-
Notifications
You must be signed in to change notification settings - Fork 88
/
vat-gap.py
962 lines (759 loc) · 43.1 KB
/
vat-gap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
import string
import pandas as pd
import numpy as np
np.seterr(divide='ignore', invalid='ignore')
def col2num(col):
num = 0
for c in col:
if c in string.ascii_letters:
num = num * 26 + (ord(c.upper()) - ord('A')) + 1
return num
def import_Excel_SUT_2014(year):
# First prepare the Excel file by Selecting the entire sheet and unmerging any merged cells
'''
SUPPLY table
'''
supply_start_col_excel="C"
supply_end_col_excel = "BO"
supply_start_col = col2num(supply_start_col_excel)
supply_end_col=col2num(supply_end_col_excel)
supply_start_row=6
supply_end_row=70
supply_col_product_id_excel = "A"
supply_col_product_id = col2num(supply_col_product_id_excel)
supply_row_sector_id = 5
Import_col_excel = "BU"
Import_col = col2num(Import_col_excel)
trade_margin_col_excel = "BW"
trade_margin_col = col2num(trade_margin_col_excel)
tax_subsidies_col_excel = "BX"
tax_subsidies_col = col2num(tax_subsidies_col_excel)
'''
For Latvia EU columns and non-EU columns
'''
Import_col_eu_excel = "BQ"
Import_col_noneu_excel = "BT"
Import_col_eu = col2num(Import_col_eu_excel)
Import_col_noneu = col2num(Import_col_noneu_excel)
'''
USE table
'''
use_start_col_excel="C"
use_end_col_excel="BO"
use_start_col=col2num(use_start_col_excel)
use_end_col=col2num(use_end_col_excel)
use_start_row=6
use_end_row=70
use_col_product_id_excel = "A"
use_col_product_id = col2num(use_col_product_id_excel)
use_row_sector_id = 5
fin_cons_hh_col_excel = "BQ"
fin_cons_np_col_excel = "BR"
fin_cons_gov_col_excel = "BS"
fin_cons_hh_col = col2num(fin_cons_hh_col_excel)
fin_cons_np_col = col2num(fin_cons_np_col_excel)
fin_cons_gov_col = col2num(fin_cons_gov_col_excel)
gcf_col_excel ="BY"
gcf_col = col2num(gcf_col_excel)
Export_col_excel = "CD"
Export_col = col2num(Export_col_excel)
'''
For Latvia EU columns and non-EU columns
'''
Export_col_eu_excel = "BZ"
Export_col_noneu_excel = "CC"
Export_col_eu = col2num(Export_col_eu_excel)
Export_col_noneu = col2num(Export_col_noneu_excel)
df = pd.read_excel('Supply Use tables - 2014.xlsx', sheet_name='SUPPLY 2014')
#df1 = df.iloc[supply_start_row-2:supply_end_row-1,supply_start_col-1:supply_end_col-1]
#df2 = df1.fillna(0)
#
df1 = df.iloc[:supply_end_row-1,:supply_end_col]
df1.columns = df1.iloc[supply_row_sector_id-2,:]
df1.index = df1.iloc[:,supply_col_product_id-1]
df2 = df1.iloc[supply_start_row-2:,supply_start_col-1:]
supply_plusdf = df2.fillna(0)
supply_plus_transdf = supply_plusdf.transpose()
sector_headers = df1.iloc[supply_row_sector_id-2,:]
product_headers = df1.iloc[:,supply_col_product_id-1]
sector_headers = sector_headers[2:].values
product_headers = product_headers[4:].values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, Import_col-1]
df2 = df1.fillna(0)
imports = df2.values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, Import_col_eu-1]
df2 = df1.fillna(0)
imports_eu = df2.values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, Import_col_noneu-1]
df2 = df1.fillna(0)
imports_noneu = df2.values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, trade_margin_col-1]
df2 = df1.fillna(0)
trade_margins = df2.values
trade_marginsdf = pd.DataFrame(data=trade_margins, index=product_headers, columns=np.array(['Trade Margins']))
df1 = df.iloc[supply_start_row-2:supply_end_row-1, tax_subsidies_col-1]
df2 = df1.fillna(0)
tax_subsidies = df2.values
tax_subsidiesdf = pd.DataFrame(data=tax_subsidies, index=product_headers, columns=np.array(['Tax and Subsidies']))
df = pd.read_excel('Supply Use tables - 2014.xlsx', sheet_name='USE 2014')
# df1 = df.iloc[use_start_row-2:use_end_row-1,use_start_col-1:use_end_col-1]
# df2 = df1.fillna(0)
# use = df2.values
df1 = df.iloc[:use_end_row-1,:use_end_col]
df1.columns =df1.iloc[use_row_sector_id-2,:]
df1.index = df1.iloc[:,use_col_product_id-1]
df2 = df1.iloc[use_start_row-2:,use_start_col-1:]
use_plusdf = df2.fillna(0)
df1 = df.iloc[use_start_row-2:use_end_row-1, fin_cons_hh_col-1]
df2 = df1.fillna(0)
fin_cons_hh = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1,fin_cons_np_col-1]
df2 = df1.fillna(0)
fin_cons_np = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1, fin_cons_gov_col-1]
df2 = df1.fillna(0)
fin_cons_gov = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1, gcf_col-1]
df2 = df1.fillna(0)
gcf = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1, Export_col-1]
df2 = df1.fillna(0)
exports = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1, Export_col_eu-1]
df2 = df1.fillna(0)
exports_eu = df2.values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, Export_col_noneu-1]
df2 = df1.fillna(0)
exports_noneu = df2.values
# tot_sup_comm=supply.sum(axis=1)
# tot_use_comm=use.sum(axis=1)
fin_cons=fin_cons_hh+fin_cons_np+fin_cons_gov
return (supply_plusdf, supply_plus_transdf, use_plusdf, sector_headers, product_headers, imports_eu, imports_noneu, trade_marginsdf, tax_subsidiesdf, exports_eu, exports_noneu, fin_cons, gcf)
def import_Excel_SUT_2013(year):
