF/jBD36Au+++G/n5+Vi6dCni4uJ6fC0+nw+FQgGFQoFRo0bRLfozZ87A5XJRQt2f9gmynUmanohEIiiVSowaNarbjnRDFTExMYiJiUFaWppH0kdtbW1Akj6Iv5m8D9u+4O/kH+4QiUQYNmwYhg0b5kFoz5w5EzB7S3eJGmPHjg05L30gwefzIZPJIJPJkJWV5WH7qK2tRVRUFCXU/Wn7MJvNtPkJyfJPSEjA+PHj/RIE3G43KisrsW7dOqxfvx6XLl3CokWL8NRTTyEvL29QdwzDDRxXuT04Et0HPP/883j99dd7fE5VVRVycnLov69du4YlS5Zg9erVePjhhwP9EYc0+Hw+pk6diqlTp+I3v/kNTp48iZKSErzxxhtYs2YN7rrrLuTn52P58uW3jUbi8XiQy+WQy+XIzs6m28PV1dU001ej0fjdDYvYNAhxbmtrQ1xcHJRKJdLT04eETaM/EBERQVVQdtLHpUuXIJFIeu1x71pIRwhgampqWPmbAwl2YkROTg4ttLx8+TLOnDnTJxW0u0SNO+64I2gTNYINUVFRSElJQUpKChwOB73eT5w4AQB9sn10dHRQ4mwymaBQKDB8+HC/7VdutxvHjh1DeXk5Kioq0NjYiCVLluCll17CihUrEB8f79fnGmrguErgwJHoPuDpp5/Gd77znR6fk56eTv9+/fp1LFiwADNnzsSHH37o8byEhARotVqPx8i/ExISenwO+T2H7sHn8zFx4kRMnDgR//d//4ezZ8+ipKQEf/7zn/Hoo49i/vz5yM/Px4oVK267Bcjj8SCVSiGVSpGZmUnVyfPnz6OyspIWvqlUKq+Tjsvl8mh64nA4hrRNo78hFouRmJiIxMREj6SP48eP06SPnrzK3fmbx4wZwymafQSPx0NcXBzi4uKQkZHhYYmpra2llpieEhi6S9TIysq6rV2LQ88QiUTQaDTQaDRgGIY2eelq++iucyZ7t0an08FisUChUPRq0elyuXD48GGUl5dj/fr1aG5uxvLly/Gb3/wGS5cuDbn0lMEEx1UCB66wcIBw7do1LFiwAJMmTcInn3xyi1pJzPparZYONC+88ALKyso8zPpmsxkbNmyg/2/mzJkYP3582Jn1BwoMw+DcuXMoLS1FWVkZTpw4gVmzZqGgoAB5eXnQaDR+RSmZTKZblBeigBIfYlNTE83aVSqVnE1jgMCOAiRtgcmCJyoqitp1hmJzkWBAd81nlEolJBIJ3V0I50SNYAZpwENqAIjtQ6FQgM/nU+Jst9vpzpy/6rXT6cSBAwdQXl6ODRs2wGKxYMWKFSguLsaiRYs4y9QAgOMq/oEj0QOAa9euYf78+UhJScHHH3/scVGSlVlrayuys7OxaNEiPPfcc6isrMRDDz2EN9980yM2Zt68efjNb36D5cuX4z//+Q9effXVsIyNGQwwDIPLly9TQn348GFMnz4d+fn5yM/PR1JSkl+EWq/X4+rVq2hpaYHb7YZAIIBMJkNycjLkcjlHzAYRbrcbDQ0NuHbtGtra2sAwDEQiERQKBVJSUm7rl+cQWLhcLtTX16OhoQEdHR1gGAYSiYRaaYZCt9FghsPhQF1dHRobG2E2mwGA5jgnJyf7tbBxOBzYu3cv1q1bh40bN4JhGOTl5aG4uBgLFy4c1NSdoQaOq/gPjkQPAD766CN897vf9fo79tfPDjBXKpV47LHH8Nxzz3k8f+3atXjppZdogPlvf/vbsAwwH2wwDIP6+nqUlZWhrKwMBw4cwB133EEJdWpq6i0k2Ol0orm5GQaDwcOmoVKpEB0djZaWFo9qdBLjxClpA4OeGoVERkZSJbq9vX3Akz443Dw/pHCTJGoQ/yw5dx0dHdz5GQSw04r0ej0YhqG1Bnw+n0bomc1myGQy6oP3ZrGx2WzYtWsXysvLsWnTJojFYuTn52PVqlWYN28eV2swSOC4iv/gSDQHDrcBwzBobGxEeXk5SktLsXfvXowZMwYFBQWYMmUKjh8/jm3btkGv1+Ott966bUvkrrmocXFxdDLiFLb+BbszJUk7ud35YSd9NDc3ByTpg0MnukvU6On8hGLr9FCF2+2m50en04HP59PFv1Qq7fH8GAwGbNy4EZ999hnuvPNO3H333XC73di4cSO2bt2K2NhYFBQUYNWqVZg9ezZnaeMQkuBINAcOfsDtdmP37t3405/+hN27d6O1tRUSiQS5ubn43//9X6xevdqvwjO73U4nqKamJg/CxhXO9A4kg5Z0auuLv5md9GE0GvuU9MGhE90laqjVar9JcHc+6qHU5Ka/QTq4kntIJBJBrVZDo9H4fc3X19fj9ddfx5YtW9DQ0AA+n4+srCzcc889ePTRRz3yhzlwCEVwJJoDBx9w8uRJvPfee9i4cSNaW1uxePFirFixArNmzaLNXb744gskJycjPz8fBQUFGD9+vF+TuMPhoOTCaDRSj6FGo+Gi7nrAQLWfZid96PV6n5I+OHSiu0QNou73B9iFo3q9ntqp1Go1F0d4GzidTnp+DAYDXdhoNBq/Fp7kXty8eTMqKiqwfft2DB8+nHYNdDqd2LRpEzZs2IDq6mrMmTMHeXl5ePzxx7nxjUNIgiPRHDj4gF27dmHdunVYsWIF5s2b5zWGrq2tDZs2bUJZWRm2bNkCtVqNvLw8FBYWYtKkSX6RLKfTSdUgg8EAsVhMJzVuy9rTP2swGGjSBkkLCDRh6inpY7DbKAcDSFIN2WUZ6EQNErVGCDXxUZP353zUNxftWq0WRqORtmnXaDR+2ZYYhkFzczM2btyIiooK7Ny5E5mZmSgqKsKqVaswduxYr2Pf5cuXsXHjRtTU1ODtt9/u78PjwGFAwJFoDhwCAJPJhK1bt6K0tBSbNm1CfHw88vLykJ+fj+nTp/vl/+uqgAqFQqri3a5JTDiBTPpk694Xf/NAgKhvhDBarVbI5XKqUg+VdAGGYWgTIp1OB5vNRpVglUo1qEow56PuhM1mo8SZ+P2Jx9mfHQGSPrRhwwZUVFRg7969GDt2LAoLC7Fq1Srk5OQMme+Uw9AGR6I59Bp//vOf8cYbb6CxsRETJkzA22+/jalTpw72xwo6WCwWfPnllygrK8P69eshkUiwcuVKFBYWYtasWX6plkSBJRXyPB6PEupwbATCbknM9jcTz3gwTtRsBTbckz66S9QginwwFos5HA6aJEGKGckuQjhmtpNCWa1Wi9bWVsTFxVHi7M/1yDAMGhoasH79epSXl+PgwYO44447UFRUhOLiYmRkZATl/RgM4ObK8AVHojn0Cp9//jkeeOABvP/++5g2bRreeustrF27FjU1NVCr1YP98YIWdrsdO3fuRGlpKSoqKsAwDFasWIGCggLMmzfP71a4LS0ttLkLwzAeBCYUCTXb36zT6WA2myGXy6lqGGpxgOGY9NGbRI1gRXc+anK9haqP2mKx0HGhra0NUqkUGo3G73uIYRhcvXqVdg08fPgwZsyYgcLCQhQXFyM5OTkkr+GBBDdXhjc4Es2hV5g2bRqmTJmCd955B0DnZDRixAg89thjeP755wf504UGnE4n9u7di7Vr16KiogIWiwXLly9Hfn4+7rrrLr8nu9bWVjpxOp1Oj65hwayuuVwuj/xmt9s9oP7mgULXwtFQSvromqgRGRlJF2zhYodgGAYdHR100cP2UatUqqCPn2R3S+3o6KCWIrVa7dfinGEYXLx4ERUVFSgvL8fJkycxe/ZsFBcXo7CwEImJiWFxvgcK3FwZ3uBINAe/YbfbERUVhZKSEhQUFNDHH3zwQbS0tKCiomLwPlyIwuVy4cCBAygpKUF5eTlaWlqwZMkS5OfnY9GiRX5N4GyPrlarhc1mo4RaqVQGRdEbiY4LNn/zQMFb0gchpcGS9EGiAkmDoEAkagQzrFYrXdg1NTUhKiqKKu7BsHAgpJ8QZ4vF0msPOsMwqKmpQXl5OSoqKlBVVYUFCxagqKgIBQUFUKvVg368oQhurgx/cCSag9+4fv06kpKScODAAcyYMYM+/uyzz2LPnj34+uuvB/HThT7cbjcOHz5MCXVjYyPuvvtuFBQUYMmSJYiNjfX5tdjqmlarhcVigVwup1u7A6nyEn8zIWWh4G8eCARL0kd3iRqElIWalaY/0dVHTRY9JN5woHZ6ui6Q7XY7vVb8XSC73W6cOXOGEueLFy9i4cKFKC4uRn5+PmQy2ZC9J/sL3FwZ/hh8SYoDBw4e4PP5mD59OqZPn47f/va3OH78OEpLS/Haa6/hhz/8IRYuXIj8/HwsW7bstjYAHo+H2NhYxMbGIiMjg5Kkuro6nD17ttdbvr6APeGTdsByuRwJCQkYN27ckCZlbPD5fCgUCigUCmRnZ9Pv7Pz586isrAxo0kd3iRrJyckh7Qnub4hEIiQkJCAhIcFj0VNdXe3ho1YqlQE5Ry0tLfQcOZ1OqFQqZGVl+W3VcrvdOHHiBNatW4f169fj2rVrWLx4MV544QWsXLkS8fHx/frZOXAId3BKNAe/wW1RDQ4YhkFlZSVKSkqwbt061NTUYMGCBcjPz8eKFSsgl8v9Uo68FR8RQt1bgtuTvzlYrCShBG9JH33NOg7FRI1ghTcfdXx8PF309NZHTYg6OfekaFij0fht93G5XDhy5AjKy8uxYcMGGAwGLFu2DEVFRVi2bJlfO1sc/AM3V4Y/OBLNoVeYNm0apk6dSkPy3W43kpOT8eijj3LFEgMAhmFQW1uL0tJSlJaW4tSpU5gzZw7y8/ORl5fnt4eRpEiQjnJxcXG08cLtyFp3/maSYx0M/t5wQF+SPsIpUSOY4c1H7WsBptvt9vDJk/hKjUbj933kdDpx8OBBSpxNJhOWL1+O4uJiLF68OOiLJMMJ3FwZ3uBINIde4fPPP8eDDz6IDz74AFOnTsVbb72F//73v6iuroZGoxnsjzekQKrpS0tLsW7dOhw5cgQzZsxAfn4+8vPz/a6mt9vtlFA3NTV5bchgNpvpZE/8zYSUDWV/80DBl6SPoZCoEcwgXUd78lGTAlOtVguDwdCnRkoOhwP79u2jxNnpdCI/Px9FRUVYuHAhZ58aJHBzZXiDI9Eceo133nmHBsjn5ubiT3/6E6ZNmzbYH2tIg+S6lpWVoaysDAcOHMDkyZMpoU5JSfF7Ytbr9WhsbERTUxO1YzidzpDObw4nsJM+dDodAEAgEMBut9MdhaGSqBGsIJnu5BzZ7XaIxWI4HA5IJBK6SPV3cWOz2bB7926Ul5dj48aNEIlEyM/Px6pVqzB//nzO0x4k4ObK8AVHojlwCFOQDmPr1q1DWVkZ9u7di/Hjx1NCPXLkyB4nbG/+5piYGLjdbrS3tyMyMpISNE7ZHBwQTy5RnDs6OhATEwOBQACz2Uw96QOd9MHBE952DiIiImC322EymTy87rezWlgsFuzYsQPl5eXYvHkzYmJiUFBQgFWrVmH27NncOebAYQDBkWgOHIYAGIaBwWBARUUFSkpKsHPnTuTk5FBCPWrUKPB4PDQ0NKCkpAQpKSmIjo6GWCymNg22L7O7bWiNRhP0jUNCHd4SNUjxJjtRo2s6Cok3DFTSBwdPeLNFkXuEvSvgzUd94MAB5ObmYsGCBRAIBDCZTNi2bRsqKiqwdetWKJVKSpynT5/OFYNy4DBI4Eg0Bw5DDAzDoLm5GevXr0dpaSm2bdtG/ZcGgwGZmZl47rnnsGzZMp/8zf1ZEMXBO/ojUaNr0gdJkehL0gcHTxBCrNVqPQp0fVGYgZsFoE8++SS2b98OAJBKpTAYDBg+fDiKi4tRXFyMyZMnc/cVBw5BAG7fhwOHIQbSnay6uhoXLlwAj8fDsGHD4Ha70dbWBofDgdOnTyMjIwN33HHHbUk0u2CKHc11+vRpMAxDSUSwdOILFXSXqDF27NheJWpER0cjLS0NaWlplOzpdDqcO3fOr6QPDp4gnR21Wq1HVOTYsWP9qhUgOwdffPEF7HY7HA4H9UoTa1ZtbS3Onj2L9PR0KJXKAB4VBw4cfAGnRHPgMITAMAzGjBmDxsZGLF++HPn5+Vi8eDHNiu3o6MCWLVtQVlaGTZs2QSaTIS8vDwUFBZg6dapf28bsJhFarRYul4vLI74NBiNRw5ekDw6eIKq+VqulnR1JF1CJROLz6xCb1caNG1FeXo49e/Zg9OjRKCoqwqpVq6jNimTEV1RUoKKiAsePH8e//vUv3HPPPQE8Sg4cONwOHInmwGGIoaqqCiNHjrxt5b7FYsEXX3yB0tJSbNy4EZGRkVi5ciUKCgowc+ZMvwqYiMpGmrv0pV1xuIEomaQdemxs7KAlarCTPvR6Pd1lGOo7CaQlOrl+TSYTFAoFJc7+pGAwDIPGxkasX78eFRUV2L9/P3Jzcylxvl3BLwBcu3YNkZGRkMvlfT00Dhw49AEciebAgcNtYbfbsX37dpSWlmL9+vXg8XhYsWIFCgsLMWfOHL+K1EiiBCEkFouFEhKlUhn2sVzeutzJZDJa8BcscYHs9tY6nQ4ul2tIJX0wDIP29nZ6nVqtVnr8KpXK70VkfX09VZK//vprTJs2DYWFhSguLkZqaiqn+HPgEILgSDSHsMRrr72GsrIyVFdXIzIyEjNnzsTrr7+O7Oxs+hyr1Yqnn34a//nPf2Cz2bB48WK8++67HgH4dXV1WLNmDXbt2oWYmBg8+OCDeO2118KeQPQEh8OBPXv2oKSkBBUVFbDZbFixYgXy8/Nx5513+rWdDYASShLRJpfLqcIXLgkSviZqBCuGStIHOU+EODscDqrEK5VKv+1Mly5d8rBgzJw5E8XFxSgqKkJSUtKQJs7cGM0hHMCRaA5hiSVLluDb3/42pkyZAqfTiRdeeAGVlZU4e/Ys3SJfs2YNNm3ahI8++gjx8fF49NFHwefzsX//fgCdW9u5ublISEjAG2+8gYaGBjzwwAN4+OGH8eqrrw7m4QUNXC4XvvrqK5SUlKC8vBzt7e1YsmQJCgoKsHDhQr/bC5NOiDqdDm1tbVShVavVfpPzwUZ/JGoEK8Ip6aNrIxSXy0WPRaFQ+GVhYRgGtbW1qKioQHl5Oc6ePYt58+ahqKgIhYWF0Gg0Q5o4s8GN0RzCARyJ5uA33G53yHkj9Xo91