Skip to content

Latest commit

 

History

History
executable file
·
56 lines (42 loc) · 2.81 KB

README.md

File metadata and controls

executable file
·
56 lines (42 loc) · 2.81 KB

Roboy Soncreo

Roboy Soncreo (from Lat. sonus - sound and creō - I create, make, produce) - a library for Speech Generation based on Deep Learning models.

A pytorch implementaton that combines Tacotron2 and NV-Wavenet to provide audio synthesis from text. It also supports interfacing using ROS2 (not implemented yet)

Pre-requisites

  1. NVIDIA GPU + CUDA cuDNN
  2. Pytorch 1.0

Setup

  1. Clone this repo: git clone https://github.com/Roboy/soncreo
  2. Initialize submodules: git submodule init; git submodule update
  3. Download and extract the LJ Speech dataset

To build nv-wavenet wrapper for pytorch

  1. cd nv-wavenet\pytorch.
  2. Update the Makefile with the appropriate ARCH=sm_70. Find your ARCH here: https://developer.nvidia.com/cuda-gpus. For example, NVIDIA Titan V has 7.0 compute capability; therefore, it's correct ARCH parameter is sm_70.
  3. Build nv-wavenet and C-wrapper: make
  4. Install the PyTorch extension: python build.py install

Training Tacotron2

  1. cd tacotron2 and then update .wav paths: sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt
  2. cd into parent Soncreo directory cd ..
  3. python interface.py --output_directory=output --log_directory=logdir
  4. (OPTIONAL) tensorboard --logdir=outdir/logdir

Training NV-Wavenet

Make a list of the file names to use for training/testing
ls ljs_datset_folder/*.wav | tail -n+10 > train_files.txt
ls ljs_dataset_folder/*.wav | head -n10 > test_files.txt
Train the model
python interface_wavenet.py -c nv-wavenet/pytorch/config.json

Inference Text to Speech

To play audio from text

python combine.py --default=False --text='Write your text here' --checkpoint_tac='checkpoint/tac' --checkpoint_wav='checkpoints/wav' --batch=1 output_directory='./output --implementation="persistent"

To infer with our pretrained models for tacotron2 and wavenet

  1. Download pretrained models here
  2. Create a folder named checkpoint and copy tacotron2 and wavenet pretrained models: mkdir checkpoints
  3. Create a folder called output (used to save the produced wav file: mkdir outputs
  4. Run the following command: python combine.py --default=True --text="Write your text here"

(Optional) Connect the Text to Speech Inference via ROS2

This repo contains a ROS2 Server (rospy client library) allows a ROS2 node to communicate.

  1. Starting the ros service: python3 TTS_srv.py
  2. Call the service via a client (simple example client for Roboy is Pyroboy)