# First prepare the Excel file by Selecting the entire sheet and unmerging any merged cells
'''
SUPPLY table
'''
supply_start_col_excel="E"
supply_end_col_excel = "BQ"
supply_start_col = col2num(supply_start_col_excel)
supply_end_col=col2num(supply_end_col_excel)
supply_start_row=8
supply_end_row=72
supply_col_product_id_excel = "C"
supply_col_product_id = col2num(supply_col_product_id_excel)
supply_row_sector_id = 5
Import_col_excel = "BW"
Import_col = col2num(Import_col_excel)
trade_margin_col_excel = "BY"
trade_margin_col = col2num(trade_margin_col_excel)
tax_subsidies_col_excel = "BZ"
tax_subsidies_col = col2num(tax_subsidies_col_excel)
'''
For Latvia EU columns and non-EU columns
'''
Import_col_eu_excel = "BS"
Import_col_noneu_excel = "BV"
Import_col_eu = col2num(Import_col_eu_excel)
Import_col_noneu = col2num(Import_col_noneu_excel)
'''
USE table
'''
use_start_col_excel="E"
use_end_col_excel="BQ"
use_start_col=col2num(use_start_col_excel)
use_end_col=col2num(use_end_col_excel)
use_start_row=8
use_end_row=72
use_col_product_id_excel = "C"
use_col_product_id = col2num(use_col_product_id_excel)
use_row_sector_id = 5
fin_cons_hh_col_excel = "BS"
fin_cons_np_col_excel = "BT"
fin_cons_gov_col_excel = "BU"
fin_cons_hh_col = col2num(fin_cons_hh_col_excel)
fin_cons_np_col = col2num(fin_cons_np_col_excel)
fin_cons_gov_col = col2num(fin_cons_gov_col_excel)
gcf_col_excel ="CA"
gcf_col = col2num(gcf_col_excel)
Export_col_excel = "CF"
Export_col = col2num(Export_col_excel)
'''
For Latvia EU columns and non-EU columns
'''
Export_col_eu_excel = "CB"
Export_col_noneu_excel = "CE"
Export_col_eu = col2num(Export_col_eu_excel)
Export_col_noneu = col2num(Export_col_noneu_excel)
df = pd.read_excel('Supply Use Tables - 2011-2013.xlsx', sheet_name='Supply_2013')
#df1 = df.iloc[supply_start_row-2:supply_end_row-1,supply_start_col-1:supply_end_col-1]
#df2 = df1.fillna(0)
#
df1 = df.iloc[:supply_end_row-1,:supply_end_col]
df1.columns = df1.iloc[supply_row_sector_id-2,:]
df1.index = df1.iloc[:,supply_col_product_id-1]
df2 = df1.iloc[supply_start_row-2:,supply_start_col-1:]
supply_plusdf = df2.fillna(0)
supply_plus_transdf = supply_plusdf.transpose()
sector_headers = df1.iloc[supply_row_sector_id-2,:]
product_headers = df1.iloc[:,supply_col_product_id-1]
sector_headers = sector_headers[4:].values
product_headers = product_headers[6:].values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, Import_col-1]
df2 = df1.fillna(0)
imports = df2.values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, Import_col_eu-1]
df2 = df1.fillna(0)
imports_eu = df2.values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, Import_col_noneu-1]
df2 = df1.fillna(0)
imports_noneu = df2.values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, trade_margin_col-1]
df2 = df1.fillna(0)
trade_margins = df2.values
trade_marginsdf = pd.DataFrame(data=trade_margins, index=product_headers, columns=np.array(['Trade Margins']))
df1 = df.iloc[supply_start_row-2:supply_end_row-1, tax_subsidies_col-1]
df2 = df1.fillna(0)
tax_subsidies = df2.values
tax_subsidiesdf = pd.DataFrame(data=tax_subsidies, index=product_headers, columns=np.array(['Tax and Subsidies']))
df = pd.read_excel('Supply Use Tables - 2011-2013.xlsx', sheet_name='Use_2013')
# df1 = df.iloc[use_start_row-2:use_end_row-1,use_start_col-1:use_end_col-1]
# df2 = df1.fillna(0)
# use = df2.values
df1 = df.iloc[:use_end_row-1,:use_end_col]
df1.columns =df1.iloc[use_row_sector_id-2,:]
df1.index = df1.iloc[:,use_col_product_id-1]
df2 = df1.iloc[use_start_row-2:,use_start_col-1:]
use_plusdf = df2.fillna(0)
df1 = df.iloc[use_start_row-2:use_end_row-1, fin_cons_hh_col-1]
df2 = df1.fillna(0)
fin_cons_hh = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1,fin_cons_np_col-1]
df2 = df1.fillna(0)
fin_cons_np = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1, fin_cons_gov_col-1]
df2 = df1.fillna(0)
fin_cons_gov = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1, gcf_col-1]
df2 = df1.fillna(0)
gcf = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1, Export_col-1]
df2 = df1.fillna(0)
exports = df2.values
df1 = df.iloc[use_start_row-2:use_end_row-1, Export_col_eu-1]
df2 = df1.fillna(0)
exports_eu = df2.values
df1 = df.iloc[supply_start_row-2:supply_end_row-1, Export_col_noneu-1]
df2 = df1.fillna(0)
exports_noneu = df2.values
# tot_sup_comm=supply.sum(axis=1)
# tot_use_comm=use.sum(axis=1)
fin_cons=fin_cons_hh+fin_cons_np+fin_cons_gov
return (supply_plusdf, supply_plus_transdf, use_plusdf, sector_headers, product_headers, imports_eu, imports_noneu, trade_marginsdf, tax_subsidiesdf, exports_eu, exports_noneu, fin_cons, gcf)
def import_tax_rates():
# Import the tax rates
df = pd.read_excel('Inputs for VAT Gap Estimation.xlsx', sheet_name='Effective Tax Rates')
df1 = df.iloc[0:65,0:7]
df2 = df1.fillna(0)
#df2['Product_ID']=df2['Product_ID'].str[5:len(df2['Product_ID'])]
tax_rates_alldf = df2
tax_rates_alldf.set_index('Product_ID', inplace=True)
return tax_rates_alldf
def get_tax_rates_yr(tax_rates_alldf, year):
tax_rates_yrdf = tax_rates_alldf[['ETR_'+str(year)]]