Go19uzZg7lz56K1tRUqlQqffvopVq1aBQCorq7GqFGjcPDgQUyfPh1btmzBihUrcP36dap8vP/++3juueeg1+vDRn3rL7jdbhw6dIi2H9fpdFi8eDHy8/OxZMkSxMTE+PV6VquVFm+1traGBFHrLlFDpVL1KlEjFMBO+mhubg6JFvDsBY5OpwOPx4NKpYJGo/H7PLndblRVVWHdunVYv349zp07h7vuugvFxcUoKCiAXC4Pyu8g2MCN0RxCERyJ5uAzHA5H0G87d4fz588jMzMTp0+fxtixY7Fz507cddddaG5uhlQqpc9LSUnBE088gSeffBI/+9nPsH79epw4cYL+/tKlS0hPT8exY8cwceLEgT+QEIHb7caxY8dQUlKCsrIy1NfX46677kJBQQGWLVvWq/bGhPA0NzfT4juNRuO32t3fGIxEjWAFSfrQ6/UwGAxBlfTRtWiSLHBInrk/n83tduPkyZMoLy9HRUUF6uvrsWjRIhQVFSEvL2/QjzUUwY3RHEIRnGmIg8/4/PPP8Ze//AUffPABcnJybvl9sCrUbrcbTzzxBGbNmoWxY8cCABobGyEWiz0GZwDQaDRobGykz2F778jvye84dA8+n4/Jkydj8uTJePXVV1FZWYmSkhK8+eabeOSRR3DnnXciPz8fy5cv90mpk0gkGDFiBEaMGOFBWi9cuIDo6GiPTnADQV66S9TIysoa8ESNYIJIJEJiYiISExM9SOvx48cHJemD7AyQzpqkA+cdd9zh9wLH7Xbjm2++oYqzwWDAkiVL8Mtf/hLLly+nMZEc/Ec4j9FmsxmPPvooHnnkEUyePHmwPw6HfgZHojn4BIZhcN999+Gpp57C6dOnkZOTA5fLBYFAAIZhwOPxgpJAA8CPfvQjVFZW4quvvhrsjzIkwefzMX78eIwfPx6vvPIKqqurUVpaig8//BA//vGPMWfOHBQUFGDlypVQqVS3JTZisRhJSUlISkqCw+GAwWCATqfD5cuXERERQRtUxMbG9huh7i5RIyEhAePGjQuaRI1gAlF61Wq1R9LH2bNnA5r0Qa4JrVYLo9GIyMhIqNVqTJkyxW97icvlwqFDh1BeXo7169ejvb0dy5cvx+9+9zssWbJkSC+Y+hPhPEZHRUVBJpPhV7/6Fe677z6sXr06aAUnDv6DI9EcfAKPx4PL5cKKFSuwfv16rF69mg4C7733Hv74xz/i008/xaRJkwb5k3ri0UcfxcaNG7F3714MHz6cPp6QkAC73Y6WlhYPpUOr1SIhIYE+5/Dhwx6vp9Vq6e84+A8ej4dRo0bhpZdewosvvogLFy6gpKQEn3zyCZ566inMmDEDBQUFyMvLw7Bhw25LeEQiEYYNG4Zhw4bB5XJR8vTNN99Q1bG3VoLuEjWSk5NDIlEjmMDn86FQKKBQKJCdnU2TPi5cuIDKyso+J32Q3QmtVoumpiZER0dDo9Fg5MiRfnvxHQ4H9u/fj/LycmzYsAE2mw15eXl49913cffdd3MLpn5GOI7RRFgif/7yl7/EO++8gyeffBJ33333Leo6h9AF54nm4BPIyvmDDz7AH/7wB9TU1ECr1eLNN9/Ee++9h5///Od45JFHgmaCYRgGjz32GNatW4fdu3cjMzPT4/ekaOWzzz5DcXExAKCmpgY5OTm3FK00NDRArVYDAD788EM888wz0Ol0IZcWEcxgGAZ1dXW0KPHgwYOYOnUq8vLykJ+fj+TkZL8VxKamJmi1Wg//q1qthkwm6/a1wjlRI1jR26QPbz55sgvhr0/ebrdj9+7dKC8vx8aNG8Hn81FQUIDi4mIsWLCAK1ALAMJxjL6dwpyZmYmVK1fixRdfhEKhGMBPxiFQ4Eg0B79w8eJFFBQU4P7778eePXtgMBjw4osvYuXKlYP90TzwyCOP4NNPP0VFRYVH7mh8fDydmNesWYPNmzfjo48+QlxcHB577DEAwIEDBwDcjE9KTEzEb3/7WzQ2NuL+++/H97//fS4+KYBgGAbXr1/HunXrUFpaiq+++goTJkxAfn4+8vPzkZGR4beXtbm5mWb/dk1icLvdMBgMtBiOTbilUim37TqA8Jb0QRYxMTExNLGFeNHj4+MpcfZ3AW+1WrF9+3ZUVFRg8+bNiIqKQn5+PlavXo05c+ZwOcMBRjiM0W63GwzD3LK4Pn78OEQiEXJyciAUCmG32yEWi/Hhhx/io48+wpNPPonVq1cH/PNxCDw4Es3Bb0ycOBEnT57E97//ffz85z9HUlISgJtbWL1Bf3vEuvsc//jHP/Cd73wHwM0g/88++8wjyJ+9DXjlyhWsWbMGu3fvRnR0NB588EH85je/4SbYAQLDMNDr9ZRQ7969G6NGjUJ+fj4KCgqQnZ3t1zXHMAyam5vR0NBAM4EZhoFEIkFCQgI0Gs2QS9QIVpCkj4aGBjQ3NwPoPH9xcXFITEzsVXa4yWTCl19+ifLycmzduhUymYx2DZw5cya30zCACJUxuqOjA3v27MHy5csBdM5VALzOV1VVVbj33ntRU1ODjIwM5OXl4de//jWtH7p+/Tq+973vITk5GR988EG/fD4OgwuORHPwCYQgX7t2Dc888wxMJhMqKipu+/zb/d5kMnHFORx8AsMwaGpqQkVFBcrKyrB9+3akp6dTQj1mzJgeF2LeEjXi4uKohcPhcECpVNL24xyhGjyQIk6tVguTyQS5XI7IyEg4HA4YjUa/kj7a29uxZcsWVFRU4IsvvsCwYcMocZ46dSq308ChR7z22mu4cOEC3nvvvVvqII4fP45XX30VTqcT9957LwwGA9xuN1avXo1//etfeOaZZ3DkyBGPWqGnnnoK1dXV+OCDDzBixIiBPhwO/QxOTuPgF06dOoUzZ87g6aefBtAZIeVtxU8ItMvlAoBbCAkh0f/85z/x0ksv4Sc/+QmeeuqpW5QlroqZAwGPx4NCocBDDz2Ehx56CK2trdiwYQNKS0uxYMECJCUlIS8vD4WFhcjNzQUAfPPNN1i7di1mzZqFmJiYbhM1GIZBe3s7dDodzp8/j8rKSpoeoVKpuJ2HAIP9/et0OlgsFiiVSqSmpkKpVHqQF29JH3v27EFycjIKCwshlUrR2tqKTZs2oaKiAjt27EBqaioKCwvx8ssvIzc3lxtTONwWZO6pqqqCVCqFSCSCy+WCyWTCu+++Cx6Ph9OnT1P//be+9S3MmDED69atg1qtxtNPP433338fn3zyCcaOHUvntuzsbBw8eBAtLS0ciQ4DcDMDB59ASPHp06fhcrmwePFiAJ7kmBDj48eP02513al5ZBI7deoU2tvb8cEHH+CRRx6hA43FYoFAIIBYLO6TTYRD+CI+Ph733Xcf7rvvPrS3t2Pz5s0oLS3FokWLIBQK4Xa7YbfbMWPGDKxYsQIzZ87sNlGDx+MhLi4OcXFxyMjIgMlkglarxeXLl3HmzBkoFIo+pUdwuBVd00/sdjuUSiUyMjJ63AnwlvTx5Zdf4vXXX8cTTzyB+Ph4tLa2Ijs7G6tXr8ZvfvMbjBkzhhtDOFD4Is7w+XyYzWZER0fThBeBQIC4uDiUlZWhuroazz77LF566SUAnR0Xm5qaYLfb6Wvcc889+Pzzz/GTn/yE2h6nTJmCn/zkJ1zCU5iAW45z8Bl1dXXYtWsXMjMzodFobiG35O86nQ7PPvssZDIZpkyZgitXrni8DnEQnTp1Cg0NDZg6dSoYhqGqNQBs3rwZERERaG5u5iY/Dj3Cbrdj//792LlzJ/bu3YvIyEhMnjwZEyZMQGRkJC5cuID169fj0KFDcDqdt309Ho+HmJgYZGRkYMaMGZgxYwakUinq6+uxd+9eHD16FFevXoXNZhuAowsvEE96dXU19u3bh+PHj8NutyMrKwvz5s3D+PHjodFofLLSMAwDrVaL//73vzh58iQaGxuRlZWFiRMnYsyYMaipqcGuXbuwffv2W8YgDkMbhECTeYf4nLsiKioKlZWVkEqltIgQAFavXg2xWOzRPOWee+5BS0sLLly4QB978MEHce7cOVRVVdHHEhMTERMTQ33+HEIbHInm4DMkEgmysrJuKbDoisWLF+Obb77Btm3bMH/+/Fs6SpGB6PDhw9DpdCgoKEBKSgq2bNkCoFOF3rNnDzIzMyGTyTzIdXfvyWFowmazISkpCT/4wQ8gkUjw2WefQavVYufOndi/fz+0Wi3ef/992Gw23HvvvcjMzMSPf/xj7Ny5Ew6Hw6f3iI6ORlpaGqZNm4ZZs2ZBqVSisbER+/btw5EjR1BXVwer1RrgIw1duN1uGI1GnD17Fnv37sXJkyfhdrsxevRozJs3D2PHjoVarfaZONfX1+PPf/4zlixZgqysLPznP//BsmXLUFNTgzNnzmD79u04efIkrly5gm9961vYtGkTMjMz8Yc//GEAjpZDKODy5csYP348amtrIRAIvKrSZN6Ry+U4duwY+Hw+nX9mzZqFxMREnD9/nj4/Ly8PZrMZx48fp3NcRkYG0tLSsGnTJjpGfPPNN5g4cSJXCxQm4OwcHHyGRqPBH//4R/rvniY9kUiEqVOnYurUqbf8jgxYR48eRXR0NNasWYO//vWvsFgsADrD8jdt2oTvfve73f5fUu3MYWhDIpFg//79yMzM9LpjERERgRUrVmDFihVwOBzYvXs3SkpK8P3vfx8OhwMrVqxAQUEB5s+f71PSQ2RkJFJSUpCSkuKRU1xbW4u4uDgajedvTnG4gRBnkrfN5/OhVqsxbty4HnO6vYFhGFy5cgUVFRUoLy/H0aNHMWvWLBQXF+Pf//43RowY4fX1kpKS8Mgjj+CRRx5Bc3Ozz4smDuEHhmGohYPH4yE1NRXXrl1DSUkJ5HI5ysrK8NRTT2Hp0qV0h5XML3feeSd++9vfArg5/0yfPh1qtRqnT5+G2WxGVFQU4uPjcccdd+Dw4cNobGzEsGHDAABLly7F8ePHYbFYEBERAYFAAB6PR+0dHEIbXDoHB5/BMAwYhulTUQ4ZoKqrq/Hoo49iwoQJ+P3vf4/77rsPYrEYf//737F161YsW7YMV65coYUXtbW12LlzJ4YPH44VK1b01yFxGKJwOp346quvUFJSgvLycnR0dGDZsmXIz8/HwoULe2zy4Q1dO+bFxMRQQu1vx7xQBekYSYizSCSiGc7+doxkGAbnzp1DRUUFKioqcPr0acydOxfFxcUoLCxEQkICZ/PicFt0N2cdP34ckyZNgkQiQUpKCh544AH87//+r9cGKMeOHcOUKVNw4MABTJs2jZLxF154AQcPHsTvfvc7mr7x4Ycf4vnnn0dJSQnuvPNOAJ27ZewF+uXLl2G1WpGTkxPAI+cwUODsHBx8Bo/H63NVO1mzHTp0CB0dHZg+fToAYPjw4aiurgYAbNy4EWlpaRgxYgSsVivWrl2LyZMn49///jfWrFmDlJQUbNq06ZbXJH9n2z/CDb/5zW/A4/HwxBNP0MesVit+9KMfQaFQICYmBsXFxbT1LUFdXR2WL1+OqKgoqNVqPPPMMz75g8MVQqEQ8+fPxzvvvIMrV65g06ZN0Gg0eP7555GamooHHngAZWVlMJlMPr2eWCxGUlIS7rjjDsybNw8pKSloa2vD119/jQMHDuD8+fNob29HuGkWTqcTDQ0NOHnyJHbv3o3z588jIiICkydPxuzZs5GVlQWpVOoT4WUYBmfPnsWrr76K6dOnY9q0aTh06BAeeeQRXL9+Hdu3b8cjjzziUzv4oQJuPOgZZM7S6/V488038YMf/ADffPMNhg0bhvvuuw9OpxNffPEFXnjhhW47CObm5mLmzJl4++23YbVa6Ry4ePFitLW14dChQ/S5q1evxnPPPUfTgQBQAk3u/dTUVI5AhxE4Es1hQEEGoOPHjyMuLg7z5s0DAIwePRoulwv79+/H7t27aTeniooKvPrqq7j//vuxbds2XLp0Cfn5+Xj11Vep/YPH42HHjh23bMMBwN///ncYDIYBPsrA4MiRI/jggw8wfvx4j8effPJJbNiwAWvXrsWePXtw/fp1FBUV0d+7XC4sX74cdrsdBw4cwMcff4yPPvoIP/vZzwb6EIISAoEAs2bNwptvvokLFy5gx44dyMjIwC9/+UukpqbSCvu2tjafXk8kEmHYsGHIzc3FvHnzkJ6eDrPZjCNHjmD//v04d+4cWltbQ5ZQOxwOXL9+HcePH8eePXtw+fJlxMTEYNq0aZg5cyYyMzN9bljjdrtx8uRJ/OIXv8CkSZMwZ84cnDp1Cj/5yU/Q2NiIzZs34/vf/z5UKhVHnLtgqI0HxJLh7XGn00nvJ/Z95XK58NxzzyEnJweffvopFAoF6uvroVAo8M9//hMKhQJlZWU9viefz8eLL76I/fv3Y/PmzfR3pDmPwWCgwo1MJsNzzz0HuVx+y2tx12+YguHAYYBRVVXFTJo0ifnhD39IH7ty5QojEAiYd999lxEKhUx1dTXDMAyzatUqZtWqVcyVK1foczdu3MhkZmYyu3fvZhiGYXbs2MHw+Xzmj3/8I/Pyyy8zH3/8MWMymRiz2czweDxmx44djNvtZmw2G8MwDPPBBx8wb7zxBtPW1jaAR903tLe3M5mZmcyXX37JzJs3j3n88ccZhmGYlpYWRiQSMWvXrqXPraqqYgAwBw8eZBiGYTZv3szw+XymsbGRPue9995j4uLi6HfC4Va4XC7m+PHjzIsvvsiMHj2akUgkzNKlS5n333+fuXr1KtPR0cGYTCaff9ra2phLly4xX3/9NbNx40Zm69atzLFjx5j6+nq/X2ugf5qampiamhpm7969TEVFBbNz506msrKS0el0fr9We3s7s3v3buaJJ55g0tLSmOjoaKa4uJj597//zbS2tg72aQ8JDJXxwO12My6Xy+vvvD3e9fo5efIkk5uby5SUlNDHnE4n/ft3v/tdZvbs2YzD4bjtZ3nuueeYyZMnM3V1dfQxg8Hg9TNzGDrglGgOAw61Wo377rvPw9vMMAzGjx+P3//+90hPT0d2djaam5tx6dIljB8/nhZpAJ0FjkajkaoS27ZtA8Mw2Lp1K9rb27F27VqsXr0aycnJUKlUGDlyJHg8HsRiMex2O3bt2oWKioqQKkz80Y9