-
Notifications
You must be signed in to change notification settings - Fork 0
/
Art_Generation_with_Neural_Style_Transfer_with_Pretrained_VGG19.py
314 lines (186 loc) · 6.55 KB
/
Art_Generation_with_Neural_Style_Transfer_with_Pretrained_VGG19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import os
import sys
import scipy.io
import scipy.misc
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
from PIL import Image
from nst_utils import *
import numpy as np
import tensorflow as tf
import pprint
get_ipython().run_line_magic('matplotlib', 'inline')
# In[2]:
pp = pprint.PrettyPrinter(indent=4)
model = load_vgg_model("pretrained-model/imagenet-vgg-verydeep-19.mat")
pp.pprint(model)
# In[3]:
content_image = scipy.misc.imread("images/louvre.jpg")
imshow(content_image);
# In[24]:
def compute_content_cost(a_C, a_G):
m, n_H, n_W, n_C = a_G.get_shape().as_list()
a_C_unrolled = tf.reshape(a_C, shape=(m, -1, n_C))
a_G_unrolled = tf.reshape(a_G , shape=(m, -1, n_C))
J_content = tf.reduce_sum((tf.multiply((a_C_unrolled-a_G_unrolled), (a_C_unrolled-a_G_unrolled),name=None)), axis=None,name=None)/(4*n_H*n_W*n_C)
return J_content
# In[25]:
tf.reset_default_graph()
with tf.Session() as test:
tf.set_random_seed(1)
a_C = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4)
a_G = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4)
J_content = compute_content_cost(a_C, a_G)
print("J_content = " + str(J_content.eval()))
# In[26]:
style_image = scipy.misc.imread("images/monet_800600.jpg")
imshow(style_image);
# In[43]:
def gram_matrix(A):
GA = tf.matmul(A, tf.transpose(A, perm=None, name='transpose'),name=None)
return GA
# In[63]:
# GRADED FUNCTION: compute_layer_style_cost
def compute_layer_style_cost(a_S, a_G):
"""
Arguments:
a_S -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image S
a_G -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image G
Returns:
J_style_layer -- tensor representing a scalar value, style cost defined above by equation (2)
"""
### START CODE HERE ###
# Retrieve dimensions from a_G (≈1 line)
m, n_H, n_W, n_C = a_G.get_shape().as_list()
# Reshape the images to have them of shape (n_C, n_H*n_W) (≈2 lines)
a_S = tf.reshape(tf.transpose(a_S, perm = (3, 1, 2, 0)), shape=(n_C, -1))
a_G = tf.reshape(tf.transpose(a_G, perm = (3, 1, 2, 0)), shape = (n_C, -1))
# Computing gram_matrices for both images S and G (≈2 lines)
GS = gram_matrix(a_S)
GG = gram_matrix(a_G)
# Computing the loss (≈1 line)
J_style_layer = tf.reduce_sum((tf.multiply((GG-GS), (GG-GS),name=None)), axis=None,name=None)/(4*n_H*n_H*n_C*n_C*n_W*n_W)
### END CODE HERE ###
return J_style_layer
# In[44]:
tf.reset_default_graph()
with tf.Session() as test:
tf.set_random_seed(1)
A = tf.random_normal([3, 2*1], mean=1, stddev=4)
GA = gram_matrix(A)
print("GA = \n" + str(GA.eval()))
# In[64]:
tf.reset_default_graph()
with tf.Session() as test:
tf.set_random_seed(1)
a_S = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4)
a_G = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4)
J_style_layer = compute_layer_style_cost(a_S, a_G)
print("J_style_layer = " + str(J_style_layer.eval()))
# **Expected Output**:
#
# <table>
# <tr>
# <td>
# **J_style_layer**
# </td>
# <td>
# 9.19028
# </td>
# </tr>
#
# </table>
# In[65]:
STYLE_LAYERS = [
('conv1_1', 0.2),
('conv2_1', 0.2),
('conv3_1', 0.2),
('conv4_1', 0.2),
('conv5_1', 0.2)]
# In[66]:
def compute_style_cost(model, STYLE_LAYERS):
J_style = 0
for layer_name, coeff in STYLE_LAYERS:
out = model[layer_name]
a_S = sess.run(out)
a_G = out
J_style_layer = compute_layer_style_cost(a_S, a_G)
J_style += coeff * J_style_layer
return J_style
# In[67]:
def total_cost(J_content, J_style, alpha = 10, beta = 40):
J = alpha*J_content+ beta*J_style
return J
# In[68]:
tf.reset_default_graph()
with tf.Session() as test:
np.random.seed(3)
J_content = np.random.randn()
J_style = np.random.randn()
J = total_cost(J_content, J_style)
print("J = " + str(J))
# In[69]:
# Reset the graph
tf.reset_default_graph()
# Start interactive session
sess = tf.InteractiveSession()
# In[70]:
content_image = scipy.misc.imread("images/louvre_small.jpg")
content_image = reshape_and_normalize_image(content_image)
# In[71]:
style_image = scipy.misc.imread("images/monet.jpg")
style_image = reshape_and_normalize_image(style_image)
# In[72]:
generated_image = generate_noise_image(content_image)
imshow(generated_image[0]);
# #### Load pre-trained VGG19 model
# Next, as explained in part (2), let's load the VGG19 model.
# In[73]:
model = load_vgg_model("pretrained-model/imagenet-vgg-verydeep-19.mat")
# In[74]:
# Assign the content image to be the input of the VGG model.
sess.run(model['input'].assign(content_image))
# Select the output tensor of layer conv4_2
out = model['conv4_2']
# Set a_C to be the hidden layer activation from the layer we have selected
a_C = sess.run(out)
# Set a_G to be the hidden layer activation from same layer. Here, a_G references model['conv4_2']
# and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that
# when we run the session, this will be the activations drawn from the appropriate layer, with G as input.
a_G = out
# Compute the content cost
J_content = compute_content_cost(a_C, a_G)
# In[75]:
# Assign the input of the model to be the "style" image
sess.run(model['input'].assign(style_image))
# Compute the style cost
J_style = compute_style_cost(model, STYLE_LAYERS)
# In[77]:
J = total_cost(J_content, J_style, 10, 40)
# In[78]:
# define optimizer (1 line)
optimizer = tf.train.AdamOptimizer(2.0)
# define train_step (1 line)
train_step = optimizer.minimize(J)
# In[81]:
def model_nn(sess, input_image, num_iterations = 200):
sess.run(tf.global_variables_initializer())
sess.run(model["input"].assign(input_image))
for i in range(num_iterations):
sess.run(train_step)
generated_image = sess.run(model["input"])
if i%20 == 0:
Jt, Jc, Js = sess.run([J, J_content, J_style])
print("Iteration " + str(i) + " :")
print("total cost = " + str(Jt))
print("content cost = " + str(Jc))
print("style cost = " + str(Js))
save_image("output/" + str(i) + ".png", generated_image)
# save last generated image
save_image('output/generated_image.jpg', generated_image)
return generated_image
# In[ ]:
model_nn(sess, generated_image)