Skip to content

Latest commit

 

History

History
140 lines (117 loc) · 8.1 KB

README.md

File metadata and controls

140 lines (117 loc) · 8.1 KB

YCB-Sight: A visuo-tactile dataset for object understanding

CC BY-SA 4.0   License: MIT        Robotouch-logo    RPL-logo

cover

YCB-Sight is a visuo-tactile dataset including the simulated and real data from a GelSight tactile sensor and Kinect Azure RGB-D camera on the YCB dataset.

Dataset

You can find the whole dataset here, or download partial data below

YCBSight-Sim

cover

Simulated tactile and depth data with Taxim and pyrender

Object Name Size (MB) Link
002_master_chef_can 64.3 [Link]
003_cracker_box 63.2 [Link]
004_sugar_box 61.2 [Link]
005_tomato_soup_can 63.8 [Link]
006_mustard_bottle 63.8 [Link]
007_tuna_fish_can 63.2 [Link]
008_pudding_box 61.5 [Link]
009_gelatin_box 60.3 [Link]
010_potted_meat_can 62.8 [Link]
011_banana 63.7 [Link]
012_strawberry 64.2 [Link]
013_apple 63.4 [Link]
014_lemon 63.4 [Link]
017_orange 63.2 [Link]
019_pitcher_base 64.5 [Link]
021_bleach_cleanser 62.6 [Link]
024_bowl 65.1 [Link]
025_mug 64.2 [Link]
029_plate 66.3 [Link]
035_power_drill 64.7 [Link]
036_wood_block 60.1 [Link]
037_scissors 64.2 [Link]
042_adjustable_wrench 64.7 [Link]
043_phillips_screwdriver 63.9 [Link]
048_hammer 64.1 [Link]
055_baseball 63.5 [Link]
056_tennis_ball 63.4 [Link]
072-a_toy_airplane 65.5 [Link]
072-b_toy_airplane 63.8 [Link]
077_rubiks_cube 61.3 [Link]

YCBSight-Real

cover

Collected tactile and depth data from real world experiments

Object Name Size (GB) Link
002_master_chef_can 0.97 [Link]
004_sugar_box 1.15 [Link]
005_tomato_soup_can 1.09 [Link]
010_potted_meat_can 1.09 [Link]
021_bleach_cleanser 1.23 [Link]
036_wood_block 1.02 [Link]

Data directory format

YCBSight-Sim
├── obj1
│   ├── gt_contact_mask
│   │   ├── <idx>.npy
│   │   └── ...
│   ├── gt_height_map
│   │   ├── <idx>.npy
│   │   └── ...
│   ├── gelsight
│   │   ├── <idx>.jpg
│   │   └── ...
│   ├── pose.txt
│   ├── depthCam.npy
│   └── depthCam.pdf
├── obj2
└── ...
YCBSight-Real
├── obj1
│   ├── gelsight
│   │   ├── gelsight_<idx>_<timestamp>.jpg
│   │   └── ...
│   ├── depth
│   │   └── depth_0_<timestamp>.tif
│   ├── pc
│   │   └── pc_0_<timestamp>.npy
│   ├── rgb
│   │   ├── rgb_<idx>_<timestamp>.jpg
│   │   └── ...
│   ├── robot.csv
│   ├── tf.json
│   └── obj1.mp4
├── obj2
└── ...

Dependencies

The visualization and data processing are implemented in python3 and require numpy, scipy, matplotlib, cv2.

To install dependencies: pip install -r requirements.txt.

Data Visualization

  • scripts/lookup_mapping/lookup.py reconstructs the height maps from the tactile readings. Here are several parameters to set:
    • path2model: the path to the directory storing the YCBSight-Real and/or YCBSight-Sim
    • sim: True/False, visualize whether the simulated data or real data
    • obj: specify a certain object's data to visualize, or set to None to visualize all the data

Local Shape Reconstruction from Touch with Lookup Table

  • scripts/data_visualization/data_visualizer.py visualize the data in YCB-Sight dataset.

Local Shape Reconstruction from Touch with FCRN network

Please refer to this repo (pytorch version) and this repo (tensorflow version).

License

This dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, with the accompanying processing code licensed under the MIT License.

Citation

If you use YCB-Sight dataset in your research, please cite:

@article{suresh2021efficient,
  title={Efficient shape mapping through dense touch and vision},
  author={Suresh, Sudharshan and Si, Zilin and Mangelson, Joshua G and Yuan, Wenzhen and Kaess, Michael},
  journal={arXiv preprint arXiv:2109.09884},
  year={2021}
}