+hOXLl2PhwoUejx89ehQOh8Pj8ZycHCQnJ+PgwYMAgIMHD2LcuHEeKSlkK/LMmTMDcwAhCD6fj9zcXPzf//0fKisrcezYMUyfPh3vvfce0tPTUVBQgL///e/Q6/U+qcoCgQBqtRpjx47FvHnzMGrUKLhcLpw8eRJ79+5FVVWVx3U92LBarairq8ORI0ewb98+NDQ0QKlUYtasWZg2bRrS0tJ8ThhwuVw4cOAAnn32WYwZMwYrV65EY2Mjfvvb30Kr1aKkpAT33nsv4uLiAnxU4YGhMh6wLYRlZWVYsmQJ5s+fD+Dmrua1a9fws5/9DBMmTMDChQtph0GgU613u92IiIjA1atXcezYMbS1tdF4ym9961s4cuQI6uvru72HyeOvvPIK0tPT8fTTT6O2thYAqAWE/X85xXlogUvn4DDgkMvlHh4+t9uNlJQUqNVqnDhxAq+88gqAzqg70paZNMlgGAanTp2CxWLBggULAHR6qJctW4Z3330XycnJtL3zrFmzYLPZkJqaijvuuANr165FU1MTGhsbsWjRIkRFRcHhcIDP5wc1of7Pf/6DY8eO4ciRI7f8rrGxEWKxGFKp1ONxjUaDxsZG+pyuMYPk3+Q5HHoGj8fD6NGj8bOf/Qwvv/wyzp8/j5KSEnz88cd48sknMXPmTBQUFCAvL8+nojc+nw+lUgmlUomcnBy0tLRAq9WisrISDMPQltYKhWJAu+tZLBZotVrodDq0tbVBKpV67fDoC5xOJ/bv34/y8nJs2LABVqsVK1aswJ/+9CcsWrTI7+JNDp0YSuPB+vXr8cc//hF79+6FRqNBcXExvvOd79Df19TU4OWXX0ZTUxOeeOIJmEwmfPrpp9i7dy+2bNmCu+66C4cPH8bKlSsxceJEaDQaHDlyBAsXLsSHH36IxYsXIzo6Gv/617/w8ssvo62tDe3t7UhKSvJI82AYBhKJBH/84x+xY8cO1NXVISsri34OjjgPXXAkmsOggGE1aiEk4e2338YHH3xAo+0SExMhlUqxb98+2l78yJEj+Oc//4lly5YBAHbt2oW2tjbcd999SE5OBsMwiIyMhFgshlarxfbt2zFy5Ehs3rwZMpkMO3fuBACMHTsWALrtYBcsuHr1Kh5//HF8+eWXfpMYDoEBj8dDZmYmfvrTn+L555/H5cuXUVpaipKSEjzzzDOYNm0a8vPzkZ+fj+HDh/tEqOVyOeRyOXJyctDa2gqtVovq6mo4nU4olUpoNBooFIqALPZId0adToeOjg7I5XIkJiYiNzfX7+6Mdrsde/fuxbp167Bp0yYwDIP8/Hz87W9/w1133cV1e+wjhtJ48Nlnn+HBBx/E0qVLce7cOaSmpt7yHIlEguXLl+PBBx+kj9lsNjz77LOorq5GTk4O7WTZ0dGB9vZ26PV6PPnkk/j444/x6KOP4gc/+AE+/vhj/POf/8S1a9fw6quv4oknnvBYvJJ7OCEhAf/zP/8T8GPnEDrgSDSHQYE3YpGZmYnf/e53Ho+98MILeOCBB7Bw4ULMnTsXf/nLXzBx4kS88MILAIDS0lKkp6dj4sSJAG6S83Xr1kGhUGDs2LFQKBR4+OGH4XK58NVXX+HKlSvYunUrXnzxRQiFQvzud7/DokWLuv2sRJGwWCwQi8UDqlofPXoUOp0Od9xxB33M5XJh7969eOedd7Bt2zbY7Xa0tLR4qE9arZa2lU1ISMDhw4c9XpdU63OtZ/sGHo+HtLQ0/OQnP8HTTz+Na9euoaysDKWlpXjxxRcxceJESqjT0tJuS6h5PB6kUimkUimysrLQ1tYGnU6Hc+fO4fTp05RQK5VKCIW9G74ZhkFHRwclzhaLBQqFgtqf/F1YWq1W7Nq1C+Xl5di0aRMkEgkKCgrw2WefYd68eb3+nBxuxVAYD8gYTprxjBs37hYCbbFYEBkZidTUVKSmpuLs2bN4/fXXsXHjRshkMvD5fHoPkvuJoLKyEnK5nO6EvPzyy5gzZw4aGxuRl5cHpVI5gEfLIdTB5URzCBqQS7Er0bh06RI+/PBDVFZWYt68eXjggQegVqsBdMYPLV26FC+//DKioqLoADx37lykpaXh448/po+dPn0a999/P4RCIV555RVMmDABv/zlL3HmzBns3LnTa7MNtmK+Zs0atLe34ze/+Q2GDx8e4G+jE+3t7be0LP7ud7+LnJwcPPfccxgxYgRUKhU+++wzFBcXA+jc4szJycHBgwcxffp0bNmyBStWrEBDQwP93j788EM888wz0Ol0PjUZ4eAfmBstqdetW4eysjLs3r0bY8aMQUFBAfLz85GVleV3bnJHRwdt7mI2myGXy6HRaHwivgzDUEKu1Wpht9uhVCqhVqt7RcjNZjO+/PJLVFRUYMuWLYiLi0NhYSFWrVqFWbNmBbU9KpQxlMYDs9mMn/70pzh+/Dj27t0LvV6Pf/3rX/jXv/6F5ORk/PWvf4VKpUJTUxMefvhhuN1uPP7445g7dy4eeeQRHD16FF999RXsdjs+++wzaDQafPPNNygvL0d2djY++eQTr2o+EU04cPAJA1fDyIFD38GufD5w4AAjFAqZf//73x7PMRqNjEQiYTZv3uzxf959910mNzeX2bp1K33uJ598wqSkpDCHDx/u8X1/9rOfMZMmTaKpIYMJdjU+wzDMD3/4QyY5OZnZuXMn88033zAzZsxgZsyYQX/vdDqZsWPHMosWLWJOnDjBbN26lVGpVMxPf/rTQfj0Qw9ut5vR6/XMX//6V2bp0qWMWCxmxowZw/z0pz9lDh8+zLS3t/udcKHT6ZjKykpmx44dTEVFBbNv3z6mpqaGaW5ups/p6Ohg6uvrmWPHjjFbt25lNm7cyHz99dfMpUuXmLa2Nr/fs7Gxkfnoo4+YwsJCJjo6mklPT2eeeuop5sCBA90mKHAIPIJxPHC73f2SUvHRRx8xKSkpTEpKChMfH89Mnz6dee2115hLly7R55SWljISiYSpqqpiGKYzuWTRokVMbGwsc+rUKYZhGObFF19kJk+ezNx5553M3//+d68pJFyqBofegNtn4xASYBd5EIwfPx6ff/453dokvunjx4/DbrcjOzsbQKey7Xa7cfToUSQmJmLatGn0NTo6OjySPxiW8kywdu1a/Otf/8K7776L7Oxsj+cw3ajnA4k333wTfD4fxcXFsNlsWLx4Md599136e4FAgI0bN2LNmjWYMWMGoqOj8eCDD+KXv/zloH3moQQejwelUonvfe97eOihh9Da2or169ejrKwMb731FoYPH478/HwUFBRgwoQJPqlg0dHRSEtLQ1paGi0GvH79OqqqqhATEwOhUEgbxahUKowaNQpyudwvhY1hGLS2tmLz5s2oqKjA9u3bkZycjKKiIrzwwgu44447OMUuCBEM4wEZD61Wa6+822SMnTBhApKTk8Hn87FhwwZER0fTa448Z9iwYbDb7bh+/TrS09Oxfft2qNVqdHR0YPPmzRg3bhyefvppvPLKKx47JF3Heq44kENvwNk5OIQdjh8/ju9973uYN28enn/+eWg0Gpw+fRpPPPEEJk+ejNdffx1AZwHKU089haqqKmzdutWj6IkMsBcvXkRBQQEWLlyIP/zhD5TMNzc3QyaTebyvy+XitrE5+IX29nZs2rQJpaWl2Lp1K5RKJfLy8lBYWIjJkyf7RFLdbjeMRiO1ejAMA6FQCJvNhri4OGg0Gmg0Gp/SMBiGQVNTEzZt2oTy8nLs2rULWVlZKCwsxOrVqzF27FiObHDwABkru5LSvLw8jB49Gq+++qrX65i50V2Wz+d3e523t7fjpz/9KU6ePIl9+/YB8G63WLlyJaqqqtDS0gKhUIhPP/0UI0aMQGZmpsfz3G43eDwedw1z6DdwSjSHsENubi5eeukl/OpXv0JZWRmOHj2KAwcOoK2tjcbiAUB1dTVqamowadIkiMVij8GZDLLbtm2DwWDAM888AwB00CeFjkVFRYiMjMTkyZM9CLTL5eqXNukcwhuxsbH49re/jW9/+9swmUzYunUrysrKUFBQgNjYWOTl5SE/Px8zZszwuL46Ojpw4cL/b+/Og6oqHz+Ofy6QiCDcgNg0E3crGm1QwaUZv5IRLQiWwVDiMlnONGZpq4P/lJgylQMtWDnpZOWSAqmjuWtOeE3HYnDBtdIKXIiIEEXv8/uDn6fuV6zO1wSU92vGPzzPc86chzlz7uc+91kOy8vLS6dOnZKPj4/CwsLUt29fBQUFyeFw6Ny5c1awPnTokAICAhQWFqbff/9dMTEx1rWMMTpx4oRWrFihoqIibd26VTExMRo5cqTmzJmjnj17EjpwWQ6Hw6NTwRijn3/+Wdu3b9ekSZPk5eXV6C98DofDGot/4sQJOZ3OS1Zvad++ve68806tX79eO3bsUP/+/a136ubNm1VVVaURI0boww8/1M6dOyVJiYmJl71X3sf4txGicd1xOBxKTU1Vamqq9XNifX29QkJC1L9/f6ve7t27VV1drbvvvrvR65SXl2vbtm2KjY1VZGSktV612+3Wvn37VFFRoerqan3xxRfy9/dXQUGBbr31VklqtEf65MmT+uCDD3TXXXdp0KBBV6fxuGb5+/tr5MiRGjlypOrq6rRu3TotW7ZMaWlp8vX11fDhwxUUFKTS0lIVFxfrP//5j7Kzs3XnnXc2us12mzZt1LFjR3Xs2FH19fU6efKkdu/erYyMDHXo0EFDhgxRSEiIdu7cqeLiYsXGxiolJUVz585V165dCc74R6ZPn6758+fr+eef1xNPPKEbbrhBBQUFuvHGGzV48ODLTtSrrq5WXl6eFi9erNLSUrlcLvXr188qvxi8L262tWrVKvn5+SknJ0dr1qzRqVOnNHHiRI0YMUKhoaEe4ZnJgWgyTTwGG2gSjW0X++ftXs+dO2dGjx5tYmJiTG1tbaPXKCsrM3fccYfJy8szxhhz5swZY4wxixYtMg6Hw8yaNcuavNWvXz/z7LPPmvXr15vU1FSTlpZmvv76a+taF7eVvf/++012drYxpvFta4E/q6ysNPPmzTNxcXHG29vbeHt7m7Zt25qkpCSzbNkyj4mEf/evpqbG7N2712RlZZno6GgjyXh5eZmbbrrJTJw40ezYsYPJVbCtqqrKvP3226ZTp07mscceM+fPnzdPPvmkSU5O/svzVq1aZdLS0kxubq45fPjwX14/PT3dOBwOExAQYB566CGzdu3aRuvy/KKpMSYarUJjPRPbt29XWVmZMjMzGy0/duyYunXrppKSEvXs2VPnzp1TmzZtNHz4cLVp00YLFy6U0+mUMUZjxozR0qVLNW7cOCUmJuqDDz7QTz/9pHXr1ikoKMi65pgxY9SjRw+99NJL9PThsgoLC5Wfn6+NGzfq9ttvt3qou3Xrpi+//FJLly5VYWGhzpw5o6SkJCUnJyshIeGSSVzGGB0+fFhFRUUqLCxUSUmJhgwZotTUVKWkpMjpdGrt2rX67LPPtGLFCgUHB1sTB1kvF3YUFxfr4YcfVp8+fbRx40YtWrRIDz744GV7he3MIdm+fbt8fX2t/QD+l2sAVwPDOdAqNPYSj4uLU1xc3CXl5v9/Rvz5558VFBSksLAwGWOs8XqbN2/WO++8o/bt21vnuFwujR07VtnZ2QoMDFRISIgeeeQRrVy50trhyhijzp0766uvviJA4y9VVlYqISFB77zzjrp06eJRNnToUA0dOlR5eXn66quvrJ0Sf/nlFyUmJio5OVmdO3fWmjVrVFRUpP3792vo0KGaMGGCUlJSdNNNN3k8fykpKUpJSdHZs2e1fv16FRYWsiU3bHG73YqPj9eWLVs0bdo01dXV6fjx45Ia3q2NBWk74ffie1r6Y16Kw+EgQKPZEaLRaplGJrtInsszxcbG6tixY9akmYKCArVr105xcXHWC7y0tFQHDx7URx99pMDAQElSaGioqqqq1KFDB0myerFLS0utOozbw+WMGzfub+t4e3tryJAhGjJkiN58803t2LFDy5Yt09SpU1VRUaGkpCQ988wzSk5O1o033vi3X9wubqF83333/VvNQCtx8T0WHR0tp9Op4OBgzZw5U8eOHdPMmTP/1fccwRktCZ/gaLX+LlQMHjxYJSUlqqurs47l5OQoNjZWN998s3Vs2bJl6tatmzWpUGroma6vr9fgwYMlydpRbteuXdbKCK01QP/444969NFHFRISIj8/P8XExFgz66WGLzfTp09XZGSk/Pz8lJCQoIMHD3pco7KyUhkZGQoMDJTT6dT48eNVU1PT1E1pMby8vBQXF6ecnBwdPnxYhw4d0sqVKzV27FgFBwe36l8+eN6aTl1dnRYvXqzly5dr5syZmjt3rsaNG6ejR482960BV0Xr/BQH/oEzZ84oPT3dYz3o+Ph4ZWZmegzlWL58uVJSUuTv7y+p4YOkoKBAd911l3x8fFRfXy+Hw6H9+/ertrZWvXr1avK2tBS//PKLBg0apBtuuEGrV6/W3r179frrr3v8jWfPnq3c3Fzl5+fL5XLJ399f99xzj8eXmYyMDO3Zs0fr1q3TypUrtXXrVk2YMKE5mtTitGvX7pIhIK0Vz1vT2rJli0JDQxUSEqJHH31US5cu1ZEjR5SUlKRPPvlEUsMvcMB1o7lmNALXgrq6OnPq1KnLlh86dMg4HA6zadMm69h3331nQkNDzUcffWSMaVgJxJiGrWf79OljbUXbGr3wwgtm8ODBly13u90mIiLC5OTkWMeqqqqMr6+v+fTTT40xxuzdu9dI8lj9ZPXq1cbhcJgff/zx6t08rjk8b03j4qoYL7/8somLizPG/LH60MmTJ81TTz1lFixY0Gz3B1wt9EQDf8HX11chISHW/81/LWbTtWtX7d+/XwMHDrSObdq0SadPn9aIESMkNQzlqKmp0dy5czVq1ChrO/LW6PPPP1dsbKwefvhha3OQ999/3yo/evSoysvLlZCQYB0LCgrSgAEDVFxcLKlhFQCn06nY2FirTkJCgry8vORyuZquMWjxeN6ahsPhUG1trZYvX65Ro0ZJ+mO4WmhoqPLy8jR69OjmvEXgqiBEAzY0Nra0R48eHjtttW/fXqNHj1ZAQICkhq1r58yZo7