#tax_rates_yrdf = tax_rates_alldf.iloc[:,0:year-2011+2:year-2011+1]
# tax_rates_yr = tax_rates_yrdf.iloc[:,1:].values
# tax_rates_yr = tax_rates_all[:,year-2011]
# tax_rates_yr = tax_rates.reshape(tax_rates.shape[0], 1)
# tax_rates_vec = tax_rates_yrdf.values
return tax_rates_yrdf
def alloc_final_cons_to_sectors(supply_mat, fin_cons):
# Final Consumption needs to be allocated to the sectors that make the sale
# This is needed because final consumption is shown by commodity
# The allocation method used is that final consumptions is sold by those sectors in proportion of the commodities they produce
tot_sup_comm_corr=np.transpose(np.array([np.sum(supply_mat,axis=1)]))
"""
fix this 0.001 issue
"""
tot_sup_comm_corr[tot_sup_comm_corr==0]= 0.00001
fin_cons_alloc = fin_cons*supply_mat*(1/tot_sup_comm_corr)
fin_cons_allocdf = pd.DataFrame(data=fin_cons_alloc, index=product_headers,columns=sector_headers)
return (fin_cons_allocdf)
def alloc_imports_to_sectors(imports_eu, imports_noneu, inter_use_mat_comm_ratio):
# Imports are shown in the Supply Table by commodity needs to be allocated to the sectors that import them
# This is needed because final consumption is shown by commodity
# The allocation method used is that imports consumptions is sold by those sectors in proportion of the commodities
# they use
# exact allocation could be available from trade statistics
#imports_tot_adj = imports_eu_adj + imports_noneu_adj
imports_eu_alloc = inter_use_mat_comm_ratio*imports_eu
imports_noneu_alloc = inter_use_mat_comm_ratio*imports_noneu
imports_eu_alloc_sec =np.matmul(inter_use_mat_comm_ratio.transpose(),imports_eu)
imports_noneu_alloc_sec =np.matmul(inter_use_mat_comm_ratio.transpose(),imports_noneu)
return(imports_eu_alloc, imports_eu_alloc_sec, imports_noneu_alloc, imports_noneu_alloc_sec)
def adjust_imports(imports_eu, imports_noneu):
col = np.array(['imports_eu_adj'])
row = np.zeros(np.shape(sector_headers))
df1 = pd.DataFrame(data=row, index=sector_headers, columns=col)
df1 = df1.reset_index()
df1 = df1.rename(columns={'index':'Sector_ID'})
df2 = pd.read_excel('Inputs for VAT Gap Estimation.xlsx', sheet_name='imports_returns')
df2 = df2[df2['year']==2011]
df2 = df1.merge(df2, on=['Sector_ID'], how='left')
df2 = df2.fillna(0)
df2 = df2[['Sector_ID','Imports from EU']]
sum = df2['Imports from EU'].sum()
df2['Import Weights'] = df2['Imports from EU']/sum
sum1 = imports_eu.sum()
df2['Imports EU Adj'] = df2['Import Weights']*sum1
imports_eu_adj = df2['Imports EU Adj'].values
imports_eu_adj = imports_eu_adj.reshape(imports_eu_adj.shape[0],1)
sum2 = imports_noneu.sum()
df2['Imports non-EU Adj'] = df2['Import Weights']*sum2
imports_noneu_adj = df2['Imports non-EU Adj'].values
imports_noneu_adj = imports_noneu_adj.reshape(imports_noneu_adj.shape[0],1)
return (imports_eu_adj, imports_noneu_adj)
def alloc_sec_imports_to_comm(imports_eu_alloc_sec, imports_noneu_alloc_sec, inter_use_mat_sec_ratio):
# Imports are shown in the Supply Table by commodity needs to be allocated to the sectors that import them
# This is needed because final consumption is shown by commodity
# The allocation method used is that imports consumptions is sold by those sectors in proportion of the commodities
# they use
# exact allocation could be available from trade statistics
#imports_tot_adj = imports_eu_adj + imports_noneu_adj
#Assumption
#We take the adjusted imports by sector to be that for commodities
imports_eu_comm_adj = imports_eu_alloc_sec
imports_noneu_comm_adj = imports_noneu_alloc_sec
return(imports_eu_comm_adj, imports_noneu_comm_adj)
def alloc_gcf_to_sectors(use_mat, gcf):
# Gross Capital Formation is shown in the Use Table by commodity needs to be allocated to the sectors that use them
# This is needed because Gross Capital Formation is shown by commodity
# The allocation method used is that use of commodities for Gross Capital Formation
# is used by those sectors in proportion of the non-Gross Capital Formation
# commodities they use
tot_use_comm_corr=np.transpose(np.array([np.sum(use_mat,axis=1)]))
tot_use_comm_corr[tot_use_comm_corr==0]= 0.00001
gcf_alloc = gcf*use_mat*(1/tot_use_comm_corr)
gcf_alloc_2013 = pd.DataFrame(data=gcf_alloc, index=product_headers, columns=sector_headers)
gcf_alloc_2013.to_csv('gcf_2013.csv', index = True)
return (gcf_alloc)
def modify_imports_for_trade_sector(use_mat, imports_eu, imports_noneu):
df = pd.read_excel('Inputs for VAT Gap Estimation.xlsx', sheet_name='Trade_Sector_Purchases')
df1 = pd.DataFrame(data=df.values[:,1:], index = df['Sector_ID'], columns=df.columns[1:])
#tot_use_sector_corr=np.sum(use_plusdf,axis=0)
tot_inter_use_sector=use_mat.sum(axis=0)
tot_inter_use_sector.reshape(tot_inter_use_sector.shape[0],1)
#output_tax_potential = output_tax_pot.reshape((output_tax_pot.shape[0], 1))
#output_tax_potential = np.transpose(output_tax_potential)
col_header = np.array(['Total Purchases'])
tot_inter_use_sectordf = pd.DataFrame(data=tot_inter_use_sector, index = sector_headers, columns=col_header)
tot_inter_use_sectordf.loc['V45']=df1.loc['V45','Purchases_'+str(year)]
