-
Notifications
You must be signed in to change notification settings - Fork 1
/
project.py
executable file
·272 lines (198 loc) · 7.9 KB
/
project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""Project of the COMPLEX class.
Author
--------
Adrien Pouyet
"""
from collections import deque
def evaluate(schedule, tasks_d, nb_machine):
"""Compute the end of scheduling.
Parameters
----------
schedule : list
The tasks_d in the order you want
tasks_d : {task:(d_a, d_b, ...)}
"""
a = [tasks_d[s][0] for s in schedule]
machines = []
machines.append([a[0]])
for i in range(1, len(a)):
machines[0].append(a[i] + machines[0][i-1])
for m_i in range(1, nb_machine):
machines.append([machines[m_i - 1][0] + tasks_d[schedule[0]][m_i]])
for i, s in enumerate(schedule[1:], start=1):
machines[m_i].append(max(machines[m_i-1][i], machines[m_i][i-1]) + tasks_d[s][m_i])
return machines[-1][-1]
def evaluate_details(schedule, tasks_d, nb_machine):
"""Compute the end of scheduling but returns all ends."""
a = [tasks_d[s][0] for s in schedule]
machines = []
machines.append([a[0]])
for i in range(1, len(a)):
machines[0].append(a[i] + a[i-1])
for m_i in range(1, nb_machine):
machines.append([machines[m_i - 1][0] + tasks_d[schedule[0]][m_i]])
for i, s in enumerate(schedule[1:], start=1):
machines[m_i].append(max(machines[m_i-1][i], machines[m_i][i-1]) + tasks_d[s][m_i])
return [machines[i][-1] for i in range(nb_machine)]
def branch_and_bound(first_tasks, remaining_tasks, best_known, tasks_d, nb_machine, next_tasker, optimistic, feasible, counter):
"""Branch and bound algorithm.
Note
------
This is a branch and bound algorithm for a maximisation. If you want
minimisation, just minus all values
Parameters
-------------
first_tasks : list
First tasks picked
remaining_tasks : list
Remaining tasks we have to pick
best_known : tuple(tasks, value)
Best solution known so far. best_known[0] is the list of tasks,
best_known[1] is its value
tasks_d : dict
Task dictionnary, returned by readfile.build_dic
nb_machine : int
Number of machines
next_tasker : generator(first_tasks, remaining_tasks, tasks_d)
Function which determine next task to pick. We use it to try different
strategies
optimistic : function(first_tasks, reamining_tasks, tasks_d), optionnal
Function which determine an upper bound of the branch. We use it to try
different strategies. Returns upper bound value.
feasible : function(first_tasks, reamining_tasks, tasks_d)
Function which determine a lower bound (also called feasible solution value)
of the branch. We use it to try different strategies. Returns lower bound value and solution
counter : function()
Function that counts the number it's called. Used to know the number of nodes explorated.
It is static and not recursive dependent
Return
---------
solution : list
Best feasible solution under the branch
value : float
Value of the solution, using evaluate function
"""
if len(remaining_tasks) <= 1:
value = evaluate(first_tasks + remaining_tasks, tasks_d, nb_machine)
if value < best_known[1]:
best_known = (first_tasks + remaining_tasks, value)
counter.count()
return best_known
for nt in next_tasker(first_tasks, remaining_tasks, tasks_d):
counter.count()
rt = [r for r in remaining_tasks if r != nt]
opt_v = optimistic(first_tasks + [nt], rt, tasks_d)
if opt_v >= best_known[1]:
continue
feas = feasible(first_tasks + [nt], rt, tasks_d)
if feas[1] < best_known[1]:
best_known = feas
if feas[1] <= opt_v:
return best_known
# We're sure to get a lower or equal solution
best_known = branch_and_bound(first_tasks + [nt], rt, best_known, tasks_d, nb_machine, next_tasker, optimistic, feasible, counter)
return best_known
def branch_and_bound_approx(first_tasks, remaining_tasks, best_known, tasks_d, nb_machine, next_tasker, optimistic, feasible, counter, min_diff):
"""Branch and bound algorithm.
Note
------
This is a branch and bound algorithm for a maximisation. If you want
minimisation, just minus all values
Parameters
-------------
first_tasks : list
First tasks picked
remaining_tasks : list
Remaining tasks we have to pick
best_known : tuple(tasks, value)
Best solution known so far. best_known[0] is the list of tasks,
best_known[1] is its value
tasks_d : dict
Task dictionnary, returned by readfile.build_dic
nb_machine : int
Number of machines
next_tasker : generator(first_tasks, remaining_tasks, tasks_d)
Function which determine next task to pick. We use it to try different
strategies
optimistic : function(first_tasks, reamining_tasks, tasks_d), optionnal
Function which determine an upper bound of the branch. We use it to try
different strategies. Returns upper bound value.
feasible : function(first_tasks, reamining_tasks, tasks_d)
Function which determine a lower bound (also called feasible solution value)
of the branch. We use it to try different strategies. Returns lower bound value and solution
counter : function()
Function that counts the number it's called. Used to know the number of nodes explorated.
It is static and not recursive dependent
min_diff : int
Minimum value you can earn. Must be positive. If 0 it's like classic branch_and_bound
Return
---------
solution : list
Best feasible solution under the branch
value : float
Value of the solution, using evaluate function
"""
if len(remaining_tasks) <= 1:
value = evaluate(first_tasks + remaining_tasks, tasks_d, nb_machine)
if value < best_known[1]:
best_known = (first_tasks + remaining_tasks, value)
counter.count()
return best_known
for nt in next_tasker(first_tasks, remaining_tasks, tasks_d):
counter.count()
rt = [r for r in remaining_tasks if r != nt]
opt_v = optimistic(first_tasks + [nt], rt, tasks_d)
if opt_v + min_diff >= best_known[1]:
return best_known
feas = feasible(first_tasks + [nt], rt, tasks_d)
if feas[1] < best_known[1]:
best_known = feas
if feas[1] <= opt_v:
return best_known
# We're sure to get a lower or equal solution
best_known = branch_and_bound(first_tasks + [nt], rt, best_known, tasks_d, nb_machine, next_tasker, optimistic, feasible, counter)
return best_known
def explore_leaves(tasks_a, tasks_d, nb_task, nb_machine):
"""Explore all leaves."""
def permute(tasks):
if len(tasks) <= 1:
return [tasks[0]]
ret = []
permutations = permute(tasks[1:])
for perm in permutations:
ret.append(tasks[0] + perm)
ret.append(perm + tasks[0])
return ret
tasks = list(range(nb_task))
permutations = permute(tasks)
values = []
for perm in permutations:
values.append((perm, evaluate(perm)))
return values
def johnson_naive(tasks_a, nb_task):
"""Naive implementation of Johnson algorithm."""
left = deque()
right = deque()
for i in range(nb_task):
# (d, i, j)
mini = tasks_a[0]
for t in tasks_a[1:]:
if t[0] < mini[0]:
mini = t
if mini[2] == 0:
left.append(mini[1])
else:
right.appendleft(mini[1])
j = 0
while j < len(tasks_a):
if tasks_a[j][1] == mini[1]:
del tasks_a[j]
else:
j += 1
if len(left) > 0 and len(right) > 0:
left.extend(list(right))
return list(left)
elif len(left) > 0:
return list(left)
else:
return list(right)