Zt22rKlCmX7MrVmhw5ckTvvvuuunfvri+++EITJ07UpEmTtGDBAkkNG9xIUnh4uMd54eHhVll5ebnCwsI8yn18fBQcHGzVASSet6ZUVVWlzp07KykpqdFyhnHgesTqHMC/7OKavhfl5uZq27Ztys7OvmR78dbG7XYrNjZW2dnZkqS+ffuqtLRU+fn5yszMbOa7w/WG563pREVFafXq1Zctb63vPFzfeKqBf9mfe1x27dqlTz/9VJMnT9Zjjz0mqXV/mERGRnqsYiJJvXv31g8//CBJioiIkCRVVFR41KmoqLDKIiIidOLECY/y8+fPq7Ky0qoDSDxvzYEeZ7QmrffTHLhKLoZkY4yioqK0ZMkSJSYmNvNdtQyDBg1SWVmZx7EDBw7olltukdSwzmxERIQ2bNhglVdXV8vlcik+Pl5SwwopVVVV2rVrl1Vn48aNcrvdGjBgQBO0AtcKnrem15o7CdAKNffMRgCtx44dO4yPj4+ZMWOGOXjwoPn4449Nu3btzMKFC606r732mnE6naaoqMiUlJSY5ORkEx0dbc6cOWPVSUxMNH379jUul8ts27bNdO/e3aSnpzdHk9CC8bwBuJoI0QCa1IoVK8ztt99ufH19Ta9evcx7773nUe52u01WVpYJDw83vr6+ZtiwYaasrMyjzunTp016eroJCAgwgYGBZuzYsea3335rymbgGsHzBuBqcRjzX2t2AQAAAPhLDF4CAAAAbCJEAwAAADYRogEAAACbCNEAAACATYRoAAAAwCZCNAAAAGATIRoAAACwiRANAFfgwoULysrKUnR0tPz8/NS1a1e98sor+vMS/MYYTZ8+XZGRkfLz81NCQoIOHjzocZ3KykplZGQoMDBQTqdT48ePV01NDe0AgBaKEA0AV2DWrFl699139dZbb2nfvn2aNWuWZs+erby8PKvO7NmzlZubq/z8fLlcLvn7++uee+5RXV2dVScjI0N79uzRunXrtHLlSm3dulUTJkygHQDQQrFjIQBcgfvvv1/h4eGaN2+edWzkyJHy8/PTwoULZYxRVFSUpkyZoqlTp0qSfv31V4WHh2v+/PlKS0vTvn37dOutt+rrr79WbGysJGnNmjVKSkrS8ePHFRUVRTsAoIWhJxoArsDAgQO1YcMGHThwQJL07bffatu2bbr33nslSUePHlV5ebkSEhKsc4KCgjRgwAAVFxdLkoqLi+V0Oq3gKUkJCQny8vKSy+WiHQDQAvk09w0AwLXsxRdfVHV1tXr16iVvb29duHBBM2bMUEZGhiSpvLxckhQeHu5xXnh4uFVWXl6usLAwj3IfHx8FBwdbda6266UdANBUCNEAcAWWLFmijz/+WJ988oluu+02ffPNN5o8ebKioqKUmZnZ3Lf3j10v7QCApkKIBoAr8Nxzz+nFF19UWlqaJCkmJkbff/+9Zs6cqczMTEVEREiSKioqFBkZaZ1XUVGhPn36SJIiIiJ04sQJj+ueP39elZWV1vm0AwBaFsZEA8AVqK2tlZeX56vU29tbbrdbkhQdHa2IiAht2LDBKq+urpbL5VJ8fLwkKT4+XlVVVdq1a5dVZ+PGjXK73RowYEATtOL6aQcANBV6ogHgCjzwwAOaMWOGOnXqpNtuu027d+/WG2+8oXHjxkmSHA6HJk+erFdffVXdu3dXdHS0srKyFBUVpREjRkiSevfurcTERD3++OPKz89XfX29nnrqKaWlpTXZihbXSzsAoMkYAMD/rLq62jz99NOmU6dOpm3btqZLly5m2rRp5uzZs1Ydt9ttsrKyTHh4uPH19TXDhg0zZWVlHtc5ffq0SU9PNwEBASYwMNCMHTvW/Pbbb7QDAFoo1okGAAAAbGJMNAAAAGATIRoAAACwiRANAAAA2ESIBgAAAGwiRAMAAAA2EaIBAAAAmwjRAAAAgE2EaAAAAMAmQjQAAABgEyEaAAAAsIkQDQAAANhEiAYAAABsIkQDAAAANhGiAQAAAJsI0QAAAIBNhGgAAADAJkI0AAAAYBMhGgAAALCJEA0AAADYRIgGAAAAbCJEAwAAADYRogEAAACbCNEAAACATYRoAAAAwCZCNAAAAGATIRoAAACwiRANAAAA2ESIBgAAAGwiRAMAAAA2EaIBAAAAmwjRAAAAgE2EaAAAAMAmQjQAAABgEyEaAAAAsIkQDQAAANhEiAYAAABsIkQDAAAANhGiAQAAAJsI0QAAAIBNhGgAAADAJkI0AAAAYBMhGgAAALCJEA0AAADYRIgGAAAAbCJEAwAAADYRogEAAACbCNEAAACATYRoAAAAwCZCNAAAAGATIRoAAACwiRANAAAA2ESIBgAAAGwiRAMAAAA2EaIBAAAAmwjRAAAAgE2EaAAAAMAmQjQAAABgEyEaAAAAsIkQDQAAANhEiAYAAABsIkQDAAAANhGiAQAAAJsI0QAAAIBNhGgAAADAJkI0AAAAYBMhGgAAALCJEA0AAADYRIgGAAAAbCJEAwAAADYRogEAAACbCNEAAACATYRoAAAAwCZCNAAAAGATIRoAAACwiRANAAAA2PR/SS8WfDDuiQQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -680,22 +702,9 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The following input file was imported: dispersion_analysis_outputs/disp_class_example4.disp_inputs.txt\n", - "\n", - "A total of 0 simulations results were loaded from the following output file: dispersion_analysis_outputs/disp_class_example4.disp_outputs.txt\n", - "\n", - "The following error file was imported: dispersion_analysis_outputs/disp_class_example4.disp_errors.txt\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "test_dispersion = Dispersion(\n", " filename=\"dispersion_analysis_outputs/disp_class_example4\",\n", @@ -727,30 +736,36 @@ }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext snakeviz\n" - ] - }, - { - "cell_type": "code", - "execution_count": 25, + "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " ompleted 1 iterations. Total CPU time: 57.5 s. Total wall time: 58.5 sstimated time left: 0 s \n", - "*** Profile stats marshalled to file 'C:\\\\Users\\\\mateu\\\\AppData\\\\Local\\\\Temp\\\\tmp7g727j85'.\n", - "Opening SnakeViz in a new tab...\n" + "Completed 1 iterations. Total CPU time: 18.7 s. Total wall time: 79.0 sstimated time left: 0 s \r" + ] + }, + { + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 1)", + "output_type": "error", + "traceback": [ + "Traceback \u001b[1;36m(most recent call last)\u001b[0m:\n", + " File \u001b[0;32m~\\AppData\\Roaming\\Python\\Python310\\site-packages\\IPython\\core\\interactiveshell.py:3398\u001b[0m in \u001b[0;35mrun_code\u001b[0m\n exec(code_obj, self.user_global_ns, self.user_ns)\n", + " Input \u001b[0;32mIn [38]\u001b[0m in \u001b[0;35m\u001b[0m\n test_dispersion.run_dispersion(number_of_simulations=1,append=False)\n", + " File \u001b[0;32mC:\\Mateus\\GitHub\\RocketPy\\rocketpy\\simulation\\dispersion.py:342\u001b[0m in \u001b[0;35mrun_dispersion\u001b[0m\n self._finalize_simulation(input_file, output_file, error_file)\n", + " File \u001b[0;32mC:\\Mateus\\GitHub\\RocketPy\\rocketpy\\simulation\\dispersion.py:444\u001b[0m in \u001b[0;35m_finalize_simulation\u001b[0m\n self.input_file = f\"{self.filename}.disp_inputs.txt\"\n", + " File \u001b[0;32mC:\\Mateus\\GitHub\\RocketPy\\rocketpy\\simulation\\dispersion.py:162\u001b[0m in \u001b[0;35minput_file\u001b[0m\n self.set_inputs_log()\n", + " File \u001b[0;32mC:\\Mateus\\GitHub\\RocketPy\\rocketpy\\simulation\\dispersion.py:217\u001b[0m in \u001b[0;35mset_inputs_log\u001b[0m\n d = ast.literal_eval(line)\n", + " File \u001b[0;32mc:\\Program Files\\Python310\\lib\\ast.py:62\u001b[0m in \u001b[0;35mliteral_eval\u001b[0m\n node_or_string = parse(node_or_string.lstrip(\" \\t\"), mode='eval')\n", + "\u001b[1;36m File \u001b[1;32mc:\\Program Files\\Python310\\lib\\ast.py:50\u001b[1;36m in \u001b[1;35mparse\u001b[1;36m\u001b[0m\n\u001b[1;33m return compile(source, filename, mode, flags,\u001b[0m\n", + "\u001b[1;36m File \u001b[1;32m:1\u001b[1;36m\u001b[0m\n\u001b[1;33m {'elevation': 113, 'gravity': 'Function from R1 to R1 : (height (m)) → (gravity (m/s²))', 'latitude': 39.3897, 'longitude': -8.288964, 'wind_velocity_x_factor': 0.6352139725096725, 'wind_velocity_y_factor': 1.0319467868368157, 'datum': 'SIRGAS2000', 'timezone': 'UTC', 'ensemble_member': 30, 'radius': 0.06350039157986298, 'mass': 14.98296447726694, 'I_11_without_motor': 6.321, 'I_22_without_motor': 6.3255884039545, 'I_33_without_motor': 0.0375264094622778, 'I_12_without_motor': 0, 'I_13_without_motor': 0, 'I_23_without_motor': 0, 'power_off_drag': 'Function from R1 to R1 : (Mach Number) → (Drag Coefficient with Power Off)', 'power_on_drag': 'Function from R1 to R1 : (Mach Number) → (Drag Coefficient with Power On)', 'power_off_drag_factor': 1.0, 'power_on_drag_factor': 1.0, 'center_of_mass_without_motor': 0.0, 'coordinate_system_orientation': 'nozzle_to_combustion_chamber', 'parachutes': object: Parachute Drogue with a cd_s of 1.0000 m2\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ - "%snakeviz --new-tab test_dispersion.run_dispersion(number_of_simulations=1,append=False)" + "test_dispersion.run_dispersion(number_of_simulations=1,append=False)" ] }, { @@ -1113,7 +1128,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.0" + "version": "3.10.5" }, "vscode": { "interpreter": { diff --git a/rocketpy/monte_carlo/dispersion_model.py b/rocketpy/monte_carlo/dispersion_model.py index 843b24e9d..8c52cf354 100644 --- a/rocketpy/monte_carlo/dispersion_model.py +++ b/rocketpy/monte_carlo/dispersion_model.py @@ -49,6 +49,7 @@ def __init__(self, object, **kwargs): If the input arguments do not conform to the specified formats. """ self.object = object + self.last_rnd_dict = {} for input_name, input_value in kwargs.items(): if input_name not in self.exception_list: diff --git a/rocketpy/simulation/dispersion.py b/rocketpy/simulation/dispersion.py index 8e136e308..d3fec19a6 100644 --- a/rocketpy/simulation/dispersion.py +++ b/rocketpy/simulation/dispersion.py @@ -22,111 +22,109 @@ class Dispersion: - """ - This class is used to perform Monte Carlo analysis on the rocket's flight - trajectory. It is used to predict the probability distributions of the - rocket's landing point, apogee and other relevant information. + """Class to run a Monte Carlo simulation of a rocket flight. Attributes ---------- - Dispersion.filename: string - When running a new simulation, this parameter represents the initial - part of the export filenames (e.g. 