tot_inter_use_sectordf.loc['V46']=df1.loc['V46','Purchases_'+str(year)]
tot_inter_use_sectordf.loc['V47']=df1.loc['V47','Purchases_'+str(year)]
sum = tot_inter_use_sectordf['Total Purchases'].sum()
tot_inter_use_sectordf['Total Purchases'] = tot_inter_use_sectordf['Total Purchases']/sum
tot_inter_use_sectordf = tot_inter_use_sectordf.rename(columns={'Total Purchases':'Weight Purchase'})
inter_use_sector_weights = tot_inter_use_sectordf.values
tot_imports_eu = imports_eu.sum()
tot_imports_noneu = imports_noneu.sum()
tot_imports_eu_sec_adj = inter_use_sector_weights*tot_imports_eu
np.savetxt('imports_eu_sec_adj'+str(year) + '.csv', tot_imports_eu_sec_adj, delimiter = ',')
tot_imports_noneu_sec_adj = inter_use_sector_weights*tot_imports_noneu
np.savetxt('imports_noneu_sec_adj'+str(year) + '.csv', tot_imports_noneu_sec_adj, delimiter = ',')
return (tot_imports_eu_sec_adj, tot_imports_noneu_sec_adj)
def adjust_etr_for_trade_sectors(trade_marginsdf, tax_rates_vecdf):
#trade_margins_vec = trade_marginsdf.values
#trade_marginsdf = trade_marginsdf.reset_index()
#trade_marginsdf.rename(columns = {trade_marginsdf.columns[0]: 'Product_ID'}, inplace = True)
#trade_marginsdf = trade_marginsdf.index.names = ['Product_ID']
df = trade_marginsdf.copy()
#df.loc['CPA_G45':'CPA_G47'] = 0
df = df.reset_index()
df = df.rename(columns={'index':'Product_ID'})
df = df.merge(tax_rates_vecdf, on=['Product_ID'], how='left')
df['Trade Margins'] = np.where(df['Product_ID'] == 'CPA_G45', 0, df['Trade Margins'])
df['Trade Margins'] = np.where(df['Product_ID'] == 'CPA_G46', 0, df['Trade Margins'])
df['Trade Margins'] = np.where(df['Product_ID'] == 'CPA_G47', 0, df['Trade Margins'])
#df = df.join(tax_rates_vecdf)
sum = df['Trade Margins'].sum()
df['Weighted Tax Rates'] = df['ETR']*df['Trade Margins']/sum
etr_for_trade_sectors = df['Weighted Tax Rates'].sum()
df['ETR'] = np.where(df['Product_ID'] == 'CPA_G45', etr_for_trade_sectors, df['ETR'])
df['ETR'] = np.where(df['Product_ID'] == 'CPA_G46', etr_for_trade_sectors, df['ETR'])
df['ETR'] = np.where(df['Product_ID'] == 'CPA_G47', etr_for_trade_sectors, df['ETR'])
tax_rates_yr_adjdf = df[['Product_ID', 'ETR']].copy()
return tax_rates_yr_adjdf
def alloc_exports_to_sectors(supply_mat, exports_eu, exports_noneu):
# Exports needs to be allocated to the sectors that make the commodities that are exported
# This is needed because exports are shown by commodity
# The allocation method used is that exported commodities are made by those sectors in proportion of the commodities they produce
# exact allocation could be available from trade statistics
tot_sup_comm_corr=np.transpose(np.array([np.sum(supply_mat,axis=1)]))
tot_sup_comm_corr[tot_sup_comm_corr==0]= 0.00001
exports_eu = exports_eu.reshape((exports_eu.shape[0], 1))
exports_eu_alloc = exports_eu*supply_mat*(1/tot_sup_comm_corr)
exports_noneu = exports_noneu.reshape((exports_noneu.shape[0], 1))
exports_noneu_alloc = exports_noneu*supply_mat*(1/tot_sup_comm_corr)
return (exports_eu_alloc, exports_noneu_alloc)
def get_vat_revenues(year):
col_dict = {'NACE_code2': str, 'Sector_ID': str}
nace_sector_map = pd.read_excel("NACE_sector_mapping.xlsx", dtype=col_dict)
tax_revenuedf = pd.read_excel('Tax revenues - 2013-2016.xlsx', sheet_name=str(year))
tax_revenuedf = tax_revenuedf.groupby('NACE_code2').agg({"Revenue": "sum"})
tax_revenuedf = tax_revenuedf.reset_index()
tax_revenue_mergeddf = tax_revenuedf.merge(nace_sector_map, on=['NACE_code2'], how='left')
tax_revenue_mergeddf = tax_revenue_mergeddf.iloc[:-1,1:]
tax_revenue_mergeddf = tax_revenue_mergeddf.groupby(['Sector_ID'], sort=False).agg({"Revenue": "sum"})
tax_revenue_mergeddf['Revenue']=tax_revenue_mergeddf['Revenue']/1e+6
tax_revenue_mergeddf = tax_revenue_mergeddf.reset_index()
tax_revenue_mergeddf = tax_revenue_mergeddf.rename(columns={'index':'Sector_ID'})
col = np.array(['Revenue1'])
row = np.zeros(np.shape(sector_headers))
df = pd.DataFrame(data=row, index=sector_headers, columns=col)
df = df.reset_index()
df = df.rename(columns={'index':'Sector_ID'})
df = df.merge(tax_revenue_mergeddf, on=['Sector_ID'], how='left')
df = df.drop('Revenue1', axis=1)
df = df.fillna(0)
tax_revenue_mergeddf = df
tax_revenue_mergeddf.to_csv('tax_revenue_' + str(year) + '.csv', index=True)
return tax_revenue_mergeddf
def import_check_sectordf(excel_file, worksheet, param_name, year):
col = np.array([param_name])
row = np.zeros(np.shape(sector_headers))
df = pd.DataFrame(data=row, index=sector_headers, columns=col)
df = df.reset_index()
df = df.rename(columns={'index':'Sector_ID'})
df1 = pd.read_excel(excel_file, sheet_name=worksheet)
df1 = df1[['Sector_ID_'+str(year), param_name+'_'+str(year)]].copy()
df1.rename(columns = {df1.columns[0]: df1.columns[0][:-5]}, inplace = True)
df = df.merge(df1, on=['Sector_ID'], how='left')
df = df[['Sector_ID',param_name+'_'+str(year)]]
df = df.fillna(0)
df.rename(columns = {df.columns[1]: df.columns[1][:-5]}, inplace = True)
#df = df[param_name+'_'+str(year)].fillna(0)
return df
def import_check_productdf(excel_file, worksheet, param_name, year):
col = np.array([param_name])