'filename.disp_outputs.txt'). When - analyzing the results of a previous simulation, this parameter shall be - the .txt filename containing the outputs of a previous ran dispersion + filename : str + When running a new simulation, this parameter represents the + initial part of the export filenames. For example, if the value + is 'filename', the exported output files will be named + 'filename.disp_outputs.txt'. When analyzing the results of a + previous simulation, this parameter should be set to the .txt + file containing the outputs of the previous dispersion analysis. - Dispersion.environment: McEnvironment - The environment in which the rocket will be launched. - Dispersion.rocket: McRocket - The rocket to be launched. - Dispersion.flight: McFlight - The flight conditions of the rocket. - Dispersion.motors: list of McMotor - The motors to be used in the rocket during the Flight. - Dispersion.nosecones : list of McNosecone - The nosecones to be used in the rocket during the Flight. - Dispersion.fins : list of McTrapezoidalFins or McEllipticalFins - The fins to be used in the rocket during the Flight. - Dispersion.tails : list of McTail objects - The tails to be used in the rocket during the Flight. - Dispersion.parachutes : list of McParachute objects - The parachutes to be used in the rocket during the Flight. - Dispersion.rail_buttons : list of McRailButtons objects - The rail buttons to be used in the rocket during the Flight. Usually - only one object will be present in this list. - Dispersion.number_of_simulations : int - Number of simulations to be performed in the run_dispersion() method. - Dispersion.dispersion_dictionary : dict - Dictionary containing the parameters to be used in the Monte Carlo - simulations. - Dispersion.export_list : list - List of parameters to be exported from each flight in the Monte Carlo - loop. - Dispersion.input_file : str - String containing the filepath of the input file created during the - simulation or that was imported. - Dispersion.output_file : str - String containing the filepath of the output file created during the - simulation or that was imported. - Dispersion.error_file : str - String containing the filepath of the error file created during the - simulation or that was imported. - Dispersion.inputs_log : list - List in which each item is a line of the input_file. - Dispersion.outputs_log : list - List in which each item is a line of the output_file. - Dispersion.errors_log : list - List in which each item is a line of the error_file. - Dispersion.num_of_loaded_sims : int + environment : StochasticEnvironment + The stochastic environment object to be iterated over. + rocket : StochasticRocket + The stochastic rocket object to be iterated over. + flight : StochasticFlight + The stochastic flight object to be iterated over. + export_list : list + The list of variables to export. If None, the default list will + be used. Default is None. # TODO: improve docs to explain the + default list, and what can be exported. + inputs_log : list + List of dictionaries with the inputs used in each simulation. + outputs_log : list + List of dictionaries with the outputs of each simulation. + errors_log : list + List of dictionaries with the errors of each simulation. + num_of_loaded_sims : int Number of simulations loaded from output_file being currently used. - Dispersion.results : dict - A dictionary containing all the output parameters saved from the flight - simulations. - Dispersion.processed_results : dict - Dictionary containing (mean, std. dev.) for each parameter available - in the dispersion dictionary. + results : dict + Dispersion results organized in a dictionary where the keys are the + names of the saved attributes, and the values are a list with all the + result number of the respective attribute + processed_results : dict + Creates a dictionary with the mean and standard deviation of each + parameter available in the results + prints : _DispersionPrints + Object with methods to print information about the dispersion + simulation. + plot : _DispersionPlots + Object with methods to plot information about the dispersion + simulation. + _inputs_dict : dict + Dictionary with the inputs of the last simulation. + _last_print_len : int + Used to print on the same line. + _input_file : str + String containing the filepath of the input file + _output_file : str + String containing the filepath of the output file + _error_file : str + String containing the filepath of the error file + _number_of_simulations : int + Number of simulations to be run, must be non-negative. + _iteration_count : int + Number of simulations already run. + _start_time : float + Time when the simulation started. + _start_cpu_time : float + CPU time when the simulation started. + _input_file : str + String containing the filepath of the input file + _output_file : str + String containing the filepath of the output file + _error_file : str + String containing the filepath of the error file """ - def __init__( - self, - filename, - environment, - rocket, - flight, - ): - """Constructor of the Dispersion class. + def __init__(self, filename, environment, rocket, flight, export_list=None): + """ + Initialize a Dispersion object. Parameters ---------- - filename: string - When running a new simulation, this parameter represents the initial - part of the export filenames (e.g. 'filename.disp_outputs.txt'). - When analyzing the results of a previous simulation, this parameter - shall be the .txt filename containing the outputs of a previous ran - dispersion analysis. - environment: McEnvironment - The environment in which the rocket will be launched. - rocket: McRocket - The rocket to be launched. - flight: McFlight - The flight conditions of the rocket. + filename : str + When running a new simulation, this parameter represents the + initial part of the export filenames. For example, if the value + is 'filename', the exported output files will be named + 'filename.disp_outputs.txt'. When analyzing the results of a + previous simulation, this parameter should be set to the .txt + file containing the outputs of the previous dispersion + analysis. + environment : StochasticEnvironment + The stochastic environment object to be iterated over. + rocket : StochasticRocket + The stochastic rocket object to be iterated over. + flight : StochasticFlight + The stochastic flight object to be iterated over. + export_list : list, optional + The list of variables to export. If None, the default list will + be used. Default is None. # TODO: improve docs to explain the + default list, and what can be exported. Returns ------- None """ - # Save and initialize parameters self.filename = filename self.environment = environment self.rocket = rocket self.flight = flight - self.motors = rocket.motors - self.nosecones = rocket.nosecones - self.fins = rocket.fins - self.tails = rocket.tails - self.parachutes = rocket.parachutes - self.rail_buttons = rocket.rail_buttons self.export_list = [] self.inputs_log = [] self.outputs_log = [] @@ -136,6 +134,11 @@ def __init__( self.processed_results = {} self.prints = _DispersionPrints(self) self.plots = _DispersionPlots(self) + self._inputs_dict = {} + self._last_print_len = 0 # used to print on the same line + + # Checks export_list + self.export_list = self.__check_export_list(export_list) try: self.import_inputs() @@ -153,9 +156,260 @@ def __init__( self._error_file = f"{filename}.disp_errors.txt" # TODO: Initialize variables so they can be accessed by MATLAB - return None - # getters and setters for dispersion input/output/error files + # TODO move export_list to init + def run_dispersion(self, number_of_simulations, append=False): + """ + Runs the dispersion simulation and saves all data. + + Parameters + ---------- + number_of_simulations : int + Number of simulations to be run, must be non-negative. + append : bool, optional + If True, the results will be appended to the existing files. If + False, the files will be overwritten. Default is False. + + Returns + ------- + None + """ + # Create data files for inputs, outputs and error logging + open_mode = "a" if append else "w" + input_file = open(self._input_file, open_mode, encoding="utf-8") + output_file = open(self._output_file, open_mode, encoding="utf-8") + error_file = open(self._error_file, open_mode, encoding="utf-8") + + # initialize counters + self.number_of_simulations = number_of_simulations + self.iteration_count = self.num_of_loaded_sims if append else 0 + self.start_time = time() + self.start_cpu_time = process_time() + + # Begin display + print("Starting monte carlo analysis", end="\r") + + try: + while self.iteration_count < self.number_of_simulations: + self.__run_single_simulation(input_file, output_file) + except (TypeError, ValueError, KeyError, AttributeError) as error: + print(f"Error on iteration {self.iteration_count}: {error}") + error_file.write(f"{self._inputs_dict}\n") + self.__close_files(input_file, output_file, error_file) + raise error + except KeyboardInterrupt: + print("Keyboard Interrupt, files saved.") + error_file.write(f"{self._inputs_dict}\n") + self.__close_files(input_file, output_file, error_file) + + self.__finalize_simulation(input_file, output_file, error_file) + + def __run_single_simulation(self, input_file, output_file): + """Runs a single simulation and saves the inputs and outputs to the + respective files.""" + # Update iteration count + self.iteration_count += 1 + # Run trajectory simulation + dispersion_flight = Flight( + rocket=self.rocket.create_object(), + environment=self.environment.create_object(), + rail_length=self.flight._randomize_rail_length(), + inclination=self.flight._randomize_inclination(), + heading=self.flight._randomize_heading(), + initial_solution=self.flight.initial_solution, + terminate_on_apogee=self.flight.terminate_on_apogee, + ) + + self._inputs_dict = dict( + item + for d in [ + self.environment.last_rnd_dict, + self.rocket.last_rnd_dict, + self.flight.last_rnd_dict, + ] + for item in d.items() + ) + + # Export inputs and outputs to file + self.__export_flight_data( + flight=dispersion_flight, + inputs_dict=self._inputs_dict, + input_file=input_file, + output_file=output_file, + ) + + self.__reprint( + f"Current iteration: {self.iteration_count:06d} | " + f"Average Time per Iteration: {((process_time() - self.start_cpu_time) / self.iteration_count):2.6f} s | " + f"Estimated time left: {int((self.number_of_simulations - self.iteration_count) * ((process_time() - self.start_cpu_time) / self.iteration_count))} s", + end="\r", + flush=True, + ) + + def __close_files(self, input_file, output_file, error_file): + """Closes all the files.""" + input_file.close() + output_file.close() + error_file.close() + + def __finalize_simulation(self, input_file, output_file, error_file): + """Finalizes the simulation, closes the files and prints the results.""" + final_string = ( + f"Completed {self.iteration_count} iterations. Total CPU time: " + f"{process_time() - self.start_cpu_time:.1f} s. Total wall time: " + f"{time() - self.start_time:.1f} s\n" + ) + + self.__reprint(final_string + f"Saving results.", flush=True) + + # close files to guarantee saving + self.__close_files(input_file, output_file, error_file) + + # resave the files on self and calculate post simulation attributes + self.input_file = f"{self.filename}.disp_inputs.txt" + self.output_file = f"{self.filename}.disp_outputs.txt" + self.error_file = f"{self.filename}.disp_errors.txt" + + print(f"Results saved to {self._output_file}") + + def __export_flight_data( + self, + flight, + inputs_dict, + input_file, + output_file, + ): + """Exports the flight data to the respective files.""" + # Construct the dict with the results from the flight + results = {} + for export_item in self.export_list: + # if attribute is function, get source + # TODO: check if there is a better way to do this + attr = getattr(flight, export_item) + if isinstance(attr, Function): + results[export_item] = list(attr.source) + else: + results[export_item] = getattr(flight, export_item) + + # Write flight setting and results to file + input_file.write(f"{inputs_dict}\n") + output_file.write(f"{results}\n") + + def __check_export_list(self, export_list): + """Checks if the export_list is valid and returns a valid list. If no + export_list is provided, the default list is used.""" + standard_output = ( + "apogee", + "apogee_time", + "apogee_x", + "apogee_y", + "apogee_freestream_speed", + "t_final", + "x_impact", + "y_impact", + "impact_velocity", + # "initial_static_margin", + # "final_static_margin", + # "out_of_rail_static_margin", + "out_of_rail_time", + "out_of_rail_velocity", + "max_speed", + "max_mach_number", + "max_acceleration", + "frontal_surface_wind", + "lateral_surface_wind", + ) + exportables = ( + "inclination", + "heading", + "effective1rl", + "effective2rl", + "out_of_rail_time", + "out_of_rail_time_index", + "out_of_rail_state", + "out_of_rail_velocity", + "rail_button1_normal_force", + "max_rail_button1_normal_force", + "rail_button1_shear_force", + "max_rail_button1_shear_force", + "rail_button2_normal_force", + "max_rail_button2_normal_force", + "rail_button2_shear_force", + "max_rail_button2_shear_force", + "out_of_rail_static_margin", + "apogee_state", + "apogee_time", + "apogee_x", + "apogee_y", + "apogee", + "x_impact", + "y_impact", + "z_impact", + "impact_velocity", + "impact_state", + "parachute_events", + "apogee_freestream_speed", + "final_static_margin", + "frontal_surface_wind", + "initial_static_margin", + "lateral_surface_wind", + "max_acceleration", + "max_acceleration_time", + "max_dynamic_pressure_time", + "max_dynamic_pressure", + "max_mach_number_time", + "max_mach_number", + "max_reynolds_number_time", + "max_reynolds_number", + "max_speed_time", + "max_speed", + "max_total_pressure_time", + "max_total_pressure", + "t_final", + ) + if export_list: + for attr in export_list: + if not isinstance(attr, str): + raise TypeError("Variables in export_list must be strings.") + + # Checks if attribute is not valid + if attr not in exportables: + raise ValueError( + "Attribute can not be exported. Check export_list." + ) + else: + # No export list provided, using default list instead. + export_list = standard_output + + return export_list + + def __reprint(self, msg, end="\n", flush=False): + """Prints a message on the same line as the previous one and replaces + the previous message with the new one, deleting the extra characters + from the previous message. + + Parameters + ---------- + msg : str + Message to be printed. + end : str, optional + String appended after the message. Default is a new line. + flush : bool, optional + If True, the output is flushed. Default is False. + + Returns + ------- + None + """ + + len_msg = len(msg) + if len_msg < self._last_print_len: + msg += " " * (self._last_print_len - len_msg) + else: + self._last_print_len = len_msg + + print(msg, end=end, flush=flush) + @property def input_file(self): """String containing the filepath of the input file""" @@ -223,7 +477,6 @@ def set_inputs_log(self): d = ast.literal_eval(line) # If successful, append the dictionary to the list self.inputs_log.append(d) - return None def set_outputs_log(self): """Sets outputs_log from a file into an attribute for easy access""" @@ -238,7 +491,6 @@ def set_outputs_log(self): d = ast.literal_eval(line) # If successful, append the dictionary to the list self.outputs_log.append(d) - return None def set_errors_log(self): """Sets errors_log log from a file into an attribute for easy access""" @@ -253,7 +505,6 @@ def set_errors_log(self): d = ast.literal_eval(line) # If successful, append the dictionary to the list self.errors_log.append(d) - return None def set_num_of_loaded_sims(self): """Number of simulations loaded from output_file being currently used.""" @@ -266,7 +517,6 @@ def set_num_of_loaded_sims(self): if line[0] != "{": continue self.num_of_loaded_sims += 1 - return None def set_results(self): """Dispersion results organized in a dictionary where the keys are the @@ -279,308 +529,16 @@ def set_results(self): self.results[key].append(value) else: self.results[key] = [value] - return None def set_processed_results(self): """Creates a dictionary with the mean and standard deviation of each - parameter available in the results - - Parameters - ---------- - None - - Returns - ------- - None - """ + parameter available in the results""" self.processed_results = {} for result in self.results.keys(): mean = np.mean(self.results[result]) stdev = np.std(self.results[result]) self.processed_results[result] = (mean, stdev) - return None - - # methods for running dispersion analysis - def run_dispersion( - self, - number_of_simulations, - export_list=None, - append=False, - ): - """Runs the dispersion simulation and saves all data. For the simulation to be run - all classes must be defined. This can happen either trough the dispersion_dictionary - or by inputting objects - - Parameters - ---------- - number_of_simulations : int - Number of simulations to be run, must be non negative. - export_list : list, optional - A list containing the name of the attributes to be saved on the dispersion - outputs file. See Examples for all possible attributes - append : bool, optional - If True, the results will be appended to the existing files. If False, - the files will be overwritten. By default False. - - Returns - ------- - None - """ - - # Saving the arguments as attributes - self.number_of_simulations = number_of_simulations - - # Create data files for inputs, outputs and error logging - open_mode = "a" if append else "w" - input_file = open(self._input_file, open_mode, encoding="utf-8") - output_file = open(self._output_file, open_mode, encoding="utf-8") - error_file = open(self._error_file, open_mode, encoding="utf-8") - - # Checks export_list - self.export_list = self.__check_export_list(export_list) - - # Initializes inputs_dict in case of error in the first iteration - inputs_dict = {} - - # Initialize counter and timer - i = self.num_of_loaded_sims if append else 0 - initial_wall_time = time() - initial_cpu_time = process_time() - - # Begin display - print("Starting", end="\r") - - # Start the flight simulations - for _ in range(number_of_simulations): - start_time = process_time() - i += 1 - - # Run trajectory simulation - try: - dispersion_flight = Flight( - rocket=self.rocket.create_object(), - environment=self.environment.create_object(), - inclination=self.flight.rnd_inclination(), - heading=self.flight.rnd_heading(), - initialSolution=self.flight.initialSolution, - terminateOnApogee=self.flight.terminateOnApogee, - ) - # create inputs dictionary - inputs_dict = dict( - item - for d in [ - self.environment.last_rnd_dict, - self.rocket.last_rnd_dict, - self.flight.last_rnd_dict, - ] - for item in d.items() - ) - # TODO: I believe the positions are not being saved - # need to check if they are and fix if not - if self.rocket.motors: - for motor in self.rocket.motors.get_components(): - inputs_dict.update(motor.last_rnd_dict) - if self.rocket.nosecones: - for nosecone in self.rocket.nosecones.get_components(): - inputs_dict.update(nosecone.last_rnd_dict) - if self.rocket.fins: - for fin in self.rocket.fins.get_components(): - inputs_dict.update(fin.last_rnd_dict) - if self.rocket.tails: - for tail in self.rocket.tails.get_components(): - inputs_dict.update(tail.last_rnd_dict) - if self.rocket.parachutes: - for parachute in self.rocket.parachutes: - inputs_dict.update(parachute.last_rnd_dict) - if self.rocket.rail_buttons.get_components(): - for rail_buttons in self.rocket.rail_buttons.get_components(): - inputs_dict.update(rail_buttons.last_rnd_dict) - # Export inputs and outputs to file - self.