row = np.zeros(np.shape(product_headers))
df = pd.DataFrame(data=row, index=product_headers, columns=col)
df = df.reset_index()
df = df.rename(columns={'index':'Product_ID'})
df1 = pd.read_excel(excel_file, sheet_name=worksheet)
df1 = df1[['Product_ID_'+str(year), param_name+'_'+str(year)]].copy()
df1.rename(columns = {df1.columns[0]: df1.columns[0][:-5]}, inplace = True)
df = df.merge(df1, on=['Product_ID'], how='left')
df = df[['Product_ID',param_name+'_'+str(year)]]
df = df.fillna(0)
df.rename(columns = {df.columns[1]: df.columns[1][:-5]}, inplace = True)
#df = df[param_name+'_'+str(year)].fillna(0)
return df
def import_va_non_payers(year):
va_payersdf = import_check_sectordf('Inputs for VAT Gap Estimation.xlsx', 'va_payers', 'va_payers', year)
va_non_payersdf = import_check_sectordf('Inputs for VAT Gap Estimation.xlsx', 'va_non_payers', 'va_non_payers', year)
return va_payersdf, va_non_payersdf
def va_by_reg_ratio_yr(va_payersdf, va_non_payersdf, year):
va_by_reg_ratiodf = va_payersdf.copy()
va_by_reg_ratiodf = va_by_reg_ratiodf.merge(va_non_payersdf, on=['Sector_ID'], how='left')
va_by_reg_ratiodf['va_by_reg_ratio'] = va_by_reg_ratiodf['va_payers']/(va_by_reg_ratiodf['va_payers'] + va_by_reg_ratiodf['va_non_payers'])
va_by_reg_ratiodf = va_by_reg_ratiodf.fillna(0)
va_by_reg_ratiodf.to_csv('va_by_reg_ratio_' + str(year) + '.csv', index = True)
va_by_reg_ratio = va_by_reg_ratiodf['va_by_reg_ratio'].values
va_by_reg_ratio = va_by_reg_ratio.reshape(va_by_reg_ratio.shape[0], 1)
"""
Adjusted Ratios
"""
va_by_reg_ratiodf1 = pd.read_excel('Value Added by Registered Taxpayers - 2013.xlsx', sheet_name='va_payers')
return (va_by_reg_ratio, va_by_reg_ratiodf1)
def get_reverse_charge_vec(supply_plusdf, year):
col = np.array(['Reverse Charge Ratio'])
row = np.zeros(np.shape(product_headers))
rcdf2 = pd.DataFrame(data=row, index=product_headers, columns=col)
rcdf2 = rcdf2.reset_index()
rcdf2 = rcdf2.rename(columns={'index':'Product_ID'})
rcdf1 = pd.read_excel('Inputs for VAT Gap Estimation.xlsx', sheet_name='rc')
rcdf1 = rcdf1.iloc[:,(year-2011)*2:((year-2011)*2)+2]
rcdf1.rename(columns = {rcdf1.columns[0]: rcdf1.columns[0][:-5]}, inplace = True)
rcdf2 = rcdf2.merge(rcdf1, on=['Product_ID'], how='left')
rcdf2 = rcdf2[['Product_ID','rc_'+str(year)]]
rcdf2 = rcdf2['rc_'+str(year)].fillna(0)
rc_vec = rcdf2.values
return rc_vec
def get_supply_mat_param(supply_mat):
tot_sup_comm= np.sum(supply_mat,axis=1)
tot_sup_comm[tot_sup_comm==0]= 0.00001
tot_sup_comm = tot_sup_comm.reshape((tot_sup_comm.shape[0], 1))
supply_mat_comm_ratio = supply_mat/tot_sup_comm
tot_sup_sec= np.sum(supply_mat,axis=0)
tot_sup_sec[tot_sup_sec==0]= 0.00001
tot_sup_sec = tot_sup_sec.reshape((tot_sup_sec.shape[0], 1))
supply_mat_sec_ratio = supply_mat/tot_sup_sec
return (tot_sup_comm, tot_sup_sec, supply_mat_comm_ratio, supply_mat_sec_ratio)
def adjust_supply_mat_with_margins_and_non_vat_tax(tax_rates_vec, supply_plusdf, trade_marginsdf, tax_subsidiesdf, imports_eu, imports_noneu):
imports = imports_eu + imports_noneu
imports[imports==0]= 0.00001
imports = imports.reshape((imports.shape[0], 1))
trade_margins = trade_marginsdf.values
tax_subsidies = tax_subsidiesdf.values
dom_supply_ratio1 = tot_sup_comm_corr/(tot_sup_comm_corr+imports)
trade_margins_dom = trade_margins*dom_supply_ratio1
dom_supply_ratio2 = tot_sup_comm_corr/(tot_sup_comm_corr+imports_noneu)
tax_subsidies_dom = tax_subsidies*dom_supply_ratio2
trade_margins_imp = trade_margins - trade_margins_dom
tax_subsidies_imp = tax_subsidies - tax_subsidies_dom
#trade_margins_imp_eu = trade_margins_imp*(imports_eu/imports)
#trade_margins_imp_noneu = trade_margins_imp - trade_margins_imp_eu
# EU imports do not face any taxes so only adjust non EU imports to include customs duty in base
tax_subsidies_imp_noneu = tax_subsidies_imp
#margins_alloc_supply_mat = (supply_mat/tot_sup_comm_corr)*(trade_margins_dom)
#supply_mat_with_margins = supply_mat + margins_alloc_supply_mat
tax_subsidies_dom = tax_subsidies_dom*(1/(1+tax_rates_vec))
tax_subsidies_imp_noneu = tax_subsidies_imp_noneu*(1/(1+tax_rates_vec))
supply_mat_with_tax = supply_mat + supply_mat_ratio*tax_subsidies_dom
imp_noneu_with_tax = imports_noneu + tax_subsidies_imp_noneu
return (supply_mat_with_tax, imp_noneu_with_tax, tax_subsidies_dom)
def get_inter_use_mat_param(use_mat):
tot_inter_use_comm= np.sum(use_mat,axis=1)
# tot_inter_use_comm[tot_inter_use_comm==0]= 0.00001
tot_inter_use_comm = tot_inter_use_comm.reshape(tot_inter_use_comm.shape[0], 1)
inter_use_mat_comm_ratio = (use_mat/tot_inter_use_comm)
inter_use_mat_comm_ratio[np.isnan(inter_use_mat_comm_ratio)] = 0
tot_inter_use_sec= np.sum(use_mat,axis=0)
# tot_inter_use_sec[tot_inter_use_sec==0]= 0.00001
tot_inter_use_sec = tot_inter_use_sec.reshape(1, tot_inter_use_sec.shape[0])
inter_use_mat_sec_ratio = (use_mat/tot_inter_use_sec)
inter_use_mat_sec_ratio[np.isnan(inter_use_mat_sec_ratio)] = 0
return (tot_inter_use_comm, tot_inter_use_sec, inter_use_mat_comm_ratio, inter_use_mat_sec_ratio)
def get_use_mat_param(use_mat, tot_inter_use_comm, fin_cons, gcf):
tot_use_comm= tot_inter_use_comm + fin_cons + gcf
inter_use_comm_ratio = tot_inter_use_comm/tot_use_comm
inter_use_comm_ratio[np.isnan(inter_use_comm_ratio)] = 0
fin_cons_comm_use_ratio = fin_cons/tot_use_comm
fin_cons_comm_use_ratio[np.isnan(fin_cons_comm_use_ratio)] = 0
gcf_comm_use_ratio = gcf/tot_use_comm
gcf_comm_use_ratio[np.isnan(gcf_comm_use_ratio)] = 0
return (inter_use_comm_ratio, fin_cons_comm_use_ratio, gcf_comm_use_ratio)
def get_use_mat_tax_excl(use_mat, fin_cons, gcf, inter_use_comm_ratio, inter_use_mat_comm_ratio, fin_cons_comm_use_ratio, gcf_comm_use_ratio, tax_subsidies):
inter_use_tax_subsidies_comm = inter_use_comm_ratio*tax_subsidies
inter_use_tax_subsidies_mat = inter_use_mat_comm_ratio*inter_use_tax_subsidies_comm
fin_cons_tax_subsidies_comm = fin_cons_comm_use_ratio*tax_subsidies
gcf_tax_subsidies_comm = gcf_comm_use_ratio*tax_subsidies
inter_use_tax_excl_mat = use_mat - inter_use_tax_subsidies_mat
fin_cons_tax_excl = fin_cons - fin_cons_tax_subsidies_comm
gcf_tax_excl = gcf - gcf_tax_subsidies_comm
return (inter_use_tax_excl_mat, fin_cons_tax_excl, gcf_tax_excl)
def get_fin_cons_tax_excl(fin_cons_tax_incl, tax_rates_vecdf):
tax_rates_vec = tax_rates_vecdf.values
fin_cons = fin_cons_tax_incl*(1/(1+tax_rates_vec))
return fin_cons
def get_gcf_tax_excl(gcf_tax_incl, tax_rates_vecdf):
tax_rates_vec = tax_rates_vecdf.values
gcf = gcf_tax_incl*(1/(1+tax_rates_vec))
return gcf
def get_ratio_fin_cons(use_mat, fin_cons, gcf):
inter_use = use_mat.sum(axis=1)
inter_use = inter_use.reshape((inter_use.shape[0], 1))
tot_use = inter_use + fin_cons + gcf
tot_use[tot_use==0]= 0.00001
fin_cons_ratio = fin_cons/tot_use
gcf_ratio = gcf/tot_use
return (fin_cons_ratio, gcf_ratio)
def alloc_dom_output_to_use(output_dom, inter_use_comm_ratio, fin_cons_comm_use_ratio, gcf_comm_use_ratio, inter_use_mat_comm_ratio):
output_dom[output_dom<0]= 0
output_dom_supply_comm = output_dom.sum(axis=1)
output_dom_supply_comm = output_dom_supply_comm.reshape((output_dom_supply_comm.shape[0], 1))
np.savetxt('output_dom_supply_comm_'+str(year) + '.csv', output_dom_supply_comm, delimiter = ',')
inter_use_dom_sources_comm = output_dom_supply_comm*inter_use_comm_ratio
np.savetxt('inter_use_dom_sources_comm_'+str(year) + '.csv', inter_use_dom_sources_comm, delimiter = ',')
inter_use_dom_sources_mat = inter_use_dom_sources_comm*inter_use_mat_comm_ratio
np.savetxt('inter_use_dom_sources_mat_'+str(year) + '.csv', inter_use_dom_sources_mat, delimiter = ',')
fin_cons_dom_sources = output_dom_supply_comm*fin_cons_comm_use_ratio
np.savetxt('fin_cons_dom_sources_'+str(year) + '.csv', fin_cons_dom_sources, delimiter = ',')
gcf_dom_sources = output_dom_supply_comm*gcf_comm_use_ratio
return (inter_use_dom_sources_mat, fin_cons_dom_sources, gcf_dom_sources)
def get_output_tax_potential(tax_rates_vec, supply_mat, supply_mat_comm_ratio, exports_alloc, rc_vec, inter_use_comm_ratio, fin_cons, fin_cons_comm_use_ratio, gcf_comm_use_ratio, inter_use_mat_comm_ratio, year):
output_dom = supply_mat - exports_alloc
np.savetxt('supply_mat_'+str(year) + '.csv', supply_mat, delimiter = ',')
np.savetxt('exports_alloc_'+str(year) + '.csv', exports_alloc, delimiter = ',')
np.savetxt('output_dom_'+str(year) + '.csv', output_dom, delimiter = ',')
inter_use_dom_sources_mat, fin_cons_dom_sources, gcf_dom_sources = alloc_dom_output_to_use(output_dom, inter_use_comm_ratio, fin_cons_comm_use_ratio, gcf_comm_use_ratio, inter_use_mat_comm_ratio)
fin_cons_alloc = supply_mat_comm_ratio*fin_cons
output_tax = output_dom*tax_rates_vec
rev_charge_supply_mat = supply_mat - fin_cons_alloc
output_tax_rc = rc_vec*rev_charge_supply_mat
net_output_tax = output_tax - output_tax_rc
net_output_tax[net_output_tax<0]= 0
np.savetxt('output_tax_'+str(year) + '.csv', output_tax, delimiter = ',')
np.savetxt('output_tax_rc_'+str(year) + '.csv', output_tax_rc, delimiter = ',')
np.savetxt('net_output_tax_'+str(year) + '.csv', net_output_tax, delimiter = ',')
output_tax_pot = net_output_tax.sum(axis=0)
output_tax_pot = output_tax_pot.reshape(output_tax_pot.shape[0],1)
return (fin_cons_dom_sources, gcf_dom_sources, inter_use_dom_sources_mat, output_tax_pot)
def get_exempt_supply_ratio(tax_rates_vec, supply_mat, standard_vat_rate, year):
col = np.array(['Exempt_Ratio'])
row = np.zeros(np.shape(product_headers))
exempt_supplydf = pd.DataFrame(data=row, index=product_headers, columns=col)
exempt_supplydf = exempt_supplydf.reset_index()
exempt_supplydf = exempt_supplydf.rename(columns={'index':'Product_ID'})
df = pd.read_excel('Inputs for VAT Gap Estimation.xlsx', sheet_name='Exempt_Product')
df = df[['Product_ID_'+str(year), 'Exempt_'+str(year)]].copy()
df.rename(columns = {df.columns[0]: df.columns[0][:-5]}, inplace = True)
exempt_supplydf = exempt_supplydf.merge(df, on=['Product_ID'], how='left')
exempt_supplydf = exempt_supplydf[['Product_ID','Exempt_'+str(year)]]
exempt_supplydf = exempt_supplydf['Exempt_'+str(year)].fillna(0)
exempt_supply_prod_vec = exempt_supplydf.values
exempt_supply_prod_vec = exempt_supply_prod_vec.reshape((exempt_supply_prod_vec.shape[0], 1))
exempt_sec_alloc = exempt_supply_prod_vec*supply_mat