__export_flight_data( - setting=inputs_dict, - flight=dispersion_flight, - input_file=input_file, - output_file=output_file, - ) - except (TypeError, ValueError, KeyError, AttributeError) as error: - print(f"Error on iteration {i}: {error}\n") - error_file.write(f"{inputs_dict}\n") - raise error - except KeyboardInterrupt: - print("Keyboard Interrupt, file saved.") - error_file.write(f"{inputs_dict}\n") - break - - # spaces after the last 's' are necessary to fix a bug with end='\r' - print( - f"Current iteration: {i:06d} | Average Time per Iteration: " - f"{(process_time() - initial_cpu_time)/i:2.6f} s | Estimated time" - f" left: {int((number_of_simulations - i)*((process_time() - initial_cpu_time)/i))} s ", - end="\r", - ) - - ## Print and save total time - final_string = ( - f"Completed {i} iterations. Total CPU time: " - f"{process_time() - initial_cpu_time:.1f} s. Total wall time: " - f"{time() - initial_wall_time:.1f} s" - ) - print(final_string, end="\r") - - # close files to guarantee saving - input_file.close() - output_file.close() - error_file.close() - - # resave the files on self and calculate post simulation attributes - self.input_file = f"{self.filename}.disp_inputs.txt" - self.output_file = f"{self.filename}.disp_outputs.txt" - self.error_file = f"{self.filename}.disp_errors.txt" - - return None - - # methods for exporting data - def __check_export_list(self, export_list): - """Check if export list is valid or if it is None. In case it is - None, export a standard list of parameters. - - Parameters - ---------- - export_list : list - List of strings with the names of the attributes to be exported - - Returns - ------- - export_list - """ - standard_output = ( - "apogee", - "apogeeTime", - "apogeeX", - "apogeeY", - "apogeeFreestreamSpeed", - "tFinal", - "xImpact", - "yImpact", - "impactVelocity", - "initialStaticMargin", - "finalStaticMargin", - "outOfRailStaticMargin", - "outOfRailTime", - "outOfRailVelocity", - "maxSpeed", - "maxMachNumber", - "maxAcceleration", - "frontalSurfaceWind", - "lateralSurfaceWind", - ) - exportables = ( - "inclination", - "heading", - "effective1RL", - "effective2RL", - "outOfRailTime", - "outOfRailTimeIndex", - "outOfRailState", - "outOfRailVelocity", - "railButton1NormalForce", - "maxRailButton1NormalForce", - "railButton1ShearForce", - "maxRailButton1ShearForce", - "railButton2NormalForce", - "maxRailButton2NormalForce", - "railButton2ShearForce", - "maxRailButton2ShearForce", - "outOfRailStaticMargin", - "apogeeState", - "apogeeTime", - "apogeeX", - "apogeeY", - "apogee", - "xImpact", - "yImpact", - "zImpact", - "impactVelocity", - "impactState", - "parachuteEvents", - "apogeeFreestreamSpeed", - "finalStaticMargin", - "frontalSurfaceWind", - "initialStaticMargin", - "lateralSurfaceWind", - "maxAcceleration", - "maxAccelerationTime", - "maxDynamicPressureTime", - "maxDynamicPressure", - "maxMachNumberTime", - "maxMachNumber", - "maxReynoldsNumberTime", - "maxReynoldsNumber", - "maxSpeedTime", - "maxSpeed", - "maxTotalPressureTime", - "maxTotalPressure", - "tFinal", - ) - if export_list: - for attr in export_list: - if not isinstance(attr, str): - raise TypeError("Variables in export_list must be strings.") - - # Checks if attribute is not valid - if attr not in exportables: - raise ValueError( - "Attribute can not be exported. Check export_list." - ) - else: - # No export list provided, using default list instead. - export_list = standard_output - - return export_list - - def __export_flight_data( - self, - setting, - flight, - input_file, - output_file, - ): - """Saves flight results in a .txt - Parameters - ---------- - setting : dict - The flight setting used in the simulation. - flight : Flight - The flight object. - input_file : str - The name of the file containing all the inputs for the simulation. - output_file : str - The name of the file containing all the outputs for the simulation. - Returns - ------- - inputs_log : str - The new string with the inputs of the simulation setting. - outputs_log : str - The new string with the outputs of the simulation setting. - """ - # Construct the dict with the results from the flight - results = {} - for export_item in self.export_list: - # if attribute is function, get source - # TODO: check if there is a better way to do this - if isinstance(getattr(flight, export_item), Function): - results[export_item] = list(getattr(flight, export_item).source) - else: - results[export_item] = getattr(flight, export_item) - - # Write flight setting and results to file - input_file.write(f"{setting}\n") - output_file.write(f"{results}\n") - - return None - - # methods for importing data def import_outputs(self, filename=None): """Import dispersion results from .txt file and save it into a dictionary. @@ -613,16 +571,16 @@ def import_outputs(self, filename=None): f"A total of {self.num_of_loaded_sims} simulations results were loaded from" f" the following output file: {filepath}\n" ) - return None def import_inputs(self, filename=None): - """Import dispersion results from .txt file and save it into a dictionary. + """Import dispersion results from .txt file and save it into a + dictionary. Parameters ---------- filename : str - Name or directory path to the file to be imported. If none, Dispersion - filename will be used + Name or directory path to the file to be imported. If none, + Dispersion filename will be used Returns ------- @@ -643,16 +601,16 @@ def import_inputs(self, filename=None): self.input_file = filepath # Print the number of flights simulated print(f"The following input file was imported: {filepath}\n") - return None def import_errors(self, filename=None): - """Import dispersion results from .txt file and save it into a dictionary. + """Import dispersion results from .txt file and save it into a + dictionary. Parameters ---------- filename : str - Name or directory path to the file to be imported. If none, Dispersion - filename will be used + Name or directory path to the file to be imported. If none, + Dispersion filename will be used Returns ------- @@ -673,16 +631,16 @@ def import_errors(self, filename=None): self.error_file = filepath # Print the number of flights simulated print(f"The following error file was imported: {filepath}\n") - return None def import_results(self, filename=None): - """Import dispersion results from .txt file and save it into a dictionary. + """Import dispersion results from .txt file and save it into a + dictionary. Parameters ---------- filename : str - Name or directory path to the file to be imported. If none, Dispersion - filename will be used + Name or directory path to the file to be imported. If none, + Dispersion filename will be used Returns ------- @@ -695,8 +653,6 @@ def import_results(self, filename=None): self.import_inputs(filename=filepath) self.import_errors(filename=filepath) - return None - def exportEllipsesToKML( self, filename, @@ -707,6 +663,7 @@ def exportEllipsesToKML( color="ff0000ff", ): """Generates a KML file with the ellipses on the impact point. + Parameters ---------- results : dict @@ -786,23 +743,14 @@ def exportEllipsesToKML( ) kml.save(filename) - return None - - # methods for printing and plotting results def info(self): - """Print information about the dispersion model. - - Returns - ------- - None - """ + """Print information about the monte carlo simulation.""" self.prints.all_results() - return None - def allInfo(self): - """Print and plot information about the dispersion model and the results. + """Print and plot information about the monte carlo simulation + and its results. Returns ------- @@ -811,5 +759,3 @@ def allInfo(self): self.info() self.plots.ellipses() self.plots.all_results() - - return None