exempt_sec_alloc= exempt_sec_alloc.sum(axis=0)
exempt_sec_alloc= exempt_sec_alloc.reshape(exempt_sec_alloc.shape[0],1)
tot_sup_sec=supply_mat.sum(axis=0)
tot_sup_sec[tot_sup_sec==0]= 0.00001
tot_sup_sec= tot_sup_sec.reshape(tot_sup_sec.shape[0],1)
exempt_supply_sec_ratio = exempt_sec_alloc*(1/tot_sup_sec)
#exempt_supply_ratio_vec = exempt_supply_ratio_vec.reshape((1, exempt_supply_ratio_vec.shape[0]))
return exempt_supply_sec_ratio
def get_input_tax_potential(tax_rates_vec, use_mat, year):
purchase_mat = use_mat
input_tax_potential = purchase_mat*tax_rates_vec
input_tax_potential=input_tax_potential.sum(axis=0)
input_tax_potential = input_tax_potential.reshape(input_tax_potential.shape[0], 1)
return input_tax_potential
def get_input_tax_disallow_potential(exempt_supply_sec_ratio, input_tax_potential, year):
input_tax_disallow_potential = input_tax_potential*exempt_supply_sec_ratio
return input_tax_disallow_potential
def get_rev_charge_potential(tax_rates_vec, use_mat, imports_eu_alloc, imports_noneu_alloc, rc_vec, year):
rev_charge_purchase_mat = use_mat - imports_eu_alloc - imports_noneu_alloc
rev_charge_potential = (rc_vec*rev_charge_purchase_mat)*tax_rates_vec
rev_charge_potential = rev_charge_potential.sum(axis=0)
rev_charge_potential = rev_charge_potential.reshape((rev_charge_potential.shape[0], 1))
return rev_charge_potential
def get_import_VAT_potential(tax_rates_vec, imports_eu_alloc, imports_noneu_alloc, year):
imports_alloc = imports_eu_alloc + imports_noneu_alloc
import_VAT_pot = imports_alloc*tax_rates_vec
import_VAT_pot = import_VAT_pot.sum(axis=0)
import_VAT_pot = import_VAT_pot.reshape((import_VAT_pot.shape[0], 1))
return import_VAT_pot
def get_VAT_potential(import_VAT_potentialdf, output_tax_potentialdf, input_tax_potentialdf, input_tax_disallow_potentialdf, rev_charge_potentialdf, va_by_reg_ratiodf, tax_revenue_mergeddf, year):
VAT_potdf = output_tax_potentialdf.merge(rev_charge_potentialdf, on=['Sector_ID'], how='left')
VAT_potdf = VAT_potdf.merge(import_VAT_potentialdf, on=['Sector_ID'], how='left')
VAT_potdf = VAT_potdf.merge(input_tax_disallow_potentialdf, on=['Sector_ID'], how='left')
VAT_potdf = VAT_potdf.merge(input_tax_potentialdf, on=['Sector_ID'], how='left')
VAT_potdf = VAT_potdf.merge(va_by_reg_ratiodf, on=['Sector_ID'], how='left')
VAT_potdf['VAT Potential_1'] = VAT_potdf['Output Tax'] + VAT_potdf['Import VAT'] + VAT_potdf['Reverse Charge'] + VAT_potdf['Input Tax Credit Disallowance'] - VAT_potdf['Input Tax Credit']
VAT_potdf['VAT Potential'] = VAT_potdf['VAT Potential_1']*VAT_potdf['Value Added by Registered Ratio']
VAT_potdf = VAT_potdf.merge(tax_revenue_mergeddf, on=['Sector_ID'], how='left')
VAT_potdf['VAT Gap'] = VAT_potdf['VAT Potential'] - VAT_potdf['Revenue']
df = VAT_potdf
df['Sector Numbers'] = df.index
# df.loc['Total'] = pd.Series(df['MyColumn'].sum(), index = ['MyColumn'])
add_rows = ['Total']
df.index = df.iloc[:,0]
df = df.reindex(df.index.union(add_rows))
df = df.sort_values(['Sector Numbers'])
df = df.drop('Sector_ID', axis=1)
df = df.drop('Sector Numbers', axis=1)
df.loc['Total'] = df.sum()
#sums = df.select_dtypes(pd.np.number).sum().rename('total')
df = df.reset_index()
df = df.rename(columns={'index':'Sector_ID'})
df = df.fillna(0)
df.to_csv('VAT_potential_' + str(year) + '.csv', index = True)
VAT_potentialdf = df
return VAT_potentialdf
GDP_LCU_2014 = 23618163000
GDP_LCU_2015 = 24320324000
GDP_LCU_2016 = 24925617000
GDP_LCU_2017 = 26856599000
GDP_factor_2015 = GDP_LCU_2015/GDP_LCU_2014
GDP_factor_2016 = GDP_LCU_2016/GDP_LCU_2014
#GDP_factor_2017 = GDP_LCU_2017/GDP_LCU_2014
year = 2014
if year==2013:
supply_plusdf, supply_plus_transdf, use_plusdf, sector_headers, product_headers, imports_eu, imports_noneu, trade_marginsdf, tax_subsidiesdf, exports_eu, exports_noneu, fin_cons, gcf = import_Excel_SUT_2013(year)
if year>=2014:
supply_plusdf, supply_plus_transdf, use_plusdf, sector_headers, product_headers, imports_eu, imports_noneu, trade_marginsdf, tax_subsidiesdf, exports_eu, exports_noneu, fin_cons, gcf = import_Excel_SUT_2014(year)
if year==2013:
GDP_factor=1
if year==2014:
GDP_factor=1
if year==2015:
GDP_factor=GDP_factor_2015
if year==2016:
GDP_factor=GDP_factor_2016
supply_mat = GDP_factor*supply_plusdf.values
use_mat = GDP_factor*use_plusdf.values
tax_subsidies = GDP_factor*tax_subsidiesdf.values
trade_margins = GDP_factor*trade_marginsdf.values
fin_cons = fin_cons.reshape(fin_cons.shape[0],1)
fin_cons = GDP_factor*fin_cons
gcf = gcf.reshape(gcf.shape[0],1)
gcf = GDP_factor*gcf
imports_eu = imports_eu.reshape(imports_eu.shape[0], 1)
imports_eu = GDP_factor*imports_eu
imports_noneu = imports_noneu.reshape(imports_noneu.shape[0], 1)
imports_noneu = GDP_factor*imports_noneu
use_mat_tax_incl = use_mat
np.savetxt('use_mat_tax_incl' + str(year)+'.csv', use_mat_tax_incl, delimiter = ',')
np.savetxt('imports_eu_' + str(year)+'.csv', imports_eu, delimiter = ',')
np.savetxt('imports_noneu_' + str(year)+'.csv', imports_noneu, delimiter = ',')
tot_inter_use_comm, tot_inter_use_sec, inter_use_mat_comm_ratio, inter_use_mat_sec_ratio = get_inter_use_mat_param(use_mat)
inter_use_comm_ratio, fin_cons_comm_use_ratio, gcf_comm_use_ratio = get_use_mat_param(use_mat, tot_inter_use_comm, fin_cons, gcf)
use_mat_tax_incl = use_mat
use_mat, fin_cons, gcf = get_use_mat_tax_excl(use_mat, fin_cons, gcf, inter_use_comm_ratio, inter_use_mat_comm_ratio, fin_cons_comm_use_ratio, gcf_comm_use_ratio, tax_subsidies)
tot_sup_comm, tot_sup_sec, supply_mat_comm_ratio, supply_mat_sec_ratio = get_supply_mat_param(supply_mat)
#tax_rates_alldf = import_tax_rates()
standard_vat_rate = 0.21
tax_rates_vecdf = import_check_productdf('Inputs for VAT Gap Estimation.xlsx', 'effective_tax_rates', 'ETR', year)
tax_rates_vecdf = adjust_etr_for_trade_sectors(trade_marginsdf, tax_rates_vecdf)
tax_rates_vec = tax_rates_vecdf['ETR'].values
tax_rates_vec = tax_rates_vec.reshape(tax_rates_vec.shape[0],1)
imports = imports_eu + imports_noneu
imports[imports==0]=0.00001
imports_eu_ratio = imports_eu/imports
#np.savetxt('final_cons_2013.csv', final_cons_alloc, delimiter = ',')
exports_eu_alloc, exports_noneu_alloc = alloc_exports_to_sectors(supply_mat, exports_eu, exports_noneu)
exports_alloc = exports_eu_alloc + exports_noneu_alloc
gcf_alloc = alloc_gcf_to_sectors(use_mat, gcf)
va_payersdf, va_non_payersdf = import_va_non_payers(year)
#tot_imports_eu_sec_adj, tot_imports_noneu_sec_adj = modify_imports_for_trade_sector(use_mat, imports_eu, imports_noneu)
imports_eu_alloc, imports_eu_alloc_sec, imports_noneu_alloc, imports_noneu_alloc_sec = alloc_imports_to_sectors(imports_eu, imports_noneu, inter_use_mat_comm_ratio)
imports_eu_adj, imports_noneu_adj = adjust_imports(imports_eu, imports_noneu)
imports_adj = imports_eu_adj + imports_noneu_adj
np.savetxt('imports_adj_'+ str(year)+'.csv', imports_adj, delimiter = ',')
#imports_eu_comm_adj, imports_noneu_comm_adj = alloc_sec_imports_to_comm(tot_imports_eu_sec_adj, tot_imports_noneu_sec_adj, inter_use_mat_sec_ratio)
#np.savetxt('tax_rates_2013.csv', tax_rates_vec, delimiter = ',')
rc_vec = get_reverse_charge_vec(supply_plusdf, year)
#np.savetxt('rc_vec_2013.csv', rc_vec, delimiter = ',')
va_by_reg_ratio, va_by_reg_ratiodf = va_by_reg_ratio_yr(va_payersdf, va_non_payersdf, year)
exempt_supply_sec_ratio = get_exempt_supply_ratio(tax_rates_vec, supply_mat, standard_vat_rate, year)
col_header = np.array(['Exempt Supply Ratio'])
exempt_supply_sec_ratiodf = pd.DataFrame(data=exempt_supply_sec_ratio, index = sector_headers, columns=col_header)
exempt_supply_sec_ratiodf.to_csv('exempt_supply_sec_ratio_' + str(year) + '.csv', index = True)
fin_cons_dom_sources, gcf_dom_sources, output_inter_cons, output_tax_pot = get_output_tax_potential(tax_rates_vec, supply_mat, supply_mat_comm_ratio, exports_alloc, rc_vec, inter_use_comm_ratio, fin_cons, fin_cons_comm_use_ratio, gcf_comm_use_ratio, inter_use_mat_comm_ratio, year)
col_header = np.array(['Output Tax'])
output_tax_potentialdf = pd.DataFrame(data=output_tax_pot, index = sector_headers, columns=col_header)
output_tax_potentialdf = output_tax_potentialdf.reset_index()
output_tax_potentialdf = output_tax_potentialdf.rename(columns={'index':'Sector_ID'})
input_tax_potential = get_input_tax_potential(tax_rates_vec, use_mat, year)
np.savetxt('input_tax_potential_'+str(year)+'.csv', input_tax_potential, delimiter = ',')
col = np.array(['Input Tax Credit'])
input_tax_potentialdf = pd.DataFrame(data=input_tax_potential, index = sector_headers, columns=col)
input_tax_potentialdf = input_tax_potentialdf.reset_index()
input_tax_potentialdf = input_tax_potentialdf.rename(columns={'index':'Sector_ID'})
input_tax_disallow_potential = get_input_tax_disallow_potential(exempt_supply_sec_ratio, input_tax_potential, year)
col_header = np.array(['Input Tax Credit Disallowance'])
input_tax_disallow_potentialdf = pd.DataFrame(data=input_tax_disallow_potential, index = sector_headers, columns=col_header)
input_tax_disallow_potentialdf = input_tax_disallow_potentialdf.reset_index()
input_tax_disallow_potentialdf = input_tax_disallow_potentialdf.rename(columns={'index':'Sector_ID'})
rev_charge_potential = get_rev_charge_potential(tax_rates_vec, use_mat, imports_eu_alloc, imports_noneu_alloc, rc_vec, year)
col = np.array(['Reverse Charge'])
rev_charge_potentialdf = pd.DataFrame(data=rev_charge_potential, index = sector_headers, columns=col)
rev_charge_potentialdf = rev_charge_potentialdf.reset_index()
rev_charge_potentialdf = rev_charge_potentialdf.rename(columns={'index':'Sector_ID'})
import_VAT_potential = get_import_VAT_potential(tax_rates_vec, imports_eu_alloc, imports_noneu_alloc, year)
col = np.array(['Import VAT'])
import_VAT_potentialdf = pd.DataFrame(data=import_VAT_potential, index = sector_headers, columns=col)
import_VAT_potentialdf = import_VAT_potentialdf.reset_index()
import_VAT_potentialdf = import_VAT_potentialdf.rename(columns={'index':'Sector_ID'})
tax_revenue_mergeddf = get_vat_revenues(year)
VAT_potentialdf = get_VAT_potential(import_VAT_potentialdf, output_tax_potentialdf, input_tax_potentialdf, input_tax_disallow_potentialdf, rev_charge_potentialdf, va_by_reg_ratiodf, tax_revenue_mergeddf, year)